5,827 Matching Annotations
  1. Oct 2023
    1. Author Response

      We appreciate the insightful comments from three reviewers on our manuscript. These comments help us improve the clarity of this manuscript. We will revise our manuscript comprehensively in subsequent revision, and enclose a detailed response to each of these comments. In this public reply, we focus on (a) clarifying the theoretical motivation and implication of the present study, and (b) discussing the implications of our LLM study. Besides, we provide a brief justification regarding some methodological concerns shared by the reviewers.

      1) Theoretical rationale and implication

      As we stated in the manuscript, the present study tested whether body size serves as a reference for locomotion and object manipulation, or alternatively, plays a pivotal role in shaping the representation of objects as suggested by Protagoras. Behind this question is the long-lasting debate regarding the representation versus direct perception of affordance.

      One outstanding theme shared by many embodied theories of cognition is the replacement hypothesis (e.g., Van Gelder, 1998). This hypothesis challenges the necessity of representation in the sense of computationalism cognitive theories (e.g., Fodor, 1975), which implies discretizing/categorizing inputs and then subjecting them to certain abstraction or symbolization so as to create discrete stand-ins for the input (e.g., representations/states). In this sense, our theoretical motivation can be restated explicitly as to test the ‘representationalization’ of affordance. That is, we tested whether object affordance would simply covary with its continuous constraints such as object size, in line with the representation-free view, or, whether affordance would be ‘representationalized’, in line with the representation-based view, under the constrain of body size. Such representationalization would generate categorization between the affordable (the objects) and those beyond affordance (the environment).

      Debates regarding the replacement hypothesis often turn into wrestles on the definition of representation (Shapiro, 2019). The present study tried to avoid this pitfall but examined where the embodied and computational theories make opposite hypotheses: discontinuity. Specifically, we considered two computationalism propositions about representation: (a) representations entail discretization of continuous input, and (b) the product of such discretization (representations) is supramodally accessible (that is, transcending sensorimotor processes). These claims are opposite to the prediction based on the idea of direct perception and other representation-free embodied theories.

      Thus, we tested whether, for continuous action-related physical features (such as object size relative to the agents), affordance perception introduces discontinuity and qualitative dissociation, i.e., to allow the sensorimotor input to be assigned into discrete states/kinds, as representations envisioned by computationalists. Alternatively, does the activity directly mirror the input, free from discretization/categorization/abstraction, as proposed by the replacement hypothesis that organisms do not need to re-present the world as they are always in contact with the world in a continuous way?

      All the experiment settings and analyses in the present study were organized around this motivation, following a progressive logic chain.

      First, we tested the discretization hypothesis, that is, whether affordance leads to discontinuity in perception. Here, the discontinuity in affordance perception would be in line with the representation-based view instead of the representation-free proposals. Second, to ensure that the observed discontinuity can be attributed to the discretization of sensorimotor input involved in human-object interaction rather than amodal sources, such as the discrete abstract concepts of the objects (independent from agent motor capability), we tested the embodied nature of this discontinuity through the body imagination experiment. If there is discontinuity in representing embodied information, this discontinuity should be locked to the motor capacity (constrained by the physical constitution such as body size) of the agent, rather than reflecting independent categorization of the absolute size of the objects. Finally, we probed the supramodality of this embodied discontinuity: whether this discontinuity is accessible beyond the sensorimotor domain. To do this, we leveraged the recent advance in AI and tested whether the discretization observed in affordance perception is supramodally accessible to disembodied agents which lack access to sensorimotor input but only have access to the linguistic materials built upon discretized representations, such as large language models (LLM).

      In this way, the experiments in the present study collectively contributed to the debate on the replacement theme of the embodiment of cognition, which serves as one of the three key themes of embodied theories of cognition (Shapiro, 2019). By addressing this theme, we hope to shed light on the nature of representation in, and resulting from, the vision-for-action processing. Our finding regarding discontinuity suggested that sensorimotor input undergoes discretization implied in the computationalism idea of representation. Further, not contradictory to the claims of the embodied theories, these representations do shape processes out of the sensorimotor domain, but after discretization.

      2) Implication in the development of LLM-based agents

      The finding that affordance was representationalized may have profound implications for the development of LLM-based agents. Traditional robots and non-LLM-based agents require implementation-level action instruction, acting as a tool for human beings to achieve desired results. In contrast, LLM-based agents (for a review, see Wang et al., 2023), such as Auto-GPT and BabyAGI, are able to autonomously perform tasks and achieve desired results based on LLMs’ planning ability. In this sense, LLM-based agents show a primary ability to interact on their own with the world. Generative agents, for instance, the agents in Smallville (Park et al., 2023), are a particularly applauded recent advantage in the school of LLM-based agents, which show even larger potentials in this aspect. Drawing on generative models to simulate human behaviors, these agents can formulate their own memories and goals, generate new environment-dependent behaviors, and interact convincingly with humans and other agents and their environments in the course. This brings new possibilities in resolving the long-lasting challenge in artificial general intelligence (AGI) development, that is, to bestow AI with human-level ability in agent-environment interactions. However, it is worth noting that the present investigation in LLM-based agents is still largely confined to virtual environments. This leaves an open question as to how to equip these agents with the ability of agent-environment physical interaction. Especially, according to embodied theories of cognition, sensorimotor interactions with the environment provide unique knowledge upon which various cognitive domains are built. From this point of view, building agents with human-level ability in agent-environment physical interactions might provide an unreplaceable missing piece for AGI.

      By probing the representation of action possibilities (affordances) provided by the environment to the agent (or the absence of them), the present study provided a clue in achieving such ability by illustrating the representationalization of affordance and the supramodality of these representations. For instance, the finding of supramodality may alleviate the doubts about the physical interaction ability of LLM-based agents comparable to biological agents. Specifically, LLM-based agents can leverage the affordance representation distilled into language to interact with the physical world. Indeed, by clarifying and aligning such representation with the physical constitutes of LLM-based agents, and even by explicitly constructing an agent-specific object space, we may facilitate the sensorimotor interactions of LLM-based agents so as to achieve animal-level interaction ability with the world. This in turn may provide new instances for embodied theories.

      3) Clarification on incomplete evidence

      In response to the methodological and validity concerns of the reviewers, we will provide a point-by-point detailed response to reviewers enclosed with the revised manuscript. Here, we reply to the most prominent concerns.

      Reviewers were concerned about the statistical power of both the body imagination experiment and the fMRI experiment. Regarding the number of participants in the imagination study, we would like to clarify that we did not remove 80% of the participants. Actually, a separate sample of participants was recruited in the body imagination experiment. The sample size for the body imagination experiment (100 participants) was indeed smaller than that recruited for the first experiment (528 participants). This is because the first experiment was set for exploratory purposes, and was designed to be over-powered.

      Admittedly, the fMRI experiment recruited a small sample (12 participants), which might lead to low power in estimating the affordance effect. In revision, we will acknowledge this issue explicitly. Having said this, note that the null hypothesis of this fMRI study is the lack of two-way interaction between object size and object-action congruency, which was rejected by the significant interaction. That is, the interpretation of the present study did not rely on accepting any null effect. In addition, the fMRI experiment provided convergent evidence for the affordance discontinuity at the neural level. We showed that behind the behavioral discontinuity in action judgement, neural activity was qualitatively different between objects within the affordance boundary and those beyond, which reinforces our statement that objects were discretized along the continuous size axis into two broad categories.

      Reviewers also commented that more objects and actions should be included. We agree, and in revision, we will advocate future studies with more objects and more actions to comprehensively portray discontinuity. The present set of objects was designated to cover a relatively large range of object sizes, ranging from 14 cm to 7,618 cm to cover most size categories studied in Konkle and Oliva's (2011) work. In addition, the actions were selected to cover daily interactions between human and objects or environments from single-point movements (e.g., hand, foot) to whole-body movements (e.g., lying, standing) referencing the kinetics human action video dataset (Kay et al., 2017). Thus, this set of selected objects and actions is sufficient to test the discontinuity.

      References

      Fodor, J. A. (1975). The Language of Thought (Vol. 5). Harvard University Press.

      Park, J. S., O'Brien, J. C., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023). Generative agents: Interactive simulacra of human behavior. arXiv preprint arXiv:2304.03442.

      Shapiro, L. (2019). Embodied Cognition. Routledge.

      Van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5), 615-628.

      Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., ... & Wen, J. R. (2023). A survey on large language model based autonomous agents. arXiv preprint arXiv:2308.11432.

    1. Author Response

      First of all, we would like to thank you for the opportunity to get the three valuable sets of comments on our work from the reviewers and the important summary from the Chief Editor. If we understand correctly, at this moment, we are expected to check for any factual errors, and our response at this stage will affect the choice of which reviewer’s comment will be published as a part of the reviewed Preprint. If so, we want to comment on some of the reviewer's points (Part A). These are not factual errors but more misunderstandings that need to be corrected. Furthermore, it depends on your decision whether it will be a part of the response or not. In Part B, we will address the reviewer's comments.

      Part A:

      1) Reviewers #1 and #3 missed our originally already reported PNAs dynamics based on live-cell imaging (mainly Reviewer #3 stressed that the dynamic we present is extrapolated from fixed imaging). We previously published the detailed dynamics of PNAs as detected by live-cell imaging (Imrichova, Aging 2019, doi: 10.18632/aging.102248. Epub 2019 Sep 7). It seems that we have not sufficiently highlighted this important aspect in the present eLife manuscript, despite in the Introduction part, we have described the dynamic transitions between the individual PNAs types/stages, yet without explicitly emphasizing that such dynamic insights were deduced from our live-cell imaging experiments.

      2) Reviewer#2 asked us to reconcile the different phenotypes after RNAi of TOP2A (KD induces PNAs) and TOP2B (KD does not induce PNAs), vis a vis the fact that the TOP2B-targeting drug -doxorubicin is a strong inducer of PNAs formation. We would like to stress that doxorubicin is not a specific poison of TOP2B (e.g., Atwal 2019; DOI: 10.1124/mol.119.117259). It can poison (at low concentration) or inhibit (at high concentration) all subtypes of topoisomerase 2. In other words, doxorubicin targets a wider spectrum of type 2 topoisomerases and hence can limit any potential redundant roles of the individual subtypes, which, on the other hand, can manifest under conditions when only a specific one member is depleted genetically. We have further discussed this interesting issue in the discussion presented in our manuscript, and we believe there is no discrepancy, due to the wider impact of doxorubicin and an apparently more dominant role of TOP2A than TOP2B in preventing PNAs.

      3) We are aware that the biological significance of the interaction of PML with nucleolus has not been fully solved yet. At this moment, we can conclude that PNAs recognize and sequester the damaged/aberrant rDNA from active nucleolus. This novel sorting mechanism might be necessary for maintaining the integrity of the repetitive rDNA loci that might otherwise be altered or lost during complex recombinational rDNA repair. Importantly, we also identified substances (mostly chemotherapeutics) that cause rDNA damage. Given that PML is a multifaceted protein involved in diverse processes; PML depletion might affect several stress-related processes. The rDNA quality/quantity analysis is also highly challenging because of the high number of rDNA copies (200-400). As preparing such an experimental model/s is difficult and time-consuming, addressing this issue in more detail will be a part of our follow-up work. Nevertheless, we will perform the bulk of the experiments recommended by the reviewers, to strengthen the conclusions of this manuscript, as follows: A) We will explore whether the PNAs formation is linked to some specific cell cycle phase; B) To strengthen the experiments with inhibition of NHEJ (DNA PKi) and HR (B02i), we will perform the RNA interference or use some other inhibitor/s operating through a distinct mechanism yet targeting the same repair process; C) We will analyze the recovery from I-PpoI treatment and assess cell proliferation, ability to form colonies, and the presence of senescent cells.

      Part 2

      Reviewer #1 (Public Review):

      Summary:

      This paper described the dynamics of the nuclear substructure called PML Nucleolar Association (PNA) in response to DNA damage on ribosomal DNA (rDNA) repeats. The authors showed that the PNA with rDNA repeats is induced by the inhibition of topoisomerases and RNA polymerase I and that the PNA formation is modulated by RAD51, thus homologous recombination. Artificially induced DNA double-strand breaks (DSBs) in rDNA repeats stimulate the formation of PNA with DSB markers. This DSB-triggered PNA formation is regulated by DSB repair pathways.

      Strengths:

      This paper illustrates a unique DNA damage-induced sub-nuclear structure containing the PML body, which is specifically associated with the nucleolus. Moreover, the dynamics of this PML Nucleolar Association (PNA) require topoisomerases and RNA polymerase I and are modulated by RAD51-mediated homologous recombination and non-homologous end-joining. This study provides a unique regulation of DSB repair at rDNA repeats associated with the unique-membrane-less subnuclear structure.

      Weaknesses:

      Although the PNA formation on rDNA repeat is nicely shown by cytological analysis, the biological significance of PNA in DSB repair is not fully addressed.

      At this moment, we cannot mechanistically fully elucidate the biological significance of this peculiar process. However, our data shows that the dynamic interaction of PML with nucleolus can sequester damaged rDNA from reactivating nucleolus. We propose that in this way, the actively transcribed intact rDNA is protected from possible detrimental interaction with the defective, PNAs-sequestered rDNA, most likely to avoid the harmful intra- and inter-chromosomal recombination events that would otherwise likely occur during recombinational repair of the damaged rDNA, as the rDNA repeats present on 5 chromosomes are repetitive. Thus, this novel sorting mechanism might help sustain repetitive rDNA loci integrity.

      Reviewer #2 (Public Review):

      In this manuscript, the authors aim to study the PML-nucleoli association (PNAs) by different genotoxic stress and to determine the underlying molecular mechanisms.

      First, from a diverse set of genotoxic stress conditions (topoisomerases, RNA Pol I, rRNA processing, and DNA replication stress), the authors have found that the inhibition of topoisomerases and RNA Polymerase I has the highest PNA formation associated with p53 stabilization, gamma-H2AX, and PAF49 segregation. It was further demonstrated that Rad51-mediated HR pathway but not NHEJ pathway is associated with the PNA formation. Immuno-FISH assays show that doxorubicin induces DSBs (53BP1 foci) in rDNA and PNA interactions with rDNA/DJ regions. Furthermore, endonuclease I-Ppol induced DSB at a defined location in rDNA and led to PNAs.

      Most claims by the authors are supported by the data provided. However, below weaknesses/concerns may need to be addressed to improve the quality of the study.

      1) Top2B toxin doxorubicin had the highest degree of elevating PNAs; however, Top2B-knockdown had almost no noticeable effects on PNAs. How to reconcile the different phenotypes targeting Top2B?

      1) We thank the reviewer for this comment and below explain why there is no discrepancy in the observed phenotypes. Doxorubicin is not a specific poison of TOP2B (e.g., Atwal 2019; DOI: 10.1124/mol.119.117259). It can poison (stabilize ternary complex at low concentration) or inhibit (e.g., defects in decatenation at high concentration) all subtypes of topoisomerase 2. It intercalates DNA (alteration of DNA torsion; histone eviction) and elevates oxidative stress. Therefore, the observed effect of doxorubicin reflects its broader impact, also beyond inhibition of Top2B: as doxorubicin targets a wider spectrum of type 2 topoisomerases and hence can limit any potential redundant roles of the individual subtypes (which on the other hand can manifest under conditions when only one specific member is depleted genetically), thereby causing a robust induction of PNAs. We have further discussed this issue in the Discussion section of our manuscript, and we believe there is no discrepancy, in the observed phenotypes due to the wider impact of doxorubicin and an apparently more dominant role of TOP2A than TOP2B (both of which are impacted to some extent by doxorubicin) in preventing PNAs.

      2) To test the role of Rad51 and DNA-PKcs in the PNA formation, Rad51 inhibitor B02 and DNA-PKcs inhibitor NU-7441 were chosen to use in the study. To further exclude the possible off-target of B02 and NU-7441, siRNA-mediated knockdown of Rad51 and DNA-PKcs would be an appropriate complementary approach to the pharmaceutical inhibitor approach.

      We are grateful for this suggestion and will perform the recommended experiments the outcome of which will indeed help to exclude the possible off-target effects of B02 and NU-7441. We are now collecting/testing the necessary tools and will carry out these analyses proposed by the reviewer.

      3) Several previous studies have shown the activation of the nucleolar ATM-mediated DNA damage response pathway by I-Ppol-induced DSBs in rDNA. What is the role of nucleolar ATM in the regulation of PNAs?

      We are aware of the relevant literature on ATM, and appreciate this question from the reviewer. During the revision of this manuscript, we will therefore address the role of ATM signaling in the phenomena that we report here. As ATM signaling is essential for the repression of pre-rRNA synthesis and the compaction of rDNA into the nucleolar caps in response to rDNA damage, we will complement this knowledge by testing to what extent might ATM inhibition affect the induction of PNAs/PML-NDS in our model and experimental settings.

      Reviewer #3 (Public Review):

      Summary:

      Hornofova et al. examined interactions between the nucleolus and promyelocytic leukemia nuclear bodies (PML-NBs) termed PML-nucleolar associations (PNAs). PNAs are found in a minor subset of cells, exist within distinct morphological subcategories, and are induced by cellular stressors including genotoxic damage. A systematic pharmacological investigation identified that compounds that inhibit RNA Polymerase 1 (RNAPI) and/or topoisomerase 1 or 2A caused the greatest proportion of cells with PNA. A specific RAD51 inhibitor (R02) impacted the number of cells exhibiting PNAs and PNA morphology. Genetic double-strand break (DSB) induction within the rDNA locus also induced PNA structures that were more prevalent when non-homologous end joining (NHEJ) was inhibited.

      Strengths:

      PNA are morphologically distinct and readily visualized. The imaging data are high quality, and rDNA is amenable to studying nuclear dynamics. Specific induction of rDNA damage is a strong addition to the non-specific pharmacological damage characterized early in the manuscript. These data nicely demonstrate that rDNA double-strand breaks undermine PNA formation. Figure 1 is a comprehensive examination and presents a compelling argument that RNAPI and/or TOP1, TOP2A inhibition promote PNA structures.

      Weaknesses:

      The data are limited to fixed fluorescent microscopy of structures present in a minority of cells. Data are occasionally qualitative and/or based upon interpretation of dynamic events extrapolated from fixed imaging. This study would benefit from live imaging that captures PNA dynamics.

      We believe this comment reflects a misunderstanding, for the following reason: We fully agree with the reviewer that live-cell imaging is critical to properly capture the dynamics of the PNAs formation and evolution, and apologize for not sufficiently highlighting that this was already presented in our previous study in which we described the existence and dynamics of PNAs over time, based on the live cell imaging that the reviewer correctly regards as important. In Imrichova et al. (doi: 10.18632/aging.102248. Epub 2019 Sep 7), we used live-cell imaging to describe the dynamics of forming PNAs and the transition between individual types, and we referred to this work in the Introduction section of our present manuscript. By those experiments, including the live-cell imaging, we showed that after the recovery of RNAPI transcription, which usually follows the washout (removal) of the DNA-damaging agents, the funnel-like PNAs are transformed into PML-NDS. These newly emerging PNAs (PML-NDS) are placed next to the reactivated nucleolus. To document this, we paste below the relevant part of the Introduction text that was included in our submitted manuscript (see below in italics). Nevertheless, we did not emphasize that the transition between individual types of PNAs was obtained using live-cell imaging of cells ectopically expressing PML-EGFP and B23-RFP. In the revised manuscript, we will include this critical information and will complement this by a scheme explaining the dynamics of PNAs transitions.

      Copied text from our manuscript, relevant to this issue: Doxorubicin, a topoisomerase inhibitor and one of the PNAs inducers, provokes a dynamic interaction of PML with the nucleolus, where the different phases linked to RNAPI inhibition can be discriminated into four basic structural subtypes of PNAs termed according to the 3D structures obtained by super-resolution microscopy as PML 'bowls', PML 'funnels', PML 'balloons' and PML nucleolus-derived structures (PML-NDS; (36)). The doxorubicin-induced inhibition of RNAPI leads to a nucleolar cap formation around which diffuse PML accumulates to form the PML bowl. Note that this event is rare as a minority of nucleolar caps are enveloped by PML (36). As the RNAPI inhibition continues, PML bowls protrude into PML funnels or transform into PML balloons wrapping the whole nucleolus. When the stress is relieved and RNAPI resumes activity, a PML funnel transforms into distinct compartments placed next to the non-segregated (i.e., reactivated) nucleoli, PML nucleolus-derived structures (PML-NDS). PML-NDSs contain nucleolar material, rDNA, and markers of DNA DSBs (36,37).

      Cell cycle and cell division are not considered. Double-strand break repair is cell cycle dependent, and most experiments occur over days of treatment and recovery. It is unclear if the cultures are proliferating, or which cell cycle phase the cells are in at the time of analysis. It is also unclear if PNAs are repeatedly dissociating and reforming each cell division.

      We agree this is an important point. In a complementary setting we previously published (Imrichova et al., doi: 10.18632/aging.102248. Epub 2019 Sep 7) that exposure of RPE-1 hTERT cells to doxorubicin caused cell cycle arrest and cellular senescence. Thus, most of such cells will not enter the cell cycle again. Regarding the I-PpoI-based model, we indeed did not show in the present manuscript how I-PpoI activation (rDNA damage) affects the cell cycle. In our preliminary experiments that address this issue, we saw that only about 1–3% of cells can recover from the stress and form colonies in a colony-forming assay. We will further repeat and corroborate these preliminary data and include these results in the revised manuscript, together with β-galactosidase staining to demonstrate the presence of senescent cells.

      Furthermore, as suggested by this reviewer, we will assess the cell cycle phase/position of the cells in our experiments, to find out whether the cell cycle phase affects/correlates with the PNAs formation.

      The relationship of PNA morphologies (bowl, funnel, balloon, and PML-NDS) also remains unclear. It is possible that PNAs mature/progress through the distinct morphologies, and that morphological presentation is a readout of repair or damage in the rDNA locus. However, this is not formally addressed.

      This is partly explained by our response to Reviewer no 1, related to our previous live-cell imaging analyses. The 'bowl' emerges first and can be transformed into a 'funnel' or 'balloon'. All these PML structures are in contact with the nucleolar cap (the RNAPI is inhibited). Upon reactivation of RNAPI, the funnel can transform into the PML-NDS. At this moment, we cannot conclude to which precise process the individual structure is linked. However, we already know (Hornofova et al., DOI: 10.1016/j.dnarep.2022.103319) that the funnels colocalize with the highest portion of rDNA, which may reflect some process of concentration/clustering of rDNA. This observation is supported by results presented in this manuscript, which show that individual acrocentric chromosomes (NORs) also accumulate in one funnel. To summarize, the formation of the bowl reflects the aberration in rDNA. The funnel can accumulate rDNA and NORs in one site. The transition between the funnel and PML-NDS mirrors the changes after the reactivation of RNAPI and facilitates the sequestration of damaged rDNA/NORs outside of the active nucleolus. As the processes linked to the individual PNA are not solved yet, we will at least address this issue in a discussion.

      An I-Ppol targeted sequence within the rDNA locus suggests 3D structural rearrangement following damage. An orthogonal approach measuring rDNA 3D architecture would benefit comprehension.

      This is a very inspiring idea, although demanding and somewhat outside the focused scope of the present study. Our follow-up work will focus on the localization of individual NORs using immune-FISH after introducing the rDNA damage by I-PpoI. In the context of those studies, we also plan to analyze rDNA 3D architecture.

      Following I-Ppol induction, it is possible that cells arrest in a G1 state. This may explain why targeting NHEJ has a greater impact on the number of 53BP1 foci and should be investigated.

      We fully agree with this possibility and in response, we will perform a series of cell cycle analysis experiments to address this issue, during the revision phase of this manuscript. We will analyze whether I-Ppol-induced PNAs are linked to some cell cycle phase(s).

      Conclusions: PNAs are a phenomenon of biological significance and understanding that significance is of value. More work is required to advance knowledge in this area. The authors may wish to examine the literature on APBs (Alt-associated PML-NBs), which are similar structures where telomeres associate with PML-NBs in a specific subset of cancers. It is possible that APBs and PNAs share similar biology, and prior efforts on APBs may help guide future PNA studies.

      We will follow this recommendation by the reviewer. In ALT, PML is essential for clustering several (damaged) telomeres into APB. In PML-deficient cells, there is not only a defect in the formation of APB, but also the ALT telomeric DNA synthesis in G2 cells is blocked. As we already mentioned, funnel-like PNAs can accumulate several NORs. Thus, the recombination process between NORs might be facilitated. We will highlight this link and its relevance for cancer in our revised manuscript, thank you.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the reviewers for their insightful comments, suggestions, and criticism. In the updated version of the manuscript, all these will be properly reflected. Here we briefly address the main points raised:

      Reviewer #1:

      1.1) Patient selection and tumor area selection are crucial for this study but not very carefully defined. Why are some core and others not? Figure referral is an issue here (sup figure 6 where all core and non-core samples are supposed to be according to the legend of Fig 4 is likely sup fig 7 but this is then a complete copy paste of Figure 4). In the methods it is stated that the core samples are based on limited contamination of additional morphotypes (<20%) but Fig 4 suggests that all tumours listed have multiple morphotypes.

      The tissue samples were obtained from a hospital cohort of patients with stage II-IV colorectal cancer (at diagnostic time), with no particular selection criteria imposed, as this was an exploratory study.

      Tumor regions were marked for macro-dissection by an experienced pathologist following the standard practice for whole-tumor transcriptomics studies. The subregions (morphological regions) were marked by the same experienced pathologist for macro-dissection (in an adjacent section) and reassessed later with respect to their “morphological purity”. It is impossible to macro-dissect regions containing a single morphological pattern. Hence, those regions which contained significant amount (>=20%) of other morphologies were considered “non-core”, while the rest were called “core” regions. This distinction applies to morphological regions solely and not to whole-tumor samples. Indeed, the reference in caption to Figure 4, should refer to Supp. Fig. 7 (and has been updated).

      1.2) CMS subtype should be performed with single sample predictor rather than CMScaller.

      We agree that a single-sample predictor for CMS is needed, however CMScaller is the de facto classifier for CMS (>130 citations) so we used it to illustrate the practical implications.

      1.3) A couple of surprising observations need specification. MUC2 is a strong CMS3 reporter gene yet Mucinous tumours appear to end up in CMS4 rather than 3. Can the authors show that indeed stroma cells are very evident in these samples?

      We do not have a direct estimation of the amount of stromal cells, but the high scores of the various fibroblast-related signatures in mucinous regions (Fig2 B, D) indicate that, indeed, there is an enrichment in stroma. In the follow-up study we plan to perform specific staining as well as spatial transcriptomics of these regions to further investigate our findings.

      1.4) The SE PP and CT are assigned to CMS2, but in Figure 4 this appears a lot more variable than the authors would make the reader believe. The full data are not completely clear (see point 1).

      In the paper, we transparently state that PP, SE, and CT were assigned to CMS2 in 62.5%, 41.7% and 41.9% of cases, respectively. These proportions referred to all samples for which CMSCaller made a prediction. In Fig.4, we also show the proportion of cases in which CMSCaller did not predict any subtype.

      1.5) The tumor response rates are rather weird as this is likely dependent on the complete tumour and not so much the subareas. It is not very well described what we see in this analysis.

      We did not compute any response rates but simple prognostic scores as (weighted, if weights were provided) means of genes in the specific signatures (see Methods). The question addressed was whether these scores were comparable between whole tumor and corresponding tumor regions (within same tumor). Given the observed (relative) variability, the more important follow-up question - which we cannot answer with our limited survival data – is whether a higher score in a region in comparison with whole-tumor is indeed indicative of a higher risk of relapse.

      1.6) Serrated adenomas have previously been aligned with CMS4. Is this different from serrated areas in cancers?

      We do not have data from adenomas to compare with the serrated carcinoma regions. But a comparison of (regions of) both traditional serrated and sessile serrated adenomas to serrated carcinoma would be interesting.

      1.7) The fact that iCMS2 and iCMS3 align rather well with the current analysis of the distinct regions suggests that the analysis that was reported last year is the proper way to view tumor intrinsic signatures. The authors now propose a rather similar outcome to this issue which does take away a lot of the novelty of the findings of this study.

      In the manuscript it is clearly stated that our goal was to describe the molecular characteristics associated with several morphological patterns. It was not to propose another stratification paradigm for colorectal cancer. As such, our analyses were not limited to molecular subtypes and the respective observations were but a small part of our findings. Indeed, the intrinsic subtypes (iCMS 2/3) were stable and robust, as they were based on the genes expressed in epithelial cells, and they might well prove to be of clinical importance too. However, they do not cover all aspects (e.g. fibroblasts subtypes) and, as stated in Joanito et al. Nat Gen 54, pages 963–975 (2022), “iCMS, MSI status and CMS jointly inform the molecular classification of CRC”. Last, in our opinion, the molecular classification of CRC, while a useful point of view in tumour classification, is not covering all the necessary perspectives on tumour heterogeneity.

      Reviewer #2:

      2.1) Overall, the manuscript provides an interesting histological/morphological framework through which we can consider heterogeneity in colorectal carcinoma and an approach by which we might improve the performance of gene expression-based classifiers in predicting clinical behaviour and/or responses to therapy. Exploration of CRC morphotypes and their differences was quite interesting. However, more work is needed to support the claims made by the authors. While I appreciate that the authors themselves identify limitations of their study within the manuscript, I believe awareness of these limitations is not reflected in some of the claims made in the abstract and at points in the main text when discussing the use of expression-based classifiers.

      The manuscript was improved to clarify several aspects that Reviewer 2 rightly pointed out:

      1. We clarify that for a patient (tumor) there might be one or several corresponding transcriptomics profiles (see Methods).

      2. The resulting “molecular portraits” were not derived with the goal to deconvolve the bulk tumor expression profiles and to estimate the proportions of morphotypes. Whether this is possible at all, is an open question and we mention this aspect in “Ideas and Speculation” section.

      3. We improved figures captions to be more descriptive.

      4. We included the reference for “Isela signature” at its first appearance.

    1. Author Response

      eLife assessment

      This useful study addresses epilepsy caused by the loss of a molecule called Pten, resulting in hyperactivity of the mTOR pathway. The findings suggest that inhibiting two molecules called mTORC1 and mTORC2 can reduce epilepsy symptoms but there is much less effect when inhibited separately. The evidence supporting the conclusions is currently incomplete, but could be strengthened after additional experiments.

      We thank the editors for this assessment and the reviewers for their comments. We will consider each of the recommendations we received and revise the manuscript accordingly.

      Reviewer #1 (Public Review):

      Hyperactivation of mTOR signaling causes epilepsy. It has long been assumed that this occurs through overactivation of mTORC1, since treatment with the mTORC1 inhibitor rapamycin suppresses seizures in multiple animal models. However, the recent finding that genetic inhibition of mTORC1 via Raptor deletion did not stop seizures while inhibition of mTORC2 did, challenged this view (Chen et al, Nat Med, 2019). In the present study, the authors tested whether mTORC1 or mTORC2 inhibition alone was sufficient to block the disease phenotypes in a model of somatic Pten loss-of-function (a negative regulator of mTOR). They found that inactivation of either mTORC1 or mTORC2 alone normalized brain pathology but did not prevent seizures, whereas dual inactivation of mTORC1 and mTORC2 prevented seizures. As the functions of mTORC1 versus mTORC2 in epilepsy remain unclear, this study provides important insight into the roles of mTORC1 and mTORC2 in epilepsy caused by Pten loss and adds to the emerging body of evidence supporting a role for both complexes in the disease development.

      Strengths:

      The animal models and the experimental design employed in this study allow for a direct comparison between the effects of mTORC1, mTORC2, and mTORC1/mTORC2 inactivation (i.e., same animal background, same strategy and timing of gene inactivation, same brain region, etc.). Additionally, the conclusions on brain epileptic activity are supported by analysis of multiple EEG parameters, including seizure frequencies, sharp wave discharges, interictal spiking, and total power analyses.

      Weaknesses:

      1) The sample size of the study is small and does not allow for the assessment of whether mTORC1 or mTORC2 inactivation reduces seizure frequency or incidence. This is a limitation of the study.

      We agree that this is a minor limitation of the present study, however, for several reasons we decided not to pursue this question by increasing the number of animals. First, we performed a power analysis of the existing data. This analysis showed that we would need to use 89 animals per group to detect a significant difference (0.8 Power, p= 0.05, Mann-Whitney test) in the frequency of generalized seizures in the Pten-Raptor group and 31 animals per group in the Pten-Rictor group versus Pten alone. It is simply not feasible to perform EEG monitoring on this many animals. Second, even if we did do enough experiments to detect a reduction in seizure frequency, it is clear that neither Raptor nor Rictor deletion provides the kind normalization in brain activity that we seek in a targeted treatment. Both Pten-Raptor and Pten-Rictor animals still have very frequent spike-wave events (Fig. 3D) and highly abnormal interictal EEGs (Fig. 4), suggesting that even if generalized seizures were reduced, epileptic brain activity persists. This is in contrast to the triple KO animals, which have no increase in SWD above control level and very normal interictal EEG.

      2) The authors describe that they inactivated mTORC1 and mTORC2 in a new model of somatic Pten loss-of-function in the cortex. This is slightly misleading since Cre expression was found both in the cortex and the underlying hippocampus, as shown in Figure 1. Throughout the manuscript, they provide supporting histological data from the cortex. However, since Pten loss-of-function in the hippocampus can lead to hippocampal overgrowth and seizures, data showing the impact of the genetic rescue in the hippocampus would further strengthen the claim that neither mTORC1 nor mTORC2 inactivation prevents seizures.

      Thank you for pointing out this issue. Cre expression was observed in both the cortex and the dorsal hippocampus in most animals, and we agree that differences in cortical versus hippocampal mTOR signaling could have differential contributions to epilepsy. We focused our studies on the cortex because spike-and-wave discharge, the most frequent and fully penetrant EEG phenotype in our model, is associated with cortical dysfunction. We had also performed a preliminary analysis of the hippocampal Cre expression, which suggested that Cre expression in the hippocampus did not affect generalized seizure occurrence. We plan to include data on Cre expression in the hippocampus in the revised version of the manuscript.

      3) Some of the methods for the EEG seizure analysis are unclear. The authors describe that for control and Pten-Raptor-Rictor LOF animals, all 10-second epochs in which signal amplitude exceeded 400 μV at two time-points at least 1 second apart were manually reviewed, whereas, for the Pten LOF, Pten-Raptor LOF, and Pten-Rictor LOF animals, at least 100 of the highest-amplitude traces were manually reviewed. Does this mean that not all flagged epochs were reviewed? This could potentially lead to missed seizures.

      We reviewed at least 48 hours of data from each animal manually. All seizures that were identified during manual review were also identified by the automated detection program. It is possible but unlikely that there are missed seizures in the remaining data.

      4) Additionally, the inclusion of how many consecutive hours were recorded among the ~150 hours of recording per animal would help readers with the interpretation of the data.

      Thank you for this recommendation. We plan to include a table with more information about the EEG recordings in the revised version of the manuscript. The number of consecutive hours recorded varied because the wireless system depends on battery life, which was inconsistent, but each animal was recorded for at least 48 consecutive hours on at least two occasions.

      5) Finally, it is surprising that mTORC2 inactivation completely rescued cortical thickness since such pathological phenotypes are thought to be conserved down the mTORC1 pathway. Additional comments on these findings in the Discussion would be interesting and useful to the readers.

      Soma size was increased 120% by Pten inactivation and partially normalized to a 60% increase from Controls by mTORC2 inactivation (Fig. 2C). We and others have previously shown that mTORC2 inactivation in neurons reduces both soma size and dendritic outgrowth (PMIDs: 36526374, 32125271, 23569215). Thus, we do not find it completely surprising that mTORC2 inactivation reduces the cortical thickness increase caused by Pten loss. There may still be a slight increase in cortical thickness in Pten-Rictor animals, but it is statistically indistinguishable from Controls. We will elaborate on this in our revised submission.

      Reviewer #2 (Public Review):

      Summary:

      The study by Cullen et al presents intriguing data regarding the contribution of mTOR complex 1 (mTORC1) versus mTORC2 or both in Pten-null-induced macrocephaly and epileptiform activity. The role of mTORC2 in mTORopathies, and in particular Pten loss-off-function (LOF)-induced pathology and seizures, is understudied and controversial. In addition, recent data provided evidence against the role of mTORC1 in PtenLOF-induced seizures. To address these controversies and the contribution of these mTOR complexes in PtenLOF-induced pathology and seizures, the authors injected a AAV9-Cre into the cortex of conditional single, double, and triple transgenic mice at postnatal day 0 to remove Pten, Pten+Raptor or Rictor, and Pten+raptor+rictor. Raptor and Rictor are essentially binding partners of mTORC1 and mTORC2, respectively. One major finding is that despite preventing mild macrocephaly and increased cell size, Raptor knockout (KO, decreased mTORC1 activity) did not prevent the occurrence of seizures and the rate of SWD event, and aggravated seizure duration. Similarly, Rictor KO (decreased mTORC2 activity) partially prevented mild macrocephaly and increased cell size but did not prevent the occurrence of seizures and did not affect seizure duration. However, Rictor KO reduced the rate of SWD events. Finally, the pathology and seizure/SWD activity were fully prevented in the double KO. These data suggest the contribution of both increased mTORC1 and mTORC2 in the pathology and epileptic activity of Pten LOF mice, emphasizing the importance of blocking both complexes for seizure treatment. Whether these data apply to other mTORopathies due to Tsc1, Tsc2, mTOR, AKT or other gene variants remains to be examined.

      Strengths:

      The strengths are as follows: 1) they address an important and controversial question that has clinical application, 2) the study uses a reliable and relatively easy method to KO specific genes in cortical neurons, based on AAV9 injections in pups. 2) they perform careful video-EEG analyses correlated with some aspects of cellular pathology.

      Weaknesses:

      The study has nevertheless a few weaknesses: 1) the conclusions are perhaps a bit overstated. The data do not show that increased mTORC1 or mTORC2 are sufficient to cause epilepsy. However the data clearly show that both increased mTORC1 and mTORC2 activity contribute to the pathology and seizure activity and as such are necessary for seizures to occur.

      We agree that our findings do not directly show that either mTORC1 or mTORC2 hyperactivity are sufficient to cause seizures, as we do not individually hyperactivate each complex in the absence of any other manipulation. We interpreted our findings in this model as suggesting that either is sufficient based on the result that there is no epileptic activity when both are inactivated, and thus assume that there is not a third, mTOR-independent, mechanism that is contributing to epilepsy in Pten, Pten-Raptor, and Pten-Rictor animals. In addition, the histological data show that Raptor and Rictor loss each normalize activity through mTORC1 and mTORC2 respectively, suggesting that one in the absence of the other is sufficient. However, we agree that there could be other potential mTOR-independent pathways downstream of Pten loss that contribute to epilepsy. We will revise the manuscript to reflect this.

      2) the data related to the EEG would benefit from having more mice. Adding more mice would have helped determine whether there was a decrease in seizure activity with the Rictor or Raptor KO.

      Please see response to Reviewer 1’s first Weakness.

      3) it would have been interesting to examine the impact of mTORC2 and mTORC1 overexpression related to point #1 above.

      We are not sure that overexpression of individual components of mTORC1 or mTORC2 would result in their hyperactivation or lead to increases in downstream signaling. We believe that cleanly and directly hyperactivating mTORC1 or especially mTORC2 in vivo without affecting the other complex or other potential interacting pathways is a difficult task. Previous studies have used mTOR gain-of-function mutations as a means to selectively activate mTORC1 or pharmacological agents to selectively activate mTORC2, but it not clear to us that the former does not affect mTORC2 activity as well, or that the latter achieves activation of mTORC2 targets other than p-Akt 473, or that it is truly selective. We agree that these would be key experiments to further test the sufficiency hypothesis, but that the amount of work that would be required to perform them is more that what we can do in this Short Report.

      Reviewer #3 (Public Review):

      Summary: This study investigated the role of mTORC1 and 2 in a mouse model of developmental epilepsy which simulates epilepsy in cortical malformations. Given activation of genes such as PTEN activates TORC1, and this is considered to be excessive in cortical malformations, the authors asked whether inactivating mTORC1 and 2 would ameliorate the seizures and malformation in the mouse model. The work is highly significant because a new mouse model is used where Raptor and Rictor, which regulate mTORC1 and 2 respectively, were inactivated in one hemisphere of the cortex. The work is also significant because the deletion of both Raptor and Rictor improved the epilepsy and malformation. In the mouse model, the seizures were generalized or there were spike-wave discharges (SWD). They also examined the interictal EEG. The malformation was manifested by increased cortical thickness and soma size.

      Strengths: The presentation and writing are strong. The quality of data is strong. The data support the conclusions for the most part. The results are significant: Generalized seizures and SWDs were reduced when both Torc1 and 2 were inactivated but not when one was inactivated.

      Weaknesses: One of the limitations is that it is not clear whether the area of cortex where Raptor or Rictor were affected was the same in each animal.

      We plan to include data further describing the location of knockout in each animal (in both the hippocampus and cortex) in the revised version of the paper. Initial analyses indicated that the affected area did not differ between groups.

      Also, it is not clear which cortical cells were measured for soma size.

      In the Methods it says “Soma size was measured by dividing Nissl stain images into a 10 mm2 grid. The somas of all GFP-expressing cells fully within three randomly selected grid squares in Layer II/III were manually traced.” Earlier under “Histology and imaging” it says “Three sections per animal at approximately Bregma -1.6, -2,1, and -2.6 were used.”

      Another limitation is that the hippocampus was affected as well as the cortex. One does not know the role of cortex vs. hippocampus. Any discussion about that would be good to add.

      See response to Reviewer 1’s second Weakness.

      It would also be useful to know if Raptor and Rictor are in glia, blood vessels, etc.

      Raptor and Rictor are thought to be ubiquitously active in mammalian cells including glia and endothelial cells. Previous studies have shown that mTOR manipulation can affect astrocyte function and blood vessel organization, however, our study induced gene knockout using an AAV that expressed Cre under control of the hSyn promoter, which has previously been shown to be selective for neurons. Manual assessment of Cre expression compared with DAPI, NeuN, and GFAP stains suggested that only neurons were affected.

    1. Author Response

      Reviewer #1 (Public Review):

      Erbacher and colleagues provide further evidence for the function of epithelial cells as major contributors to the transduction of sensory stimuli. This technically advanced imaging study of human skin advances support for the anatomical and functional association of nerve fibers and skin keratinocytes. With combined high-resolution imaging and immunolabeling, the authors also advance the idea that gap junctions are at least one means by which direct neurochemical (e.g., ATP) communication from stimulated keratinocytes to nerve fibers can be achieved.

      A major strength of the study is the combined use of super-resolution array tomography (srAT), expansion microscopy, structured illumination microscopy and immunolabeling to analyze human skin in situ as well as co-cultures of human neurons and keratinocytes. High resolution static and video imaging of skin clearly supports the ensheathment by keratinocytes of nerve fiber projections as they traverse layers of the epidermis. Another strength of this study is the srAT imaging combined with connexin Cx43 immunolabeling that focus on sites of nerve fiber-keratinocyte contact zones. Imaging of Cx43+ plaques support these sites as regions of direct epithelial-neural contact and as such, of communication.

      Although imaging data support Cx43+/connexin plaques and neural ensheathment as regions of direct epithelial-neural communication, e.g., via keratinocyte release of ATP, this relationship remains correlative and lacking in quantification.

      The conclusion of this paper regarding the anatomical relationship between nerves and keratinocytes is well supported. Data also support the proposal of connexin plaques as sites of communication, although analyses that validate this relationship, using experimental models and in human samples, remain for future studies.

      Please note, comments referring to specific pages within the revised manuscript always refer to the tracked-word file version.

      Reviewer #2 (Public Review):

      Erbacher et al. have used new techniques to explore the neuro-cutaneous structures of human epidermis, which is a valuable goal given the lack of in-depth studies in human skin. Human skin is less studied than rodent skin because it presents challenges in obtaining samples and finding excellent immunohistological labels. They have employed expansion microscopy and super resolution array tomography for histological studies and have developed a human keratinocyte and human iPSC-derived sensory neuron co-culture. The authors have used these techniques to investigate the relation of intraepidermal nerve fibers (IENF) and keratinocytes, as well as to probe the localization of connexin 43. The data offer some anatomical insights, but as is does not add to our understanding of keratinocyte-neuron coupling.

      Strengths:

      This paper is applying newer techniques to probe structure in human skin and establishes some useful immunohistochemical labels to do this, which sets up a foundation that will be valuable for future studies. The observation that IENF sometimes tunnel through keratinocytes is interesting, and the manuscript does show that Cx43 hemichannels are localized near IENF. Their data definitely represents a technical achievement, as these studies are challenging.

      Weaknesses:

      Throughout the paper, the authors imply that they make discoveries that shed light on neuro-cutaneous interactions, but the data in this manuscript do not offer any functional insight into connections between IENF and keratinocytes. For example, the final figure legend indicates they have found evidence of "electrical and chemical synapse-like contacts to nerve fibers" (Figure 9), but no such evidence was shown. Only a single neuron vesicular marker (synaptophysin) was shown to localize to neurons in culture, as expected. They also "...propose a crucial role of nerve fiber ensheathment and Cx43-based keratinocyte-fiber contacts in neuropathic pain and small fiber pathology." but do not show any data regarding the contribution of their anatomical findings to sensory function.

      We recognize that our anatomical findings do not provide a complete picture of neuro-cutaneous interactions. Related findings on functional level, namely activation of nerve fibers after keratinocyte stimulation were previously reported (Klusch et al., 2013; Mandadi et al., 2009; Sondersorg et al., 2014). However, these studies otherwise lack morphological and molecular grounding and human biomaterial/cells, which we aimed to decipher in our study. We agree that functional and anatomical findings need to be connected in the future. We rephrased and attenuated our conclusions on Cx43 contacts in the context of IENF-keratinocyte interaction.

      Their data do show that IENF are anatomically closely apposed to keratinocytes, but this is inevitable given their location in the epidermis. The expression of Cx43 in human epidermis is also known (PMID: 7518858) and localizing Cx43 plaques near IENF does not add to current knowledge, as wide expression in keratinocytes naturally positions them near the embedded IENF. There is no indication whether IENF also expresses Cx43 to form gap junctions. Moreover, due to the lack of quantification, it is not clear whether Cx43 labeling is enriched at IENF sites as compared to other areas on the keratinocytes.

      We appreciate previous work on Cx43 and have integrated respective findings in the revised Introduction of our manuscript (see page 3-4):

      “Connexin 43 (Cx43) pores are well established as a major signaling route for keratinocyte-keratinocyte communication (Tsutsumi et al., 2009) and potentially transduce external stimuli likewise towards afferents.”

      As the Reviewer highlighted, Cx43 is widely clustered between keratinocytes and serves as an intercellular signaling route. Similar to keratinocyte-keratinocyte contacts, gap junctions (homomeric/heteromeric) or hemichannels towards IENF are possible. We aimed to quantify Cx43 contacts in healthy control and small fiber neuropathy patient-derived skin sections, since alterations in these contacts would affirm their biological relevance. We have generated pilot data for relative quantification of Cx43 contacts in skin samples of healthy controls (n = 5) and patients with small fiber neuropathy (n = 4). We have added respective passages in the Methods (see page 16-18), Results (see page 31-33), and Discussion (see page 41) sections of our revised manuscript. Please also see Figure 5.

      The authors' implication that their anatomical data offers insight into neuro-cutaneous functional coupling is a leap that is evident throughout the manuscript.

      We have attenuated our tone throughout the manuscript e.g. in:

      Abstract (page 2):

      “Unraveling human intraepidermal nerve fiber ensheathment and potential interaction sites advances research at the neuro-cutaneous unit.”

      Discussion (page 42):

      ”Our observation of Cx43 plaques along the course of IENF in native skin and a human co-culture model substantiates a morphological basis and suggests keratinocyte hemichannels or gap junctions as one potential signaling pathway towards IENF.”

      Conclusion (page 44):

      “Epidermal keratinocytes show an astonishing set of interactions with sensory IENF including ensheathment and potential electrical and chemical synapse-like contacts to nerve fibers which may have substantial implications for the pathophysiological understanding of neuropathic pain and neuropathies.”

      References

      Jiang, N., Rasmussen, J.P., Clanton, J.A., Rosenberg, M.F., Luedke, K.P., Cronan, M.R., Parker, E.D., Kim, H.-J., Vaughan, J.C., Sagasti, A., 2019. A conserved morphogenetic mechanism for epidermal ensheathment of nociceptive sensory neurites. eLife 8, e42455.

      Klein, T., Gruener, J., Breyer, M., Schlegel, J., Schottmann, N.M., Hofmann, L., Gauss, K., Mease, R., Erbacher, C., Finke, L., 2023. Small fibre neuropathy in Fabry disease: a human-derived neuronal in vitro disease model. bioRxiv, 2023.2008. 2009.552621.

      Klusch, A., Ponce, L., Gorzelanny, C., Schafer, I., Schneider, S.W., Ringkamp, M., Holloschi, A., Schmelz, M., Hafner, M., Petersen, M., 2013. Coculture model of sensory neurites and keratinocytes to investigate functional interaction: chemical stimulation and atomic force microscope-transmitted mechanical stimulation combined with live-cell imaging. J. Invest. Dermatol. 133, 1387-1390.

      Kruger, L., Perl, E., Sedivec, M., 1981. Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J. Comp. Neurol. 198, 137-154.

      Mandadi, S., Sokabe, T., Shibasaki, K., Katanosaka, K., Mizuno, A., Moqrich, A., Patapoutian, A., Fukumi-Tominaga, T., Mizumura, K., Tominaga, M., 2009. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers. Arch. 458, 1093-1102.

      Sondersorg, A.C., Busse, D., Kyereme, J., Rothermel, M., Neufang, G., Gisselmann, G., Hatt, H., Conrad, H., 2014. Chemosensory information processing between keratinocytes and trigeminal neurons. J. Biol. Chem. 289, 17529-17540.

      Talagas, M., Lebonvallet, N., Leschiera, R., Sinquin, G., Elies, P., Haftek, M., Pennec, J.P., Ressnikoff, D., La Padula, V., Le Garrec, R., 2020. Keratinocytes Communicate with Sensory Neurons via Synaptic‐like Contacts. Ann. Neurol. 88, 1205-1219.

      Tavares-Ferreira, D., Shiers, S., Ray, P.R., Wangzhou, A., Jeevakumar, V., Sankaranarayanan, I., Cervantes, A.M., Reese, J.C., Chamessian, A., Copits, B.A., Dougherty, P.M., Gereau, R.W.t., Burton, M.D., Dussor, G., Price, T.J., 2022. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186.

      Tenenbaum, C.M., Misra, M., Alizzi, R.A., Gavis, E.R., 2017. Enclosure of Dendrites by Epidermal Cells Restricts Branching and Permits Coordinated Development of Spatially Overlapping Sensory Neurons. Cell Rep. 20, 3043-3056.

      Tobin, D.J., 2006. Biochemistry of human skin--our brain on the outside. Chem. Soc. Rev. 35, 52-67.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors provide compelling evidence that the activation of distinct populations of NTS neurons provides stronger decreases in eating/body weight when co-activated. Avoidance is not necessarily linked to the extent of the effects but seems to depend on specific neurons which when activated, not only reduce eating but also induce avoidance reactions. The results of this study provide strong data promoting multi-targeted approaches to reduce eating and body weight in obesity. Interestingly, none of the pathways identified is necessary for the weight-reducing effect of vertical sleeve gastrectomy. Future studies will hopefully shed light on the type of neurotransmitters released by these distinct populations of NTS neurons.

      We thank the reviewer for these helpful and supportive comments.

      Reviewer #2 (Public Review):

      Prior results established that Lepr, Calcr, and Cck neurons are non-overlapping neuronal populations in the NTS that individually suppress food intake when activated. This paper examines the consequences of activating or inhibiting two or three of these populations simultaneously. Activating two or three populations inhibits food intake a body weight more than each individually. Activation of Lepr and/or Calcr neurons is not aversive based on the conditioned taste aversion test, whereas activating all three is aversive by this test, indicating that aversion due to Cck neurons activation is dominant. Vertical sleeve gastrectomy (VSG) causes weight loss, but inhibiting each of these neurons individual or all three of them does not prevent weight loss. Overall, this paper provides a solid set of results but does not provide mechanistic insight into any of the phenomena examined.

      We have now added data demonstrating differences in the activation of FOS-IR in the downstream targets of our NTS neuron types, alone or in combination (new Figure 6). Our findings reveal that each population (NTSLepr, NTSCalcr, and NTSCck) activates an at least partially distinct set of neurons and that only NTSCck cells activate the known aversive PBN CGRP cells. These data suggest that the cumulative effects mediated by each of these NTS populations stem in part from their ability to activate at least partly distinct populations of downstream neurons.

      Unfortunately, it is outside of the scope of this manuscript (and the realm of the currently possible) to define the neurons that mediate the response to VSG, and we have now reorganized the manuscript to clarify that our VSG data (along with the feeding-induced FOS-IR data) serve to reveal that additional populations of neurons (other than NTSLCK cells) must contribute to the restraint of feeding.

    1. Author Response

      Reviewer #1 (Public Review):

      I believe it is important for the authors to clarify how the time frames to test for group differences of ERP components were defined. Were the components defined based on a grand average across lesions and controls or based or on the maximum range for both groups? As the paper is written currently this is unclear to me. It is also unclear why the group comparisons between controls and lateral PFC group were based only on the control group. To ensure no inadvertent biases towards the larger control group were introduced and ensure the studies findings were reliable, it would be appreciated if the authors could clarify this.

      We thank the reviewer for the helpful comment. We recognize the need for a clearer definition of time frames for testing group differences in the ERP components and apologize for any ambiguity in the previous version of the manuscript.

      Regarding the time frames to test for group differences of ERP components for the OFC and control groups, they were determined based on the combined maximum range for both groups. The time range for each group and each ERP component was derived from the statistical analysis of the condition contrasts run for each group. For instance, for the Local Deviance MMN, the condition contrast (i.e., Control condition versus Local Deviance condition) for the CTR group revealed a MMN component from 67 to128 ms, while the same condition contrast for the OFC group revealed a MMN from 73 to131 ms. The time frame used for the group comparison on the MMN time window was 50 to 150 ms to capture component activity for both groups. In the same way, for the Local Deviance P3a, the condition contrast (i.e., Control condition versus Local Deviance condition) for the CTR group revealed a P3a component ranging from 141 to 313 ms, while the same condition contrast for the OFC group revealed a P3a from 145 to 344 ms. The time frame used for the group comparison on the P3a time window encompassed 140 to 350 ms to capture component activity for both groups.

      In the “Results” section of the main manuscript, together with the results from the cluster-based permutation independent samples t-tests, we provide the time frames in which the latter were computed for each ERP component. These segments have been highlighted with yellow in the revised manuscript. Moreover, in the section “Materials and methods - Statistical analysis of event-related potentials” of the main manuscript [page 37, paragraph 2], we provide a revised description of how the time frames for group differences of ERPs were defined. The revised description states: “In a second step, to check for differences in the ERPs between the two main study groups, we ran the same cluster-based permutation approach contrasting each of the four conditions of interest between the two groups using independent samples t-tests. The cluster-based permutation independent samples t-tests were computed in the latency range of each component, which was determined based on the maximum range for both groups combined. The latency range for each group and component was based on the time frames derived from the statistical analysis of task condition contrasts.”

      Regarding the comparisons between the lateral PFC and control groups, they were not based solely on the control group condition contrast. This was miswritten. The approach to define time frames to test for ERP differences between the CTR and the lateral PFC group was the same as the one used to test differences between CTR and OFC groups. We apologize for any confusion this may have caused. We have revised the erroneous statements in the Supplementary File 1 [highlighted text, page 9-10].

      An additional potential weakness of the paper, and one that if addressed would increase our confidence that neural differences arise because of the specific lesion effect, is the lack of evidence that the lesion and control groups do not differ on measures that could inadvertently bias the neural data. For example, while the groups did not differ on demographics and a range of broad cognitive functions, were there any differences between the number or distribution of bad/noisy channels in each subject between the two groups? Were there differences in the number of blinks/saccades or distribution of blinks or saccades across the conditions in each subject across the two groups.

      We thank the reviewer for this suggestion. We have completed a number of measurements and tests to ensure that the OFC lesion group and the control group did not differ on measures that could affect the neural data. First, we computed the number of bad/noisy channels for each subject and group, and found that the two groups did not differ significantly. Second, we computed the number of trials remaining after removing the noisy segments across conditions for each subject and group, and found no significant differences between the groups. Third, the number of blinks/saccades across conditions for each subject and group showed no significant group differences. Altogether, the results indicate that the neural differences observed in our study arose because of the specific lesion effect.

      These additional EEG measures and the statistical test results are included in the Supplementary File 1 [page 15-16] and Supplementary File 1g. We have also added text in the section “Materials and methods - EEG acquisition and pre-processing” of the main manuscript [page 35, paragraph 3], which states: “To ensure the validity of the neural data analysis, potential sources of bias were assessed between the healthy control participants and the OFC lesion patients. Specifically, no significant differences were observed between the two groups in terms of the number of noisy channels, the number of noisy trials, or the number of blinks across the task blocks and the experimental conditions.”

      On a similar note, while I appreciate this is a well established task could the authors clarify whether task difficulty is balanced across the different conditions? The authors appear to have used the counting task to ensure equal attention is paid across conditions although presumably the blocks differ in the number of deviant tones and therefore in the task difficulty. Typically, tasks to maintain attention are orthogonal to the main task and equally challenging across the different blocks. Is there a way to reassure readers that this has not affected the neural results?

      Thank you for pointing this out. Indeed, the experimental blocks differ in the number of deviant tones and therefore in the task difficulty. Thus, it is a very good suggestion to look for behavioral performance differences across the different blocks. In the present set of analyses, two block types were used: Regular (xX) and Irregular (xY). In regular blocks, where the repeated sequence is xxxxx, participants were required to count the rare/uncommon sequences, i.e., xxxxy and xxxxo. In irregular blocks, where the repeated sequence is xxxxy, participants were required to count the rare/uncommon sequences, i.e., xxxxx and xxxxo. We have now updated the behavioral analysis. First, by excluding the omission block’s counting performance, and second, by calculating the counting performance separately for the two blocks. The new behavioral analysis revealed that participants from both groups performed better in the irregular block compared to the regular block. However, there was no statistically significant difference between the counting performances of the two groups.

      The new results are reported on page 5 of the main manuscript, section “Results - Behavioral performance”, paragraph 1: “Participants from both groups performed the task properly with an average error rate of 9.54% (SD 8.97) for the healthy control participants (CTR) and 10.55% (SD 6.18) for the OFC lesion patients (OFC). There was no statistically significant difference between the counting performance of the two groups [F(24) = 0.11, P = 0.75]. Participants from both groups performed better in the irregular block (CTR: 8.39 ± 8.24%; OFC: 7.50 ± 7.34%) compared to the regular block (CTR: 10.69 ± 11.36%; OFC: 13.60 ± 10.97%) [F(24) = 3.55, P = 0.07]. There was no block X group interaction effect [F(24) = 0.73, P = 0.40].”

      As with many patient lesion studies, while the comparison directly against the healthy age matched controls is critical it would have strengthened the authors claims if they could show differences between the brain damaged control group. Given the previous literature that also links lateral PFC with prediction error detection, I understand that this region is potentially not the clearest brain damaged control group and therefore another lesion group might have strengthened claims of specificity. Furthermore, the authors do not offer an explanation for why no differences between lateral PFC and control groups were found when others have previously reported them. Identifying those differences would strengthen our understanding of the involvement of different structures in this task/function.

      We thank the reviewer for raising this crucial issue. We recognize the importance of addressing the lack of neurophysiological differences between the lateral PFC lesion group and the control group. First, it is important to clarify that the lateral PFC lesion control group was initially included not as a control for specific lateral PFC lesions but rather a broader control group to account for potentially general effects of frontal brain damage. However, considering that previous studies have implicated specific areas of the lateral PFC (e.g., inferior frontal gyrus; IFG) in predictive processing, we also think that a more thorough justification of these null findings is needed.

      Intracranial EEG studies examining local and global level prediction error detection pointed to the role of inferior frontal gyrus (IFG) as a frontal source supporting top-down predictions in MMN generation (Dürschmid et al., 2016; Nourski et al., 2018; Phillips et al., 2016; Rosburg et al., 2005). However, other intracranial studies reported unclear (Bekinschtein et al., 2009) or weak (Dürschmid et al., 2016) frontal MMN effects. El Karoui et al. (2015) observed late ERP responses in the lateral PFC related to global deviants but no MMN to local deviants, and it was not clear where in the PFC these responses occurred, not showing responses in the IFG. Additionally, studies employing dynamic causal modeling of MMN consistently modeled frontal sources in the IFG region (Garrido et al., 2008; Garrido et al., 2009; Phillips et al., 2015). A review by Deouell (2007) highlighted the potential contributions of both IFG and middle frontal gyrus to MMN generation, suggesting that the specific source might vary depending on characteristics of the deviant stimuli, such as pitch or duration.

      In Alho et al. (1994) lesion study, diminished MMN to local-level deviants was found after lesion to the lateral PFC, with the lesion cohort exhibiting a hemisphere ratio of 7/3 for left and right hemispheres, respectively, which is different from our cohort's ratio of 4/6. Furthermore, all individuals in that study had infarcts in the middle cerebral artery, resulting in a more uniform lesion location compared to our cohort. Notably, the lesions observed in our lateral PFC group appeared to be situated in more superior brain regions and towards the MFG compared to the predominantly reported involvement of the IFG in previous studies. Another factor that might contribute to the lack of significant effects is the heterogeneity of the lesions in our lateral PFC group (see Supplementary Figures 2, 3 and 4). Especially for the left hemisphere cohort, the individual lesions did not share a consistent anatomical location. The right hemisphere cohort had a greater lesion overlap, but overall, the lesions were not centered in the IFG area with highest overlap being in the MFG area. This distinction in lesion location might contribute to the absence of effects observed in our study.

      Regarding the global effect, often reflected in the P300 component, it appears that the neural sources responsible for processing global deviance exhibit a more distributed pattern. This means that the brain regions involved in detecting and processing global deviations may not be as localized or concentrated as those implicated in local deviance processing. Given that the neural mechanisms underlying global deviance detection and processing are likely to involve a wider network of brain regions, they may be less susceptible to disruptions caused by focal lesions in the lateral PFC.

      In response to your comment, we have expanded the “Discussion” to address this point by adding a new section titled “Lack of findings in the lateral PFC lesion group” [page 21]. In this section, we first present some of the findings implicating specific areas of the lateral PFC in the generation of MMN and in predictive processing, and then offer an account of the potential reasons behind the lack of neurophysiological differences between the lateral PFC and control groups.

      Finally, while the authors have already cited widely across multiple fields, again speaking to the likely large impact the study will make, there does appear to be an unexplored conceptual link between the conclusions here that the OFC supports "the formation of predictions that define the current task by using context and temporal structure to allow old rules to be disregarded so that new ones can be rapidly acquired" and that lesions of the lateral portions of the OFC disrupt the assignment of credit or value to a stimuli that occurred temporally close to the outcome (Walton et al 2010, Noonan et al 2010, PNAS, Rudebeck et al 2017 Neuron, Noonan et al 2017, JON, Wittmann et al 2023 PlosB, note the wider imaging literature in line with this work Jocham et al 2014 Neuron and Wang et al bioRxiv). Without the OFC monkeys and humans appear to rely on an alternative, global learning mechanism that spreads the reinforcing properties of the outcome to stimuli that occurred further back in time. Could the authors speculate on how these two strains of evidence might converge? For example, does the OFC only assign credit in the event of a prediction error or does one mechanism subsume another?

      We thank the reviewer for this comment regarding the unexplored conceptual link between our study’s conclusion, which suggests that the OFC facilitates the detection of prediction errors, and the findings of other research that delves into the OFC’s role in assignment of credit to stimuli. We find this comment very interesting and appreciate the opportunity to speculate on the potential functional convergence of these two processes within the OFC.

      The OFC is a critical neural hub implicated in learning, decision-making, and adaptive behavior. The detection of prediction errors and the assignment of credit to stimuli are mechanisms linked with the OFC, which play an important role in all these functions (Noonan et al., 2012; Schultz & Dickinson, 2000; Sul et al., 2010; Tobler et al., 2006; Walton et al., 2010; Walton et al., 2011). Prediction errors involve recognizing discrepancies between expected and actual outcomes, which engages the OFC in rapidly updating stimulus valuations to align with newfound information (Holroyd & Coles, 2002; Kakade & Dayan, 2002). Signaling of errors provides a powerful mechanism whereby OFC facilitates adaptive learning and enables the brain to adjust its expectations based on novel experiences (Schultz, 2015; Seymour et al., 2004). Credit assignment, on the other hand, refers to properly identifying the causes of prediction errors. Without proper credit assignment, one might have intact error signaling mechanisms, but lose the ability to learn appropriately. This is especially true when multiple possible antecedents may be related to the error or when past choices have been unpredictable. In such situations, it is important to assign credit to the most recent choice and not get distracted by previous alternatives (Stalnaker et al., 2015).

      These mechanisms within the OFC appear interrelated yet distinct. While prediction errors could trigger credit assignment, the OFC's ability to continually assess stimuli's values extends beyond instances of prediction errors. The OFC is involved in continuously evaluating and updating the values of stimuli based on ongoing experiences (Padoa-Schioppa & Assad, 2006; Tremblay & Schultz, 1999). This process enables the brain to learn from both unexpected outcomes and regular, predictable interactions with the environment. In situations where outcomes are not solely determined by prediction errors, the assignment of credit remains important. Complex decision-making involves considering a variety of factors beyond just prediction errors, such as contextual information and long-term consequences. Clarifying the convergence of these mechanisms within the OFC holds profound implications for understanding the intricacies of learning dynamics and the orchestration of adaptive responses to the environment.

      While we recognize the value of this discussion, we believe it extends beyond the primary focus of our study. Consequently, we have made the decision not to incorporate it into the current manuscript.

      One remaining weakness, which plagues all patient studies, is that of anatomical specificity. The authors have analysed what is, for the field, a large group of patients, and while the lesions appear to be relatively focused on the OFC the individuals vary in the degree to which different subregions within the OFC are damaged. This is increasingly important as evidence over the last 10 years has identified functional roles of these specific structures (Rushworth et al 2011, Neuron, Rudebeck et al 2017 Neuron). It would be important to ultimately know whether the detection of prediction errors was specific to a particular OFC subregion, a general mechanism across this area of cortex, or whether different subregions were more involved during different contexts or types of stimuli/contexts/tasks etc. Some comments on this would be appreciated.

      The reviewer raised an important point here. It would have been interesting to explore this aspect. However, one challenge with focal lesion studies is to establish large patient cohorts. The group size of our study, which is relatively large compared to other studies of focal PFC lesions, does not allow us to perform any exploratory lesion-symptom mapping analyses. A larger patient sample will provide a stronger basis for drawing conclusions about the critical role of a particular OFC subregion to the detection of prediction errors and allow statistical approaches to lesion subclassification and brain-behavior analysis (e.g., voxel-based lesion-symptom mapping (Bates et al., 2003; Lorca-Puls et al., 2018)).

      Considering the average percentage of damaged tissue in our study, the medial part of OFC or Brodmann area 11 is affected more by the lesion (approx. 33%), followed by the anterior-most region of the prefrontal cortex or Brodmann area 10 (approx. 25%), and the lateral portions of the OFC or Brodmann area 47 (approx. 12%). From our analysis, it is difficult to conclude whether the detection of prediction errors in our study was specific to a certain OFC area, or whether different subregions were involved more than others during different types of stimuli/contexts processing.

      To provide a more balanced interpretation of our findings, we incorporated a section in the “Discussion”, titled “Limitations and future directions” [page 24-25], which delves into the limitations of our study and lesion studies generally with respect to anatomical specificity and the challenge to establish large patient cohorts.

      Reviewer #2 (Public Review):

      The current version of the manuscript is overall very long and verbose, for example, the introduction is 5 pages long and includes up to 102 references. In my view this is way too much. I suppose authors wish to be very detailed, but somehow they get an opposite effect, the main message of the introduction and aims get diluted.

      We thank the reviewer for the feedback on our manuscript's length and content. This prompted us to carefully reconsider the balance between providing necessary context and ensuring the clarity of our main message. Our intention was to establish a strong foundation for our research by presenting relevant literature and setting the stage for our aims. In our revised manuscript, we have condensed the Introduction while retaining the key elements necessary to understand the context and motivations behind our research. Specifically, the current version of the “Introduction” is three pages long and includes 83 references.

      I wonder if the presentation rate used, SOA; 150 is too fast and the stimuli too short 50 ms. Please prove a rationale for this.

      We appreciate the reviewer's thoughtful consideration of the stimulus duration and presentation rate (SOA) used in our study. We understand the importance of providing a rationale for our choices to ensure the validity of our experimental design. The decision to use a SOA of 150 ms and stimuli of 50 ms duration was grounded in established practices and relevant literature in the field. Similar presentation rates and stimulus durations were employed in previous studies using similar auditory oddball paradigms, investigating rapid cognitive processes in combination with event-related potentials (ERPs). For instance, Bekinschtein et al. (2009) first introduced the task by using a SOA of 150 ms and stimulus duration of 50 ms, demonstrating that this combination is sensitive to detecting auditory deviations and eliciting early and late ERP components. Additionally, Wacongne et al. (2011), Chennu et al. (2013), Uhrig et al. (2014), and El Karoui et al. (2015) employed similar task designs with the same SOA and stimulus duration in combination with scalp EEG, fMRI and intracranial recordings, further supporting the validity of this approach. Other studies, employing the same paradigm, such as Chao et al. (2018) and Doricchi et al. (2021), used a SOA of 200 ms but kept the same stimulus duration of 50 ms.

      One of the conditions is 'omissions', but results are not reported, so either authors do not mention this at all, or they report these data, which would be probably interesting.

      We thank the reviewer for the nice reminder. The “omissions” condition is indeed an integral part of our study, and we acknowledge its potential significance. However, we have decided to publish the detailed analysis of the 'omissions' condition in a separate paper, because we think that such analysis and discussion would make the current paper quite dense and complicated. We apologize for any confusion that might arise from the absence of the 'omissions' results in this manuscript. On page 33 of the main manuscript, we state the reason for not including the “omissions” condition in the current analysis: “In the present set of analyses, the Omission blocks were not further examined, because such analysis and discussion would make the current paper overly dense and complicated.”

      The Discussion is very long and in some aspect even too speculative. For example, in the conclusions authors claim that the OFC contributes to a top-down predictive process that modulates the deviance detection system in the primary auditory cortices and may be involved in connecting PEs at lower hierarchical areas with predictions at higher areas. I am not sure the current data support this. This would-be probably more appropriate if they could compare results from OFC and AC etc. so it is a more dynamic study.

      We thank the reviewer for this observation. We have made revisions to shorten and refine the discussion, with a primary focus on presenting and interpreting the key results in a more concise and straightforward manner (See tracked changes in the revised manuscript).

      However, the overall length of the Discussion has not been reduced significantly because we have introduced two additional sections within the Discussion (i.e., “Lack of findings in the lateral PFC lesion group” and “Limitations and future directions”) in response to reviewers’ request to address the lack of finding in the lateral PFC lesion group and certain limitations associated with the employed lesion method.

      We also agree that the claim mentioned by the reviewer is overly too speculative and therefore revised the sentence as follows [page 38, “Conclusion”]: “We suggest that the OFC likely contributes to a top-down predictive process that modulates the deviance detection system in lower sensory areas.”

      At the beginning of Discussion, the authors mention that overall, these findings provide novel information about the role of the OFC in detecting violation of auditory prediction at two levels of stimuli abstraction/time scale. I think this needs to be detailed more specifically rather than mention they provide novel results.

      We understand the importance of providing readers with precise descriptions about the novelty of our study. Therefore, we have revised the statement to provide more detailed information about the novel contributions offered by our study. The revised text states as follows [“Discussion”, page 18,]: “These findings indicate that the OFC is causally involved in the detection of local and local + global auditory PEs, thus providing a novel perspective on the role of OFC in predictive processing.”

      I am not sure I like to have a section as a general discussion within the discussion itself, probably this heading should be reformatted to be more specific to what is discussed.

      As suggested by the reviewer, we reformatted the heading to “OFC and hierarchical predictive processing” [page 22-24] to better capture the essence of the content covered in this section of the “Discussion”. Here, we discuss the functional relevance of our EEG findings under the umbrella of the predictive coding framework and the potential role of OFC in predictive processes (See tracked changes in the revised manuscript).

      Reviewer #3 (Public Review):

      The central claim of the study is that hierarchical predictive processing is altered in OFC patients. However, OFC patients were able to identify global deviants as well as controls. Thus, hierarchical predictive processing itself seems to be unaltered, even though its neural correlates were different. This begs the question of what exactly the functional meaning of the EEG findings is. From the evidence presented this is difficult to determine for three reasons (See comments below).

      We thank the reviewer for the detailed observations and valuable comments. The reviewer points out that hierarchical predictive processing is unaltered even though the neural correlates were altered, because OFC patients were able to identify global deviants as accurately as control participants. We respectfully disagree with the reviewer’s claim for two reasons: 1) The primary purpose of the behavioral data in this study was not to measure the participants’ deviant detection performance, but to confirm that they were paying attention to the global rule of each block. However, we agree that an effect of lesion on behavioral performance would strengthen the claim of altered high-level predictive processing. Your point highlights the importance of looking more carefully at our behavioral results. In a follow up study, which we are currently running, we explore the behavioral nuances of our task by measuring reaction times of correct deviant detections. 2) Earlier lesion studies reported typical performance on simple oddball tasks for patients with focal frontal lesions that did not significantly differ from control participants. However, despite normal task execution and neuropsychological profiles, patients with LPFC and OFC lesions present distinct neurophysiological evidence of alterations in novelty processing (Knight, 1984, 1997; Knight & Scabini, 1998; Løvstad et al., 2012; Yamaguchi & Knight, 1991).

      Regarding the central claim of our study being that hierarchical predictive processing is altered in OFC patients, we have tried not to make strong claims about our results showing altered hierarchical predictive processing. For example, the conclusion of the abstract states: “the altered magnitudes and time courses of MMN/P3a responses after lesions to the OFC indicate that the neural correlates of detection of auditory regularity violation is impacted at two hierarchical levels of stimuli abstraction.” Thus, we do not claim that detection of regularity violation is directly impaired (e.g., OFC patients were able to identify global deviants as well as healthy controls) but that the neural correlates of deviants’ detection are altered, and therefore impaired.

      Finally, we have gone through all the comments/reasons, which the reviewer believes are difficult to determine the functional meaning of our EEG findings, and addressed them one by one (see comments below). We hope that the revised manuscript has been improved accordingly and provides a more critical view on the extent to which the findings support hierarchical predictive coding.

      It is possible that the shifts in scalp potentials are due to volume conduction differences linked to post-lesion changes in neural tissue and anatomy rather than differences in information processing per se.

      We appreciate your comment regarding the potential influence of volume conduction differences on the observed shifts in scalp potentials in our study. We acknowledge that there are special challenges in interpreting ERP findings in brain lesion populations (Kutas et al., 2012; Rugg, 1995). To reliably interpret changes in the ERPs in lesion patients as reflecting impairments in certain cognitive processes, it is necessary to identify factors that might possibly affect the results and to apply the appropriate control measures. As noted by the reviewer, structural pathology, and the replacement of neural tissue by cerebrospinal fluid following tumor resection, likely causes inhomogeneities in the volume conduction of electrical activity and resulting changes in current flow patterns. Moreover, post-craniotomy skull defects can cause local inhomogeneities in the resistive properties of the skull (Løvstad & Cawley, 2011; Rugg, 1995). Both types of biophysical changes might alter the amplitude levels and/or topography (by altering the configuration of the generators) of surface-recorded ERPs (e.g., Swick (2005)). Consequently, caution is warranted when comparing the ERPs and their scalp distributions of intact and brain-lesioned groups. It is difficult to directly quantify the consequences of brain lesions on tissue conductivity. To conclude that ERP differences between patients and controls reflect functional abnormalities in particular cognitive processes, and not primarily nonspecific effects of structural brain damage, it is helpful to demonstrate that they are specific to certain ERP components/stages of information processing and task conditions. Changes confined to one or a subset of ERP components, that additionally may not manifest across all task conditions, can give some indication concerning the specificity of ERP changes (Kutas et al., 2012; Swaab, 1998). In our study, group differences pertaining to ERP amplitudes were limited to specific task conditions and not across all data. This condition-dependent pattern suggests that the observed shifts are related to the specific cognitive processes engaged during those task conditions rather than being a global artifact of volume conduction. If volume conduction was the main driver, we would expect these group differences to be more uniformly present across task conditions. Another piece of evidence against volume conduction effects is the scalp potentials’ latency differences between the two groups observed for the Local + Global deviance detection. Group differences in the latencies of ERPs, such as the MMN and P3a, cannot be attributed to volume conduction alone (Hämäläinen et al., 1993). These differences in the timing of neural responses strongly indicate genuine variations in cognitive processing.

      To provide a more balanced interpretation of our findings, we have incorporated a section in the “Discussion” that delves into the limitations of our study and lesion studies generally with respect to volume conduction and amplitude changes, titled “Limitations and future directions” [page 24-25].

      It is unclear from the analyses whether the P3a amplitude differences are true amplitude differences or a byproduct of latency differences. The reason is that the statistical method used (cluster based permutations) might yield significant effects when the latency of a component is shifted, even if peak amplitudes are the same. Complementary analyses on mean or peak amplitudes could resolve this issue.

      We thank the reviewer for raising an important concern about the use of cluster-based permutation tests and their potential to yield significant effects when the latency of a component is shifted. We acknowledge this concern and recognize the need for complementary analyses to address this issue. To provide a clearer understanding of the nature of the observed ERP amplitude differences, we conducted complementary analyses on mean amplitudes of the MMN and P3a components on the midline sensors for the conditions where significant group differences were observed. For the MMN component elicited by the Local Deviance, we found group amplitude differences on the electrodes AFz (p = 0.021), Fz (p = 0.008), CPz (p = 0.015), and Pz (p < 0.001). Surprisingly, we also found amplitude differences for the P3a component elicited by the Local Deviance on the electrodes AFz (p < 0.001), Fz (p < 0.001), FCz (p < 0.001), and Cz (p = 0.002) that were not observed previously with the cluster-based permutation analysis. For the MMN component elicited by the Local+Global Deviance, our analysis showed group amplitude differences on the electrodes AFz (p = 0.007), FCz (p = 0.051), Cz (p = 0.004), CPz (p = 0.002), and Pz (p < 0.001). However, as the reviewer rightly pointed out, the group differences for the P3a elicited by the Local + Global Deviance seem to be a byproduct of latency differences, as we did not find amplitude differences on any of the midline electrodes. Overall, this complementary analysis shows that the OFC patients had an attenuated MMN/P3a to local level prediction violation, and an attenuated and delayed MMN followed by a delayed P3a to the combined local and global level prediction violation. The new analysis is added in the Supplementary File 1 [page 5-7] and Supplementary File 1c and 1d.

      The MMN, P3a and P3b components are difficult to map to the hierarchical PC theory. Traditionally, the MMN is ascribed to lower level processing while P3a and P3b are ascribed to higher level processing. However, the picture is more complicated. For example, the current results show that the MMN is enhanced in local + global surprise while the P3a is elicited by local surprise. Furthermore, the P3a is classically interpreted as reflecting attention reorientation and the P3b as reflecting the conscious detection of task-relevant targets. How attention and conscious awareness fit in hierarchical PC is not entirely clear.

      Indeed, the relationships between MMN, P3a and P3b components and the predictive coding (PC) framework can be intricate. However, numerous studies employed the PC theory to interpret these common electrophysiological signatures as prediction error (PE) signals (Garrido et al., 2007, 2009; Lieder et al., 2013) and dissociations between these ERPs supported that there are successive levels of predictive processing (Chennu et al., 2013; El Karoui et al., 2015; Wacongne et al., 2011).

      In terms of hierarchical PC (Friston, 2005), the temporally constrained MMN has been traditionally linked with first-level predictive processing, known as the local effect of short-term stimulus deviance. PE signals at this level feed forward to a temporally extended, attention-dependent system that extracts longer-term patterns. PE signals at the higher level are usually indexed by the P300, identified as the global effect of longer-term stimulus deviance. The P300 reflects a more attention-driven process, emerging in response to novel or low-probability “target” stimuli that violate broader contextual expectations (Polich, 2007), such as those that form over multiple trials. Because the MMN, P3a and P3b also appear to exhibit varying degrees of sensitivity to preconscious and conscious perceptual predictions (Sculthorpe et al., 2009), they could serve as measures for examining the concept of a predictive neural hierarchy.

      Indeed, the MMN has been viewed as sensitive to local violation and essentially blind to higher-order regularities. However, this is a simplified view. For example, Wacongne et al. (2011) showed that violating a low-level perceptual expectation triggers the MMN, violating contextual expectations triggers the higher-level P3, and when both expectations are simultaneously violated, a larger response is evoked compared to either one alone. These findings, which are consistent with the results of our study, show that the local and global effects are not fully independent but interact in an early time window, indexed by enhanced and temporally extended MMN responses. They provide support not just for a hierarchical model, but for a predictive rather than a feedforward one. Moreover, the MMN has been found to be relatively insensitive to attention, because it is elicited in situations in which the subjects’ attention is directed away from the stimuli and there are no task demands (Chennu et al., 2013). Given that early MMN is a pre-attentive automatic ERP component (Näätänen et al., 2001; Pegado et al., 2010; Tiitinen et al., 1994), and given that it has been observed in comatose and vegetative state patients (Bekinschtein et al., 2009; Fischer et al., 2004; Naccache et al., 2004), the finding that even early MMN is impaired in OFC patients indicate that patients may suffer from a deficit in sensory predictive processing that is independent of attention and conscious awareness.

      The picture is more complicated when it comes to the predictive roles of P3a and P3b components. Following the MMN, a positive polarity P300 complex, sensitive to the detection of unpredicted auditory events, has been reported (Chennu et al., 2013; Doricchi et al., 2021; Kompus et al., 2020; Liaukovich et al., 2022). However, the two types of P300 (P3a and P3b) have not been clearly fitted into the hierarchical PC theory. The P3a is considered to be part of the brain's mechanism for detecting PEs (Wessel et al., 2012; Wessel et al., 2014) and may indicate that the brain is reallocating attentional resources to process and learn from these unexpected events. The P3a is typically interpreted as reflecting an involuntary attentional reorienting process (Escera & Corral, 2007; Ungan et al., 2019), which may relate to the operations of the ventral attention network (Corbetta et al., 2008; Corbetta & Shulman, 2002; Nieuwenhuis et al., 2005). Predictive coding emphasizes the role of contextual information in generating predictions with P3a being influenced by the context in which an unexpected event occurs (Schomaker et al., 2014). In the hierarchy of predictive processing, the P3a may reflect PEs at different hierarchical levels, depending on the complexity of the prediction and the degree to which it deviates from the sensory input. On the other hand, the P3b is linked to higher-level cognitive processes that involve updating long-term predictions based on incoming sensory information. It is highly dependent on attention, conscious awareness and active engagement with the task (Bekinschtein et al., 2009; Del Cul et al., 2007; Sergent et al., 2005; Strauss et al., 2015). It is thought to play a role in integrating the unexpected sensory input into the current context, potentially leading to updates of predictions in working memory (Chao et al., 1995; Donchin & Coles, 1988; Polich, 2007).

      Hierarchical PC theory is continually evolving, and the relationship between these ERP components and attention or conscious awareness remains an active area of research. We acknowledge the need for further investigation to better understand how attention and conscious awareness fit within this framework. In light of your comment, we provide a more comprehensive discussion about the functional meaning of the EEG findings in our “Discussion - OFC and hierarchical predictive processing” [page 22-24].

      The fact that lateral PFC patients show unaltered neural responses contradicts prominent views from PC identifying this region as a generator of the MMN and a source of predictions sent to temporal auditory areas.

      We appreciate the reviewer's comment and want to acknowledge that another reviewer raised this concern previously. We have provided a detailed response to this issue in our previous response (see Response to Reviewer #1 Comment 4). We have expanded the “Discussion” to address this point by adding a new section titled “Lack of findings in the lateral PFC lesion group” [page 21]. In this section, we first present some of the findings implicating specific areas of the lateral PFC in the generation of MMN and in predictive processing, and then offer an account of the potential reasons behind the lack of neurophysiological differences between the lateral PFC and control groups.

      For these reasons, a more critical view on the extent to which the findings support hierarchical predictive coding is needed.

      By responding to the reviewer’s previous comments (i.e., the reasons why the reviewer thinks it is difficult to determine the functional meaning of the EEG findings), we believe that we have offered a more critical view on this matter.

      References

      Alho, K., Woods, D. L., Algazi, A., Knight, R., & Näätänen, R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalography and clinical neurophysiology, 91(5), 353-362.

      Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion–symptom mapping. Nature neuroscience, 6(5), 448-450.

      Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., & Naccache, L. (2009). Neural signature of the conscious processing of auditory regularities. Proceedings of the National Academy of Sciences, 106(5), 1672-1677.

      Chao, L., Nielsen-Bohlman, L., & Knight, R. (1995). Auditory event-related potentials dissociate early and late memory processes. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(2), 157-168.

      Chao, Z. C., Takaura, K., Wang, L., Fujii, N., & Dehaene, S. (2018). Large-scale cortical networks for hierarchical prediction and prediction error in the primate brain. Neuron, 100(5), 1252-1266. e1253.

      Chennu, S., Noreika, V., Gueorguiev, D., Blenkmann, A., Kochen, S., Ibánez, A., Owen, A. M., & Bekinschtein, T. A. (2013). Expectation and attention in hierarchical auditory prediction. Journal of Neuroscience, 33(27), 11194-11205.

      Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324.

      Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews neuroscience, 3(3), 201-215.

      Del Cul, A., Baillet, S., & Dehaene, S. (2007). Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS biology, 5(10), e260.

      Deouell, L. Y. (2007). The frontal generator of the mismatch negativity revisited. Journal of Psychophysiology, 21(3-4), 188-203.

      Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and brain sciences, 11(3), 357-374.

      Doricchi, F., Pinto, M., Pellegrino, M., Marson, F., Aiello, M., Campana, S., Tomaiuolo, F., & Lasaponara, S. (2021). Deficits of hierarchical predictive coding in left spatial neglect. Brain communications, 3(2), fcab111.

      Dürschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Dalal, S. S., Deouell, L. Y., & Knight, R. T. (2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113(24), 6755-6760.

      El Karoui, I., King, J.-R., Sitt, J., Meyniel, F., Van Gaal, S., Hasboun, D., Adam, C., Navarro, V., Baulac, M., & Dehaene, S. (2015). Event-related potential, time-frequency, and functional connectivity facets of local and global auditory novelty processing: an intracranial study in humans. Cerebral cortex, 25(11), 4203-4212.

      Escera, C., & Corral, M. (2007). Role of mismatch negativity and novelty-P3 in involuntary auditory attention. Journal of psychophysiology, 21(3-4), 251-264.

      Fischer, C., Luauté, J., Adeleine, P., & Morlet, D. (2004). Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology, 63(4), 669-673.

      Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society B: Biological sciences, 360(1456), 815-836.

      Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage, 42(2), 936-944.

      Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2007). Evoked brain responses are generated by feedback loops. Proceedings of the National Academy of Sciences, 104(52), 20961-20966.

      Garrido, M. I., Kilner, J. M., Kiebel, S. J., & Friston, K. J. (2009). Dynamic causal modeling of the response to frequency deviants. Journal of Neurophysiology, 101(5), 2620-2631.

      Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological review, 109(4), 679.

      Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of modern Physics, 65(2), 413.

      Kakade, S., & Dayan, P. (2002). Dopamine: generalization and bonuses. Neural Networks, 15(4-6), 549-559.

      Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 59(1), 9-20.

      Knight, R. T. (1997). Distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9(1), 75-91.

      Knight, R. T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of clinical neurophysiology, 15(1), 3-13.

      Kompus, K., Volehaugen, V., Todd, J., & Westerhausen, R. (2020). Hierarchical modulation of auditory prediction error signaling is independent of attention. Cognitive neuroscience, 11(3), 132-142.

      Kutas, M., Kiang, M., & Sweeney, K. (2012). Potentials and Paradigms: Event‐Related Brain Potentials and Neuropsychology. The handbook of the neuropsychology of language, 1, 543-564.

      Liaukovich, K., Ukraintseva, Y., & Martynova, O. (2022). Implicit auditory perception of local and global irregularities in passive listening condition. Neuropsychologia, 165, 108129.

      Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J., & Stephan, K. E. (2013). Modelling trial-by-trial changes in the mismatch negativity. PLoS computational biology, 9(2), e1002911.

      Lorca-Puls, D. L., Gajardo-Vidal, A., White, J., Seghier, M. L., Leff, A. P., Green, D. W., Crinion, J. T., Ludersdorfer, P., Hope, T. M., & Bowman, H. (2018). The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia, 115, 101-111.

      Løvstad, A., & Cawley, P. (2011). The reflection of the fundamental torsional guided wave from multiple circular holes in pipes. Ndt & E International, 44(7), 553-562.

      Løvstad, M., Funderud, I., Lindgren, M., Endestad, T., Due-Tønnessen, P., Meling, T., Voytek, B., Knight, R. T., & Solbakk, A.-K. (2012). Contribution of subregions of human frontal cortex to novelty processing. Journal of Cognitive Neuroscience, 24(2), 378-395.

      Naccache, L., Puybasset, L., Gaillard, R., Serve, E., & Willer, J.-C. (2004). Auditory mismatch negativity is a good predictor of awakening in comatose patients: a fast and reliable procedure. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 116(4), 988-989.

      Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus--norepinephrine system. Psychological bulletin, 131(4), 510.

      Noonan, M., Kolling, N., Walton, M., & Rushworth, M. (2012). Re‐evaluating the role of the orbitofrontal cortex in reward and reinforcement. European Journal of Neuroscience, 35(7), 997-1010.

      Nourski, K. V., Steinschneider, M., Rhone, A. E., Kawasaki, H., Howard III, M. A., & Banks, M. I. (2018). Processing of auditory novelty across the cortical hierarchy: An intracranial electrophysiology study. Neuroimage, 183, 412-424.

      Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): towards the optimal paradigm. Clinical neurophysiology, 115(1), 140-144.

      Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’in the auditory cortex. Trends in neurosciences, 24(5), 283-288.

      Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223-226.

      Pegado, F., Bekinschtein, T., Chausson, N., Dehaene, S., Cohen, L., & Naccache, L. (2010). Probing the lifetimes of auditory novelty detection processes. Neuropsychologia, 48(10), 3145-3154.

      Phillips, H. N., Blenkmann, A., Hughes, L. E., Bekinschtein, T. A., & Rowe, J. B. (2015). Hierarchical organization of frontotemporal networks for the prediction of stimuli across multiple dimensions. Journal of Neuroscience, 35(25), 9255-9264.

      Phillips, H. N., Blenkmann, A., Hughes, L. E., Kochen, S., Bekinschtein, T. A., & Rowe, J. B. (2016). Convergent evidence for hierarchical prediction networks from human electrocorticography and magnetoencephalography. cortex, 82, 192-205.

      Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology, 118(10), 2128-2148.

      Rosburg, T., Trautner, P., Dietl, T., Korzyukov, O. A., Boutros, N. N., Schaller, C., Elger, C. E., & Kurthen, M. (2005). Subdural recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain, 128(4), 819-828.

      Rugg, M. D. (1995). Event-related potential studies of human memory. Schomaker, J., Roos, R., & Meeter, M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral neuroscience, 128(2), 146.

      Schultz, W. (2015). Neuronal reward and decision signals: from theories to data. Physiological reviews, 95(3), 853-951.

      Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual review of neuroscience, 23(1), 473-500.

      Sculthorpe, L. D., Stelmack, R. M., & Campbell, K. B. (2009). Mental ability and the effect of pattern violation discrimination on P300 and mismatch negativity. Intelligence, 37(4), 405-411.

      Sergent, C., Baillet, S., & Dehaene, S. (2005). Timing of the brain events underlying access to consciousness during the attentional blink. Nature neuroscience, 8(10), 1391-1400.

      Seymour, B., O'Doherty, J. P., Dayan, P., Koltzenburg, M., Jones, A. K., Dolan, R. J., Friston, K. J., & Frackowiak, R. S. (2004). Temporal difference models describe higher-order learning in humans. Nature, 429(6992), 664-667.

      Stalnaker, T. A., Cooch, N. K., & Schoenbaum, G. (2015). What the orbitofrontal cortex does not do. Nature neuroscience, 18(5), 620-627.

      Strauss, M., Sitt, J. D., King, J.-R., Elbaz, M., Azizi, L., Buiatti, M., Naccache, L., Van Wassenhove, V., & Dehaene, S. (2015). Disruption of hierarchical predictive coding during sleep. Proceedings of the National Academy of Sciences, 112(11), E1353-E1362.

      Sul, J. H., Kim, H., Huh, N., Lee, D., & Jung, M. W. (2010). Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making. Neuron, 66(3), 449-460.

      Swick, D. (2005). 13 ERPs in Neuropsychological Populations. Event-related potentials: A methods handbook, 299.

      Swaab, T. Y. (1998). Event-related potentials in cognitive neuropsychology: Methodological considerations and an example from studies of aphasia. Behavior Research Methods, Instruments, & Computers, 30(1), 157-170.

      Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372(6501), 90-92.

      Tobler, P. N., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2006). Human neural learning depends on reward prediction errors in the blocking paradigm. Journal of Neurophysiology, 95(1), 301-310.

      Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbitofrontal cortex. Nature, 398(6729), 704-708.

      Uhrig, L., Dehaene, S., & Jarraya, B. (2014). A hierarchy of responses to auditory regularities in the macaque brain. Journal of Neuroscience, 34(4), 1127-1132.

      Ungan, P., Karsilar, H., & Yagcioglu, S. (2019). Pre-attentive mismatch response and involuntary attention switching to a deviance in an earlier-than-usual auditory stimulus: an ERP study. Frontiers in Human Neuroscience, 13, 58.

      Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proceedings of the National Academy of Sciences, 108(51), 20754-20759.

      Walton, M. E., Behrens, T. E., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. (2010). Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron, 65(6), 927-939.

      Walton, M. E., Behrens, T. E., Noonan, M. P., & Rushworth, M. F. (2011). Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. Annals of the New York Academy of Sciences, 1239(1), 14-24.

      Wessel, J. R., Danielmeier, C., Morton, J. B., & Ullsperger, M. (2012). Surprise and error: common neuronal architecture for the processing of errors and novelty. Journal of Neuroscience, 32(22), 7528-7537.

      Wessel, J. R., Klein, T. A., Ott, D. V., & Ullsperger, M. (2014). Lesions to the prefrontal performance-monitoring network disrupt neural processing and adaptive behaviors after both errors and novelty. Cortex, 50, 45-54.

      Yamaguchi, S., & Knight, R. (1991). Anterior and posterior association cortex contributions to the somatosensory P300. Journal of Neuroscience, 11(7), 2039-2054.

    1. Author Response

      Reviewer #2 (Public Review):

      Major weaknesses:

      1) The biggest weakness of the manuscript is the lack of appropriate explanation and interpretation of these observed cyclin D1 ubiquitination and degradation by at least five different combinations of Cullin-E3 ligases. Are all the five cullin-E3 combinations exclusive and/or redundant to each other for cyclin D1 ubiquitination? What are the speculations in terms of the underlying mechanism? At least a working model should be included to better interpret the data.

      Cyclin D1 has been recognized as an oncogene, which is upregulated in multiple types of cancers. In different types of cells, different E3 ligase may be involved in the process of cyclin D1 protein degradation. Even in the same cells, multiple E3 ligases may be involved in cyclin D1 degradation to make sure that steady-state protein levels of cyclin D1 are under surveillance and fine-tune regulation.

      2) Although a phosphorylation-mutant cyclin D1 (i.e., T286) was included in the manuscript, there is no Lysine residue mutant within cyclin D1 identified and characterized for the critical function of cyclin D1 ubiquitination.

      It was reported that Lysine 269 is essential for cyclin D1 ubiquitination (Barbash et al., 2009). WT or mutant cyclin D1 (K269R) expression plasmids were co-transfected with Keap1, DDB2, and AMBRA1 expression plasmids into HEK293 cells. 48 hours after transfection, changes in cyclin D1 protein levels were detected by the Western blot analysis. We found the expression of WT cyclin D1 was decreased in HEK293 cells with Keap1, DDB2, and AMBRA1 co-transfected, while the expression of K269R mutant cyclin D1 showed no significant decrease in rhe cells co-transfected with co-transfected Keap1, DDB2, and AMBRA1, suggesting that Lysine 269 is essential for cyclin D1 ubiquitination.

      3) The significance of these different Cullin 1-7 and associated E3 ligases (Keap1-CUL3, DDB2-CUL4A/4B, WSB2-CUL2/5, and RBX1-CUL1-7) in cyclin D1 ubiquitination is mainly determined by siRNA-mediated knockdown or overexpression of target cullin/E3 proteins. However, it is not clear whether the observed phenotypes of cyclin D1 are due to these cullin-E3 ligases directly or indirectly. In vitro ubiquitination assay with E1, E2, and E3 should be performed to demonstrate whether recombinant cyclin D1 is ubiquitinated.

      We have performed in vitro ubiquitination assay as the reviewer suggested. The results demonstrated that Keap1, DDB2, and WSB2 can induce cyclin D1 ubiquitination. Especially, Keap1 induced cyclin D1 ubiquitination and formed ubiquitination ladder similar to AMBRA1-induced cyclin D1 ubiquitination ladder. In contrast, no clear ubiquitination ladder was observed in Rbx1 group (Figure S16).

    1. Author Response

      Reviewer #1 (Public Review):

      This is a very exciting manuscript from Meng Wang's lab on lysosomal proteomics. They used several different protein tags to identify the lysosomal proteome. The exciting findings include A) specific lysosomal proteins exist in a tissue-specific manner B) lipl-4 overexpression and daf-2 extend life span using different mechanisms C) identification of novel lysosomal proteins D) demonstration of the function of several lysosomal proteins in regulation lysosome abundance and function.

      We thank the reviewer for finding our manuscript exciting.

      Reviewer #2 (Public Review):

      In this manuscript, Yu and colleagues profile the lysosome content in C. elegans. They implement lysosome immunoprecipitation (Lyso-IP) for C. elegans and they convincingly show that this method successfully isolates lysosomes from whole worms. The authors find that the lysosomes of worms overexpressing the lysosomal lipase lipl4 are enriched for AMPK subunits and nucleoporins and that these proteins are required for the longevity of lipl-4 overexpressing worms. The authors also show that this is specific to this longevity pathway given that another long-lived worm strain (daf2) does not exhibit enrichment for nucleoporins nor does it require them for longevity. The authors go on to express the Lyso-IP tag in different tissues of C. elegans (muscle, hypodermis, intestine, neurons) and identify the tissue-specific lysosome proteomes. Finally, the authors use this method to identify lysosome proteins in mature lysosomes and they find new proteins that regulate lysosomal acidification.

      The authors present a powerful tool to unbiasedly identify lysosome-associated proteins in C. elegans, and they provide an in-depth assessment of how this method can be used to understand longevity pathways and identify novel proteins. Understanding lysosomal differences in specific tissues or in response to different longevity conditions are exciting as it provides new insight into how organelles could control specific homeostasis responses. This tool and proteomics datasets also represent a great resource for the C. elegans community and should pry open new studies on the regulation and role of the lysosome at the organismal level.

      We truly appreciate that the reviewer’s positive comment on our work.

      Addressing the following suggestions would help strengthen this already strong manuscript. First, it would be helpful to validate selected candidates from the tissuespecific Lyso-IP to verify that the protocol is still specific with lower sample amounts. Second, it would be helpful to provide more details on the methods, notably for sample preparation and analysis, so that it can serve as a guideline for the community. Third, the manuscript contains a lot of data and conditions, which is great, but they may also feel disconnected in some cases and it could be helpful to focus the study on the main key findings.

      We thank the reviewer’s comments. As suggested by the reviewer, we have also generated a CRISPR knock-in line for one hypodermis-specific candidate Y58A7A.1 that encodes a copper transporter and validated its hypodermis-specific lysosomal localization (new Supplementary Figure 2E).

      As suggested by the reviewer, we have extended the method section on Lyso-IP to include more details. We believe that the new version should be sufficient for any lab to follow this protocol and conduct their own analyses. We will also take advantage of the eLife “Request a Protocol” feature to share the detailed version of the Lyso-IP method with researchers who are interested.

      We have thoroughly reorganized the manuscript to increase the textual clarity and improve the connection between different analyses and results.

      Reviewer #3 (Public Review):

      The manuscript by Ji et al dissects the important role of lysosomes in cellular metabolism and signaling and their regulation by various associated proteins. The authors utilized deep proteomic profiling in C.Elegans to identify lysosome-associated proteins involved in regulating longevity and discovered the recruitment of AMPK and nucleoporin proteins in response to increased lysosomal lipolysis. Additionally, the authors found lysosomal heterogeneity across different tissues and specific enrichment of the Ragulator complex on Cystinosin-positive lysosomes.

      Strengths of this work include the utilization of deep proteomic profiling to identify novel lysosome-associated proteins involved in longevity regulation, as well as the discovery of lysosomal heterogeneity and specific protein enrichments across different worm tissues. These findings point to a complex interplay between lysosomal protein dynamics, signal transduction, organelle crosstalk, and organism longevity.

      One weakness of this work may be the limited scope of the study, as it focuses primarily on the identification and characterization of lysosome-associated proteins involved in longevity regulation, with limited mechanistic follow-up and some unsubstantiated claims.

      We thank the reviewer for her/his helpful comments and suggestions. The primary goal of this manuscript is to provide new methods and resource to the community. We did have several biological findings from the current study, and mechanistic follow-up with these findings will be interesting future topics but may beyond the scope of the current manuscript. In addition, we have provided new experimental results to further support several claims that the reviewer has commented on.

    1. Author Response

      We thank the three reviewers and the reviewing editor for their positive evaluation of our manuscript. We particularly appreciate that they unanimously consider our work as “important contributions to the understanding of how the CAF-1 complex works”, “The large amounts of data provided in the paper support the authors' conclusion very well” and “The paper effectively addresses its primary objective and is strong”.

      We also thank them for a careful reading and useful comments to improve the manuscript. We will build on this input to provide an improved version of the manuscript that will hope to submit soon to eLife along with our point by point answer.

    1. Author Response

      eLife assessment

      This study uses a multi-pronged empirical and theoretical approach to advance our understanding of how differences in learning relate to differences in the ways that male versus female animals cope with urban environments, and more generally how reversal learning may benefit animals in urban habitats. The work makes an important contribution and parts of the data and analyses are solid, although several of the main claims are only partially supported or overstated and require additional support.

      We thank the Editor and both Reviewers for their time and for their constructive evaluation of our manuscript. We will work to address each comment and suggestion offered by the Reviewers in a revision.

      Reviewer #1 (Public Review):

      Summary:

      In this highly ambitious paper, Breen and Deffner used a multi-pronged approach to generate novel insights on how differences between male and female birds in their learning strategies might relate to patterns of invasion and spread into new geographic and urban areas.

      The empirical results, drawn from data available in online archives, showed that while males and females are similar in their initial efficiency of learning a standard color-food association (e.g., color X = food; color Y = no food) scenario when the associations are switched (now, color Y = food, X= no food), males are more efficient than females at adjusting to the new situation (i.e., faster at 'reversal learning'). Clearly, if animals live in an unstable world, where associations between cues (e.g., color) and what is good versus bad might change unpredictably, it is important to be good at reversal learning. In these grackles, males tend to disperse into new areas before females. It is thus fascinating that males appear to be better than females at reversal learning. Importantly, to gain a better understanding of underlying learning mechanisms, the authors use a Bayesian learning model to assess the relative role of two mechanisms (each governed by a single parameter) that might contribute to differences in learning. They find that what they term 'risk sensitive' learning is the key to explaining the differences in reversal learning. Males tend to exhibit higher risk sensitivity which explains their faster reversal learning. The authors then tested the validity of their empirical results by running agent-based simulations where 10,000 computer-simulated 'birds' were asked to make feeding choices using the learning parameters estimated from real birds. Perhaps not surprisingly, the computer birds exhibited learning patterns that were strikingly similar to the real birds. Finally, the authors ran evolutionary algorithms that simulate evolution by natural selection where the key traits that can evolve are the two learning parameters. They find that under conditions that might be common in urban environments, high-risk sensitivity is indeed favored.

      Strengths:

      The paper addresses a critically important issue in the modern world. Clearly, some organisms (some species, some individuals) are adjusting well and thriving in the modern, human-altered world, while others are doing poorly. Understanding how organisms cope with human-induced environmental change, and why some are particularly good at adjusting to change is thus an important question.

      The comparison of male versus female reversal learning across three populations that differ in years since they were first invaded by grackles is one of few, perhaps the first in any species, to address this important issue experimentally.

      Using a combination of experimental results, statistical simulations, and evolutionary modeling is a powerful method for elucidating novel insights.

      Thank you—we are delighted to receive this positive feedback, especially regarding the inferential power of our analytical approach.

      Weaknesses:

      The match between the broader conceptual background involving range expansion, urbanization, and sex-biased dispersal and learning, and the actual comparison of three urban populations along a range expansion gradient was somewhat confusing. The fact that three populations were compared along a range expansion gradient implies an expectation that they might differ because they are at very different points in a range expansion. Indeed, the predicted differences between males and females are largely couched in terms of population differences based on their 'location' along the range-expansion gradient. However, the fact that they are all urban areas suggests that one might not expect the populations to differ. In addition, the evolutionary model suggests that all animals, male or female, living in urban environments (that the authors suggest are stable but unpredictable) should exhibit high-risk sensitivity. Given that all grackles, male and female, in all populations, are both living in urban environments and likely come from an urban background, should males and females differ in their learning behavior? Clarification would be useful.

      Thank you for highlighting a gap in clarity in our conceptual framework. To answer the Reviewer’s question—yes, even with this shared urban ‘history’, it seems plausible that males and females could differ in their learning. For example, irrespective of population membership, such sex differences could come about via differential reliance on learning strategies mediated by an interaction between grackles’ polygynous mating system and male-biased dispersal system, as we discuss in L254–265. Population membership might, in turn, differentially moderate the magnitude of any such sex-effect since an edge population, even though urban, could still pose novel challenges—for example, by requiring grackles to learn novel daily temporal foraging patterns such as when and where garbage is collected (grackles appear to track this food resource: Rodrigo et al. 2021 [DOI: 10.1101/2021.06.14.448443]). We will make sure to better introduce this important conceptual information in our revision.

      Reinforcement learning mechanisms:

      Although the authors' title, abstract, and conclusions emphasize the importance of variation in 'risk sensitivity', most readers in this field will very possibly misunderstand what this means biologically. Both the authors' use of the term 'risk sensitivity' and their statistical methods for measuring this concept have potential problems.

      Please see our below responses concerning our risk-sensitivity term

      First, most behavioral ecologists think of risk as predation risk which is not considered in this paper. Secondarily, some might think of risk as uncertainty. Here, as discussed in more detail below, the 'risk sensitivity' parameter basically influences how strongly an option's attractiveness affects the animal's choice of that option. They say that this is in line with foraging theory (Stephens and Krebs 2019) where sensitivity means seeking higher expected payoffs based on prior experience. To me, this sounds like 'reward sensitivity', but not what most think of as 'risk sensitivity'. This problem can be easily fixed by changing the name of the term.

      We apologise for not clearly introducing the field of risk-sensitive foraging, which focuses on how animals evaluate and choose between distinct food options, and how such foraging decisions are influenced by pay-off variance i.e., risk associated with alternative foraging options (seminal reviews: Bateson 2002 [DOI: 10.1079/PNS2002181]; Kacelnik & Bateson 1996 [DOI: 10.1093/ICB/36.4.402]). We further apologise for not clearly explaining how our lambda parameter estimates such risk-sensitive foraging. To do so here, we need to consider our Bayesian reinforcement learning model in full. This model uses observed choice-behaviour during reinforcement learning to infer our phi (informationupdating) and lambda (risk-sensitivity) learning parameters. Thus, payoffs incurred through choice simultaneously influence estimation of each learning parameter—that is, in a sense, they are both sensitive to rewards. But phi and lambda differentially direct any reward sensitivity back on choicebehaviour due to their distinct definitions (we note this does not imply that the two cannot influence one another i.e., co-vary on the latent scale). Glossing over the mathematics, for phi, stronger reward sensitivity (bigger phi values) means faster internal updating about stimulus-reward pairings, which translates behaviourally into faster learning about ‘what to choose’. For lambda, stronger reward sensitivity (bigger lambda values) means stronger internal determinism about seeking the non-risk foraging option (i.e., the one with the higher expected payoffs based on prior experience), which translates behaviourally into less choice-option switching i.e., ‘playing it safe’. We hope this information, which we will incorporate into our revision, clarifies the rationale and mechanics of our reinforcement learning model, and why lamba measures risk-sensitivity.

      In addition, however, the parameter does not measure sensitivity to rewards per se - rewards are not in equation 2. As noted above, instead, equation 2 addresses the sensitivity of choice to the attraction score which can be sensitive to rewards, though in complex ways depending on the updating parameter. Second, equations 1 and 2 involve one specific assumption about how sensitivity to rewards vs. to attraction influences the probability of choosing an option. In essence, the authors split the translation from rewards to behavioral choices into 2 steps. Step 1 is how strongly rewards influence an option's attractiveness and step 2 is how strongly attractiveness influences the actual choice to use that option. The equation for step 1 is linear whereas the equation for step 2 has an exponential component. Whether a relationship is linear or exponential can clearly have a major effect on how parameter values influence outcomes. Is there a justification for the form of these equations? The analyses suggest that the exponential component provides a better explanation than the linear component for the difference between males and females in the sequence of choices made by birds, but translating that to the concepts of information updating versus reward sensitivity is unclear. As noted above, the authors' equation for reward sensitivity does not actually include rewards explicitly, but instead only responds to rewards if the rewards influence attraction scores. The more strongly recent rewards drive an update of attraction scores, the more strongly they also influence food choices. While this is intuitively reasonable, I am skeptical about the authors' biological/cognitive conclusions that are couched in terms of words (updating rate and risk sensitivity) that readers will likely interpret as concepts that, in my view, do not actually concur with what the models and analyses address.

      To answer the Reviewer’s question—yes, these equations are very much standard and the canonical way of analysing individual reinforcement learning (see: Ch. 15.2 in Computational Modeling of Cognition and Behavior by Farrell & Lewandowsky 2018 [DOI: 10.1017/CBO9781316272503]; McElreath et al. 2008 [DOI: 10.1098/rstb/2008/0131]; Reinforcement Learning by Sutton & Barto 2018). To provide a “justification for the form of these equations'', equation 1 describes a convex combination of previous values and recent payoffs. Latent values are updated as a linear combination of both factors, there is no simple linear mapping between payoffs and behaviour as suggested by the reviewer. Equation 2 describes the standard softmax link function. It converts a vector of real numbers (here latent values) into a simplex vector (i.e., a vector summing to 1) which represents the probabilities of different outcomes. Similar to the logit link in logistic regression, the softmax simply maps the model space of latent values onto the outcome space of choice probabilities which enter the categorial likelihood distribution. We can appreciate how we did not make this clear in our manuscript by not highlighting the standard nature of our analytical approach. We will do better in our revision. As far as what our reinforcement learning model measures, and how it relates cognition and behaviour, please see our previous response.

      To emphasize, while the authors imply that their analyses separate the updating rate from 'risk sensitivity', both the 'updating parameter' and the 'risk sensitivity' parameter influence both the strength of updating and the sensitivity to reward payoffs in the sense of altering the tendency to prefer an option based on recent experience with payoffs. As noted in the previous paragraph, the main difference between the two parameters is whether they relate to behaviour linearly versus with an exponential component.

      Please see our two earlier responses on the mechanics of our reinforcement learning model.

      Overall, while the statistical analyses based on equations (1) and (2) seem to have identified something interesting about two steps underlying learning patterns, to maximize the valuable conceptual impact that these analyses have for the field, more thinking is required to better understand the biological meaning of how these two parameters relate to observed behaviours, and the 'risk sensitivity' parameter needs to be re-named.

      Please see our earlier response to these suggestions.

      Agent-based simulations:

      The authors estimated two learning parameters based on the behaviour of real birds, and then ran simulations to see whether computer 'birds' that base their choices on those learning parameters return behaviours that, on average, mirror the behaviour of the real birds. This exercise is clearly circular. In old-style, statistical terms, I suppose this means that the R-square of the statistical model is good. A more insightful use of the simulations would be to identify situations where the simulation does not do as well in mirroring behaviour that it is designed to mirror.

      Based on the Reviewer’s summary of agent-based forward simulation, we can see we did a poor job explaining the inferential value of this method—we apologise. Agent-based forward simulations are posterior predictions, and they provide insight into the implied model dynamics and overall usefulness of our reinforcement learning model. R-squared calculations are retrodictive, and they say nothing about the causal dynamics of a model. Specifically, agent-based forward simulation allows us to ask—what would a ‘new’ grackle ‘do’, given our reinforcement learning model parameter estimates? It is important to ask this question because, in parameterising our model, we may have overlooked a critical contributing mechanism to grackles’ reinforcement learning. Such an omission is invisible in the raw parameter estimates; it is only betrayed by the parameters in actu. Agent-based forward simulation is ‘designed’ to facilitate this call to action—not to mirror behavioural results. The simulation has no apriori ‘opinion’ about computer ‘birds’ behavioural outcomes; rather, it simply assigns these agents random phi and lambda draws (whilst maintaining their correlation structure), and tracks their reinforcement learning. The exercise only appears circular if no critical contributing mechanism(s) went overlooked—in this case computer ‘birds’ should behave similar to real birds. A disparate mapping between computer ‘birds’ and real birds, however, would mean more work is needed with respect to model parameterisation that captures the causal, mechanistic dynamics behind real birds’ reinforcement learning (for an example of this happening in the human reinforcement learning literature, see Deffner et al. 2020 [DOI: 10.1098/rsos.200734]). In sum, agent-based forward simulation does not access goodness-of-fit—we assessed the fit of our model apriori in our preregistration (https://osf.io/v3wxb)—but it does assess whether one did a comprehensive job of uncovering the mechanistic basis of target behaviour(s). We will work to make the above points on the insight afforded by agent-based forward simulation explicitly clear in our revision.

      Reviewer #2 (Public Review):

      Summary:

      The study is titled "Leading an urban invasion: risk-sensitive learning is a winning strategy", and consists of three different parts. First, the authors analyse data on initial and reversal learning in Grackles confronted with a foraging task, derived from three populations labeled as "core", "middle" and "edge" in relation to the invasion front. The suggested difference between study populations does not surface, but the authors do find moderate support for a difference between male and female individuals. Secondly, the authors confirm that the proposed mechanism can actually generate patterns such as those observed in the Grackle data. In the third part, the authors present an evolutionary model, in which they show that learning strategies as observed in male Grackles do evolve in what they regard as conditions present in urban environments.

      Strengths:

      The manuscript's strength is that it combines real learning data collected across different populations of the Great-tailed grackle (Quiscalus mexicanus) with theoretical approaches to better understand the processes with which grackles learn and how such learning processes might be advantageous during range expansion. Furthermore, the authors also take sex into account revealing that males, the dispersing sex, show moderately better reversal learning through higher reward-payoff sensitivity. I also find it refreshing to see that the authors took the time to preregister their study to improve transparency, especially regarding data analysis.

      Thank you—we are pleased to receive this positive evaluation, particularly concerning our efforts to improve scientific transparency via our study’s preregistration (https://osf.io/v3wxb).

      Weaknesses:

      One major weakness of this manuscript is the fact that the authors are working with quite low sample sizes when we look at the different populations of edge (11 males & 8 females), middle (4 males & 4 females), and core (17 males & 5 females) expansion range. Although I think that when all populations are pooled together, the sample size is sufficient to answer the questions regarding sex differences in learning performance and which learning processes might be used by grackles but insufficient when taking the different populations into account.

      In Bayesian statistics, there is no strict lower limit of required sample size as the inferences do not rely on asymptotic assumptions. With inferences remaining valid in principle, low sample size will of course be reflected in rather uncertain posterior estimates. We note all of our multilevel models use partial pooling on individuals (the random-effects structure), which is a regularisation technique that generally reduces the inference constraint imposed by a low sample size (see Ch. 13 in Statistical Rethinking by Richard McElreath [PDF: https://bit.ly/3RXCy8c]). We further note that, in our study preregistration (https://osf.io/v3wxb), we formally tested our reinforcement learning model for different effect sizes of sex on learning for both target parameters (phi and lambda) across populations, using a similarly modest N (edge: 10 M, 5 F; middle: 22 M, 5 F ; core: 3 M, 4 F) to our actual final N, that we anticipated to be our final N at that time. This apriori analysis shows our reinforcement learning model: (i) detects sex differences in phi values >= 0.03 and lambda values >= 1; and (ii) infers a null effect for phi values < 0.03 and lambda values < 1 i.e., very weak simulated sex differences (see Figure 4 in https://osf.io/v3wxb). Thus, both of these points together highlight how our reinforcement learning model allows us to say that across-population null results are not just due to small sample size. Nevertheless the Reviewer is not wrong to wonder whether a bigger N might change our population-level results (it might; so might much-needed population replicates—see L270), but our Bayesian models still allow us to learn a lot from our current data.

      Another weakness of this manuscript is that it does not set up the background well in the introduction. Firstly, are grackles urban dwellers in their natural range and expand by colonising urban habitats because they are adapted to it? The introduction also fails to mention why urban habitats are special and why we expect them to be more challenging for animals to inhabit. If we consider that one of their main questions is related to how learning processes might help individuals deal with a challenging urban habitat, then this should be properly introduced.

      In L53–56 we introduce that the estimated historical niche of grackles is urban environments, and that shifts in habitat breadth—e.g., moving into more arid, agricultural environments—is the estimated driver of their rapid North American colonisation. We will work towards flushing out how urban-imposed challenges faced by grackles, such as the wildlife management efforts introduced in L64–65, may apply to animals inhabiting urban environments more broadly.

      Also, the authors provide a single example of how learning can differ between populations from more urban and more natural habitats. The authors also label the urban dwellers as the invaders, which might be the case for grackles but is not necessarily true for other species, such as the Indian rock agama in the example which are native to the area of study. Also, the authors need to be aware that only male lizards were tested in this study. I suggest being a bit more clear about what has been found across different studies looking at: (1) differences across individuals from invasive and native populations of invasive species and (2) differences across individuals from natural and urban populations.

      We apologise for not specifying that the review we cite in L42 by Lee & Thornton (2021) covers additional studies on cognition in both urban invasive species as well as urban-dwellers versus nonurban counterparts—we will remedy this omission in our revision. We will also revise our labelling of the lizard species. We are aware only male lizards were tested but this information is not relevant to substantiating our use of this study; that is, to highlight that learning can differ between urban-dwelling and non-urban counterparts. Finally, the Reviewer’s general suggestion is a good one—we will work to add this biological clarity to our revision.

      Finally, the introduction is very much written with regard to the interaction between learning and dispersal, i.e. the 'invasion front' theme. The authors lay out four predictions, the most important of which is No. 4: "Such sex-mediated differences in learning to be more pronounced in grackles living at the edge, rather than the intermediate and/or core region of their range." The authors, however, never return to this prediction, at least not in a transparent way that clearly pronounces this pattern not being found. The model looking at the evolution of risk-sensitive learning in urban environments is based on the assumption that urban and natural environments "differ along two key ecological axes: environmental stability 𝑢 (How often does optimal behaviour change?) and environmental stochasticity 𝑠 (How often does optimal behaviour fail to pay off?). Urban environments are generally characterised as both stable (lower 𝑢) and stochastic (higher 𝑠)". Even though it is generally assumed that urban environments differ from natural environments the authors' assumption is just one way of looking at the differences which have generally not been confirmed and are highly debated. Additionally, it is not clear how this result relates to the rest of the paper: The three populations are distinguished according to their relation to the invasion front, not with respect to a gradient of urbanization, and further do not show a meaningful difference in learning behaviour possibly due to low sample sizes as mentioned above.

      Thank you for highlighting a gap in our reporting clarity. We will take care in our revision to transparently report our null result regarding our fourth prediction; more specifically, that we did not detect meaningful behavioural or mechanistic population-level differences in grackles’ learning. Regarding our evolutionary model, we agree with the Reviewer that this analysis is only one way of looking at the interaction between learning phenotype and apparent urban environmental characteristics. Indeed, in L282–288 we state: “Admittedly, our evolutionary model is not a complete representation of urban ecology dynamics. Relevant factors—e.g., spatial dynamics and realistic life histories—are missed out. These omissions are tactical ones. Our evolutionary model solely focuses on the response of reinforcement learning parameters to two core urban-like (or not) environmental statistics, providing a baseline for future study to build on”. But we can see now that ‘core’ is too strong a word, and instead ‘supposed’, ‘purported’ or ‘theorised’ would be more accurate—we will revise our wording. As far as how our evolutionary results relate to the rest of the paper, these results suggest successful urban living should favour risk-sensitive learning, and our other analyses in our paper reveal male grackles—the dispersing sex in this historically urban-dwelling and currently urban-invading species—show pronounced risk-sensitive learning, so it appears risk-sensitive learning is a winning strategy for urban-invading male grackles and urban-invasion leaders more generally (we note, of course, other factors undoubtedly contribute to grackles’ urban invasion success, as discussed in ‘Ideas and speculation’; see also our first response to R1). We will work to make these links clearer in our revision. Finally, please see our above response on the inferential sufficiency of our sample size.

      In conclusion, the manuscript was well written and for the most part easy to follow. The format of eLife having the results before the methods makes it a bit harder to follow because the reader is not fully aware of the methods at the time the results are presented. It would, therefore, be important to more clearly delineate the different parts and purposes. Is this article about the interaction between urban invasion, dispersal, and learning? Or about the correct identification of learning mechanisms? Or about how learning mechanisms evolve in urban and natural environments? Maybe this article can harbor all three, but the borders need to be clear. The authors need to be transparent about what has and especially what has not been found, and be careful to not overstate their case.

      Thank you, we are pleased to read that the Reviewer found our manuscript to be generally digestible. In our revision, we will work to add further clarity, and to temper our tone.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This manuscript tried to answer a long-standing question in an important research topic. I read it with great interest. The quality of the science is high, and the text is clearly written. The conclusion is exciting. However, I feel that the phenotype of the transgenic line may be explained by an alternative idea. At least, the results should be more carefully discussed.

      We thank the reviewer #1 for his/her comments that helped to improve the manuscript. We have incorporated changes to reflect the suggestions provided by the reviewer. Here is a point-by-point response to the reviewer's specific and other minor comments.

      Specific comments:

      1) Stability or activity (Fv/Fm) was not affected in PSII with the W14F mutation in D1. If W14F really represents the status of PSII with oxidized D1, what is the reason for the degradation of almost normal D1?

      In this study, we used W14F mutation to mimic Trp-14 oxidation. The W14F mutant did not affect the stability and photosynthetic activity under normal growth conditions. However, the W14F mutant showed increased D1 degradation and reduced Fv/Fm values under high light. These results suggested that the W14F mutant has almost normal D1 protein stability under growth light conditions, as pointed out by the reviewer.

      However, it should be noted that D1 protein in the W14F strain rapidly degraded under high light. In the discussion part, we mentioned the possibility that other OPTMs may have additive effects on D1 degradation. Synergistic effects such as different amino acid oxidations may cause D1 degradation, and among those oxidative damages, W14 oxidation would be a key signal for D1 degradation by FtsH.

      2) To focus on the PSII in which W14 is oxidized, this research depends on the W14F mutant lines. It is critical how exactly the W-to-F substitution mimics the oxidized W. The authors tried to show it in Figure 5. Because of the technical difficulty, it may be unfair to request more evidence. But the paper would be more convincing with the results directly monitoring the oxidized D1 to be recognized by FtsH.

      We agree that confirming the direct interaction of oxidized D1 protein with FtsH provides more robust evidence. However, since FtsH progressively degrades the trapped substrate, it would be quite a challenging attempt to capture that moment. There are also technical limitations to obtaining sufficient substrate using Co-IP to compare its oxidation state. We included your suggested point in the discussion part. Thank you for your valuable suggestion.

      3) Figure 3. If the F14 mimics the oxidized W14 and is sensed by FtsH, I would expect the degradation of D1 even under the growth light. The actual result suggests that W14F mutation partially modifies the structure of D1 under high light and this structural modification of D1 is sensed by FtsH. Namely, high light may induce another event which is recognized by FtsH. The W14F is just an enhancer.

      Our results indicated that W14 oxidation is one of the keys to D1 degradation. On the other hand, we agree with the possibility that the reviewer points out. There is the possibility that factors other than W14 may act synergistically to promote D1 degradation. High light triggered more D1 degradation in W14F, suggesting that unknown factor(s) may be required for D1 degradation, e.g., oxidative modification at other sites and/or conformational changes of PSII under the high light. However, the current data that we have cannot reveal. We have incorporated the reviewer's comment and discussed it in the discussion part.

      Reviewer #2 (Public Review):

      In their manuscript, Kato et al investigate a key aspect of membrane protein quality control in plant photosynthesis. They study the turnover of plant photosystem II (PSII), a hetero-oligomeric membrane protein complex that undertakes the crucial light-driven water oxidation reaction in photosynthesis. The formidable water oxidation reaction makes PSII prone to photooxidative damage. PSII repair cycle is a protein repair pathway that replaces the photodamaged reaction center protein D1 with a new copy. The manuscript addresses an important question in PSII repair cycle - how is the damaged D1 protein recognized and selectively degraded by the membrane-bound ATP-dependent zinc metalloprotease FtsH in a processive manner? The authors show that oxidative post-translational modification (OPTM) of the D1 N-terminus is likely critical for the proper recognition and degradation of the damaged D1 by FtsH. Authors use a wide range of approaches and techniques to test their hypothesis that the singlet oxygen (1O2)-mediated oxidation of tryptophan 14 (W14) residue of D1 to N-formylkynurenine (NFK) facilitates the selective degradation of damaged D1. Overall, the authors propose an interesting new hypothesis for D1 degradation and their hypothesis is supported by most of the experimental data provided. The study certainly addresses an elusive aspect of PSII turnover and the data provided go some way in explaining the light-induced D1 turnover. However, some of the data are correlative and do not provide mechanistic insight. A rigorous demonstration of OPTM as a marker for D1 degradation is yet to be made in my opinion. Some strengths and weaknesses of the study are summarized below:

      We thank reviewer #2 for his/her comments that helped to improve the manuscript. We have incorporated changes to reflect the suggestions pointed out as weaknesses by reviewer #2. Other minor comments were also answered in a point-by-point response.

      Strengths:

      1) In support of their hypothesis, the authors find that FtsH mutants of Arabidopsis have increased OPTM, especially the formation of NFK at multiple Trp residues of D1 including the W14; a site-directed mutation of W14 to phenylalanine (W14F), mimicking NFK, results in accelerated D1 degradation in Chlamydomonas; accelerated D1 degradation of W14F mutant is mitigated in an ftsH1 mutant background of Chlamydomonas; and that the W14F mutation augmented the interaction between FtsH and the D1 substrate.

      2) Authors raise an intriguing possibility that the OPTM disrupts the hydrogen bonding between W14 residue of D1 and the serine 25 (S25) of PsbI. According to the authors, this leads to an increased fluctuation of the D1 N-terminal tail, and as a consequence, recognition and binding of the photodamaged D1 by the protease. This is an interesting hypothesis and the authors provide some molecular dynamics simulation data in support of this. If this hypothesis is further supported, it represents a significant advancement.

      3) The interdisciplinary experimental approach is certainly a strength of the study. The authors have successfully combined mass spectrometric analysis with several biochemical assays and molecular dynamics simulation. These, together with the generation of transplastomic algal cell lines, have enabled a clear test of the role of Trp oxidation in selective D1 degradation.

      4) Trp oxidative modification as a degradation signal has precedent in chloroplasts. The authors cite the case of 1O2 sensor protein EXECUTER 1 (EX1), whose degradation by FtsH2, the same protease that degrades D1, requires prior oxidation of a Trp residue. The earlier observation of an attenuated degradation of a truncated D1 protein lacking the N-terminal tail is also consistent with authors' suggestion of the importance of the D1 N-terminus recognition by FtsH. It is also noteworthy that in light of the current study, D1 phosphorylation is unlikely to be a marker for degradation as posited by earlier studies.

      Weaknesses:

      1) The study lacks some data that would have made the conclusions more rigorous and convincing. It is unclear why the level of Trp oxidation was not analyzed in the Chlamydomonas ftsH 1-1 mutant as done for the var 2 mutant. Increased oxidation of W14 OPTM in Chlamydomonas ftsH 1-1 is a key prediction of the hypothesis.

      We thank the reviewer for this valuable comment. We agree with the reviewer that the analysis of oxidized Trp level will reinforce the importance of Trp oxidation in the N-terminal of D1. In our preliminary experiment, we observed a trend toward increase of the kynurenine in Trp-14 in Chlamydomonas ftsH1-1 strain. However, we found large errors, and we could not conclude that this trend is significant. A possible reason for the large error was that the signal intensity of oxidized Trp was insufficient for quantification in a series of Chlamydomonas experiment. In addition, the fact that the amount of D1 in each culture was not stable also might be one reason. On the other hand, we keep note of a previous result that more fragmentation of D1 protein was observed in the Chlamydomonas ftsH1-1 mutant compared to that in Arabidopsis (Malnoë et al., Plant Cell 2014). This result suggests that an alternative D1 degradation pathway involving other proteases is more active in the Chlamydomonas ftsH1-1 mutant than in Arabidopsis var2 mutant. Furthermore, the Chlamydomonas ftsH1-1 mutant, caused by an amino acid substitution, still has a significant FtsH1/FtsH2 heterohexamer, and the level of FtsH1 and FtsH2 proteins increases significantly under high light irradiation. This is a significant difference from the Arabidopsis var2 mutant lacking FtsH2 subunit and showed reduced protein accumulation. These factors may explain to the lower detection levels of oxidized Trp in Chlamydomonas. We believe that improved sensitivity for detection of oxidized Trp peptides and more sophisticated experimental systems could solve this issue in the future.

      It is also unclear to me what is the rationale for showing D1-FtsH interaction data only for the double mutant but not for the single mutant (W14F).

      We thank the reviewer for the comment. As suggested by the reviewer, the analysis of the mutant crossing ftsH and W14F single mutation will provide more convincing evidence. Fig.3 showed that the photosensitivity in both W14F and W14FW317F was caused by the enhanced D1 degradation observed, which was due to the W14F mutation. Therefore, we crossed the ftsH mutant with W14FW317F, which has a more severe phenotype, to confirm whether FtsH is involved in this D1 degradation.

      Why is the FtsH pulldown of D2 not statistically significant (p value = {less than or equal to}0.1). Wouldn't one expect FtsH pulls down the RC47 complex containing D1, D2, and RC47. Probing the RC47 level would have been useful in settling this.

      For the immunoblot result of D2 and its statistical analysis, we answered in the following comment; No.2 in the reviewer's comment in Recommendations For The Authors.

      We agree with the reviewer's suggestion that further immunoblot analysis for CP47 protein would help our understanding of FtsH and RC47 interaction. Indeed, we attempted the immunoblot analysis of CP47 after the FtsH Co-IP experiment. However, the detection of CP43 protein was not sensitive enough. This reason may be due to the lower titer of the CP47 antibody compared to the D1 and D2 antibodies.

      A key proposition of the authors' is that the hydrogen bonding between D1 W14 and S25 of PsbI is disrupted by the oxidative modification of W14. Can this hypothesis be further tested by replacing the S25 of PsbI with Ala, for example?

      It is an interesting question whether amino acid substitution in PsbI-S25 affects the stability of D1-N-term and its degradation by FtsH. We would like to analyze the possibility in the future. We thank the reviewer for this helpful suggestion.

      2) Although most of the work described is in vivo analysis, which is desirable, some in vitro degradation assays would have strengthened the conclusions. An in vitro degradation assay using the recombinant FtsH and a synthetic peptide encompassing D1 N-terminus with and without OPTM will test the enhanced D1 degradation that the authors predict. This will also help to discern the possibility that whether CP43 detachment alone is sufficient for D1 degradation as suggested for cyanobacteria.

      In vitro experimental systems are interesting. However, FtsH is known to function as a hexamer, which has not yet been successfully reconstituted in vitro. Therefore, it would not be easy to perform an in vitro experimental system using the N-terminal synthetic peptide of D1 as a substrate. Thank you for your valuable suggestions.

      3) The rationale for analyzing a single oxidative modification (W14) as a D1 degradation signal is unclear. D1 N-terminus is modified at multiple sites. Please see Mckenzie and Puthiyaveetil, bioRxiv May 04 2023. Also, why is modification by only 1O2 considered while superoxide and hydroxide radicals can equally damage D1?

      We agree with the possibility that oxidative modifications in other amino acids are also involved in the D1 degradation, as pointed out by the reviewer. We also thank the reviewer for pointing us to the interesting article of Mckenzie and Puthiyaveetil et al. that showed additional oxidations occurred in the D1-Nterminus, which we had yet to be aware of when we submitted our manuscript. It will be interesting to see how these amino acid oxidations work with W14 oxidation on D1 degradation in the future. The oxidation of Trp by 1O2 can serve as a substrate for FtsH, as in the case of EX1, so we focused on the analysis of Trp oxidation. Single oxygen is believed to be the potential reactive species of Trp oxidation. However, the detected oxidative modifications in this study were not exactly sure depended on singlet oxygen. Thus, we changed several sentences that mention tryptophan oxidation by single oxygen.

      4) The D1 degradation assay seems not repeatable for the W14F mutant. High light minus CAM results in Fig. 3 shows a statistically significant decrease in D1 levels for W14F at multiple time points but the same assay in Fig. 4a does not produce a statistically significant decrease at 90 min of incubation. Why is this? Accelerated D1 degradation in the Phe mutant under high light is key evidence that the authors cite in support of their hypothesis.

      In Fig. 4a, the p-value comparing the D1 level at 90 min between control and W14F was 0.1075. This value is slightly larger than 0.1. The result that one of the control experiments showed a decrease in D1 level relative to 0 h might cause this value. Given that the D1 level of the remaining three of the four replicates was unchanged in the control experiments, it can be considered an outlier. We believe the results do not affect our hypothesis that the earlier D1 degradation is occurred in W14F.

      5) The description of results at times is not nuanced enough, for e.g. lines 116-117 state "The oxidation levels in Trp-14 and Trp-314 increased 1.8-fold and 1.4-fold in var2 compared to the wild type, respectively (Fig. 1c)" while an inspection of the figure reveals that modification at W314 is significant only for NFK and not for KYN and OIA.

      In this sentence, we described the result that is compared with the oxidized peptide levels calculated from all Trp-oxidized derivatives. However, as pointed out by the reviewer, it was not correct to explain the result of Fig.1C. We corrected the sentence following the reviewer's suggestion as below;“The levels of Trp-oxidized derivatives, OIA, NFK, and KYN in Trp-14 and the level of KYN in Trp-314 were significantly increased in var2 compared to the wild type, respectively (Fig. 1c). "

      Likewise, the authors write that CP43 mutant W353F has no growth phenotype under high light but Figure S6 reveals otherwise. The slow growth of this mutant is in line with the earlier observation made by Anderson et al., 2002.

      As pointed out by the reviewer, the growth of W353F seems to be a little slow under HL. We have changed our description of the result part. However, we still conclude that CP43 had little impact on the PSII repair, because the impaired growth in W353F is not as severe as those in W14F and W14F/W317F under HL

      In lines 162-163, the authors talk about unchanged electron transport in some site-directed mutants and cite Fig. 2c but this figure only shows chl fluorescence trace and nothing else.

      We agreed with the reviewer's suggestion and changed the sentence. In this study, we did not perform detailed photosynthetic analysis. Based on the analysis of phototrophic growth, oxygen-evolving activity, and Chl fluorescence, we concluded that overall photosynthetic activity was not a significant difference in the mutants.

      6) The authors rightly discuss an alternate hypothesis that the simple disassembly of the monomeric core into RC47 and CP43 alone may be sufficient for selective D1 degradation as in cyanobacteria. This hypothesis cannot yet be ruled out completely given the lack of some in vitro degradation data as mentioned in point 2. Oxidative protein modification indeed drives the disassembly of the monomeric core (Mckenzie and Puthiyaveetil, bioRxiv May 04 2023).

      Thanks for your suggestion. We added a discussion of PSII disassembly by ROS-induced oxidation to the discussion part, and the reference is added.

      Reviewer #3 (Public Review):

      Light energy drives photosynthesis. However, excessive light can damage (i.e., photo-damage) and thus inactivate the photosynthetic process. A major target site of photo-damage is photosystem II (PSII). In particular, one component of PSII, the reaction center protein, D1, is very suspectable to photo-damage, however, this protein is maintained efficiently by an elaborate multi-step PSII-D1 turnover/repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. In this manuscript, Kato et al., propose an additional step (an early step) in the D1 degradation/repair pathway. They propose that "Tryptophan oxidation" at the N-terminus of D1 may be one of the key oxidations in the PSII repair, leading to processive degradation of D1 by FtsH. Both, their data and arguments are very compelling.

      The D1 protein repair/degradation pathway in its simplest form can be defined essentially by five steps: (1) migration of damaged PSII core complex to the stroma thylakoid, (2) partial PSII disassembly of the PSII core monomer, (3) access of protease degrading damaged D1, (4) concomitant D1 synthesis, and (5) reassembly of PSII into grana thylakoid. An enormous amount of work has already been done to define and characterize these various steps. Kato et al., in this manuscript, are proposing a very early yet novel critical step in D1 protein turnover in which Tryptophan(Trp) oxidation in PSII core proteins influences D1 degradation mediated by FtsH.

      Using a variety of approaches, such as mass-spectrometry (Table 1), site-directed mutagenesis (Figures 2-4), D1 degradation assays (Figures 3, and 4), and simulation modeling (Figure 5), Kato et al., provide both strong evidence and reasonable arguments that an N-terminal Trp oxidation may be likely to be a 'key' oxidative post-translational modification (OPTM) that is involved in triggering D1 degradation and thus activating the PSII repair pathway. Consequently, from their accumulated data, the authors propose a scenario in which the unraveling of the N-terminal of the D1 protein facilitated by Trp oxidation plays a critical 'recognition' role in alerting the plant that the D1 protein is photo-damaged and thus to kick start the processive degradation pathway initiated possibly by FtsH. Coincidently, Forsman and Eaton-Rye (Biochemistry 2021, 60, 1, 53-63), while working with the thermophilic cyanobacterium, Thermosynechococcus vulcanus, showed that when the N-terminal DE-loop of the D1 protein is photo-damaged that occurs which may serve as a signal for PSII to undergo repair following photodamage. While the activation of the processive degradation pathways in Chlamydomonas versus Thermosynechococcus vulcanus have significant mechanistic differences, it's interesting to note and speculate that the stability of the N-terminal of their respective D1 proteins seems to play a critical role in 'signaling' the PSII repair system to be activated and initiate repair. But it's complicated. For instance, significant Trp oxidation also occurs on the lumen side of other PSII subunits which may also play a significant role in activating the repair processes as well. Indeed, Kato et al.,( Photosynthesis Research volume 126, pages 409-416 (2015)) proposed a two-step model whereby the primary event is disruption of a Mn-cluster in PSII on the lumen side.

      A secondary event is damage to D1 caused by energy that is absorbed by chlorophyll. But models adapt, change, and get updated. And the data provided by Kato et al., in this manuscript, gives us a unique glimpse/snapshot into the importance of the stability of the N-terminal during photo-damage and its role in D1-turnover. For instance, the author's use site-directed mutagenesis of Trp residues undergoing OPTM in the D1 protein coupled with their D1 degradation assays (Figure 3 and 4), provides evidence that Trp oxidation (in particular the oxidation of Trp14) in coordination with FtsH results in the degradation of D1 protein. Indeed, their D1 degradation assays coupled with the use of a ftsh mutant provide further significant support that Trp14 oxidation and FtsH activity are strongly linked. But for FstH to degrade D1 protein it needs to gain access to photo-damaged D1. FtsH access to D1 is achieved by having CP43 partially dissociate from the PSII complex. Hence, the authors also addressed the possibility that Trp oxidation may also play a role in CP43 disassembly from the PSII complex thereby giving FtsH access to D1. Using a site-directed mutagenesis approach, they showed that Trp oxidation in CP43 appeared to have little impact on the PSII repair (Supplemental Figure S6). This result shows that D1-Trp14 oxidation appears to be playing a role in D1 turnover that occurs after CP43 disassembly from the PSII complex. Alternatively, the authors cannot exclude the possibility that D1-Trp14 oxidation in some way facilitates CP43 dissociation. Further investigation is needed on this point. However, D1-Trp14 oxidation is causing an internal disruption of the D1 protein possibly at the N-terminus of the protein. Consequently, the role of Trp14 oxidation in disrupting the stability of the N-terminal domain of the D1 protein was analyzed computationally. Using a molecular dynamics approach (Figure 5), the authors attempted to create a mechanistic model to explain why when D1 protein Trp14 undergoes oxidation the N-terminal domain of D1protein becomes unraveled. Specifically, the authors propose that the interaction between D1 protein Trp14 with PsbI Ser25 becomes disrupted upon oxidation of Trp14. Consequently, the authors concluded from their molecular dynamics simulation analysis that " the increased fluctuation of the first α-helix of D1 would give a chance to recognize the photo-damaged D1 by FtsH protease". Hence, the author's experimental and computational approaches employed here develop a compelling early-stage repair model that integrates 1) Trp14 oxidation, 2) FtsH activation and 3) D1- turnover being initiated at its N-terminal domain. However, a word of caution should be emphasized here. This model is just a snapshot of the very early stages of the D1 protein turnover process. The data presented here gives us just a small glimpse into the unique relationship between Trp oxidation of the D1 protein which may trigger significant N-terminal structural changes of the D1 protein that both signals and provides an opportunity for FstH to begin protease digestion of the D1 protein.

      However, the authors go to great lengths in their discussion section to not overstate solely the role of Trp14 oxidation in the complicated process of D1 turnover. The authors certainly recognize that there are a lot of moving parts involved in D1 turnover. And while Trp14 oxidation is the major focus of this paper, the authors show in Supplemental Fig S4 the structural positions of various additional oxidized Trp residues in the Thermosynecoccocus vulcans PSII core proteins. Indeed, this figure shows that the majority of oxidized Trps are located on the luminal side of PSII complex clustered around the oxygen-evolving complex. So, while oxidized Trp14 may be involved in the early stages of D1 turnover certainly oxidized Trps on the lumen side are also more than likely playing a role in D1 turnover as well. To untangle this complex process will require additional research.

      Nevertheless, identifying and characterizing the role of oxidative modification of tryptophan (Trp) residues, in particular, Trp14, in the PSII core provides another critical step in an already intricate multi-step process of D1 protein turnover during photo-damage.

      We thank reviewer #3 for all the helpful comments and their supportive review of the manuscript.

      We thank the reviewer for raising this interesting study that ROS might disrupt the interaction between the PsbT and D1 in Thermosynechococcus vulcanus. The stroma-exposed DE-loop of D1 is one of the possible cleavage sites by Deg protease. Because the D1 cleavage by Deg facilitates the effective D1 degradation by FtsH under high-light conditions, it is interesting to elucidate Deg and FtsH cooperative D1 degradation further. We added this discussion in the manuscript. Other minor comments were also answered in a point-by-point response.

      Reviewer #1 (Recommendations For The Authors):

      Other minor points

      4) L227. How do you eliminate the possibility of reduced stability under high light?

      D1 synthesis under HL as pointed out by the reviewer was not tested in this study. Therefore, we can not rule out the possibility of a reduced D1 synthesis rate under HL in the mutant. However, the rate of D1 turnover(coordinated degradation and synthesis) is increased under HL. Since the pulse-labeling experiment is affected D1 degradation as well as D1 synthesis, even if there is a difference in the rate of D1 synthesis under HL, we can not clearly distinguish whether the cause of reduced labeling is the increased D1 degradation seen in the W14F mutant or the delay in D1 synthesis. We thank the reviewer for this valuable comment.

      5) Ls25-26. It would be quite rare that P680 directly absorbs light energy.

      We changed the sentence.

      6) L28. intrinsic antenna? Is this commonly used? core antenna?

      Corrected to “core antenna”

      7) Ls4143. Because the process is described as step iii), it is curious to mention it again as other critical steps.

      We removed the sentence.

      8) L75. Is it correct? Do you mean damage is caused by inhibition?

      We changed the sentence to “…the disorder of photosynthesis…”

      9) Figure 1c. +4, +16 and +32 should be explained in the legend.

      We added the explanation in the legend.

      10) Supplementary Figures S1 and S2. Title. Is it true that oxidation depends on singlet oxygen? This is a question. If it is not experimentally proved, modify the expression.

      In general, singlet oxygen (1O2) is believed to contribute in vivo oxidation of Trp. However, as suggested, these detected oxidative modifications were not exactly sure depends on singlet oxygen. Thus, we changed the title of Fig S1 and S2.

      11) Figure 3. Correct errors in + or - in the Figure.

      Corrected

      12) L328. Cyc > Cys.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      1) A few suggestions on typos and style:

      • Lines 2-3, please rephrase the sentence. The meaning is unclear.

      rephased the sentence to “Photosynthesis is one of the most …”

      • Lines 28-29, "Despite its orchestrated coordination...". Tautology.

      We changed the sentence.

      • Line 31, "...one, known as the PSII repair...". Please rewrite.

      We followed the reviewer suggestion and changed the sentence to “…synthesized one in the PSII repair.”

      • Line 49, "Their family proteins...". Rephrase.

      Rephrased the words.

      • Lines 64-66, please rewrite. I am not sure what the authors imply here. Are they talking about FtsH turnover or regulation of FtsH at the protein or gene level?

      FtsH itself is also degraded under high-light stress. To compensate for this, ftsH gene expression is upregulated and contributes to the proper FtsH level in thylakoid membranes. We rewrote the sentence as follows “increased turnover of FtsH is crucial for their function under high-light stress. That is compensated by upregulated FtsH gene expression”.

      • Line 68, "...to dislocate their substrates..."

      We changed the sentence to “to pull their substrates and push them into the protease chamber by ATPase activity”

      • Line 86, N-formylkymurenine => N-formylkynurenine

      Corrected

      • Lines 111-112, "Consistent with previous results...". Please specify which studies are being referred to and cite them if relevant.

      We added references.

      • Line 114, "...in extracts Arabidopsis..." => "...in extracts of Arabidopsis...".

      Corrected

      • Line 171, "influences in high-light sensitivity." Please rephrase.

      We rephrased the sentence.

      • Line 192, Fv/Fm. "v" and "m" should be subscripts.

      Corrected

      • Line 210, "...encounters...". Unclear meaning.

      We rephrased the sentence.

      • Line 358, hyphen usage. "fine-tuned". This sentence should be rewritten to make the role of phosphorylation clear. "Fine-tuning" is vague.

      We changed the sentence to “…spatiotemporal regulation of D1 degradation”

      • Fig. 6 legend, luminal => lumenal

      Changed to luminal

      2) The statistical notation used for some results is confusing. In Fig. 6b, "*" stands for p = {less than or equal to}0.1 while in fig. 4 it denotes p = {less than or equal to}0.05. If this is not a typo, this usage deviates from the standard one. How is a D2 change in Fig. 6b significant given its p value of {less than or equal to}0.1? The Fig. 6b key for D2 does not correspond with the histogram pattern.

      Thank you for your comments and suggestions. The asterisk in the Figure 6b is not a typo. We revised p value sign for less than 0.05 with a single asterisk to avoid confusion. While the case of p value in less than 0.1, we applied section sign “§” instead of the single asterisk sign to avoid confusion. Generally accepted p value to indicate statistically difference is less than 0.05. We found that D1 was p = 0.03322 and D2 was p = 0.07418. As we suspect these p value differences, the results for D2 protein detection were somewhat fluctuating while not in D1 protein detection as you commented. Still the reason of the fluctuating result of D2 signal intensity is not clear yet, we found the p value was between 0.05 and 0.10. We also rewrite the description in the corresponding result part.

      3) There are no error bars in Fig. 5d while the error bars in Fig. 5e show that there are no significant differences between Cβ distances of W14F and W14ox with WT contrary to the authors' assertion in the text (lines 254-255).

      The reason that there are no error bars in Fig. 5d. is because the fluctuation value in Fig. 5d was calculated from the entire trajectory (i.e., all snapshots) of the MD simulation. In contrast, the Cβ-Cβ distance value can be obtained at each individual snapshot of the simulation. Thus, Fig. 5e shows the averaged distances with the standard deviations (the error bars) over all these snapshots. To prevent any confusion for the reader, we have explicitly described “averaged Cβ-Cβ distance” and added an explanation of the error bars in the caption of Fig. 5e. It is important to note that our focus in the text (lines 254-255) was not on comparing the Cβ-Cβ distance of W14F with that of W14ox but the distance of W14F or W14ox with that of WT.

      4) Figure 3 legends and figure labels do not correspond. Fig. 3b should be labeled as High light - Chloramphenicol and likewise, fig 3c should read growth light + Chloramphenicol to be consistent with the legend.

      Corrected

      5) How are OPTM levels of D1 Trp residues normalized? Is it against unmodified peptides or total proteins?

      Oxidation levels of three oxidative variants of Trp in Trp14 and Trp317 containing peptides were obtained by label-free MS analysis. Fig.1 shows the intensity values of oxidized variants of Trp14 and Trp317. In this analysis, the levels of unoxidized peptides were not significantly changed between var2 and WT.

      6) Fig. 1a cartoon might need work. It looks like the oxygen atom in OIA is misplaced.

      Corrected

      Reviewer #3 (Recommendations For The Authors):

      In regard to Table 1, the sequence of the mass spectra fragment listed for Trp14 (i.e., ENSSL(W)AR ) in Table 1 is different from the sequence of the mass spectra fragment of Trp14 shown in Supplemental Figure S1 (i.e., ESESLWGR). Likewise, the sequence of the mass spectra fragment listed for Trp317 (i.e., VLNT(W)ADIINR ) in Table 1 is different from the sequence of the mass spectra fragment of Trp14 shown in Supplemental Figure S2 (i.e., VINTWADIINR). This discrepancy, I think can be simply explained.

      Table 1 shows the newly detected peptide of Trp oxidation in PSII core protein in Chlamydomonas. On the other hand, Figures S1 and S2 are the results of MS analysis used for the level of Trp oxidation analysis in Arabidopsis var2 mutant, as shown in Fig. 1C. To avoid confusion, we added in the supplemental figure title that it was detected in Arabidopsis.

      Labeling: In Figure 3, the figure legend states that b, high-light in the absence of CAM; but panel b, shows +CAM conditions. I think this labeling is incorrect and needs to be -CAM. Likewise, the figure legend states that c, growth-light in the presence of CAM. I think this labeling is incorrect and needs to be +CAM.

      Corrected

      This reviewer has a few comments/suggestions on the presentation of the sequence alignments showing the various positions of oxidized Trps within the D1(Figure 1), D2 and CP43 (Supplemental Figure S3) and CP47 (Supplemental Figure S3):

      The authors should consider highlighting in red all the various Trps shown in Table 1 with the corresponding alignments shown in Figure 1 for D1 protein and corresponding alignments in Supplemental Figure S3 (for D2 and CP43) and Supplemental Figure S3 continued (For CP47). Highlighting the locations of oxidized Trps across various species is very informative but as presented here the red labeling somewhat is haphazard, confusing and thus these figures lose some of their impact factor. For instance, in Supplementary Fig. S4, the reader can visualize the structural positions of oxidized Trp residues in the Thermosynecoccocus vulcanus PSII core proteins. When one then looks at the various alignments presented by the authors, one can see that other species have a similar arrangement of oxidized Trp residues as well. Consequently, when you now collectively look at the data presented in Table 1, Figure 1, Supplemental Figure S3 and Supplemental Figure S4, a picture emerges that illustrates how common the phenomenon of overall Trp oxidation is and more specifically how oxidized Trp14 across species is playing a similar role in possibly activating D1 turnover. I think these Figures, if presented in a more comprehensive and unified fashion, will really add to the paper.

      Thank you for your suggestion. In this study, we tried to show the identified oxidized Trp by the MS-MS analysis, the residue conservation in the sequences, and its position in the structure. Since we have to show a lot of information, combining them into one figure is difficult. We hope you understand the reason for this.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We are grateful for the helpful comments of both reviewers and have revised our manuscript with them in mind.

      One of the main issues raised was that readers may by default assume that our models are correct. We in fact made it very clear in our discussion that the models are merely hypotheses that will need testing by “wet” experiments and we do not therefore agree that even readers unfamiliar with AF would assume that the models must be correct. It was also suggested that readers could be reassured by including extensive confidence estimates such as PAE plots. As it happens, every single model described in the manuscript had reasonably high PAE scores and more crucially the entire collection of output files, including PAE data, are readily accessible on Figshare at https://doi.org/10.6084/m9.figshare.22567318.v2, a fact that the reviewers appear to have overlooked. The Figshare link is mentioned three times in the manuscript. Embedding these data within the manuscript itself would in our view add even more details and we have therefore not included them in our revised manuscript. Likewise, it is rather simple for any reader to work out which part of a PAE matrix corresponds to an interaction observed in the corresponding pdb prediction. Besides which, it is our view that the biological plausibility and explanatory power of models is just as important as AF metrics in judging whether they may be correct, as is indeed also the case for most experimental work.

      Another important point was that the manuscript was too long and not readable. Yes, it is long and it could well be argued that we could have written a different type of manuscript, focusing entirely on what is possibly the simplest and most important finding, namely that our AF models suggest that in animal cells Wapl appears to form a quarternary complex with SA, Pds5, and Scc1 in a manner suggesting that a key function of Wapl’s conserved CTD is to sequester Scc1’s Nterminal domain after it has dissociated from Smc3. For right or for wrong, we decided that this story could not be presented on its own but also required 1) an explanation for how Scc1 is induced to dissociate from Smc3 in the first place and 2) how to explain that the quarternary complex predicted for animal cells was not initially predicted for fungi such as yeast. The yeast situation was an exception that clearly needed explaining if the theory was to have any generality and it turned out that delving into the intricate details of the genetics of releasing activity in yeast was eventually required and yielded valuable new insights. We also believe that our work on the recruitment of Eco/Esco acetyl transferases to cohesin and the finding that sororin binds to the Smc3/Scc1 interface also provided important insight into how releasing activity is regulated. We acknowledge that the paper is indeed long but do not think that it is badly written. It is above all a long and complex story that in our view reveals numerous novel insights into how cohesin’s association with chromosomes is regulated and have endeavoured to eliminate any excessive speculation. We feel it is not our fault that cohesin uses complex mechanisms.

      Notwithstanding these considerations, we have in fact simplified a few sections and removed one or two others but acknowledge that we have not made substantial cuts.

      It was pointed out that a key feature of our modelling, namely the predicted association of Wapl’s C-terminal domain with SA/Scc3’s CES is inconsistent with published biochemical data. The AF predictions for this interface are universally robust in all eukaryotic lineages and crucially fully consistent with published and unimpeachable genetic data. We note that any model that explains all findings is bound to be wrong for the very simple reason that some of these findings will prove to be incorrect. There is therefore an art in Science of judging which data must be explained and accommodated and which should be ignored. In this particular case, we chose to ignore the biochemistry. Time will tell whether our judgement proves correct.

      Last but not least, it was suggested that we might provide some experimental support for our proposed SA/Scc3-Pds5-Scc1-WaplC quaternary complex. We are in fact working on this by introducing cysteine pairs (that can be crosslinked in cells) into the proposed interfaces but decided that such studies should be the topic of a subsequent publication. It would be impossible with the resources available to our labs to follow up all of the potential interactions and we therefore decided to exclude all such experiments.

      We are grateful for the detailed comments provided by both reviewers, many of which were very helpful, and in many but not all cases have amended the manuscript accordingly.

      With regard to the more specific comments:

      Reviewer #1 (Recommendations For The Authors):

      1) One concern is that observed interfaces/complexes arise because AF-multimer will aim to pack exposed, conserved and hydrophobic surfaces or regions that contain charge complementarity. The risk is that pairwise interaction screens can result in false positive & non-physiological interactions. It is therefore important to report the level of model confidence obtained for such AF calculations:

      A) The authors should color the key models according to pLDDT scores obtained as reported by AF. This would allow the reader to judge the estimated accuracy of the backbone and side chain rotamers obtained. At least for the key models and interactions it would be important to know if the pLDDT score is >90 (Correct backbone and most rotamers) or >70 (only backbone is correct).

      B) It would also be important to report the PAE plots to allow estimation of the expected position error for most of the important interactions. pLDDT coloring and PEA plots can be shown side-by-side as shown in other published data (e.g. https://pubmed.ncbi.nlm.nih.gov/35679397/ (Supplementary data)

      C) The authors should include a Table showing the confidence of template modeling scores for the predicted protein interfaces as ipTM, ipTM+pTM as reported by AlphaFold-multimer. Ideally, they would also include DockQ scores but this may not be essential. Addition of such scores would help classification into Incorrect, Acceptable or of high quality. For example, line 1073 et seq the authors show a model of a SCC1SA and ESCO1 complex (Fig. 37). Are the modeling scores for these interfaces high? It does not help that the authors show cartoons without side chains? Can the authors provide a close-up view of the two interfaces? Are the amino acids are indeed packed in a manner expected for a protein interface? Can we exclude the possibility that the prediction is obtained merely because the sequence segments (e.g. in ESCO1 & ESCO2) are hydrophobic and conserved?

      We do not agree that including this level of detail to the text/figures of the manuscript would be suitable. All the relevant data for those who may be sceptical about the models are readily available at https://doi.org/10.6084/m9.figshare.22567318.v2. In our view, the cartoon versions of the models are easier for a reader to navigate. Anyone interested in the molecular details can look at the models directly.

      Importantly, no amount of statistical analysis can completely validate these models. What is required are further experiments, which will be the topic of further work from our and I dare from other laboratories.

      D) When they predict an interaction between the SA2:SCC1 complex and Sororin's FGF motif, they find that only 1/5 models show an interaction and that the interaction is dissimilar to that seen of CTCF. Again, it would be helpful to know about modeling scores. Can they show a close-up view of the SORORIN FGF binding interface to see if a realistic binding mode is obtained? Can they indicate the relevant region on the PAE plot?

      Given that AF greatly favours other interactions of Sororin’s FGF motif over its interaction with SA2-Scc1, we do not agree that dwelling on the latter would serve any purpose.

      2) Line 996: AF predicts with high confidence an interaction between Eco1 & SMC3hd. What are the ipTM (& DockQ if available) scores. Would the interface score High, Medium or Acceptable?

      As mentioned, see https://doi.org/10.6084/m9.figshare.22567318.v2.

      3) Line 1034 et seq: Eco1/ESCO1/ESCO2 interaction with PDS5. Interface scores need to be shown to determine that the models shown are indeed likely to occur. If these interactions have low model confidence, Fig. 36 and discussion around potential relevance to PDS5-Eco1 orientation relative to the SMC3 head remains highly speculative and could be expunged.

      See https://doi.org/10.6084/m9.figshare.22567318.v2. It should be clear that the predictions are very similar in fungi and animals. Crucially, we know that Pds5 is essential for acetylation in vivo, so the models appear plausible from a biological point of view.

      4) Considering the relatively large interface between ECO1 and SMC3, would the author consider the possibility that in addition to acetylating SMC3's ATPase domain, ECO1 remains bound to cohesin-DNA complex, as proposed for ESCO1 by Rahman et al (10.1073/pnas.1505323112)?

      This is certainly possible but we would not want to indulge in such speculation.

      5) E.g. Line 875 but also throughout the text: As there is no labeling of the N- and C-termini in the Figures, is frequently unclear what the authors are referring to when they mention that AF models orient chains in a certain manner.

      Good point. This has been amended. However, the positions of N- and C- is all available at https://doi.org/10.6084/m9.figshare.22567318.v2.

      6) Fig19B: PAE plots: authors should indicate which chains correspond to A, B, C. Which segment corresponds to the TYxxxR[T/S]L motif? Can they highlight this section on the PAE plot?

      Good point and amended in the revised manuscript.

      Minor comments:

      1) Line 440: the WAPL YSR motif is not shown in Fig. 14A

      2) Line 691: Scc3 spelling error.

      3) Line 931: Sentence ending '... SCC3 (SCC3N).' requires citation.

      4) Line 1008: Figure reference seems wrong. It should read: Fig. 34A left and right. Fig. 34B does not contain SCC1.

      Many thanks for spotting these. Hopefully, all corrected.

      5) Fig. 41 can be removed as it shows the absence of the interaction of Sororin with SMC1:SCC1. Sufficient to mention in the text that Sororin does not appear to interact with SMC1:SCC1.

      This is possible but we decided to leave this as is.

      Reviewer #2 (Recommendations For The Authors):

      Minor points

      (1) Are there any predicted models in which one of the two dimer interfaces of the hinge is open when the coiled coils are folded back, as seen in the cryo-EM structure of human cohesin-NIPBL complex in the clamped state?

      No AF runs ever predicted half opened hinges. It is possible that the introduction of mutations in one of the two interfaces might reveal a half-opened state and we ought to try this. However, it would not be appropriate for this manuscript, we believe.

      (2) Structures of the SA-Scc1 CES bound to [Y/F]xF motifs from Sgo1 and CTCF have been reported, suggesting that a similar motif could interact with SA/Scc3. Surprisingly, AF did not predict an interaction between Scc3/SA and Wapl FGF motifs, which only bind to the Pds5 WEST region. On the other hand, AF predicted interactions of the Sororin FGF motif with both Pds5 WEST and SA CES. Can the authors comment on this Wapl FGF binding specificity? What will happen if a Wapl fragment lacking the CTD is used in the prediction?

      This seems to be an academic point as the CTD is always present.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The study as a concept is well designed, although there are two issues I see in the methodology (these may be just needing further explanation or if I am correct in my interpretation of what was done, may need reanalysis to take into account). Both issues relate to the data that was extracted from the published literature on zoonotic malaria prevalence in the study area.

      1) No limit was set on the temporal range

      With no temporal limit on the range of studies, the landscape in many cases will have changes between the study being conducted and the spatial data. This will be particularly marked in areas where there has been clearing since the zoonotic malaria prevalence study. Also, population changes (either through population growth, decline or movement) will have occurred. All research is limited in what it can do with the available data, so I realise that there may not be much the authors can do to correct this. One possible solution would be to look at the land use change at each site between the prevalence study and the remote sensing data. I'm not sure if this is feasible, but if it is I would recommend the authors attempt this as it will make their results stronger.

      Thank you for the comments. We agree that matching the date of remote sensing data to samples is particularly important for environmental variables that change rapidly (such as forest loss). To clarify, no limit was set on the date range of the studies identified from the literature to ensure no articles were excluded due to arbitrary date restrictions. We have edited the manuscript to clarify this (line 422). Regarding landscape and environmental features, remote sensing data was extracted annually for every year for the full date range of the data (see Table 1 and S11, annual temporal resolution from 2006 to 2020). Forest was then matched contemporaneously (see lines 467–473) meaning that, insofar as it was possible, forest data was extracted for the same year as the data was collected. Where a date range was given for the primate data, the mean year was used. For human population density, covariate data were extracted for multiple years but were found to be relatively stable over the time period for the sites covered, so median year was used (see Supplementary Information, Appendix E and Table S11). Elevation is stable and typically only one time point is used as reference (in this instance the SRTM 90m Digital Elevation model, 2003).

      2) Most studies only gave a geographic area or descriptive location.

      The spatial analysis was based on a 5km and 20km radius of the 'study site' location, but for many of the studies the exact site is not known. Therefore the 'study site' was artificially generated using a polygon centroid. Considering that the polygon could be an administrative boundary (i.e., district/state/country), this is an extremely large area for which a 5km radius circle in the middle of the polygon is being taken as representative of the 'study site'. This doesn't make sense as it assumes that the landscape is uniform across the district, which in most cases it will not be (in rural areas it is going to be a mixture of villages, forest, plantation, crops etc which will vary across the landscape). This might just be a case of misunderstanding what was done (in which case the text needs rewording to make it clearer) or if I have interpreted it correctly the selection of the centroid to represent the study area does not make sense. I am not sure how to overcome this as it probably not possible to get exact locations for the study sites. One possibility could be to make the remote sensing data the same scale as the prevalence data ie if the study site is only identifiable at the polygon level, then the remote sensing data (fragmentation, cover and population) is used at the polygon level.

      Both these issues could have an impact on the study's findings. I would think that in both cases it might make the relationship between the environmental variables and prevalence even clearer.

      We would like to thank the reviewer for their concerns and provide some clarification on the methods used to extract environmental variables:

      • Centroid was initially explored, but not pursued for the same concerns raised by the reviewer. Taking the centroid would be arbitrary and the central point of a large polygon is not likely to be representative of habitat across the entire sampling area and introduces error so this was not pursued(Cheng et al., 2021). We have clarified the wording in the manuscript with reference to centroids to avoid confusion on this point (line 491).

      • We demonstrate a method to account for the lack of precise geolocation by taking 10 ‘pseudo-sampling’ points instead of a single random location, with environmental variables extracted at 5, 10 and 20km for each site (lines 487-500). By including 10 environmental realisations, surveys conducted in smaller or more uniform landscapes will have more consistent covariates and this will lend more weight to the model. Conversely, samples taken from large administrative polygons are likely to be highly variable, and these associations will have less representation in the final model. This approach was used to demonstrate an alternative to using a single arbitrary site to represent the area.

      To further support the validity of this technique:

      • Figures illustrating the variance of the environmental variables across the 10 sampling sites at 5, 10 and 15km for GADM administrative classifications at country level (GID0), state (GID1), district (GID2) and exact coordinates (GPS) are now included in the SI (Figure S12).

      • Sensitivity analyses were conducted, in which final GLMM models were fit again but using only acceptable levels of variance in environmental variables and/or acceptable size of administrative boundary (Table S15 and S16). In sensitivity analyses, forest cover and fragmentation retained a significant effect on prevalence of P. knowlesi in macaques, suggesting this effect is robust to spatial uncertainty.

      We would also like to highlight that the main finding of this research is the novel synthesis of regional prevalence of P. knowlesi in simian reservoirs across Southeast Asia, which was formerly assumed to be ubiquitous high prevalence, and which can now be used to inform regionally specific transmission modelling, better estimate spatial risk and parameterise early warning systems for P. knowlesi malaria in countries approaching elimination of human malarias. The risk factor analysis here is provided to begin to understand what may be driving this geographic heterogeneity in P. knowlesi prevalence at finer scales and demonstrate methods that could be used to accommodate spatial uncertainty in secondary data. We appreciate that this may not have been clear and have edited the manuscript accordingly.

      Reviewer #2 (Public Review):

      This is the first comprehensive study aimed at assessing the impact of landscape modification on the prevalence of P. knowlesi malaria in non-human primates in Southeast Asia. This is a very important and timely topic both in terms of developing a better understanding of zoonotic disease spillover and the impact of human modification of landscape on disease prevalence.

      This study uses the meta-analysis approach to incorporate the existing data sources into a new and completely independent study that answers novel research questions linked to geospatial data analysis. The challenge, however, is that neither the sampling design of previous studies nor their geospatial accuracy are intended for spatially-explicit assessments of landscape impact. On the one hand, the data collection scheme in existing studies was intentionally opportunistic and does not represent a full range of landscape conditions that would allow for inferring the linkages between landscape parameters and P. knowlesi prevalence in NHP across the region as a whole. On the other hand, the absolute majority of existing studies did not have locational precision in reporting results and thus sweeping assumptions about the landscape representation had to be made for the modeling experiment. Finally, the landscape characterization was oversimplified in this study, making it difficult to extract meaningful relationships between the NHP/human intersection on the landscape and the consequences for P. knowlesi malaria transmission and prevalence.

      Thank you for the feedback on the manuscript. We agree that the data was not originally intended for spatial assessment of landscape impact nor represents a full range of landscape conditions across the region. However, we would like to highlight the first set of results from the meta-analysis. Here, the synthesis of all available data allows for the detection of regional disparities and geographic heterogeneity of prevalence in host species, which individual small-scale opportunistic studies are not powered to do, and which had not been identified before this investigation.

      In this context, the risk factor analysis is an exploratory analysis to understand what may be driving the observed geographic variation at broad scales as well as provide a framework for dealing with spatial uncertainty. Landscape data was extracted at a level deemed appropriate given the limitations of the data. The majority were geolocated to district level and sensitivity analysis showed a reasonable consistency of landscape features at our chosen scales (Table S8, Figure S12A). To address some of these concerns, we conducted further analysis to explore the deviation of environmental covariates in each sampling area and ran sensitivity analysis by removing extremely variable datapoints (Table S15 and Table S16). When removing highly uncertain data and/or countrylevel data, effects of canopy cover on non-human primate malaria prevalence is retained, supporting the original findings.

      Despite many study limitations, the authors point to the critical importance of understanding vector dynamics in fragmented forested landscapes as the likely primary driver in enhanced malaria transmission. This is an important conclusion particularly when taken together with the emerging evidence of substantially different mosquito biting behaviors than previously reported across various geographic regions.

      Another important component of this study is its recognition and focus on the value of geospatial analysis and the availability of geospatial data for understanding complex human/environment interactions to enable monitoring and forecasting potential for zoonotic disease spillover into human populations. More multi-disciplinary focus on disease modeling is of crucial importance for current and future goals of eliminating existing and preventing novel disease outbreaks.

      Reviewer #1 (Recommendations For The Authors):

      A couple of minor points

      1) Was the human density and forest cover correlated? If so was this taken into account

      Human density and forest cover at selected scales were not found to be strongly correlated (Spearman’s rank values -0.38 and -0.45 within 5km and 20km buffer radii for human population density respectively).

      In selecting variables for inclusion in the final model, we examined variance inflation factors (VIF) to detect and minimise multicollinearity in the model. VIF measures the correlation and strength of correlation between independent predictors. VIF of each predictor variable was examined starting with a saturated model and sequentially excluding the variable with the highest VIF score from the model. Stepwise selection continued until the entire subset of explanatory variables in the global model satisfied a conservative threshold of VIF ≤6 (Rogerson, 2001), which ensures that the remaining variables included in the final model have minimal correlation. Spearman’s correlation matrices for all variables at all scales and final selected variables (below VIF threshold) are included in the Supplementary Information (Figure S13 and Figure S14).

      2) Reference (Speldewinde et al., 2019) is down as Davidson et al. in the reference list

      Thank you for the thoroughness in this review. There are two similar but separate references, both published in 2019 with the same co-authors, and the (Speldewinde et al, 2019) was incorrectly referenced. They should be (Davidson et al., 2019a) and Davidson et al., 2019b) respectively. This has now been corrected in the manuscript.

      Davidson, G., Chua, T.H., Cook, A. et al. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar J 18, 66 (2019). https://doi.org/10.1186/s12936-019-2693-2

      Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. Ecohealth. 2019;16(4):594-610. https://doi:10.1007/s10393-019-01395-6

      Reviewer #2 (Recommendations For The Authors):

      Line 143: "We hypothesise that higher prevalence of P. knowlesi in primate host species is driven by landscape change..." without specifying here the kind of landscape change (e.g. "forest degradation and fragmentation") it is virtually impossible to confirm or reject this hypothesis.

      We agree that the wording of the hypotheses needed to be more specific. We have edited lines 142 – 145 to specify forest fragmentation as our landscape variable of interest, and to more explicitly include the regional meta-analysis of P. knowlesi prevalence.

      Table 1 vs Table S11 discrepancy regarding spatial resolution of Forest cover and fragmentation variables. The original dataset resolution is 30m but I don't think one can compute a PARA index at 30 m since it really requires a polygon that is larger than the single value pixel. Table S11 indicates a 30 km gridcell with some postprocessing of the original datasets.

      We appreciate this being identified. The resolution refers to the input layer (tree canopy cover, 30m). PARA was calculated from the binary forest cover layer (30m resolution) within each buffer radii 5, 10 and 20km. We have edited both Table 1 and Table S11 to help clarify this.

      It would be very helpful if you provided justification for selecting specific metrics to represent the key landscape variables. How are these particular landscape variables relevant? Why not other land cover/land use components?

      We have now included a paragraph in the Supplementary Information (Appendix D) to explain the choice of environmental covariates. Elevation was chosen as an important proxy for vector distribution (but was not retained in model selection). Human population density was chosen as a measure of proximity to human settlement, rather than relying on qualitative assessment of rural/peri-urban/urban. Tree canopy cover and fragmentation indices are key determinants of primate habitat selection and of vector breeding habitat, and justification for the use of perimeter: area ratio is included in the methods section (section beginning line 462).

      I think the other issues present substantial weaknesses that you cannot address without redoing the study. I will list those below just for reference.

      1) If the forest is so dominant (which I would agree with based on my understanding of macaque ecology), how does it make sense to select completely random points (especially at the country or even state level) to represent landscape covariates? At a minimum, I would suggest getting random points within the forest or better yet forest edge habitat. But even then, I doubt that these points would be at all representative of the conditions of a specific study. The geospatial uncertainty is just too large. The dataset simply doesn't support the analysis that is attempted here.

      On the point of selecting from only within forest: forest is a dominant habitat, but Long-tailed macaques are anthropophilic and not exclusively found in forest (Stark et al., 2019), and a proportion of the more opportunistic and nuisance samples caught were found in areas more associated with human activity (Li et al., 2021). As such, random points only within forested areas is also unlikely to capture the true habitat of the primates sampled and selecting only from forested areas would bias the results.

      Whilst fully georeferenced samples would be the ideal scenario, the idea behind selecting random points from the sampling polygon is that for smaller areas (with higher spatial certainty), habitat would be more consistent between random points and lend more weight to the final model, whereas large polygons with high uncertainty are likely to vary and lend less weight to the final model. In response to these comments, we have further supported this by running regression models only on samples within a reasonable administrative boundary size and on samples within reasonable threshold of uncertainty (i.e., data points are removed if the deviation of environmental covariates across the 10 random points is so high that the sample is uninformative, or if datapoints can only be geolocated to country-level). In these sensitivity analyses, forest cover and species are retained as factors associated with higher malarial prevalence in non-human primates (Table S15S16).

      2) Hansen et al. dataset reflects "tree cover" - which is not the same as "forest cover" since it would also include plantations that are very widely distributed across Southeast Asia. If the animal use of plantations differs from that of natural forests, it will present a large issue for the study.

      In this analysis the feature of interest was habitat configuration (fragmentation) and deforestation (forest loss) rather than specific land class. We have defined forest as >50% canopy cover, which considers canopy density given historical forest loss and has precedence in other work (Fornace et al.,, 2016). In addition to importance to macaque ecology, forest (canopy) cover, forest loss and forest edge are noted to be key determinants of vector breeding and vector habitat (Byrne et al., 2021, Chua et al., 2019). For this reason, these are important variables to include in analyses. More specific landscape variables were explored, but the temporal and spatial range of the data precluded fine-scale land classification data. To investigate preliminary links to landscape configuration and habitat fragmentation at broad scales this is felt to be sufficient. We have also amended the manuscript to be more discerning with the use of ‘forest’ to avoid confusion throughout.

      3) Tree regrowth in the ecosystems of monsoonal Asia is very rapid. Based on the study description, tree regrowth was not accounted for in the study which could potentially lead to a very large underestimation of tree cover if only tree loss since 2000 was monitored. Again unless there is a reason to assume that macaques do not use young successional forests or use it at a highly reduced rate. Both of these points are acknowledged as limitations at the end of the discussion section but in my opinion they have a very strong impact on the study, making the results non-significant.

      This is an interesting suggestion. Macaques do forage in plantations and cultivated landscapes to supplement food, but preferentially roost and range in forest edges and interior forest, though ranging behaviour will be complex and vary across Southeast Asia. In this study the primary interest was in deforestation (forest loss) and fragmentation of old growth forested landscapes, which are key variables both for macaque ecology and for vector breeding sites. Therefore, it was felt that forest loss (transition from >50% canopy cover to <50% canopy cover since 2000) was sufficient to capture this. Ranging behaviour of individual animals and macaque troops would not be captured at this scale, and higher spatial and temporal resolution would be required to characterise relationships with tree regrowth and young plantations which is outside the scope of this study. In all regions, purposeful fine scale follow-up studies would be required to unpick fine scale relationships across a habitat gradient.

      I am not 100% sure I understand the geospatial design fully. The pieces are distributed between different subsections and it was challenging to string together the processing chain between subsections of the manuscript and the supplemental information. I would help to add a figure (a flowchart, perhaps?) to the supplemental section that walks through the entire geospatial covariates assembly. E.g.

      • GPS location create 5, 10, and 20 km buffers mean elevation, mean population, %(?) Forest, PARA(?) for each buffer - I still don't understand the 30m or 30 km spatial resolution reference for forest and PARA in this context.

      This was an error in the table in the Supplementary Information and has been corrected – the forest cover raster has a resolution of 30m, and the perimeter: area ratio is calculated within 5, 10 and 20km buffers.

      • landscape covariates receive the full weight (1) in the model. - This is defensible even though not ideal

      This is equivalent, but we felt more intuitive, to sampling GPS points x10 and inputting with equal weights to the areal data.

      • No GPS location assign to the best identifiable administrative unit (country, state, or district) generate 10 random points within the administrative unit create 5, 10, and 20 km buffers mean elevation, mean population, %(?) Forest, PARA(?) for each buffer landscape covariates from each point receive the proportional weight (0.1) in the model. I do not believe that this approach is representative of macaque habitat/macaque human interaction characterization.

      In other examples dealing with spatial uncertainty, the centroid is taken to be representative of an area. This method generates considerable bias and uncertainty – particularly if the uncertainty is not then accounted for by weighting subsequent models (Cheng, 2021). In this exploratory analysis, pseudo-sampling from 10 random sites generates a more realistic generalised environmental realisation than taking a centroid/random point. This was used as an exploratory analysis to explain broad regional trends in prevalence between, which can be used to guide further investigation on fine scale studies which are required to completely describe disease dynamics in specific macaque habitats.

      Thank you for this useful suggestion – we have taken this advise and added a flowchart of data processing to the Supplementary Information (Appendix D, Figure S8).

      Discussion:

      Based on information in Table S4, sampled NHPs were predominantly from human-dominated (peridomestic, agricultural, and urban) landscapes. In forested landscapes, only macaques that live in forest edge habitats were likely sampled in the first place just simply due to extreme challenges in getting to macaques in remote inaccessible areas. There is a very substantial spatial bias in sampling will undoubtedly reflect that fragmented habitat is a key landscape component impacting the prevalence of Pk in NHP, especially as the authors point out in the later part of the discussion, the critical vectors for transmission are also associated with forest edge habitats. High forest fragmentation is also linked to the presence/ increase in migrant human workers (logging or plantation activities) - a population also strongly associated with higher malaria prevalence for a variety of P spp (although I am not aware of studies that are specific to Pk malaria). However, the living conditions for migrant workers have frequently been implicated in higher rates of malaria transmission and thus those could, hypothetically, also contribute to Pk infection rates in NHP. Ultimately, the discussion appears to suggest that the biggest gap in our understanding is within vector ecology and understanding the NHP-vector-human dynamics within local landscape settings. It is an interesting finding. However, my overall conclusion would be that the sampling strategy (both for NHP and geospatial covariates) renders this study as "exploratory" at maximum and that all findings would need to be tested and verified through independent and more rigorously designed studies.

      Thank you to the reviewer for a comprehensive assessment. We would first like to highlight the regional meta-analysis, which was one of the main findings. This is a novel result for P. knowlesi literature; being the first demonstration of regional differences in prevalence that correlate to regional hotspots of human incidence, the force of infection from NHP may drive hotspots of P. knowlesi in human populations.

      We include a risk factor analysis that suggests a method for dealing with high spatial uncertainty, and an exploratory analysis that finds landscape complexity may be a contributory factor to broad regional heterogeneity. These associations are robust to sensitivity analysis where data with extreme variability in environmental variables is removed (Table S15-S16).

      Habitat descriptions in original studies are qualitative, likely subjective, and whilst there is likely to be an important sampling bias there was also evident differences in prevalence between the NHP sampled in different environments from the available data that we have further characterised. Risk factors for human P. knowlesi do include forest loss (reduction in canopy cover) within 5 years and within 2km, as well as contact with macaques and occupations in plantations (Fornace et al., 2014; Fornace et al., 2016). Reverse spillover from humans to NHP is an interesting suggestion, but outside the scope and scale of the study. Given known links of deforestation (forest loss) with human incidence of P. knowlesi and also with increased vector breeding sites (Byrne et al., 2021), this analysis explores whether deforestation is linked to prevalence in reservoir species thus contributing to the force of infection at broad scales.

    1. Author Response:

      We are sorry that both eLife and the Reviewers feel that our submitted studies are currently insufficient to support our hypothesis that loss of H2-O function affects thymic Treg selection. As this is the first study directly evaluating loss of H2-O in the thymus we do not feel that we overstated our finding as suggested by Reviewer 1. We hope that a revised version of the manuscript can satisfy the reviewers’ criticisms.

      -Reviewer 1 is asking us to address the presumed discrepancies between our previous work (Welsh et al 2020, https://doi.org/10.1371/journal.pbio.3000590) and data from Lee et al. 2021 (https://doi.org/10.4049/jimmunol.2100650) in this current manuscript, which does not report on the development of EAE in DO-KO and DO-WT mice. All experiments here are on naïve mice. As such, we wish to justify our lack of discussion of Lee et al (2021) findings.

      Lee et al (2021) reported the effects of DO on both EAE and SLE development, they used mainly H2-Oβ KO mice. As we have never used these CRISPR generated mice, we cannot have a direct in-house comparison. However, we did note that reported disease curve for female H2-Oβ KO mice had a similar trend indicating increased EAE disease development, similar to what we have reported back in our 2020 paper (Welsh et al PLoS Biology). In the single experiment that utilized H2-Oβ KO mice for EAE development, Lee et al found a different disease trend than ours. However, Lee et al (2021)’s tested only 4-5 mice per group in the single experiment and their measurement of the disease development solely relied on visual assessment of the limbs and tail functionality. Our study verified EAE disease development by multiple approached including analyses of MOG-specific tetramer staining of the CNS CD4 lymphocyte infiltrate, and in vivo NIRF whole-body imaging on diseased DO-WT and DO-KO mice using an antibody probe specific to MBP. We had repeated our experiments on the disease development greater than 15 times using 5-8 mice per group. Below is an excerpt from our Results Section of Welsh et al PLoS Biology, clearly explaining how many experiments were performed and the number of mice per group per experiment:

      “From these studies, we found that DO-KO mice had an accelerated onset of disease compared to DO-WT mice (Fig 7A). Disease symptoms (Score 1) appeared around Day 8–10 and quickly progressed to advanced disease (Score 3–4) by Day 14–16 in DO-KO. In contrast, DO-WT mice started showing symptoms around Day 12 and progressed to advanced disease scores by Day 20. Total cell infiltration into the CNS tissue was slightly higher in DO-KO mice, but no change in total brain weight was observed (S5 Fig). To further correlate the state of disease with CD4 infiltration, we performed in vivo NIRF whole-body imaging on diseased DO-WT and DO-KO mice using an antibody (Ab) probe specific to myelin basic protein (MBP). The Ab reacts with MBP only when the myelinated glia cells are damaged during disease development [56]. Thus, by detecting demyelination, whole-body imaging allowed us to fully visualize the co-localization of CD4 T cells at the sites of demyelination occurring in diseased mice. Interestingly, when mice of various disease scores were imaged, we found increased co-localization of infiltrating CD4 T cells with anti-MBP staining in DO-KO mice, but not in DO-WT mice (Fig 7B). These data not only confirmed the flow cytometric findings that diseased DO-KO mice have a greater influx of lymphocytes into their CNS tissue (S5 Fig), it also verified the massive demyelination that occurs during the disease”

      And again in the Legend to Figure 7;

      “Representative curves showing the time course of disease development in DO-KO (red) and DO-WT mice (white). N = 5 mice per group, representative of >15 repeat experiments. Score system: 0 = no symptoms, 1 = limp tail, 2 = limp tail + partial hind limb paralysis, 3 = limp tail + total hind limb paralysis, 4 = limp tail + total hind limb paralysis + partial forelimb paralysis. Data represented as mean ± SEM.”

      Despite clarity of the description of our experiments, Lee et al have publicly slandered us and grossly misrepresented our work by stating the following:

      “A recent study (11-Welsh et al) found that B6.Oa−/− mice were more susceptible to EAE than control B6J animals. However, that conclusion was based on a single experiment, in which control B6J mice developed very mild EAE disease with an average score of 1, which is far lower than the disease scores published by other groups (30–32) and also observed in our study. Thus, in this inducible model of autoimmunity, H2-O deficiency does not contribute to either disease development or severity.”

      -Another important variable between our studies and Lee et al (Lee et al 2021) was the use of a commercially available disease induction kit versus our immunization solutions that followed the established protocols by Nancy Ruddle et al (J Exp Med. 1997 Oct 20; 186(8): 1233–1240. doi: 10.1084/jem.186.8.1233). Notoriously, EAE disease development could vary widely based upon the quantities and purity of, a) MOG peptide, b) amount of tuberculosis antigen in the CFA, c) quantity of pertussis toxin and injection strategies, as well as many other uncontrollable factors. While a comparison these two results are irrelevant to our current study, we will be more than happy to compare our results from the previously published work with Lee et al. in the discussion.

      -We want to emphasize that we did follow Hogquists et al’s gating strategy for detecting auditing vs deleted thymocytes by subdividing total thymocytes into “Non-signaled” (TCR-β-, CD5-/inter) and “Signaled” (TCR-β+ CD5+/hi) populations before further gating on only medulla localized CD4 T cells. The “CCR7+ CD4+” label in Figure 1 was meant to orient the reader without overwhelming the figure with numerous flow plots. To address this concern, we will be including (1) updated Supplemental figures showing the complete gating strategy, (2) updated figure legends and text to emphasize the fact that auditing/deletion gating came from CD4 T cells which passed positive selection (i.e. TCR-β+ CD5+/hi), and (3) including representative flow plots for all Figure 1 panels to the revise manuscript.

      -Also, regarding “discrepancies between our data and Liljedahl et al 1998”;

      H2-O KO mice used by Liljedahl et al were on a 129/Ola genomic background. The H2-O KO mice used for both of our papers have been completely backcrossed to C57BL/6J. Clearly, non-MHC genes contribute to the impacts of MHC proteins, yet how the 129/Ola genomic background could affect the H2-O genes remains to be discovered. And (B), no data was shown supporting their published statement below:

      “The proportions of B cells as well as of CD4+ and CD8+ T cells in the lymph node, spleen, and thymus were similar in H2-Oa–deficient and wild-type mice (data not shown)”. (Liljedahl et al 1998).

      Reviewer 2:

      scRNA-Seq analysis was performed by the Computational Biology Computing Core at Johns Hopkins School of Medicine. We missed including this acknowledgement as our core facility does not request authorship or acknowledgements. The sentence has been edited for the correct terminology.

      -About truncated bar graph, in the entire paper we have only two bar graphs, neither of which is truncated. So, we are puzzled by the reviewer’s comment as to what figure he/she is referring to. -We would like to remind the Reviewer 2 that since DO works together with DM and functions differently on peptide of different sequences, the reported data on cumulative effects of DO in vivo have notoriously been rather minor. Especially, since our current study focuses on the naïve mice, major changes were not expected.

      -Regarding leaving out gating strategies, we missed out on providing the gating strategies for all the figure in the original version. However, full FACS gating strategies have now been provided in the new supplemental figures and representative FACS plots have been added to ALL main figures.

    1. Author Response

      We would like to express our gratitude to the reviewers for their insightful comments and suggestions on our manuscript. We appreciate the time and effort they have devoted to evaluating our work. In response to their valuable feedback, we will undertake a comprehensive revision of our manuscript to address their concerns and enhance the clarity of our findings.

      Reviewer #1 has raised the important point of the need for a more thorough exploration of how ELF3 promotes cell tolerance to DNA damage.

      Just as mentioned by the reviewer, we totally agreed that genomic instability is key to cell transformation. In the original manuscript, we proposed that ELF3 might be an important factor for cells to tolerate the lethal genomic instability caused by BRCA1 deficiency, keeping an “appropriate” level of genomic instability, thus fueling cell transformation. And we acknowledge the limitation that the mechanism of how ELF3 promotes cell to tolerate DNA damage remains further exploration. To address this, ELF3 overexpression and knockdown experiments in more BRCA1 wildtype or deficient breast cell lines are planned. In addition, since ELF3 is an inherent transcription factor, we suspect the function of ELF3 to promote cell tolerance to DNA damage is mediated by transcription, and more downstream genes of ELF3 will be explored as well.

      Regarding the concerns raised by Reviewer #2, we acknowledge that our manuscript may have contained gaps and limitations of the datasets used.

      We appreciate the reviewer's feedback regarding the limitations of our cell models and their representativeness of LP cells. While we have utilized MCF10A cells for the knockdown experiments, we understand that these may not be a perfect representation of LP cells. To address this concern, we will incorporate a discussion on the limitations of our cell models and their relevance to LP cells, along with potential plans in LP cells that may be included in future studies.

      We will also clarify the rationale for focusing on ELF3 and discuss the other genes identified in our analysis for completeness. Regarding to ELF3 functions in cells other than LP, in our analysis, ELF3 is highly expressed in LPs compared to other cell populations in mammary gland, making ELF3 a previously undefined LP gene. Thus, we suspect that ELF3 functions may be more significant in LP cells. We are also interested in ELF3 functions in cells other than LP cells and will further explore

      We agree that different pathogenic variants of BRCA1 may cause diverse impacts on its function and tumorigenesis. We will add detailed information and discussion about BRCA1 pathogenic variants of patients in our single-cell RNA-seq. Also, to enhance the overall clarity of our manuscript, we will revise the figure legends to include critical details that were previously omitted. This will ensure that readers can better evaluate the presented data.

    1. Author Response

      We appreciate the feedback from all the reviewers. We will incorporate their comments into the revised manuscript.

      In response to reviewer three's suggestion regarding complementary approaches for identifying rootlet components, we'd like to provide further insight into the strategies we explored.

      We performed mass spectrometry on our purified rootlets. This identified the rootlet components rootletin and CCDC102B and various axonemal components, due to the association between the rootlet and axoneme. However, due to the limitations in quantifying components using mass spectrometry, we were unable to confidently identify novel rootlet constituents present in quantities comparable to rootletin.

      We further attempted cross-linking mass spectrometry on the rootlets to gain deeper insights to the interactions between rootletin molecules. Unfortunately, this effort resulted in a completely insoluble sample despite extended digestion times, leading to issues with mass spectrometry column clogging and rendering our results inconclusive.

      We attempted to express rootlet components recombinantly and were able to purify fibres, but they did not contain the characteristic repeat pattern seen in native rootlets. We also considered purifying native rootlets from cultured cells, but realized the yield would be too low for cryo-ET studies.

      We therefore regret that other approaches to validate our model are outside the scope of this current work.

    1. Author Response

      1) The analysis of Shh deletion in mossy cells and influences of aging related NSC pool decline is not well connected with the rest of the study on the expression/requirement of Shh in mossy cells to regulate seizure-induced neurogenesis. To promote cohesion, the authors should examine/discuss what happens to mossy cells during aging - it is similar or different to what happens to mossy cell neuronal activity during seizures?

      We believe that both are similar mechanisms. Seizure induced neurogenesis increases NSC proliferation, which increases demand of Shh to increase self-renewal. Similarly, we assume that increased NSC decline in Shh cKO mice is due to the increased demand of Shh for self-renewal of NSC with aging. It has been shown that NSCs in young mice generally don’t self-renew and instead are consumed after one or two rounds of cell division. On the other hand, NSCs in old mice are known to undergo more rounds of cell division compared with younger mice. This suggests that NSCs may be more dependent on signals driving self-renewal in aged-mice. Our suggestion is that Shh from mossy cells contributes to minimising the NSC pool decline with aging, and therefore loss of Shh from mossy cells results in increased decline of the NSC pool in aged-Shh cKO mice. This aligns with our hypothesis that Shh from mossy cells contributes to maintenance of the NSC pool.

      What is the exact mechanism regulating the shift of proliferation capacity of NSC with aging remains unclear and would be an interesting topic for future studies. In addition, whether mossy cell neuronal activity is decreased with age or Shh release/expression is compromised in aged animals remains to be elucidated. Considering these factors together, the brain region(s) and other factors that regulate neuronal activity of mossy cell thereby controlling Shh release and how these are dysregulated in pathological conditions and in aging will be important studies for future research.

      2) Only male mice were analyzed in the seizure induction experiments, leaving open the possibility of sex differences since previous reports suggest sex differences in adult neurogenesis.

      Seizure induced neurogenesis was observed in both male and female mice. Considering that, we assumed that mossy cell derived Shh regulates seizure induced neurogenesis also in female mice. However, we agree with the reviewers’ comments. We can not exclude the possibility that female mice reacts to KA or seizures differently from male mice, or that Shh from mossy cells might have distinct effects in female mice in that paradigm. It is also an interesting possibility that female specific behaviors may affect mossy cell activation and also regulate neurogenesis though Shh. Because these are large and unresolved questions, we elected to leave potential sex difference in mossy cell regulated neurogenesis for future research.

      3) Several control groups are missing:

      -For seizure induction: missing vehicle (instead of no KA treatment).

      -For TAM induction: missing corn oil only to check leakiness and specificity of transgene.

      -For DREADD experiment: missing vehicle (to control for hM3 non-specific effects)

      About missing vehicles in KA treatments, we used saline (0.9% NaCl) as a vehicle for Kainic acid, which is commonly used as a vehicle for water soluable reagents in adult neurogenesis experiments. In addition, the average volume of KA solution that mice received intrapenitorially for seizure induction was less than 500ul, which is less than recommended maximum volume in NIH and UCSF. We have not tested if the saline injection makes a difference in our experiments but based on previous reports using saline, we believe that saline would not affect our experimental results.

      About Tamoxifen injections, the Gli1-CreER mice have been widely used for fate tracing analysis including in our previous research where Gli1-CreER mice have shown specific recombination in Gli1-expressing NSCs. Our results in this study have shown consistently that Gli1-CreER;;Ai14 mice label NSCs in the dentate gyrus. Given this, we believe that our result using Gli1-CreER line are not affected by non-specific recombination without tamoxifen.

      About Clozapine (CZL) injection, we decided to administer CLZ in both control and DREADD animals considering the possible side-effects of CLZ. We agree with the reviewer that our experiment cannot exclude the possibility that expression of hM3Dq affects neurogenesis without CLZ or CNO. However, although we have not included the analysis using saline as a control in our experiments, we have tested that both transgenic and virus-injected mice DREADD expressing mice respond to CLZ and activate neuronal activity of mossy cells compared with control animals. Therefore, we believe that it does not affect the interpretation of our data that mossy cell neuronal activity controls neurogenesis.

      We appreciate reviewers' carefully considered comments and we will apply suggested controls to our future research.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their positive feedback and very helpful comments. We agree that this manuscript focuses primarily on functional outcomes and phenotypes. The studies were designed to address an important clinical question, i.e., repurposing dantrolene for the treatment of ventricular tachyarrhythmias and the prevention of sudden cardiac arrest. Thus, the current manuscript emphasizes in vivo studies over in vitro studies.

      However, we also acknowledge the need for additional mechanistic studies. We are in the final stages of submitting a second manuscript in which we dissect the underlying mechanisms through detailed in vitro studies of mitochondrial antioxidant capacity, reactive oxygen species, phosphorylation of ryanodine receptors, autonomic dysfunction, beta-adrenergic signaling, etc. that are beyond the scope of the current manuscript.

      Additionally, a third manuscript in progress focuses on the mechanistic link between ion channels, dispersion of repolarization, and sudden cardiac death. We previously reported the preliminary results in abstract form (Circulation Research. 2019;125:A102). Briefly, current-voltage relationships from patch clamp studies of isolated LV myocytes revealed that pressure-overload stress strongly reduced K currents, including IK1, IKs, and IKr. These changes were driven by downregulation of K channels and their components at the mRNA level. As expected, the reduced K currents destabilized the resting membrane potential, especially in phases II and II of the cardiac action potential, and reduced repolarization reserve. Scavenging mitochondrial ROS stabilized repolarization, suggesting mROS is the upstream driver of K channel downregulation. However, we have not specifically tested whether dantrolene stabilizes repolarization via the same mechanism. As such, we agree that "lability" or "dispersion" are more precise terms than "reserve" for the phenomenon reported in the present manuscript, and we have made these changes. Thank you for pointing this out. We have also changed the title accordingly.

      The present study investigates the effect of dantrolene on male animals. We agree that we need to evaluate the effect on females, especially because females have historically been underrepresented in studies of sudden cardiac arrest. Based on our preliminary studies, female animals exhibit increased variability in their phenotypic response to pressure-overloaded stress. Given the importance of this issue, we will examine the sex differences in carefully controlled future experiments, including the effect of dantrolene in females controlled for hormonal effects (e.g., with and without oophorectomy).

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The manuscript focused on roles of a key fatty-acid synthesis enzyme, acetyl-coA-carboxylase 1 (ACC1), in the metabolism, gene regulation and homeostasis of invariant natural killer T (NKT_ cells and impact on these T cells' roles during asthma pathogenesis. The authors presented data showing that the acetyl-coA-carboxylase 1 enzyme regulates the expression of PPARg then the function of NKT cells including the secretion of Th2-type cytokines to impact on asthma pathogenesis. The results are clearcut and data were logically presented.

      Thank you for your input into our work. Your comments have been very helpful in enhancing our work.

      Reviewer #2 (Public Review):

      In this study the authors sought to investigate how the metabolic state of iNKT cells impacts their potential pathological role in allergic asthma. The authors used two mouse models, OVA and HDM-induced asthma, and assessed genes in glycolysis, TCA, B-oxidation and FAS. They found that acetyl-coA-carboxylase 1 (ACC1) was highly expressed by lung iNKT cells and that ACC1 deficient mice failed to develop OVA-induced and HDM-induced asthma. Importantly, when they performed bone marrow chimera studies, when mice that lacked iNKT cells were given ACC1 deficient iNKT cells, the mice did not develop asthma, in contrast to mice given wildtype NKT cells. In addition, these observed effects were specific to NKT cells, not classic CD4 T cells. Mechanistically, iNKT cell that lack AAC1 had decreased expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity and increased cell death. Moreover, the authors were able to reverse the phenotype with the addition of a PPARg agonist. When the authors examined iNKT cells in patient samples, they observed higher levels of ACC1 and PPARG levels, compared to healthy donors and non-allergic-asthma patients.

      Thank you for your thorough analysis of our work.

      Reviewer #1 (Recommendations For The Authors):

      1) I suggest the authors to remove one copy of the sentence "It should be noted that CD4-CreAcc1fl/fl mice lack ACC expression in both conventional CD4+ T cells and iNKT cells." in Lines 421-423.

      We have removed the redundant sentence originally shown in LINES 421-423. Thank you for pointing this out.

      Reviewer #2 (Recommendations For The Authors):

      Overall, this is a very strong study with few concerns.

      1) Are there tissue specific differences in the iNKT cell populations? The authors examined lung iNKT cells in the Figs 1-3, and used liver NKT cells for the mechanistic studies in Fig 4-5. The studies shown in Fig S2 suggest that ACC1 deficient iNKT cells have developmental defects and impaired homeostatic proliferative capacity. Does ACC1 impact lung and liver iNKT cells similarly and is the lack of allergic asthma in ACC1 deficient iNKT cells due to defective iNKT cell trafficking to the lungs or a failure to survive after transfer (Fig 3)?

      2) Similarly, are chemokine receptor expression patterns similar between WT and ACC1 deficient iNKTs (Fig 4)?

      3) The authors data suggest that Tregs are not playing a major role in the regulation of asthma induction in their ACC1 deficient mice, based on FoxP3 expression. Did the authors perform suppressor assays to show that the Tregs function similarly in WT and ACC1 deficient mice?

      In the revised manuscript, the authors addressed my major concerns.

      Thank you for your previous comments. They were very helpful in upgrading our scientific work here.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate very much the comments and suggestions on our manuscript "Cylicins are a structural component of the sperm calyx being indispensable for male fertility in mice and human". According to the comments, we performed a series of further experiments, re-worded and re-wrote several paragraphs and re-structured the manuscript according to the reviewers’ comment. We think that the manuscript is now improved and are looking forward to the further evaluations. We provide a point by point response to all comments and have prepared a version.

      Recommendations for the authors:

      Editor’s comment:

      1) As pointed out by all three reviewers, it is critical to show the specificity of the antibodies used. The authors should clarify how the specificity of antibodies is tested. Western blot analysis to show the absence of the protein in the knockout is essential.

      As suggested by all reviewers, we additionally performed Western Blot analysis on cytoskeletal protein fractions to further verify the specificity of generated antibodies and the generation of functional knockout alleles. Results nicely confirm the results of the IF staining, however, both anti-bodies detected the bands lower than the predicted molecular weight. In addition, Mass Spectrometry was performed to search for the presence of peptides in the cytoskeletal protein fractions. The paragraph reads now as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      Specificity of antibodies was additionally proven by immunohistochemical staining, showing a specific staining only in testis sections but not in any other organ tested. The section reads now as follows:

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings (IHC), showing a specific signal in testis sections only, but not in any other organ tested (Figure 1 – supplement 2)

      2) Re-structuring/streamlining of the figures is recommended. Please consider the flow suggested by reviewer #2 and shorten the evolutionary analysis which takes up more space than it adds to the value of the story.

      We thank the reviewers and editor for the valuable suggestion. We re-structured the figures as suggested and rewrote the results section accordingly. The evolutionary analysis was significantly shortened.

      3) Provide statistics for the imaging analysis such as TEM as only a single representative image is shown.

      We agree that the observed morphological defects require a detailed statistical evaluation. TEM analysis was performed to confirm the results from optical microscopy and representative images with high magnification are shown for a detailed visualization of the defects. For additional quantification, we included statistics for IF stainings against calyx proteins CCIN and CapZa (Fig. 2 I-J). For TEM, we added additional images to the supplement (Figure 3 – supplement 1). Furthermore, we quantified the manchette length of step 10-13 spermatids to prove the increased elongation of the manchette in Cylc2-/- and Cylc1-/y Cylc2-/- spermatids (Fig. 5 A-B).

      4) Please consider other points raised by the reviewers below to improve the manuscript and provide responses on how the authors have addressed them.

      We thank all reviewers for the detailed review of our manuscript and their valuable suggestions, which helped a lot to improve the manuscript. We considered all points raised by the reviewers to the best of our knowledge and hope that the reviewers will approve the manuscript ready for publication. We added a point-by-point discussion of all comments/suggestions hereafter.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      (1) Antibody specificity: Fig 1E - there are some unspecific binding in Cylc2-/- for CYLC2 and in Cylc1/y Cylc2+/- for CYLC1 in the testis (and elongating spermatids in Figure 1 – Supplement 4). Could authors elaborate/comment on this? Western blot analysis would be also helpful to further support the antibody specificity.

      The very weak unspecific staining in the testis for CYLC2 (in Cylc2-/-) and CYLC1 (in Cylc1-/y Cylc2+/-) is only present in the lumen of the seminiferous tubules and/or the residual bodies of the testicular sperm cells and can be referred to as background signal. Importantly, the signal is entirely lost in the PT region, proving specificity of the generated antibodies. We added the following paragraph to the results section:

      Line 124-127: The generated antibodies did not stain testicular tissue and mature sperm of Cylc1- and Cylc2-deficient males, except for a very weak unspecific background staining in the lumen of seminiferous tubules and the residual bodies of testicular sperm (Fig. 1 F).

      Specificity of antibodies was additionally proven by immunohistochemical staining, showing a specific staining only in testis sections but not in any other organ tested.

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings, showing a specific staining in testis sections only, but not in any other organ tested (Figure 1 – supplement 2)

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining. No unspecific bands were detected in the Western Blot, further supporting the notion that the weak unspecific signals in IF resemble staining artifacts.

      The paragraph reads now as follows:

      Line 127-132: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-.

      (2) Please provide more interpretation of the gene dosage effect of Cylicin 2. It is not common to see a gene dosage effect in the sperm phenotype as transcripts and proteins can be shared between haploids due to syncytium formation during spermatogenesis.

      We agree and we apologize for the misinterpretation. In Cylc2+/- mice expression of Cylc2 was reduced by half but there was no altered phenotype observed. The sentence now reads as follows:

      Line 112: In Cylc2+/- animals expression of Cylc2 was reduced by 50 %.

      (3) Line 194-196 - the authors say that the sperm are smaller, with shorter hooks and increased circularity of the nuclei, and reduced elongation. Are these statistically significant? There seems to be a high variation in the graph in S2D and the statistical analysis is not given.

      We agree, performed statistical analyses, and highlighted significantly altered values for sperm head elongation and circularity in Figure 2 – Supplement 3.

      (4) Line 153-164 It is interesting that the absence of Cylc2 affected many parts of sperm structure. I think some ratios of sperm always have a morphological defect in diverse ways, so it is hard to confirm the finding only with a single sperm image. I think that it will be important to do some statistical analysis or at the minimum show more TEM images from TEM.

      We agree that the observed morphological defects require a detailed statistical evaluation. TEM analysis was performed to confirm the results from optical microscopy and representative images with high magnification are shown for a detailed visualization of the defects. For additional quantification, we included statistics for IF stainings against calyx proteins CCIN and CapZa (Fig. 2 I-J). For TEM, we added additional images to the supplement (Figure 3 – Supplement 1).

      (5) Line 236-242 - I believe that the phenotype described applies to the sperm from Cylc2-/- and Cylc1/y Cylc2-/- animals; however, I think that the Cylc1-/y Cylc2+/- has a more subtle, intermediate phenotype between the WT and the genotypes missing both Cylc-/- alleles.

      We agree and we added a quantification of manchette length at step 10-13 to visualize the differences between the genotypes. The section reads now as follows: Line 268-272: Manchette length was measured starting from step 10 until step 13 spermatids and the mean was obtained, showing that the average manchette length was 76-80 nm in wildtype, Cylc1-/Y and Cylc2+/- while for Cylc2-/- and Cylc1-/Y Cylc2-/- spermatids mean manchette length reached 100 nm (Fig. 5 B). Cylc1-/Y Cylc2+/- spermatids displayed an intermediate phenotype with a mean manchette length of 86 nm.

      (6) Since CYLC1 staining is absent in Fig 5B, does that mean that the mutation resulted in protein degradation/instability? Is RNA present? Additional biochemical studies of Cyclins demonstrating the deleterious nature of the mutations would strengthen the molecular pathogenesis of the human mutations.

      Thank you for raising these important questions. The CYLC1 variant c.1720G>C is predicted to cause the amino acid substitution p.(Glu574Gln). It is, thus, conceivable that the RNA is present but either the protein is degraded or misfolded and, therefore, not detectable by IF. Unfortunately, for personal reasons of the patient, it is currently not possible to receive additional semen samples, preventing additional analyses of the semen, e.g. analysis of Cylicin transcript level.

      (7) Strongly suggest shortening the evolutionary analysis - all the corresponding materials are in supplemental while texts are extensive- or even consider entirely omitting. It does not add a lot to the current study.

      We agree that the evolutionary analysis was very detailed. However, we think that the results are important to understand the role of Cylicins for male reproduction in general. The results obtained from the mouse model might be transferable to other species, including humans. Further, the results present a possible explanation for the subfertility of Cylc1-deficient mice, in contrast to infertility of Cylc2-deficient males. We shortened the section, the paragraph reads as follows:

      Line 287-302: To address why Cylc2 deficiency causes more severe phenotypic alterations than Cylc1deficiency in mice, we performed evolutionary analysis of both genes. Analysis of the selective constrains on Cylc1 and Cylc2 across rodents and primates revealed that both genes’ coding sequences are conserved in general, although conservation is weaker in Cylc1 trending towards a more relaxed constraint (Fig. 6). A model allowing for separate calculation of the evolutionary rate for primates and rodents, did not detect a significant difference between the clades, neither for Cylc1 nor for Cylc2, indicating that the sequences are equally conserved in both clades.

      To analyze the selective pressure across the coding sequence in more detail, we calculated the evolutionary rates for each codon site across the whole tree. According to the analysis, 34% of codon sites were conserved, 51% under relaxed selective constraint, and 15% positively selected. For Cylc2, 47% of codon sites conserved, 44% under neutral/relaxed constraint, and 9% positively selected. Interestingly, codon sites encoding lysine residues, which are proposed to be of functional importance for Cylicins, are mostly conserved. For Cylc1, 17% of lysine residues are significantly conserved and 35% of significantly conserved codons encode for lysine. For Cylc2, this pattern is even more pronounced with 27.9% of lysine codons being significantly conserved and 24.3% of all conserved sites encoding for lysine (Fig. 6).

      Minor comments:

      (1) Line 114, 115, 118 à Figure 1D is already well-described in the previous paragraph and thus redundant. Ref Fig 1D, E; but only figure E shows IF. Maybe supposed to be E and F or just 1E?

      We apologize for the mix-up with the subfigures. The mentioned paragraph refers to Fig. 1 E-F, which was corrected accordingly.

      Line 117-123: Immunofluorescence staining of wildtype testicular tissue showed presence of both, CYLC1 and CYLC2 from the round spermatid stage onward (Fig. 1 E). The signal was first detectable in the subacrosomal region as a cap-like structure, lining the developing acrosome (Fig. 1 E-F, Figure 1 – supplement 3). As the spermatids elongate, CYLC1 and CYLC2 move across the PT towards the caudal part of the cell (Figure 1 – supplement 4). At later steps of spermiogenesis, the localization in the subacrosomal part of the PT faded, while it intensified in the postacrosomal calyx region (Fig. 1 E-F).

      (2) Figure 1F - Arguably, IF images show expression of both CYLC1 and CYLC2 to reach/include the acrosome/hook portion of the sperm head, but the diagram does not reflect that. Why is that?

      We agree and apologize for the inconsistency. The illustration was adjusted according to the experimental data showing localization of Cylicins in the whole ventral part of the sperm.

      (3) Line 124 - PAS staining mentioned on line 124, is not explained (Periodic acid Schiff staining) until line 605

      We agree and introduced the abbreviation accordingly. The PAS staining was moved to Fig. 4. The paragraph reads now as follows:

      Line 220-222: To study the origin of observed structural sperm defects, spermiogenesis of Cylicin deficient males was analyzed in detail. PNA lectin staining and Periodic Acid Schiff (PAS) staining of testicular tissue sections were performed to investigate acrosome biogenesis.

      (4) Some figures are hard to read due to being very small (S1B, 3F).

      We agree and we increased the figure size. For former Figure 3F (now figure 4A), insets with higher magnification of representative sperm were added. Insets are additionally shown in Figure 4 – Supplement 1 in higher resolution.

      (5) Line 139 Please specify whether the sperm was capacitated or not.

      Analysis of the flagellar beat was performed with non-capacitated sperm. We clarified this in the main text:

      Line 203: The SpermQ software was used to analyze the flagellar beat of non-capacitated Cylc2-/- sperm in detail 22.

      As described in the Material and Methods section, sperm were only activated in TYH medium, prior to analysis:

      Line 732-733: Sperm samples were diluted in TYH buffer shortly before insertion of the suspension into the observation chamber.

      (6) Line 142-145; The sentence is interrupted strangely, perhaps the authors meant to write: "Interestingly, we observed that the flagellar beat of Cylc2-/- sperm cells was similar to wildtype cells, however, with interruptions during which midpiece and initial principal piece appeared stiff whereas high-frequency beating occurs at the flagellar tip"

      We corrected the sentence accordingly.

      Line 206-208: Interestingly, we observed that the flagellar beat of Cylc2-/- sperm cells was similar to wildtype cells, however, with interruptions during which midpiece and initial principal piece appeared stiff whereas high frequency beating occurs at the flagellar tip (Fig. 3 C, Video 1, Video 2).

      (7) Line 142 -Wrong Figure number. Figure S4A is a phylogenic analysis.

      We regret the mix up and corrected the Figure reference accordingly. Line 204-205: Cylc2-/- sperm showed stiffness in the neck and a reduced amplitude of the initial flagellar beat, as well as reduced average curvature of the flagellum during a single beat (Figure 3 – supplement 2).

      (8) L146-147 Better placed in Discussion.

      We agree, and we omitted this sentence from the results part.

      (9) Line 154-156 - The white arrowheads are present in both WT and KO sperm, thus it appears they denote the basal plate, not necessarily the dislocation/parallel position as the current text seems to suggest. Furthermore, the position of the WT and KO sperm is somewhat different with the tail coiling differently, so it is hard to see whether the two are comparable.

      We agree and we removed the white arrowhead in the WT sperm picture, and it now depicts only the dislocation of the basal plate in the Cylc2-/- sperm. Due to the morphological anomalies of Cylc2-/- sperm cells, it’s difficult to determine the exact angle of the depicted cell. However, we added more TEM pictures of the sperm cells (3 for WT and 6 for Cylc2-/-) in Figure 3 – Supplement 1.

      (10) Line 164 Please describe in detail what mitochondrial damage the readers expect to see from the TEM image.

      We evaluated the observed mitochondrial damage in more detail. Unfortunately, the defects described initially seem to be an artifact of apoptotic sperm cells and could not be identified in vital sperm cells in either of the knockout mouse models. We apologize for this misinterpretation, and we deleted this section in the manuscript.

      (12) Figure S2A - no WT comparison, difficult to compare without it (mitochondria in Cylc2-/-)

      See (10). We evaluated the observed mitochondrial damage in more detail and in comparison to WT. Unfortunately, the defects described initially seem to be an artifact of apoptotic sperm cells and could not be identified in vital sperm cells in either of the knockout mouse models. We apologize for this misinterpretation and we deleted this section in the manuscript.

      (13) Line 172-173 - Fig 3C denotes quantification of abnormal acrosome only, however, the text mentions sperm coiled tail being quantified within this graph - which is it? Is it both of them? Or only one of them?

      Figure 3 C (now Figure 2G) showed the percentage of abnormal sperm in general comprising acrosomal as well as flagellar defects. We modified the figure and evaluated acrosomal defects and tail defects separately. The results section was changed accordingly and reads now as follows:

      Line 152-159: Loss of Cylc1 alone caused malformations of the acrosome in around 38% of mature sperm, while their flagellum appeared unaltered and properly connected to the head. Cylc2+/- males showed normal sperm tail morphology with around 30% of acrosome malformations. Cylc2-/- mature sperm cells displayed morphological alterations of head and mid-piece (Fig. 2 F-G). 76% of Cylc2-/- sperm cells showed acrosome malformations, bending of the neck region, and/or coiling of the flagellum, occasionally resulting in its wrapping around the sperm head in 80% of sperm (Fig. 2 F). While 70% of Cylc1-/Y Cylc2+/- sperm showed these morphological alterations, around 92% of Cylc1-/YCylc2-/- sperm presented with coiled tail and abnormal acrosome (Fig. 2 F-G).

      (14) Fig 3D - CCIN in the text, cylicin in the figure - this should be consistent. Furthermore, since only the head is being shown, is CCIN ever detected in the WT sperm tail?

      We apologize for the inconsistency, and we added the abbreviation “CCIN” to the figure. CCIN is solely detectable in the sperm head of wildtype sperm as published previously. Irregular staining patterns showing signals in the tail region are only observed upon Cylicin deficiency.

      (15) Line 199-200 - To say that head of Cylc2-deficient sperm appears less concave seems redundant, likely the observed increased circularity is contributed to by sperm head being less concave in this region; unless there is an extra point that the authors are trying to make and if so, this needs to be elaborated on

      We agree and we deleted the sentence from the manuscript.

      (16) Figure legend of Fig S3 is wrong. Only S3A and S3B are present, and in the figure legend S3C corresponds to figure S3B.

      We agree and corrected the Figure legends accordingly. Due to the re-structuring of the manuscript, Figures and Supplementary figures were re-ordered as well.

      (17) Figure 4B - figure legend and/or text should specify that lectin is green and HOOK1 is in red

      We specified the figure legend as well as the main text accordingly: Line: 279-281: Co-staining of the spermatids with antibodies against PNA lectin (green) and HOOK1 (red) revealed that abnormal manchette elongation and acrosome anomalies simultaneously occurred in elongating spermatids of Cylc2-/- male mice (Fig. 5 C).

      Line: 560-562: Co-staining of the manchette with HOOK1 (red) and acrosome with PNA-lectin (green) is shown in round, elongating and elongated spermatids of WT (upper panel) and Cylc2-/- mice (lower panel).

      (18) Line 261-263 - It is difficult to see what is going on with microtubules in these images, as the resolution is low

      We increased the pictures and improved their quality. Microtubules are also depicted with letter ‘m’

      (19) Line 265-266 - It seems that there is a persistence of manchette, rather than elongation. From these images, I cannot see gaps, and I am not sure where to look for them. This needs to be labelled further and higher-resolution images could be included for clarity.

      We agree, although we observed both excessive elongation and persistence of the manchette. The average length of the manchette is now shown in figure 5B.

      The paragraph now reads as follows:

      Line 235-239: Microtubules appeared longer on one side of the nucleus than on the other, displacing the acrosome to the side and creating a gap in the PT (Fig. 4 C). Whereas elongated spermatids at step 14-15 in wildtype sperm already disassembled their manchette and the PT appeared as a unique structure that compactly surrounds nucleus, in Cylc2-/- spermatids, remaining microtubules failed to disassemble.

      The gaps in the perinuclear theca are better visible in TEM micrographs and the description is now in the paragraph describing TEM.

      (20) Line 269 Please include the information of "White arrowhead".

      We added the information accordingly.

      Line 240-242: In addition, at step 16, the calyx was absent, and an excess of cytoplasm surrounded the nucleus and flagellum (Fig. 4 C, white arrowhead).

      (21) Line 276-280 This should be placed in the Discussion.

      We agree, and we deleted this concluding remark from the results section.

      (22) Is Cylc1 and/or Cylc2 conserved/expressed amongst species other than rodents and primates?

      Yes, Cylc1 and Cylc2 homologs were identified in C. elegans for example. We added a schematic to the introduction showing the protein structure of human, mouse and C. elegans CYLC1 and CYLC2 (Figure 1 – supplement 1).

      The section reads now as follows:

      Line 73-78: In most species, two Cylicin genes, Cylc1 and Cylc2, have been identified (Figure 1- supplement 1). They are characterized by repetitive lysine-lysine-aspartic acid (KKD) and lysine-lysine-glutamic acid (KKE) peptide motifs, resulting in an isoelectric point (IEP) > pH 10 14, 15. Repeating units of up to 41 amino acids in the central part of the molecules stand out by a predicted tendency to form individual short α-helices 14. Mammalian Cylicins exhibit similar protein and domain characteristics, but CYLC2 has a much shorter amino-terminal portion than CYLC1 (Figure 1-supplement 1).

      (23) The whole chapter "Cylc2 coding sequence is slightly more conserved among species than Cylc1" references only supplemental figures/tables. I find this unusual.

      We agree, and in order to show the results of the evolutionary analysis more clearly, we moved the panel to main Figure 6.

      Line 286-302: To address why Cylc2 deficiency causes more severe phenotypic alterations than Cylc1deficiency in mice, we performed evolutionary analysis of both genes. Analysis of the selective constrains on Cylc1 and Cylc2 across rodents and primates revealed that both genes’ coding sequences are conserved in general, although conservation is weaker in Cylc1 trending towards a more relaxed constraint (Fig. 6 A). A model allowing for separate calculation of the evolutionary rate for primates and rodents, did not detect a significant difference between the clades, neither for Cylc1 nor for Cylc2, indicating that the sequences are equally conserved in both clades.

      To analyze the selective pressure across the coding sequence in more detail, we calculated the evolutionary rates for each codon site across the whole tree. According to the analysis, 34% of codon sites were conserved, 51% under relaxed selective constraint, and 15% positively selected. For Cylc2, 47% of codon sites conserved, 44% under neutral/relaxed constraint, and 9% positively selected. Interestingly, codon sites encoding lysine residues, which are proposed to be of functional importance for Cylicins, are mostly conserved. For Cylc1, 17% of lysine residues are significantly conserved and 35% of significantly conserved codons encode for lysine. For Cylc2, this pattern is even more pronounced with 27.9% of lysine codons being significantly conserved and 24.3% of all conserved sites encoding for lysine (Fig. 6 B).

      (24) Line 332 - CYCL2 should be CYLC2

      We corrected the typo accordingly.

      (25) Line 340 The ratio of head defects is different from Table 1 (98% here and 99 % in the table). Please check this information.

      We apologize for the inconsistency. We checked the raw data and corrected the table accordingly.

      (26) Line 344-345 From figure 5C it is difficult to determine whether the sperm are "headless" or whether the heads are attached to the highly coiled tails next to them

      We agree and we quantified the percentage of sperm showing abnormal flagella and a headless phenotype. Furthermore, we added an arrowhead to figure 6C to highlight headless sperm. The paragraph reads now as follows:

      Line 335-339: Bright field microscopy demonstrated that M2270’s sperm flagella coiled in a similar manner compared to flagella of sperm from Cylicin deficient mice. Quantification revealed 57% of M2270 sperm displaying abnormal flagella compared to 6% in the healthy donor (Fig. 7 D). Interestingly, DAPI staining revealed that 27% of M2270 flagella carry cytoplasmatic bodies without nuclei and could be defined as headless spermatozoa (Fig. 7 C, white arrowhead; Fig. 7 E).

      (27) L367-368 I agree with the authors' logic of this sentence. Although, it is better to show the co-localization of proteins using multi-channel immunocytochemistry. As you mentioned on L369 this will make your finding more obvious. If it is available, please include the colocalization images of the proteins.

      We performed the multi-channel staining against Cylicin1 and Calicin, as well as Cylicin2 and Calicin on mouse epipidymal sperm and it’s shown in Figure 2 – supplement 4. Unfortunately, we did not manage to obtain stainings of tissue sections since antibodies against Cylicins and Calicin require different sample processing.

      The sentence was added in the section describing calyx integrity:

      Line 168-169: In epididymal sperm, CCIN co-localizes with both CYLC1 and CYLC2 in the calyx (Figure 2 – supplement 4).

      (28) Line 376 Please keep the abbreviation. "Calicin" "CCIN".

      We included the abbreviation accordingly.

      Line 377-378: CCIN is shown to be necessary for the IAM-PT-NE complex by establishing bidirectional connections with other PT proteins.

      (29) Line 377-378 "Based on ~". The authors did not prove the interaction between CCIN and Cylicins in this article. The mislocalization of CCIN might be resulted in the loss of Cylicins, without any "interaction". To reach this conclusion, a more direct result should be provided.

      We agree that we overinterpreted this as we and others did not prove the interaction between CCIN and Cylicins so far. We therefore weakened this statement and formulated it as a hypothesis.

      Line 377-381: CCIN is shown to be necessary for the IAM-PT-NE complex by establishing bidirectional connections with other PT proteins. Zhang et al. found CYLC1 to be among proteins enriched in PT fraction 7. Based on their speculation that CCIN is the main organizer of the PT, we hypothesize that both CCIN and Cylicins might interact, either directly or in a complex with other proteins, in order to provide the ‘molecular glue’ necessary for the acrosome anchoring.

      (30) Line 499 Please specify which is the target of the immunostaining on the Figure legend. (Tubulin à acetylated α-tubulin)

      We specified that α-Tubulin was stained. The figure legend reads now as follow: Line 555-557: Immunofluorescence staining of α-Tubulin to visualize manchette structure in squash testis samples of WT, Cylc1-/y, Cylc2+/-, Cylc2-/-, Cylc1 -/y Cylc2+/- and Cylc1-/y Cylc2-/- mice.

      (31) Line 502 Please specify which color indicates which target protein (not only cellular structure).

      Line 560-562: Co-staining of the manchette with HOOK1 (red) and acrosome with PNA-lectin (green) is shown in round, elongating and elongated spermatids of WT (upper panel) and Cylc2-/- mice (lower panel).

      (32) Line 509 Please include scale bar information in the figure legend like Figure 4 (The magnifications of Figure 5 B, C, and D seem different).

      We included the scale bar information accordingly (now Figure 6).

      Line 575-588: Figure 6: Cylicins are required for human male fertility

      (A) Pedigree of patient M2270. His father (M2270_F) is carrier of the heterozygous CYLC2 variant c.551G>A and his mother (M2270_M) carries the X-linked CYLC1 variant c.1720G>C in a heterozygous state. Asterisks (*) indicate the location of the variants in CYLC1 and CYLC2 within the electropherograms.

      (B) Immunofluorescence staining of CYLC1 in spermatozoa from healthy donor and patient M2270. In donor’s sperm cells CYLC1 localizes in the calyx, while patient’s sperm cells are completely missing the signal. Scale bar: 5 µm.

      (C) Bright field images of the spermatozoa from healthy donor and M2270 show visible head and tail anomalies, coiling of the flagellum as well as headless spermatozoa who carry cytoplasmatic residues without nuclei. Heads were counterstained with DAPI. Scale bar: 5 µm.

      (D-E) Quantification of flagellum integrity (D) and headless sperm (E) in the semen of patient M2270 and a helathy donor.

      (F-G) Immunofluorescence staining of CCIN (F) and PLCz (G) in sperm cells of patient M2270 and a healthy donor. Nuclei were counterstained with DAPI. Scale bar: 3 µm.

      (33) S2A is not clear. Please describe specifically what the left panel and right panel are about to show with a clear indication of what is PM, mitochondria, etc. On the right, in only one cross-section that shows both mitochondria and the 9+2 axoneme, they look both unaltered whereas on the left, there are unpacked, not aligned mitochondria but the tail boundary is not clear to grasp at first sight.

      We apologize for the bad quality of the TEM pictures showing the axonemes and the missing labeling. We recorded and included new images showing an intact 9+2 microtubular structure in Cylc2-/-. Furthermore, we added an image for the wildtype control.

      (34) S2D: colors of the last three plots of each graph are too close to tell apart

      We agree and changed the color scheme for better visualization.

      Reviewer #2 (Recommendations For The Authors):

      However, I find the manuscript a bit messy, and I will propose to reorganize the figures: following figure 1, showing the reproductive phenotype, I would continue with a figure showing the morphology of sperm in optical microscopy and showing the morphological defect of the nucleus (Fig 3B and 3E), followed with one figure focusing on the flagellum, with images obtained with optical and electronic microscopies, allowing to present the abnormalities of the flagellum and finally the impact on sperm motility and flagellum beating (mix of figure 2FG/3A); next, one figure focusing on acrosome. After that, I would present all data concerning spermiogenesis, starting with figure 2C.

      We thank the reviewer for the valuable suggestion, which helps a lot to improve the structure and comprehensibility of the manuscript. We re-organized the figures and the results section accordingly.

      Major remarks

      1) Line 111. The specificity of raised Ab is not clear. Please specify if antibodies are specific: what immune-decorates anti-CYLC1: only CYLC1 or CYLC1 and CYLC2. Same question for anti-CYLC2

      Both antibodies were raised against specific peptides of the CYLC1 or CYLC2 protein, respectively. The antigen peptides used for immunization are depicted in the Material and Methods section (AESRKSKNDERRKTLKIKFRGK and KDAKKEGKKKGKRESRKKR peptides for CYLC1; KSVGTHKSLASEKTKKEVK and ESGGEKAGSKKEAKDDKKDA for CYLC2). The peptides used for immunization are specific as they do not resemble the highly conserved and repetitive KKD/KKE motives present in both, Cylc1 and Cylc2.

      The specificity of raised antibodies was validated by IF staining of wildype and Cylicin-deficient testis sections. The results clearly show, that CYLC1 signal is absent in Cylc1-deficient spermatids and CYLC2 signal being absent in Cylc2 deficient spermatids.

      Specificity of antibodies was additionally proven by immunohistochemical stainings, showing a specific staining only in testis sections but not in any other organ tested.

      Line 115-117: Specificity of antibodies was proven by immunohistochemical stainings, showing a specific staining only in testis sections but not in any other organ tested (Figure 1 - supplement 2)

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining.

      The paragraph reads now as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      2) Line 115 and figure 1D. From the images presented in figure 1D, it is not clear where CYLC1 and CYLC2 are localized in the round and in elongated spermatids. Please make double staining using a second Ab to identify the acrosome such as DPY19L2 (best option) or SP56 and the manchette such as acetylated alpha-tubulin.

      We agree, and we added a double staining of CYLC1/CYLC2 and SP56 to the supplement (Figure 1 - supplement 3), showing co-localization of the developing acrosome and Cylicins. Manchette staining was not performed due to antibodies being available in same species as those against Cylicins (anti-rabbit).

      Line 117-120: Immunofluorescence staining of wildtype testicular tissue showed presence of both, CYLC1 and CYLC2 from the round spermatid stage onward (Fig. 1 E, Figure 1 – supplement 3). The signal was first detectable in the subacrosomal region as a cap like structure, lining the developing acrosome (Fig. 1 E-F, Figure 1 – supplement 3).

      3) Line 118 and figure 1. The drawing showing the localization of Cylicin in mature sperm does not fit with the experimental data. Cylicins are located on the whole ventral face of the sperm.

      We agree and apologize for the inconsistency. The illustration was adjusted according to the experimental data showing localization of Cylicins in the whole ventral part of the sperm.

      4) Figure 1: Change "expression of Cylicin" to "localization of cylicin" (green)

      We changed the legend accordingly.

      5) Line 124 and figure 2C. In the figure provided, the PAS staining seems defective. The acrosomes do not seem stained (in pink as expected for a PAS staining). It may be due to the low quality of the pdf file, nevertheless, it is important to provide in supplementary data, an enlargement of the spermatid region showing the staining of the acrosome.

      We apologize for the bad quality of the PDF file and the low magnification. We restructured the subfigure showing PAS stained spermatids at different steps of spermiogenesis at higher magnification. According to the initial reviewer’s suggestion, the PAS staining was moved to figure 4. The PAS staining in figure 2 was replaced by HE-stained overview testis sections in Figure 3 – supplement 1 showing intact spermatogenesis in all genotypes.

      6) Line 130. Please indicate a reference for the lower limit of 58%. If this lower limit corresponds to human sperm, it should be omitted.

      Indeed, the given reference limit of 58% is only valid for human sperm samples. Therefore, we omitted the reference limit. The paragraph reads now as follows: Line 144-146: Eosin-Nigrosin staining revealed that the viability of epididymal sperm from all genotypes was not severely affected (Fig. 2 D, Figure 2 – supplement 2).

      7) line 152 Sperm morphology. Before showing the ultrastructure of the sperm, it would be important to show sperm morphology observed by optical microscopy. Therefore, I recommend including figure S2 as a principal figure, with a mix of Figures 3B and 3E.

      We thank the reviewer for the suggestion. The results section was re-structured accordingly, first showing results of optical microscopy (Fig. 2), followed by an in-depth ultrastructural investigation of morphological defects and their effects on sperm motility. Brightfield images of epididymal sperm were moved from former Figure S2 to main Figure 2.

      8) Line 164. figure S2A, showing that the 9+2 pattern is normal in KO sperm, is not convincing. Enlargement is required to conclude that the axoneme structure is normal; from the pictures, it rather seems that some doublets are missing.

      We apologize for the bad quality of the TEM pictures showing the axonemes. We recorded and included new images showing an intact 9+2 microtubular structure.

      9) Line 196. I would suggest removing the term "mild globozoospermia". Globozoospermia is rather complete (100% of round sperm heads) or incomplete (<90 % of round sperm heads). The anomalies observed on sperm heads, sperm motility, and the decrease in sperm concentration are rather suggestive of an OAT.

      We agree and we omitted the term “mild globozoospermia”. Instead, we added a concluding remark to the section, summarizing the described defects as OAT syndrome. The section reads now as follows:

      Line 215-217: Taken together, observed anomalies of sperm heads, impaired sperm motility, and the decrease in epididymal sperm concentration show that Cylc deficiency results in a severe OAT phenotype (Oligo-Astheno-Teratozoospermia-syndrome) described in human.

      10) Line 248. It is not clear from the data of figure 4B that "the developing acrosome lost its compact adherence to the nuclear envelope". From this figure, only defective morphologies of the acrosome are observed

      We agree and we omitted the sentence. Furthermore, it does not add additional information to the manuscript, since defects in the attachment of the acrosome to the nuclear envelope have been described in detail in Figure 4C.

      11) line 260-264. Manchette defects appear at stages 9-10. At this stage, the HTCA is already attached to the nucleus of the spermatid. see for instance figure 2 from Shang Y, Zhu F, Wang L, Ouyang YC, Dong MZ, Liu C, Zhao H, Cui X, Ma D, Zhang Z, Yang X, Guo Y, Liu F, Yuan L, Gao F, Guo X, Sun QY, Cao Y, Li W. Essential role for SUN5 in anchoring sperm head to the tail. Elife. 2017 Sep 25;6:e28199. doi: 10.7554/eLife.28199 . Therefore, the hypothesis that "abnormal attachment of the developing flagellum to the basal plate and consequently flipping of the head and coiling of the tail in mature spermatozoa" is unlikely and I suggest modifying this paragraph. In the HOOK paper, the manchette defects occurred earlier.

      We read the suggested literature and we agree to this reviewer’s comment. Manchette defects that we observe appear at later stages and are probably not responsible for the morphological anomalies of the mature sperm. We also re-analyzed all the manchette staining pictures and didn’t find any defects at earlier stages, so we decided to delete the sentence from the manuscript.

      12) Line 344. Please indicate a percentage of headless spermatozoa. Many sperm is too vague.

      We agree and we quantified the percentage of sperm showing abnormal flagella and a headless phenotype. The paragraph reads now as follows:

      Line 335-339: Bright field microscopy demonstrated that M2270’s sperm flagella coiled in a similar manner compared to flagella of sperm from Cylicin deficient mice. Quantification revealed 57% of M2270 sperm displaying abnormal flagella compared to 6% in the healthy donor (Fig. 7 D). Interestingly, DAPI staining revealed that 27% of M2270 flagella carry cytoplasmatic bodies without nuclei and could be defined as headless spermatozoa (Fig. 7 C, white arrowhead; Fig. 7 E).

      13) Any data concerning the success of ICSI for this patient?

      Yes, the outcome of the ICSI were added to the main text. Line 309-311: The couple underwent one ICSI procedure which resulted in 17 fertilized oocytes out of 18 retrieved. Three cryo-single embryo transfers were performed in spontaneous cycles, but no pregnancy was achieved.

      14) Finally, it would be interesting to study the localization of PLCzeta in this model, since its localization in the perinuclear theca has been clearly shown (Escoffier et al, 2015 doi:10.1093/molehr/gau098 )

      We thank the reviewer for the valuable suggestion and performed PLCzeta staining on human sperm, clearly showing an irregular PT staining pattern in sperm of patient M2270 compared to healthy control sperm. Of note, staining was not possible in the mouse due to the antibody being reactive only for human samples.

      The section reads as follows:

      Line 343-349: Testis specific phospholipase C zeta 1 (PLCζ1) is localized in the postacrosomal region of PT in mammalian sperm (Yoon and Fissore, 2007) and has a role in generating calcium (Ca²⁺) oscillations that are necessary for oocyte activation (Yoon, 2008). Staining of healthy donor’s spermatozoa showed a previously described localization of PLCζ1 in the calyx, while sperm from M2270 patient presents signal irregularly through the PT surrounding sperm heads (Fig. 7 G). These results suggest that Cylicin deficiency can cause severe disruption of PT in human sperm as well, causing male infertility.

      Reviewer #3 (Recommendations For The Authors):

      1) Why the Cylc1-/y Cylc2+/- males were infertile? It would be helpful to show the homologue of the two proteins;

      To elaborate more on the homology of CYLC1 and CYLC2, we added a more detailed section about the protein and domain structure to the introduction.

      Line 73-78: In most species, two Cylicin genes, Cylc1 and Cylc2, have been identified (Figure 1supplement 1). They are characterized by repetitive lysine-lysine-aspartic acid (KKD) and lysine-lysineglutamic acid (KKE) peptide motifs, resulting in an isoelectric point (IEP) > pH 10 14, 15. Repeating units of up to 41 amino acids in the central part of the molecules stand out by a predicted tendency to form individual short α-helices (Hess et al., 1993). Mammalian Cylicins exhibit similar protein and domain characteristics, but CYLC2 has a much shorter amino-terminal portion than CYLC1 (Figure 1supplement 1).

      Speculations about the infertility of Cylc1-/y Cylc2+/- males was added to the discussion:

      Line 410-413: Interestingly, Cylc1-/Y Cylc2+/- males displayed an “intermediate” phenotype, showing slightly less damaged sperm than Cylc2-/- and Cylc1-/Y Cylc2-/- animals. This further supports our notion, that loss of the less conserved Cylc1 gene might be at least partially compensated by the remaining Cylc2 allele.

      2) Western blot is important to show the absence of the two proteins in the mouse models;

      To further verify the specificity of generated antibodies and the generation of functional knockout alleles, we additionally performed Western Blot analysis on cytoskeletal protein fractions, confirming the results of the IF staining.

      A paragraph was added to the manuscript and reads as follows:

      Line 127-134: Additionally, Western Blot analyses confirmed the absence of CYLC1 and CYLC2 in cytoskeletal protein fractions of the respective knockout (Fig. 1 G), thereby demonstrating i) specificity of the antibodies and ii) validating the gene knockout. Of note, the CYLC1 antibody detects a double band at 40-45 KDa. This is smaller than the predicted size of 74 KDa as, but both bands were absent in Cylc1-/y. Similarly, the CYLC2 Antibody detected a double band at 38-40 KDa instead of 66 KDa. Again, both bands were absent in Cylc2-/-. Next, Mass spectrometry analysis of cytoskeletal protein fraction of mature spermatozoa was performed detecting both proteins in WT but not in the respective knockout samples (Figure 1 – supplement 5; Figure 1 – supplement 6).

      3) On Page 7, line 227 and line 243, was the acetylated α-tubulin or α-tubulin antibody used?

      For all stainings α-tubulin antibody was used. We corrected this accordingly. Line 257-259: We used immunofluorescence staining of α-tubulin on squash testis samples containing spermatids at different stages of spermiogenesis to investigate whether the altered head shape, calyx structure, and tail-head connection anomalies originate from possible defects of the manchette structure.

      4) Fig. 2S: A cartoon showing the elongation and circularity of nuclei for evaluation is helpful; The TEM images from the control and Cylc1 KO mice are needed;

      Cylc1-/Y TEM picture was added in Figure 3A.

      5) The discussion should be rewritten. The current version is to repeat the experiments/findings. The authors should discuss more about the potential mechanisms.

      We discussed the observed defects of Cylc-deficient animals and discussed this in relation to other published mouse models deficient in Calyx components. Furthermore, we speculated about potential interaction partners of Cylicins and the importance of these protein complexes for male fertility. However, to this point, we think that it is too farfetched to speculate about potential mechanisms without any evidence for Cylc interaction partner or their exact molecular function. This requires further research.

    1. Author Response

      We would first like to thank the reviewers for their time and effort in their critical review of our manuscript, and appreciate the opportunity to address these comments. We thank the reviewers for appreciating that our experimental design is well crafted, and contributes to the broader understanding of dietary exercise recommendations for metabolic health and muscle development. We have revised the figures and text in accordance with the reviewer’s recommendations, and hope that they appreciate the revised version.

      Reviewer #1:

      1) A significant limitation of this study pertains to the absence of a detailed exploration into the mechanistic underpinnings of the interaction between high protein intake and resistance exercise at the molecular level. The authors should provide a comprehensive discussion on potential avenues or prospective research directions to address this gap in understanding.

      We agree and have added some theories in the discussion on page 14.

      2) Figure 4 and Figure 7 can be moved to supplementary and text in the description can be arranged accordingly to make a better flow of the story.

      We agree with this suggestion and have made adjustments.

      3) The authors have used a high protein diet (36% calorie from protein) and a low protein diet (7% calorie from protein) for this study. The authors should explain whether this mouse diet is practically comparable to the human's high protein (2% of BW) and low protein diet (less than 0.8% BW) or not.

      The high protein diet is comparable to a human diet of 180 grams of protein ((0.36x2000 calories)/4 calories per gram=180 g), which is in a range that some people consume, particularly bodybuilders and athletes. The low protein diet is equivalent to 35 grams of protein per day ((0.07x2000 calories)/4 calories/gram=35g), and a diet of just 7% protein is not recommended for humans per the Acceptable Macronutrient Distribution Range (AMDR) of 10-35% dietary protein set by the Institute of Medicine (IOM). We have addressed this on page 14.

      4) The color coding of the error bar and lines does not match with the group description in almost every figure. Maybe the authors could choose more contrasting colors.

      Thanks, we have adjusted the coloring of the error bars and lines in all figures.

      5) In Figure 3C-E it seems like the number of biological samples is not consistent in the LP+WP group. If the authors have excluded any outlier from the analysis, that should be included in the methodology.

      We did list outliers in the methodology in the statistics section (page 19): “Outliers were determined using GraphPad Prism Grubbs’ calculator (https://www.graphpad.com/quickcalcs/grubbs1/).”

      Reviewer #2:

      Very nice work! I do not have a whole lot to say in terms of experiments, analysis, or data to present other than what is in my public review (and you cannot really provide it as it was not in the experimental design). The manuscript is also very well written. My only question is about the following two sentences in the introduction:

      "Both exercise and amino acids activate the mechanistic target of TOR (mTOR) protein kinase, which stimulates the protein synthesis machinery needed to stimulate skeletal muscle hypertrophy (Schiaffino et al., 2021). Therefore, The Academy of Nutrition and Dietetics recommends consuming 1.2-2.0 grams of protein per kg of body weight (BW) per day in physically active individuals (Thomas et al., 2016)." I am not sure how the second sentence follows from the first, so I am not convinced that "therefore" is the right adverb in the right place.

      Thanks for pointing this out. We have added a clarifying transition to the text (page 3).

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Rai1 encodes the transcription factor retinoic acid-induced 1 (RAI1), which regulates expression of factors involved in neuronal development and synaptic transmission. Rai1 haploinsufficiency leads to the monogenic disorder Smith-Magenis syndrome (SMS), which is associated with excessive feeding, obesity and intellectual disability. Consistent with findings in human subjects, Rai1+/- mice and mice with conditional deletion of Rai1 in Sim+ neurons, which are abundant in the paraventricular nucleus (PVN), exhibit hyperphagia, obesity and increased adiposity. Furthermore, RAI1-deficient mice exhibit reduced expression of brain-derived neurotrophic factor (BDNF), a satiety factor essential for the central control of energy balance. Notably, overexpression of BDNF in PVN of RAI1-deficient mice mitigated their obesity, implicating this neurotrophin in the metabolic dysfunction these animals exhibit. In this follow up study, Javed et al. interrogated the necessity of RAI1 in BDNF+ neurons promoting metabolic health.

      Consistent with previous reports, the authors observed reduced BDNF expression in the hypothalamus of Rai1+/- mice. Moreover, proteomics analysis indicated impairment in neurotrophin signaling in the mutants. Selective deletion of Rai1 in BDNF+ neurons in the brain during development resulted in increased body weight, fat mass and reduced locomotor activity and energy expenditure without changes in food intake. There was also a robust effect on glycemic control, with mutants exhibiting glucose intolerance. Selective depletion of RAI1 in BDNF+ neurons in PVN in adult mice also resulted in increased body weight, reduced locomotor activity, and glucose intolerance without affecting food intake. Blunting RAI1 activity also leads to increases and decreases in the inhibitory tone and intrinsic excitability, respectively, of BDNF+ neurons in the PVN.

      Strengths:

      Overall, the experiments are well designed and multidisciplinary approaches are employed to demonstrate that RAI1 deficits in BDNF+ neurons diminish hypothalamic BDNF signaling and produce metabolic dysfunction. The most significant advance relative to previous reports is the finding from electrophysiological studies showing that blunting RAI1 activity leads to increases and decreases the inhibitory tone and intrinsic excitability, respectively, of BDNF+ neurons in the PVN. Furthermore, that intact RAI1 function is required in BDNF+ neurons for the regulation of glucose homeostasis.

      Weaknesses:

      Some of the data need to be reconciled with previous findings by others. For example, the authors report that more than 50% of BDNF+ neurons in PVN also express pTrkB whereas about 20% of pTrkB+ cells contain BDNF, raising the possibility that autocrine mechanisms might be at play. This is in conflict with a previous study by An et al, (2015) showing that these cell populations are largely non-overlapping in the PVN.

      We fully agree with this assessment. Given the difficulty of using immunostaining to characterize the expression of membrane proteins in vivo, and the specificity of the pTrkB antibody in different tissues remains unknown, it is difficult to interpret the signals we observed. We have excluded the data because the histological analysis of p-TRKB and BDNF autocrine/paracrine signalling is not a focus of the present study. Future studies using a more advanced genetic method (i.e., Ntrk2CreER/+; Ai9 mouse line as used by An et al., 2015) is more suitable and should be used in the future to investigate the function of Rai1 in the TRKB+ neurons.

      Another issue that deserves more in-depth discussion is that diminished BDNF function appears to play a minor part driving deficits in energy balance regulation. Accordingly, both global central depletion of Rai1 in BDNF+ neurons during development and deletion of Rai1 in BDNF+ neurons in the adult PVN elicited modest effects on body weight (less than 18% increase) and did not affect food intake. This contrasts with mice with selective Bdnf deletion in the adult PVN, which are hyperphagic and dramatically obese (90% heavier than controls). Therefore, the results suggest that deficits in RAI1 in PVN or the whole brain only moderately affect BDNF actions influencing energy homeostasis and that other signaling cascades and neuronal populations play a more prominent role driving the phenotypes observed in Rai1+/- mice, which are hyperphagic and 95% heavier than controls. The results from the proteomic analysis of hypothalamic tissue of Rai1 mutant mice and controls could be useful in generating alternative hypotheses. Depleting RAI1 in BDNF+ neurons had a robust effect compromising glycemic control. However, as the approach does not necessarily impact BDNF exclusively, there should be a larger discussion of alternative mechanisms.

      We thank the reviewer for these insightful comments. We want to highlight that global deletion of Rai1 from BDNF neurons did induce food intake increase in male mice (Fig 2figure supplement 4K). We have incorporated the following paragraphs into the discussion section.

      Lines 364-384: “Notably, mice lacking one copy of Rai1 in the BDNF-producing cells do not exhibit obesity, whereas SMS patients and SMS mice show pronounced obesity (Burns et al., 2010; Huang et al., 2016; Smith et al., 2005). This indicates that although reduced Bdnf expression and BDNF-producing neurons contribute to regulating body weight, additional molecular changes and other hypothalamic populations also play important roles in regulating body weight homeostasis in SMS. Our RPPA data suggest that mTOR signalling is also misregulated in addition to the reduced activation of the neurotrophin downstream cascades. Hypothalamic mTORC1 is crucial to regulate glucose release from the liver, peripheral lipid metabolism, and insulin sensitivity (Burke et al., 2017; Caron et al., 2016; Smith et al., 2015), while mTORC2 regulates glucose tolerance and fat mass (Kocalis et al., 2014). How the impaired mTOR signalling contributes to energy homeostasis defects in SMS and the therapeutic potential of targeting this pathway to treat SMS-related obesity remains unclear and warrants future investigation.

      What additional Rai1-dependent hypothalamic cell types residing in brain regions other than PVH regulate obesity in SMS? Other important cell types such as TRKB neurons within the PVH (An et al., 2020) and several RAI1-expressing hypothalamic nuclei including the arcuate nucleus, ventromedial nucleus of the hypothalamus (VMH), and lateral hypothalamus all play important roles in regulating energy homeostasis. POMC- and AGRP-expressing neurons within the arcuate nucleus are known to regulate food intake and glucose and insulin homeostasis (Quarta et al., 2021; Vohra et al., 2022). Therefore, Rai1 function in these neurons could contribute to obesity in SMS, a topic that awaits future investigation.”

      Reviewer #2 (Public Review):

      Understanding disease conditions often yields valuable insights into the physiological regulation of biological functions, as well as potential therapeutic approaches. In previous investigations, the author's research group identified abnormal expression of brain-derived neurotrophic factor (BDNF) in the hypothalamus of a mouse model exhibiting Smith-Magenis syndrome (SMS), which is caused by heterozygous mutations of the Rai1 gene. Human SMS is associated with distinct facial characteristics, sleep disturbances, behavioral issues, and intellectual disabilities, often accompanied by obesity. Conditional knockout (cKO) of the Bdnf gene from the paraventricular hypothalamus (PVH) in mice led to hyperphagic obesity, while overexpression of the Bdnf gene in the PVH of Rai1 heterozygous mice restored the SMS-like obese phenotype. Based on these preceding findings, the authors of the present study discovered that homozygous Rai1 cKO restricted to Bdnf-expressing cells, or Rai1 gene knockdown solely in Bdnf-positive neurons in the PVH, induced obesity along with intricate alterations in adipose tissue composition, energy expenditure, locomotion, feeding patterns, and glucose tolerance, some of which varied between sexes. Additionally, the authors demonstrated that a brain-penetrating drug capable of activating the TrkB pathway, a downstream signaling pathway of BDNF, partially alleviated the SMS-like obesity phenotype in female mice with Rai1 heterozygous mutations. Although the specific (neural) cell type responsible for this TrkB signaling remains an open question, the present study unequivocally highlights the importance of Rai1 gene function in PVH Bdnf neurons for the obesity phenotype, providing valuable insights into potential therapeutic strategies for managing obesity associated with SMS.

      In the proteomic analysis (Fig. 1), the authors elucidated that multiple phospho-protein signaling pathways, including Akt and mTOR pathways, exhibited significant attenuation in the SMS model mice. Of significance, the manifestation of haploinsufficiency of the Rai1 gene exclusively within the BDNF+ cells demonstrated negligible impact on body weight (Fig. 2supple 3D), despite observing a reduction in BDNF levels in the heterozygous Rai1 mutant (Fig. 1A). Conversely, the homozygous Rai1 cKO in the BDNF+ cells prominently displayed an obesity phenotype, suggesting substantial dissimilarities in the gene expression profiles between Rai1 heterozygous and homozygous conditions within the BDNF+ cell population. It would be advantageous to precisely identify the responsible differentially expressed genes, possibly including Bdnf itself, in the homozygous cKO model. The observed reduction in the excitability of PVH BDNF+ cells (Fig. 3) is presumably attributed to aberrant gene expression other than Bdnf itself, which may serve as a prospective target for gene expression analysis. Notably, the Rai1 homozygous cKO mice in BDNF+ cells exhibited some sexual dimorphisms in feeding and energy expenditures, as evidenced by Fig. 2 and related figures. Exploring the potential relevance of these sexual differences to human SMS cases and investigating the underlying cellular/molecular mechanisms in the future would provide valuable insights.

      Although the CRISPR-mediated knockdown of the Rai1 gene (Fig. 4) appears to be highly effective, given the broad transduction of AAV serotype 9, it may be helpful to exclude the possibility of other brain regions adjacent to the PVH, such as the DMH or VMH, being affected by this viral procedure. If the PVH-specificity is established, the majority of Rai1 cKO effects in Bdnf+ cells are primarily attributed to PVH-Bdnf+ cells based on the similarity of phenotypes observed. With regards to the apparent rescue of the body weight phenotype in Rai1 heterozygous mutants using a selective TrkB activator, the specific biological processes, and neurons responsible for this effect remain unclear to this reviewer. Elucidating these aspects would be significant when considering potential applications to human SMS cases.

      We appreciate the reviewer's insightful comments. We agree that the logical next step would be to identify the profile of the differentially expressed genes in our homozygous conditional knockout model. We have included the following paragraphs in the discussion.

      Lines 364-384: “Notably, mice lacking one copy of Rai1 in the BDNF-producing cells do not exhibit obesity, whereas SMS patients and SMS mice show pronounced obesity (Burns et al., 2010; Huang et al., 2016; Smith et al., 2005). This indicates that although reduced Bdnf expression and BDNF-producing neurons contribute to regulating body weight, additional molecular changes and other hypothalamic populations also play important roles in regulating body weight homeostasis in SMS. Our RPPA data suggest that mTOR signalling is also misregulated in addition to the reduced activation of the neurotrophin downstream cascades. Hypothalamic mTORC1 is crucial to regulate glucose release from the liver, peripheral lipid metabolism, and insulin sensitivity (Burke et al., 2017; Caron et al., 2016; Smith et al., 2015), while mTORC2 regulates glucose tolerance and fat mass (Kocalis et al., 2014). How the impaired mTOR signalling contributes to energy homeostasis defects in SMS and the therapeutic potential of targeting this pathway to treat SMS-related obesity remains unclear and warrants future investigation.

      What additional Rai1-dependent non-PVH hypothalamic cell types regulate obesity in SMS? Other important cell types such as TRKB neurons within the PVH (An et al., 2020) and several RAI1expressing hypothalamic nuclei including the arcuate nucleus, ventromedial nucleus of the hypothalamus (VMH), and lateral hypothalamus all play important roles in regulating energy homeostasis. POMC- and AGRP-expressing neurons within the arcuate nucleus are known to regulate food intake and glucose and insulin homeostasis (Quarta et al., 2021; Vohra et al., 2022). Therefore, Rai1 function in these neurons could contribute to obesity in SMS, a topic that awaits future investigation.”

      Lines 409-418: “It is plausible that RAI1 regulates the expression of genes encoding inward rectifier K+ channels, which regulate neuronal activity and potentially energy homeostasis. For instance, KIR6 (a family of ATP-sensitive potassium channels, KATP) is widely expressed in the hypothalamus. Deleting the hypothalamic KIR6.2 subunit impairs KATP channel function and glucose tolerance (Miki et al., 2001; Parton et al., 2007). Moreover, reduced expression of hypothalamic GIRK4 (encoding an inwardly rectifying potassium channel) causes obesity (Perry et al., 2008). GABAergic neurotransmission from arcuate AGRP-expressing neurons to the PVH neurons is important to increase appetite by favouring hyperphagia (Atasoy et al., 2012). Disrupting the composition of these ion channels could contribute to reduced PVHBDNF neuronal firing, which awaits further investigations.”

      Moreover, to facilitate the future exploration of the potential relevance of sexual differences to human SMS cases, we have incorporated the following explanation in the discussion section.

      Lines 419-426: “Female mice with a conditional knockout of Rai1 from BDNF-producing neurons do not display a noteworthy difference in food intake. Conversely, their male counterparts exhibit a significant increase in food intake. Although SMS individuals of both genders tend to overeat, male patients who are obese show significantly higher food consumption than their female counterparts (Gandhi et al., 2022). This observation raises the possibility that Rai1 regulates eating behaviours through multiple cell types in the hypothalamus and that a male-specific involvement of BDNF-producing neurons in regulating food intake, potentially provides a neurobiological basis for the observed pattern in SMS patients (Gandhi et al., 2022).”

      To exclude the possibility of other brain regions adjacent to the PVH (such as VMH and arcuate nucleus) being affected by our AAV-CRISPR-mediated Rai1 knockout, we have analyzed other hypothalamic regions including VMH and arcuate nucleus from the same slides used to confirm PVH viral expression and we confirmed that the AAV was not expressed in these regions. We have incorporated a representative image (Figure 4 suppl 1F) depicting limiting AAV expression in these nuclei.

      Regarding LM22A-4: It is possible that LM22A-4 functions directly through binding to TRKB or indirectly engages TRKB downstream molecules through activating other receptors such as GPCR. LM22A-4 appears to engage neurotrophin downstream PI3KAKT pathway, which was identified by our RPPA analysis to be downregulated in the hypothalamus of Rai1-deficient mice. Reduced AKT activity is associated with insulin resistance and obesity in mice. Restoration of functional activity of AKT by LM22A-4 could be the primary mode of action for this drug in the brain. However, since we observed that this drug only partially rescued the body weight defect, future research exploring more potent TrkB agonists or utilizing a combination therapy that targets both the neurotrophin and mTOR pathways might yield improved responses to the pharmacological interventions. We have included the following paragraph in the discussion:

      Lines 451-461: “ We recognize that while several in vivo studies have demonstrated the potential of LM22A-4 in targeting neurotrophin downstream signalling (Kron et al., 2014; Li et al., 2017), an in vitro analysis failed to demonstrate the ability of LM22A-4 to activate TrkB directly (Boltaev et al., 2017). Therefore, the precise mechanism by which LM22A-4 enhances AKT cascades in the mammalian brain remains unclear and awaits further investigations. In the hypothalamus of SMS mice, LM22A-4 could indirectly engage neurotrophin downstream PI3KAKT pathway through the G protein-coupled receptor-dependent transactivation of the TRKB receptor (Domeniconi & Chao, 2010) or other unknown mechanisms. Moreover, while LM22A4 may have potential side effects, we found that wild-type mice treated with LM22A-4 did not show a further decrease in body weight, suggesting limited side effects regarding body weight regulation.”

      Overall, the present study represents a valuable addition to the authors' series of high-quality molecular genetic investigations into the in vivo functions of the Rai1 gene. This reviewer particularly commends their diligent efforts to enhance our comprehension of SMS and contribute to the future development of more effective therapies for this syndrome.

      We thank the reviewer for finding our study valuable in advancing the understanding of RAI1 function.

      Reviewer #3 (Public Review):

      Summary:

      Smith-Magenis syndrome (SMS) is associated with obesity and is caused by deletion or mutations in one copy of the Rai1 gene which encodes a transcriptional regulator. Previous studies have shown that Bdnf gene expression is reduced in the hypothalamus of Rai1 heterozygous mice. This manuscript by Javed et al. further links SMS-associated obesity with reduced Bdnf gene expression in the PVH.

      Strengths:

      The authors show that deletion of the Rai1 gene in all BDNF-expressing cells or just in the PVH BDNF neurons postnatally caused obesity. Interestingly, mutant mice displayed sexual dimorphism in the cause for the obesity phenotype. Overall, the data are well presented and convincing except the data from LM22A-4.

      Weaknesses:

      1) The most serious concern is about data from LM22A-4 administration experiments (Figure 5 and associated supplemental figures). A rigorous study has demonstrated that LM22A-4 does not activate TrkB (Boltaev et al., Science Signaling, 2017), which is consistent with unpublished results from many labs in the neurotrophin field. It is tricky to interpret body weight data from pharmacological studies because compounds always have some side effects, which can reduce body weight non-specifically.

      We thank this reviewer for their valuable comments. Indeed, the precise mechanism by which LM22A-4 exerts its effect is not entirely clear and there has been mixed evidence regarding its identity as a TRKB agonist in vitro. We have refrained from stating LM22A-4 as a partial agonist of TRKB, and instead have focused on highlighting the potential of this drug in activating neurotrophin downstream signalling through increasing AKT phosphorylation in vivo. We have modified the title to remove TRKB, and the following changes have been made in the discussion:

      Lines 451-461: “ We recognize that while several in vivo studies have demonstrated the potential of LM22A-4 in targeting neurotrophin downstream signalling (Kron et al., 2014; Li et al., 2017), an in vitro analysis failed to demonstrate the ability of LM22A-4 to activate TrkB directly (Boltaev et al., 2017). Therefore, the precise mechanism by which LM22A-4 enhances AKT cascades in the mammalian brain remains unclear and awaits further investigations. In the hypothalamus of SMS mice, LM22A-4 could indirectly engage neurotrophin downstream PI3KAKT pathway through the G protein-coupled receptor-dependent transactivation of the TRKB receptor (Domeniconi & Chao, 2010) or other unknown mechanisms. Moreover, while LM22A4 may have potential side effects, we found that wild-type mice treated with LM22A-4 did not show a further decrease in body weight, suggesting limited side effects regarding body weight regulation.”

      2) The resolution of all figures are poor, and thus I could not judge the quality of the micrographs.

      We have updated with higher resolution images.

      3) Citation of the literature is not precise. The study by An et al. (2015) shows that deletion of the Bdnf gene in the PVH leads to obesity due to increased food intake and reduced energy expenditure (not just hyperphagic obesity; Line 72). Furthermore, the study by Unger et al. (2017) carried out Bdnf deletion in the VMH and DMH using AAV-Cre and did not discuss SF1 neurons at all (Line 354). The two studies by Yang et al. (Mol Endocrinol, 2016) and Kamitakahara et al. (Mol Metab, 2015) did use SF1-Cre to delete the Bdnf gene and did not observe any obesity phenotype.

      We thank the reviewer for bringing this to our attention. We have revised the text to ensure accurate representation of the cited publications. The following changes have been made: Lines 348-350: “ Although BDNF is required in the VMH and DMH to regulate body weight (Unger et al., 2007), embryonic deletion of Bdnf from the SF1-lineage populations including the VMH did not result in obesity (Kamitakahara et al., 2016; Yang et al., 2016).”

      4) Animal number is not described in many figure legends.

      We thank the reviewer for pointing it out. We have revised the manuscript to incorporate the missing animal numbers.

      Reviewer #1 (Recommendations For The Authors):

      Additional points:

      1) The data provided indicating increased inhibitory tone onto BDNF neurons in PVN of Rai1 mutant mice are not convincing that inhibitory drive is significantly affected.

      We have modified the sentences as follows, we have also deleted these conclusions from the abstract and discussion:

      Lines 215-220: “We observed a slight rightward shift of the probability of miniature inhibitory postsynaptic current (mIPSC) frequency in cKO PVHBDNF neurons, although the average frequency (Fig 3K) was not significantly different between groups. The probability of mIPSC amplitude also showed a right shift without a significant change (Fig 3L, Figure 3—figure supplement 1D). However, we observes a significant increased area under the curve (Fig 3M).”

      2) Fig. 3C - Was outlier analysis performed for these data? One of the data points for the control group looks like an outlier that might be skewing the data.

      We performed an outlier analysis and found that indeed one data point was an outlier, after removing this data point, the data remained statistically significant (*p<0.05) and the new manuscript has been updated.

      Reviewer #2 (Recommendations For The Authors):

      1) The manuscript would benefit from improved usage and precise descriptions of statistics. The authors often provided only general statements such as "one or two-way ANOVA" without specifying the exact statistical tests used. It is important to differentiate between one-way and two-way ANOVA, particularly when using the latter, by clearly indicating the within-group effects and interaction effects. The representation of p-values associated with ANOVA using asterisks requires clarification, specifying which statistics indicate ANOVA results and which ones correspond to post hoc analysis. It is advisable to assess the normality of the distribution before employing t-tests or consider non-parametric comparisons such as Wilcoxon's rank sum test if normality assumptions are not met. Additionally, it is essential to specify whether the tests are one-sided or two-sided and whether they are paired or unpaired. In some figure panels, such as Fig. 2H and K, the statistical tests used were not indicated at all.

      We have clarified the exact statistical tests in the figure legend for each figure.

      2) Rearranging the figures to facilitate a direct comparison of the sexual phenotypes (Fig. 2 and Fig. 2-supple 4) within the same figures would greatly improve reader comprehension.

      We have decided to keep the figure arrangement because of the focus on female mice in the main figures.

      3) To improve the comprehension of the figures and text, the following points should be addressed:

      • Fig. 1D: The definition of the expression level in the color code is not clear.

      Explanation for the color code has been added in the method section.<br /> Lines 652-656: “The vertical axis of the dendrogram represents the dissimilarity (measured as distance) between protein expressions, and the horizontal axis represents the individual test samples. The colour code (ranging from red to yellow to green) specifies the expression levels of different proteins, where red indicates nifies low expression, yellow indicates intermediate expression, and green indicates high expression.”

      • Fig. 1F: One parenthesis is missing from the figure label.

      Fixed

      • Fig. 2C: It is unclear why there are so many dots for just n = 3 animals. It would be better to specify the conditions or use "animals" as a unit of measurement.

      The dots represent percentage cells quantified per sliced from 3 animals. It has been clarified in the figures.

      • Fig. 2F: There seems to be an unnecessary label "I" in the middle of the panel.

      Fixed

      • It is not completely clear if the data in Fig. 2E-L were all obtained at 26 weeks of age.

      To clarify, following line has been added to the method section:

      Lines 517-518: “After the 25th week, mice were subjected to body composition analysis.”

      • In Fig. 2-Supple 1, the legend should read "G-J." Additionally, please provide a definition for the arrowheads.

      Line 1086: “yellow arrowheads indicate Ai9 marked BDNF cells co-expressing endogenous BDNF.”

      • It is not completely clear if the data in Fig. 3 were all obtained from female mice.

      It is explained in the legend of Fig 3.

      • The description of the number of animals seems to be missing in Fig. 4

      The description for the number of animals has been added in the figure legend. Line 1004: “(Ctrl group: n=5, Exp group: n =5)”

      • On line 280-281, "Fig 4A." should be corrected to "Fig. 5A."

      Corrected.

      • In Fig. 5C-E, it is uncertain if multiple pairwise comparisons for three groups are statistically appropriate. At the very least, multiple comparisons should be corrected.

      We performed two-way ANOVA where mean body weight of age-matched groups were compared with each other (i.e. between control saline-injected and SMS saline-injected, SMS saline-injected and LM22A-4 -saline injected, and Control saline-injected and SMS LM22A-4 injected). We used Šidák’s multiple comparisons test, where statistical significance was indicated with p<0.05, p < 0.01, p<0.001, **p < 0.0001. We have clarified this in the figure 5 legends.

      • The unit of measurement should be standardized across figures, if possible, to facilitate better side-by-side comparisons. For example, most bodyweight figures use "g" (grams), but "mg" (milligrams) is used in Fig. 5.

      All measurements are corrected to be consistent (in grams).

      • It is unclear if nM (not mM) of glucose was actually measured in the glucose tolerance test (Fig. 2L and Fig. 4L).

      Fixed.

      Reviewer #3 (Recommendations For The Authors):

      1) The authors can remove the LM22A-4 data without much detrimental effects on the conclusion of the manuscript. Otherwise, the authors have to demonstrate that LM22A-4 activates TrkB, does not have any toxicity, and does not cause aversion.

      We thank this reviewer the valuable comments and we acknowledge the valid concern. Indeed, the precise mechanism by which LM22A-4 exert its effects is not clear and there has been mixed opinions regarding its function as TRKB agonist in in-vitro assays. To clarify, we have refrained from stating LM22A-4 as a partial agonist of TRKB, and instead have focused on highlighting the potential of this drug in activating neurotrophin downstream signalling through increased AKT phosphorylation, in-vivo.

      We have also modified the title of our article to exclude the word “TRKB Signalling”. The new title is as follows:

      “Smith-Magenis syndrome protein RAI1 regulates body weight homeostasis through hypothalamic BDNF-producing neurons and neurotrophin downstream signalling”

      2) Line 50: "40% > 95th percentile weight, 40% > 85th percentile weight" should be "40% > 95th percentile weight, 80% > 85th percentile weight".

      Corrected.

      3) Abbreviations for brain-derived neurotrophic factor: Bdnf for gene and BDNF for protein.

      Abbreviations have been corrected throughout the manuscript.

      4) Need to specify the animal age when viruses were injected into the PVH to inactivate the Bdnf gene.

      Line 235: Virus was injected at 3 weeks of age. It has been specified in the main text.

      5) Line 832: "3 technical triplicates" can be simplified as "3 technical repeats" because 3 and triplicates are redundant.

      Corrected.

      6) Figure 2B: The "O" in cKO is misplaced.

      Fixed.

      7) Figure 3: The black legends in E and F should include Ctrl.

      Fixed in the Figure 3.

    1. Author Response

      The data we produce are not criticized as such and thus, do not require revision; the criticisms concern our interpretation of them. General themes of the reviews are that i) genetic signatures do not matter for defining neuronal types (here sympathetic versus parasympathetic); ii) that a cholinergic postganglionic autonomic neuron must be parasympathetic; and iii) that some physiology of the pelvic region would deserve the label “parasympathetic”. We answered the latter argument in (Espinosa-Medina et al., 2018) to which we refer the interested reader; and we fully disagree with the first two. Of note, part of the last sentence of the eLife assessment is misleading and does not reflect the referees’ comments. Our paper analyses genetic differences between the cranial and sacral outflow and uses them to argue that they cannot be both parasympathetic. The eLife assessment acknowledges the “genetic differences” but concludes that, somehow, they don’t detract from a common parasympathetic identity. We take issue with this paradox, of course, but it is coherent with the referee’s comments. On the other hand, the eLife assessment alone pushes the paradox one step further by stating that “functional differences” between the cranial and sacral outflows can’t either prevent them from being both parasympathetic. We would also object to this, but the only “functional differences” used by the referees to dismiss our diagnostic of a sympathetic-like character (rather than parasympathetic) for the sacral outflow are between noradrenergic and cholinergic, and between sympathetic and parasympathetic (and we also disagree with those, see above, and below) —not between cranial and sacral.

      We will thus use the opportunity offered by eLife to keep the paper as it is (with a few minor stylistic changes). We respond below to the referees’ detailed remarks and hope that the publication, as per eLife new model, of the paper, the referees’ comments and our response will help move the field forward.

      Public review by Referee #1

      “Consistently, the P3 cluster of neurons is located close to sympathetic neuron clusters on the map, echoing the conventional understanding that the pelvic ganglia are mixed, containing both sympathetic and parasympathetic neurons”.

      The greater closeness of P3 than of P1/2/4 to the sympathetic cluster can be used to judge P1/2/4 less sympathetic than P3 (and more… something else), but not more parasympathetic. There is no echo of the “conventional understanding” here.

      “A closer look at the expression showed that some genes are expressed at higher levels in sympathetic neurons and in P2 cluster neurons ” [We assume that the referee means “in sympathetic neurons and in P3 cluster neurons”] but much weaker in P1, P2, and P4 neurons such as Islet1 and GATA2, and the opposite is true for SST. Another set of genes is expressed weakly across clusters, like HoxC6, HoxD4, GM30648, SHISA9, and TBX20.

      These statements are inaccurate; On the one hand, the classification is not based on impression by visual inspection of the heatmap, but by calculations, using thresholds. Admittedly, the thresholds have an arbitrary aspect, but the referee can verify (by eye inspection of heatmap) that genes which we calculate as being at “higher levels in sympathetic neurons and in P3 cluster neurons, but much weaker in P1, P2, and P4 neurons” or vice versa, i.e. noradrenergic or cholinergic neurons (genes from groups V and VI, respectively), have a much bigger difference than those cited by the referee, indeed are quasi-absent from the weaker clusters or ganglia. In addition, even by subjective eye inspection:

      Islet is equally expressed in P4 and sympathetics.

      SST is equally expressed in P1 and sympathetics.

      Tbx20 is equally expressed in P2 and sympathetics.

      HoxC6, HoxD4, GM30648, SHISA9 are equally expressed in all clusters and all sympathetic ganglia.

      “Since the pelvic ganglia are in a caudal body part, it is not surprising to have genes expressed in pelvic ganglia, but not in rostral sphenopalatine ganglia, and vice versa (to have genes expressed in sphenopalatine ganglia, but not in pelvic ganglia), according to well recognized rostro-caudal body patterning, such as nested expression of hox genes.”

      We do not simply show “genes expressed in pelvic ganglia, but not in rostral sphenopalatine ganglia, and vice versa”, i.e. a genetic distance between pelvic and sphenopalatine, but many genes expressed in all pelvic cells and sympathetic ones, i.e. a genetic proximity between pelvic and sympathetic. This situation can be deemed “unsurprising”, but it can only be used to question the parasympathetic nature of pelvic cells (as we do), or considered irrelevant (as the referee does, because genes would not define cell types, see our response to an equivalent stance by Referee#2). Concerning Hox genes, we do take them into account, and speculate in the discussion that their nested expression is key to the structure of the autonomic nervous system, including its division into sympathetic and parasympathetic outflows.

      It is much simpler and easier to divide the autonomic nervous system into sympathetic neurons that release noradrenaline versus parasympathetic neurons that release acetylcholine, and these two systems often act in antagonistic manners, though in some cases, these two systems can work synergistically. It also does not matter whether or not pelvic cholinergic neurons could receive inputs from thoracic-lumbar preganglionic neurons (PGNs), not just sacral PGNs; such occurrence only represents a minor revision of the anatomy. In fact, it makes much more sense to call those cholinergic neurons located in the sympathetic chain ganglia parasympathetic.

      This “minor revision of the anatomy” would make spinal preganglionic neurons which are universally considered sympathetic (in the thoraco-lumbar chord), synapse onto large numbers of parasympathetic neurons (in the paravertebral chains for sweat glands and periosteum, and in the pelvic ganglion), robbing these terms of any meaning.

      Thus, from the functionality point of view, it is not justified to claim that "pelvic organs receive no parasympathetic innervation".

      There never was any general or rigorous functional definition of the sympathetic and parasympathetic nervous systems — it is striking, almost ironic, that Langley, creator of the term parasympathetic and the ultimate physiologist, provides an exclusively anatomic definition in his Autonomic Nervous System, Part I. Hence, our definition cannot clash with any “functionality point of view”. In fact, as we briefly say in the discussion and explore in (Espinosa-Medina et al., 2018), it is the “sacral parasympathetic” paradigm which is unjustified from a functionality point of view, for implying a functional antagonism across the lumbo-sacral gap, which has been disproven repeatedly. It remains to be determined which neurons are antagonistic to which on the blood vessels of the external genitals; antagonism within one division of the autonomic nervous system would not be without precedent (e.g. there exist both vasoconstrictor and vasodilator sympathetic neurons, and both, inhibitor and activator enteric motoneurons). The way to this question is finally open to research, and as referee#2 says “it is early days”.

      Public review by Referee #2

      This work further documents differences between the cranial and sacral parasympathetic outflows that have been known since the time of Langley - 100 years ago.

      We assume that the referee means that it is the “cranial and sacral parasympathetic outflows” which “have been known since the time of Langley”, not their differences (that we would “further document”): the differences were explicitly negated by Langley. As a matter of fact, the sacral and cranial outflows were first likened to each other by Gaskell, 140 years ago (Gaskell, 1886). This anatomic parallel (which is deeply flawed (Espinosa-Medina et al., 2018)) was inherited wholesale by Langley, who added one physiological argument (Langley and Anderson, 1895) (which has been contested many times (Espinosa-Medina et al., 2018) and references within).

      In addition, the sphenopalatine and other cranial ganglia develop from placodes and the neural crest, while sympathetic and sacral ganglia develop from the neural crest alone.

      Contrary to what the referee says, the sphenopalatine has no placodal contribution. There is no placodal contribution to any autonomic ganglion, sympathetic or parasympathetic (except an isolated claim concerning the ciliary ganglion (Lee et al., 2003)). All autonomic ganglia derive from the neural crest as determined a long time ago in chicken. For the sphenopalatine in mouse, see our own work (Espinosa-Medina et al., 2014).

      One feature that seems to set the pelvic ganglion apart is […] the convergence of preganglionic sympathetic and parasympathetic synapses on individual ganglion cells (Figure 3). This unusual organization has been reported before using microelectrode recordings (see Crowcroft and Szurszewski, J Physiol (1971) and Janig and McLachlan, Physiol Rev (1987)). Anatomical evidence of convergence in the pelvic ganglion has been reported by Keast, Neuroscience (1995).

      Contrary to what the referee says, we do not provide in Figure 3 any evidence for anatomic convergence, i.e. for individual pelvic ganglion cells receiving dual lumbar and sacral inputs. We simply show that cholinergic neurons figure prominently among targets of the lumbar pathway. This said, the convergence of both pathways on the same pelvic neurons, described in the references cited by the referee, is another major problem in the theory of the “sacral parasympathetic” (as we discussed previously (Espinosa-Medina et al., 2018)).

      It should also be noted that the anatomy of the pelvic ganglion in male rodents is unique. Unlike other species where the ganglion forms a distributed plexus of mini-ganglia, in male rodents the ganglion coalesces into one structure that is easier to find and study. Interestingly the image in Figure 3A appears to show a clustering of Chat-positive and Th-positive neurons. Does this result from the developmental fusion of mini ganglia having distinct sympathetic and parasympathetic origins?

      The clustering of Chat-positive and Th-positive cells could arise from a number of developmental mechanisms, that we have no idea of at the moment. This has no bearing on sympathetic and parasympathetic.

      In addition, Brunet et al dismiss the cholinergic and noradrenergic phenotypes as a basis for defining parasympathetic and parasympathetic neurons. However, see the bottom of Figure S4 and further counterarguments in Horn (Clin Auton Res (2018)).

      The bottom of Figure S4 simply indicates which cells are cholinergic and adrenergic. We have already expounded many times that noradrenergic and cholinergic do not coincide with sympathetic and parasympathetic. Henry Dale (Nobel Prize 1936) demonstrated this. Langley himself devoted several pages of his final treatise to this exception to his “Theory on the relation of drugs to nerve system” (Langley, 1921) (p43) (which was actually a bigger problem for him than it is for us, for reason which are too long to recount here; it is as if the theoretical difficulties experienced by Langley had been internalized to this day in the form of a dismissal of the cholinergic sympathetic neurons as a slightly scandalous but altogether forgettable oddity). (Horn, 2018), reviews the evidence that the thoracic cholinergic sympathetic phenotype is brought about by a secondary switch upon interaction with the target and argues that this would be a fundamental difference with the sacral “parasympathetic”. But in fact the secondary switch is preceded by co-expression of ChAT and VAChT with Th in most sympathetic neurons (reviewed in (Ernsberger and Rohrer, 2018)); and we have no idea of the dynamic in the pelvic ganglion. It may also be mentioned in this context that target-dependent specification of neuronal identity has also been demonstrated of other types of sympathetic neurons ((Furlan et al., 2016)

      What then about neuropeptides, whose expression pattern is incompatible with the revised nomenclature proposed by Brunet et al.?

      There was never any neuropeptide-inspired criterion for a nomenclature of the autonomic nervous system.

      Figure 1B indicates that VIP is expressed by sacral and cranial ganglion cells, but not thoracolumbar ganglion cells.

      Contrary to what the referee says, there are VIP-positive cells in our sympathetic data set and even strongly positive ones, except they are scattered and few (red bars on the UMAP). They correspond to cholinergic sympathetics, likely sudomotor, which are known to contain VIP (e.g.(Anderson et al., 2006)(Stanke et al., 2006)). In other words, VIP is probably part of what we call the cholinergic synexpression group (but was not placed in it by our calculations, probably because of a low expression level even in sympathetic noradrenergic cells).

      The authors do not mention neuropeptide Y (NPY). The immunocytochemistry literature indicates that NPY is expressed by a large subpopulation of sympathetic neurons but never by sacral or cranial parasympathetic neurons.

      Contrary to what the referee says, Keast (Keast, 1995) finds 3.7% of pelvic neurons double stained for NPY and VIP in male rats, and says (Keast, 2006) that in females “co-expression of NPY and VIP is common” ( thus in cholinergic neurons that the referee calls “parasympathetic”). Single cell transcriptomics is probably more sensitive than immunochemistry, and in our dichotomized data set (table S1), NPY is expressed in all pelvic clusters and all sympathetic ganglia. In other words, it is one more argument for their kinship. It does not appear in the heatmap because it ranks below the 100 top genes.

      References

      Anderson, C. R., Bergner, A. and Murphy, S. M. (2006). How many types of cholinergic sympathetic neuron are there in the rat stellate ganglion? Neuroscience 140, 567–576.

      Ernsberger, U. and Rohrer, H. (2018). Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 13, 20.

      Espinosa-Medina, I., Outin, E., Picard, C. A., Chettouh, Z., Dymecki, S., Consalez, G. G., Coppola, E. and Brunet, J. F. (2014). Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345, 87–90.

      Espinosa-Medina, I., Saha, O., Boismoreau, F. and Brunet, J.-F. (2018). The “sacral parasympathetic”: ontogeny and anatomy of a myth. Clin Auton Res 28, 13–21.

      Furlan, A., La Manno, G., Lübke, M., Häring, M., Abdo, H., Hochgerner, H., Kupari, J., Usoskin, D., Airaksinen, M. S., Oliver, G., et al. (2016). Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. 19, 1331–1340.

      Gaskell, W. H. (1886). On the Structure, Distribution and Function of the Nerves which innervate the Visceral and Vascular Systems. J Physiol 7, 1-80.9.

      Horn, J. P. (2018). The sacral autonomic outflow is parasympathetic: Langley got it right. Clin Auton Res 28, 181–185.

      Jänig, W. (2006). The Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge: Cambridge University Press.

      Keast, J. R. (1995). Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience 66, 655–662.

      Keast, J. R. (2006). Plasticity of pelvic autonomic ganglia and urogenital innervation. International Review of Cytology - a Survey of Cell Biology, Vol 248 248, 141-+.

      Langley, J. N. (1921). In The autonomic nervous system (Pt. I)., p. Cambridge: Heffer & Sons ltd.

      Langley, J. N. and Anderson, H. K. (1895). The Innervation of the Pelvic and adjoining Viscera: Part II. The Bladder. Part III. The External Generative Organs. Part IV. The Internal Generative Organs. Part V. Position of the Nerve Cells on the Course of the Efferent Nerve Fibres. J Physiol 19, 71–139.

      Lee, V. M., Sechrist, J. W., Luetolf, S. and Bronner-Fraser, M. (2003). Both neural crest and placode contribute to the ciliary ganglion and oculomotor nerve. Developmental biology 263, 176–190.

      Stanke, M., Duong, C. V., Pape, M., Geissen, M., Burbach, G., Deller, T., Gascan, H., Parlato, R., Schütz, G. and Rohrer, H. (2006). Target-dependent specification of the neurotransmitter phenotype:cholinergic differentiation of sympathetic neurons is mediated in vivo by gp130 signaling. Development 133, 141–150.

      Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, M., Braun, E., Borm, L. E., La Manno, G., et al. (2018). Molecular Architecture of the Mouse Nervous System. Cell 174, 999-1014.e22.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This useful manuscript challenges the utility of current paradigms for estimating brain-age with magnetic resonance imaging measures, but presents inadequate evidence to support the suggestion that an alternative approach focused on predicting cognition is more useful. The paper would benefit from a clearer explication of the methods and a more critical evaluation of the conceptual basis of the different models. This work will be of interest to researchers working on brain-age and related models.

      Response: Thank you so much for providing high-quality reviews on our manuscript. We revised the manuscript to address all of the reviewers’ comments and provided full responses to each of the comments below.

      Briefly, regarding clearer explanations of the methods, we added additional analyses (e.g., commonality analyses on ridge regression and on multiple regressions with a quadratic term for chronological age) to address some of the concerns and additional details in text and figures to ensure that the reader can fully understand our methodological procedures. Regarding the critical evaluation of the conceptual basis of the different models, we added discussions to help with interpretations and the scope of the generalisability of our findings. For instance, as opposed to treating Brain Cognition and Brain Age as separate biomarkers and comparing them in the ability to explain fluid cognition, we now treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. In other words, we now examined the extent to which Brain Age missed the variation in the brain MRI that could explain fluid cognition (for this particular issue, please see our response to Reviewer 3 Public Review #4).

      Reviewer 1:

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. I have some comments that I believe the authors ought to address which mostly relate to clarity and interpretation.

      Reviewer 1 Public Review #1:

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. I would suggest the authors nuance their discussion to provide broader considerations of the utility of their method and on the limits of interpretation of brain-age models more generally. Further, I think that since brain-age models by construction confound relevant biological variation with the accuracy of the regression models used to estimate them, there may be limits to the interpretation of (e.g.) the brain-age gap is as a dimensionless biomarker. This has also been discussed elsewhere (see e.g. https://academic.oup.com/brain/article/143/7/2312/5863667). I would suggest that the authors consider and comment on these issues.

      Response: Thank you Reviewer 1 for pointing out these important issues. We addressed them in our response to Reviewer 1 Recommendations For The Authors #1 (see below).

      Reviewer 1 Public Review #2

      Second, from a methods perspective, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand how the stacked regression models were constructed. Stacked models can be prone to overfitting when combined with cross-validation. This is because the predictions from the first-level models (i.e. the features that are provided to the second level 'stacked' models) contain information about the training set and the test set. If cross-validation is not done very carefully (e.g. using multiple hold-out sets), information leakage can easily occur at the second level. Unfortunately, there is not a sufficient explanation of the methodological procedures in the current manuscript to fully understand what was actually done. Please provide more information to enable the reader to better understand the stacked regression models. If the authors are not using an approach that fully preserves training and test separability, they need to do so.

      Response: Thank you Reviewer 1. We addressed this issue in our response to Reviewer 1 Recommendations For The Authors #2 (see below). Briefly, we now made it clearer that training models for both non-stacked and stacked models did not involve the test set, ensuring that there was no data leakage between training and test sets.

      Reviewer 1 Public Review #3

      Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits?

      Response: Thank you Reviewer 1. We addressed this issue in our response to Reviewer 1 Recommendations For The Authors #3 (see below).

      Reviewer 1 Public Review #4:

      Please provide more details about the task designs, MRI processing procedures that were employed on this sample in addition to the regression methods, and bias-correction methods used. For example, there are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted.

      Response: Thank you Reviewer 1. We addressed this issue in our response to Reviewer 1 Recommendations For The Authors #5-#6. Briefly, we followed your advice and add all of the suggested details.

      Reviewer 2 (Public Review):

      Reviewer 2 Public Review Overall:

      In this study, the authors aimed to evaluate the contribution of brain-age indices in capturing variance in cognitive decline and proposed an alternative index, brain-cognition, for consideration. The study employs suitable data and methods, albeit with some limitations, to address the research questions. A more detailed discussion of methodological limitations in relation to the study's aims is required. For instance, the current commonality analysis may not sufficiently address potential multicollinearity issues, which could confound the findings. Importantly, given that the study did not provide external validation for the indices, it is unclear how well the models would perform and generalize to other samples. This is particularly relevant to their novel index, brain-cognition, given that brain-age has been validated extensively elsewhere. In addition, the paper's rationale for using elastic net, which references previous fMRI studies, seemed somewhat unclear. The discussion could be more nuanced and certain conclusions appear speculative.

      Response Thank you for your encouragement. We have now added discussion of methodological limitations (see below). Regarding potential multicollinearity issues, we addressed this comment using Ridge regressions (see our response to Reviewer 2 Recommendations For The Authors #2). Regarding external validation, we now added discussions about how consistency between our results and several recent studies that investigated similar issues with Brain Age in different populations (see Reviewer 2 Recommendations For The Authors #1). Regarding Brain Cognition, we also added previous studies showing similarly high prediction for cognition functioning (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We added a discussion about Elastic Net (see Reviewer 1 Recommendations For The Authors #6)

      Discussion

      “There are several potential limitations of this study. First, we conducted an investigation relying only on one dataset, the Human Connectome Project in Aging (HCP-A) (Bookheimer et al., 2019). While HCP-A used state-of-the-art MRI methodologies, covered a wide age range from 36 to 100 years old and used several task-fMRI from different tasks that are harder to find in other bigger databases (e.g., UK Biobank from Sudlow et al., 2015), several characteristics of HCP-A might limit the generalisability of our findings. For instance, the tasks used in task-based fMRI in HCP-A are not used widely in clinical settings (Horien et al., 2020). This might make it challenging to translate the approaches used here. Similarly, HCP-A also excluded participants with neurological conditions, possibly making their participants not representative of the general population. Next, while HCP-A’s sample size is not small (n=725 and 504 people, before and after exclusion, respectively), other datasets provide a much larger sample size (Horien et al., 2020). Similarly, HCP-A does not include younger populations. But as mentioned above, a study with a larger sample in older adults (Cole, 2020) and studies in younger populations (8-22 years old) (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023) also found small effects of the adjusted Brain Age Gap in explaining cognitive functioning. And the disagreement between the predictive performance of age-prediction models and the utility of Brain Age found here is largely in line with the findings across different phenotypes seen in a recent systematic review (Jirsaraie, Gorelik, et al., 2023).”

      Reviewer 2 Public Review #1:

      The authors aimed to evaluate how brain-age and brain-cognition indices capture cognitive decline (as mentioned in their title) but did not employ longitudinal data, essential for calculating 'decline'. As a result, 'cognition-fluid' should not be used interchangeably with 'cognitive decline,' which is inappropriate in this context.

      Response Thank you for raising this issue. We now no longer used the word ‘cognitive decline’.

      Reviewer 2 Public Review #2:

      In their first aim, the authors compared the contributions of brain-age and chronological age in explaining variance in cognition-fluid. Results revealed much smaller effect sizes for brain-age indices compared to the large effects for chronological age. While this comparison is noteworthy, it highlights a well-known fact: chronological age is a strong predictor of disease and mortality. Has the brain-age literature systematically overlooked this effect? If so, please provide relevant examples. They conclude that due to the smaller effect size, brain-age may lack clinical significance, for instance, in associations with neurodegenerative disorders. However, caution is required when speculating on what brain-age may fail to predict in the absence of direct empirical testing. This conclusion also overlooks extant brain-age literature: although effect sizes vary across psychiatric and neurological disorders, brain-age has demonstrated significant effects beyond those driven by chronological age, supporting its utility.

      Response For aim 1, we focused our claims on cognitive functioning and not on any clinical significance for neurodegenerative disorders. We now made it clearer that the small effects of the Corrected Brain Age Gap in explaining fluid cognition of aging individuals found here are consistent with a study with a larger sample in older adults (Cole, 2020) and studies in younger populations (8-22 years old) (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023).

      We believe this issue of the utility of brain age on cognitive functioning vs neurological/psychological disorders requires another consideration, namely the discrepancy in the training and test samples typically used for studies focusing on neurological/psychological disorders. We made this point in the discussion now (see below).

      Discussion

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). That is, those Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. This means that age-prediction models from Brain Age studies focusing on neurological/psychological disorders might be under-fitted when applied to participants with neurological/psychological disorders because they were built from largely healthy participants. And thus the difference in Brain Age indices between participants without vs. with neurological/psychological disorders might be confounded by the under-fitted age-prediction models (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other Brain Age studies focusing on cognitive functioning often build age-prediction models from MRI data of largely healthy participants and apply the built age-prediction models to participants who are also largely healthy. Accordingly, the age-prediction models for explaining cognitive functioning do not suffer from being under-fitted. We consider this as a strength, not a weakness of our study.”

      Reviewer 2 Public Review #3:

      The second aim's results reveal a discrepancy between the accuracy of their brain-age models in estimating age and the brain-age's capacity to explain variance in cognition-fluid. The authors suggest that if the ultimate goal is to capture cognitive variance, brain-age predictive models should be optimized to predict this target variable rather than age. While this finding is important and noteworthy, additional analyses are needed to eliminate potential confounding factors, such as correlated noise between the data and cognitive outcome, overfitting, or the inclusion of non-healthy participants in the sample. Optimizing brain-age models to predict the target variable instead of age could ultimately shift the focus away from the brain-age paradigm, as it might optimize for a factor differing from age.

      Response We discussed the issue regarding the discrepancy between the accuracy of their brain-age models in estimating age and the brain-age's capacity to explain variance in fluid cognition in our response to Reviewer 3 Public Review #9 (see below). This issue is found to be widespread in a recent systematic review (Jirsaraie, Gorelik, et al., 2023). We now provided several strategies to mitigate this issue to improve the utility of Brain Age in explaining other phenotypes based on our current work and others, using different MRI modalities as well as modelling techniques (Bashyam et al., 2020; Jirsaraie, Kaufmann, et al., 2023; Rokicki et al., 2021).

      Regarding potential confounding factors, we are not sure what the reviewer meant by “correlated noise between the data and cognitive outcome”. The current study, for instance, used ICA-FIX (Glasser et al., 2016) to remove noise in functional MRI. It is unclear how much ‘noise’ is still left and might confound our findings. More importantly, we are not sure how to define ‘noise’ as referred to by Reviewer 2 here. As for overfitting, we used nested cross-validation to ensure that training and test sets were separate from each other (see Reviewer 1 Recommendations For The Authors #2). If overfitting happened as suggested, we should see a ‘lower’ predictive performance of age-prediction and cognitive-prediction models since the models would fit well with the training set but would not generalise well to the test set. This is not what we found. The predictive performance of our age-prediction and cognitive-prediction models was high and consistent with the literature. Regarding the inclusion of non-healthy participants in the sample, we discussed this above in our response to Reviewer 2 Public Review #2).

      Reviewer 2 Public Review #4:

      While a primary goal in biomarker research is to obtain indices that effectively explain variance in the outcome variable of interest, thus favouring models optimized for this purpose, the authors' conclusion overlooks the potential value of 'generic/indirect' models, despite sacrificing some additional explained variance provided by ad-hoc or 'specific/direct' models. In this context, we could consider brain-age as a 'generic' index due to its robust out-of-sample validity and significant associations across various health outcome variables reported in the literature. In contrast, the brain-cognition index proposed in this study is presumed to be 'specific' as, without out-of-sample performance metrics and testing with different outcome variables (e.g., neurodegenerative disease), it remains uncertain whether the reported effect would generalize beyond predicting cognition-fluid, the same variable used to condition the brain-cognition model in this study. A 'generic' index like brain-age enables comparability across different applications based on a common benchmark (rather than numerous specific models) and can support explanatory hypotheses (e.g., "accelerated ageing") since it is grounded in its own biological hypothesis. Generic and specific indices are not mutually exclusive; instead, they may offer complementary information. Their respective utility may depend heavily on the context and research or clinical question.

      Response Thank you Reviewer 2 for pointing out this important issue. Reviewer 1 (Recommendations For The Authors #4) and Reviewer 3 (Public Review #4) bought up a similar issue. We agreed with Reviewer 2 that both 'specific/direct' index and Brain Age as a 'generic/indirect' index have merit in their own right. We made a discussion about this issue in our response to Reviewer 3 Public Review #4 (please see this response below).

      Briefly, in the revision, as opposed to treating Brain Cognition and Brain Age as separate biomarkers and comparing them, we treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. In other words, we now examined the extent to which Brain Age missed the variation in the brain MRI that could explain fluid cognition. We also made a discussion about using our commonality approach to test for this missing variation in future work:

      Discussion

      “Finally, researchers should test how much Brain Age miss the variation in the brain MRI that could explain fluid cognition or other phenotypes of interest. As demonstrated here, one straightforward method is to build a prediction model using a phenotype of interest as the target (e.g., fluid cognition) and incorporate the predicted value of this model (e.g., Brain Cognition), along with Brain Age and chronological age, into a multiple regression for commonality analyses. The unique effect of this predicted value will inform the missing variation in the brain MRI from Brain Age. If this unique effect is large, then researchers might need to reconsider whether using Brain Age is appropriate for a particular phenotype of interest.”

      Reviewer 2 Public Review #5:

      The study's third aim was to evaluate the authors' new index, brain-cognition. The results and conclusions drawn appear similar: compared to brain-age, brain-cognition captures more variance in the outcome variable, cognition-fluid. However, greater context and discussion of limitations is required here. Given the nature of the input variables (a large proportion of models in the study were based on fMRI data using cognitive tasks), it is perhaps unsurprising that optimizing these features for cognition-fluid generates an index better at explaining variance in cognition-fluid than the same features used to predict age. In other words, it is expected that brain-cognition would outperform brain-age in explaining variance in cognition-fluid since the former was optimized for the same variable in the same sample, while brain-age was optimized for age. Consequently, it is unclear if potential overfitting issues may inflate the brain-cognition's performance. This may be more evident when the model's input features are the ones closely related to cognition, e.g., fMRI tasks. When features were less directly related to cognitive tasks, e.g., structural MRI, the effect sizes for brain-cognition were notably smaller (see 'Total Brain Volume' and 'Subcortical Volume' models in Figure 6). This observation raises an important feasibility issue that the authors do not consider. Given the low likelihood of having task-based fMRI data available in clinical settings (such as hospitals), estimating a brain-cognition index that yields the large effects discussed in the study may be challenged by data scarcity.

      Response Given the use of nested cross-validation, we do not consider the good predictive performance of Brain Cognition found here as overfitting. In fact, we found a similar level of predictive performance of Brain Cognition on another database with younger participants in the past (Tetereva et al., 2022). However, we agreed with Reviewer 2 that the prediction of fluid cognition might be driven by MRI modalities that are different from those that drive the prediction of chronological age. In our own work with other age groups, including young adults (Tetereva et al., 2022) and children (Pat, Wang, Anney, et al., 2022), cognitive functioning seems to be predicted well from task-based functional MRI. And Reviewer 2 is right that task-based fMRI is not commonly used in clinics, making it harder to translate our results. However, given our results, clinicians should be encouraged to use task-based fMRI if their goal is to predict cognitive functioning. Nevertheless, as suggested, we listed data scarcity as one of the limitations of our approach.

      Discussion “For instance, the tasks used in task-based fMRI in HCP-A are not used widely in clinical settings (Horien et al., 2020). This might make it challenging to translate the approaches used here.”

      Reviewer 2 Public Review #6:

      This study is valuable and likely to be useful in two main ways. First, it can spur further research aimed at disentangling the lack of correspondence reported between the accuracy of the brain-age model and the brain-age's capacity to explain variance in fluid cognitive ability. Second, the study may serve, at least in part, as an illustration of the potential pros and cons of using indices that are specific and directly related to the outcome variable versus those that are generic and only indirectly related.

      Response We are thankful for the encouragement. For the discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker for fluid cognition, we made a detailed discussion in our response to Reviewer 3 Public Review #9. More specifically, to ensure that readers can benefit from our findings, we made suggestions on how to ensure the utility of Brain Age indices as a biomarker for other phenotypes by drawing from our own strategy, as well as strategies used by Rokicki and colleagues (2021), Jirsaraie and colleagues (2023) and Bashyam and colleagues (2020).

      As for the pros and cons between generic vs specific biomarkers, we made a detailed discussion in our response to Reviewer 3 Public Review #4. We also made some suggestions on how to make use of the difference in the ability between generic vs specific biomarkers (see Reviewer 2 Public Review #4, above).

      Reviewer 2 Public Review #7:

      Overall, the authors effectively present a clear design and well-structured procedure; however, their work could have been enhanced by providing more context for both the brain-age and brain-cognition indices, including a discussion of key concepts in the brain-age paradigm, which acknowledges that chronological age strongly predicts negative health outcomes, but crucially, recognizes that ageing does not affect everyone uniformly. Capturing this deviation from a healthy norm of ageing is the key brain-age index. This lack of context was mirrored in the presentation of the four brain-age indices provided, as it does not refer to how these indices are used in practice. In fact, there is no mention of a more common way in which brain-age is implemented in statistical analyses, which involves the use of brain-age delta as the variable of interest, along with linear and non-linear terms of age as covariates. The latter is used to account for the regression-to-the-mean effect. The 'corrected brain-age delta' the authors use does not include a non-linear term, which perhaps is an additional reason (besides the one provided by the authors) as to why there may be small, but non-zero, common effects of both age and brain-age in the 'corrected brain-age delta' index commonality analysis. The context for brain-cognition was even more limited, with no reference to any existing literature that has explored direct brain-cognitive markers, such as brain-cognition.

      Response Regarding Brain Age and negative health outcomes, we addressed this in our response to Reviewer 1 Recommendations For The Authors #1 (see below). Briefly, we now discussed (1) the consistency between our findings on fluid cognition and other recent works on negative health outcomes, (2) the differences between Brain Age studies focusing on negative health outcomes vs. cognitive functioning and (3) suggested solutions to optimise the utility of brain age for both cognitive functioning and negative health outcomes.

      Regarding how Brain Age was used in practice, we addressed this in our response to Reviewer 3 Public Review #2 (see below). Our argument resonates Butler and colleagues’ (2021) suggestion that the common practice for Brain Age analysis should be re-evaluated: “The MBAG and performance on the complex cognition tasks were not associated (r =  .01, p = 0.71). These results indicate that the association between cognition and the BAG are driven by the association between age and cognitive performance. As such, it is critical that readers of past literature note whether or not age was controlled for when testing for effects on the BAG, as this has not always been common practice (e.g., Beheshti et al., 2018; Cole, Underwood, et al., 2017; Franke et al., 2015; Gaser et al., 2013; Liem et al., 2017; Nenadi c et al., 2017; Steffener et al., 2016). (p. 4097).”

      Importantly, we also implemented “brain-age delta as the variable of interest, along with linear and non-linear terms of age as covariates” in our additional analyses along with other implementations (see Reviewer 2 Recommendations For The Authors #3). Of particular note, we found that adding a non-linear term (i.e., a quadratic term for chronological age) barely changed the results of commonality analyses.

      We now wrote this paragraph to recommend how future research should implement Brain Age:

      Discussion

      “First, they have to be aware of the overlap in variation between Brain Age and chronological age and should focus on the contribution of Brain Age over and above chronological age. Using Brain Age Gap will not fix this. Butler and colleagues (2021) recently highlighted this point, “These results indicate that the association between cognition and the BAG are driven by the association between age and cognitive performance. As such, it is critical that readers of past literature note whether or not age was controlled for when testing for effects on the BAG, as this has not always been common practice (p. 4097).” Similar to their recommendation (Butler et al., 2021), we suggest future work focus on Corrected Brain Age Gap or, better, unique effects of Brain Age indices after controlling for chronological age in multiple regressions. In the case of fluid cognition, the unique effects might be too small to be clinically meaningful as shown here and previously (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023). “

      Regarding brain cognition, we now expanded our explanation about Brain Cognition on how it might be relevant to Brain Age and on Brain Cognition’s predictive performance found previously.

      Introduction

      “Third and finally, certain variation in the brain MRI is related to fluid cognition, but to what extent does Brain Age not capture this variation? To estimate the variation in the brain MRI that is related to fluid cognition, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data. Previous studies found reasonable predictive performances of these cognition-prediction models, built from certain MRI modalities (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). Analogous to Brain Age, we called the predicted values from these cognition-prediction models, Brain Cognition. The strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in the brain MRI that is related to fluid cognition and, therefore, indicates the upper limit of Brain Age’s capability in capturing fluid cognition. Consequently, the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age indicate what is missing from Brain Age -- the amount of co-variation between brain MRI and fluid cognition that cannot be captured by Brain Age.”

      Discussion

      “Third, by introducing Brain Cognition, we showed the extent to which Brain Age indices were not able to capture the variation of brain MRI that is related to fluid cognition. Brain Cognition, from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022).”

      Reviewer 2 Public Review #8:

      While this paper delivers intriguing and thought-provoking results, it would benefit from recognizing the value that both approaches--brain-age indices and more direct, specific markers like brain-cognition--can contribute to the field.

      Response Thank you so much for recognising the value of our work. As we mentioned above in our response to Reviewer 2 Public Review #4 and #6, we made some suggestions on how to make use of the difference in the ability between generic vs specific biomarkers.

      Reviewer 3 (Public Review):

      Reviewer 3 Public Review Overall:

      The main question of this article is as follows: "To what extent does having information on brain-age improve our ability to capture declines in fluid cognition beyond knowing a person's chronological age?" While this question is worthwhile, considering that there is considerable confusion in the field about the nature of brain-age, the authors are currently missing an opportunity to convey the inevitability of their results, given how brain-age and the brain-age gap are calculated. They also argue that brain-cognition is somehow superior to brain-age, but insufficient evidence is provided in support of this claim.

      Response We addressed the concerns below. The inevitability of our results is not obvious to many researchers who might be interested in Brain Age. We hope our findings might make many issues surrounding Brain Age more obvious, and we now make many suggestions on how to address some of these issues. We no longer argue that Brain Cognition is superior to Brain Age (Reviewer 3 Public Review #4). Rather, we treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. We used the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age to indicate how much Brain Age misses the variation in the brain MRI that could explain fluid cognition.

      Specific comments follow:

      Reviewer 3 Public Review #1:

      • "There are many adjustments proposed to correct for this estimation bias" (p3). Regression to the mean is not a sign of bias. Any decent loss function will result in over-predicting the age of younger individuals and under-predicting the age of older individuals. This is a direct result of minimizing an error term (e.g., mean squared error). Therefore, it is inappropriate to refer to regression to the mean as a sign of bias. This misconception has led to a great deal of inappropriate analyses, including "correcting" the brain age gap by regressing out age.

      Response: Thank you so much for raising this issue. We used the word ‘bias’ following many articles in the field. For instance,

      de Lange and Cole (2020) wrote: “brain-age estimation also involves a frequently observed bias: brain age is overestimated in younger subjects and underestimated in older subjects, while brain age for participants with an age closer to the mean age (of the training dataset) are predicted more accurately (Cole, Le, Kuplicki, McKinney, Yeh, Thompson, Paulus, Investigators, et al., 2018, Liang, Zhang, Niu, 2019, Niu, Zhang, Kounios, Liang, 2019, Smith, Vidaurre, Alfaro-Almagro, Nichols, Miller, 2019).”

      Cole (2020) wrote: “As recent research has highlighted a proportional bias in brain-age calculation, whereby the difference between chronological age and brain-predicted age is negatively correlated with chronological age (Le et al., 2018, Liang et al., 2019, Smith et al., 2019), an age-bias correction procedure was used. This entailed calculating the regression line between age (predictor) and brain-predicted age (outcome) in the training set, then using the slope (i.e., coefficient) and intercept of that line to adjust brain-predicted age values in the testing set (by subtracting the intercept and then dividing by the slope). After applying the age-bias correction the brain-predicted age difference (brain-PAD) was calculated; chronological age subtracted from brain-predicted age.”

      Beheshiti and colleagues (2019) used bias in their title: “Bias-adjustment in neuroimaging-based brain age frameworks: a robust scheme”

      More recently, Cumplido-Mayoral and colleagues (2023) wrote: “As recent research has shown that brain-age estimation involves a proportional bias (de Lange et al., 2020a; Le et al., 2018; Liang et al., 2019; Smith et al., 2019), we applied a well-established age-bias correction procedure to our data (de Lange et al., 2020a; Le et al., 2018).”

      Still, we agree with Reviewer 3 that using ‘bias’ might lead to misinterpretation. As Butler and colleagues (Butler et al., 2021) pointed out, ”It is important to note that regression toward the mean is not a failure, but a feature, of regression and related methods.“ We rewrote the paragraph and clarified the “regression towards the mean” issue. We no longer used the word “bias” here:

      Introduction

      “Note researchers often subtract chronological age from Brain Age, creating an index known as Brain Age Gap (Franke & Gaser, 2019). A higher value of Brain Age Gap is thought to reflect accelerated/premature aging. Yet, given that Brain Age Gap is calculated based on both Brain Age and chronological age, Brain Age Gap still depends on chronological age (Butler et al., 2021). If, for instance, Brain Age was based on prediction models with poor performance and made a prediction that everyone was 50 years old, individual differences in Brain Age Gap would then depend solely on chronological age (i.e., 50 minus chronological age). Moreover, Brain Age is known to demonstrate the “regression towards the mean” phenomenon (Stigler, 1997). More specifically, because Brain Age is a predicted value of a regression model that predicts chronological age, Brain Age is usually shrunk towards the mean age of samples used for training the model (Butler et al., 2021; de Lange & Cole, 2020; Le et al., 2018). Accordingly, Brain Age predicts chronological age more accurately for individuals who are closer to the mean age while overestimating younger individuals’ chronological age and underestimating older individuals’ chronological age. There are many adjustments proposed to correct for the age dependency, but the outcomes tend to be similar to each other (Beheshti et al., 2019; de Lange & Cole, 2020; Liang et al., 2019; Smith et al., 2019). These adjustments can be applied to Brain Age and Brain Age Gap, creating Corrected Brain Age and Corrected Brain Age Gap, respectively. Corrected Brain Age Gap in particular is viewed as being able to control for age dependency (Butler et al., 2021). Here, we tested the utility of different Brain Age calculations in capturing fluid cognition, over and above chronological age.”

      Reviewer 3 Public Review #2:

      • "Corrected Brain Age Gap in particular is viewed as being able to control for both age dependency and estimation biases (Butler et al., 2021)" (p3). This summary is not accurate as Butler and colleagues did not use the words "corrected" and "biases" in this context. All that authors say in that paper is that regressing out age from the brain age gap - which is referred to as the modified brain age gap (MBAG) - makes it so that the modified brain age gap is not dependent on age, which is true. This metric is meaningless, though, because it is the variance left over after regressing out age from residuals from a model that was predicting age. If it were not for the fact that regression on residuals is not equivalent to multiple regression (and out of sample estimates), MBAG would be a vector of zeros. Upon reading the Methods, I noticed that the authors use a metric from Le et al. (2018) for the "Corrected Brain Age Gap". If they cite the Butler et al. (2021) paper, I highly recommend sticking with the same notation, metrics and terminology throughout. That would greatly help with the interpretability of the present manuscript, and cross-comparisons between the two.

      Response: We thank Reviewer 3 for pointing out the issues surrounding our choices of wording: "corrected" and "biases". We share the same frustration with Reviewer 3 in that different brain-age articles use different terminologies, and we tried to make sure our readers understand our calculations of Brain Age indices in order to compare our results with previous work.

      We commented on the word “bias” in our response to Reviewer 3 Public Review #1 above and refrained from using this word in the revised manuscript. Here we commented on the use of the word “Corrected Brain Age Gap". And by doing so, we clarified how we calculated it.

      Reviewer 3 is right that we cited the work of Butler and colleagues (2021), but wasn’t accurate to say that we used “a metric from Le et al. (2018) for the "Corrected Brain Age Gap". We, instead, used a method described in de Lange and Cole’s (2020) work. We now added equations to explain this method in our Materials and Method section (see below).

      It is important to note that Butler and colleagues (2021) did not come up with any adjustment methods. Instead, Butler and colleagues (2021) discussed three adjustment methods:

      1) A method proposed by Beheshiti and colleagues (2019). Butler and colleagues (2021) called the result of this method, Modified Brain Age Gap (MBAG). Importantly, Butler and colleagues (2021) discouraged the use of this method due to “researchers misinterpreting the reduced variability of the MBAG as an improvement in prediction accuracy.” Accordingly in our article, we performed methods (2) and (3) below.

      2) A method proposed by de Lange and Cole (2020). We used this method in our article (see below for the equations). Briefly, we first fit a regression line predicting the Brain Age from a chronological age in each training set. We then used the slope and intercept of this regression line to adjust Brain Age in the corresponding test set, resulting in an adjusted index of Brain Age. Butler and colleagues (2021) called this index, “Revised Predicted Age.”, while de Lange and Cole’s (2020) originally called this Corrected Brain Age, “Corrected Predicted Age”. Butler and colleagues (2021) then subtracted the chronological age from this index and called it, “Revised Brain Age Gap (RBAG)”. We would like to follow the original terminology, but we do not want to use the word “Predicted Age” since chronological age can be predicted by other variables beyond the brain. We then settled with the word, "Corrected Brain Age" and “Corrected Brain Age Gap". We listed the terminologies used in the past in our article (see below).

      3) A method proposed by Le and colleagues (2018). Here, Butler and colleagues (2021) referred to one of the approaches done by Le and colleagues: “include age as a regressor when doing follow-up analyses.” Essentially this is what we did for the commonality analysis. Le and colleagues (2018)’ approach is the same as examining the unique effects of Brain Age in a multiple regression analysis with Chronological Age and Brain Age as regressors.

      While indexes from de Lange and Cole’s (2020) and Le and colleagues’ (2018) methods show poor performance in capturing fluid cognition in the current work, we need to stress that many research groups do not believe that these methods are meaningless. In fact, de Lange and Cole’s method (2020) is one of the most commonly implemented methods that can be seen elsewhere (e.g., Cole et al., 2020; Cumplido-Mayoral et al., 2023; Denissen et al., 2022). This index just does not seem to work well in the case of fluid cognition.

      Here is how we described how we calculated Brain Age indexes in the revised manuscript:

      Methods

      “ Brain Age calculations: Brain Age, Brain Age Gap, Corrected Brain Age and Corrected Brain Age Gap In addition to Brain Age, which is the predicted value from the models predicting chronological age in the test sets, we calculated three other indices to reflect the estimation of brain aging. First, Brain Age Gap reflects the difference between the age predicted by brain MRI and the actual, chronological age. Here we simply subtracted the chronological age from Brain Age:

      Brain Age Gapi = Brain Agei - chronological agei , (2)

      where i is the individual. Next, to reduce the dependency on chronological age (Butler et al., 2021; de Lange & Cole, 2020; Le et al., 2018), we applied a method described in de Lange and Cole’s (2020), which was implemented elsewhere (Cole et al., 2020; Cumplido-Mayoral et al., 2023; Denissen et al., 2022):

      In each outer-fold training set: Brain Agei = 0 + 1 chronological agei + εi, (3)

      Then in the corresponding outer-fold test set: Corrected Brain Agei = (Brain Agei - 0)/1, (4)

      That is, we first fit a regression line predicting the Brain Age from a chronological age in each outer-fold training set. We then used the slope (1) and intercept (0) of this regression line to adjust Brain Age in the corresponding outer-fold test set, resulting in Corrected Brain Age. Note de Lange and Cole (2020) called this Corrected Brain Age, “Corrected Predicted Age”, while Butler (2021) called it “Revised Predicted Age.”

      Lastly, we computed Corrected Brain Age Gap by subtracting the chronological age from the Corrected Brain Age (Butler et al., 2021; Cole et al., 2020; de Lange & Cole, 2020; Denissen et al., 2022):

      Corrected Brain Age Gap = Corrected Brain Age - chronological age, (5)

      Note Cole and colleagues (2020) called Corrected Brain Age Gap, “brain-predicted age difference (brain-PAD),” while Butler and colleagues (2021) called this index, “Revised Brain Age Gap”.

      Reviewer 3 Public Review #3:

      • "However, the improvement in predicting chronological age may not necessarily make Brain Age to be better at capturing Cognitionfluid. If, for instance, the age-prediction model had the perfect performance, Brian Age Gap would be exactly zero and would have no utility in capturing Cognitionfluid beyond chronological age" (p3). I largely agree with this statement. I would be really careful to distinguish between brain-age and the brain-age gap here, as the former is a predicted value, and the latter is the residual times -1 (i.e., predicted age - age). Therefore, together they explain all of the variance in age. Changing the first sentence to refer to the brain-age gap would be more accurate in this context. The brain-age gap will never be exactly zero, though, even with perfect prediction on the training set, because subjects in the testing set are different from the subjects in the training set.

      Response: Thank you so much for pointing this out. We agree to change “Brain Age” to “Brain Age Gap” in the mentioned sentence.

      Reviewer 3 Public Review #4:

      • "Can we further improve our ability to capture the decline in cognitionfluid by using, not only Brain Age and chronological age, but also another biomarker, Brain Cognition?". This question is fundamentally getting at whether a predicted value of cognition can predict cognition. Assuming the brain parameters can predict cognition decently, and the original cognitive measure that you were predicting is related to your measure of fluid cognition, the answer should be yes. Upon reading the Methods, it became clear that the cognitive variable in the model predicting cognition using brain features (to get predicted cognition, or as the authors refer to it, brain-cognition) is the same as the measure of fluid cognition that you are trying to assess how well brain-cognition can predict. Assuming the brain parameters can predict fluid cognition at all, it is then inevitable that brain-cognition will predict fluid cognition. Therefore, it is inappropriate to use predicted values of a variable to predict the same variable.

      Response: Thank you Reviewer 3 for pointing out this important issue. Reviewer 1 (Recommendations For The Authors #4) and Reviewer 2 (Public Review #4) bought up a similar issue. While Reviewer 3 felt that “it is inappropriate to use predicted values of a variable to predict the same variable,“ Reviewer 2 viewed Brain Cognition as a 'specific/direct' index and Brain Age as a 'generic/indirect' index. And both have merit in their own right.

      Similar to Reviewer 2, we believe that the specific index is as important and has commonly been used elsewhere in the context of biomarkers. For instance, to obtain neuroimaging biomarkers for Alzheimer’s, neuroimaging researchers often build a predictive model to predict Alzheimer's diagnosis (Khojaste-Sarakhsi et al., 2022). In fact, outside of neuroimaging, polygenic risk scores (PRSs) in genomics are often used following “to use predicted values of a variable to predict the same variable” (Choi et al., 2020). For instance, a PRS of ADHD that indicates the genetic liability to develop ADHD is based on genome-wide association studies of ADHD (Demontis et al., 2019).

      Still, we now agreed that it may not be fair to compare the performance of a specific index (Brain Cognition) and a generic index (Brain Age) directly (as pointed out by Reviewer 3 Public Review #6 below). Accordingly, in the revision, as opposed to treating Brain Cognition and Brain Age as separate biomarkers and comparing them, we treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. In other words, the strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in the brain MRI that is related to fluid cognition. And consequently, the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age indicate what is missing from Brain Age -- the amount of co-variation between brain MRI and fluid cognition that cannot be captured by Brain Age. According to Reviewer 2, a generic index (Brain Age) “sacrificed some additional explained variance provided” compared to a specific index (Brain Cognition). Here, we used the commonality analyses to quantify how much scarifying was made by Brain Age. See below for the re-conceptualisation of Brain Age vs. Brain Cognition in the revision:

      Abstract

      “Lastly, we tested how much Brain Age missed the variation in the brain MRI that could explain fluid cognition. To capture this variation in the brain MRI that explained fluid cognition, we computed Brain Cognition, or a predicted value based on prediction models built to directly predict fluid cognition (as opposed to chronological age) from brain MRI data. We found that Brain Cognition captured up to an additional 11% of the total variation in fluid cognition that was missing from the model with only Brain Age and chronological age, leading to around a 1/3-time improvement of the total variation explained.”

      Introduction:

      “Third and finally, certain variation in the brain MRI is related to fluid cognition, but to what extent does Brain Age not capture this variation? To estimate the variation in the brain MRI that is related to fluid cognition, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data. Previous studies found reasonable predictive performances of these cognition-prediction models, built from certain MRI modalities (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). Analogous to Brain Age, we called the predicted values from these cognition-prediction models, Brain Cognition. The strength of an out-of-sample relationship between Brain Cognition and fluid cognition reflects variation in the brain MRI that is related to fluid cognition and, therefore, indicates the upper limit of Brain Age’s capability in capturing fluid cognition. Consequently, the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age indicate what is missing from Brain Age -- the amount of co-variation between brain MRI and fluid cognition that cannot be captured by Brain Age.”

      “Finally, we investigated the extent to which Brain Age indices missed the variation in the brain MRI that could explain fluid cognition. Here, we tested Brain Cognition’s unique effects in multiple regression models with a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition.“

      Discussion

      “Third, how much does Brain Age miss the variation in the brain MRI that could explain fluid cognition? Brain Age and chronological age by themselves captured around 32% of the total variation in fluid cognition. But, around an additional 11% of the variation in fluid cognition could have been captured if we used the prediction models that directly predicted fluid cognition from brain MRI.

      “Third, by introducing Brain Cognition, we showed the extent to which Brain Age indices were not able to capture the variation of brain MRI that is related to fluid cognition. Brain Cognition, from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We then examined Brain Cognition using commonality analyses (Nimon et al., 2008) in multiple regression models having a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition. Similar to Brain Age indices, Brain Cognition exhibited large common effects with chronological age. But more importantly, unlike Brain Age indices, Brain Cognition showed large unique effects, up to around 11%. The unique effects of Brain Cognition indicated the amount of co-variation between brain MRI and fluid cognition that was missed by a Brain Age index and chronological age. This missing amount was relatively high, considering that Brain Age and chronological age together explained around 32% of the total variation in fluid cognition. Accordingly, if a Brain Age index was used as a biomarker along with chronological age, we would have missed an opportunity to improve the performance of the model by around one-third of the variation explained.”

      Reviewer 3 Public Review #5:

      • "However, Brain Age Gap created from the lower-performing age-prediction models explained a higher amount of variation in Cognitionfluid. For instance, the top performing age-prediction model, "Stacked: All excluding Task Contrast", generated Brain Age and Corrected Brain Age that explained the highest amount of variation in Cognitionfluid, but, at the same time, produced Brian Age Gap that explained the least amount of variation in Cognitionfluid" (p7). This is an inevitable consequence of the following relationship between predicted values and residuals (or residuals times -1): y=(y-y ̂ )+y ̂. Let's say that age explains 60% of the variance in fluid cognition, and predicted age (y ̂) explains 40% of the variance in fluid cognition. Then the brain age gap (-(y-y ̂)) should explain 20% of the variance in fluid cognition. If by "Corrected Brain Age" you mean the modified predicted age from Butler et al (2021), the "Corrected Brain Age" result is inevitable because the modified predicted age is essentially just age with a tiny bit of noise added to it. From Figure 4, though, this does not seem to be the case, because the lower left quadrant in panel (a) should be flat and high (about as high as the predictive value of age for fluid cognition). So it is unclear how "Corrected Brain Age" is calculated. It looks like you might be regressing age out of brain-age, though from your description in the Methods section, it is not totally clear. Again, I highly recommend using the terminology and metrics of Butler et al (2021) throughout to reduce confusion. Please also clarify how you used the slope and intercept. In general, given how brain-age metrics tend to be calculated, the following conclusion is inevitable: "As before, the unique effects of Brain Age indices were all relatively small across the four Brain Age indices and across different prediction models" (p10).

      Response: We agreed that the results are ‘inevitable’ due to the transformations from Brain Age to other Brain Age indices. However, the consequences of these transformations may not be very clear to readers who are not very familiar with Brain Age literature and to the community at large who think about the implications of Brain Age. This is appreciated by Reviewer 1, who mentioned “While the main message will not come as a surprise to anyone with hands-on experience of using brain-age models, I think it is nonetheless an important message to convey to the community.”

      Note we made clarifications on how we calculated each of the Brain Age indices above (see<br /> Reviewer 3 Public Review #2), including how we used the slope and intercept. We chose the terminology closer to the one originally used by de Lange and Cole (2020) and now listed many terminologies others have used to refer to this transformation.

      Reviewer 3 Public Review #6:

      "On the contrary, the unique effects of Brain Cognition appeared much larger" (p10). This is not a fair comparison if you do not look at the unique effects above and beyond the cognitive variable you predicted in your brain-cognition model. If your outcome measure had been another metric of cognition other than fluid cognition, you would see that brain-cognition does not explain any additional variance in this outcome when you include fluid cognition in the model, just as brain-age would not when including age in the model (minus small amounts due to penalization and out-of-sample estimates). This highlights the fact that using a predicted value to predict anything is worse than using the value itself.

      Response Please see our response to Reviewer 3 Public Review #4 above. Briefly, we no long made this comparison. Instead, we now viewed the unique effects of Brain Cognition as a way to test how much Brain Age missed the variation in the brain MRI that could explain fluid cognition.

      Reviewer 3 Public Review #7:

      "First, how much does Brain Age add to what is already captured by chronological age? The short answer is very little" (p12). This is a really important point, but the paper requires an in-depth discussion of the inevitability of this result, as discussed above.

      Response We agree that the tight relationship between Brain Age and chronological age is inevitable. We mentioned this from the get-go in the introduction:

      Introduction “Accordingly, by design, Brain Age is tightly close to chronological age. Because chronological age usually has a strong relationship with fluid cognition, to begin with, it is unclear how much Brain Age adds to what is already captured by chronological age.”

      To make this point obvious, we quantified the overlap between Brain Age and chronological age using the commonality analysis. We hope that our effort to show the inevitability of this overlap can make people more careful when designing studies involving Brain Age.

      Reviewer 3 Public Review #8:

      "Third, do we have a solution that can improve our ability to capture Cognitionfluid from brain MRI? The answer is, fortunately, yes. Using Brain Cognition as a biomarker, along with chronological age, seemed to capture a higher amount of variation in Cognitionfluid than only using Brain Age" (p12). I suggest controlling for the cognitive measure you predicted in your brain-cognition model. This will show that brain-cognition is not useful above and beyond cognition, highlighting the fact that it is not a useful endeavor to be using predicted values.

      Response This point is similar to Reviewer 3 Public Review #6. Again please see our response to Reviewer 3 Public Review #4 above. Briefly, we no long made this comparison and said whether Brain Cognition is ‘better’ than Brain Age. Instead, we now viewed the unique effects of Brain Cognition as a way to test how much Brain Age missed the variation in the brain MRI that could explain fluid cognition.

      Reviewer 3 Public Review #9:

      "Accordingly, a race to improve the performance of age-prediction models (Baecker et al., 2021) does not necessarily enhance the utility of Brain Age indices as a biomarker for Cognitionfluid. This calls for a new paradigm. Future research should aim to build prediction models for Brian Age indices that are not necessarily good at predicting age, but at capturing phenotypes of interest, such as Cognitionfluid and beyond" (p13). I whole-heartedly agree with the first two sentences, but strongly disagree with the last. Certainly your results, and the underlying reason as to why you found these results, calls for a new paradigm (or, one might argue, a pre-brain-age paradigm). As of now, your results do not suggest that researchers should keep going down the brain-age path. While it is difficult to prove that there is no transformation of brain-age or the brain-age gap that will be useful, I am nearly sure this is true from the research I have done. If you would like to suggest that the field should continue down this path, I suggest presenting a very good case to support this view.

      Response Thank you for your comments on this issue.

      Since the submission of our manuscript, other researchers also made a similar observation regarding the disagreement between the predictive performance of age-prediction models and the utility of Brain Age. For instance, in their systematic review, Jirasarie and colleagues (2023, p7) wrote this statement, “Despite mounting evidence, there is a persisting assumption across several studies that the most accurate brain age models will have the most potential for detecting differences in a given phenotype of interest. As a point of illustration, seven of the twenty studies in this review only evaluated the utility of their most accurate model, which in all cases was trained using multimodal features. This approach has also led to researchers to exclusively use T1-weighted and diffusion-weighted MRI scans when developing brain age models36 since such modalities have been shown to have the largest contribution to a model’s predictive power.2,67 However, our review suggests that model accuracy does not necessarily provide meaningful insight about clinical utility (e.g., detection of age-related pathology). Taken with prior studies,16,17 it appears that the most accurate models tend to not be the most useful.”

      We now discussed the disagreement between the predictive performance of age-prediction models and the utility of Brain Age, not only in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) but also in the context of neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). Following Reviewer 3’s suggestion, we also added several possible strategies to mitigate this problem of Brain Age, used by us and other groups. Please see below.

      Discussion:

      “This discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker is consistent with recent findings (for review, see Jirsaraie, Gorelik, et al., 2023), both in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) and neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). For instance, combining different MRI modalities into the prediction models, similar to our stacked models, often lead to the highest performance of age-prediction models, but does not likely explain the highest variance across different phenotypes, including cognitive functioning and beyond (Jirsaraie, Gorelik, et al., 2023).”

      “Next, researchers should not select age-prediction models based solely on age-prediction performance. Instead, researchers could select age-prediction models that explained phenotypes of interest the best. Here we selected age-prediction models based on a set of features (i.e., modalities) of brain MRI. This strategy was found effective not only for fluid cognition as we demonstrated here, but also for neurological and psychological disorders as shown elsewhere (Jirsaraie, Gorelik, et al., 2023; Rokicki et al., 2021). Rokicki and colleagues (2021), for instance, found that, while integrating across MRI modalities led to age-prediction models with the highest age-prediction performance, using only T1 structural MRI gave age-prediction models that were better at classifying Alzheimer’s disease. Similarly, using only cerebral blood flow gave age-prediction models that were better at classifying mild/subjective cognitive impairment, schizophrenia and bipolar disorder.

      As opposed to selecting age-prediction models based on a set of features, researchers could also select age-prediction models based on modelling methods. For instance, Jirsaraie and colleagues (2023) compared gradient tree boosting (GTB) and deep-learning brain network (DBN) algorithms in building age-prediction models. They found GTB to have higher age-prediction performance but DBN to have better utility in explaining cognitive functioning. In this case, an algorithm with better utility (e.g., DBN) should be used for explaining a phenotype of interest. Similarly, Bashyam and colleagues (2020) built different DBN-based age-prediction models, varying in age-prediction performance. The DBN models with a higher number of epochs corresponded to higher age-prediction performance. However, DBN-based age-prediction models with a moderate (as opposed to higher or lower) number of epochs were better at classifying Alzheimer’s disease, mild cognitive impairment and schizophrenia. In this case, a model from the same algorithm with better utility (e.g., those DBN with a moderate epoch number) should be used for explaining a phenotype of interest. Accordingly, this calls for a change in research practice, as recently pointed out by Jirasarie and colleagues (2023, p7), “Despite mounting evidence, there is a persisting assumption across several studies that the most accurate brain age models will have the most potential for detecting differences in a given phenotype of interest”. Future neuroimaging research should aim to build age-prediction models that are not necessarily good at predicting age, but at capturing phenotypes of interest.”

      Reviewer #1 (Recommendations For The Authors):

      In this paper, the authors evaluate the utility of brain age derived metrics for predicting cognitive decline using the HCP aging dataset by performing a commonality analysis in a downstream regression. The main conclusion is that brain age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain-cognition') as an alternative that explains more unique variance in the downstream regression.

      This is a reasonably good paper and the use of a commonality analysis is a nice contribution to understanding variance partitioning across different covariates. While the main message will not come as a surprise to anyone with hands-on experience of using brain-age models, I think it is nonetheless an important message to convey to the community. With that said, I have some comments that I believe the authors ought to address before publication.

      Reviewer 1 Recommendations For The Authors #1:

      First, from a conceptual point of view, the authors focus exclusively on cognition as a downstream outcome. This is undeniably important, but is only one application area for brain age models. They are also used for example to provide biomarkers for many brain disorders. What would the results presented here have to say about these application areas? Further, I think that since brain-age models by construction confound relevant biological variation with the accuracy of the regression models used to estimate them, my own opinion about the limits of interpretation of (e.g.) the brain-age gap is as a dimensionless biomarker. This has also been discussed elsewhere (see e.g. https://academic.oup.com/brain/article/143/7/2312/5863667). I would suggest the authors nuance their discussion to provide considerations on these issues.

      Response Thank you Reviewer 1 for pointing out two important issues.

      The first issue was about applications for brain disorders. We now made a detailed discussion about this, which also addressed Reviewer 3 Public Review #9. Briefly, we now bought up

      1) the consistency between our findings on fluid cognition and other recent works on brain disorders,

      2) under-fitted age-prediction models from Brain Age studies focusing on neurological/psychological disorders when applied to participants with neurological/psychological disorders because the age-prediction models were built from largely healthy participants,

      and 3) suggested solutions we and others made to optimise the utility of Brain Age for both cognitive functioning and brain disorders.

      Discussion:

      “This discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker is consistent with recent findings (for review, see Jirsaraie, Gorelik, et al., 2023), both in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) and neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). For instance, combining different MRI modalities into the prediction models, similar to our stacked models, often lead to the highest performance of age-prediction models, but does not likely explain the highest variance across different phenotypes, including cognitive functioning and beyond (Jirsaraie, Gorelik, et al., 2023).”

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). That is, those Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. This means that age-prediction models from Brain Age studies focusing on neurological/psychological disorders might be under-fitted when applied to participants with neurological/psychological disorders because they were built from largely healthy participants. And thus, the difference in Brain Age indices between participants without vs. with neurological/psychological disorders might be confounded by the under-fitted age-prediction models (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other Brain Age studies focusing on cognitive functioning often build age-prediction models from MRI data of largely healthy participants and apply the built age-prediction models to participants who are also largely healthy. Accordingly, the age-prediction models for explaining cognitive functioning do not suffer from being under-fitted. We consider this as a strength, not a weakness of our study.”

      “Next, researchers should not select age-prediction models based solely on age-prediction performance. Instead, researchers could select age-prediction models that explained phenotypes of interest the best. Here we selected age-prediction models based on a set of features (i.e., modalities) of brain MRI. This strategy was found effective not only for fluid cognition as we demonstrated here, but also for neurological and psychological disorders as shown elsewhere (Jirsaraie, Gorelik, et al., 2023; Rokicki et al., 2021). Rokicki and colleagues (2021), for instance, found that, while integrating across MRI modalities led to age-prediction models with the highest age-prediction performance, using only T1 structural MRI gave age-prediction models that were better at classifying Alzheimer’s disease. Similarly, using only cerebral blood flow gave age-prediction models that were better at classifying mild/subjective cognitive impairment, schizophrenia and bipolar disorder. As opposed to selecting age-prediction models based on a set of features, researchers could also select age-prediction models based on modelling methods. For instance, Jirsaraie and colleagues (2023) compared gradient tree boosting (GTB) and deep-learning brain network (DBN) algorithms in building age-prediction models. They found GTB to have higher age-prediction performance but DBN to have better utility in explaining cognitive functioning. In this case, an algorithm with better utility (e.g., DBN) should be used for explaining a phenotype of interest. Similarly, Bashyam and colleagues (2020) built different DBN-based age-prediction models, varying in age-prediction performance. The DBN models with a higher number of epochs corresponded to higher age-prediction performance. However, DBN-based age-prediction models with a moderate (as opposed to higher or lower) number of epochs were better at classifying Alzheimer’s disease, mild cognitive impairment and schizophrenia. In this case, a model from the same algorithm with better utility (e.g., those DBN with a moderate epoch number) should be used for explaining a phenotype of interest. Accordingly, this calls for a change in research practice, as recently pointed out by Jirasarie and colleagues (2023, p7), “Despite mounting evidence, there is a persisting assumption across several studies that the most accurate brain age models will have the most potential for detecting differences in a given phenotype of interest”. Future neuroimaging research should aim to build age-prediction models that are not necessarily good at predicting age, but at capturing phenotypes of interest.”

      The second issue was about “the brain-age gap as a dimensionless biomarker.” We are not so clear on what the reviewer meant by “the dimensionless biomarker.” One possible meaning of the “dimensionless biomarker” is the fact that Brain Age from the same algorithm and same modality can be computed, such that Brain Age can be tightly fit or loosely fit with chronological age. This is what Bashyam and colleagues (2020) did in the article Reviewer 1 referred to. We now wrote about this strategy in the above paragraph in the Discussion.

      Alternatively, “the dimensionless biomarker” might be something closer to what Reviewer 2 viewed Brain Age as a “generic/indirect” index (as opposed to a 'specific/direct' index in the case of Brain Cognition) (see Reviewer 2 Public Review #4). We discussed this in our response to Reviewer 3 Public Review #4.

      Reviewer 1 Recommendations For The Authors #2:

      Second, from a methods perspective, I am quite suspicious of the stacked regression models the authors are using to combine regression models and I suspect they may be overfit. In my experience, stacked models are very prone to overfitting when combined with cross-validation. This is because the predictions from the first level models (i,e. the features that are provided to the second-level 'stacked' models) contain information about the training set and the test set. If cross-validation is not done very carefully (e.g. using multiple hold-out sets), information leakage can easily occur at the second level. Unfortunately, there is not sufficient explanation of the methodological procedures in the current manuscript to fully understand what was done. First, please provide more information to enable the reader to better understand the stacked regression models and if the authors are not using an approach that fully preserves training and test separability, please do so.

      Response: We would like to thank Reviewer 1 for the suggestion. We now made it clearer in texts and new figure (see below) that we used nested cross-validation to ensure no information leakage between training and test sets. Regarding the stacked models more specifically, the hyperparameters of the stacked models were tuned in the same inner-fold CV as the non-stacked model (see Figure 7 below). That is, training models for both non-stacked and stacked models did not involve the test set, ensuring that there was no data leakage between training and test sets.

      Methods:

      “To compute Brain Age and Brain Cognition, we ran two separate prediction models. These prediction models either had chronological age or fluid cognition as the target and standardised brain MRI as the features (Denissen et al., 2022). We used nested cross-validation (CV) to build these models (see Figure 7). We first split the data into five outer folds. We used five outer folds so that each outer fold had around 100 participants. This is to ensure the stability of the test performance across folds. In each outer-fold CV, one of the outer folds was treated as a test set, and the rest was treated as a training set, which was further divided into five inner folds. In each inner-fold CV, one of the inner folds was treated as a validation set and the rest was treated as a training set. We used the inner-fold CV to tune for hyperparameters of the models and the outer-fold CV to evaluate the predictive performance of the models.

      In addition to using each of the 18 sets of features in separate prediction models, we drew information across these sets via stacking. Specifically, we computed predicted values from each of the 18 sets of features in the training sets. We then treated different combinations of these predicted values as features to predict the targets in separate “stacked” models. The hyperparameters of the stacked models were tuned in the same inner-fold CV as the non-stacked model (see Figure 7). That is, training models for both non-stacked and stacked models did not involve the test set, ensuring that there was no data leakage between training and test sets. We specified eight stacked models: “All” (i.e., including all 18 sets of features), “All excluding Task FC”, “All excluding Task Contrast”, “Non-Task” (i.e., including only Rest FC and sMRI), “Resting and Task FC”, “Task Contrast and FC”, “Task Contrast” and “Task FC”. Accordingly, in total, there were 26 prediction models for Brain Age and Brain Cognition.

      Reviewer 1 Recommendations For The Authors #3:

      Third, the authors standardize the elastic net regression coefficients post-hoc. Why did the authors not perform the more standard approach of standardizing the covariates and responses, prior to model estimation, which would yield standardized regression coefficients (in the classical sense) by construction? Please also provide an indication of the different regression strengths that were estimated across the different models and cross-validation splits. Also, how stable were the weights across splits?

      Response For model fitting, we did not “standardize the elastic net regression coefficients post-hoc.” Instead, we did all of the standardisation steps prior to model fitting (see Methods below). For regression strengths across different models and cross-validation splits, we now provided predictive performance at each of the five outer-fold test sets in Figure 1 (below). As you may have seen, the predictive performance was quite stable across the cross-validation splits.

      For visualising feature importance, We originally only standardised the elastic net regression coefficients post-hoc, so that feature importance plots were in the same scale across folds. However, as mentioned by Reviewer 3 (Recommendations for the Authors #7, below), this might make it difficult to interpret the directionality of the coefficients. In the revised manuscript, we refitted the Elastic Net model to the full dataset without splitting them into five folds and visualised the coefficients on brain images (see below).

      Methods

      “We controlled for the potential influences of biological sex on the brain features by first residualising biological sex from brain features in each outer-fold training set. We then applied the regression of this residualisation to the corresponding test set. We also standardised the brain features in each outer-fold training set and then used the mean and standard deviation of this outer-fold training set to standardise the test set. All of the standardisation was done prior to fitting the prediction models.”

      “To understand how Elastic Net made a prediction based on different brain features, we examined the coefficients of the tuned model. Elastic Net coefficients can be considered as feature importance, such that more positive Elastic Net coefficients lead to more positive predicted values and, similarly, more negative Elastic Net coefficients lead to more negative predicted values (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022). While the magnitude of Elastic Net coefficients is regularised (thus making it difficult for us to interpret the magnitude itself directly), we could still indicate that a brain feature with a higher magnitude weights relatively stronger in making a prediction. Another benefit of Elastic Net as a penalised regression is that the coefficients are less susceptible to collinearity among features as they have already been regularised (Dormann et al., 2013; Pat, Wang, Bartonicek, et al., 2022).

      Given that we used five-fold nested cross validation, different outer folds may have different degrees of ‘’ and ‘l_1 ratio’, making the final coefficients from different folds to be different. For instance, for certain sets of features, penalisation may not play a big part (i.e., higher or lower ‘’ leads to similar predictive performance), resulting in different ‘’ for different folds. To remedy this in the visualisation of Elastic Net feature importance, we refitted the Elastic Net model to the full dataset without splitting them into five folds and visualised the coefficients on brain images using Brainspace (Vos De Wael et al., 2020) and Nilern (Abraham et al., 2014) packages. Note, unlike other sets of features, Task FC and Rest FC were modelled after data reduction via PCA. Thus, for Task FC and Rest FC, we, first, multiplied the absolute PCA scores (extracted from the ‘components_’ attribute of ‘sklearn.decomposition.PCA’) with Elastic Net coefficients and, then, summed the multiplied values across the 75 components, leaving 71,631 ROI-pair indices.”

      Reviewer 1 Recommendations For The Authors #4:

      I do not really find it surprising that the level of unique explained variance provided by a brain-cognition model is higher than a brain-age model, given that the latter is considerably more accurate (also, in view of the comment above). As such I would recommend to tone down the claims about the utility of this method, also because it is only really applicable to one application area for brain age.

      Response Thank you for bringing this issue to our attention. We have now toned down the claims about the utility of Brain Cognition and importantly treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. Please see Reviewer 3 Public Review #4 above for a detailed discussion about this issue.

      Reviewer 1 Recommendations For The Authors #5:

      Please provide more details about the task designs and MRI processing procedures that were employed on this sample so that the reader is not forced to dig through the publications from the consortia contributing the data samples used. For example, comments such as "Here we focused on the pre-processed task fMRI files with a suffix "_PA_Atlas_MSMAll_hp0_clean.dtseries.nii." are not particularly helpful to readers not already familiar with this dataset.

      Response Thank you so much for pointing out this important point on the clarity of the description of our MRI methodology. We now added additional details about the data processing done by the HCP-A and by us. We, for instance, explained the meaning of the HCP-A suffix “"_PA_Atlas_MSMAll_hp0_clean.dtseries.nii”. Please see below.

      Methods

      “HCP-A provides details of parameters for brain MRI elsewhere (Bookheimer et al., 2019; Harms et al., 2018). Here we used MRI data that were pre-processed by the HCP-A with recommended methods, including the MSMALL alignment (Glasser et al., 2016; Robinson et al., 2018) and ICA-FIX (Glasser et al., 2016) for functional MRI. We used multiple brain MRI modalities, covering task functional MRI (task fMRI), resting-state functional MRI (rsfMRI) and structural MRI (sMRI), and organised them into 19 sets of features.

      Sets of Features 1-10: Task fMRI contrast (Task Contrast)

      Task contrasts reflect fMRI activation relevant to events in each task. Bookheimer and colleagues (2019) provided detailed information about the fMRI in HCP-A. Here we focused on the pre-processed task fMRI Connectivity Informatics Technology Initiative (CIFTI) files with a suffix, “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” These CIFTI files encompassed both the cortical mesh surface and subcortical volume (Glasser et al., 2013). Collected using the posterior-to-anterior (PA) phase, these files were aligned using MSMALL (Glasser et al., 2016; Robinson et al., 2018), linear detrended (see https://groups.google.com/a/humanconnectome.org/g/hcp-users/c/ZLJc092h980/m/GiihzQAUAwAJ) and cleaned from potential artifacts using ICA-FIX (Glasser et al., 2016).

      To extract Task Contrasts, we regressed the fMRI time series on the convolved task events using a double-gamma canonical hemodynamic response function via FMRIB Software Library (FSL)’s FMRI Expert Analysis Tool (FEAT) (Woolrich et al., 2001). We kept FSL’s default high pass cutoff at 200s (i.e., .005 Hz). We then parcellated the contrast ‘cope’ files, using the Glasser atlas (Gordon et al., 2016) for cortical surface regions and the Freesurfer’s automatic segmentation (aseg) (Fischl et al., 2002) for subcortical regions. This resulted in 379 regions, whose number was, in turn, the number of features for each Task Contrast set of features.

      HCP-A collected fMRI data from three tasks: Face Name (Sperling et al., 2001), Conditioned Approach Response Inhibition Task (CARIT) (Somerville et al., 2018) and VISual MOTOR (VISMOTOR) (Ances et al., 2009). First, the Face Name task (Sperling et al., 2001) taps into episodic memory. The task had three blocks. In the encoding block [Encoding], participants were asked to memorise the names of faces shown. These faces were then shown again in the recall block [Recall] when the participants were asked if they could remember the names of the previously shown faces. There was also the distractor block [Distractor] occurring between the encoding and recall blocks. Here participants were distracted by a Go/NoGo task. We computed six contrasts for this Face Name task: [Encode], [Recall], [Distractor], [Encode vs. Distractor], [Recall vs. Distractor] and [Encode vs. Recall].

      Second, the CARIT task (Somerville et al., 2018) was adapted from the classic Go/NoGo task and taps into inhibitory control. Participants were asked to press a button to all [Go] but not to two [NoGo] shapes. We computed three contrasts for the CARIT task: [NoGo], [Go] and [NoGo vs. Go].

      Third, the VISMOTOR task (Ances et al., 2009) was designed to test simple activation of the motor and visual cortices. Participants saw a checkerboard with a red square either on the left or right. They needed to press a corresponding key to indicate the location of the red square. We computed just one contrast for the VISMOTOR task: [Vismotor], which indicates the presence of the checkerboard vs. baseline.

      Sets of Features 11-13: Task fMRI functional connectivity (Task FC)

      Task FC reflects functional connectivity (FC ) among the brain regions during each task, which is considered an important source of individual differences (Elliott et al., 2019; Fair et al., 2007; Gratton et al., 2018). We used the same CIFTI file “_PA_Atlas_MSMAll_hp0_clean.dtseries.nii.” as the task contrasts. Unlike Task Contrasts, here we treated the double-gamma, convolved task events as regressors of no interest and focused on the residuals of the regression from each task (Fair et al., 2007). We computed these regressors on FSL, and regressed them in nilearn (Abraham et al., 2014). Following previous work on task FC (Elliott et al., 2019), we applied a highpass at .008 Hz. For parcellation, we used the same atlases as Task Contrast (Fischl et al., 2002; Glasser et al., 2016). We computed Pearson’s correlations of each pair of 379 regions, resulting in a table of 71,631 non-overlapping FC indices for each task. We then applied r-to-z transformation and principal component analysis (PCA) of 75 components (Rasero et al., 2021; Sripada et al., 2019, 2020). Note to avoid data leakage, we conducted the PCA on each training set and applied its definition to the corresponding test set. Accordingly, there were three sets of 75 features for Task FC, one for each task. “

      Reviewer 1 Recommendations For The Authors #6:

      Similarly, please be more specific about the regression methods used. There are several different parameterisations of the elastic net, please provide equations to describe the method used here so that readers can easily determine how the regularisation parameters should be interpreted. The same goes for the methods used for correcting bias, e.g. what is "de Lange and Cole's (2020) 5th equation"?

      Response Thank you. We now made a detailed description of Elastic Net including its equation (see below). We also added more specific details about the methods used for correcting bias in Brain Age indices (see our response to Reviewer 3 Public Review #2 above).

      Methods:

      “For the machine learning algorithm, we used Elastic Net (Zou & Hastie, 2005). Elastic Net is a general form of penalised regressions (including Lasso and Ridge regression), allowing us to simultaneously draw information across different brain indices to predict one target variable. Penalised regressions are commonly used for building age-prediction models (Jirsaraie, Gorelik, et al., 2023). Previously we showed that the performance of Elastic Net in predicting cognitive abilities is on par, if not better than, many non-linear and more-complicated algorithms (Pat, Wang, Bartonicek, et al., 2022; Tetereva et al., 2022). Moreover, Elastic Net coefficients are readily explainable, allowing us the ability to explain how our age-prediction and cognition-prediction models made the prediction from each brain feature (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022) (see below).

      Elastic Net simultaneously minimises the weighted sum of the features’ coefficients. The degree of penalty to the sum of the feature’s coefficients is determined by a shrinkage hyperparameter ‘’: the greater the , the more the coefficients shrink, and the more regularised the model becomes. Elastic Net also includes another hyperparameter, ‘l_1 ratio’, which determines the degree to which the sum of either the squared (known as ‘Ridge’; l_1 ratio=0) or absolute (known as ‘Lasso’; l_1 ratio=1) coefficients is penalised (Zou & Hastie, 2005). The objective function of Elastic Net as implemented by sklearn (Pedregosa et al., 2011) is defined as: argmin_ ((|(|y-X|)|_2^2)/(2×n_samples )+α×l_1 _ratio×|(||)|_1+0.5×α×(1-l_1 _ratio)×|(|w|)|_2^2 ), (1) where X is the features, y is the target, and  is the coefficient. In our grid search, we tuned two Elastic Net hyperparameters:  using 70 numbers in log space, ranging from .1 and 100, and l_1-ratio using 25 numbers in linear space, ranging from 0 and 1.”

      Additional minor points:

      Reviewer 1 Recommendations For The Authors #7:

      • Please provide more descriptive figure legends, especially for Figs 5 and 6. For example, what do the boldface numbers reflect? What do the asterisks reflect?

      Response Thank you for the suggestion. We made changes to the figure legends to make it clearer what the numbers and asterisks reflect.

      Reviewer 1 Recommendations For The Authors #8:

      • Perhaps this is personal thing, but I find the nomenclature cognition_{fluid} to be quite awkward. Why not just define FC as an acronym?

      Response Thank you for the suggestion. We now used the word ‘fluid cognition’ throughout the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data or analyses.

      Reviewer 2 Recommendations For The Authors #1:

      • Since the study did not provide external validation for the indices, it is unclear how well the models would perform and generalize to other samples. Therefore, it is recommended to conduct out-of-sample testing of the models.

      Response Thank you for the suggestion. We now added discussions about how consistency between our results and several recent studies that investigated similar issues with Brain Age in different populations, e.g., large samples of older adults in Uk Biobank (Cole, 2020) and younger populations (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023), and in a broader context, extending to neurological and psychological disorders (for review, see Jirsaraie, Gorelik, et al., 2023). Please see below.

      Please also noted that all of the analyses done were out-of-sample. We used nested cross-validation to evaluate the predictive performance of age- and cognition-prediction models on the outer-fold test sets, which are out-of-sample from the training sets (please see Reviewer 1 Recommendations For The Authors #2). Similarly, we also conducted all of the commonality analyses on the outer-fold test sets.

      Discussion

      “The small effects of the Corrected Brain Age Gap in explaining fluid cognition of aging individuals found here are consistent with studies in older adults (Cole, 2020) and younger populations (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023). Cole (2020) studied the utility of Brain Age on cognitive functioning of large samples (n>17,000) of older adults, aged 45-80 years, from the UK Biobank (Sudlow et al., 2015). He constructed age-prediction models using LASSO, a similar penalised regression to ours and applied the same age-dependency adjustment to ours. Cole (2020) then conducted a multiple regression explaining cognitive functioning from Corrected Brain Age Gap while controlling for chronological age and other potential confounds. He found Corrected Brain Age Gap to be significantly related to performance in four out of six cognitive measures, and among those significant relationships, the effect sizes were small with a maximum of partial eta-squared at .0059. Similarly, Jirsaraie and colleagues (2023) studied the utility of Brain Age on cognitive functioning of youths aged 8-22 years old from the Human Connectome Project in Development (Somerville et al., 2018) and Preschool Depression Study (Luby, 2010). They built age-prediction models using gradient tree boosting (GTB) and deep-learning brain network (DBN) and adjusted the age dependency of Brain Age Gap using Smith and colleagues’ (2019) method. Using multiple regressions, Jirsaraie and colleagues (2023) found weak effects of the adjusted Brain Age Gap on cognitive functioning across five cognitive tasks, five age-prediction models and the two datasets (mean of standardised regression coefficient = -0.09, see their Table S7). Next, Butler and colleagues (2021) studied the utility of Brain Age on cognitive functioning of another group of youths aged 8-22 years old from the Philadelphia Neurodevelopmental Cohort (PNC) (Satterthwaite et al., 2016). Here they used Elastic Net to build age-prediction models and applied another age-dependency adjustment method, proposed by Beheshti and colleagues (2019). Similar to the aforementioned results, Butler and colleagues (2021) found a weak, statistically non-significant correlation between the adjusted Brain Age Gap and cognitive functioning at r=-.01, p=.71. Accordingly, the utility of Brain Age in explaining cognitive functioning beyond chronological age appears to be weak across age groups, different predictive modelling algorithms and age-dependency adjustments.“

      “This discrepancy between the predictive performance of age-prediction models and the utility of Brain Age indices as a biomarker is consistent with recent findings (for review, see Jirsaraie, Gorelik, et al., 2023), both in the context of cognitive functioning (Jirsaraie, Kaufmann, et al., 2023) and neurological/psychological disorders (Bashyam et al., 2020; Rokicki et al., 2021). For instance, combining different MRI modalities into the prediction models, similar to our stacked models, often lead to the highest performance of age-prediction models, but does not likely explain the highest variance across different phenotypes, including cognitive functioning and beyond (Jirsaraie, Gorelik, et al., 2023). “

      “Third, by introducing Brain Cognition, we showed the extent to which Brain Age indices were not able to capture the variation of brain MRI that is related to fluid cognition. Brain Cognition, from certain cognition-prediction models such as the stacked models, has relatively good predictive performance, consistent with previous studies (Dubois et al., 2018; Pat, Wang, Anney, et al., 2022; Rasero et al., 2021; Sripada et al., 2020; Tetereva et al., 2022; for review, see Vieira et al., 2022). We then examined Brain Cognition using commonality analyses (Nimon et al., 2008) in multiple regression models having a Brain Age index, chronological age and Brain Cognition as regressors to explain fluid cognition. Similar to Brain Age indices, Brain Cognition exhibited large common effects with chronological age. But more importantly, unlike Brain Age indices, Brain Cognition showed large unique effects, up to around 11%. The unique effects of Brain Cognition indicated the amount of co-variation between brain MRI and fluid cognition that was missed by a Brain Age index and chronological age. This missing amount was relatively high, considering that Brain Age and chronological age together explained around 32% of the total variation in fluid cognition. Accordingly, if a Brain Age index was used as a biomarker along with chronological age, we would have missed an opportunity to improve the performance of the model by around one-third of the variation explained. “

      “There is a notable difference between studies investigating the utility of Brain Age in explaining cognitive functioning, including ours and others (e.g., Butler et al., 2021; Cole, 2020, 2020; Jirsaraie, Kaufmann, et al., 2023) and those explaining neurological/psychological disorders (e.g., Bashyam et al., 2020; Rokicki et al., 2021). That is, those Brain Age studies focusing on neurological/psychological disorders often build age-prediction models from MRI data of largely healthy participants (e.g., controls in a case-control design or large samples in a population-based design), apply the built age-prediction models to participants without vs. with neurological/psychological disorders and compare Brain Age indices between the two groups. This means that age-prediction models from Brain Age studies focusing on neurological/psychological disorders might be under-fitted when applied to participants with neurological/psychological disorders because they were built from largely healthy participants. And thus, the difference in Brain Age indices between participants without vs. with neurological/psychological disorders might be confounded by the under-fitted age-prediction models (i.e., Brain Age may predict chronological age well for the controls, but not for those with a disorder). On the contrary, our study and other Brain Age studies focusing on cognitive functioning often build age-prediction models from MRI data of largely healthy participants and apply the built age-prediction models to participants who are also largely healthy. Accordingly, the age-prediction models for explaining cognitive functioning do not suffer from being under-fitted. We consider this as a strength, not a weakness of our study.”

      Reviewer 2 Recommendations For The Authors #2:

      • Employ Variance Inflation Factor (VIF) to empirically test for multicollinearity.

      Response Given high common effects between many of the regressors in the models (e.g., between Brain Age and chronological age), VIF will be high, but this is not a concern for the commonality analysis. We showed now that applying the commonality analysis to multiple regressions allowed us to have robust results against multicollinearity, as demonstrated elsewhere (Ray-Mukherjee et al., 2014, Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity). Specifically, using the multiple regressions by themselves without the commonality analysis, researchers have to rely on beta estimates, which are strongly affected by multicollinearity (e.g., a phenomenon known as the Suppression Effect). However, by applying the commonality analysis on top of multiple regressions, researchers can then rely on R2 estimates, which are less affected by multicollinearity. This can be seen in our case (Figure 5 and 6) where Brain Age indices had the same unique effects regardless of the level of common effects they had with chronological age (e.g., Brain Age vs. Corrected Brain Age Gap from stacked models).

      To directly demonstrate the robustness of the current commonality analysis regarding multicollinearity, we applied the commonality analysis to Ridge regressions (see Supplementary Figures 3 and 5 below). Ridge regression is a method designed to deal with multicollinearity (Dormann et al., 2013). As seen below, the results from commonality analyses applied to Ridge regressions are closely matched with our original results.

      Methods

      “Note to ensure that the commonality analysis results were robust against multicollinearity (Ray-Mukherjee et al., 2014), we also repeated the same commonality analyses done here on Ridge regression, as opposed to multiple regression. Ridge regression is a method designed to deal with multicollinearity (Dormann et al., 2013). See Supplementary Figure 3 for the Ridge regression with chronological age and each Brain Age index as regressors and Supplementary Figure 5 for the Ridge regression with chronological age, each Brain Age and Brain Cognition index as regressors. Briefly, the results from commonality analyses applied to Ridge regressions are closely matched with our results done using multiple regression.”

      Reviewer 2 Recommendations For The Authors #3:

      • Incorporate non-linearities in the correction of brain-age indices, such as separate terms in the regression or statistical analyses.

      Response Thank you for the suggestion. We now added a non-linear term of chronological age in our multiple-regression models explaining fluid cognition (see Supplementary Figure 4 and 6 below). Originally we did not have the quadratic term for chronological age in our model since the relationship between chronological age and fluid cognition was relatively linear (see Figure 1 above). Accordingly, as expected, adding the quadratic term for chronological age as suggested did not change the pattern of the results of the commonality analyses.

      Methods

      “Similarly, to ensure that we were able to capture the non-linear pattern of chronological age in explaining fluid cognition, we added a quadratic term of chronological age to our multiple-regression models in the commonality analyses. See Supplementary Figure 4 for the multiple regression with chronological age, square chronological age and each Brain Age index as regressors and Supplementary Figure 6 for the multiple regression with chronological age, square chronological age, each Brain Age index and Brain Cognition as regressors. Briefly, adding the quadratic term for chronological age did not change the pattern of the results of the commonality analyses.”

      Reviewer 2 Recommendations For The Authors #4:

      • It would be helpful to include the complete set of results in the appendix - for instance, the statistical significance for each component for the final commonality analysis.

      Response Figures 5 and 6 (see above) already have asterisks to reflect the statistical significance of the unique effects. Because of this, we do not believe we need more figures/tables in the appendix to show statistical significance.

      Recommendations for improving the writing and presentation.

      Reviewer 2 Recommendations For The Authors #5:

      • The authors are encouraged to refrain from using terms such as 'fortunately', 'unfortunately', and 'unsettling', as they may appear inappropriate when referring to empirical findings.

      Response We agree with this suggestion and no long used those words.

      Reviewer 2 Recommendations For The Authors #6:

      • It would be helpful to clarify in the methods that you end up with 5 test folds.

      Response We now made a clarification why we chose 5 test folds.

      Methods

      “We used nested cross-validation (CV) to build these models (see Figure 7). We first split the data into five outer folds. We used five outer folds so that each outer fold had around 100 participants. This is to ensure the stability of the test performance across folds.”

      Minor corrections to the text and figures.

      Reviewer 2 Recommendations For The Authors #7:

      • Why use months, not years for chronological age? This seems inappropriate given the age range.

      Response We originally used months since they were units used in our prediction modelling. However, to make the figures easier to understand, we now used years.

      Reviewer 2 Recommendations For The Authors #8:

      • The formatting, especially regarding the text embedded within the figures, could benefit from significant improvements.

      Response Thank you for the suggestion. We made changes to the text embedded within the figures. They should be more readable now

      Reviewer 2 Recommendations For The Authors #9:

      • The legend for the neuroimaging feature labels is missing, and the captions are incomplete.

      Response Please see Figure 2 above. We now revised by adding the letter L and R for the laterality of the brain images. We made some changes to the captions to make sure they are complete.

      Reviewer 2 Recommendations For The Authors #10:

      • Figure 5's caption: SD has a missing decimal point).

      Response The numbers are not SD. The numbers to the left of the figure represent the unique effects of chronological age in %, the numbers in the middle of the figure represent the common effects between chronological age and Brain Age index in %, and the numbers to the right of the figure represent the unique effects of Brain Age Index in %. We now used the same one decimal point for these number

      Reviewer #3 (Recommendations For The Authors):

      The main question of this article is as follows: “To what extent does having information on Brain Age improve our ability to capture declines in fluid cognition beyond knowing a person’s chronological age?” While this question is worthwhile, considering most of the field is confused about the nature of brain age, the authors are currently missing an opportunity to convey the inevitability of their results given how Brain Age and the Brain Age Gap are calculated. They also misleadingly convey that Brain Cognition is somehow superior to Brain Age. If the authors work on conveying the inevitability of their results and redo (or remove) their section on Brain Cognition, I can see how their results would be enlightening to the general neuroimaging community that is interested in the concept of brain age. See below for specific critiques.

      Response Please see our response to Reviewer 3 Public Review Overall. Note we no longer argue that Brain Cognition is superior to Brain Age (Reviewer 3 Public Review #4). Rather, we treated the capability of Brain Cognition in capturing fluid cognition as the upper limit of Brain Age’s capability in capturing fluid cognition. We used the unique effects of Brain Cognition that explain fluid cognition beyond Brain Age and chronological age to indicate how much Brain Age misses the variation in the brain MRI that could explain fluid cognition.

      Reviewer 3 Recommendations For The Authors #1:

      “There are many adjustments proposed to correct for this estimation bias” (p3) → Regression to the mean is not a sign of bias. Any decent loss function will result in over- predicting the age of younger individuals and under-predicting the age of older individuals. This is a direct result of minimizing an error term (e.g., mean squared error). Therefore, it is inappropriate to refer to regression to the mean as a sign of bias. This misconception has led to a great deal of inappropriate analyses, including “correcting” the brain age gap by regressing out age.

      Response Please see our response to Reviewer 3 Public Review#1

      Reviewer 3 Recommendations For The Authors #2:

      “Corrected Brain Age Gap in particular is viewed as being able to control for both age dependency and estimation biases (Butler et al., 2021).” (p3) → This summary is not accurate as Butler and colleagues did not use the words "corrected" and "biases" in this context. All that authors say in that paper is that regressing out age from the brain age gap - which is referred to as the modified brain age gap (MBAG) - makes it so that the modified brain age gap is not dependent on age, which is true. This metric is meaningless, though, because it is the variance left over after regressing out age from residuals from a model that was predicting age. If it were not for the fact that regression on residuals is not equivalent to multiple regression (and out of sample estimates), MBAG would be a vector of zeros. Upon reading your Methods, I noticed that you are using a metric for Le et al. (2018) for your “Corrected Brain Age Gap”. If they cite the Butler et al. (2021) paper, I highly recommend sticking with the same notation, metrics and terminology throughout. That would greatly help with the interpretability of your paper, and cross-comparisons between the two.

      Response Please see our response to Reviewer 3 Public Review #2.

      Reviewer 3 Recommendations For The Authors #3:

      “However, the improvement in predicting chronological age may not necessarily make Brain Age to be better at capturing Cognitionfluid. If, for instance, the age-prediction model had the perfect performance, Brian Age Gap would be exactly zero and would have no utility in capturing Cognitionfluid beyond chronological age.” (p3) → I largely agree with this statement. I would be really careful to distinguish between Brain Age and the Brain Age Gap here, as the former is a predicted value, and the latter is the residual times -1 (predicted age - age). Therefore, together they explain all of the variance in age. If you change the first sentence to refer to the Brain Age Gap, this statement makes more sense. The Brain Age Gap will never be exactly zero, though, even with perfect prediction on the training set, because subjects in the testing set are different from the subjects in the training set.

      Response Please see our response to Reviewer 3 Public Review #3.

      Reviewer 3 Recommendations For The Authors #4:

      “Can we further improve our ability to capture the decline in cognitionfluid by using, not only Brain Age and chronological age, but also another biomarker, Brain Cognition?” → This question is fundamentally getting at whether a predicted value of cognition can predict cognition. Assuming the brain parameters can predict cognition decently, and the original cognitive measure that you were predicting is related to your measure of fluid cognition, the answer should be yes. This seems like an uninteresting question to me. Upon reading your Methods, it became clear that the cognitive variable in the model predicting cognition using brain features (to get predicted cognition, or as you refer to it, Brain Cognition) is the same as the measure of fluid cognition that you are trying to assess how well Brain Cognition can predict. Assuming the brain parameters can predict fluid cognition at all, of course Brain Cognition will predict fluid cognition. This is inevitable. You should never use predicted values of a variable to predict the same variable.

      Response Please see our response to Reviewer 3 Public Review #4.

      Reviewer 3 Recommendations For The Authors #5:

      “We also examined if these better-performing age-prediction models improved the ability of Brain Age in explaining Cognitionfluid.” → Improved above and beyond what?

      Response We referred to if better-performing age-prediction models improved the ability of Brain Age in explaining fluid cognition over and above lower-performing age-prediction models. We made changes to the Introduction to clarify this change.

      Reviewer 3 Recommendations For The Authors #6:

      Figure 1 b & c → It is a little difficult to read the text by the horizontal bars in your plots. Please make the text smaller so that there is more space between the words vertically, or even better, make the plots slightly bigger. Please also put the predicted values on the y-axis. This is standard practice for displaying regression results. To make more room, you can get rid of your rPearson or your R2 plot, considering the latter is simply the square of the former. If you want to make it clear that the association is positive between all of your variables, I would keep rPearson.

      Response Thank you so much for the suggestions.

      1) We now made sure that the text by the horizontal bars in Figure 1b and c is readable.

      2) Note in prediction model/machine-learning literature, it is more common to plot observed/real values on the y-axis. Here is the logic of our practice: values in the x-axis are the predicted values based on the model, and we would like to see if the changes in the predicted values correspond to the changes in the observed/real value in the y-axis.

      3) Regarding Pearson correlation vs R2, please note that we wrote ”for R2, we used the sum of squares definition (i.e., R2 = 1 – (sum of squares residuals/total sum of squares)) per a previous recommendation (Poldrack et al., 2020).” As such, R2 is NOT the square of the Pearson correlation. In fact, in Poldrack and colleages’s “Establishment of Best Practices for Evidence for Prediction” paper (2020), they discourage 1) the use of Pearson correlation by itself and 2) the use of the correlation coefficient square as R2 (as opposed to sum of squares definition):

      “It is common in the literature to use the correlation between predicted and actual values as a measure of predictive performance; of the 64 studies in our literature review that performed prediction analyses on continuous outcomes, 30 reported such correlations as a measure of predictive performance. This reporting is problematic for several reasons. First, correlation is not sensitive to scaling of the data; thus, a high correlation can exist even when predicted values are discrepant from actual values. Second, correlation can sometimes be biased, particularly in the case of leave-one-out cross-validation. As demonstrated in Figure 4, the correlation between predicted and actual values can be strongly negative when no predictive information is present in the model. A further problem arises when the variance explained (R2) is incorrectly computed by squaring the correlation coefficient. Although this computation is appropriate when the model is obtained using the same data, it is not appropriate for out-of-sample testing23; instead, the amount of variance explained should be computed using the sum-of-squares formulation (as implemented in software packages such as scikit-learn).”

      “A further problem arises when the variance explained (R2) is incorrectly computed by squaring the correlation coefficient. Although this computation is appropriate when the model is obtained using the same data, it is not appropriate for out-of-sample testing23; instead, the amount of variance explained should be computed using the sum-of-squares formulation (as implemented in software packages such as scikit-learn).”

      Accordingly, we decided to keep both R2 and Pearson correlation (along with MAE) in our Figure 1.

      Reviewer 3 Recommendations For The Authors #7:

      Figure 2 “We calculated feature importance by, first, standardizing Elastic Net weights across brain features of each set of features from each test fold.” → What do you mean by “standardize” here? Rescale to be mean 0, variance 1? If so, this seems like a misleading transformation, because it gives the impression that the relationships are negative, when they are not necessarily. Also, why did you choose to use elastic net weights in any form as measures of effect size (or importance)? The raw values are inherently penalized, which means they are under-estimates of the true effect size. It would be more meaningful (and less biased) to plot the raw correlations.

      Response For the first question regarding standardisation, we addressed this issue in our response to Reviewer 1 Recommendations For The Authors #3. Briefly, we agreed with Reviewer 3 that standardisation (with mean = 0, SD = 1) might make it difficult to interpret the directionality of the coefficients. For visualising feature importance in the revised manuscript, we refitted the Elastic Net model to the full dataset without splitting them into five folds and visualised the coefficients on brain images (see below).

      For the second question regarding why using Elastic Net coefficients as feature importance (as opposed to correlations), we need to mention the goal of feature importance: to understand how the model makes a prediction based on different brain features (Molnar, 2019). Correlations between a target and each brain feature do not achieve this. Instead, they will show univariate/marginal relationships between a target and a brain feature. What we want to visualise is how the model made a prediction, which in the case of Elastic Net, the prediction is based on the sum of the features’ coefficients. In other words, the multivariate models (including Elastic Net) focus on marginal relationships that take into account all brain features within each set of features.

      Elastic Net coefficients can be considered as feature importance, such that more positive Elastic Net coefficients lead to more positive predicted values and, similarly, more negative Elastic Net coefficients lead to more negative predicted values (Molnar, 2019; Pat, Wang, Bartonicek, et al., 2022). While the magnitude of Elastic Net coefficients is regularised (thus making it difficult for us to interpret the magnitude itself directly), we could still indicate that a brain feature with a higher magnitude weights relatively stronger in making a prediction. Another benefit of Elastic Net as a penalised regression is that the coefficients are less susceptible to collinearity among features as they have already been regularised (Dormann et al., 2013; Pat, Wang, Bartonicek, et al., 2022).

      Reviewer 3 Recommendations For The Authors #8:

      Figure 3 → Again, what exactly do you mean by “standardised” here?

      Response It means mean subtraction followed by the division by an SD. Though we no longer applies standardisation for feature importance. See our response to Reviewer 1 Recommendations For The Authors #3 and Reviewer 3 Recommendations For The Authors #7.

      Reviewer 3 Recommendations For The Authors #9:

      “However, Brain Age Gap created from the lower-performing age-prediction models explained a higher amount of variation in Cognitionfluid. For instance, the top performing age-prediction model, “Stacked: All excluding Task Contrast”, generated Brain Age and Corrected Brain Age that explained the highest amount of variation in Cognitionfluid, but, at the same time, produced Brian Age Gap that explained the least amount of variation in Cognitionfluid.” (p7) → Yes, but you did not need to run any models to show this, considering it is an inevitable consequence of the following relationship between predicted values and residuals (or residuals times -1): 𝑦 = (𝑦 − 𝑦% ) + 𝑦% . Let’s say that age explains 60% of the variance in fluid cognition, and predicted age ( 𝑦% ) explains 40% of the variance in fluid cognition. Then the brain age gap (−(𝑦 − 𝑦% )) should explain 20% of the variance in fluid cognition. If by “Corrected Brain Age” you mean the modified predicted age from the Butler paper, the “Corrected Brain Age” result is inevitable because the modified predicted age is essentially just age with a tiny bit of noise added to it. From Figure 4, though, this does not seem to be the case, because the lower left quadrant in panel a should be flat and high (about as high as the predictive value of age for fluid cognition). So how are you calculating “Corrected Brain Age”? It looks like you might be regressing age out of Brain Age, though from your description the Methods (How exactly do you use the slope and intercept? You need equation of you are going to stick with this terminology), it is not totally clear. I highly recommend using terminology and metrics from the Butler et al. (2021) paper throughout to reduce confusion.

      Response Please see our response to Reviewer 3 Public Review #5

      Reviewer 3 Recommendations For The Authors #10:

      “On the contrary, an amount of variation in Cognitionfluid explained by Corrected Brain Age Gap was relatively small (maximum R2 = .041) across age-prediction models and did not relate to the predictive performance of the age-prediction models.” (p7) → If by “Corrected Brain Age Gap” you mean MBAG from The Butler paper, yes, this is also inevitable, considering MBAG would be a vector of zeros if it were not for regression on residuals (and out of sample estimates), as I mentioned earlier. Also, it is not clear why you used “on the contrary” as a transition here.

      Response Please see our response to Reviewer 3 Public Review #2 for the ‘MBAG’ term. Briefly, we didn’t use Butler and colleagues' (2021) MBAG, but rather we used the method described in de Lange and Cole’s (2020), which was called RBAG by Butler and colleagues.

      de Lange and Cole’s (2020) method, was commonly implemented elsewhere (Cole et al., 2020; Cumplido-Mayoral et al., 2023; Denissen et al., 2022). Accordingly, researchers who use Brain Age do not usually view this method as capturing a meaningless biomarker. Yet, the small effects of the Corrected Brain Age Gap in explaining fluid cognition of aging individuals found here are consistent with studies in older adults (Cole, 2020) and younger populations (Butler et al., 2021; Jirsaraie, Kaufmann, et al., 2023) (see our response to Reviewer 2 Recommendations For The Authors #1).

      “On the contrary” refers to the fact that the other three Brain Age indices (i.e., those that did not account for the relationship between Brain Age and chronological age) showed a much higher amount of variation in fluid cognition explained. As mentioned above (our response to Reviewer 2 Public Review #7), our argument resonates Butler and colleagues’ (2021) suggestion (p. 4097): “As such, it is critical that readers of past literature note whether or not age was controlled for when testing for effects on the BAG, as this has not always been common practice (e.g., Beheshti et al., 2018; Cole, Underwood, et al., 2017; Franke et al., 2015; Gaser et al., 2013; Liem et al., 2017; Nenadi c et al., 2017; Steffener et al., 2016)”.

      Reviewer 3 Recommendations For The Authors #11:

      “As before, the unique effects of Brain Age indices were all relatively small across the four Brain Age indices and across different prediction models.” (p10) → Yes, again, this is inevitable considering how they are calculated. You can show these analyses to demonstrate your results in data, if you want, but ignoring the inevitability given how these variables are calculated is misleading.

      Response Accounting for the relationship between Brain Age and chronological age when examining the utility of Brain Age is not misleading. Similar to previous recommendations (Butler et al., 2021; Le et al., 2018), we believe that not doing so is misleading. That is, without accounting for the relationship between Brain Age and chronological age, Brain Age will likely explain the same variation of the phenotype of interest as chronological age. Please see our response to Reviewer 3 Recommendations For The Authors #18 below.

      Reviewer 3 Recommendations For The Authors #12:

      “On the contrary, the unique effects of Brain Cognition appeared much larger.” (p10) → This is not a fair comparison if you don’t look at the unique effects above and beyond the cognitive variable you predicted (fluid cognition) in your Brain Cognition model. When you do this, you will see that Brain Cognition is useless when you include fluid cognition in the model, just as Brain Age would be in predicting age when you include age in the model. This highlights the fact that using predicted values of a metric to predict that metric is a pointless path to take, and that using a predicted value to predict anything is worse than using the value itself.

      Response Please see our response to Reviewer 3 Public Review #6.

      Reviewer 3 Recommendations For The Authors #13:

      “First, how much does Brain Age add to what is already captured by chronological age? The short answer is very little.” (p12) → This is a really important point, but your paper requires an in-depth discussion of the inevitability of this result, which I have discussed previously in this review.

      Response Please see our response to Reviewer 3 Public Review #7.

      Reviewer 3 Recommendations For The Authors #14:

      “Second, do better-performing age-prediction models improve the ability of Brain Age to capture Cognitionfluid? Unfortunately, the answer is no.” (p12) → You need to be clear that you are talking about above and beyond age here.

      Response Thank you so much for your suggestion. We now made the change to this sentence accordingly.

      Discussion

      “Second, do better-performing age-prediction models improve the utility of Brain Age to capture fluid cognition above and beyond chronological age? The answer is also no.”

      Reviewer 3 Recommendations For The Authors #15:

      “Third, do we have a solution that can improve our ability to capture Cognitionfluid from brain MRI? The answer is, fortunately, yes. Using Brain Cognition as a biomarker, along with chronological age, seemed to capture a higher amount of variation in Cognitionfluid than only using Brain Age.” (p12) → Again, try controlling for the cognitive measure you predicted in your Brain Cognition model. This will show that Brain Cognition is not useful above and beyond cognition, highlighting the fact that it is not a useful endeavor to be using predicted values.

      Response Please see our response to Reviewer 3 Public Review #8.

      Reviewer 3 Recommendations For The Authors #16:

      “Accordingly, a race to improve the performance of age-prediction models (Baecker et al., 2021) does not necessarily enhance the utility of Brain Age indices as a biomarker for Cognitionfluid. This calls for a new paradigm. Future research should aim to build prediction models for Brian Age indices that are not necessarily good at predicting age, but at capturing phenotypes of interest, such as Cognitionfluid and beyond.” (p13) → I whole-heartedly agree with the first two sentences, and strongly disagree with the last. Certainly your results, and the underlying reason as to why you found these results, calls for a new paradigm (or, one might argue, a pre-brain age paradigm). They do not, however, suggest that we should keep going down the Brain Age path. In fact, I think it should be abandoned all together. While it is difficult to prove that there is no transformation of Brain Age or the Brain Age Gap that will be useful, I am nearly sure this is true from the research I have done. Therefore, if you would like to suggest that the field should continue down this path, you need to present a very good case to support this view.

      Response Please see our response to Reviewer 3 Public Review #9.

      Reviewer 3 Recommendations For The Authors #17:

      “Perhaps this is because the estimation of the influences of chronological age was done in the training set.” (p13) → I believe this is the case, and it is testable. Try re-running your analyses where parameters are estimated and performance is evaluated on the same data.

      Response Yes, we agreed with this. Based on the equations we used, this is inevitable.

      Reviewer 3 Recommendations For The Authors #18:

      “Similar to a previous recommendation (Butler et al., 2021), we suggest focusing on Corrected Brain Age Gap.” (p13) → To be clear, the authors did not use the term “Corrected” because it is very misleading. The authors also did not suggest that we proceed with any brain age metric; rather they mentioned that the modified brain age gap is independent of age. Note the following passage: “Further, the interpretability of the modified brain age gap (MBAG) itself is limited by the fact that it is a prediction error from a regression to remove the effects of age from a residual obtained through a regression to predict age. By virtue of these limitations, we suggest that the modified version may not provide useful information about precocity or delay in brain development. In light of this, as well as the complexities associated with interpretations of the BAG and its dependence on age, we suggest that further methodological and theoretical work is warranted.” I recognize that that this statement is hedged, as is often required in the publication process, but I am all but certain that MBAG/BAG/modified predicted age are useless constructs. Therefore, if you are going to suggest that people continue to use them, opposed to suggesting that further methodological or theoretical work is warranted, you need to make a strong case, which you did not try to make here. If anything, your results support abandoning the age- prediction endeavor altogether.

      Response Please see our response to Reviewer 3 Public Review #2 for the term. Briefly, we didn’t use Butler and colleagues’ (2021) MBAG, but rather RBAG. This index was originally described in de Lange and Cole’s (2020), and has now been implemented elsewhere (Cole et al., 2020; Cumplido-Mayoral et al., 2023; Denissen et al., 2022).

      We do not intend to encourage people to abandon the Brain Age endeavour altogether. However, we made main three suggestions for future research on Brain Age to ensure its utility. First, they should account for the relationship between Brain Age and chronological age either using Corrected Brain Age Gap (or other similar adjustments) or, better, examining the unique effects of Brain Age indices after controlling for chronological age through commonality analyses (see below). This is similar to the suggestion made by Le and colleagues (2018) and later rephased by Butler and colleagues (2021). More specifically, Le and colleagues (2018) mentioned (p. 10): “Based on our observations in both real and simulated data, we recommend that the relationship between chronological age and BrainAGE should be accounted for. The two methods proposed in this study are either: (1) regress age on BrainAGE, producing BrainAGER, which is centered on 0 regardless of a participant's actual age or (2) include age as a regressor when doing follow-up analyses.”

      Second, we suggested that researchers should not select age-prediction models based solely on age-prediction performance (see our response to Reviewer 1 Recommendations For The Authors #1).

      Third, we suggested that researchers should test how much Brain Age miss the variation in the brain MRI that could explain fluid cognition or other phenotypes of interest (see our response to Reviewer 2 Public Review #4).

      Discussion

      “What does it mean then for researchers/clinicians who would like to use Brain Age as a biomarker? First, they have to be aware of the overlap in variation between Brain Age and chronological age and should focus on the contribution of Brain Age over and above chronological age. Using Brain Age Gap will not fix this. Butler and colleagues (2021) recently highlighted this point, “These results indicate that the association between cognition and the BAG are driven by the association between age and cognitive performance. As such, it is critical that readers of past literature note whether or not age was controlled for when testing for effects on the BAG, as this has not always been common practice (p. 4097).” Similar to previous recommendations (Butler et al., 2021; Le et al., 2018), we suggest future work should account for the relationship between Brain Age and chronological age, either using Corrected Brain Age Gap (or other similar adjustments) or, better, examining unique effects of Brain Age indices after controlling for chronological age through commonality analyses. Note we prefer using unique effects over beta estimates from multiple regressions, given that unique effects do not change as a function of collinearity among regressors (Ray-Mukherjee et al., 2014). In our case, Brain Age indices had the same unique effects regardless of the level of common effects they had with chronological age (e.g., Brain Age vs. Corrected Brain Age Gap from stacked models). In the case of fluid cognition, the unique effects might be too small to be clinically meaningful as shown here and previously (Butler et al., 2021; Cole, 2020; Jirsaraie, Kaufmann, et al., 2023).”

      Reviewer 3 Recommendations For The Authors #19:

      “To compute Brain Age and Brain Cognition, we ran two separate prediction models. These prediction models either had chronological age or Cognitionfluid as the target.” (p16) → You should make it clear in the main text of your paper that the cognition variable in your Brain Cognition models is the same as what you refer to as Cognitionfluid. Some of your analyses would have been much more reasonable if you had two different measures of cognition.

      Response Thank you so much for the suggestion. We believe, given the re-conceptualisation of Brain Cognition as the main text

      Introduction

      “certain variation in the brain MRI is related to fluid cognition, but to what extent does Brain Age not capture this variation? To estimate the variation in the brain MRI that is related to fluid cognition, we could build prediction models that directly predict fluid cognition (i.e., as opposed to chronological age) from brain MRI data.”

      Reviewer 3 Recommendations For The Authors #20:

      “We controlled for the potential influences of biological sex on the brain features by first residualizing biological sex from brain features in the training set.” (p16) → Why? Your question is about prediction, not causal inference.

      Response While the question is about prediction, we still would like to, as much as possible, be confident about what kind of information we drew from. Here we focused on brain data and controlled for other variables that might not be neuronal. For instance, we controlled for movement and physiological noise using ICA-FIX (Glasser et al., 2016). Following conventional practices in brain-based predictive modelling, we also treated biological sex as another sort of noise (Vieira et al., 2022). The difference between movement/physiological noise and biological sex is that the former varies across TRs, and the latter varies across individuals. Thus we controlled for movement and physiological noise within each participant and controlled for biological sex within a group of participants who belonged to the same training set.

      Reviewer 3 Recommendations For The Authors #20:

      “Lastly, we computer Corrected Brain Age Gap by subtracting the chronological age from the Corrected Brain Age (Butler et al., 2021; Le et al., 2018).” (p17) → The modified brain age gap in that paper is the residuals from regressing BAG on age (see equation 6). I highly recommend using that terminology and notation throughout to provide consistency and interpretability across papers.

      Response Please see our response to Reviewer 3 Public Review #2 for the term.

      Reviewer 3 Recommendations For The Authors #21: Equations (pgs 17-19) → Please use statistical notation instead of pseudo-R code.

      Response We rewrote all of the equations using statistical notations.

      References

      Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., & Varoquaux, G. (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 14. https://doi.org/10.3389/fninf.2014.00014

      Ances, B. M., Liang, C. L., Leontiev, O., Perthen, J. E., Fleisher, A. S., Lansing, A. E., & Buxton, R. B. (2009). Effects of aging on cerebral blood flow, oxygen metabolism, and blood oxygenation level dependent responses to visual stimulation. Human Brain Mapping, 30(4), 1120–1132. https://doi.org/10.1002/hbm.20574

      Bashyam, V. M., Erus, G., Doshi, J., Habes, M., Nasrallah, I. M., Truelove-Hill, M., Srinivasan, D., Mamourian, L., Pomponio, R., Fan, Y., Launer, L. J., Masters, C. L., Maruff, P., Zhuo, C., Völzke, H., Johnson, S. C., Fripp, J., Koutsouleris, N., Satterthwaite, T. D., … on behalf of the ISTAGING Consortium, the P. A. disease C., ADNI, and CARDIA studies. (2020). MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide. Brain, 143(7), 2312–2324. https://doi.org/10.1093/brain/awaa160

      Beheshti, I., Nugent, S., Potvin, O., & Duchesne, S. (2019). Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme. NeuroImage: Clinical, 24, 102063. https://doi.org/10.1016/j.nicl.2019.102063

      Bookheimer, S. Y., Salat, D. H., Terpstra, M., Ances, B. M., Barch, D. M., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Diaz-Santos, M., Elam, J. S., Fischl, B., Greve, D. N., Hagy, H. A., Harms, M. P., Hatch, O. M., Hedden, T., Hodge, C., Japardi, K. C., Kuhn, T. P., … Yacoub, E. (2019). The Lifespan Human Connectome Project in Aging: An overview. NeuroImage, 185, 335–348. https://doi.org/10.1016/j.neuroimage.2018.10.009

      Butler, E. R., Chen, A., Ramadan, R., Le, T. T., Ruparel, K., Moore, T. M., Satterthwaite, T. D., Zhang, F., Shou, H., Gur, R. C., Nichols, T. E., & Shinohara, R. T. (2021). Pitfalls in brain age analyses. Human Brain Mapping, 42(13), 4092–4101. https://doi.org/10.1002/hbm.25533 Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), Article 9. https://doi.org/10.1038/s41596-020-0353-1

      Cole, J. H. (2020). Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors. Neurobiology of Aging, 92, 34–42. https://doi.org/10.1016/j.neurobiolaging.2020.03.014

      Cole, J. H., Raffel, J., Friede, T., Eshaghi, A., Brownlee, W. J., Chard, D., De Stefano, N., Enzinger, C., Pirpamer, L., Filippi, M., Gasperini, C., Rocca, M. A., Rovira, A., Ruggieri, S., Sastre-Garriga, J., Stromillo, M. L., Uitdehaag, B. M. J., Vrenken, H., Barkhof, F., … Group, M. study. (2020). Longitudinal Assessment of Multiple Sclerosis with the Brain-Age Paradigm. Annals of Neurology, 88(1), 93–105. https://doi.org/10.1002/ana.25746

      Cumplido-Mayoral, I., García-Prat, M., Operto, G., Falcon, C., Shekari, M., Cacciaglia, R., Milà-Alomà, M., Lorenzini, L., Ingala, S., Meije Wink, A., Mutsaerts, H. J., Minguillón, C., Fauria, K., Molinuevo, J. L., Haller, S., Chetelat, G., Waldman, A., Schwarz, A. J., Barkhof, F., … OASIS study. (2023). Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer’s disease and neurodegeneration stratified by sex. ELife, 12, e81067. https://doi.org/10.7554/eLife.81067

      de Lange, A.-M. G., & Cole, J. H. (2020). Commentary: Correction procedures in brain-age prediction. NeuroImage: Clinical, 26, 102229. https://doi.org/10.1016/j.nicl.2020.102229

      Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, M., Goldstein, J. I., Grasby, K. L., Grove, J., … Neale, B. M. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51(1), Article 1. https://doi.org/10.1038/s41588-018-0269-7

      Denissen, S., Engemann, D. A., De Cock, A., Costers, L., Baijot, J., Laton, J., Penner, I., Grothe, M., Kirsch, M., D’hooghe, M. B., D’Haeseleer, M., Dive, D., De Mey, J., Van Schependom, J., Sima, D. M., & Nagels, G. (2022). Brain age as a surrogate marker for cognitive performance in multiple sclerosis. European Journal of Neurology, 29(10), 3039–3049. https://doi.org/10.1111/ene.15473

      Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

      Dubois, J., Galdi, P., Paul, L. K., & Adolphs, R. (2018). A distributed brain network predicts general intelligence from resting-state human neuroimaging data. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 20170284. https://doi.org/10.1098/rstb.2017.0284

      Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., Moffitt, T. E., & Hariri, A. R. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516–532. https://doi.org/10.1016/j.neuroimage.2019.01.068

      Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U. F., Wenger, K. K., Fox, M. D., Snyder, A. Z., Raichle, M. E., & Petersen, S. E. (2007). A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. NeuroImage, 35(1), 396–405. https://doi.org/10.1016/j.neuroimage.2006.11.051

      Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., & Dale, A. M. (2002). Whole Brain Segmentation. Neuron, 33(3), 341–355. https://doi.org/10.1016/S0896-6273(02)00569-X

      Franke, K., & Gaser, C. (2019). Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have We Gained? Frontiers in Neurology, 10, 789. https://doi.org/10.3389/fneur.2019.00789

      Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens, T. E. J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project’s neuroimaging approach. Nature Neuroscience, 19(9), 1175–1187. https://doi.org/10.1038/nn.4361

      Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M. (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127

      Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E. (2016). Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cerebral Cortex, 26(1), 288–303. https://doi.org/10.1093/cercor/bhu239

      Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., Nelson, S. M., Coalson, R. S., Snyder, A. Z., Schlaggar, B. L., Dosenbach, N. U. F., & Petersen, S. E. (2018). Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation. Neuron, 98(2), 439-452.e5. https://doi.org/10.1016/j.neuron.2018.03.035

      Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M., Bookheimer, S. Y., Brown, T. B., Buckner, R. L., Burgess, G. C., Coalson, T. S., Chappell, M. A., Dapretto, M., Douaud, G., Fischl, B., Glasser, M. F., Greve, D. N., Hodge, C., Jamison, K. W., … Yacoub, E. (2018). Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. NeuroImage, 183, 972–984. https://doi.org/10.1016/j.neuroimage.2018.09.060

      Horien, C., Noble, S., Greene, A. S., Lee, K., Barron, D. S., Gao, S., O’Connor, D., Salehi, M., Dadashkarimi, J., Shen, X., Lake, E. M. R., Constable, R. T., & Scheinost, D. (2020). A hitchhiker’s guide to working with large, open-source neuroimaging datasets. Nature Human Behaviour, 5(2), 185–193. https://doi.org/10.1038/s41562-020-01005-4

      Jirsaraie, R. J., Gorelik, A. J., Gatavins, M. M., Engemann, D. A., Bogdan, R., Barch, D. M., & Sotiras, A. (2023). A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. Patterns, 4(4), 100712. https://doi.org/10.1016/j.patter.2023.100712

      Jirsaraie, R. J., Kaufmann, T., Bashyam, V., Erus, G., Luby, J. L., Westlye, L. T., Davatzikos, C., Barch, D. M., & Sotiras, A. (2023). Benchmarking the generalizability of brain age models: Challenges posed by scanner variance and prediction bias. Human Brain Mapping, 44(3), 1118–1128. https://doi.org/10.1002/hbm.26144

      Khojaste-Sarakhsi, M., Haghighi, S. S., Ghomi, S. M. T. F., & Marchiori, E. (2022). Deep learning for Alzheimer’s disease diagnosis: A survey. Artificial Intelligence in Medicine, 130, 102332. https://doi.org/10.1016/j.artmed.2022.102332

      Le, T. T., Kuplicki, R. T., McKinney, B. A., Yeh, H.-W., Thompson, W. K., Paulus, M. P., Tulsa 1000 Investigators, Aupperle, R. L., Bodurka, J., Cha, Y.-H., Feinstein, J. S., Khalsa, S. S., Savitz, J., Simmons, W. K., & Victor, T. A. (2018). A Nonlinear Simulation Framework Supports Adjusting for Age When Analyzing BrainAGE. Frontiers in Aging Neuroscience, 10. https://www.frontiersin.org/articles/10.3389/fnagi.2018.00317

      Liang, H., Zhang, F., & Niu, X. (2019). Investigating systematic bias in brain age estimation with application to post-traumatic stress disorders. Human Brain Mapping, 40(11), 3143–3152. https://doi.org/10.1002/hbm.24588

      Luby, J. L. (2010). Preschool Depression: The Importance of Identification of Depression Early in Development. Current Directions in Psychological Science, 19(2), 91–95. https://doi.org/10.1177/0963721410364493

      Molnar, C. (2019). Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/

      Nimon, K., Lewis, M., Kane, R., & Haynes, R. M. (2008). An R package to compute commonality coefficients in the multiple regression case: An introduction to the package and a practical example. Behavior Research Methods, 40(2), 457–466. https://doi.org/10.3758/BRM.40.2.457

      Pat, N., Wang, Y., Anney, R., Riglin, L., Thapar, A., & Stringaris, A. (2022). Longitudinally stable, brain‐based predictive models mediate the relationships between childhood cognition and socio‐demographic, psychological and genetic factors. Human Brain Mapping, hbm.26027. https://doi.org/10.1002/hbm.26027

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2022). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, bhac235. https://doi.org/10.1093/cercor/bhac235

      Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830.

      Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of Best Practices for Evidence for Prediction: A Review. JAMA Psychiatry, 77(5), 534–540. https://doi.org/10.1001/jamapsychiatry.2019.3671

      Rasero, J., Sentis, A. I., Yeh, F.-C., & Verstynen, T. (2021). Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLOS Computational Biology, 17(3), e1008347. https://doi.org/10.1371/journal.pcbi.1008347

      Ray-Mukherjee, J., Nimon, K., Mukherjee, S., Morris, D. W., Slotow, R., & Hamer, M. (2014). Using commonality analysis in multiple regressions: A tool to decompose regression effects in the face of multicollinearity. Methods in Ecology and Evolution, 5(4), 320–328. https://doi.org/10.1111/2041-210X.12166

      Robinson, E. C., Garcia, K., Glasser, M. F., Chen, Z., Coalson, T. S., Makropoulos, A., Bozek, J., Wright, R., Schuh, A., Webster, M., Hutter, J., Price, A., Cordero Grande, L., Hughes, E., Tusor, N., Bayly, P. V., Van Essen, D. C., Smith, S. M., Edwards, A. D., … Rueckert, D. (2018). Multimodal surface matching with higher-order smoothness constraints. NeuroImage, 167, 453–465. https://doi.org/10.1016/j.neuroimage.2017.10.037

      Rokicki, J., Wolfers, T., Nordhøy, W., Tesli, N., Quintana, D. S., Alnæs, D., Richard, G., de Lange, A.-M. G., Lund, M. J., Norbom, L., Agartz, I., Melle, I., Nærland, T., Selbæk, G., Persson, K., Nordvik, J. E., Schwarz, E., Andreassen, O. A., Kaufmann, T., & Westlye, L. T. (2021). Multimodal imaging improves brain age prediction and reveals distinct abnormalities in patients with psychiatric and neurological disorders. Human Brain Mapping, 42(6), 1714–1726. https://doi.org/10.1002/hbm.25323

      Satterthwaite, T. D., Connolly, J. J., Ruparel, K., Calkins, M. E., Jackson, C., Elliott, M. A., Roalf, D. R., Hopson, R., Prabhakaran, K., Behr, M., Qiu, H., Mentch, F. D., Chiavacci, R., Sleiman, P. M. A., Gur, R. C., Hakonarson, H., & Gur, R. E. (2016). The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth. NeuroImage, 124, 1115–1119. https://doi.org/10.1016/j.neuroimage.2015.03.056

      Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., & Miller, K. L. (2019). Estimation of brain age delta from brain imaging. NeuroImage, 200, 528–539. https://doi.org/10.1016/j.neuroimage.2019.06.017

      Somerville, L. H., Bookheimer, S. Y., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Dapretto, M., Elam, J. S., Gaffrey, M. S., Harms, M. P., Hodge, C., Kandala, S., Kastman, E. K., Nichols, T. E., Schlaggar, B. L., Smith, S. M., Thomas, K. M., Yacoub, E., Van Essen, D. C., & Barch, D. M. (2018). The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5–21 year olds. NeuroImage, 183, 456–468. https://doi.org/10.1016/j.neuroimage.2018.08.050

      Sperling, R. A., Bates, J. F., Cocchiarella, A. J., Schacter, D. L., Rosen, B. R., & Albert, M. S. (2001). Encoding novel face-name associations: A functional MRI study. Human Brain Mapping, 14(3), 129–139. https://doi.org/10.1002/hbm.1047

      Sripada, C., Angstadt, M., Rutherford, S., Kessler, D., Kim, Y., Yee, M., & Levina, E. (2019). Basic Units of Inter-Individual Variation in Resting State Connectomes. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-018-38406-5

      Sripada, C., Angstadt, M., Rutherford, S., Taxali, A., & Shedden, K. (2020). Toward a “treadmill test” for cognition: Improved prediction of general cognitive ability from the task activated brain. Human Brain Mapping, 41(12), 3186–3197. https://doi.org/10.1002/hbm.25007

      Stigler, S. M. (1997). Regression towards the mean, historically considered. Statistical Methods in Medical Research, 6(2), 103–114. https://doi.org/10.1177/096228029700600202

      Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, T., Peakman, T., & Collins, R. (2015). UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine, 12(3), e1001779. https://doi.org/10.1371/journal.pmed.1001779

      Tetereva, A., Li, J., Deng, J. D., Stringaris, A., & Pat, N. (2022). Capturing brain‐cognition relationship: Integrating task‐based fMRI across tasks markedly boosts prediction and test‐retest reliability. NeuroImage, 263, 119588. https://doi.org/10.1016/j.neuroimage.2022.119588

      Vieira, B. H., Pamplona, G. S. P., Fachinello, K., Silva, A. K., Foss, M. P., & Salmon, C. E. G. (2022). On the prediction of human intelligence from neuroimaging: A systematic review of methods and reporting. Intelligence, 93, 101654. https://doi.org/10.1016/j.intell.2022.101654

      Vos De Wael, R., Benkarim, O., Paquola, C., Lariviere, S., Royer, J., Tavakol, S., Xu, T., Hong, S.-J., Langs, G., Valk, S., Misic, B., Milham, M., Margulies, D., Smallwood, J., & Bernhardt, B. C. (2020). BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 3(1), 103. https://doi.org/10.1038/s42003-020-0794-7

      Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data. NeuroImage, 14(6), 1370–1386. https://doi.org/10.1006/nimg.2001.0931

      Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript titled "Disease modeling and pharmacological rescue of autosomal dominant Retinitis Pigmentosa associated with RHO copy number variation" the authors describe the use of patient iPSC-derived retinal organoids to evaluate the pathobiology of a RHO-CNV in a family with dominant retinitis pigmentosa (RP). They find significantly increased expression of rhodopsin, especially within the photoreceptor cell body, and defects in photoreceptor cell outer segment formation/maturation. In addition, they demonstrate how an inhibitor of NR2E3 (a rod transcription factor required for inducing rhodopsin expression), can be used to rescue the disease phenotype.

      Strengths:

      The manuscript is very well written, the illustrations and data presented are compelling, and the authors' interpretation/discussion of their findings is logical.

      Weaknesses:

      A weakness, which the authors have addressed in the discussion section, is the lack of an isogenic control, which would allow for direct analysis of the RHO-CNV in the absence of the other genetic sequence contained within the duplicated region. As the authors suggest, CRISPR correction of a large CNV in the absence of inducing unwanted on-target editing events in patient iPSCs is often very challenging. Given that they have used a no-disease iPSC line obtained from a family member, controlled for organoid differentiation kinetics/maturation state, and that no other complete disease-causing gene is contained within the duplicated region, it is unlikely that the addition of an isogenic control would yield significantly different results.

      Aims and conclusions:

      This reviewer is of the opinion that the authors have achieved their aims and that their results support their conclusions.

      Discussion:

      The authors have provided adequate discussion on the utility of the methods and data as well as the impact of their work on the field.

      We thank the reviewer for their insightful, and encouraging review of our work that has taken several years to get to current stage.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by Kandoi et al. describes a new 3D retinal organoid model of a mono-allelic copy number variant of the rhodopsin gene that was previously shown to induce autosomal dominant retinitis pigmentosa via a dominant negative mechanism in patients. With advancements in the low-cost genomics application to detect copy number variations, this is a timely article that highlights a potential disease mechanism that goes beyond the retina field. The evidence is relatively strong that the rod photoreceptor phenotype observed in an adult patient with RP in vivo is similar to that phenotype observed in human stem cell-derived retinal organoids. Increases in RHO expression detected by qPCR, RNA-seq, and IHC support this phenotype. Importantly, the amelioration of photoreceptor rhodopsin mislocalization and related defects using the small molecule drug photoregulin demonstrates an important potential clinical application.

      Overall, the authors succeeded in providing solid evidence that copy number variation via a genomic RHO duplication leads to abnormalities in rod photoreceptors that can be partially blocked by photoregulin. However, there are several points that should be addressed that will enhance this paper.

      Strengths:

      • The use of patient-derived organoids from patients that have visual defects is a major strength of this work and adds relevance to the disease phenotype.

      • The rod phenotype assessed by qPCR, RNA-seq, and IHC supports a phenotype that shares similarities with the patient.

      • The use of a small molecule drug that selectively targets rod photoreceptors, as opposed to cones, is a noteworthy strength.

      We thank the reviewers for highlighting the key strengths of the paper.

      Weaknesses:

      1) The chromosomal segment that was duplicated had 3 copies of RHO in addition to three copies of each of the flanking genes (IFT122, HIF100, PLXND1). Discussion of the involvement of these genes would be helpful. Would duplication of any of these genes alone cause or contribute to adRP? As an example, a missense mutation in IFT122 was previously implicated in photoreceptor loss (PMID: 33606121 PMCID: PMC8519925).

      Thank you for your comment. It is an interesting question on the contribution of the other duplicated genes. Of these, IFT122 is particularly interesting as pointed out. We did a thorough survey through literature and our genetic testing partner’s database, BluePrint Genetics. We did not find any human retinal degeneration cases with variants in IFT122. IFT122 has been shown to cause recessive phenotype in dogs and in complete knockout zebrafish model but dominant or overexpression has not been shown to have a phenotype. Interestingly, recessive biallelic IFT122 mutation can cause Cranioectodermal Dysplasia (Sensenbrenner syndrome, PMID: 24689072) and none of these patient exhibited retinal dystrophy. HIF100 is an epigenetic modifier gene while PLXND1 is expressed in endothelial cells. We will include a discussion on this in the revised manuscript.

      2) Related to #1, have the authors considered inserting extra copies of RHO (and/or the flanking genes) of these at a genomic safe harbor site? Although not required, this would allow one to study cells with isogenic-matched genetic backgrounds and would partially address the technical challenge of repairing a 188kb duplication, which as the authors note would be difficult to do. Demonstrating that excess copy numbers in different genetic backgrounds would be a huge contribution to the field. At a minimum, a discussion of the role of the nearby genes should be included.

      Thank you for your suggestion. We plan to test the relative role of 1-3 extra copies of RHO driven off a NRL promoter in order to drive it only in rods in our future mechanistic analysis studies. We will include a discussion on the potential role of the other genes in the revised manuscript.

      3) In the patient, the central foveal region was spared suggesting that cones were normal. Was there a similar assessment that cones are unaffected in retinal organoids?

      We will include this data in our revised manuscript but overall did not see a cone defect in RHO CNV organoids. Additionally, although it is true that the central foveal region was relatively spared in this patient, the cones are definitely not normal. The macular cones that remain have been damaged by chronic edema, and photoreceptor and RPE atrophy has progressed into the macula, sparing only the foveal cones.

      4) Pathway analysis indicated that glycosylation was perturbed and this was proposed as an explanation as to why rhodopsin was mislocalized. Have the authors verified that there is an actual decrease in glycosylation?

      These studies are ongoing. We are currently looking into the details of cellular pathophysiology focusing on RHO trafficking in RHO-CNV including role of glycosylation and other post-translational modifications defects.

      5) Line 182: by what criteria are the authors able to state that " there were no clear visible anatomical changes in apical-basal retinal cell type distribution during the early differentiation timeframe (data not shown)." Was this based on histological staining with antibodies, nuclear counter-staining, or some other evaluation?

      This was based on both IHC for various cell type markers and nuclear (DAPI) staining.

      6) Figure 2C - the appearance of the inner segments in RC and RM looks very different from one another. Have the authors ruled out the possibility that the RC organoid cell isn't a cone? In addition, the RM structure has what appears to be a well-defined OLM which would suggest well-formed Muller glia. Do these structures also exist in RC organoids? Typically the OLM does form in older organoids. In addition, was this representative in numerous EM preparations?

      For clarification on EM data, we will include additional images in the revision as supplementary data. We have not carefully compared OLM between the patient and control organoids but do observe them in both conditions in the older organoids. The EM preparations were made from multiple organoids from two different batches with consistent results.

      7) What criteria were used to assess cell loss? Has any TUNEL labeling been performed to confirm cell loss? From the existing data, it seems that rod outer segments appear to be affected in organoids. However, it's not clear if the photoreceptors themselves actually die in this model.

      TUNEL was used to assess cell loss and it was not significantly different between the control and patient organoids at the timepoints examined. We did not expect a change as the disease in the patient developed over decades.

      8) Figure 5B. The RHO staining in the vehicle-treated sample is perturbed relative to the PR3 treatments as indicated in the text. In the vehicle-treated sample, the number of DAPI-positive cells that are completely negative proximal to the inner segments suggests that there might be non-rod cells there. Have the authors confirmed whether these are cones? Labels would be helpful in the left vehicle panel as the morphology looks very different than the treated samples.

      Thank you very much for the various suggestions and these will be included in the revised manuscript version. A number of the cells in the negative regions are OTX2+/NRL- and likely to be cones (Figure 4 A and B). Unfortunately, we do not have a very good cone nuclear marker as RXRγ does not consistently stain mature cones.

      9) It is interesting that in addition to increases in RHO, and photo-transduction, there are also increases in PTPRT which is related to synaptic adhesion. Is there evidence of ectopic neurites that result from PTPRT over-expression?

      You are absolutely correct that PTPRT data is very interesting. PTPRT requires similar PTMs like RHO in photoreceptors for its synaptic localization. We did not specifically look at ectopic neurites and test that in the revision. It will interesting to follow-up on its expression pattern to see if it gets processed or localized normally if we can find a working antibody. It is also possible that the gene-expression increase due to feedback upregulation secondary to improper protein processing.

      Reviewer #3 (Public Review):

      This manuscript reports a novel pedigree with four intact copies of RHO on a single chromosome which appears to lead to overexpression of rhodopsin and a corresponding autosomal dominant form of RP. The authors generate retinal organoids from patient- and control-derived cells, characterize the phenotypes of the organoids, and then attempt to 'treat' aberrant rhodopsin expression/mislocalization in the patient organoids using a small molecule called photoregulin 3 (PR3). While this novel genetic mechanism for adRP is interesting, the organoid work is not compelling. There are multiple problems related to the technical approaches, the presentation of the results, and the interpretations of the data. I will present my concerns roughly in the order in which they appear in the manuscript.

      Major concerns:

      (1) Individual human retinal organoids in culture can show a wide range of differentiation phenotypes with respect to the expression of specific markers, percentages of given cell types, etc. For this reason, it can be very difficult to make rigorous, quantitative comparisons between 'wild-type' and 'mutant' organoids. Despite this difficulty, the author of the present manuscript frequently presents results in an impressionistic manner without quantitation. Furthermore, there is no indication that the investigator who performed the phenotypic analyses was blind with respect to the genotype. In my opinion, such blinding is essential for the analysis of phenotypes in retinal organoids. To give an example, in lines 193-194 the authors write "we observed that while the patient organoids developing connecting cilium and the inner segments similar to control organoids, they failed to extend outer segments". Outer segments almost never form normally in human retinal organoids, even when derived from 'wild-type' cells. Thus, I consider it wholly inadequate to simply state that outer segment formation 'failed' without a rigorous, quantitative, and blinded comparison of patient and control organoids.

      We agree it is challenging to generate outer segments in retinal organoids but we are not the first to show this. This has been demonstrated by multiple independent labs (Mayerl et al (PMID: 36206764), Wahlin et al (PMID: 28396597), West at al (PMID: 35334217) including ours (Chirco et al (PMID: 34653402). To clarify, we did not observe any OS like tissue in the patient organoids across multiple EM preps of a number of organoids from two independent 300+ day experiments which matched the phase microscopy data presented in Fig2B.

      (2) The presentation of qPCR results in Figure 3A is very confusing. First, the authors normalize expression to that of CRX, but they don't really explain why. In lines 210-211, they write "CRX, a ubiquitously expressing photoreceptor gene maintained from development to adulthood." Several parts of this sentence are misleading or incomplete. First, CRX is not 'ubiquitously expressed' (which usually means 'in all cell types') nor is it photoreceptor-specific: CRX is expressed in rods, cones, and bipolar cells. Furthermore, CRX expression levels are not constant in photoreceptors throughout development/adulthood. So, for these reasons alone, CRX is a poor choice for the normalization of photoreceptor gene expression.

      As you are aware, all housekeeping genes have shortcomings when used for normalizing PCR data. We went with CRX as within the timepoints chosen, it is not expected to change much and thus represent a good equalizer for relative photoreceptor numbers between the organoids and conditions. While we agree that CRX is weakly expressed in bipolar cells (Yamamoto et al 2020), it is not expected to bias the data too much as we have not seen nor have other reported a huge relative difference in bipolar cell number in organoids. We also confirm this by showing equivalent expression of OTX2, RCVRN and NRL between all conditions.

      Second, the authors' interpretation of the qPCR results (lines 216-218) is very confusing. The authors appear to be saying that there is a statistically significant increase in RHO levels between D120 and D300. However, the same change is observed in both control and patient organoids and is not unexpected, since the organoids are more mature at D300. The key comparison is between control and patient organoids at D300. At this time point, there appears to be no difference between control and patient. The authors don't even point this out in the main text.

      Thank you for the comment and we apologize if this confused you. However, as can been seen in the graph in Figure 3A, we do compare expression of genes including RHO between control and patient organoids at two different time points. There are four conditions: D120-RC, D120-RM, D300-RC and D300-RM with individual data points and error bars for each condition. There is a statistically significant increase at both time points upon comparing the control and patient organoids for RHO. We compared RHO expression between patient organoids at the two time points and it was not statistically different.

      Third, the variability in the number of photoreceptor cells in individual organoids makes a whole-organoid comparison by qPCR fraught with difficulty. It seems to me that what is needed here is a comparison of RHO transcript levels in isolated rod photoreceptors.

      We agree that this makes it challenging. This was the exact reasoning for using CRX for normalization since it is predominantly present in photoreceptors. This was validated by the data showing no difference in expression of photoreceptor markers OTX2, RCVRN or NRL between the organoids.

      (3) I cannot understand what the authors are comparing in the bulk RNA-seq analysis presented in the paragraph starting with line 222 and in the paragraph starting with line 306. They write "we performed bulk-RNA sequencing on 300-days-old retinal organoids (n=3 independent biological replicates). Patient retinal organoids demonstrated upregulated transcriptomic levels of RHO... comparable to the qRT-PCR data." From the wording, it suggests that they are comparing bulk RNA-seq of patients and control organoids at D300. However, this is not stated anywhere in the main text, the figure legend, or the Methods. Yet, the subsequent line "comparable to the qRT-PCR data" makes no sense, because the qPCR comparison was between patient samples at two different time points, D120 and D300, not between patient and control. Thus, the reader is left with no clear idea of what is even being compared by RNA-seq analysis.

      We apologize if the conditions were not obvious and will clarify this in the revised version. The conditions compared are control and patient organoids at D300. Regarding comparison to RT-PCR, as stated above, the comparison shown is between patient and control organoids at two different timepoints.

      Remarkably, the exact same lack of clarity as to what is being compared is found in the second RNA-seq analysis presented in the paragraph starting with line 306. Here the authors write "We further carried out bulk RNA-sequencing analysis to comprehensively characterize three different groups of organoids, 0.25 μM PR3-treated and vehicle-treated patient organoids and control (RC) organoids from three independent differentiation experiments. Consistent with the qRT-PCR gene expression analysis, the results showed a significant downregulation in RHO and other rod phototransduction genes." Here, the authors make it clear that they have performed RNA-seq on three types of samples: PR3-treated patient organoids, vehicle-treated patient organoids, and control organoids (presumably not treated). Yet, in the next sentence, they state "the results showed a significant downregulation in RHO", but they don't state what two of the three conditions are being compared! Although I can assume that the comparison presented in Fig. 6A is between patient vehicle-treated and PR3-treated organoids, this is nowhere explicitly stated in the manuscript.

      Thank you for the comment and we will explicitly state various comparisons in the revised version.

      (4) There are multiple flaws in the analysis and interpretation of the PR3 treatment results. The authors wrote (lines 289-2945) "We treated long-term cultured 300-days-old, RHO-CNV patient retinal organoids with varying concentrations of PR3 (0.1, 0.25 and 0.5 μM) for one week and assessed the effects on RHO mRNA expression and protein localization. Immunofluorescence staining of PR3-treated organoids displayed a partial rescue of RHO localization with optimal trafficking observed in the 0.25 μM PR3-treated organoids (Figure 5B). None of the organoids showed any evidence of toxicity post-treatment."

      There are multiple problems here. First, the results are impressionistic and not quantitative. Second, it's not clear that the investigator was blinded with respect to the treatment condition. Third, in the sections presented, the organoids look much more disorganized in the PR3-treated conditions than in the control. In particular, the ONL looks much more poorly formed. Overall, I'd say the organoids looked considerably worse in the 0.25 and 0.5 microM conditions than in the control, but I don't know whether or not the images are representative. Without rigorously quantitative and blinded analysis, it is impossible to draw solid conclusions here. Lastly, the authors state that "none of the organoids showed any evidence of toxicity post-treatment," but do not explain what criteria were used to determine that there was no toxicity.

      Thank you for your critical insight. The RHO localization data is qualitative as it is very difficult to accurately quantify rhodopsin trafficking within the cell in the organoid. Thus, for quantitative comparison, we have provided expression level changes. Regarding toxicity, we analyzed the organoids by morphology and TUNEL and did not observe significant difference between the conditions. This closely mimics mouse data on PR3 which suppressed rod function in mice following IP injection without any obvious toxicity.

      (5) qPCR-based quantitation of rod gene expression changes in response to PR3 treatment is not well-designed. In lines 294-297 the authors wrote "PR3 drove a significant downregulation of RHO in a dose-dependent manner. Following qRT-PCR analysis, we observed a 2-to-5 log2FC decrease in RHO expression, along with smaller decreases in other rod-specific genes including NR2E3, GNAT1 and PDE6B." I assume these analyses were performed on cDNA derived from whole organoids. There are two problems with this analysis/interpretation. First, a decrease in rod gene expression can be caused by a decrease in the number of rods in the treated organoids (e.g., by cell death) or by a decrease in the expression of rod genes within individual rods. The authors do not distinguish between these two possibilities. Second, as stated above, the percentage of cells that are rods in a given organoid can vary from organoid to organoid. So, to determine whether there is downregulation of rod gene expression, one should ideally perform the qPCR analysis on purified rods.

      The reviewer is correct in pointing the potential reasons for reduction in RHO levels following PR3 treatment. Thus, we have provided NRL expression levels in the graph to show that this key rod-specific gene does not change suggesting equivalent number of rod photoreceptor cells. The suggestion of using purified rods is not practical here, as we do not have any way to sort human rods due to the lack of a rod-specific cell surface marker.

      (6) In Figure 4B 'RM' panels, the authors show RHO staining around the somata of 'rods' but the inset images suggest that several of these cells lack both NRL and OTX2 staining in their nuclei. All rods should be positive for NRL. Conversely, the same image shows a layer of cells scleral to the cells with putative RHO somal staining which do not show somal staining, and yet they do appear to be positive for NRL and OTX2. What is going on here? The authors need to provide interpretations for these findings.

      Since RHO is a cytoplasmic marker and photoreceptor are tightly packed, it is difficult to make a 1:1 comparison to NRL/OTX2 nuclear marker to RHO. Additionally, as the RHO+ cytoplasm moves towards scleral surface, it is expected to pass adjacent to other nuclei. Few of the rods do still have normal Rhodopsin trafficking and it is likely these will not have somal RHO similar to control conditions. We do rarely observe these cells as highlighted by the occasional RHO in IS/OS of RM organoids in the figure. We do agree that the NRL staining in the figure 4B (>D250) is not extremely crisp and we will include an updated figure in the revised version.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary: This study presents fundamental new insights into vesicular monoamine transport and the binding pose of the clinical drug tetrabenazine (TBZ) to the mammalian VMAT2 transporter. Specifically, this study reports the first structure for the mammalian VMAT (SLC18) family of vesicular monoamine transporters. It provides insights into the mechanism by which this inhibitor traps VMAT2 into a 'dead-end' conformation. The structure also provides some evidence for a novel gating mechanism within VMAT2, which may have wider implications for understanding the mechanism of transport in the wider SLC18 family.

      Strengths: The structure is high quality, and the method used to determine the structure via fusing mVenus and the anti-GFP nanobody to the amino and carboxyl termini is novel. The binding and transport data are convincing, although limited. The binding position of TBZ is of high value, given its role in treating Huntington's chorea and for being a 'dead-end' inhibitor for VMAT2.

      Weaknesses: The lack of additional mutational data and/or analyses on the impact of pH on ligand binding reduces the insights from these experiments. This reduces the strength of the conclusions that can be drawn about the mechanism of binding and transport or the novelty of the gating mechanism discussed above.

      We greatly appreciate this summary and thank reviewer #1 for their comments and suggested experiments which we believe will further strengthen this work. We agree with these comments and plan to include more mutagenesis data in a revised manuscript in order to address this point and expand further on the mechanistic details of transport.

      Reviewer #2 (Public Review):

      Overview:

      As a report of the first structure of VMAT2, indeed the first structure of any vesicular monoamine transporter, this manuscript represents an important milestone in the field of neurotransmitter transport. VMAT2 belongs to a large family (the major facilitator superfamily, MFS) containing transporters from all living species. There is a wealth of information relating to the way that MFS transporters bind substrates, undergo conformational changes to transport them across the membrane, and couple these events to the transmembrane movement of ions. VMAT2 couples the movement of protons out of synaptic vesicles to the vesicular uptake of biogenic amines (serotonin, dopamine, and norepinephrine) from the cytoplasm. The new structure presented in this manuscript can be expected to contribute to an understanding of this proton/amine antiport process.

      The structure contains a molecule of the inhibitor TBZ bound in a central cavity, with no access to either luminal or cytoplasmic compartments. The authors carefully analyze which residues interact with bound TBZ and measure TBZ binding to VMAT2 mutated at some of those residues. These measurements allow well-reasoned conclusions about the differences in inhibitor selectivity between VMAT1 and VMAT2 and differences in affinity between TBZ derivatives.

      The structure also reveals polar networks within the protein and hydrophobic residues in positions that may allow them to open and close pathways between the central binding site and the cytoplasm or the vesicle lumen. The authors propose the involvement of these networks and hydrophobic residues in the coupling of transport to proton translocation and conformational changes. However, these proposals are quite speculative in the absence of supporting structures and experimentation that would test specific mechanistic details.

      Thank you for these comments and summary describing this work. We agree that the involvement of polar networks has not been experimentally tested; these are proposed as a possible mechanism, but we have not made mechanistic conclusions on how protons are translocated and coupled to transport. We believe we have made it clear in the manuscript when describing the polar networks that the corresponding discussion is largely descriptive and speculative and will further stress that in a future revision. We would like to point out however, that many of the polar and charged residues which make up these networks have been studied and that there is a wealth of biochemical and functional experiments in the literature which implicate these residues in this process. Yet, we agree that establishing the precise mechanistic details will require additional structures and likely also extensive computational experiments. We have cited these papers that have characterized these polar residues extensively throughout the text (30-32,37,49,55).

      We would like to submit that we have not proposed that the hydrophobic gates are involved in proton translocation. Gating residues, by definition, block access to the binding site (29,30,48); and since our structure is occluded, we directly observe the residues which participate in both gates. We have also performed extensive mutagenesis studies of many of these hydrophobic gating residues and our binding data are consistent with this conclusion. Transport experiments with mutations at these gates might be helpful toward gaining a deeper understanding of transport mechanism but given the current structural data it is conceivable that these residues play a role in gating neurotransmitter.

      Critique:

      Although the structure presented in this MS is clearly important, I feel that the authors have overstated several of the conclusions that can be drawn from it. I don't agree that the structure clearly indicates why TBZ is a non-competitive inhibitor; the proposal that specific hydrophobic residues function as gates will depend on lumen- and cytoplasm-facing structures for verification; the polar networks could have any number of functions - indeed it would be surprising if they were all involved in proton transport. Several of these issues could be resolved by a clearer illustration of the data, but I believe that a more rigorous description of the conclusions and where they fall between firm findings and speculation would help the reader put the results in perspective.

      The central argument made by this reviewer that is repeated throughout this critique is that more structures of various states are needed to make mechanistic conclusions with respect to how TBZ binds and alternating access. While additional structures would certainly add mechanistic detail, they are not required to make these conclusions. In fact, as we point out throughout the text, these conclusions have already been made in various publications which we have cited and discussed. Decades of mutagenesis, binding, transport, inhibition, and accessibility measurements all support the conclusion that TBZ binds from the luminal side and that VMAT2 uses an alternating mechanism to transport neurotransmitter (30-32,35-37,55). Structures are neither required nor sufficient to make such claims and more structures of various apo states in different conformations would not provide any additional support to this question. If the predominant apo state was luminal open, cytoplasm open or occluded, this would not prove how TBZ enters VMAT2. Structural data alone does not provide these details; biochemical data does and structures are useful for understanding the details of how these mechanisms work. Thus, our structure provides the molecular framework for understanding the binding site, conformation, gating, and polar networks and we have interpreted our own biochemical data as well as the available biochemical data in the literature in the context of our structure.

      The structure indicates why TBZ is a non-competitive inhibitor (35,36) because it is not possible for neurotransmitters to compete for binding to this state. Neurotransmitter initially binds to the cytosolic facing state where the intracellular gates are open, inhibition by binding to this state would result in a competitive mechanism. Since TBZ is non-competitive, it must bind through the luminal-open state where the luminal gate is open. Further conformational change produces the occluded conformation with both the luminal and intracellular gates closed which is what we observe in the structure. This finding is supported by numerous biochemical and functional experiments and by extensive analysis of mutants in the gates using binding assays, transport experiments and cysteine accessibility experiments. We have cited and discussed these key papers (30-32,35-37,55) throughout the text and our results support the conclusions drawn from these works.

      Non-competitive inhibition occurs when the action of an inhibitor can't be overcome by increasing substrate concentration. The structure shows TBZ sequestered in the central cavity with no access to either cytoplasm or lumen. The explanation of competitive vs non-competitive inhibition depends entirely on how TBZ got there. If it is bound from the cytoplasm, cytoplasmic substrate should have been able to compete with TBZ and overcome the inhibition. If it is bound from the lumen, or from within the bilayer, cytoplasmic substrate would not be able to compete, and inhibition would be non-competitive. The structure does not tell us how TBZ got there, only that it was eventually occluded from both aqueous compartments and the bilayer.

      TBZ is accepted to be a non-competitive inhibitor, based on decades of research, and not based solely on our structure (30-32,35,36). Our structure provides insight into the molecular mechanism by which non-competitive inhibition occurs. Previous studies have shown that TBZ enters through the luminal side of the transporter, resulting in non-competitive inhibition by binding to a conformation of the transporter which does not bind cytosolic neurotransmitter. We agree our structure does not prove how TBZ ‘got there’, but other studies have addressed this question (30-32, 35, 36) and have been discussed in detail.

      The issue of how VMAT2 opens access to the central binding site from luminal and cytoplasmic sides is an important and interesting one, and comparison with other MFS structures in cytoplasmic-open or extracellular/luminal-open is a very reasonable approach. However, any conclusions for VMAT2 should be clearly indicated as speculative in the absence of comparable open structures of VMAT2. As a matter of presentation, I found the illustrations in ED Fig. 6 to be less helpful than they could have been. Specifically, illustrations that focus on the proposed gates, comparing that region of the new structure with the corresponding region of either VGLUT or GLUT4 would better help the reader to compare the position of the proposed gate residues with the corresponding region of the open structure. I realize that is the intended purpose of ED Fig. 6b and 6c, but currently, those show the entire protein, and a focus on the gate regions might make the proposed gate movements clearer. I also appreciate the difference between the Alphafold prediction and the new structure, but I'm not convinced that ED Fig. 6a adds anything helpful.

      Thank you for the suggestion. We will prepare a new figure that focuses on the gates to make this clearer. The comparison with Alphafold is valuable since the luminal loops and gates are not well modeled. Many groups are using these structures to do biochemical and computational experiments and perhaps even to design small-molecules. Since Alphafold differs substantially in this area, it might be of interest to those in the community doing this type of work.

      The polar networks described in the manuscript provide interesting possibilities for interactions with substrates and protons whose binding to VMAT2 must control conformational change. Aside from the description of these networks, there is little evidence presented to assess the role of these networks in transport. Are the networks conserved in other closely related transporters? How could the interaction of the networks with substrate or protons affect conformational change? Of course, any potential role proposed for the networks would be highly speculative at this point, and any discussion of their role should point out their speculative nature and the need for experimental verification. Some speculation, however, can be useful for focusing the field's attention on future directions. However, statements in the abstract (three distinct polar networks... play a role in proton transduction.) and the discussion (...are likely also involved in mediating proton transduction.) should be clearly presented as speculation until they are validated experimentally.

      We agree these statements are speculative, which we acknowledged in the text. We will further emphasize this point in a future revision. Please note, however, that many of these residues have been highlighted in other studies (30-32,37,49,55), and we have cited them in the text. Please see previous response.

      Most of these residues are indeed highly conserved. It is a good idea to highlight this in our sequence alignment of related transporters. We will do so in our revised manuscript.

      The strongest aspect of this work (aside from the structure itself) is the analysis of TBZ binding. There is a problematic aspect to this analysis. The discussion on how TBZ stabilizes the occluded conformation of VMAT2 is premature without structures of apo-VMAT2 and possibly structures with other ligands bound. We don't really know at this point whether VMAT2 might be in the same occluded conformation in the absence of TBZ. Any statements regarding the effect of interactions between VMAT2 and TBZ depend on demonstrating that TBZ has a conformational effect. The same applies to the discussion of the role of W318 on conformation and to the loops proposed to "occlude the luminal side of the transporter" (line 131).

      Please see the response to this argument presented earlier. The occluded structure clearly shows the residues serving as gates. To understand how the gates open is a separate question. This does require additional structures and computations which are beyond the scope of this work. Our structure is interpreted in the context of all available biochemical data.

      The description of VMAT2 mechanism makes many assumptions that are based on studies with other MFS transporters. Rather than stating these assumptions as fact (VMAT2 functions by alternating access...), it would be preferable to explain why a reader should believe these assumptions. In general, this discussion presents conclusions as established facts rather than proposals that need to be tested experimentally.

      Indeed, the structural details of alternating access in MFS transporters are based on structures of other related proteins and we have cited review articles that describe this (29,30,48). We would like to highlight that these assumptions are not without merit, as previous studies investigating predicted gating residues (the same residues resolved in our structure) were based on studies of other MFS transporters and the demonstrated biochemical results are consistent with an alternating access transporter. These biochemical experiments also clearly demonstrate that a broadly similar mechanism of alternating access is used by VMAT2, see (30-32,48) which we have cited extensively when discussing these mechanisms.

      The MD simulations are not described well enough for a general reader. What is the significance of the different runs? ED Fig. 4d is not high enough resolution to see the details.

      We plan to provide additional experimental details and data to support the computational experiments in a revision. See response to reviewer #3.

      Reviewer #3 (Public Review):

      Summary:

      The vesicular monoamine transporter is a key component in neuronal signaling and is implicated in diseases such as Parkinson's. Understanding of monoamine processing and our ability to target that process therapeutically has been to date provided by structural modeling and extensive biochemical studies. However, structural data is required to establish these findings more firmly.

      Strengths:

      Dalton et al resolved a structure of VMAT2 in the presence of an important inhibitor, tetrabenazine, with the protein in detergent micelles, using cryo-EM and with the aid of domains fused to its N- and C-terminal ends. The resolution of the maps allows clear assignment of the amino acids in the core of the protein. The structure is in good agreement with a wealth of experimental and structural prediction data and provides important insights into the binding site for tetrabenazine and selectivity relative to analogous compounds.

      Weaknesses:

      The authors follow up their structures with molecular dynamics simulations. The simulations resulted in repositioning of the ligand, which does not seem to be well founded, and raises questions about the methodological choices made for the simulations.

      We appreciate the comments of reviewer #3 and thank them for these suggestions regarding the MD simulations. We will be supplying additional information to address the questions of reviewer #2 and #3 regarding the MD simulations including 1) movies which show there is not a substantial repositioning of ligand in any of the three runs 2) a table showing protonation states of residues and TBZ 3) data which shows that the number of waters which enter the binding site is relatively few compared with simulations of dopamine bound VMAT2 4) in run 2, more waters have entered the binding site vs. run 1 and 3 which likely explains why there is a small repositioning of TBZ.

      We will also be providing a substantially improved map in a revised manuscript where the peripheral TMHs and loops are better resolved.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewers for their helpful comments which we have addressed, point-by-point, below:

      Reviewer #1:

      1) It might be useful to add more details to the methods (especially lines 191-196) to make them a bit more user-friendly for an audience who still may be unfamiliar with the relatively new and complex Mendelian randomisation technique.

      The following information has been included in this section of the methods, to describe the different MR models in more detail:

      “The IVW MR model will produce biased effect estimates in the presence of horizontal pleiotropy, i.e. where one or more genetic variant(s) included in the instrument affect the outcome by a pathway other than through the exposure. In the weighted median model, each genetic variant is weighted according to its distance from the median effect of all genetic variants. Thus, the weighted median model will provide an unbiased estimate when at least 50% of the information in an instrument comes from genetic variants that are not horizontally pleiotropic. The weighted mode model uses a similar approach but weights genetic instruments according to the mean effect. In this model, over 50% of the weight of the genetic instrument can be contributed to by genetic variants which are horizontally pleiotropic, but the most common amount of pleiotropy must be zero (known as the Zero Modal Pleiotropy Assumption (ZEMPA))[Hartwig et al., 2017].”

      2) I was just wondering why MR egger was not carried out as part of this analysis?

      We did consider also employing the MR Egger model as a further sensitivity analysis. However, given we were already employing the weighted median and weighted mode models, and given that MR-Egger suffers from reduced statistical power in comparison to the other models, we reasoned that adding in a further MR model would not add further clarity to our analyses, particularly given the relatively small sample size.

      3) Although it is included in Figure 1 flowchart, I think it is also important to explain clearly in the written text way only n=6,118 of n=13,988 children in ALSPAC study were included in this study and the reason for this.

      The following information has been included in the paragraph describing the ALSPAC study in the methods:

      “Sufficient information was available on 6,221 of these individuals to be included in our analysis, as metabolomics was not performed for all individuals in the ALSPAC study.”

      4) It is mentioned within the discussion 'the NMR metabolomics platform utilised in the analyses outlined here has limited coverage of fatty acids'. I think it might be useful to also add this detail into the methods section to aid readers when they are making their own interpretation whilst reading the results section.

      The following sentence has been included in the methods section:

      “This metabolomics platform has limited coverage of fatty acids.”

      5) However, I feel that the conclusion should be tempered slightly as although this study alongside other similar MR studies provides evidence of an association between genetic liability to CRC and levels of metabolites at certain ages, I do not think there is enough evidence at this stage to say that genetic liability for CRC actually alters the levels of metabolites.

      The first sentence of the conclusion has been changed to:

      “Our analysis provides evidence that genetic liability to CRC is associated with altered levels of metabolites at certain ages, some of which may have a causal role in CRC development.”

      Reviewer #2:

      1) The background is lacking introduction to the different components of the metabolic features tested. For instance, there is a broader discussion about polyunsaturated fatty acids (PUFA) in the discussion, however, this should have been introduced and defined already before that. What metabolites are included in that term (PUFA)? Are there other studies on PUFA and CRC?

      The following information has been included in the background section:

      “In particular, previous work has highlighted polyunsaturated fatty acids (PUFA) as potentially having a role in colorectal cancer development. The term PUFA includes omega-3 and -6 fatty acids. Recent MR work has highlighted a possible link between PUFAs, in particular omega 6 PUFAs, and colorectal cancer risk.”

      2) There seem to be indications for horizontal pleiotropy given the changed estimates when genetic variants in the FADS loci are removed. Could multivariable MR methods have been used to account for pleiotropy and differentiate individual fatty acid effects?

      Multivariable MR can be employed to investigate the effects of horizontal pleiotropy. However, the multiple exposures must have sufficiently distinct underlying genetic architecture in order to instrument each one whilst adjusting for the other, as determined by conditional F-statistics. Given the correlations across metabolite levels, this is unlikely to be the case.

      3) The ALSPAC sample sizes are decreasing across the different age groups, which is not strange given the longitudinal collection. However, does the altered sample composition affect the results? Have sensitivity analyses been done on the complete set of individuals from age 8-25?

      The altered sample composition could be affecting results. The limitations section of the discussion has been amended to reflect this:

      “Secondly, mostly due to the longitudinal nature of the ASLAPC study, our sample at each time point is composed of slightly different individuals. This could be influencing our results, and should be taken into account when comparing across time points.”

      We have not completed any sensitivity analyses to investigate this.

      4) Although beyond the scope of this paper, sex-stratified GWAS analyses on metabolites can easily be done in UK Biobank.

      We thank the reviewer for this suggestion, and agree that this would be an interesting future analysis. We have amended the discussion to mention this:

      “Fourthly, our analysis would benefit from being repeated with sex-stratified data. Although such GWAS results for metabolites are not currently available, the data to perform such GWAS are available in UK Biobank for future analyses.”

      5) Very minor, there is a difference in reporting a number of decimals in ALSPAC results. There is also a difference in reporting the units for the results comparing text and figures (per SD higher CRC liability or per doubling). Please include sample sizes and data sources in the figure legends as they should be stand-alone items.

      We have amended the ALSPAC results to all have two decimal places, reporting units have been altered and figure legends to include sample sizes and data sources.

    1. Author Response

      We thank the reviewers for their suggestions. We are confident in the model that predicts odor vs odor (OCT-MCH) preference using calcium activity, but we acknowledge the relative weakness of the model that predicts odor (OCT) vs air preference. We are preparing an updated manuscript that will prioritize our interpretation of the OCT-MCH results and more fully document uncertainties around our estimates of prediction capacity.

      Reviewer #1 (Public Review):

      Summary: The authors seek to establish what aspects of nervous system structure and function may explain behavioral differences across individual fruit flies. The behavior in question is a preference for one odor or another in a choice assay. The variables related to neural function are odor responses in olfactory receptor neurons or in the second-order projection neurons, measured via calcium imaging. A different variable related to neural structure is the density of a presynaptic protein BRP. The authors measure these variables in the same fly along with the behavioral bias in the odor assays. Then they look for correlations across flies between the structure-function data and the behavior.

      Strengths: Where behavioral biases originate is a question of fundamental interest in the field. In an earlier paper (Honegger 2019) this group showed that flies do vary with regard to odor preference, and that there exists neural variation in olfactory circuits, but did not connect the two in the same animal. Here they do, which is a categorical advance, and opens the door to establishing a correlation. The authors inspect many such possible correlations. The underlying experiments reflect a great deal of work, and appear to be done carefully. The reporting is clear and transparent: All the data underlying the conclusions are shown, and associated code is available online.

      We are glad to hear the reviewer is supportive of the general question and approach.

      Weaknesses: The results are overstated. The correlations reported here are uniformly small, and don't inspire confidence that there is any causal connection. The main problems are

      We are working on a revision that overhauls the interpretations of the results. We recognize that the current version inadequately distinguishes the results that we have high confidence in (specifically, PC2 of our Ca++ data as a predictor of OCT-MCH preference) versus results that are suggestive but not definitive (such as the PC1 of Ca++ data as a predictor of Air-OCT preference).

      It’s true that the correlations are small, with r2 values typically in the 0.1-0.2 range. That said, we would call it a victory if we could explain 10 to 20% of the variance of a behavior measure, captured in a 3 minute experiment, with a circuit correlate. This is particularly true because, as the reviewer notes, the behavioral measurement is noisy.

      1) The target effect to be explained is itself very weak. Odor preference of a given fly varies considerably across time. The systematic bias distinguishing one fly from another is small compared to the variability. Because the neural measurements are by necessity separated in time from the behavior, this noise places serious limits on any correlation between the two.

      This is broadly correct, though to quibble, it’s our measurement of odor preference which varies considerably over time. We are reasonably confident that the more variance in our measurements can be attributed to sampling error than changes to true preference over time. As evidence, the correlation in sequential measures of individual odor preference, with delays of 3 hours or 24 hours, are not obviously different. We are separately working on methodological improvements to get more precise estimates of persistent individual odor preference, using averages of multiple, spaced measurements. This is promising, but beyond the scope of this study.

      2) The correlations reported here are uniformly weak and not robust. In several of the key figures, the elimination of one or two outlier flies completely abolishes the relationship. The confidence bounds on the claimed correlations are very broad. These uncertainties propagate to undermine the eventual claims for a correspondence between neural and behavioral measures.

      We are broadly receptive to this criticism. The lack of robustness of some results comes from the fundamental challenge of this work: measuring behavior is noisy at the individual level. Measuring Ca++ is also somewhat noisy. Correlating the two will be underpowered unless the sample size is huge (which is impractical, as each data point requires a dissection and live imaging session) or the effect size is large (which is generally not the case in biology). In the current version we tried to in some sense to avoid discussing these challenges head-on, instead trying to focus on what we thought were the conclusions justified by our experiments with sample sizes ranging from 20 to 60. We are working on a revision that is more candid about these challenges.

      That said, we believe the result we view as the most exciting — that PC2 of Ca++ responses predicts OCT-MCH preference — is robust. 1) It is based on a training set with 47 individuals and a test set composed of 22 individuals. The p-value is sufficiently low in each of these sets (0.0063 and 0.0069, respectively) to pass an overly stringent Bonferonni correction for the 5 tests (each PC) in this analysis. 2) The BRP immunohistochemistry provides independent evidence that is consistent with this result — PC2 that predicts behavior (p = 0.03 from only one test) and has loadings that contrast DC2 and DM2. Taken together, these results are well above the field-standard bar of statistical robustness.

      In the revision we are working on, we are explicit that this is the (one) result we have high confidence in. We believe this result convincingly links Ca++ and behavior, and warrants spotlighting. We have less confidence in other results, and say so, and we hope this addresses concerns about overstating our results.

      3) Some aspects of the statistical treatment are unusual. Typically a model is proposed for the relationship between neuronal signals and behavior, and the model predictions are correlated with the actual behavioral data. The normal practice is to train the model on part of the data and test it on another part. But here the training set at times includes the testing set, which tends to give high correlations from overfitting. Other times the testing set gives much higher correlations than the training set, and then the results from the testing set are reported. Where the authors explored many possible relationships, it is unclear whether the significance tests account for the many tested hypotheses. The main text quotes the key results without confidence limits.

      Our primary analyses are exactly what the reviewer describes, scatter plots and correlations of actual behavioral measures against predicted measures. We produced test data in separate experiments, conducted weeks to months after models were fit on training data. This is more rigorous than splitting into training and test sets data collected in a single session, as batch/environmental effects reduce the independence of data collected within a single session.

      We only collected a test set when our training set produced a promising correlation between predicted and actual behavioral measures. We never used data from test sets to train models. In our main figures, we showed scatter plots that combined test and training data, as the training and test partitions had similar correlations.

      We are unsure what the reviewer means by instances where we explored many possible relationships. The greatest number of comparisons that could lead to the rejection of a null hypothesis was 5 (corresponding to the top 5 PCs of Ca++ response variation or Brp signal). We were explicit that the p-values reported were nominal. As mentioned above, applying a Bonferroni correction for n=5 comparisons to either the training or test correlations from the Ca++ to OCT-MCH preference model remains significant at alpha=0.05.

      Our revision will include confidence limits.

      Reviewer #2 (Public Review):

      Summary:

      The authors aimed to identify the neural sources of behavioral variation in a decision between odor and air, or between two odors.

      Strengths:

      -The question is of fundamental importance.

      -The behavioral studies are automated, and high-throughput.

      -The data analyses are sophisticated and appropriate.

      -The paper is clear and well-written aside from some strong wording.

      -The figures beautifully illustrate their results.

      -The modeling efforts mechanistically ground observed data correlations.

      We are glad to read that the reviewer sees these strengths in the study. We hope the forthcoming revision will address the strong wording.

      Weaknesses:

      -The correlations between behavioral variations and neural activity/synapse morphology are (i) relatively weak, (ii) framed using the inappropriate words "predict", "link", and "explain", and (iii) sometimes non-intuitive (e.g., PC 1 of neural activity).

      Taking each of these points in turn: i) It would indeed be nicer if our empirical correlations are higher. One quibble: we primarily report relatively weak correlations between measurements of behavior and Ca++/Brp. This could be the case even when the correlation between true behavior and Ca++/Brp is higher. Our analysis of the potential correlation between latent behavioral and Ca++ signals was an attempt to tease these relationships apart. The analysis suggests that there could, in fact, be a high underlying correlation between behavior and these circuit features (though the error bars on these inferences are wide).

      ii) We are working to guarantee that all such words are used appropriately. “Predict” can often be appropriate in this context, as a model predicts true data values. Explain can also be appropriate, as X “explaining” a portion of the variance of Y is synonymous with X and Y being correlated. We cannot think of formal uses of “link,” and are revising the manuscript to resolve any inappropriate word choice.

      iii) If the underlying biology is rooted in non-intuitive relationships, there’s unfortunately not much we can do about it. We chose to use PCs of our Ca++/Brp data as predictors to deal with the challenge of having many potential predictors (odor-glomerular responses) and relatively few output variables (behavioral bias). Thus, using PCs is a conservative approach to deal with multiple comparisons. Because PCs are just linear transformations of the original data, interpreting them is relatively easy, and in interpreting PC1 and PC2, we were able to identify simple interpretations (total activity and the difference between DC2 and DM2 activation, respectively). All in all, we remain satisfied with this approach as a means to both 1) limit multiple comparisons and 2) interpret simple meanings from predictive PCs.

      -No attempts were made to perturb the relevant circuits to establish a causal relationship between behavioral variations and functional/morphological variations.

      We did conduct such experiments, but we did not report them because they had negative results that we could not definitively interpret. We used constitutive and inducible effectors to alter the physiology of ORNs projecting to DC2 and DM2. We also used UAS-LRP4 and UAS-LRP4-RNAi to attempt to increase and decrease the extent of Brp puncta in ORNs projecting to DC2 and DM2. None of these manipulations had a significant effect on mean odor preference in the OCT-MCH choice, which was the behavioral focus of these experiments. We were unable to determine if the effectors had the intended effects in the targeted Gal4 lines, particularly in the LRP experiments, so we could not rule out that our negative finding reflected a technical failure. We are reviewing these results to determine if they warrant including as a negative finding in the revision.

      We believe that even if these negative results are not technical failures, they are not necessarily inconsistent with the analyses correlating features of DC2 and DM2 to behavior. Specifically, we suspect that there are correlated fluctuations in glomerular Ca++ responses and Brp across individuals, due to fluctuations in the developmental spatial patterning of the antennal lobe. Thus, the DC2-DM2 predictor may represent a slice/subset of predictors distributed across the antennal lobe. This would also explain how we “got lucky” to find two glomeruli as predictors of behavior, when were only able to image a small portion of the glomeruli. In analyses we did not report, we explored this possibility using the AL computational model. We are likely to include this interpretation in the revised discussion.

      Reviewer #3 (Public Review):

      Churgin et. al. seeks to understand the neural substrates of individual odor preference in the Drosophila antennal lobe, using paired behavioral testing and calcium imaging from ORNs and PNs in the same flies, and testing whether ORN and PN odor responses can predict behavioral preference. The manuscript's main claims are that ORN activity in response to a panel of odors is predictive of the individual's preference for 3-octanol (3-OCT) relative to clean air, and that activity in the projection neurons is predictive of both 3-OCT vs. air preference and 3-OCT vs. 4-methylcyclohexanol (MCH). They find that the difference in density of fluorescently-tagged brp (a presynaptic marker) in two glomeruli (DC2 and DM2) trends towards predicting behavioral preference between 3-oct vs. MCH. Implementing a model of the antennal lobe based on the available connectome data, they find that glomerulus-level variation in response reminiscent of the variation that they observe can be generated by resampling variables associated with the glomeruli, such as ORN identity and glomerular synapse density.

      Strengths:

      The authors investigate a highly significant and impactful problem of interest to all experimental biologists, nearly all of whom must often conduct their measurements in many different individuals and so have a vested interest in understanding this problem. The manuscript represents a lot of work, with challenging paired behavioral and neural measurements.

      Weaknesses:

      The overall impression is that the authors are attempting to explain complex, highly variable behavioral output with a comparatively limited set of neural measurements…

      We would say that we are attempting to explain a simple, highly variable behavioral measure with a comparatively limited set of neural measurements. I.e. we make no claims to explain the complex behavioral components of odor choice, like locomotion, reversals at the odor boundary, etc.

      Given the degree of behavioral variability they observe within an individual (Figure 1- supp 1) which implies temporal/state/measurement variation in behavior, it's unclear that their degree of sampling can resolve true individual variability (what they call "idiosyncrasy") in neural responses, given the additional temporal/state/measurement variation in neural responses.

      We are confident that different Ca++ recordings are statistically different. This is borne out in the analysis of repeated Ca++ recordings in this study, which finds that the significant PCs of Ca++ variation contain 77% of the variation in that data. That this variation is persistent over time and across hemispheres was assessed in Honegger & Smith, et al., 2019. We are thus confident that there is true individuality in neural responses (Note, we prefer not to call it “individual variability” as this could refer to variability within individuals, not variability across individuals.) It is a separate question of whether individual differences in neural responses bear some relation to individual differences in behavioral biases. That was the focus of this study, and our finding of a robust correlation between PC2 of Ca++ responses and OCT-MCH preference indicates a relation. Because behavior and Ca++ were collected with an hours-to-day long gap, this implies that there are latent versions of both behavioral bias and Ca++ response that are stable on timescales at least that long.

      The statistical analyses in the manuscript are underdeveloped, and it's unclear the degree to which the correlations reported have explanatory (causative) power in accounting for organismal behavior.

      With respect, we do not think our statistical analyses are underdeveloped, though we acknowledge that the detailed reviewer suggestions included the helpful suggestion to include uncertainty in the estimation of confidence intervals around the point estimate of the strength of correlation between latent behavioral and Ca++ response states. We are considering those suggestions and anticipate responding to them in the revision.

      It is indeed a separate question whether the correlations we observed represent causal links from Ca++ to behavior (though our yoked experiment suggests there is not a behavior-to-Ca++ causal relationship — at least one where odor experience through behavior is an upstream cause). We attempted to be precise in indicating that our observations are correlations. That is why we used that word in the title, as an example. In the revision, we are working to make sure this is appropriately reflected in all word choice across the paper.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank you for your thoughtful review and constructive feedback on our manuscript. We have implemented numerous revisions throughout the manuscript to address your comments and suggestions. Below, our point-by-point responses to the reviewers' remarks. We hope that our revisions adequately address all raised concerns.

      Reviewer #1

      One major drawback of the manuscript is the fact that the data were collected from male subjects only. One might expect similar behavioral outcomes from male and female rats receiving 2shock and 10-shock training. However, increasing attention to sex as a biological variable has revealed an interesting truth, namely that males and females can engage distinct neural pathways to arrive at the same behavioral destination. It should not be taken for granted that retrieval of aversive contextual associations would reproduce the same networks in females, and, as such, the manuscript does not give a complete accounting of the phenomenon under study.

      We thank the reviewer for highlighting the importance of sex differences in fear memory and for encouraging us to discuss this issue. We agree that males and females can engage different behavioral and circuit mechanisms and that our findings may not be generalizable to female rats. We expanded the discussion section to state this limitation and to suggest future directions for research on sex differences in fear memory:

      “In addition, a growing body of evidence underscores the differences between males and females concerning fear memories (Fleischer and Frick, 2023). Given that our study was conducted only with male rats, future studies exploring sex differences will be instrumental in providing a more complete account of the network-level mechanisms underlying fear memory strength.”

      The aversive associative memories described by the authors are characterized as mild or strong. More analysis of the meaning of memory strength, and its relationship to conditioning parameters, is needed.

      In particular, the authors should discuss issues such as amount of training, US magnitude, and rate of shock delivery. If amount of training is important, would 2 vs 10 presentations of a milder shock produce the same networks at retrieval? Would a larger shock require fewer presentations to isolate amygdalar regions from the rest of the network? If the shocks were presented at the same rate during training, would you get the same result in both groups? More data examining these questions would be ideal, but, in the absence of that, a discussion of these issues is needed and missing from the manuscript in its current form.

      We appreciate the reviewer's feedback on the characterization of the fear memories in our study and agree that the labels "mild" and "strong" could oversimplify the complex nature of fear memories. Our study's main objective was not to delineate how varying conditioning protocols result in 'mild' or 'strong' fear memories, but to employ protocols of different intensities known to produce distinct behaviors, and then discern their brain differences. Our categorization was rooted in the resulting behavioral expressions, classifying 'mild' memories as those triggering sub-maximal fear responses with low generalization and a potential for extinction learning and reconsolidation. Conversely, 'strong' memories were defined by peak or near-peak fear responses, high generalization, and impeded extinction and reconsolidation processes. To isolate the number of foot shocks as the sole variable, we kept both shock intensity and session duration constant. While this decision allowed for a clear comparative analysis, we acknowledge its limitations in exploring other influential factors.

      A more ideal approach would be to reverse this process—first experimenting with several different conditioning parameters and then observing the resulting behaviors and brain mechanisms—but given the additional workload that would entail, particularly when combined with the c-fos and network analyses, we opted for our current approach. Nevertheless, we hope our study will stimulate research that goes deeper into the nuances of fear conditioning protocols, fostering a better understanding of adaptive and maladaptive fear memories. This is now discussed in the discussion session:

      “To generate mild and strong fear memories, we based our conditioning parameters on methods that have shown distinct behavioral outcomes in prior studies (Haubrich et al., 2020, 2015; Holehonnur et al., 2016; Poulos et al., 2016; Wang et al., 2009). To ensure a focused comparative analysis, our conditioning protocols differed only in the number of foot shocks, and maintained consistent shock intensities and session durations. Yet, the number of shocks is not the only factors that can affect the strength of fear memories (Gazarini et al., 2023). Other conditioning parameters, such as shock intensity, its predictability, and inter-shock intervals, can also play crucial roles. Moreover, different fear measures like freezing behavior, fear-potentiated startle, and inhibitory avoidance might manifest differently following varying conditioning protocols, adding another layer of complexity. A comprehensive understanding of fear memory strength will benefit from further studies scrutinizing these parameters and memory attributes.”

      Reviewer #2

      One alternative account to the weak vs. strong memory distinction made in the paper is the opportunity for extinction in the 2S compared to the 10S group. In the 2S group, the last shock occurs in the 3rd minute, leaving 9 minutes of context exposure without reinforcement to follow. This is not the case for the 10S group. If context fear extinction is engaged during this time, then this would mean that two memories (acquisition and extinction) are taking place in the 2S group, weakening the fear memory in this group, setting up the ground for stronger effects of extinction, less generalization and of course potential greater connectivity required for representing and linking these memories. Indeed, the IL, a brain area linked to extinction, is more predominant in the connectivity map of the 2S compared to the 10S group. While testing this alternative is beyond the scope of this paper, it will need to be discussed.

      We thank the reviewer for raising this interesting point. We agree that the structure of the 2S protocol might inadvertently provide an opportunity for within-session extinction. However, we would like to clarify that we made a mistake in the description of the 2S training protocol. The timing of the shock deliveries was not at the second and third minutes as stated (a usual protocol in the literature), but at the sixth and seventh minutes. We apologize for this mistake and are thankful for your help in identifying this discrepancy which had unfortunately persisted despite multiple proofreading rounds. We have amended this detail in the methods section of our manuscript.

      Nevertheless, we recognize that the subsequent minutes post-shock in the 2S group may still provide a window for potential extinction. To address this possibility, we scored the freezing expression during the training session minute by minute. In the 2S group, two videos were corrupted, and it was only possible to score freezing in six out of eight animals (this is acknowledged in the methods section). As presented in Figure 1.A (middle plot), freezing behavior increased post-shocks and showed no decline towards the session's end. These findings suggest that within-session extinction did not occur during our conditioning session. This analysis is now integrated into the relevant results subsection.

      Methodological detail is lacking re the timeline of study, and connectivity analyses.

      Thank you for your feedback. The formula for the discrimination index is now explained in the methods section. The new plot showing freezing behavior during training shows the exact time bin when shocks were delivered. We have expanded the description of the connectivity analysis.

      Reviewer #3

      Major concerns)

      1) Previous studies including Karim's lab have shown that protein synthesis in the hippocampus is required for the reconsolidation of contextual fear memory and that the retrieval of contextual fear memory activates gene expression such as c-fos in the hippocampus. However, the authors failed to confirm this observation. This may be due to the small number of rats or some technical problems.

      Thank you for this insightful observation. We believe that the absence of the expected increase in hippocampal c-fos activation is due to the unique experimental design employed for our control group. In our study, control rats were subjected to an equivalent duration of context exposure without receiving shocks. As a result, these animals formed and retrieved a neutral, rather than fearful, contextual memory. This likely elevated cfos levels in the hippocampus in comparison to the more traditional home-cage condition frequently used in earlier studies. We used the NS (no shock) protocol for our control group to specifically elucidate the impact of the number of shock presentations on memory formation, therefore the context exposure was kept the same across groups. Importantly, this aspect did not affect our connectivity analysis, since it is influenced by the relative variance across structures than on the absolute magnitude of c-fos expression. We now emphasize the nature of our control group in the discussion:

      “Importantly, our control animals were exposed to the conditioning chamber for an equivalent duration without being subjected to shocks, thus encoding and recalling a non-fearful contextual memory.”

      2) The author's computation analyses suggested differences in neural networks activated by the retrieval of mild and strong fear memories. The results of computer analysis are interesting. However, it is not clear whether such results are actually occurring in vivo. At this moment, the author's findings are not a conclusion, but rather a suggestion or hypothesis. Therefore, it is also important to conduct interventional experiments to evaluate the validity of the authors' findings. Specifically, the authors' results could be validated by analyzing the effects of inhibition of specific brain regions on mild and strong fear memories retrieval using such as DREADD and other methods. These experiments seem hard, but would greatly improve the quality of the manuscript.

      We appreciate the reviewer's perspective and acknowledge the limitations of our current findings. While our data based on c-fos expression suggests functional connections reflective of neural activity during fear memory recall, we agree that it is not possible to deduce causality from this alone. Instead, our study aimed to uncover the network-level distinctions between mild and strong memories, laying the groundwork for subsequent, in-depth investigations of the causal relationships within these identified pathways. We agree that corroborating our findings with interventional experiments, such as using DREADDs, is an important next step. We also agree that such experiments would enhance our study and hope future research will address these points. These points were included in the discussion session:

      “To further elucidate the underlying mechanisms of fear memory strength in vivo, understanding the specific roles of individual network elements in fear regulation becomes essential. Future research will be important to probe the causal interplay among distinct nodes and edges, both individually and in combination, in shaping diverse aspects of fear expression.”

      Reviewer #2 (Recommendations For The Authors):

      Methodological detail is lacking:

      How is the discrimination index calculated?

      We have included this information in the methods section: “The generalization index was calculated as Freezing in Test B / (Freezing in Test A + Freezing in Test B).”

      A distinction between complete spontaneous recovery (10S group) vs. partial spontaneous recovery (2S group) vs. extinction retention needs to be considered in discussing the extinction data.

      Thank you for this suggestion. To address this point, we now include Tukey’s post hoc comparisons between the first and last bins of extinction and the test session. The results show that in the 2S group, freezing during test remained consistent with the levels observed in the final extinction bin and was lower than the levels in the initial extinction bin. Conversely, in the 10S group, freezing levels increased from the final extinction bin to the test, reaching levels comparable to those observed in the initial extinction bin.

      Detail regarding the connectivity analyses is missing from the methods. For example the calculation of the r value distractions should be detailed in the methods not just the results, more detail regarding calculations is needed for the degree of centrality, betweenness centrality, nodal efficiency, small world analyses etc.

      We appreciate the reviewer’s feedback. We have expanded the description of the connectivity analysis.

      Justification for 'excluding edges with r values lower than the average plus one standard deviation of all 292 networks (Figure 4.B; r < 0.61)' is needed.

      Thank you for your encouraging us to elaborate on the rationale behind our thresholding method. We acknowledge that there is no consensus in the literature on the optimal thresholding method for functional networks. Our primary objective with thresholding was to retain the most robust connections while minimizing potential noise from weakly correlated regions. Instead of opting for an arbitrary threshold, we determined our cut-off based on the average plus one standard deviation across all networks. Theoretically, this retains approximately the top 16% of connections. Given our 12 regions of interest, this translates to roughly 10 connections per network. This count is sufficient for a nuanced analysis of the network structures and between group comparisons.Importantly, our method inherently accounts for variations in interregional correlations across groups. Groups with a distribution skewed towards higher r values will naturally have more edges, highlighting the enhanced synchronized activity between certain regions. On the other hand, networks with tendencies towards lower r-values will exhibit fewer connections. Thus, our thresholding method is rooted in the data’s distribution and result in networks that reflect the differences across groups.

      We added the following sentence to the methods session summarizing this rationale:

      “This thresholding approach was used to provide a cut-off based on the data’s inherent distribution, therefore retaining the top edges according to the data variance. “

      Line 81 - 'brain areas' is missing after '12'.

      Thank you, this is now fixed.

      Tile for 2. is somewhat odd. Thought the following may be better, but obviously leaving this up to the author's discretion: 'Commonalities and differences in brain activation induced by recall of mild and strong fear memories'

      Thank you for this suggestion. We agree with the title suggested by the reviewer, and it was replaced in the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      1) Previous studies including Karim's lab have shown that protein synthesis in the hippocampus is required for the reconsolidation of contextual fear memory and that the retrieval of contextual fear memory activates gene expression such as c-fos in the hippocampus. However, the authors failed to confirm this observation. This may be due to the small number of rats or some technical problems.

      Thank you for this suggestion. As explained above, we believe that this is due to the nature of our control group, which is now highlighted in the discussion section.

      2) The author's computation analyses suggested differences in neural networks activated by the retrieval of mild and strong fear memories. The results of computer analysis are interesting. However, it is not clear whether such results are actually occurring in vivo. At this moment, the author's findings are not a conclusion, but rather a suggestion or hypothesis. Therefore, it is also important to conduct interventional experiments to evaluate the validity of the authors' findings. Specifically, the authors' results could be validated by analyzing the effects of inhibition of specific brain regions on mild and strong fear memories retrieval using such as DRRED and other methods. These experiments seem hard, but would greatly improve the quality of the manuscript.

      Thank you for your valuable feedback. As explained above, these points are now included in the discussion section.

      Minor comments)

      1) cfos should be c-fos or c-Fos.

      Thank you for your correction. All instances of ‘cfos’ were replaced by ‘c-fos’.

      2) Line 275; "Compared to the to re-exposure to" should be "Compared to the to re-exposure to".

      Thank you for your correction. This is now fixed.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Comment. “The manuscript demonstrates that FGF4, FGF8, and FGF9 exhibit distinct binding modes towards FGFRs”

      No, this paper is not about ligand binding, and there are NO binding data in the manuscript. This paper is about ligand-dependent functional bias. Previously, differential effects of ligands on the signaling of one FGFR have been attributed to differences in ligand binding, but that paradigm is incomplete, if not incorrect. This manuscript is the first demonstration that three FGF ligands induce bias in FGFR1 signaling. FGF8 preferentially activates some of the probed downstream responses (FRS2 phosphorylation and extracellular matrix loss), while FGF4 and FGF9 preferentially activate different probed responses (FGFR1 phosphorylation and growth arrest). The bias we report here cannot be the result of differences in ligand binding. Indeed, if the differences between ligands are only in the binding strength, then a strongly binding ligand at low concentration will act identically to weakly binding ligand at high concentration. Our article thus changes the current paradigm about how FGF ligands activate FGFR signaling.

      Comment. It is also proposed that FGF8 exhibits "biased ligand" characteristics.

      We do not “propose” the existence of ligand bias, we demonstrate it in the manuscript by following the latest IUPHAR community guidelines on bias identification and quantification (Kolb et al, 2022). We calculate bias coefficients, and we analyze the results using statistical tools.

      Comment. …“Unproven and speculative structural differences in the FGF-FGFR1 dimers”.

      This statement is not correct, as it is directly contradicted by the differences reported in Figure 6. This Figure presents the results of a quantitative FRET assay performed at high ligand concentration, which ensures that there are no monomeric receptors. Under these conditions, the measured FRET efficiency depends only on the dimer conformation. The measured differences in FRET efficiencies reveal distinct differences in the FGFR1 TM domain dimer conformations when FGF8 is bound to the extracellular domain of FGFR1, as compared to FGF4 and FGF9. The difference can be observed in the raw FRET data in Figure 6A. While these data do not reveal the exact molecular origin of the structural differences, they unequivocally prove that there are structural differences when different ligands are bound.

      References

      Kolb P, Kenakin T, Alexander SPH, Bermudez M, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br J Pharmacol. 2022;179, 3651-3674.


      The following is the authors’ response to the previous reviews.

      eLife assessment. This manuscript describes useful data on the mechanisms underlying the activation of the receptor tyrosine kinase FGFR1 and stimulation of intracellular signaling pathways in response to FGF4, FGF8, or FGF9 binding to the extracellular domain of FGFR1. Solid quantitative binding experiments are presented to demonstrate that FGF4, FGF8, and FGF9 exhibit distinct binding affinities towards FGFRs.

      No, this paper is not about binding, and there is NO binding data in the manuscript. This paper is about function. This is the first demonstration that three FGF ligands induce bias in FGFR1 signaling. Thus far, differential effects in the signaling of one FGFR have been attributed to differences in ligand binding, but this current paradigm is incomplete/incorrect. Our article changes the current paradigm in how FGF activate downstream FGFR signaling.

      We have clarified this point by adding the following text in the Discussion.

      "Thus far, differential effects in the signaling of one FGFR in response to different FGF ligands have been attributed to differences in ligand binding. It can be reasoned, however, that differences in ligand binding strengths, alone, cannot explain differential signaling. Indeed, if the differences between ligands are only in the binding strength, then a strongly binding ligand at low concentration will act identically to weakly binding ligand at high concentration. Here we discovered, using tools that are novel for the RTK field, that there are qualitative differences in the actions of the ligands. FGF8 preferentially activates some of the probed downstream responses (FRS2 phosphorylation and collagen loss), while FGF4 and FGF9 preferentially activate different probed responses (FGFR1 phosphorylation and growth arrest). These effects occur in addition to previously measured differences in ligand binding coefficients (87).”

      We have also re-written the abstract.

      “Abstract

      “The mechanism of differential signaling of multiple FGF ligands through a single FGF receptor is poorly understood. Here, we use biophysical tools to quantify multiple aspects of FGFR1 signaling in response to FGF4, FGF8 and FGF9: potency, efficacy, bias, ligand-induced oligomerization and downregulation, and conformation of the active FGFR1 dimers. We find that the three ligands exhibit distinctly different potencies and efficacies for inducing responses in cells. We further discover qualitative differences in the actions of the three FGFs through FGFR1, as FGF8 preferentially activates some of the probed downstream responses (FRS2 phosphorylation and extracellular matrix loss), while FGF4 and FGF9 preferentially activate different probed responses (FGFR1 phosphorylation and cell growth arrest). Thus, FGF8 is a biased ligand, when compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1 transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.”

      Reviewer #1 (Public Review):

      Comment. Quantitative binding experiments presented in the manuscript demonstrate that FGF4, FGF8, and FGF9 exhibit distinct binding affinities towards FGFRs.

      This paper is not about binding, and there is NO binding data in the manuscript. This paper is about function. Please see our response to the Elife assessment.

      Comment. It is also proposed that FGF8 exhibits "biased ligand" characteristics that is manifested via binding and activation FGFR1 mediated by "structural differences in the FGF- FGFR1 dimers, which impact the interactions of the FGFR1 transmembrane helices, leading to differential recruitment and activation of the downstream signaling adapter FRS2".

      We do not “propose” the existence of ligand bias, we demonstrate it in the manuscript by following the latest IUPHAR community guidelines on bias identification and quantification (Kolb et al, 2022). Specifically, we construct bias plots, we calculate bias coefficients, and we analyze the results using statistical tools.

      Also, please note that ligand bias has no direct connection to binding strength, so the statement that biased ligand characteristics “is manifested via binding” is not correct.

      Comment. In the absence of any structural experimental data of different forms of FGFR dimers stimulated by FGF ligands the model presents in the manuscript is speculative and misleading.

      Figure 6 presents the “structural experimental data”. A quantitative FRET assay is performed at high ligand concentration, which ensures that there are no monomeric receptors. Under these conditions, the measured FRET efficiency depends only on the dimer conformation. The measured FRET efficiencies reveal distinct differences in the FGFR1 TM domain dimer conformations when the ligand FGF8 is bound to the extracellular domain of FGFR1, as compared to the cases of FGF4 and FGF8.

      Because the Rosetta modeling of the kinase domains in the previous version of the paper is not based on experimental data, we have removed the modeling from the Results, and we have removed all references to it in the Discussion. Thus, all that is shown and discussed in the revised paper is based on experimental data.

      We have substituted two paragraphs in the discussion with the following two sentences:

      “The experimental data in Figure 6 hint at the possibility that ligand bias arises due to differences in FGFR1 dimer conformations. If this is so, then conformational differences in the signaling complex in the plasma membrane underlie biased signaling for both RTKs and GPCRs, the two largest receptor families in the human genome”.

      References

      Kolb P, Kenakin T, Alexander SPH, Bermudez M, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br J Pharmacol. 2022;179, 3651-3674.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank all the reviewers for their comments and constructive feedback regarding our manuscript. We have made many changes to strengthen the manuscript, including addition of two new experiments (presented in Fig. S1) that help to clarify the nature and scope of activation of late response genes in striatal neurons. Our specific responses to individual reviewer comments are provided below.

      Reviewer #1

      Public review

      Weaknesses: The timing and the location of the accessibility changes are meaningfully different from other similar studies, which should be discussed. The authors provide good data for the function of a single enhancer near Pdyn, but could contextualize this with respect to other regulatory elements nearby.

      In the revised manuscript, we have expanded our discussion of the differences between chromatin accessibility changes observed in this study and those found in prior reports in different systems. These differences are also addressed in extended detail below. Unfortunately, limitations on resources and time prevented a deeper exploration of additional candidate enhancers near the Pdyn locus. However, we believe our efforts to characterize an activity-dependent enhancer in the Pdyn locus provides a useful starting point, and future studies may seek to more completely define the contributions of nearby regulatory elements.

      Recommendations For The Authors

      1) At 1hr after stimulation in previous papers (Su 2017 which is reference #8 of FernandezAlbert Nat Neurosci. 2019 October ; 22(10): 1718-1730.) there are large increases in accessibility directly over the IEGs, consistent with the concerted transcription of these genes following stimulation. It is surprising that the authors do not see this here, either at 1hr or at 4hr. This difference in results needs to be addressed.

      We thank the reviewer for bringing this discrepancy to our attention. Indeed, Su et al. 2017 and Fernandez-Albert et al. 2019 both describe increases in chromatin accessibility at IEG promoters. There are several experimental differences that could be contributing to differences between our study and previously published studies. Two major reasons include the developmental timepoint of the tissue/cells and the cell type/brain region that is being assayed. Su et al. assayed chromatin accessibility in ex vivo slices containing the dentate gyrus from adult mice, while Fernandez-Albert et al. assayed chromatin accessibility in forebrain principal neurons of adult mice following kainic acid injection. Bulk ATAC-Seq experiments described in the present manuscript were generated from cultured embryonic rat striatal neurons. Additionally, baseline chromatin accessibility seems to be significantly different between forebrain principal neurons studied in Fernandez-Albert et al. 2019 and the current study. For example, in Figure 3a of Fernandez-Albert et al. 2019, the Npas4 gene body is not accessible in a saline treated animal. In vehicle treated, cultured embryonic rat striatal neurons, the Fos gene body and associated enhancers are accessible at baseline (Fig. S3), and do not increase with KCl depolarization.

      We have expanded our discussion of this discrepancy in the discussion section of the revised manuscript, and included additional citations addressing this difference.

      2) It is also somewhat surprising that the authors see almost no regions that show changes in accessibility at 1hr and then a very large number of differentially accessible regions at 4hr. This is quite different from the more rapid changes shown for example in Figure 7f in the human GABA neurons even though these are also studies in culture with rapid calcium channel opening. Can the authors speculate on the reason for the difference?

      Many previously published studies that use cultured neurons include a pre-treatment in which spontaneous neuronal activity is inhibited with the sodium channel blocker tetrodotoxin (SanchezPriego et al. Cell Reports, 2022; Kim et al. Nature, 2010; Malik et al. Nature Neuroscience, 2014). The Sanchez-Priego et al. Cell Reports manuscript also blocked NMDA receptor activity with the competitive NMDAR antagonist D-AP5 for 12 hours prior to depolarization. Rapid changes in chromatin accessibility observed in other studies at <1 hour timepoints could be due to prior silencing of the cells and subsequent reduction in the accessibility and transcriptional activity of IEGs. Decreased baseline accessibility and transcriptional activity of IEGs can be observed in Figure 1a of Malik et al. 2014, which displays ChIP-Seq tracks for both RNA pol II and H3K27ac. At baseline, H3K27ac and RNA pol II enrichment is low throughout the Fos locus. Subsequent depolarization of silenced neurons drives accessibility and transcription of the Fos gene and associated enhancers. In contrast, we found accessible chromatin at Fos enhancer elements at baseline (without stimulation; Fig. S3).

      The experiments described in the current study do not include any pre-treatment with tetrodotoxin or D-AP5, and thus the neurons are expected to be spontaneously active. This baseline electrophysiological activity may result in increased accessibility and transcription at IEG loci, which ultimately makes it difficult to identify activity-dependent increases in IEG accessibility at timepoints <1 hour. Furthermore, a previously published manuscript from our lab (Carullo et al. Nucleic Acids Research, 2020) conducted ATAC-seq on cultured embryonic rat cortical, hippocampal, and striatal neurons and found that transcribed enhancers for IEG loci (including Fos) had decreased chromatin accessibility following depolarization when compared to vehicle treatment. These differences in experimental design (including cell type, model organism, developmental timepoint, and treatment paradigm) may all contribute to differences in the temporal dynamics of chromatin remodeling between the current manuscript and previously published studies.

      3) Experimentally it can be challenging to repress a single enhancer and show a significant effect on gene regulation which makes the repression in Fig 6c somewhat unexpected. There are several regions near Pdyn that show activity-dependent changes in accessibility in the human cells (Fig. 7e) and presumably in the rat neurons too (Fig. 5a shows a few but most of the intervening region is cut out). Did the authors target any of these other regions?

      We chose the identified regulatory element upstream of the Pdyn TSS because it met several criteria that we determined are important for characterizing LRG enhancers. These criteria are outlined in the Results: “1) located in non-coding regions of the genome, 2) inaccessible at baseline and accessible following depolarization, and 3) inaccessible when depolarization was paired with protein synthesis inhibition.” Indeed, ATAC-seq experiments presented in the current study demonstrate that thousands of genomic regions undergo reprogramming, and many of these regions meet these criteria (including additional loci near Pdyn). However, we lacked the time and resources to systematically investigate all other enhancers, and did not target any other regions within the Pdyn locus. While many enhancers may regulate a single gene, the identified enhancer seems to be particularly important for activity-dependent Pdyn gene expression. Importantly, CRISPRi-based repression of this enhancer (Fig. 6c) did not reduce basal Pdyn expression as compared to a non-targeting control, but completely blocked stimulus-dependent induction of Pdyn transcription. We believe this is a useful starting point, and future studies may seek to more completely define the contributions of nearby regulatory elements.

      4) The authors should clarify in the methods or figure legends the number of independent replicate libraries for each experiment and were the RNA and ATAC libraries made from the same or different experiments.

      We thank the reviewer for bringing this to our attention. We have clarified the number of replicates in the methods as outlined below. Additionally, RNA and ATAC libraries were generated from different experiments, and this information is also now included in the methods.

      Within the ATAC-Seq library preparation and analysis methods section: “ATAC-seq libraries were generated from experiments independent of the RNA-seq experiments. For the ATAC-seq experiment of neurons treated with vehicle or KCl for 1 h, there were 3 replicates within each treatment group (3 Veh, 3 KCl). For the ATAC-seq experiment of neurons treated with vehicle or KCl for 4 h, there were 3 replicates within each treatment group (3 Veh, 3 KCl). For the ATAC-seq experiment of neurons pre-treated with DMSO or Anisomycin, there were 4 replicates within each treatment group (4 DMSO + Veh, 4 DMSO + KCl, 4 Anisomycin + KCl).”

      Within the RNA-seq library preparation and analysis methods section: “RNA-seq libraries were generated from experiments independent of the ATAC-seq experiments. For the RNA-seq experiment of neurons treated with vehicle or KCl for 1 h, there were 3 replicates within the KCl group and 4 replicates within the vehicle group. For the RNA-seq experiment of neurons treated with vehicle or KCl for 4 h, there were 4 replicates within each group (4 Veh, 4 KCl).”

      Reviewer #2

      Public review

      First of all, at a conceptual level, most of the findings related to the induction of particular transcriptional programs upon neuronal activation the changes in chromatin state, and the need for protein translation for proper induction of LRGs have been broadly characterized previously in the literature (Tyssowski et al., Neuron, 2018; Ibarra et al., Mol. Syst. Biol., 2022; and also reviewed by Yap and Greenberg, Neuron, 2018). In addition, it is not so obvious why to focus on Pdyn gene regulatory regions among the thousands of genes upregulated and with modified chromatin landscape after neuronal activation. The authors highlight three particular traits of this gene as the reason to choose it, but those traits are probably shared by most of the genes that are part of the LRGs set.

      We thank the reviewer for these comments, and have included these important publications as citations in our manuscript. With over 5,000 differentially accessible chromatin regions following KCl stimulation, it was not possible to follow up on all regulatory regions or linked genes in a rigorous way. Therefore, we selected a target candidate enhancer near the Pdyn locus for mechanistic studies. In addition to the criteria highlighted in the manuscript, we chose this locus due to decades of literature establishing the importance of prodynorphin in the striatum, and the role of this gene in human neuropsychiatric diseases. We would argue that this increases the relevance of more detailed exploration of this gene, and makes our results applicable to a broader pre-existing literature.

      At the methodological level, some attention should be put into the timings chosen for generating the data. The authors claim that these time points (1h and 4hrs) identify the first (i.e IEGs) and second (i.e LRGs) waves of transcription. However, at 4hrs the highest over-expressed genes are still IEGs, as shown in the volcano plots of Figure 1B and 1C, showing a high overlap with up-regulated genes found at 1h (Figure 1D). This might suggest that the 4hrs time point is somewhere in between the first and second wave of transcription, probably missing some of the still-to-be-induced LRGs of the latest one.

      Given that the depolarization applied in RNA-seq and ATAC-seq experiments is continuous, it was not unexpected to find IEGs present at both 1 h and 4 h timepoints. The revised manuscript contains a new experiment (Fig. S1d-f) demonstrating that a shorter depolarization period (1 h KCl followed by a 3 h wash off period) also induces Fos mRNA, but to a much lower extent than 4 h continuous stimulation. In contrast, both short (1 h) and long (4 h) depolarization periods induce Pdyn to equivalent levels when measured at 4 h after the onset of the stimulus. These experiments support our conclusion that LRGs require a temporal delay, and not simply extended stimulation. Nevertheless, the reviewer is correct that a 4 h timepoint may potentially miss some LRGs that are induced even later. We plan to explore the full timecourse of LRG induction in future studies.

      Finally, while only prosed as a suggestion, the assumption that from the data generated in this article, we can envision a mechanism by which AP-1 family of transcription factors interacts with the SWI/SNF chromatin remodeling complex is going too far, as no evidence is provided implicated SWI/SNF in the data presented in the manuscript.

      While speculative in the current context, we felt that it was important to highlight this prior literature to identify potential mechanisms that may link IEGs (specifically, AP-1 members) to chromatin remodeling machinery. We have altered this section of the discussion to emphasize that this link is speculative in the context of neuronal chromatin remodeling.

      Recommendations For The Authors

      1) I couldn't find the number of replicates generated for each dataset, neither for RNA nor for ATAC-seq. It could be worth adding these data to the figure legends or in the material and methods.

      We thank the reviewer for bringing this to our attention. The number of replicates generated for each dataset are now included in the methods section (see response to Reviewer #1, comment #4 above).

      2) In Figure 1D, Gene Ontology terms appear significant only for each of the individual datasets. While this might be expected for the 1h time-point, the 4hrs time-point comprises a big extent of the genes up-regulated at 1h as well, and it is surprising no term related to chromatin or transcription regulation appears as significant. Is this due to the fact that the analysis has been conducted with two separated lists of genes and only the top terms are shown without crossing the data? This could be misleading for the reader and maybe a comparative GO term analysis might be better such as using CluterProfiler or similar tools, that might allow for real comparison of terms enriched in each dataset.

      We thank the reviewer for pointing this out. For Figure 1d, GO term analysis was conducted with two separated gene lists, each consisting of timepoint-specific upregulated DEGs. Thus, 772 genes were included for the analysis of 4 h GO terms and 39 genes were included for the analysis of 1 h GO terms. Previously, comparisons of cellular component GO terms included in the current study only included the top 10 GO terms. The revised manuscript contains an updated analysis that compares all enriched GO terms and identifies that three of the top 10 cellular component GO terms for the 1 h gene set are also identified as significantly enriched in the 4 h gene set. We have revised the graph in Fig. 1f to reflect this updated analysis. Overall, our conclusions (that 1 h and 4 h DEG sets fall into distinct functional categories) remains supported by this analysis.

      3) In Figure 3D, the graphs show the density of motifs within the DARs in units of "Motifs/Kb/peak" while the x-axis represents the peaks coordinates from -500bp to +500bp. It is not clear to me how this graph is generated and how within 1000bp the profiles can reach values of 18-20 Motifs/Kb/peak. Could this be clarified?

      The motif enrichment score was calculated by identifying the number of total motifs within defined 50bp genomic bins surrounding the center of the DAR regions. HOMER builds enrichment histograms that normalize motif presence to set size (e.g., number of peaks or DARs), and also to genomic space (base pairs). While HOMER’s default histogram represents motifs/bp/peak, we converted this to motifs/kb/peak for ease of interpretation. However, to avoid confusion we have returned the y axis labels to the default HOMER settings (motifs/bp/peak). The normalization and units for this graph have been clarified in the methods section.

      4) In Figure 4C the newly generated ATAC-seq data is just "targeted" analyzed, showing global tendencies are maintained between the initial generated data and this one. It could be interesting, however, to see the number of DARs obtained in these conditions, especially to see if some DARs are observed in the Anisomycin condition that might be translation-independent.

      The experiment described in Figure 4 was designed to both validate the 5,312 DARs and understand the role of protein translation in activity-dependent chromatin remodeling. One way to begin identifying translation-independent DARs is to compare the DMSO + Vehicle group to the Anisomycin + KCl group. With this comparison, any 4 h DAR that has increased accessibility in the Anisomycin + KCl group may be translation-independent as pretreatment with anisomycin did not prevent chromatin remodeling. After conducting this analysis, we identified a very small percentage (3.44%) of 5,312 4 h DARs that still exhibited significantly increased accessibility when pre-treated with Anisomycin. This small number is consistent with the robust effects of anisomycin on KCl-dependent remodeling shown in Fig. 4c-d. However, to confirm that these were in fact translation-independent activity-regulated DARs, we would need to perform direct comparison of chromatin accessibility between neurons pre-treated with Anisomycin and then treated with either vehicle or KCl. Since we did not include an anisomycin only group in experiments in Fig. 4, we cannot confidently claim whether this 3.4% of DARs are translationindependent. Nevertheless, we agree with the reviewer that this is an interesting avenue of future exploration.

      Reviewer #3

      Public review

      1) Throughout the paper, the authors emphasize a "temporal decoupling" of transcriptional and chromatin response to depolarization, based on a lack of significant chromatin changes at 1h, despite IEG transcription. However, previous publications show significant chromatin remodeling at 1h (e.g. Su et al., NN 2017 in adult dentate gyrus) or 2h (Kim et al., Nature 2010; Malik et al., NN 2014 in cultured embryonic cortical neurons). The discussion briefly mentions this contrast, but it remains difficult to conclude decisively whether there is temporal decoupling when such decoupling is not found consistently. If one is to make broad conclusions about basic neural chromatin response to depolarization, it would be ideal to know under which conditions there is temporal decoupling, or if this is a region-specific phenomenon.

      Indeed, prior studies referred to in our manuscript have identified chromatin remodeling at earlier timepoints than we identified here. As addressed above (Reviewer #1, comments 1 & 2), it is possible that this discrepancy arises due to the difference in experimental model system, differences in the type of stimulation applied, pretreatment protocols used to silence neurons prior to activation, or even differences in developmental stage. Differences in each of these parameters make it difficult to make straightforward comparisons between datasets and results in this manuscript. It is possible that other cell types induce IEGs more quickly (or more robustly) in response to stimulation, which could lead to earlier chromatin remodeling. However, the common patterns of chromatin reorganization (e.g., the fact that changes are enriched at AP-1 motifs and are found in intergenic regions at putative enhancers) lend support for the idea that the transcriptional waves identified here can also be found in other cell types and in other contexts.

      2) The UMAP analysis is a novel way to probe transcription factor enrichment, but it's unclear what this is actually showing. The authors sought to ask whether "DARs could be separated based on transcription factor motifs in these regions." However, the motifs present in any genomic stretch are fixed based on genomic sequence, so it seems like this analysis might be asking whether certain motifs are more likely to be physically clustered together in the genome, in activity-regulated regions (rather than certain transcription factors acting in concert, as is implied in discussion). While still potentially interesting, this analysis does not seem to give much additional insight into activity-dependent chromatin remodeling beyond the motif enrichment analysis already performed. Nevertheless, to draw stronger conclusions, it would be necessary to compare clustering to a random set of genomic regions of the same length/size to interpret the clustering here. It would also be useful to know whether the ISL1 motif is also enriched in ubiquitously accessible genomic regions in the striatum (and not just DARs).

      We agree that additional analysis is needed to explore enrichment of various transcription factor motifs and activity at differently accessible regions of the genome. The motif enrichment analysis in Figure 3 demonstrated the types of motifs that were enriched in DARs (Fig. 3a-c), the overall degree of enrichment (Fig. 3c), and the distribution of those motifs across DAR sites (Fig. 3d). This analysis allowed us to understand whether motifs for cell-defining transcription factors like ISL1 are enriched uniquely in DARs, or are also found in other regions that are accessible at baseline (see direct comparisons between vehicle/baseline peaks and DARs in Fig. 3d). However, these approaches represent enrichment across all DARs as group, and do not show TF presence/absence at any specific DAR. The UMAP analysis presented in Figure 3e allowed identification of DAR clusters based on the presence or absence of specific transcription factor motifs, and allowed us to represent specific DARs in a reduced two-dimensional space. Because this analysis identifies the existence of distinct motifs within single DARs, it allowed us to speculate as to the possibility of transcription factor cooperation within DARs, or the meaning of DAR clusters that appear to be defined by specific motifs (e.g., KLF10 in Fig. 3f). Given the information that this adds to the initial analyses, we argue that its inclusion in the manuscript is useful and potentially informative for generating follow-up hypotheses.

      3) The authors identify late-response gene enhancers by 3 criteria. However, only Pdyn was highlighted thereafter. How many putative DARs met these three criteria in striatum? Only Pdyn?

      As illustrated in Figures 2 and 4, nearly all of the DARs in our dataset met these criteria, which included presence in non-coding genomic regions, increase in accessibility following stimulation, and prevention of chromatin accessibility changes by protein synthesis inhibition. We did not mean to indicate that the Pdyn locus was unique in this way. In addition to the criteria highlighted in the manuscript, we chose this locus due to decades of literature establishing the importance of prodynorphin in the striatum, and the role of this gene in human neuropsychiatric diseases. We would argue that this increases the relevance of more detailed exploration of the regulator mechanisms that control expression of this gene, and makes our results applicable to a broader pre-existing literature. The revised manuscript includes additional experiments that examine Pdyn expression changes in response to different stimuli, which help to justify the focus on this gene from the beginning of the manuscript.

      Recommendations For The Authors

      1) Figure 1 volcano plots show a scatter primarily in the up-regulated portion at both the 1-h and 4-h time points. However, the Venn diagrams show largely similar numbers of up- and downregulated genes at the 4-h time point. Is the clustering of down-regulated genes tighter/more overlapping? If so, semi-translucent volcano dots or some acknowledgment of the visual discrepancy would be useful.

      We thank the reviewer for bringing this to our attention. Down-regulated genes are clustering tighter on the volcano plot due to smaller fold changes. This visual discrepancy is acknowledged by the numeric indicators of up- and down-regulated genes in the upper left-hand corner of the volcano plot.

      2) Methods for RNA and ATAC seq analysis align to human genome Hg38, rather than rat?

      RNA- and ATAC-Seq analyses from rat neurons were aligned to the mRatBn7.2/Rn7 rat genome. RNA- and ATAC-Seq analyses from human neurons were aligned to the Hg38 human genome. We have updated the methods to make this clear.

      3) The introduction states that different classes of neurons induce distinct LRGs. Please add a citation. Citations are also needed for the last statement WRT consequences of chromatin remodeling near LRGs not being concretely linked to LRG transcription.

      We thank the reviewer for pointing this out. The revised manuscript now includes additional citations supporting each of these statements.

      4) Specify somewhere in Methods that DEGs were compared to vehicle for both 1-h and 4-h (and not 4 vs 1 h).

      We thank the reviewer for bringing this to our attention. We have updated the methods to include: “DEGs were calculated by comparing the KCl and Vehicle treatment groups at each respective timepoint.”

      5) In Figure 2E, why are the enrichments exactly opposite, especially given these are two different types of input (all baseline peaks vs DARs)?

      Odds ratios were calculated by comparing baseline peaks (i.e., ATAC-seq peaks identified in vehicle treated cells) to KCl-induced DARs. This allowed us to identify the enrichment of DARs in specific genomic annotations in comparison to the genomic features that are accessible at baseline, rather than making comparisons to random probe sets or genomic space dedicated to these distinct annotations. This analysis identified that relative to baseline peaks, DARs are significantly depleted in coding regions of the genome and enriched in non-coding regions of the genome. However, given this analysis we agree that it does not make sense to graph both the vehicle (baseline) and DARs on this graph, given that enrichment of each set is determined relative to the other (creating the reciprocal enrichment in this panel). We have updated Fig. 2e to only include points for 4 h DARs.

      6) Some references are off. One that I noted was "...chromatin remodeling in the mouse dentate gyrus following 1 h of electricoconvulsive stimulation" should be Su et al 2017 not Malik 2014. For the statement that IEGs are critical regulators of non-neuronal IEGs, the authors may want to add Hrvatin 2017 ref.

      We thank the reviewer for bringing this to our attention. We have revised the manuscript to include the correct citation for this claim, and also to incude the Hrvatin, et al reference.

      7) It would be helpful for the authors to write out the whole gene name for Pdyn somewhere.

      We have updated the text to include the gene name for Pdyn, both in the abstract and also in the introduction of the manuscript.

      8) Figure 5f: For ease, please include what is high vs low in the figure caption in addition to the main text.

      We thank the reviewer for bringing this to our attention. We have updated the figure caption and main text to include what is high vs low in Pseudotime estimates in Fig. 5f.

      9) How are the tracks ordered in Fig8c?

      Tracks within Fig. 8c demonstrate snATAC-seq signal at the Pdyn gene locus for transcriptionally distinct cell types within the NAc. The tracks are ordered by cluster size (nuclei number) in the snATAC-seq dataset.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their generous comments on the manuscript and have made edits to address their concerns. The manuscript has been restructured and the reference (PMID: 35738428) has been added to the review. We addressed the reviewer's comment below.

      Reviewer #1 (Recommendations For The Authors):

      Regarding SBSMMA, the authors may complement their discussion by mentioning recent work (PMID: 35738428) where SBSMMA was used to exemplify a potential fragment-based design approach for developing allosteric effectors for kinases.

      Thank you for the suggestion, we have added a short summary of the work where SBSMMA is used as a basis for developing small molecules to target kinases using fragment-based design approach.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This work describes a structural analysis of the tripartite HipBST toxin-antitoxin (TA) system, which is related to the canonical two-component HipBA system composed of the HipA serine-threonine kinase toxin and the HipB antitoxin. The crystal structure of the kinase-inactive HipBST complex of the Enteropathogenic E. coli O127:H6 was solved and revealed that HipBST forms a hetero-hexameric complex composed of a dimer of HipBST heterotrimers that interact via the HipB subunit. The HipS antitoxin shows a structural resemblance to HipA N-terminal region and the HipT toxin represents to the core kinase domain of HipA, indicating that in HipBST the hipA toxin gene was likely split in two genes, namely hipS and hipT.

      -The structure also reveals a conserved and essential Trp residue within the HipS antitoxin, which likely prevents the conserved "Gly-rich loop" of HipT from adopting an inward conformation needed for ATP binding. This work also shows that the regulating Gly-rich loop of the HipT toxin contains conserved phosphoserine residues essential for HipT toxicity that are key players within the HipT active site interacting network and which likely control antitoxin binding and/or activity.

      Strengths:

      The manuscript is well written and the experimental work well executed. It shows that major features of the classical two-component HipAB TA system have somehow been rerouted in the case of the tripartite HipBST. This includes the N-terminal domain of the HipA toxin, which now functions as bona fide antitoxin, and the partly relegated HipB antitoxin, which could only function as a transcription regulator. In addition, this work shows a new mode of inhibition of a kinase toxin and highlights the impact of the phosphorylation state of key toxin residues in controlling the activity of the antitoxin.

      Weaknesses:

      A major weakness of this work is the lack of data concerning the role of HipB, which likely does not act as an antitoxin. Does it act as a transcriptional regulator of the hipBST operon and to what extent both HipS and HipT contribute to such regulation? These are still open questions.

      We thank the reviewer for their feedback and have included a supplementary figure (Figure 1 supplement 2) and accompanying text that shows the transcriptional role of HipB, and how HipS and HipT influence this regulatory effect.

      In addition, there is no in-depth structural comparison between the structure of the HipBST solved in the work and the two recent structures of HipBST from Legionella. This is also a major weakness of this work.

      A structural comparison to the recent structures from Legionella has now been included in the discussion, including Figure 6 supplement 1.

      Reviewer #2 (Public Review):

      The work by Bærentsen et al., entitled "Structural basis for regulation of a tripartite toxin-antitoxin system by dual phosphorylation" deals with the structural aspects of the control of the hipBST TA operon, the role of auto-phosphorylation in the activation and neutralisation of the enzyme and the direct effects of HipS and HipB in neutralisation. This is a follow-up to the Vang Nielsen et al., and Gerdes et al., papers from the same authors on this very unique TA module, that brings forth a thorough and well written dissection of an unusually complex regulatory system.

      This is a much improved manuscript, the paper is more focused and the message is now clear.

      Reviewer #1 (Recommendations For The Authors):

      My main recommendation would be to include an in-depth structural comparison between the structure of the HipBST solved in the work and the two recent structures of similar HipBST from Legionella.

      We thank the reviewer and have included a new supplementary figure (Figure 6 supplement 1) and expanded the comparison in the discussion to accommodate this.

      Reviewer #2 (Recommendations For The Authors):

      So I only have some minor comments.

      1) The authors should accompany Fig.1 (a supplementary panel is sufficient) with a surface electrostatic representation of the complex to better illustrate the potential role of the complex in transcription auto-regulation.

      We have included a new panel in Figure 1 supplement 3 to show the electrostatic surface of the DNA-binding domains of HipB of HipBST and HipBASo.

      2) When the Gly-rich loop is first introduced, please provide from which residue to which residue the loop expands.

      Corrected for both the first mention of the Gly-rich loop of HipA and HipT.

      3) In Fig 2. The authors try to show how the interaction of the main helix of HipS with HipT is different in HipBST compared to HipAB. I think it would be helpful if these two panel show the surface of HipT and HipA coloured by electrostatics so that not only the differences in HipS become apparent, but also the local differences between both toxins.

      We thank the reviewer for this excellent idea, and the electrostatics did in fact reveal that the region of the toxins are different. We have updated figure 2b to show this difference.

      4) Fig. 4 Shows the experimental SAXS curves for the HipT D210Q variants SIS (blue), SID (red), and DIS (orange). In each case a black curve is fitted to the data (presumably the fitting of the model-derived scattering curve to the data). Could the authors clarify this in the figure?

      We agree that this information is missing in the legend. The black curves are the fits for the models based on the crystal structure after rigid-body refinements and inclusion of a structure factor to account for oligomerization of the complexes. This is now included in the figure caption.

      5) Also regarding the SAXS analysis, in the manuscript the authors state that all three models "gave good fits to the data" as assessed by the fitting χ2. These χ2 values should be explicit in the figure or the figure legend.

      We thank the reviewer for this suggestion. The chi squared values for the best fits are now given in the text.

      In addition, is the SAXS data (the parameters derived from the experimental scattering, including the MW) consistent with the lack of HipS from the complex? (it should be...).

      This is a good point, however, the partial oligomerization (dimerization) of the complexes (heterohexamers) and the variation of the dimerization degree between samples prevent extraction of useful mass values from the I(0) determinations. Therefore, we decided not to give the values explicitly in the text but only state “…consistent with analysis of the forward scattering that revealed partial oligomerisation of the samples with an average mass corresponding to roughly a dimer of the HipBST heterohexamer.”

      6) Please improve this sentence: "Moreover, since it has previously been shown that only the HipT Gly-rich loop never is observed in doubly phosphorylated form with both Ser57 and Ser59 modified simultaneously, it is unlikely that the effects are due to autophosphorylation of the remaining serine residue in either case (Vang Nielsen et al., 2019)."

      Done

    1. Author Response

      We are happy that the novelty and strengths of the study have been appreciated by the editor/s and reviewer/s. We thank the editor/s and reviewer/s for a considerably detailed and constructive review of the manuscript. Here are the responses and proposed revisions from the authors.

      • The weakness, as pointed out in the editorial comment regarding the absence of data on role of Piezo1 in migrating T cells in varying physico-chemical conditions were, in the opinion of the authors, beyond the scope of the present manuscript. Moreover, introducing external forces using invasive techniques followed by assessment of Piezo1 function was intentionally avoided. That was the reason for using the non-invasive microscopy technique like IRM to assess membrane tension generation in migrating T cells.

      • With regard to the explanation sought for the statement 'these high tension edges are usually further emphasized at later time points', the edges are visible right from 1 min (Supp fig 2B) and seen to be emphasized at 30 min. In Fig 2D, we find the 3 min time point at which increased tension at edges is visible together with a clear difference in median tension too. Fig. 2c and Supp fig 2C are averaged over all cells - hence it is possible that at a time point when a particular cell still shows higher tension at edges the median tension of Fig 2C is not significantly different. Also, if only a thin section of cell-edge enhances tension - it may contribute to a second peak without affecting the median much.

      • With regard to the query regarding experimental replicates, all data shown is derived from at least 3 experimental replicates for Jurkat cells or independent blood donors for primary CD4+ T lymphocytes as specified in the respective figure legends.

      • With regard to the comments on nonavailability of representative images/videos for Figures 1 A and B, in the revised manuscript we will add representative video of GFP (-) and GFP (+) tracks. The transwell experiments were assessed by collecting cells from the bottom chamber followed by flow cytometry. We did not take microscopic images of the bottom chambers before collecting the cells.

    1. Author Response

      We thank the two reviewers and the reviewing editor for their positive evaluation of our manuscript. Especially, we appreciate the useful comments and suggestions on how the manuscript can be improved and which directions would be promising for future work on this topic. We would like to point out that we did consider the possibility that the plant enzymes produce ethylene in the same manner as EFE, but so far we did not obtain any evidence for such an activity (Supplementary Figure 3). We also performed some preliminary experiments with plants subjected to biotic stress, but the results suggested that neither defence responses nor pipecolate and proline biosynthesis depend to a significant extent on the 2-ODD-C23 enzymes. We plan to address these questions in more detail in further experiments. Depending on the outcome, we will either incorporate the results into a revised version of the present manuscript, or present them as follow-up studies. Concerning the possibility of testing all types of pathogens that affect expression of the 2-ODD-C23 genes, it is beyond our capacity and beyond the scope of the present manuscript. We hope, however, that such experiments can be the subject of a future research project in collaboration with experts in plant-pathogen interactions.

    1. Author Response

      Reviewer #1 (Public Review):

      • A summary of what the authors were trying to achieve.

      The authors cultured pre- and Post-vaccine PBMCs with overlapping peptides encoding S protein in the presence of IL-2, IL-7, and IL-15 for 10 days, and extensively analyzed the T cells expanded during the culture; by including scRNAseq, scTCRseq, and examination of reporter cell lines expressing the dominant TCRs. They were able to identify 78 S epitopes with HLA restrictions (by itself represents a major achievement) together with their subset, based on their transcriptional profiling. By comparing T cell clonotypes between pre- and post-vaccination samples, they showed that a majority of pre-existing S-reactive CD4+ T cell clones did not expand by vaccinations. Thus, the authors concluded that highly-responding S-reactive T cells were established by vaccination from rare clonotypes.

      • An account of the major strengths and weaknesses of the methods and results.

      Strengths

      • Selection of 4 "Ab sustainers" and 4 "Ab decliners" from 43 subjects who received two shots of mRNA vaccinations.

      • Identification of S epitopes of T cells together with their transcriptional profiling. This allowed the authors to compare the dominant subsets between sustainers and decliners.

      Weaknesses

      • Fig. 3 provides the epitopes, and the type of T cells, yet the composition of subsets per subject was not provided. It is possible that only one subject out of 4 sustainers expressed many Tfh clonotypes and explained the majority of Tfh clonotypes in the sustainer group. To exclude this possibility, the data on the composition of the T cell subset per subject (all 8 subjects) should be provided.

      We thank the reviewer for this comment. We will show the data in the revised manuscript.

      • S-specific T cells were obtained after a 10-day culture with peptides in the presence of multiple cytokines. This strategy tends to increase a background unrelated to S protein. Another shortcoming of this strategy is the selection of only T cells amenable to cell proliferation. This strategy will miss anergic or less-responsive T cells and thus create a bias in the assessment of S-reactive T cell subsets. This limitation should be described in the Discussion.

      We will describe the limitation and advantage of our strategy in the revised manuscript.

      • Fig. 5 shows the epitopes and the type of T cells present at baseline. Do they react to HCoV-derived peptides? I guess not, as it is not clearly described. If the authors have the data, it should be provided.

      We apologize for not mentioning it clearly. As we have confirmed the unresponsiveness using synthetic HCoV peptides, we will include these data in the revised manuscript.

      • As the authors discussed (L172), pre-existing S-reactive T cells were of low affinity. The raw flow data, as shown in Fig. S3, for pre-existing T cells may help discuss this aspect.

      We thank the reviewer for this helpful comment. We will add the discussion to the revised manuscript.

      Reviewer #3 (Public Review):

      Summary: The paper aims to investigate the relationship between anti-S protein antibody titers with the phenotypes&clonotypes of S-protein-specific T cells, in people who receive SARS-CoV2 mRNA vaccines. To do this, the paper recruited a cohort of Covid-19 naive individuals who received the SARS-CoV2 mRNA vaccines and collected sera and PBMCs samples at different timepoints. Then they mainly generate three sets of data: 1). Anti-S protein antibody titers on all timepoints. 2) Single-cell RNAseq/TCRseq dataset for divided T cells after stimulation by S-protein for 10 days. 3) Corresponding epitopes for each expanded TCR clones. After analyzing these results, the paper reports two major findings & claims: A) Individuals having sustained anti-S protein antibody response also have more so-called Tfh cells in their single-cell dataset, which suggests Tfh-polarization of S-specific T cells can be a marker to predict the longevity of anti-S antibody. B). S-reactive T cells do exist before the vaccination, but they seem to be unable to respond to Covid-19 vaccination properly.

      The paper's strength is it uses a very systemic and thorough strategy trying to dissect the relationship between antibody titers, T cell phenotypes, TCR clonotypes and corresponding epitopes, and indeed it reports several interesting findings about the relationship of Tfh/sustained antibody and about the S-reactive clones that exist before the vaccination. However, the main weakness is these interesting claims are not sufficiently supported by the evidence presented in this paper. I have the following major concerns:

      1) The biggest claim of the paper, which is the acquisition of S-specific Tfh clonotypes is associated with the longevity of anti-S antibodies, should be based on proper statistical analysis rather than just a UMAP as in Fig2 C, E, F. The paper only shows the pooled result, but it looks like most of the so-called Tfh cells come from a single donor #27. If separating each of the 4 decliners and sustainers and presenting their Tfh% in total CD4+ T cells respectively, will it statistically have a significant difference between those decliners and sustainers? I want to emphasize that solid scientific conclusions need to be drawn based on proper sample size and statistical analysis.

      We will carefully describe the interpretation of the data with statistical analysis in the revised manuscript.

      2) The paper does not provide any information to justify its cell annotation as presented in Fig 2B, 4A. Moreover, in my opinion, it is strange to see that there are two clusters of cells sit on both the left and right side of UMAP in Fig2B but both are annotated as CD4 Tcm and Tem. Also Tfh and Treg belong to a same cluster in Fig 2B but they should have very distinct transcriptomes and should be separated nicely. Therefore I believe the paper can be more convincing if it can present more information and discussion about the basis for its cell annotation.

      We apologize for the insufficient explanation and will describe how we performed cell annotation in the revised manuscript.

      3) Line 103-104, the paper claims that the Tfh cluster likely comes from cTfh cells. However considering the cells have been cultured/stimulated for 10 days, cTfh cells might lose all Tfh features after such culture. To my best knowledge there is no literature to support the notion that cTfh cells after stimulated in vitro for 10 days (also in the presence of IL2, IL7 and IL15), can still retain a Tfh phenotype after 10 days. It is possible that what actually happens is, instead of having more S-specific cTfh cells before the cell culture, the sustainers' PBMC can create an environment that favors the Tfh cell differentiation (such as express more pro-Tfh cytokines/co-stimulations). Thus after 10-days culture, there are more Tfh-like cells detected in the sustainers. The paper may need to include more evidence to support cTfh cells can retain Tfh features after 10-days' culture.

      We thank the reviewer for raising this important point. We will describe the limitation of the strategy. In addition, we will include some data in accordance with the reviewer’s recommendation.

      4) It is in my opinion inaccurate to use cell number in Fig4B to determine whether such clone expands or not, given that the cell number can be affected by many factors like the input number, the stimulation quality and the PBMC sample quality. A more proper analysis should be considered by calculating the relative abundance of each TCR clone in total CD4 T cells in each timepoint.

      We will also show the proportion of clonotypes in the revised manuscript.

      5) It is well-appreciated to express each TCR in cell line and to determine the epitopes. However, the author needs to make very sure that this analysis is performed correctly because a large body of conclusions of the paper are based on such epitope analysis. However, I notice something strange (maybe I am wrong) but for example, Table 4 donor #8 clonotype post_6 and _7, these two clonotypes have exactly the same TRAV5 and TRAJ5 usage. Because alpha chain don't have a D region, in theory these clonotypes, if have the same VJ usage, they should have the same alpha chain CDR3 sequences, however, in the table they have very different CDR3α aa sequences. I wish the author could double check their analysis and I apologize in advance if I raise such questions based on wrong knowledge.

      We thank the reviewer for carefully reading our manuscript. Although the two clonotypes, donor #8 clonotype post_6 and _7, have exactly the same TRAV5 and TRAJ5 usage, they have different CDR3a aa sequences due to random nucleotide addition in rearrangement. Likewise, donor #27 clonotype post_1 and donor #13 clonotype post_15 had the same TRAV9-2 and TRAJ17 usage but different CDR3a.

    1. Author Response

      Reviewer #1 (Public Review):

      Gambelli et al. provide a structural study of the SlaA/SlaB S-layer of the archaeon Sulfolobus acidocaldarius. S-layers form an essential component of most archaeal cell envelopes, where their self-assembling properties and activity as cell envelope support structures have raised substantial interest, both from researchers seeking to understand the fundamental biology of archaea, as well as researchers seeking to exploit the biomaterial properties of S-layers in biotechnological applications. Both interests are hampered by the paucity of structural information on archaeal S-layer assembly, structure, and function to date, in large part due to technical difficulties in their study.

      In this study, Gambelli and coworkers overcome these difficulties and report the high-resolution 3D cryoEM structures of the purified SlaA monomers at three different pH, as well as the medium resolution 3D cryoET structures of the SlaA/SlaB lattices determined from S-layer fragments isolated from the Sulfolobus cells.

      The structural work is generally well executed, although lacks in detail in places to allow a proper review, particularly in the cryoET. A further drawback of the current manuscript is that the structural work remains rather descriptive and speculative, with little validation of the proposed models.

      The authors run a plethora of representation, analyses, prediction, and simulation software on their structures resulting in an abundance of Figures that risk overloading the reader and in several cases bring little new insight beyond unsubstantiated speculation.

      We understand the reviewer’s concern about the number of figures presented in the manuscript. To avoid overloading the reader, we have further simplified the supplementary figures and provided additional context and explanations in the narrative of the manuscript to ensure that the reader can follow the data presented. We have also improved unclarities in legends, making sure that they provide clearer explanations of the data. Additionally, we have taken extra care to connect each figure to the main findings, emphasising how each piece of data contributes to the overall understanding of the structures.

      We find it difficult to agree with the assertion of unsubstantiated speculation. We carefully justified our interpretation of our data, referring to well-established principles and relevant literature. Nevertheless, we have attempted to provide further context and clarification in the revised manuscript. Where appropriate, we have acknowledged the limitations of our analyses and have made sure to note where further research is needed to confirm their findings.

      The structural description of the S. acidocaldarius S-layer will be of high general interest and the authors have made a substantial leap forward, but the current manuscript would benefit from a better validation and basic atomic description of the SlaA/SlaB S-layer.

      Specific points.

      • It is not possible to review the quality of the SlaA and SlaA/SlaB models in the cryoET reconstruction. No detailed fits of the map and model are shown, and no correlation statistics are given (the latter is also true for the higher resolution 3D reconstructions at pH4, 7, and 10). To be of use to the community, the S-layer model and cryoET maps should also be deposited in PDB and EMDB, and an autodep report and ideally the cryoET maps should be available.

      Maps and models for the SlaA single particle at pH4, 7 and 10 have now been released on the PDB database under the accession codes PDB-7ZCX, PDB-8AN3 and PDB-8AN2 and all validation statistics can be accessed there. We have also provided a standard cryoEM statistics table with the manuscript.

      We have also changed the main figures 4 and 5 to include more detail about the STA maps and models. We have deposited the sub-tomogram averaging map in the EMDB (EMD-18127) and models of the hexameric and trimeric pores in the Protein Databank under accession codes PDB-8QP0 and PDB-8QOX, respectively (with status release upon publication). We have also attached the map and models as supporting files to this rebuttal.

      • The authors spend a great deal on the MD simulation of the SlaA glycans and the description of the 'glycan shield' and its possible role in subunit electrostatics and intersubunit contacts. This does not result in testable hypotheses, however, and does not bring much more than vague speculation on the role of the glycans or the subunits contacts in S-layer assembly and stability.

      We propose that our glycan analysis does lead to a testable hypothesis, which could for example be tested by a future study involving the genetic or enzymatic ablation of glycosylation sites and the subsequent investigation of the structure and stability of the S-layer. We have included this statement in our manuscript to inspire future research in this direction.

      • For the primary description of the SlaA/B S-layer, more important would be a detailed atomic description and validation of the intermolecular contacts in the proposed lattice model. Given the low resolution of the cryoET, this would require MD simulation of the contacts. Lattice stability during MD simulation and/or the confirmation of lattice contacts by cross-linking mass spectrometry would go a great way in validating the proposed lattice model.

      We have improved our map and model by reprocessing our sub-tomogram averages (STA) using a different pipeline (Warp and M). We are now able to visualise more of SlaB, and the new map agrees with our Alphafold predictions of the SlaB trimer. The new map also clearly shows the interaction sites between SlaA and SlaB, as well as how SlaB integrates into the lipid bilayer. We have made new figures that now correlate the STA with the atomic model more clearly.

      Taking the reviewer’s suggestions on board, we have used Namdinator – a molecular dynamics-based flexible fitting software, to refine our model. Due to RAM limitations, we had to split our model into two pdb files. The first contains 6 SlaA monomers delineating a hexameric pore and the second, 3 SlaB monomers and 5 SlaA in the region of a trimeric pore. While the new models largely agree with the original, Namdinator did improve them. The IgG domains of SlaB now fill previously unoccupied areas of the map and any clashes have been removed. Notably, the way that SlaA is modelled is the only way in which the subunits can be reconciled with the map. This is especially true for the surface glycans, which in our model are excluded from any of the intermolecular interfaces and thus remain free to move around in the solvent. In any other SlaA configuration, there would be severe clashes between neighbouring polypeptide backbones or proteins and surface glycans and thus be sterically or entropically unfavourable.

      Unfortunately, full MD simulations of the entire S-layer array would necessitate the simulation of at least 36 SlaA monomers, including glycans, in addition to 9 SlaB monomers integrated into a membrane and solvent environment, implying >8 Million atoms. Such largescale models would only enable the simulation of very short simulation times (on the order of no more than 100 nanoseconds). Such time scales would preclude the observation of major changes, even if the model was sub-optimally configured.

      • The discussion of the subunit electrostatics and the role they could play in subunit assembly/disassembly remains superficial and speculative. No real model or hypothesis is put forward, let alone validated.

      We have rephrased the discussion to clearly state our hypothesis regarding S-layer disassembly. Hopefully, it should now be clearer that from our data, we deduce that S-layer disassembly at high pH is likely not driven by protein unfolding or pH-induced conformational change. We hypothesise that instead the pH-induced disassembly is likely caused by a weakening or abolishment of hydrogen bonds, as the proton concentration is reduced.

      • The authors solve the cryoEM structure of SlaA released and purified form S. acidocaldarius S-layers by an alkaline pH shift. When shifted back to acidic pH, does this native material self-assemble in vitro? If not, do the authors have an explanation for this? Are components missing or could the solved structures represent SlaA conformations that are no longer assembly competent?

      We have previously shown that S. acidocaldarius S-layers disassembled by a pH shift from acidic to alkaline reassemble when the pH is shifted back to acidic. We also demonstrated that this disassembly / reassembly works with both SlaB present and absent, showing that SlaA alone can assemble into an S-layer (Gambelli et al, PNAS, 2019). This means that the SlaA protein that we imaged in this manuscript is indeed reassembly competent. We have included a sentence clarifying this in the first paragraph of the Results section and have discussed our hypothesis for the mechanism underlying assembly and disassembly in detail.

      Reviewer #2 (Public Review):

      Gambelli et al. investigated the surface layer (S-layer) of Sulfolobus acidocaldarius by using combined single particle cryo-electron microscopy (cryoEM), cryo-electron tomography (cryoET), and Alphafold2 predictions to generate an atomic model of this outermost cell envelope structure. As known from previous studies, the two-dimensional lattice comprises two distinct S-layer glycoproteins (SLPs) termed SlaA, the outer component interacting with the harsh living environment of this archaeon, and SlaB, comprising a dominant hydrophobic domain, which anchors this SLP in the cytoplasmic membrane, respectively. The interwoven S-layer lattice of S. acidocaldarius shows a hexagonal lattice symmetry with a p3 topography. It is built very complex as the unit cell constitutes of one SlaB trimer and three SlaA dimers (SlaB3/3SlaA2). Despite the complexity of this distinct proteinaceous S-layer lattice, the authors not only investigated the SLP structures but also considered the glycans in their structure predictions.

      The strengths of this study are that it was possible, and the first approach taken, to divide the Y-shaped SlaA SLP, starting from the N-terminus into six domains, D1 to D6. As previous studies revealed that SlaA assembly and disassembly are pH-sensitive processes, the structure of SlaA was investigated at different pH conditions. This approach led to the striking result that the cryoEM maps of SlaA D1 to D4 are virtually identical at the three pH conditions, demonstrating remarkable pH stability of these protein domains. For SlaA at low pH, however, the domains D5 and D6 were too flexible to be resolved in the cryoEM maps. Nevertheless, the authors were able to hypothesize that jackknife-like conformational changes of a link between domains D4 and D5, as well as pH-induced alterations in the surface charge of SlaA play important roles in S-layer assembly. This study showed in addition, that the surface charges of SlaA shift significantly from positive at acidic pH to negative at basic pH. A comparison of the surface charge between glycosylated and non-glycosylated SlaA showed that the glycans contribute considerably to the negative charge of the protein at higher pH values. This change in electrostatic surface potential may therefore be a key factor in disrupting protein-protein interactions within the S-layer, causing its disassembly as it is highly desired for new practical applications in biomolecular nanotechnology and synthetic biology. An excellent approach was to use exosomes to determine the structure of the entire S-layer structure comprising of SlaA and SlaB. By this approach, effectively two zones in the SlaA assembly could be distinguished: an outer zone constituted by D1 to D4, and one inner zone formed by D5 and D6. Moreover, for the first time, deeper insights into how SlaA forms the hexagonal and triangular pores within the S-layer lattice of S. acidocaldarius are provided. Very interesting are the found SlaA dimers, which are suggested to be formed by two SlaA monomers through the D6 domains, with each SlaA dimer spanning two adjacent hexagonal pores.

      The weaknesses in this work are in the introduction, where the citation is incomplete. In the comparisons drawn between archaeal and bacterial S-layers, basic citations are missing for the latter. One gets the impression that there is a deliberate avoidance of citing individual prominent S-layer research groups here. The same is true for citations of glycosylation of archaeal S-layer proteins and Sulfolobus mutants lacking SlaB.

      We thank the reviewer for suggesting the inclusion of additional references. We would like to reassure the reviewer that we did not intend any deliberate omissions. Instead, we aimed to focus on archaeal S-layers and thus did not provide a detailed overview of bacterial S-layers. We have now incorporated more references on bacterial S-layers, hoping that this will be provide a more balanced overview.

      The authors show many pictures and schematic drawings of high quality. In the main text, these illustrations should be briefly commented on if there is any ambiguity. For example, it is somewhat difficult to understand that in one schematic drawing the angle between the SlaA longitudinal axis and the membrane plane is 28 degrees and at the same time in another schema, the angle of the longitudinal axes in SlaA dimers is given as 160 degrees.

      We thank the reviewer for their appreciation for our figures. To clarify, the angles mentioned are two different ones. The 28 degrees angle is located between the cytoplasmic membrane and the longitudinal axis of an SlaA monomer in the assembled S-layer. The 160 degrees angle is located between two SlaA monomers forming a dimer.

      The authors argue that by a pH shift to 10, SlaA disassembles and exists exclusively as a single molecule. The presence of exclusively single SlaA proteins and the purity of the fractions were assessed by SDS/PAGE analysis and cryoEM micrographs. However, one can doubt that, due to the strong denaturing effect of SDS and the subsequent dissociation of protein complexes, SlaA dimers or oligomers could have been determined with SDS/PAGE.

      To clarify, we did not assess the assembly state of the S-layer by SDS PAGE, as we are aware that assembled S-layers would not travel into the gel. Instead, we assessed the assembly state by negative stain electron microscopy. Class averages of purified SlaA did not reveal any dimers or higher oligomers.

      Moreover, the shown representative micrographs (supplementary figure 2, a-c) show a heterogeneous structure and thus, do not support the exclusive presence of disassembled SlaA monomers.

      We are not sure what exactly the reviewer is referring to, there are only single SlaA particles visible in supplementary figure 2, a-c. (new ) Larger, amorphous “blobs” in the panels are likely ethane contaminations on the cryoEM grid.

      An interesting finding is SlaA dimerization. SlaA dimers can obviously be found in co-existence with SlaA-only S-layer as shown in supplementary figure 15. A short discussion on whether dimers are an intermediate structure in the process of S-layer lattice formation from monomeric SlaA or if this structure was just a coincident observation could help the reader to better understand the meaning of these dimeric structures and at which stage they are formed.

      We thank the reviewer for their suggestion and added a brief statement to the discussion to clarify this point: “Their co-existence with assembled S-layer may indicate that SlaA dimers are an intermediate of S-layer assembly or disassembly.” The figure numbering was updated, so supplementary figure 15 has now become Figure 4-figure supplement 4.

    1. Author Response

      Reviewer #1 (Public Review):

      “In analyzing neural activity accompanying the behavioral persistence of the dominant sequence after a block change, the authors find that the ACC ensemble firing pattern is closer to the original dominant sequence pattern during reinforcement and less like this pattern during exploration… As time, and trials, progress the rat is approaching the point at which it explores another strategy. The authors find strengthened "prevalence" encoding with increasing sequence repetition, but if this parameter is related to behavioral change/flexibility, this was not clear to me. Might there be something unique about the last trials in a tail "predicting" an upcoming switch? Can the authors please expand? Relatedly, if the prediction of upcoming behavioral change is not observed in the neural activity from sequence steps 2-6, it is notable that these are the steps 'within' the sequence, that leaves out the initiation (first center poke) and termination (reward/reward omission). Thus one could imagine this information is "missed" in the current analysis given that both the reward period and the initiation of a trial at the center are not analyzed. This does lead me to suggest a softening of some claims made of identifying "unifying principles" of ACC function, as the authors state, based on the analyses included in the current report, since the neural activity related to the full unit of behavior is not considered. (I appreciate the motivation behind this focus on within-sequence behavior - the wish to compare time periods with similar movement parameters .)

      We apologize for the confusion; while the sequence prevalence itself tends to be high for ‘dominant tails’, we do not claim that the fit of the prevalence model is better at those sequence instances. We do share the interest in linking prevalence encoding to behavioral adaptation as well as the Reviewer’s intuition that block transitions should be among the epochs where strategy prevalence is tracked particularly well. And indeed, we had spent a considerable amount of time thinking about whether we can identify and interpret periods during the session where our prevalence model fits better or worse. Two arguments convinced us to abandon that direction: a technical one and a conceptual one. The technical argument is that when the explanatory power of a variable is limited, regression residuals are proportional to the variable itself. Thus, any meaningful comparison of the model’s fit would have had to be done for periods where strategy prevalence is within a similar range. The conceptual argument is even more disarming: imagine we do identify a putative session epoch where the model fits worse. While it is possible that it truly means that the animal tracks the details of how much he has pursued this strategy in recent past less, it is equally possible that we were simply off in selecting the specific window over which the prevalence signal is estimated, the exact behavioral statistic tracked, or the exact form of the dependence between that statistic and neural activity. We certainly do see changes leading up to behavioral switches at block transitions – something we plan to elaborate on in a subsequent paper – but whether those are related to prevalence tracking is something we believe is hard to crack.

    1. Author Response

      Reviewer 1 (Public Review):

      Weakness: Although the cross-links stimulate ATP hydrolysis, further controls are needed to convince me that the TM1 conformations observed in the structures are physiologically relevant, since they have been trapped by "large" substrates covalently-tethered by crosslinks.

      Reviewer 1 raised concerns about the relatively large size of our covalently attached AAC substrate that would potentially distort TM1 in Pgp. We would like to clarify that AAC has a molecular weight of 462 Da, which, in comparison to many known Pgp substrates ranging from 250 to over 1,000 Da, is not a large compound. For instance, the few other Pgp substrates mentioned in our manuscript all have a comparable or larger size: verapamil, 455 Da; doxorubicin, 544 Da; FK506, 804 Da; valinomycin, 1,111 Da; cyclosporin A, 1,203 Da.

      Furthermore, AAC was strategically attached to a site distant from TM1 in the inwardfacing Pgp conformation. After it was exported to the outward-facing state, several TM helices accommodate the compound. The observation that only TM1 exhibited significant conformational changes suggests its potential role in the transport mechanism. This hypothesis is supported by our findings, where a conservative substitution (G72A) in TM1 resulted in a dramatic loss of transport function for various drug substrates and impaired verapamil-stimulated ATPase activity.

      Reviewer 1 (Recommendations for the Authors):

      I understand the need for an unconventional approach to understanding the translocation pathway. What would help to support this model is to cross-link a much smaller substrate, as the one used is quite large and could potentially distort TM1 in the outward-state when cross-linked.

      We thank the reviewer for this recommendation, and we have outlined plans for future experiments involving other substrates, including smaller ones, to further investigate our proposed model. However, it is important to acknowledge that conducting these studies will require a significant amount of effort and resources, which we believe extend beyond the scope of our current manuscript.

      In unbiased MD simulations starting from the IF state are there any simulations where the substrate follows the same path as proposed here?

      All our MD simulations were performed in the outward-facing state to focus on potential substrate release pathways. Starting MD simulations from the inwardfacing state would introduce complexities in capturing the necessary domain motions and nucleotide binding and hydrolysis required for substrate translocations. Therefore, we opted not to perform MD studies starting from the inward-facing state.

      Reviewer 2 (Public Review):

      Weakness: There is much to like about the experimental work here but I am less sanguine on the interpretation. The main idea is to covalently link via disulfide bonds a model tripeptide substrate under different conditions that mimic transport and then image the resulting conformations. The choice of the Pgp cysteine mutants here is critical but also poses questions regarding the interpretation. What seems to be missing, or not reported, is a series of control experiments for further cysteine mutations.

      Reviewer 2 raised concerns about the interpretation of our results and suggested the need for additional mutant designs to validate our proposed TM1 mechanism. Firstly, we believe that the observed TM1 conformational changes are valid in our cryoEM structures, despite the use of different conditions and several mutants to capture Pgp in the outward-facing state.

      Regarding the G72A mutant, we consider it conclusive that this single point mutation in the TM1 has a profound effect. Importantly, the G72A mutant was readily expressed and purifiable as a stable protein. We were able to resolve a high-resolution structure of the G72A mutant (without the substrate), confirming that the protein is not generally destabilized but properly folded.

      Above all, we appreciate the Reviewer’s suggestion to explore additional mutations and intend to do so in future studies.

      Reviewer 2 (Recommendations for the Authors):

      I am sold on the results regarding TM1 conformational changes as they are evident in the cryoEM structures. However, the set of states compared between mutants are not biochemically equivalent: for 335 and 978 they used an ATP-impaired Pgp whereas for 971 they used what appears to be WT, and the conformation was imaged presumably subsequent to ATP hydrolysis and Vanadate trapping. This is significant if the authors were unable to trap the OF in the impaired mutant background and should be highlighted. I have to believe that they tried that condition but I could be wrong.

      We acknowledge the point made by the Reviewer about the biochemical equivalence of mutant states and the potential significance of using an ATP-impaired mutant for trapping the outward-facing conformation of 971. We have not yet attempted to use the ATPase-deficient 971C mutant for crosslinking and intend to address this question in future studies.

      In our current approach, we used the ATPase-active 971C for two specific reasons:

      1) Our biochemistry data, as shown in Fig 1C, indicates that 971C only crosslinks in the presence of ATP hydrolysis conditions. Vanadate trapping was employed to stabilize the outward-facing conformation.

      2) Based on our experience, we have observed that the conformations of ATP-bound (mutant) and vanadate-trapped states of an ABC transporter are structurally equivalent at this resolution level of our study (see ref. 21: Hoffmann et al. NATURE 2019).

      The authors propose a new model for substrate translocation. It is based on three mutants and a number of structures. If the authors were not challenging the current dogma I would not have written the next comment. Considering the impact of the findings, I would have designed a couple more cysteine mutants based on their model. For instance, this pathway has a number of stabilizing interactions, can't they make a mutant that preserves conformational switching but eliminates substrate translocation? I like the G97A mutant result but I am worried that the effect could just be a general destabilization or misfolding as part of the cryoEM particles seem to suggest. The authors advance one interpretation of the disorder observed in this mutant but it could easily be my interpretation.

      We thank the reviewer for the suggestion to design additional mutants to further validate our proposed model for substrate translocation. We agree that this would be highly valuable, considering the potential impact of our findings. However, given the time-intensive nature of our approach, we believe that presenting these additional designs in a future study is a reasonable course of action.

      Regarding the G72A mutation, we believe that our current data fully supports our model and the role of TM1 in regulating the Pgp activity. Importantly, we would like to emphasize that the G72A mutant was readily expressed and purifiable as a stable protein. Additionally, our cryoEM structural determination of the G72A mutant at high resolution confirmed that the protein is not generally destabilized but properly folded.

      There are a couple of troubling methodological questions that I want the authors to address or clarify:

      1- In the methods they report that the final sample for cryoEM was prepared on a SEC devoid of detergent. It is obvious that the sample was folded but I was wondering why the detergent was removed? Was that critical for observing these structures with multiple ligands? Did they observe any lipids in their cryoEM?

      We avoid detergent in the buffer on final SEC purification. This step is to remove free detergent from the background which helps during cryoEM imaging. Of course, this cannot be done with every detergent but due to the very low CMC of LMNG it is possible. By now, we have verified this method for several other transporters with the same success. While this procedure helps us to obtain better images it is not necessary to obtain specific conformations or ligand bound states, nor does it affect these states or conformations.

      In our cryoEM structures , we did observe multiple cholesterol hemisuccinate (CHS) molecules on the outer transmembrane surface of Pgp.

      2- Can the authors comment on why labeling was carried out in the presence of ATP? Does it matter if the substrate was added prior to ATP and incubated for a few minutes?

      For every dataset, we first added the substrate to be cross-linked and afterwards added the ATP. In the cases of 335C and 978C, labeling was successful before ATP was added, as evidenced by the inward-facing structures with cross-linked substrate.

      However, for 971C, cross-linking only occurred after the addition of ATP. We interpret this data to suggest that the 971 site is inaccessible to the substrate in the inward-facing state, and cross-linking can only occur after the transporter transitions to outward-facing state. This is in line with our inward-facing structure which does not show a cross-linked substrate, and our biochemical data shown in Fig 1C, where 971C only crosslinked in the presence of ATP.

      3- I am not an expert on MD simulations and I understand that carrying out simulations at higher temperatures used to be a trick to accelerate the process. Is this still necessary? Why didn't the author use approaches such as WESTPA?

      Most so-called enhanced sampling methods, including WESTPA, explicitly define a reaction coordinate for the process of interest, usually based on intuition or prior studies. If this coordinate is chosen poorly, enhanced sampling usually fails, either because the sampling becomes inefficient or because the sampling biases the transition pathway (or both). Lacking reliable intuition or prior knowledge on which motions would result in substrate release, we chose temperature to speed up the process. High temperature largely avoids the introduction of an any bias through the definition of a progress coordinate. By contrast, the weighted ensemble method underlying WESTPA is a great method to simulate unbiased dynamics of a process with a known progress coordinate, but unfortunately requires to choose a progress coordinate prior to the simulation and will then mostly sample the process along this progress coordinate, because this is the only direction in which sampling is improved. High temperature MD on the other hand accelerates all processes in the system under study. Indeed, we have now confirmed that the pathway found at high temperature is also feasible at near-ambient conditions.

      In new simulations, we have now observed a similar release pathway at T=330 K. As the only difference, the substrate has not fully dissociated from the protein after 2.5 us, with weak interactions persisting at the top part of TM1 from the extracellular side. Importantly, this is a configuration observed also in higher temperature simulations but with much shorter lifetime.

      In response, we will include these new findings in the revised manuscript.

      4- One way to show that the two substrates binding mode is biochemically relevant is to measure Vmax at different substrate concentrations. One would expect a cooperative transition if that interaction is mechanistically important.

      We have measured Vmax as a function of QZ-Ala concentration in a previous report (ref. 24), supporting positive cooperativity for binding to two sites.

      Reviewer 3 (Public Review and Recommendations for the Authors):

      We thank Reviewer 3 for recommending the acceptance of our manuscript as is. We will address all minor comments from Reviewer 3 in the revised manuscript.

    1. Author Response

      We thank the Editors and Reviewers for the thorough assessment of our work. We are pleased that you agree with us that our proof-of-concept study of the ATUM Tomo technology advances volume electron microscopy and has the potential to solve research questions in diverse biological areas. Based on your comments, we are planning to revise the manuscript to optimize readability, clarify the fields of applicability of our approach more, and add some data related to questions you raised. We plan the following revisions:

      Reviewer #1 The authors may consider moving the supplemental figures into the main body of the paper since they finally would end up with a total of eight figures.

      As part of the supplemental figures describe essential experimental details, we will move them into the main part of the manuscript.

      Reviewer #1 In general, the methods and techniques used here are beside some required but important additions described in sufficient detail.

      Reviewer #2 Given the identified importance of glow-discharge treatment of precoated tape to the flat deposition of sections during ATUM, a corresponding schematic or appropriate reference(s) providing more information about the custom-built tape plasma device would likely be a prerequisite for effective reproduction of this technique in other laboratories.

      Thank you for the valuable comments on the missing experimental details, which could affect the ease of establisihing ATUM-Tomo in other labs. We will clearly highlight the ATUM-Tomo-specific vs. some general EM processing steps of the workflow in the proposed way. A detailed description of the custom-built tape plasma device will be added to the methods section. In addition, we will reference more explicitly our published protocols, which describe the standard electron microscopy embedding steps in great detail (Kislinger et al., STAR protocols, 2020; Kislinger et al., Meth Cell Biol, 2023).

      Reviewer #1 Concerning the results section: In my opinion, the results section is a bit unbalanced. There is a mismatch between the detailed description of the methodology (experimental approach) and the scientific findings of the paper. The reviewer can see the enormous methodological impact of the paper, which on the other hand is the major drawback of the paper. To my opinion, the authors should also give a more detailed description of their scientific results.

      Concerning the discussion: It would have been nice to give a perspective to which the described methodology can be used not only to describe diverse biological aspects that can be addressed and answered by this experimental approach. For example, how could this method be used to address various questions about the normal and pathologically altered brain?

      In my opinion, the paper has one major drawback which is that it is more methodologically based although the authors included a scientific application of the method. The question here is to balance the methodology vs. the scientific achievement of this paper, a decision hard to take. In other words, one could recommend this paper to more methodologically based journals, for example, Nature Methods.

      Balancing the technological and biological parts is indeed a difficult issue. We agree that this manuscript mainly describes a technical advancement and demonstrates its power to answer previously unsolved scientific questions. We exemplify this in our model system, neuropathology of the blood-brain barrier. The biological impact of ATUM-SEM has been described in detail in Khalin et al., Small, 2022, and is referenced accordingly. Here we describe how ATUM-Tomo can be applied to reveal biological insights exceeding the capabilities of ATUM-SEM and other volume electron microscopy techniques. However, the description of the methodological development outweighs by far the one of the biological details. We consider eLife‘s Tools and Resources (which, in our view, is in scope similar to Nat Methods) an ideal format for this technically focused manuscript while targeting eLife’s readership with diverse biological fields of interest for potential applications of the method. We will add more suggestions for possible applications to the discussion to accommodate the Reviewer’s concern that having only a single application might seem arbitrary or even suggest a very narrow utility of the technique.

      Reviewer #2 Is the separation of sections from permanent marker-treated tape sensitive to the time interval between deposition/SEM imaging and acetone treatment?

      Thank you for pointing out this important methodological aspect. We have not systematically investigated whether there is a critical time window between microtomy, SEM, and detachment. From the samples generated for this study, we will try to assess the importance of timing in retrospect.

      Reviewer #2 To what extent is slice detachment from permanent marker-treated tape resin-dependent [i.e. has ATUM-Tomo been tested on resin compositions beyond LX112 (LADD)]?

      We appreciate this comment addressing the broader technical applicability of ATUM-Tomo. We aim to test the general workflow with tissue embedded in other commonly used resin types.

      Reviewer #2 Minor corrections to the text and figures.

      Thank you for the detailed corrections. We will apply them accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Sun and co-authors have determined the crystal structures of EHEP with/without phlorotannin analog, TNA, and akuBGL. Using the akuBGL apo structure, they also constructed model structures of akuBGL with phlorotannins (inhibitor) and laminarins (substrate) by docking calculation. They clearly showed the effects of TNA on akuBGL activity with/without EHEP and resolubilization of the EHEP-phlorotannin (eckol) precipitate under alkaline conditions (pH >8). Based on this knowledge, they propose the molecular mechanism of the akuBGL- phlorotannin/laminarin-EHEP system at the atomic level. Their proposed mechanism is useful for further understanding of the defensive-offensive association between algae and herbivores. However, there are several concerns, especially about structural information, that authors should address.

      Thank you for reviewing our manuscript. We addressed all comments below.

      1) TNA binding to EHEP

      The electron densities could not show the exact conformations of the five gallic acids of TNA, as the authors mentioned in the manuscript. On the other hand, the authors describe and discuss the detailed interaction between EHEP and TNA based on structural information. The above seems contradictory. In addition, the orientation of TNA, especially the core part, in Fig. 4 and PDB (8IN6) coordinates seem inconsistent. The authors should redraw Fig. 4 and revise the description accordingly to be slightly more qualitative.

      We apologize for the mistake with the PDB file. We forgot to re-upload the final coordinate file of 8IN6, which had been modified according to the requirement of the PDB instructions. We have now re-uploaded the correct PDB file. We carefully checked Fig. 4 (Fig.3 in the revised version), which used the final coordinate file of 8IN6.

      2) Two domains of akuBGL

      The authors concluded that only the GH1D2 domain affects its catalytic activity from a detailed structural comparison and the activity of recombinant GH1D1. That conclusion is probably reasonable. However, the recombinant GH1D2 (or GH1D1+GH1D2) and inactive mutants are essential to reliably substantiate conclusions. The authors failed to overexpress recombinant GH1D2 using the E. coli expression system. Have the authors tried GH1D1+GH1D2 expression and/or other expression systems?

      By referencing other BGLs (six samples were expressed by using E. coli, and one was expressed by using Pichia), we only tried the overexpression of akuBGL, GH1D1, GH1D2, and GH1D1+GH1D2 in E. coli expression system using several different vectors. As the reviewer mentioned that inactive mutants are essential to substantiate our conclusion reliably, it will be tried further to use yeast or cell expression systems to confirm our conclusion. We added these limitations as “Future assay of GH1D2 and inactive mutants is the complement to validate the molecular mechanism of akuBGL” in the discussion (Line 343-345)

      3) Inhibitor binding of akuBGL

      The authors constructed the docking structure of GH1D2 with TNA, phloroglucinol, and eckol because they could not determine complex structures by crystallography. The molecular weight of akuBGL would also allow structure determination by cryo-EM, but have the authors tried it? In addition, the authors describe and discuss the detailed interaction between GH1D2 and TNA/phloroglucinol/eckol based on docking structures. The authors should describe the accuracy of the docking structures in more detail, or in more qualitative terms if difficult.

      Yes, it is possible to try cryo-EM for obtaining the structure of akuBGL complexed with the ligand. However, we didn’t try because 110 kDa akuBGL consists of two 55 kDa GH1Ds linked by along loop, and we worried that ligand may not be visualized using cryo-EM.

      Following the comment, we added the description of the accuracy of the docking structures as “Those docking scores corroborated well with the inhibition activity toward akuBGL, that TNA had a more robust inhibition activity than phloroglucinol, indicating that the docking results are reasonable.” (Line 322-324)

      Reviewer #2 (Public Review):

      In this study the authors try to understand the interaction of a 110 kDa ß-glucosidase from the mollusk Aplysia kurodai, named akuBGL, with its substrate, laminarin, the main storage polysaccharide in brown algae. On the other hand, brown algae produce phlorotannin, a secondary metabolite that inhibits akuBGL. The authors study the interaction of phlorotannin with the protein EHEP, which protects akuBGL from phlorotannin by sequestering it in an insoluble complex.

      The strongest aspect of this study is the outstanding crystallographic structures they obtained, including akuBGL (TNA soaked crystal) structure at 2.7 Å resolution, EHEP structure at 1.15 Å resolution, EHEP-TNA complex at 1.9 Å resolution, and phloroglucinol soaked EHEP structure at 1.4 Å resolution. EHEP structure is a new protein fold, constituting the major contribution of the study.

      We thank you for reviewing our manuscript.

      The drawback on EHEP structure is that protein purification, crystallization, phasing and initial model building were published somewhere else by the authors, so this structure is incremental research and not new.

      We have published the results of protein purification, crystallization, phasing, and initial model building for determining structure but have yet to give the structure since further structural refinement is indispensable. Such published data in [Acta F] is a service for obtaining the structure.

      We believe that the structure of the EHEP holds great importance, and it is the first time to publish.

      Most of the conclusions are derived from the analysis of the crystallographic structures. Some of them are supported by other experimental data, but remain incomplete. The impossibility to obtain recombinant samples, implying that no mutants can be tested, makes it difficult to confirm some of the claims, especially about the substrate binding and the function of the two GH1Ds from akuBGL.

      As mentioned by the reviewer, mutant analysis would be the best way to substantiate our conclusions. However, it is challenging to obtain recombinant samples, although we tried to overexpress them (akuBGL, GH1D1, GH1D2, and GH1D1+GH1D2). So, we did the structural comparison, and docking simulation to propose the molecular mechanism. We added these limitations as “Further assay of GH1D2 and inactive mutants is the complement to validate the molecular mechanism of akuBGL” in the discussion part (Line 343-345).

      The authors hypothesize from their structure that the interaction of EHEP with phlorotannins might be pH dependent. Then they succeed to confirm their hypothesis, showing they can recover EHEP from precipitates at alkaline pH, and that the recovered EHEP can be reutilized.

      A weakness in the model is raised by the fact that the stoichiometry of the complex EHEP:TNA is proposed to be 1:1, but in Figure 1 they show that 4 µM of EHEP protects akuBGL from 40 µM TNA, meaning EHEP sequesters more TNA than expected, this should be addressed in the manuscript.

      The assay experiment in figure1 does not directly provide the stoichiometric ratio of EHEP: TNA because the activity assay system consists of substrate of akuBGL, akuBGL, TNA, and EHEP, which involves multiple equilibration processes: akuBGL⇋ substrate, akuBGL⇋TNA, and EHEP ⇋TNA. To avoid misunderstanding, we added the descriptions of ″As this activity assay system involves multiple equilibration processes: akuBGL⇋substrate, akuBGL⇋TNA, and EHEP ⇋TNA.″(Line 120-121).

      The authors study the interaction of akuBGL with different ligands using docking. This technique is good for understanding the possible interaction between the two molecules but should not be used as evidence of binding affinity. This implies that the claims about the different binding affinities between laminarin and the inhibitors should be taken out of the preprint.

      Following the suggestion, we deleted the descriptions about the difference in binding affinity with docking scores at the last paragraph of [Inhibitor binding of akuBGL].

      In the discussion section there is a mistake in the text that contradicts the results. It is written "EHEP-TNA could not dissolve in the buffer of pH > 8.0" but the result obtained is the opposite, the precipitate dissolved at alkaline pH.

      We apologize for this mistake and corrected it to " EHEP–TNA could dissolve in the buffer of pH > 8.0." (Line 394).

      Solving a new protein fold, as the authors report for EHEP, is relevant to the community because it contributes to the understanding of protein folding. The study is also relevant dew to the potential biotechnological application of the system in biofuel production. The understanding on how an enzyme as akuBGL can discriminate between substrates is important for the manipulation of such enzyme in terms of improving its activity or changing its specificity. The authors also provide with preliminary data that can be used by others to produce the proteins described or to design a strategy to recover EHEP from precipitates with phlorotannin at industrial scales.

      In general methods are not carefully described, the section should be extended to improve the manuscript.

      Following the comment, we added the method descriptions

      1. Recombinant GH1D1 domain expression and purification in [EHEP and akuBGL preparation].

      2. Sections of [recomGH1D1 activity assay], and [N-terminal sequencing of akuBGL]

      3. More details of resolubiliztion of EHEP and activity in [Resolubilization of the EHEP–eckol precipitate].

      Reviewer #3 (Public Review):

      The manuscript by Sun et al. reveals several crystal structures that help underpin the offensivedefensive relationship between the sea slug Aplysia kurodai and algae. These centre on TNA (a algal glycosyl hydrolase inhibitor), EHEP (a slug protein that protects against TNA and like compounds) and BGL (a glycosyl hydrolase that helps digest algae). The hypotheses generated from the crystal structures herein are supported by biochemical assays.

      The crystal structures of apo and TNA-bound EHEP reveals the binding (and thus protection) mechanism. The authors then demonstrate that the precipitated EHEP-TNA complex can be resolubilised at an alkaline pH, potentially highlighting a mechanism for EHEP recycling in the A. kurodai midgut. The authors also present the crystal structures of akuBGL, a beta-glucosidase utilised by Aplysia kurodai to digest laminarin in algae into glucose. The structure revealed that akuBGL is composed of two GH1 domains, with only one GH1 domain having the necessary residue arrangement for catalytic activity, which was confirmed via hydrolytic activity assays. Docking was used to assess binding of the substrate laminaritetraose and the inhibitors TNA, eckol and phloroglucinol to akuBGL. The docking studies revealed that the inhibitors bound akuBGL at the glycone-binding suggesting a competitive inhibition mechanism. Overall, most of the claims made in this work are supported by the data presented.

      We thank you very much for reviewing our manuscript.

      Reviewer #1 (Recommendations For The Authors):

      • Fig. 3 should be moved to the Supplements because acetylation modification at the N-terminus is not essential for the function of EHEP.

      Following the recommendation, we moved Fig.3 to Supplements (Fig. S2).

      • EHEP2 is processed at 1.4 Å resolution, however, the statistics at highest resolution shell indicate you can process at higher resolution. Why 1.4 Å resolution?

      We tried to process this dataset at the higher resolution at 1.35 Å, and the completeness and I/sigma of the highest resolution shell reduced to 88.9% and 2.16, respectively. The parameter of I/sigma is OK, but the completeness reduced seriously. So, we set a cutoff of 1.4 Å.

      • Fig. S1A should be revised to include the gallic acid numbers (1, 2, 3, 4, 6) and the 3.0 σ map. >

      As presented in Fig. S1A, the omitted map (fo–fc map) of the ligand TNA, countered at 2.0 σ, showed that gallic acid 2 has poor density, and gallic acid 4 has weak density. Moreover, the TNA is relatively big to EHEP (7.5 %), and the omitted map countered 3.0 σ could not clearly show gallic acids. So, we keep the map at 2.0 σ in Fig. S3A.

      • The authors should provide more information on "co-cage-1 nucleant".

      Our lab is currently publishing a paper that provides detailed information on the co-cage-1 nucleant, including components, synthesis, nucleation mechanism, and application. Once the paper is published, we will cite it in this manuscript.

      Reviewer #2 (Recommendations For The Authors):

      • Is the word "offence" the appropriate word for referring to the activity of EHEP? Is this word used in the literature for this system? I find it confusing but might be because I am not in the specific topic.

      In the field of prey–predator, the defense–offensive is commonly used.<br /> According to Charles D. Amsler's book ″Algal Chemical ecology″, Herbivore offensive is the traits that allow herbivores to increase feeding rates on algae. Therefore, in our opinion, the offensive is appropriate.

      Taking into consideration that I am not an English language expert I find the writing of the manuscript could be improved in general. Here are some lines as examples of where the grammar could be better:

      Line 193: "decrement of the loop part"

      Following the comment, we corrected it to "decrease of the loop part" (Line 197).

      Line 199: there is a typographical error.

      We apologize for our mistake and corrected it to “EHEP” (Line 202).

      Line 205-206: "only hydrophobically interacted with"

      Following the comment, we modified it to "only interacted hydrophobically with EHEP" (Line 209)

      Line 224: "phlorotannin–precipitate activity"

      Following the comment, we modified it to “phlorotannin-precipitate activity” (Line 227).

      Line 232: "without the N-terminal 25 residues"

      Following the comment, we modified it to "lacked the N-terminal 25 residues" (Line 236).

      Line 353: "bound" should be "bind"

      We apologize for our mistake and modified it (Line 356).

      Line 359: "predator mammals"

      We apologize for our mistake and modified it to "predatory mammals" (Line 363).

      Line 363: "at an alkaline pH of insect midgut"

      Following the comment, we modified it to "at the alkaline pH of the insect midgut" (Line 367).

      Line 370: "nonstructural proteins" means "unstructured proteins"?

      Yes, unfolding proteins, we modified to "unfolding proteins with randomly coils" (Line 374).

      Line 374: "similar strategy with mammals"

      Following the comment, we modified it to "similar strategy to mammals" (Line 379).

      Line 403: "to forming"

      We apologize for our mistake and modified it to "to form" (Line 404).

      Line 404: "considered no binding"

      We apologize for our mistake and modified it to "considered not binding" (Line 405).

      Line 406: "activity pocket" means the active site?

      Yes, we modified it to "active site" (Line 407).

      Line 424: "step purification"

      Following the comment, we corrected it to "one step for purification" (Line 425).

      Line 431

      Following the comment, we corrected it to “To verify whether the chemical modifications which was indicated by previous study affects” (Line 432-433).

      Line 812: there is typographical error

      We apologize for our mistakes, and corrected it to Tris-HCl” for all “Tris–HCl (Line 878~).

      Line 223: eckol is not mentioned in the text and appears for the first time in the figure caption.

      Following the comment, we added “eckol” in the first section of the [Result] (Line 117).

      The paragraph between lines 271 and 280 is disconnected from the previous one and it is not about results, it should be at the discussion section.

      Following the comment, we moved them to the discussion part (Line 335-343).

      Line 324: "the three inhibitors inhibited": this claim should be corrected to "the three inhibitors interacted", since the word inhibited would imply the authors measured activity experimentally.

      We modified it as the comment. (Line 325).

      Line 392: "could not dissolve" is contradicting the result.

      We apologize for our mistake and corrected it to "could dissolve" (Line 394).

      They describe acetylation but they try overexpressing in E. coli, could it be that they needed to express the construct in a system where they would get the acetylation? At least this should be discussed in the text.

      Because our sample of EHEP with acetylation was purified from the natural source of the digestive fluid of A.kurodai, we only need to express EHEP without acetylation. Following the comment, we modified the descriptions to clarify it in the section (Lines 170-173 and 177-179).

      “Consistent with the molecular weight results obtained using MALDI–TOF MS, the apo structure2 (1.4 Å resolution) clearly showed that the cleaved N-terminus of Ala21 underwent acetylation, demonstrating that EHEP is acetylated in A. kurodai digestive fluid.”

      "To explore whether acetylation affects the protective effects of EHEP on akuBGL, we used the E. coli expression system to obtain the unmodified recomEHEP (A21–K229)."

      From the text it is not clear in which biological context the brown algae meet the attack by the hydrolase, the information is spread all over the manuscript, it should be clearly described at the introduction.

      When the brown algae are consumed as food by sea hare A. kurodai, they meet the attack by the hydrolase akuBGL. Following the comment, we clear the descriptions in the introduction part as below (Line 42-45).

      ″In brown algae Eisenia bicyclis, laminarin is a major storage carbohydrate, constituting 20%–30% of algae dry weight. The sea hare Aplysia kurodai, a marine gastropod, preferentially feeds on the E. bicyclis with its 110 and 210 kDa β-glucosidases (akuBGLs), hydrolyzing the laminarin and releasing large amounts of glucose.″

      Affinity ranking based on docking is not reliable, the differences in free energy are in the same order of magnitude. I would recommend erasing this claim since it is not fundamental to the study. Another option would be to determine affinities experimentally.

      We agree with the comment and removed the text about affinity ranking with docking scores.

      Figure 1: relative activity is not defined. HPLC data should be shown as supplementary material.

      Following the comment, we added the definition of relative activity and the HPLC data as Fig. S1 in the revised version.

      Figure 4: Sephacryl resin is mentioned here but not described in the methods.

      Following the comment, we added the description in the methods (Line 515).

      Protein N-terminal sequencing analysis should be described in the methods.

      Following the comment, we added the sequencing analysis in the methods (Line 476-483).

      Figure S1 C: it should be specified how the surface electrostatic potential at different pH was calculated.

      Following the comment, we added the descriptions of how the surface electrostatic potential at different pH was calculated in the figure legend of Fig. S2 of the revised version (Line 876-877).

      Since the authors are capable of producing good amounts of akuBGL and have already conducted glycosidase activity assays using ONPG, it would not be difficult for them to run some kinetics experiments for the enzyme in the presence of the different inhibitors to confirm their hypothesis derived from the docking calculations.

      As mentioned by the reviewer, kinetics experiments are the best way to confirm our hypothesis derived from docking calculations. However, the yield of akuBGL purification from the digestive fluid of sea hare A.kurodai is quite difficult. We could not obtain a sufficient sample of akuBGL to conduct the kinetic experiments. So, we stopped at docking simulation in this study. We added such limitations of ″Future kinetic experiments are required to validate quantitatively the competitive inhibition of phlorotannin against akuBGL″ (Line 359-360).

      Some citations are missing in the discussion section, for example in lines 362, 364 and 396.

      Following the comment, we added the citations.

      Reviewer #3 (Recommendations For The Authors):

      Please see comments/suggestions below for revisions.

      Line 176-178 - Text explains that recombEHEP precipitated after incubation with TNA to a comparable level to natural EHEP. However, figure 3B shows no comparison between recombinant and natural EHEP.

      As the reviewer suggested, we repeated the binding assay of recomEHEP to confirm the precipitation with TNA and added a precipitation result of natural EHEP (Fig. S2B right) for comparing.

      Line 223 - The work presented in Figure S1E goes partway towards demonstrating the activity of resolubilised EHEP. This claim would be strengthened if resolubilised EHEP was used in the akuBGL Galactoside hydrolytic activity assay and is then seen to rescue akuBGL activity in the presence of TNA.

      Yes, our claim would be strengthened by adding resolubilized EHEP to akuBGL assay in the presence of TNA. Since we have obtained and presented the relationship between the precipitating of EHEP with TNA and the rescuing akuBGL activity from TNA, we only used the precipitation to demonstrate the activity of resolubilized EHEP.

      Line 380-384 - Here it is discussed how TNA simultaneously binds to three EHEP molecules thus crosslinking them. It is then proposed that this could be the mechanism of precipitation. However, it is noted that TNA is soaked into crystals, therefore it is likely that this lattice exists whether TNA is present or not (this absolutely needs to be mentioned in the text). It would be possible to test this mechanism through mutagenesis. If the sites where TNA packs in between chains of EHEP were mutated to prevent crosslinking, it could then be determined whether crosslink-null EHEP can still precipitate TNA.

      As the review mentioned, we do not have enough experiments to propose that the TNA-crosslink may cause the EHEP-TNA precipitation. So, we deleted the discussion of the TNA crosslink and the corresponding figure.

      All docked models need to be deposited (perhaps modelarchive.org) and this resource referred to in the text.

      The structures in modelarchive.org site are either homology models or de novo. We think the docked model is out of this site. So, we did not deposit them.

      The x-ray data table contains data previously published in the referenced Acta cryst publication. What is eLife policy on this "double use" of data?

      We apologize for our mistake, and deleted the SAD data in Table 1.

      Minor points

      Line 26 - use "apo akuBGL" so as not to infer a tannic-acid bound form of this also >

      Following the comment, we modified it to “apo akuBGL” (Line 26).

      Line 48 - The sentence currently reads as A. kurodai is being digested.

      Following the comment, we modified it to “by A. kurodai” (Line 48).

      Line 49-50 & Line 65-66 - Both these lines make the same point about the impact of phlorotannin inhibition on the use of brown algae as feedstocks for biofuel, please remove one.

      Following the comment, we deleted the line 49-50.

      Line 115 - This needs attention as its an unusual opening sentence

      Following the comment, we modified it o “Phlorotannin, a type of tannin, is a chemical defense metabolite of brown algae.” (Line 114).

      Line 130 - Should the EHEP concentration be 3.96 µM not 3.36?

      We apologize for our mistake 3.36 is correct, and we corrected the X-axis label in Fig.1B.

      Line 133 - consider using "non-recombinant" rather than "natural"

      To distinguish between non-recombinant and recombinant samples, we used “EHEP” and “akuBGL” as purified from the native source and recomEHEP and recomakuBGL as the samples overexpressed from E. coli in this manuscript. So, we added the definition in [Introduction] (Line 100-101).

      Line 134 - "The residues A21-V227 of A21-K229..." This sentence could be written more clearly.

      Following the comment, we re-wrote it to “The residues A21–V227 in purified EHEP (1–20 aa were cleaved during maturation) were built” (Line 135-136).

      Line 136 - switch "appropriately visualized" for "tracable"?

      Following the comment, we modified it to “built” (Line 136).

      Line 158 - use "70% of backbone in a loop conformation" >

      We modified as the comment (Line 159-160).

      Line 184 - reword "map showed an electron density blob". (Map showed positive electron density)

      Following the comment, we modified it to “map showed the electron density” (Line 188).

      Line 193-194 - Is EHEP really more stable when bound to TNA? It is not shown experimentally? It is difficult to see which loop changes. Is the difference a result of crystal packing? Please switch "decrement" for another term

      The regions with conformation change between EHEP and EHEP–TNA are close to TNA but not at the intermolecular interface. As the reviewer mentioned, we could not clarify the EHEP stability depended on TNA-binding, and deleted the descriptions in the second paragraph of [TNA binding to EHEP].

      Following the comment, we redraw Fig. S1B (Fig. S3B in the revised version) to show the conformation changes clearly. We also modified "decrement" to "decrease" (Line 197).

      Fig S1B - Can an extra figure be added to show the secondary differences more clearly? >

      We redraw this figure (Fig. S3B) using closeup view to show the differences.

      Line 212-213 - There is a slight discrepancy between the text and Figure 4B. Gallic acid 4 interacts with P201 and gallic acid 6 interacts with P77.

      We apologize for our mistake in the text. and corrected it to “gallic acid4 and 6 showed alkyl–π interaction with P201 and P77, respectively” (Line 216).

      Figure 4D - Change x axis from tube number to elution volume. Both chromatograms could also be superimposed for interpretability.

      Since we used raw data from the experiment, we kept the x-axis in tube number with additional “2.7 ml/tube” information (Fig.3D).

      Line 229 - Please change "there was no blob of TNA in the electron density" to there was no electron density for TNA or something similar.

      Following comment, we modified it to “there was no electron density of TNA or something similar in the 2Fo–Fc and Fo–Fc map” (Line 232).

      Line 231 - asymmetric unit is a more standard term (also in Fig S2 legend)

      We modified as the comment (Line 235 and 885).

      Line 234-235 - Reword "the residues L26-P978 of L26-N994" to make it more concise. >

      Following the comment, we deleted “of L26-N994” (Line 239).

      Lines 296-299 could be written more carefully - pi stacking with what? >

      We apologize for our mistake and corrected it to CH–𝜋 (Line 293).

      Line 349 - which putatively enables it to......

      We modified it as the commend (Line 353 in the revised manuscript).

      Line 370 - "nonstructural" is the wrong term because they remain structured - use something akin to non-classical secondary structure

      Following the comment, we modified it to“are unfolding proteins with randomly coils in solution " (Line 374)

      Throughout - use phenix autobuild, not autobuil

      We apologize for our mistakes and corrected them throughout the manuscript.

      Figure 1 - the graphs would be more interpretable with all data points shown overlaid

      The two graphs in Figure 1 showed two experiments with different reaction conditions. Figure 1A presents various TNA concentrations, while Figure 1B maintains a constant concentration of 40 μM for TNA with varying EHEP concentrations. So, overlaying the graphs is not feasible. Therefore, we would like to keep them separated and added the reaction condition in figure legend.

      Figure 4 - in part D add an extra statement outlining what the S-100 analysis demonstrated

      S-100 analysis is using a gel filtration column with Sephacryl S-100 media. We added an extra statement in the method and the legend (Fig. 3, Lines 515 and 879).

      Figure 5 (and elsewhere) - the structures referred to need a PDB code and reference given in legend

      Following the comment, we checked the manuscript carefully and added PDB code to the referred structures.

      Fig S1 - please add an additional panel showing part D but in proper structure form, not schematic shapes

      Since we do not have enough experiments to validate the TNA-crosslink, we deleted the discussion of the TNA crosslink and Fig. S1D.

      Figure sig 4 - Text contains in depth information of side chain hydrogen bonding and π-π interactions between akuBGL and laminarittrose. However, the figure only shows a surface model. Consider adding a figure showing these interactions.

      Following the suggestion, we added a closeup view to show these detailed interactions (Fig. S6B).

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public Review):

      DeKraker et al. propose a new method for hippocampal registration using a novel surface-based approach that preserves the topology of the curvature of the hippocampus and boundaries of hippocampal subfields. The surface-based registration method proved to be more precise and resulted in better alignment compared to traditional volumetric-based registration. Moreover, the authors demonstrated that this method can be performed across image modalities by testing the method with seven different histological samples. This work has the potential to be a powerful new registration technique that can enable precise hippocampal registration and alignment across subjects, datasets, and image modalities.

      We thank the Reviewer, and feel this is an accurate summary of our work.

      Reviewer #3 (Public Review):

      Summary:

      In the current manuscript, Dekraker and colleagues have demonstrated the ability to align hippocampal subfield parcellations across disparate 3D histology samples that differ in contrast, resolution, and processing/staining methods. In doing so, they validated the previously generated Big-Brain atlas by comparing across seven different ground-truth subfield definitions. This is an impressive effort that provides important groundwork for future in vivo multi-atlas methods.

      Strengths:

      DeKraker and colleagues have provided novel evidence for the tremendously complicated curvature/gyrification of the hippocampus. This work underscores the challenge that this complicated anatomy presents in our ability to co-register other types of hippocampal data (e.g. MRI data) to appropriately align and study a structure in which the curvature varies considerably across individuals.

      This paper is also important in that it highlights the utility of using post-mortem histological datasets, where ground truth histology is available, to inform our rigorous study of the in vivo brain.

      This work may encourage readers to consider the limitations of the current methods that they currently use to co-register and normalize their MRI data and to question whether these methods are adequate for the examination of subfield activity, microstructure, or perfusion in the hippocampal head, for example. Thus the implications of this work could have a broad impact on the study of hippocampal subfield function in humans.

      Weaknesses:

      As the authors are well aware, hippocampal subfield definitions vary considerably across laboratories. For example, some neuroanatomists (Ding, Palomero-Gallagher, Augustinack) recognize that the prosubiculum is a distinct region from subiculum and CA1 but others (e.g. Insausti, Duvernoy) do not include this as a distinct subregion. Readers should be aware that there is no universal consensus about the definition of certain subfields and that there is still disagreement about some of the boundaries even among the agreed upon regions.

      We thank the Reviewer, and feel this is an accurate summary of our work that also provides useful scientific context.

      Reviewer #2 (Recommendations For The Authors):

      The authors have done a great job with the revisions and have addressed all my concerns. They have clarified aspects of the method and procedure and have included a helpful walk-through explanation of an example subject. The authors have also expanded the discussion and addressed the motivation and justification for certain steps of the procedure.

      We thank the Reviewer.

      Reviewer #3 (Recommendations For The Authors):

      The authors have addressed my previous comments and I believe the impact and take home message of the paper is more clear.

      We thank the Reviewer.

      In Figure 1, is the proximal-distal label reversed for panel B? I think P (proximal) should be closer to CA4/DG and D (distal) should be closer to subiculum. Am I misreading the graph?

      We thank the Reviewer for this consideration, but the label is as intended. The terms proximal/distal in the hippocampal literature are sometimes relative to the dentate gyrus and sometimes relative to the rest of the cortex. In our case, we use the terms relative to the neocortex, following Ding and Van Hoesen (2015). We have now added the following to clarify this point at the first use of these terms (p.5):

      “The current work, however, defined this tessellation as a regular mesh grid in unfolded space consisting of 256×128 points across the anterior-posterior (A-P) and proximal-distal (P-D) (relative to the neocortex) axes of the unfolded hippocampus, respectively.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful assessment of our work and their valuable critiques which we will address in the “Recommendations for the authors” section below. In particular, we appreciate Reviewer #3 noting the value of the C. elegans model system and our efforts to bridge models with our study. We agree with the reviewer that there is a need to clarify the rationale, presentation and interpretation of our results. We have substantially revised the text in our manuscript and Figure legend to address this issue, and provided extensive new commentary and citations to lay out the logic behind our experiments. Indeed, it was our oversight not being more thorough about this initially. We have further adjusted our conclusions to be less unequivocal. Finally, we added an RPM-1 signaling diagram (Fig. 8A) to more clearly annotate the players in the RPM-1/MYCBP2 signaling network that were evaluated genetically in Fig. 8. Importantly, we provide clearer commentary on how genetic enhancer effects with known RPM-1 binding proteins and the absence of genetic suppression in vab-1/Eph receptor double mutants with components of the RPM-1/FSN-1 ubiquitin ligase complex are consistent with the biochemical finding that MYCBP2 stabilizes but does not degrade EphB2. Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      Following extensive discussions between the three reviewers, all three agree that the C. elegans data, as presented, does not add to, and in fact might harm, your bottom line. Our combined suggestion is to take this data out unless you plan to improve it substantially. All reviewers are perplexed by Figure 2F and the presumed interactions of cytosolic proteins with the extracellular domain of EPHB2. At the very least, please provide some suggestions/model/interpretation.

      We have adjusted our manuscript substantially to address this. Please see detailed comments in the individual Reviewer sections below.

      We would like to thank the reviewers for their thorough examination of our manuscript, constructive criticisms, and helpful suggestions.

      Reviewer #1 (Recommendations For The Authors):

      The work is extensive in my view, and mostly of high quality. See minor comments on some of the figures below.

      Thank you very much.

      Two more major comments :

      • I don't think the C. elegans work adds to - in fact I think it hurts - the statement that this regulatory mechanism is specific to EphB2. I would advise the authors to take it out.

      We agree that C. elegans has a sole Eph receptor called VAB-1 and is therefore not a specific model for EPH2B. However, testing MYCBP2 specificity for EPHB2 was not the goal or our perceived value for the C. elegans experiments. We now clarify this in the text of the Results section.

      Rather, we are providing evidence that the C. elegans ephrin receptor interacts genetically with known MYCBP2/RPM-1 binding proteins. Moreover, we now provide an extensive array of citations to note that genetic enhancer interactions between different RPM-1/MYCBP2 binding proteins is well established. The reviewer has nicely highlighted for us that we handled the C. elegans genetics in too cursory a fashion in our original manuscript. We appreciate this being noted and have now aimed to make this substantially clearer. We hope the reviewer agrees that our revised C. elegans section accomplishes this goal.

      Furthermore, we extensively revised the text of the Results to emphasize a key point: our observation that axon termination defects are not suppressed in vab-1; fsn-1 and vab-1; rpm-1 double mutants excludes the possibility that the VAB-1 Eph receptor is a substrate that is inhibited or degraded by the RPM-1/FSN-1 ubiquitin ligase complex. If the VAB-1 Eph receptor were ubiquitinated and degraded by the RPM-1/FSN-1 complex, we would have observed a suppression of phenotype in vab-1; rpm-1 double mutants. The precedent for this genetic relationship between the RPM-1 ubiquitin ligase and its substrates that are degraded has been established by several prior studies (PMID: 15707898; PMID: 31676756; PMID: 35421092). We now more clearly note that the absence of genetic suppression in vab-1; rpm-1 double mutants and vab-1; fsn-1 double mutants is consistent with the non-canonical stabilizing role of MYCBP2 on EPHB2 that was observed in our biochemical experiments with mammalian cells.

      We also adjusted the text of the manuscript to stress that we are testing genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This is a key point, as genetic enhancer interactions are consistent with the Eph receptor functioning in the RPM-1 signaling network. This concept has been well established for RPM-1 binding proteins as now noted in our revised text with an extensive number of additional citations to published work.

      Based on the above arguments, we respectfully disagree with the reviewer that our C. elegans data should be removed from the paper. To re-iterate, we are not trying to evaluate specificity for MYCBP2 and EPHB2 in C. elegans. Rather, our goals are twofold: 1) To ask whether there is an evolutionarily conserved functional genetic link between Eph receptors and known RPM-1 binding proteins. 2) To provide further in vivo genetic evidence invalidating the hypothesis that Ephrin receptors could be ubiquitination substrates that are inhibited/degraded by MYCBP2.

      Text edits reflecting these points are in the abstract, the C. elegans results section starting on line 411, and the discussion on lines 499, 502-504 and 541.

      • The cellular responses are not robust and the effects of MYCBP2 KO - although significant - are minor in most cases. But I don't think more experiments will help here.

      We interpret the comment about the robustness to mean that the extent to which a given cellular response is affected by the loss of MYCBP2 is minor. First, the cellular responses themselves are typical of previous studies and depend on the cellular biology underlying them. For example, a growth collapse of ~50-60% over a background of 10% (Fig. 7) is typical for these sorts of assays (PMID: 37369692; PMID: 33972524; PMID: 17785182). A decrease of cell area by ~25% (Fig. 3) is quite substantial if one considers how much of a cell’s volume is taken up by the nucleus and organelles. Second, the phenotypes elicited by the loss of MYCBP2 are likely brought on by a decrease in EphB2 protein levels, but not its complete absence, as suggested by our biochemical experiment. Given that EphB2 complete loss only affects the cellular responses to a limited extent, the minor effects are not a surprise (e.g. for GC collapse: PMID: 23143520). Nevertheless, the subtle changes in cellular phenotypes, elicited by EPHB2 signaling are often sufficient to achieve proper cell positioning and cell response to guidance cues. For instance, regulation of the growth cone collapse of the outgrowing axons requires delicate changes that are dynamic and temporal.

      Minor:

      Fig 1C - EPHA3 and EPHB2 seem to run in different sizes, is this the case? In 2A they run at the same size.

      We believe this size discrepancy is due to different percentages of SDS-PAGE gels used to resolve proteins. In Fig. 1C, we used a 6% gel for a Western blot analysis of both EPHA3/-B2-FLAG (~130 kDa) and MYCBP2 (~510 kDa). In Fig. 2A however, we performed Western blot analysis using 10% resolving gel to separate and detect EPHA3/-B2-FLAG along with MYC-FBXO45 (~30 kDa). We have reviewed the results obtained from additional biological replicates of this experiment, and observed a similar pattern in gel migration of EPHA3/-B2-FLAG across all replicates.

      Fig1F - I can't trust the MYCBP2 blot.

      Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the results replace the previous Fig. 1F panel as mentioned on line 158.

      In Fig2b the authors claim that there is enhancement in the binding of MYCBP2 and EPHB2 upon FBXO45 expression. For this type of statement quantification is required.

      The quantification is now included in Fig. 2C and its significance is mentioned on line 180. Our conclusion about the enhancement stands.

      Fig2G - it remained unclear to me where the binding site to MYCBP2 is, how long is the cytoplasmic tail in the DeltaICD protein?

      Based on our experimental observations from Fig. 2E-H, we concluded that the fragment encompassing the extracellular domain(s) and/or transmembrane (TM) domain of EPHB2 is necessary for the protein complex formation with MYCBP2. We would like to accentuate that the EPHB2-MYCBP2 interaction might not be direct, and might involve other transmembrane protein(s) acting as a scaffold for EPHB2 and MYCBP2 binding. We did not pursue experiments to determine the exact region of the extracellular-TM portion of EPHB2 that is required for the interaction with MYCBP2.

      The cytoplasmic tail in ΔICD protein consists of 25 aa of the N-terminal fragment of EPHB2 juxtamembrane (JM) region, which is adjacent to the TM helix, and followed by the 8 aa FLAG tag (EPHB2 ΔICD domain composition: extracellular domains – TM domain – 25 aa fragment of JM region – FLAG). We have determined the TM and JM sequences based on Hedger et al. (PMID: 25779975) and included the N-terminal portion of the JM region to facilitate proper ΔICD protein localization within the plasma membrane (PMID: 35793621). We modified the schematic in Fig. 2G to better visualise the EPHB2 truncations and now provide information on their size in the figure legend.

      Always good to have a model of how all these proteins work together.

      While we acknowledge that this would be helpful, we do not have a clear answer on how the EPHB2-MYCBP2 complex formation occurs. This requires further elucidation of the putative proteins involved in this ternary complex or testing the possibility that a MYCBP2 fragment is extruded extracellularly. Without these experiments there are too many possibilities to summarise into a clear model figure. We thus did not make any edits regarding these possibilities in the section starting on line 195.

      Reviewer #2 (Recommendations For The Authors):

      Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.

      Thank you for your encouraging comments.

      Controls for the stripe assay may include Fc / Fc stripe assays.

      We have performed these control experiments and now include their quantifications in the results sectioning concerning Fig. 3, starting on line 249, and those concerning Fig. 6 on line 381.

      It is not clear to me why SD and not SEM has been used here for presentations.

      Standard deviation (SD) measures the dispersion of a dataset relative to its mean. The standard error of the mean (SEM) measures how much discrepancy is likely in a sample’s mean compared with the population mean. Thus, SEM includes a statistical inference about the sampling distribution while SD is a less “processed” measurement that by definition is larger than SEM. SEM might make the data look less dispersed and many journals encourage the use of SD in bar graphs (PMID: 16223828).

      Fig 7A: it is rather difficult to see 'branches' in Fig. 7A, better pictures and close-ups should be provided. How are branches defined? This piece of work needs more attention.

      To remedy this shortcoming, we now provide inverted images with GFP signal in dark pixels overlaid on Fc (white) / eB2 (pink) stripes next to the original images.

      Reviewer #3 (Recommendations For The Authors):

      1) My most important suggestion to the authors would be to more carefully describe the results and their interpretation of the results. Sometimes, the distinction is not clear.

      We modified the text throughout the manuscript to address this.

      2) There are several cases, when the authors report on trends that are not statistically significant (1D, for example), or report no change, when it is clear that the addition of one more sample could have dramatically made a difference (4M - see point 12).

      We agree that some of the nonsignificant differences could become significant if we added more Ns. But we prefer not to move our experimental design towards N-chasing and p-hacking (PMID: 25768323). The number of biological replicates is normally pre-determined before the onset of the experiment. Of course, some replicates can be discarded if there is a valid reason, such as a technical issue with the experiment or a positive control not working but this is not relevant for the dataset we have provided.

      3) Data in 1F is very difficult to interpret.

      As in response to Reviewer #1: Indeed, the MYCBP2-EPHB2 co-IP with endogenous proteins was not convincing. We now repeated this experiment using rat cortical neurons, and the improved results are in revised Fig. 1F.

      4) Figure 2 puts Figure 1 in a strange perspective. If I understand correctly, fig 2 claims that EPHB2 interaction with MYCBP2 depends on FBXO45 - if that is the case then how does the binding in Figure 1 occur?

      Indeed, we propose that the EPHB2-MYCBP2 interaction depends on FBXO45. In Fig. 2, we reveal that FBXO45 enhances the formation of the EPHB2-MYCBP2 complex. Thus, we suspect that the endogenous FBXO45 present in HeLa cells and neurons would mediate the interaction between EPHB2 and MYCBP2 in Fig. 1 experiments. We were unable to show this by Western blotting due to lack of reliable commercial antibodies against FBXO45, the complex containing endogenous FBXO45 and EPHB2 is also implied by our AP-MS data (Fig. 1B) and published databases.

      5) I am still trying to wrap my mind around the results in 2G-H. So do MYCBP2 and FBXO45 bind the extracellular domain of EPHBP2? What does that mean?

      (see also our response to Reviewer #1, end of their section) Based on our experimental observations from Fig. 2G-H, we conclude that the fragment encompassing the extracellular domain(s) and/or transmembrane domain of EPHB2 is necessary for the protein complex formation with MYCBP2 and FBXO45. Although there is a possibility that MYCBP2 directly binds the extracellular portion of EPHB2, we have not formally tested this hypothesis. MYCBP2 has been previously shown to interact with the extracellular portion of transmembrane N-cadherin (CDH2) via BioID proximity labeling and AP-MS proteomics approaches (PMID: 32341084).

      Considering the results in Fig. 2A-B, we suspect that EPHB2-MYCBP2 interaction is indirect, as FBXO45 enhances this association. Secretion of FBXO45 and direct binding of FBXO45 to the extracellular cadherin (EC1-2) domains of N-cadherin has been documented (PMID: 25143387; PMID: 32341084). Although, not tested, this is also a possibility for EPHB2-FBXO45 mode of interaction. Nevertheless, we also cannot rule out the possibility that an unknown transmembrane protein binds EPHB2 extracellularly and the same unknown protein binds MYCBP2/FBXO45 intracellularly. Resolving this model is beyond the scope of this study and will require us to pursue extensive new lines of investigation.

      6) I don't understand the stable Hela cell line CRISPR - is this a stable MYCBP2 deletion? In which case why is there only a reduction, not complete elimination of the protein? Or, is this a stable integration of a plasmid generating gRNA against MYCBP2? In which case, I would expect a homozygous null to emerge at some point. In any case, this is not well explained.

      These lines are not derived from single cells infected with the CRISPR sgRNA-carrying viruses, therefore they are not clonal and probably contain some cells that express normal levels of MYCBP2, hence its detection on a Western. This is now clarified starting on line 221 and on line 608.

      7) In 3C - is this the right statistical analysis?? I would say you want to claim the different effect of the control +/- eB2 compared to the effect in the mutant +/- eB2. Still should be significant but I think a more correct analysis.

      We now include this comparison in Fig. 3C as well in the results section starting on line 234.

      8) The robustness of the assay in Figure 3D is underwhelming – how was the area measured?

      This is a live imaging experiment. Fig. 3D plots cell area at 60 minutes after ephrin-B2 addition as a fraction of the same cell’s area at 0 minutes (ephrin-B2 addition). For control cells that is a decrease of ~25%. If one considers that a cell’s nucleus and organelles like the Golgi Apparatus take up most of its volume, the magnitude is not that surprising.

      9) Figure 3F – did you try to plot the relative area of overlap divided by the total cellular area? You might get a more striking phenotype. Also – claiming that this confirms that MYCBP2 is REQUIRED for EPHB2 function is a bit overstated, especially given that we don’t know (do you?) the EPHB2 mutant phenotype in this assay.

      We preferred to stay with the original method of image quantification which we use for other assays. With respect to the requirement of MYCBP2 for EPHB2 function in the stripe assay, our logic is rooted in the observation that native HeLa cells do not respond to ephrin-B2 stripes (45.46 ± 7.62% of cells on eB2 stripes v. Fc; data not shown). When they are transfected with EPHB2 expression plasmids they do, therefore we assume that EPHB2 expression endows them with a sensitivity to eB2 stripes. A loss of MYCBP2 attenuates this sensitivity. We clarified this starting on line 246 and on line 251.

      10) I didn't quite get the difference between 4A and 4B.

      We apologize for the confusion. In Fig 4A, we used a stable HeLa cell line that has tetracycline-inducible expression of EPHB2-FLAG. Using these cells, we subsequently generated CTRLCRISPR or MYCBP2CRISPR cells. In these cells we then induced EPHB2 expression with tetracycline and observed that deletion of MYCBP2 resulted in the reduction of EPHB2 protein levels. To confirm this observation and to rule out the possibility that EPHB2 protein reduction is an effect of the CRISPR lines generation, we tested whereas MYCBP2 deletion reduces EPHB2, which has been transiently overexpressed (Fig. 4B). We hence conclude that loss of MYCBP2 decreases EPHB2 that was either expressed from a stable locus (Fig. 4A) or from transient transfection (Fig. 4B). We modified the Results section starting on line 262 to make this point clear.

      11) The entire link to lysosomal degradation should be strengthened. Perhaps I am confused, but if the reduced EPHB2 levels in MYCBP2 mutant cells result from impaired lysosomal degradation then inhibiting the lys-deg should bring the protein levels back to normal (i.e. CRISPR control) - no? As currently presented, I do not understand nor do I think the claim is strongly supported by the data.

      Before treatment with inhibitors, EPHB2 levels in MYCBP2CRISPR cells are already 40% lower than they are in CTRLCRISPR cells and in all our attempts, inhibitors can only rescue/restore EPHB2 in MYCBP2CRISPR cells to a level that is lower than in CTRLCRISPR cells. But this restoration is greater in MYCBP2CRISPR than in MYCBP2CTRL cells (BafA1: 19% increase in CTRL cells and 40% in MYCBP2CRISPR cells; CoQ: 10% comparing to 35%). This indicates that EPHB2 degradation through the lysosomal pathway in MYCBP2CRISPR cells is stronger, explaining why EPHB2 degradation is promoted in MYCBP2CRISPR cells, compatible with reduced EPHB2 levels and enhanced EPHB2 ubiquitination.

      12) 4M, O - reporting ns based on these data seems a bit strange to me... Add one point and it will be strongly significant.

      See our response to point (2), above. We prefer not to invoke potential p-hacking.

      13) 7d - so what are you claiming? That the cellular response to eB1 but not eB2 is affected by the addition of FBD1? this is almost the opposite of what you wrote in the text...

      We treated the cells with two different ephrin-B ligands to make a stronger conclusion. When using ephrin-B1, growth cone collapse in FBD1 WT is not significant comparing to Fc treatment. When using ephrin-B2, growth cone collapse in FBD1 WT is not as significant as it is in FBD1 mut group (* versus ). We interpret this as meaning that the EPHB2-mediated growth cone collapse to both ligands is dampened, when we disrupt the EPHB2-MYCBP2 association. The difference between these two ligands might be due to their different affinities for the receptor or signalling kinetics.

      14) By far the weakest link in this paper is the worm part. I think it's a pity because strengthening this would affect the significance of the finding. First, the authors mention new genes without introducing their relationship to the signaling pathway tested. Second, the textual logics should be strengthened. Finally and most importantly, when the difference between the phenotypic severity is so strong (vab-1 and rpm-1) then I think it's impossible to say anything from the double mutant.

      We appreciate the reviewer noting that they appreciate the value and importance of the C. elegans model. The goals of our C. elegans experiments were twofold:

      1) To evaluate genetic interactions between the VAB-1 Eph receptor and known RPM-1 binding proteins. This was not clearly explained in the original manuscript nor was the published precedent for these types of genetic enhancer experiments provided. We have now rectified this by substantially revising the text of the Results C. elegans section starting on line 431 and by adding several citations.

      2) Our C. elegans genetics confirmed that the VAB-1 Eph receptor is not inhibited/degraded by the RPM-1/MYCBP2 ubiquitin ligase complex. We have now revised the text to draw this point out more clearly.

      To further address the reviewer’s concerns, we have added a new schematic (Fig. 8A) to show the relationship between the RPM-1 and the RPM-1 binding proteins (FSN-1/FBXO45 and GLO-4/SERGEF) we are testing. We chose FSN-1 because it is part of the RPM-1 ubiquitin ligase complex and we chose GLO-4 because it functions outside the context of RPM-1 ubiquitin ligase signaling via the GLO-1 Rab GTPase to influence late endosomal/lysosomal biogenesis.

      Regarding the reviewer’s concern that different penetrance/frequency of defects between rpm-1 mutants and vab-1 mutants means outcomes with vab-1; rpm-1 double mutants cannot be interpreted. We respectfully disagree. An extensive number of published studies have demonstrated that RPM-1 binding proteins have milder phenotypes than rpm-1 mutants and display genetic enhancer effects as double mutants with one another (PMID:17698012, PMID: 22357847, PMID: 25010424, PMID: 24810406). We now make this point much more clearly. While the frequency of axon termination defects in rpm-1 mutants is high it is not completely saturated as the defect is not 100%. Moreover, a major point of the vab-1; rpm-1 double mutants is that they do not have a significant reduction in phenotypic penetrance/frequency. Thus, our system is fully capable of resolving genetic suppression, which did not occur. We now make this point much more carefully and clearly.

      To further address the reviewer’s concern, we have softened language about the VAB-1/Eph receptor functioning in the same pathway as RPM-1 throughout the manuscript. While we think this is still the case, because the frequency of axon termination defects is not fully saturated in rpm-1 mutants and defects could potentially become more severe (i.e. the hook might occur closer to the head of the animal rather than in the midbody). Nonetheless, this is not a critical point and we think it is more important to be clear about the two major goals and objectives of our C. elegans experiments. We hope the reviewer agrees that our rationale, logic and conclusions are more clearly and accurately drawn in the revised paper.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Although the main conclusions are well-evidenced, this paper would be further improved if the following concerns can be properly addressed.

      1) The key data to demonstrate the role of condensin in telomere disjunction is reduced telomere foci in cut14 mutants at the restrictive temperature (Fig 2A). However, this could be due to defected telomere declustering or failed separation of sister telomeres since authors suggested that condensin functions in both processes. To distinguish these, authors can directly measure the separation of sister telomeres using FISH or TETO-labelled telomeres.

      We now provide strong evidence for the role of condensin in telomere disjunction by simultaneously visualizing the behavior of centromeres 3L (imr3-tdTomato), Gar1-CFP (nucleolus), and telomeres 1L (Tel1-GFP) during mitotic progression (Figure S2B). As previously reported (Tada et al. 2011), we visualized the centromere of chromosome 3 by simultaneously inserting tetO repeats into the imr3 region (1093757-1094520 and 1094521-1095451 of chromosome 3) and expressing td-tomato fused to tetR. The left arm of telomere 1 was visualized by inserting lacO repeats into this telomeric region (9282-9805 and 9806-10254 of chromosome 1) and expressing green fluorescent protein (GFP) fused to LacI. With these additional data, we confirm that a cut14-208 mutant grown at non-permissive temperature exhibits a striking defect in the disjunction of Tel1L.

      Note, however, that such an experimental approach is not without risk, as it has been reported that LacO repeats tightly bound by LacI proteins form a barrier to the recoiling activity of condensin (PMID: 31204167). This is discussed further below in our response to point 2).

      2) To prove the defective telomere disjunction in condensin mutant is not due to failed transmission of pulling force from centromeres, the authors showed that Top2 inactivation has no effect on telomere disjunction (Fig 2E). However, this result contradicts a previous study in budding yeast (MBC, 2002, 13:632-645). This needs careful discussion. Moreover, it is puzzling why Top2 inactivation would not cause defective decatenation of telomeres.

      We thank the reviewer for bringing this apparent discrepancy to our attention. A likely explanation is that we monitored telomere separation using the shelterin protein Taz1 tagged with GFP, whereas in the study mentioned by the reviewer, the authors used LacO arrays inserted in the vicinity of TELV and bound by LacI-GFP. It has been shown in budding yeast that such a construct constitutes a barrier for the recoiling activity of condensin in anaphase (PMID: 31204167). Thus, this insertion of LacO/LacI arrays at TELV most likely created an experimental condition in which condensin activity at TELV was reduced, thereby revealing the otherwise dispensable contribution of Topo II. This is now mentioned in the Discussion section as follows:

      Our results do not rule out the possibility that Topo II contributes to telomeres disentanglements, but nevertheless imply that Topo II catalytic activity is dispensable for telomere separation provided that condensin is active. The close proximity of DNA ends could explain Topo’s dispensability. It has been reported in budding yeast that the segregation of LacO repeats inserted in the vicinity of TelV is impaired by the top2-4 mutation (Bhalla et al. 2002). At first sight, this appears at odds with our observations made using the telomere protein Taz1 tagged with GFP. However, since LacO arrays tightly bound by LacI proteins constitute a barrier for the recoiling activity of condensin in anaphase (Guérin et al. 2019), the insertion of such a construct might have created an experimental condition in which condensin activity was specifically impaired at TELV, hence revealing the contribution of Topo II.

      In addition, we would like to point out that the telomere structure in budding yeast and fission yeast is significantly different. Budding yeast protects its telomeres via two independent factors, Rap1 and the Cdc13-Stn1-Ten1 complex, whereas in fission yeast Taz1 and Pot1 are bridged by a complex protein interaction network (Rap1-Poz1-Tpz1). This is a remarkable conserved structural feature between the shelterin of S. pombe and the human shelterin. Recently the group of M. Lei showed that some of the telomeric components of S. pombe can dimerize leading to a higher complex organization of the shelterin (Sun et al., 2022). It is likely that dimerization of Taz1, Poz1, and the Tpz1-Ccq1 subcomplex may also contribute to the clustering of sister and non-sister chromatid telomeres. The architectural differences in telomere organization between budding and fission yeast may require different mechanisms to properly segregate telomeres during mitosis.

      3) The authors claimed that the reduced telomere disjunction in condensin mutants is because compromising condensin function defects the resolution of cohesin-mediated cohesion of sister telomere. The evidence is that cohesin's inactivation remedied telomere disjunction defect in condensin mutants (Fig 6A). However, there could be an alternative explanation: abnormal telomere structure caused by defective condensin might lead to the entanglement of sister telomeres, which requires telomere cohesion. If cohesin is inactivated before the G2 phase, which is the likely case in this experiment, the entanglement would not happen. To distinguish these, the experiment in Fig 6 can be repeated using G2-synchronised cells.

      The hypothesis raised by the reviewer is certainly relevant. To test this possibility, we purified cut3-477 and cut3-477 rad21-K1 mutant cells in early G2 using a lactose gradient. After cell selection of the two mutants grown at permissive temperature, the entire cell population was in G2 (0% of cells in mitosis or cytokinesis). After releasing the cells to the non-permissive temperature of 36°C, we measured the number of telomeric foci as a function of spindle size as the cells entered the first mitosis. The results presented in Figure S6 confirm that cohesin inactivation in G2 cells is able to complement the telomere disjunction defects of a condensin mutant.

      4) The authors further revealed that compromising condensin function leads to overaccumulation of cohesin at the telomere (Fig 6B). Then they proposed that condensin counteracts cohesin at telomeres. However, the over-accumulated telomeric cohesin was observed at the G2 phase (t=0 min, Fig 6B) in the condensin mutant. At this stage, cells were grown at the permission temperature, and condensin activity is expected to largely remain (Fig 2A). The subsequent inactivation of condensin didn't further increase the telomeric association of cohesin (t=30 min, Fig 6B). Moreover, condensin does not bind telomeres at G2 phase (1B). It is difficult to reconcile the scenario that condensin would inhibit cohesin telomere association even though condensin is absent.

      We suspect that there was a misunderstanding because T=0 min in Figure 6B corresponds to cells arrested in G2 and shifted to 36°C while still arrested, as mentioned in the original text "Cells were arrested at the G2/M transition, shifted to the restrictive temperature and released into a synchronous mitosis (Figure 6B)".

      However, this experimental setup has been made clearer in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Further analysis of the telomere segregation foci data could provide additional support for the claim that condensin promotes the uncoupling of telomeres (vs telomere disjunction), in addition to the hiC data presented in Fig 3. The observation that many data points in Figure 2 have less than six foci ( often 2-4) suggests that this data not only shows a defect in disjunction but also in telomere uncoupling. If somehow the two defects could be unpicked in the dataset that would be beneficial to their argument.

      We agree with the reviewer that our data show not only a defect in disjunction but also in telomere uncoupling (confirmed with HiC). We now provide new microscopy data showing the role of condensin in telomere disjunction (as opposed to uncoupling) by simultaneously visualizing the behavior of the centromere 3 (imr3-tdTomato), nucleolus (Gar1-CFP) , and telomere 1L (Tel1-GFP) during mitotic progression (Figure S2B). We confirm that the cut14208 mutant grown at non-permissive temperature has a striking defect in telomere disjunction as opposed to centromere disjunction.

      Reviewer #3 (Recommendations For The Authors):

      The experiments are robust, and the results are well described. However, it should be explicitly stated that the main finding that condensin is needed for chromosome end disjunction could have been anticipated from previous studies (as outlined below). Its novelty does not need to be overstated.

      1) Reyes et al. (2015) previously demonstrated that sister telomere disjunction requires the Aurora B kinase. They also showed that a phosphomimic condensin allele reinstates sister telomere disjunction in cells lacking Aurora B, indicating that condensin is likely the target activated by Aurora B and the primary driver of sister telomere disjunction.

      2) Berthezene et al. (2020) previously revealed the requirement of condensin for sister telomere disjunction during the first meiotic division (Meiosis I).

      3) The Tanaka group described in 2010 the role of condensin in promoting sister chromatid separation by antagonizing residual cohesin during anaphase (DOI 10.1016/j.devcel.2010.07.013). This study should be cited and discussed.

      The novelty of our study resides in the fact that we now provide evidence that condensin contributes to TEL separation in cis, and not through the recoiling of chromosome arms, which had not been previously addressed in our previous manuscripts (Reyes et al. 2015, Berthezene et al. 2020).

      We have now added and discussed the reference from Tanaka's group.

    1. Author Response

      The following is the authors’ response to the current reviews.

      eLife assessment

      This paper provides valuable information regarding visuospatial working memory performance in patients with MS compared to healthy controls, using a relatively novel continuous measure of visual working memory. There are some weaknesses with the way the clinical groups were matched, but those limitations are acknowledged and the strength of evidence for the claims is otherwise convincing. The paper will be of interest to those working in the field of clinical neuroscience.

      We are grateful to the editors and reviewers for their careful review of our manuscript and their dedicated time and effort. Their valuable feedback has been instrumental in improving the quality of our work.

      Reviewer #1 (Public Review):

      This study compares visuospatial working (VWM) memory performance between patients with MS and healthy controls, assessed using analog report tasks that provide continuous measures of recall error. The aim is to advance on previous studies of VWM in MS that have used binary (correct/incorrect) measures of recall, such as from change detection tasks, that are not sensitive to the resolution with which features can be recalled, and to use mixture modelling to disentangle different contributions to overall performance. The results identify a specific decrease in the precision of VWM recall in MS, although the possibility that visual and/or motor impairments contribute to performance decrements on the memory task cannot be ruled out.

      Although we try to address this matter by clinical screening, as the reviewer mentioned, the possibility that visual and/or motor impairments contribute to performance decrements on the memory task cannot be ruled out. Therefore, in future studies, including a control condition matched to the experimental paradigm where only the memory components are removed is needed to elucidate this issue.

      Reviewer #2 (Public Review):

      The authors applied two visual working memory tasks, a memory-guided localization (MGL), examining short-term memory of the location of an item over a brief interval, and an N-back task, examining orientation of a centrally presented item, in order to test working memory performance in patients with multiple sclerosis (including a subgroup with relapsing-remitting and one with secondary progressive MS), compared with healthy control subjects. The authors used an approach in testing and statistically modelling visual working memory paradigm previously developed by Paul Bays, Masud Husain and colleagues. Such continuous measure approaches make it possible to quantify the precision, or resolution, of working memory, as opposed to measuring working memory using discretised, all-or-none measures. This represents an advance beyond prior work in this area.

      The authors of the present study found that both MS subgroups performed worse than controls on the N-back task and that only the secondary progressive MS subgroup was significantly impaired on the MGL task. The underlying sources of error including incorrect association of an object's identity with its location or serial order, were also examined. The application of more precise psychophysiological methods to test visual working memory in multiple sclerosis should be applauded. It has the potential to lead to more sensitive and specific tests which could potentially be used as useful outcome measures in clinical trials of disease-modifying drugs, for example. The present study does not compare the continuous-report testing with a discrete measure task so it is unclear whether the former is more sensitive, or more feasible in this patient group, although this may not have been the purpose of the study.

      The reviewer brought up an important point, but as they stated, it was not the focus of our current study. Nevertheless, it is a valuable suggestion for future research to compare continuous with discrete measure paradigms to assess their sensitivity and feasibility in the MS population.


      The following is the authors’ response to the original reviews.

      We thank the editors and reviewers for their thorough reading of this manuscript and valuable suggestions. We appreciate the time and effort they have put into this manuscript to provide feedback for improving our work. Based on their comments, we carefully considered their suggestions and revised the manuscript to address their concerns. Our one-by-one response to reviewer comments is as follows.

      Reviewer #1 (Public Review):

      This study compares visuospatial working memory performance between patients with MS and healthy controls, assessed using analog report tasks that provide continuous measures of recall error. The aim is to advance on previous studies of VWM in MS that have used binary (correct/incorrect) measures of recall, such as from change detection tasks, that are not sensitive to the resolution with which features can be recalled, and to use mixture modelling to potentially disentangle different contributions to overall performance. This aim is met in part, but there are some problems with the authors' interpretation of their findings:

      1) How can the authors be confident the performance deficits in the patient groups are impairments of working memory and not visual or motor in nature? I appreciate there was some kind of clinical screening, but it seems like there should have been a control condition matched to the experimental tasks with only the memory components removed.

      We appreciate the reviewer’s concern regarding the potential confounding effects of visual or motor impairment on the outcomes of our study.

      While we acknowledge that a control condition with only the memory components removed could have further strengthened our results, we did not include one, which is a limitation of the current study.

      To address this limitation, we conducted clinical screening to ensure that the observed deficit was due to working memory impairment and not visual or motor in nature. As part of the expanded disability status scale (EDSS) evaluation, we did not include individuals with issues such as visual acuity, visual field, and extraocular movement impairment, scotoma, nystagmus, and tremors in the upper extremity, which could interfere with the study. Moreover, participants were screened using the 9-Hole Peg Test (9-HPT) before entering the study. These evaluations helped us to ensure that participants with impaired visual or motor performance, which could potentially confound the study, were not included. Our effort to remove the confounding factors with clinical screening provided additional insight into the interpretability of the results. We have updated our inclusion/exclusion criteria accordingly and included this limitation in our discussion.

      2) The participant groups are large, which is definitely a strength, but not particularly well-matched in terms of demographics, with notable differences in age (mean and spread), years of education and gender. These could potentially contribute to differences in performance between groups and tasks.

      We appreciate the reviewer's comment and agree that a matched control group would be ideal. However, we addressed this issue using hierarchical regression analysis.

      Our study assessed visual working memory (VWM) resolution using two analog recall paradigms: the sequential paradigm with bar stimuli and memory-guided localization (MGL). While the demographic data of gender, age, and education in the MGL paradigm were matched between patients and control group, there was a significant difference in these factors between groups in the sequential paradigm.

      To address this issue, we performed hierarchical regression analysis to compare recall parameters in the sequential paradigm with 3-bar and 1-bar stimuli, respectively. We assessed for the confounding effect of gender, age, and education, and the results were presented in supplementary tables 3 and 5.

      In the sequential paradigm with 3-bar stimuli (high memory load condition), we found that all recall parameters were significantly different between groups. However, after adjusting for age and education, the result became insignificant for uniform response proportion. In the 1-bar paradigm (low memory load condition), while the results were significantly different between groups, after adjusting for gender, age, and education, target and uniform response proportions became insignificant (uniform proportion = 1 – target proportion, since there was no swap error in the 1-bar condition).

      3) The authors interpret the mixture model parameter described as "misbinding error" as reflecting failures of feature binding, and propose a link to hippocampus on that basis, however there is now quite strong evidence that these errors (often called swaps) are explained mostly or entirely by imprecision in memory for the cue feature (bar color in this case), e.g. McMaster et al. (2022), already cited in the ms.

      We thank the reviewer for this valuable comment regarding interpreting the mixture model parameter, described as a “misbinding error” in our study.

      Swap error has been attributed to different mechanisms, including the variability in cue feature dimension, cue-independent sources, and strategic guessing. As the reviewer mentioned, in a recent study by McMaster et al., a comprehensive evaluation of these hypotheses was performed and determined that the variability in cue feature dimension could solely explain the occurrence of swap error.

      In response to this comment, we have added a discussion of this matter, the neural correlates of swap error, and the possible explanation for this phenomenon in multiple sclerosis (MS) population to the seventh paragraph of the discussion. Additionally, since our study did not include neuroimaging assessment, we have discussed the results from neuroanatomical points of view to further explain the possible structures involved in the occurrence of swap errors in MS. The seventh and eighth paragraphs of the discussion have been revised for further clarification.

      4) The methodology of the ROC analyses should be described in more detail: it is not clear what measures are being used to classify participants or how.

      This matter is clarified in the results and the last paragraph of materials and methods. In both paradigms, recall error was used for classification purposes.

      5) There are a number of unusual choices of terminology that could potentially confuse or mislead the reader: The tasks are not "n-Back" tasks by the usual meaning: they are analog report tasks with sequential presentation. The terms recall "error", "variability", "precision" and "fidelity" are used idiosyncratically. Variability and precision usually refer to the same thing: they describe the dispersion or spread of errors. The measure described as recall error in the sequential tasks is presumably absolute (or unsigned) error. For the mixture model parameters I suggest describing them more explicitly in terms of the mixture attributes, e.g. "Von Mises SD", "Target proportion", "Non-target proportion" "Uniform proportion".

      We thank the reviewer for this suggestion. We have made revisions to clarify the terminology used in our study.

      The term "n-back" is changed to an analog recall paradigm with sequential presentation. Additionally, as mentioned in the materials and methods, the recall error in the MGL paradigm is the Euclidian distance between the target's location and subject response in visual degree. In the sequential paradigms, this value is the angular difference between the response and target value, in which both are absolute errors. To avoid confusion, we have added the term "absolute error" alongside the term "recall error" to provide a clear understanding of this measurement. Moreover, as the reviewer suggested, we changed "recall variability" to "von Mises SD" for a more precise description. We also changed the remaining terms to "target proportion", "swap error (non-target proportion)", and "uniform proportion".

      Reviewer #2 (Public Review):

      The authors applied two visual working memory tasks, a memory-guided localization (MGL), examining short-term memory of the location of an item over a brief interval, and an N-back task, examining orientation of a centrally presented item, in order to test working memory performance in patients with multiple sclerosis (including a subgroup with relapsing-remitting and one with secondary progressive MS), compared with healthy control subjects. The authors used an approach in testing and statistically modelling visual working memory paradigm previously developed by Paul Bays, Masud Husain and colleagues. Such continuous measure approaches make it possible to quantify the precision, or resolution, of working memory, as opposed to measuring working memory using discretised, all-or-none measures.

      The authors of the present study found that both MS subgroups performed worse than controls on the N-back task and that only the secondary progressive MS subgroup was significantly impaired on the MGL task. The underlying sources of error including incorrect association of an object's identity with its location or serial order, were also examined.

      The application of more precise psychophysiological methods to test visual working memory in multiple sclerosis should be applauded. It has the potential to lead to more sensitive and specific tests which could potentially be used as useful outcome measures in clinical trials of disease modifying drugs, for example.

      However, there are some significant limitations which severely affect the scientific validity and interpretability of the study:

      1) There is a striking lack of key clinical information:

      1.1) There is a striking lack of key clinical information. The inclusion and exclusion criteria are unclear and a recruitment flowchart has not been provided. Therefore it is unclear what proportion of MS patients were ineligible due to, for example, visual impairment.

      We thank the reviewer for raising this matter. To address this issue, we revised the first section of materials and methods to include detailed inclusion/exclusion criteria information. However, it is important to note that we recruited the patients in a full-census manner, where only the patients who fulfilled the inclusion criteria participated. Unfortunately, we did not record the number of patients who did not meet the inclusion criteria.

      1.2) Basic clinical data such as EDSS scores, disease duration, treatment history, and performance on standard cognitive testing were not provided. Basic clinical and demographic data for each subgroup were not provided in a clear format. This severely limits the interpretability of the study and its significance for this clinical population. For example, might it be that the SPMS patients performed worse on the MGL task because they were more cognitively impaired than RRMS patients? That question might be easily answered, but the answer is unclear based on the data provided.

      We appreciate the reviewer for bringing up this important concern. To further clarify the basic clinical and demographic data, we have revised tables 1 and 2 to include detailed information regarding gender, age, education, cognitive ability, disease duration, EDSS score, and disease-modifying therapy (DMT) for each group, respectively. The information is reported as mean ± standard deviation except for the categorical data.

      Regarding the participants' cognitive ability, we added the Montreal cognitive assessment test results for both paradigms. MoCA is a standard cognitive screening tool that has a score of 0 to 30. The different ranges of MoCA scores related to the different levels of cognitive function, in which a score ≥ 26 is considered normal cognitive ability, 18-25 denotes mild cognitive impairment, 10-17 determines moderate cognitive impairment, and a score ≤ 10 is considered severe impairment.

      First, we classify the participants based on their MoCA value and compare groups with each other. While the primary results showed that patient groups were more impaired compared to healthy controls, our results remained significant after adjusting for MoCA using hierarchical regression analysis. This suggests that the observed difference was not solely due to more cognitive impairment in the patients' population.

      Moreover, the information regarding the treatment history of patients is added in the following format. DMT is classified into two groups, i.e., platform and non-platform treatments. In our study, the platform treatments include interferon beta-1a and glatiramer acetate, and non-platform treatments include rituximab, ocrelizumab, fingolimod, dimethyl fumarate, and natalizumab. In both paradigms, the patients did not significantly differ based on the received therapy. The MoCA assessment and treatment history information is added to tables 1 and 2 and supplementary tables 1, 3, and 5. Moreover, the second paragraph of materials and methods, second paragraph of statistical analysis in materials and methods, and the appropriate sections of the results are revised.

      2) The study is completely agnostic to the underlying pathophysiology. There is no neuroimaging available, therefore it is unclear how the specific working memory impairments observed might relate to lesioned underlying brain networks which are crucial for specific aspects of working memory. This severely limits the scientific impact of the results. This limitation is acknowledged by the authors, but the authors did not put forward any hypotheses on how their results may be underpinned by the underlying disease processes.

      We appreciate the reviewer for this valuable suggestion. To further strengthen the connection between our findings and the possible underlying mechanisms of WM dysfunction in MS, we have added a discussion from the neuroanatomical perspective in the eighth paragraph of the discussion section.

      3) The present study does not compare the continuous-report testing with a discrete measure task so it is unclear if the former is more sensitive, or more feasible in this patient group, although this may not have been the purpose of the study.

      The reviewer pointed out an interesting matter. However, this was not the focus of the current study. Nonetheless, it is a valuable suggestion for future work to compare continuous vs. discrete measure paradigms to determine their sensitivity and feasibility in the MS population.

    1. Author Response

      We outline reviewer/editor queries, our responses are indicated below we thank the reviewers for their suggestions that we address below and with minor edits (that do not appreciably change the content such as figure lettering and methods information).

      Reviewer #1 (Public Review):

      The paper by Dongsheng Xiao, Yuhao Yan and Timothy H Murphy presents a timely approach to record neuronal activity at multiple temporal and spatial scales. Such approaches are at the forefront of system neuroscience and a few examples include, among others, fMRI alongside electrophysiology (Logothetis et al, 2021. Nature) or widefield calcium imaging (Lake et al, 2020. Nat Meth) , or functional ultrasound imaging and multi unit recording (Claron et al, 2023 Cell Reports), The method presented here combines "low resolution" (i.e. cortical regions) widefield calcium imaging across most of the dorsal portions of the murine cortex combined with electrical recording of single neurons in specific cortical and subcortical locations (as a matter of fact, this later components can be used everywhere in the murine brain).

      The method presented here is straightforward to implement and very well documented. Examples of novel insights that this approach can generate are well presented and demonstrate the strength of the presented approach, some aspects of the analysis require clarification.

      For example, the author reveal Spike-Triggered average cortical activation Maps (STMs) linked to the activity of single neurons (Figs 4 and 5) This allows to directly asses the functional connectivity between cortical and sub-cortical areas. It nevertheless unclear what is the stability of the established relationships. The nature of the "recordings" in Fig 4. is unclear. It looks like these are imaging sessions on the same day, the length of these recordings as well as the interval between them is not stated. It will be fundamental to build a metric to compare STMs variability across sessions/recordings/days; a root-mean-square from an average map across all recordings could provide a starting point.

      Our goal was to present a well-documented protocol for implanting electrodes (tetrodes and peripheral nerve) that do not impede cortical mesoscale imaging and support chronic investigation of spike trains. We do provide examples of repeated spiking measurements across days from the same electrodes and animals. Unfortunately, due to the pandemic interrupting data collection and other factors, this dataset does not contain a thorough analysis of response longevity using these electrodes, but we do show examples in the figures. In Figure 1F, G, we showed that the single unit activity was relatively stable during one week, two weeks, and two months of recordings after implantation. In Figure 4B we showed spiking activity in the hippocampus was stable across day 8 and day 9. We also showed that the STM of the hippocampus neuron was consistently associated with the RSP, BCS, and M2 region for 10 recording sessions across days. In Figure 4D, We showed that the STMs of a midbrain neuron were relatively stable over 2 months. The spiking activity of the neuron on different days was consistently correlated with the lower limb, upper limb, and trunk sensorimotor areas on both hemispheres of the cortex.

      Also with respect to the STMs analysis, the data-driven choice of 10 clusters might need a bit more explorations. While the silhouette clustering accuracy peaks at 10 (Fig 5A), this metrics comes without a confidence intervals making it difficult to know if a difference of less than 10% (i.e. 11 or 13 clusters) should be deemed different. Maybe a bootstrapping approach could be used here to build such confidence intervals. Another approach to reach the number of cluster to use could be based on "consensus" between different partitioning algorithms (e.g. Strehl, A. & Ghosh, J. itions. J. Mach. Learn. Res. 3, 583-617 (2001). A much stronger argument should be provided to use the 0.3 correlation cutoff value which seems to be arbitrarily low. The main point here is that the authors should show that their conclusions hold within a range of parameter values (number of clusters and correlation threshold).

      Thank you for the interesting suggestions regarding cluster numbers. We agree that the number (10 clusters) could be taken as an arbitrary value. However, we have done previous work examining cortical connectivity maps in Mohajerani et al. 2013 Nature Neurosci. and found that cortical mesoscale activity has a degree of freedom (number of unique elements) in the range of 10-15. This number is also supported by major structural networks found by the Allen Brain Connectivity Atlas and within functional imaging data. In other work using unsupervised methods Xiao et al. 2021 Nature Comm a similar number of clusters were identified so these numbers are without some basis.

      Reviewer #1 (Recommendations For The Authors):

      I enjoyed very much reading the manuscript!

      Minor comments (aesthetics and typos)

      Please clarify how the hemodynamic correction was performed. The text refers to "substracted". This usually involves the computation of a general of per-pixel weight. Is this correction constant along the longitudinal imaging session (i.e. over weeks)?

      The hemodynamic correction was calculated based on the results of each daily session. Typically these corrections have minimal impact on overall values and are not expected to appreciably change over time.

      In Figure 3, authors might reconsider scaling down the size of panel A and enlarging the data presented in D. Also, with respect to panel D, what does the gray band represent, confidence intervals, standard dev? Please clarify.

      The gray bands correspond to the standard deviation of random trigger average traces.

      Lines in 4E could be made thicker.

      In the caption of fig6, panel D is mentioned twice (should be E).

      Thanks for catching this mistake we have changed the caption in the online version.

      Reviewer #2 (Public Review):

      The article presents 'Mesotrode,' a technique that integrates chronic widefield calcium imaging and electrophysiology recordings using tetrodes in head-fixed mice. This approach allows recording the activity of a few single neurons in multiple cortical/subcortical structures, in which the tetrodes are implanted, in combination with widefield imaging of dorsal cortex activity on the mesoscale level, albeit without cellular resolution. The authors claim that Mesotrode can be used to sample different combinations of cortico-subcortical networks over prolonged periods of time, up to 60 days post-implantation. The results demonstrate that the activity of neurons recorded from distinct cortical and subcortical structures are coupled to diverse but segregated cortical functional maps, suggesting that neurons of different origins participate in distinct cortico-subcortical pathways. The study also extends the capability of Mesotrode by conducting electrophysiological recordings from the facial motor nerve. It demonstrates that facial nerve spiking is functionally associated with several cortical areas( PTA, RSP, and M2), and optogenetic inhibition of the PTA area significantly reduced the facial movement of the mice.

      Studying the relationship between widefield cortical activity patterns and the activity of individual neurons in cortical and subcortical areas is very important, and Murphy's lab has been a pioneer in the field. However, the choice of low-yield recording methods (tetrode) instead of more high-yield recording techniques, such as silicon probes, makes the approach presented in this study somewhat less appealing. Also, the authors claim that a tetrode-based approach can allow chronic recordings of single neural activity over days - a topic that is very controversial. In terms of results, I was under the impression that most of the conclusions presented in the bulk of the paper ( Figures 1-5) are very similar to what previous work from Murphy's lab and other labs has shown using acute preparation. In this respect, the paper can benefit from a more in-depth analysis of the heterogeneity of single-neuron functional coupling. The last part of the facial nerve recording is interesting (Figure 6), but I think it can be integrated better into the rest of the paper.

      Reviewer #2 (Recommendations For The Authors):

      Major Comments:

      1) The methodology described in the paper is based on chronic tetrode recordings combined with widefield calcium imaging. The authors emphasize the advantages of using tetrodes in that they are 1) easy to implant 2) have a small footprint, and 3) allow to record the same neurons over days.

      I agree regarding the first advantage, however, the ability to reliably record the activity of the same neurons over days using electrophysiological recordings is controversial. The authors claim that:

      'We found that the single unit activity was relatively stable, during one week, two weeks, and two months of recordings after implantation (Figure 1F, G)',

      The only 'proof' the authors show for recording stability are waveforms of one neuron on one channel (out of presumably four channels), which seem to differ in amplitude over days. Two-dimensional plots of the neuron waveform for all channel combinations could be a more convincing way to make this claim. But, as I already mentioned - the ability to record from the same neurons chronically with electrophysiological methods is rather controversial, especially with tetrodes that don't allow for laminar profiling of neuronal response to account for a potential drift over time.

      We now make it more clear that examples of mesotrode stability are indicated in the figures. Furthermore, we acknowledge caveats that spike sorting experiments required to more conclusively identify single neurons would be improved with larger format silicon probes. Our work employs compact tetrode electrodes that permit simultaneous resolution of single units and mesoscale GCAMP activity. It is conceivable that improvements in spike sorting fidelity could be made by switching to more densely spaced silicon probes. While this is an obvious advantage, these probes do not have a compact footprint and would interfere with regional imaging.

      2) The authors present little analysis justifying the advantage of conducting chronic electrophysiological recordings instead of acute recordings with their data. In fact, throughout the paper, the authors mention that the results were consistent with their previous work with acute recordings. The only longitudinal analysis in this paper is qualitative and suggests that cortical maps were stable over days. I believe this was also shown in the past already. More in depth analysis of across days dynamics or showcase of an experiment centered on across days dynamics will strengthen the appeal of this approach. Generally speaking, there is very little quantitative analysis of longitudinal maps/functional coupling of single neurons over days. The paper will benefit from at least some quantification of this part.

      To our knowledge data showing the persistence of spike-associated maps longer than an acute experiment is novel. However, due to a low yield of recorded single neurons, we have not been able to follow these maps over a longer period in a population that would permit group statistics. We suggest that future experiments could be done using silicon probes with larger yields which would help to better align electrophysiological features with mesoscale GCAMP maps.

      3) Recording with tetrodes gives very low yields compared to silicon probe recordings. While silicon probes have a larger footprint and may occlude the widefield imaging on the side of the silicon probe implant, it is unclear why not to use denser electrode arrays on one side of the brain and image from the other hemispheres, given that the maps are very correlated across hemispheres

      Taking advantage of mirrored activity in the opposite hemisphere is a great idea. Future studies could include experiments that would take advantage of bilateral symmetry by placing high-resolution silicon probes in one hemisphere and then reading out mesoscale maps in the other.

      4) The advantage of the electrophysiological recordings is in providing access to single-neuron activity at high temporal resolution. The authors could add more quantifications regarding individual neuron functional coupling diversity. For instance, in the per-area distributions in Figure 5D -- did all neurons from a given area participate in the same functional maps, or did different neurons show diversity in the functional coupling. Did simultaneous recordings of neurons from the same tetrode show more similar maps, than recordings of other neurons from the same area conducted on different days/in different animals? Did the map differ when the neurons were bursting/were at specific phases of the LFP, etc.

      Unfortunately the yield of neurons was not enough to investigate some of the interesting state-dependent phenomena the reviewer describes. In previous work we have examined heterogeneity between single neuron responses in more detail Xiao et al. 2027 in acute work.

      5) Facial nerve stimulation. This part feels detached from the rest of the paper and is not explained/discussed in sufficient detail. For example, there is no description of the surgical procedure or the electrode used for facial nerve recordings in the Methods (in the Results section, the authors mention 'micro-wires', but the Method section only contains information about tetrodes).

      Thank you for bringing up the issue of surgical details for facial nerve experiments are now in the methods. This information is also available by contacting the authors and below.

      For facial nerve recordings, peripheral nerve activity was measured by fine wire recording directly from the nerves subserving the whisker. During surgery, mice will be anesthetized and positioned on a warming pad connected to a rectal probe, and the temperature maintained at 37 °C. A skin incision was made, exposing a small part of the buccal branch of the left facial nerve. Magnification of the surgical field with a dissecting microscope allowed a careful dissection of a nerve branch with minimum disruption of the tissues and blood supply surrounding the nerve. The appropriate site of exposure was determined by using two projection lines: a vertical line running downward, posterior from the outer corner of the eye, and a horizontal line running in the caudal direction, starting at the whisker E-row. Then two insulated fine wires (about 25 µm tips) were hooked and placed around the nerve separated about 2 mm from one another. The insulation at the ends of the wires was removed and a knot was made on each wire to prevent it from slipping. The opposite ends of each wire were soldered to a mini connector attached by dental cement to the skull. Finally, 6-0 silk sutures were used to close the skin incisions.

      The functional maps associated with facial nerve spiking show different patterns from the optogenetic stimulation maps that led to significant facial nerve responses. Specifically, the STM maps show responses in the posterior parts of the cortex, but the photostimulation map showed almost an opposite pattern, where the effects were observed in the anterior parts. The authors do not discuss this mismatch in sufficient detail. Further, the authors refer to area PTA but use partitions based on the Allen Institute, which does not indicate this area.

      The posterior parietal area location is based on our previous work Mohajerani et al. 2013 and using the Allen Institute Brain Atlas for guidance.

      Minor comments

      6) The authors mention that "on average, we obtained 3-5 neurons per tetrode implanted, and this yield was consistent across regions (Figure 2C). " -- for how long, on average, could the authors record single-neuron activity from each tetrode?

      The 3-5 neurons obtained per tetrode were recorded 1 week after tetrode implantation.

      7) Figure 4B - it is unclear what the labels "recording 1, ...5, " correspond to. Are these different recording sessions within the same day "day 8"?

      The labels "recording 1, ...5, " correspond to different recording sessions within the same day.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1) In general given several of the "equivalence groups" were distinguished from each other in Packer et al's annotation, can the authors comment more on why they aren't able to distinguish them? Are the markers listed for those cell states in Packer not expressed appropriately in these data? Or are they expressed but the states are not different enough to form discrete clusters? I suggest the possibility that the analysis choices of 20 "initial dimensions" or 1000 most variable genes filtered out some of these differences which may be encoded in later principle components, or that the use of t-SNE projection is not sufficient to resolve these distinct states.

      2) I was a bit confused by the spatial gene expression analysis. Several distinct ideas appear to be posed in the text. These ideas aren't really supported by any quantitative analysis, just the visual patterns in Figure 4B/C which I'm not sure I always agree with.

      For example, ceh-43 expression is mentioned as having "physically proximate" expression. But it is well established that different lineages form specific spatial territories (e.g. Schnabel et al 1997). Thus it seems logical that genes with specific lineage patterns will have specific spatial patterns as well. If the claim is that the observed patterns are more clustered along the A-P axis than expected by chance given their lineal complexity then I'm not sure this is shown. Maybe some comparison with control lineage patterns of similar complexity of non-TFs or non-HD TFs could get whether these genes specifically are more spatially patterned? Visually it looks to me like some patterns are more like "blobs" or even lateral or D-V specific patterns than they are like "stripes."

      In addition there is a long history in the literature discussing the origin of position-specific patterns in C. elegans - most I'm aware of support the idea that positional information arises primarily from intrinsic lineage mechanisms (e.g. Cowing and Kenyon 1996). Perhaps the authors are making this same argument here, but if so this isn't clear from the text.

      Or maybe the authors are trying to make the argument that combinations of TFs encode more precise position than individual TFs? This seems more likely to me from the images presented still not well-supported without quantitative or statistical analyses.

      3) The comparison with Drosophila is interesting but also under-developed. I think all I would feel comfortable claiming from the data as shown is that genes that are spatially patterned in early fly development are also usually patterned in the C. elegans lineage. But to even say this is an enrichment over expectation would require more analysis.

      Minor comments:

      Methods: some statement about temperature control during cell isolation would be useful. In other words were embryos continuing to develop or put at low temperature such as in a cold room to prevent temporal differences between the first and last cells collected from a given embryo?

      Current links to data at GEO are incorrect and link to Levin et al 2016 instead. I was not able to access the raw single cell data, just the processed data in Table S6.

      The standardization of expression in embryos isn't well explained - would be good to expand a little on the types of batch effects being addressed and how this approach was chosen or a relevant citation.

      Page 2: Including P0 and cell deaths there are 1,341 branches in the hermaphrodite lineage (2n-1 for 671 terminal cells including deaths).

      -"as their each have" (grammar error)

      -"very large nuclear hormone receptor domain" (add "family")

      Page 3: As noted Packer et al largely missed cells prior to the 50-cell stage as described - but the reason for this is likely that the use of 10 micron filters or centrifugation to remove undissociated embryos also removes early stage cells.

      -"few new expressions occur" (grammar). Also, in both Tintori and Hashimshony datasets there well over 1000 newly expressed genes detectable (see for example Sivaramakrishnan et al 2021 biorxiv).

      Figure S1 would be easier to interpret with a legend explaining what fates are represented by each color

      Some genes listed as markers in Figure S2 are not included in the marker table such as flh-3, oma-2, sma-9.

      "New markers were required" - this is plural but only F19F10.1 is mentioned. Were other markers examined this way or should it be singular?

      In Figure S2 the lower ("robustness") plots are nice but could be explained more clearly. What is the nature of the "cell similarity score"? How many (if any) cells were excluded due to not being most similar to their own cluster?

      "transcriptomically very similar shortly after division" - can the authors comment on any information they have about how long after division the cells were collected?

      GFP reporter lineaging - the methods are minimally described (what brand of microscope, which strains/transgene/CRISPR configurations etc). And data are not presented. If these embryos are all incorporated into Ma et al 2021, that is fine, but should be clearly cited. Otherwise it is important in my view to include some way to access the quantitative values from the lineaging and understand these details.

      "as illustrated for ceh-43, dmd-4 and unc-30" - were there other examples as suggested from this wording? I'd also note that similar fluorescent reporter imaging data have been published previously for all three genes listed (Walton et al 2015 for UNC-30, Ma et al 2021 for DMD-4 and CEH-43 protein reporters, Murray et al 2012 for dmd-4 and ceh-43 promoter reporters).

      Zacharias and Murray are cited as promoting "continuous symmetry breaking" but actually that review argued for a "non-monophyletic" architecture similar to that supported by the data .

      The text and figure don't always agree. For example mec-3 expression is listed in the text as part of one of the stripes, but mec-3 is not labeled on the figures.

      The stage of each embryo in figure 4B/C should be explicitly labeled (and maybe also given specific figure panel designations to clarify what statements in the text correspond to which figures).

      In the discussion it is unclear what the numbers "97 to 104" refer to

      The scRNA-seq reads were mapped to a relatively old genome build and annotation set (WS230) - thus current users may find discrepancies with current gene names in WormBase. Also, since the CEL-seq data are 3' biased, it is worth noting that Packer et al found that a substantial number of genes (~1000) in a slightly later annotation set (WS260) were undercounted (sometimes dramatically) with the similarly biased 10x data due to incomplete 3'UTR annotations. While I would be reluctant to ask for a requantification for the purposes of the manuscript given the challenges of repeating the various analyses, it is worth explicitly mentioning whether this was dealt with.

      Reviewer #2 (Recommendations For The Authors):

      The writing was otherwise good, at least to my eye, and the data was presented very well and made freely available to other researchers. I am not as well-versed in the statistical methods and will leave comments on these to a better-equipped reviewer(s).

      Fig. 1 legend 'P' should be P4 (subscript 4).

      p. 9 'ceh-51' should be italicized. Only one factor seems to have been confirmed by smFISH, F19E10.1. There are available reporters, did they show a similar pattern? From CGC website: RW12347 F19F10.1(st12347[F19F10.1::TY1::EGFP::3xFLAG]) V endogenous tagged reporter; RW11620 unc-119(tm4063) III; stIs11620 [F19F10.1::H1-wCherry + unc-119(+)] array reporter.

      Reviewer #3 (Recommendations For The Authors):

      Typo: on page 11, where it says nanog it should read nanos.

      Reviewer #4 (Recommendations For The Authors):

      I found some sentences and paragraphs to be a bit unclear. There are no page or line numbers in the manuscript, so I point in the general direction, and hope the authors find what I am referring to.

      • 2nd paragraph of the Introduction - "their" should be "they", but the sentence as a whole is not clear.

      • 3rd para. of the Intro. - The last sentence of this paragraph doesn't make sense. Please rephrase and/or break up into shorter sentences.

      • 1st Para. of Results - "the maternal deposit" is not clear. Perhaps "maternally deposited transcripts" or something similar.

      • 1st Para. after Figure 3. The last sentence "Thus, continuous symmetry breaking..." is unclear. What is "continuous symmetry breaking"? Please define and expand.

      • Fig. 4 - the genes seem to be listed from posterior to anterior. The common way of presenting Hox gene lists and other regionally expressed genes is from anterior to posterior.

      • For the benefit of the non-C. elegans crowd, please give names of Drosophila homologs where relevant (e.g., when comparing to Drosophila expression patterns)

      In a few places there are citations of popular science books or general textbooks (e.g., Carrol et al., 2004; Wolpert et al., 2019) . I think it would be better to cite review papers from the scientific literature or relevant primary papers.

      I am very happy to submit the revised manuscript. We were very happy to have received reports from four reviewers!

      We have decided not to prepare a separate response to the public comments of the reviewers, as we did not undertake any further major revisions.

      We did address most of the minor editorial suggestions.

    1. Author Response

      eLife assessment

      This paper presents a series of experiments investigating the role of cadherin-11 mediated interactions between cancer cells and fibroblasts in metastasis using updated 3D cell co-invasion assays. The primarily descriptive data are a valuable contribution to our understanding of the nature of cross cell-type interactions in metastasis, but are incomplete with respect to the far-reaching conclusions about the central role cadherin-11, especially given the complex nature of the phenotype and the need to better contextualize these observations in a complete picture of metastasis.

      We extend our gratitude to eLife for affording us the opportunity to publish our manuscript as a peer-reviewed preprint. We acknowledge that our exploration of the novel cell hijacking mechanism underlying cancer metastasis remains an evolving endeavor. Being the inaugural study to introduce this innovative phenotype, substantiated by comprehensive in vivo investigations that underscore its real-world significance, we eagerly anticipate forthcoming research in this domain. The inception of the concept of cancer metastasis dates back to the 18th century. Throughout the extensive journey marked by a multitude of millions of publications in this field, our work introduces a transformative and disruptive dimension with the unveiling of this cell hijacking mechanism. Simultaneously, it initiates a deeper exploration of the intricacies within the metastatic process. We sincerely value the meticulous assessment of our work and look forward to subsequent investigations that will elucidate these findings within the broader context of metastasis.

      Joint Public Review:

      The authors of this manuscript studied cell-cell interaction between fibroblast and cancer cells as an intermediary model of tumor cell migration/invasion. The work focused on the mesenchymal cadherin-11 (CDH11) which is expressed in the later stages of the epithelial mesenchymal transition (EMT) in tumor cellular models, and whose expression is correlated with tumor progression in vivo. The authors employed 3-D matrix and live cell imaging to visualize the nutrient-dependent co-migration of fibroblast and cancer cells. By siRNA-based suppression of CDH11 expression in tumor cell line and/or fibroblast cells, the authors observed decreased co-movement and attenuated growth of mixed xenograft. Accordingly, the authors conclude that post-EMT cancer cells are capable of migrating/invading through CDH11-mediated cell-cell contact.

      While the data point to the involvement of CDH11 in fibroblast mediated co-invasion, as it stands it is difficult to fully contextualize these observations within the broader context of the molecular mechanisms underlying metastasis, and in particular do not firmly establish a primary role for CDH11 at this time. The reviewers were specifically concerned about indirect effects of CDH11 manipulation on the physiology and cell biology of the tumor cells, and the possibility that several of the results could be consequences of these changes rather than due specifically to CDH11 mediated interactions.

      The reviewers acknowledge the difficulty in fully controlling for these phenomena, and believe this work will be of interest to the large number of researchers investigating the molecular basis for metastasis and specifically of trans cell-type interactions. However until experiments establishing the specific formation and CDH11-mediated interactions in co-invasion are carried out, the author's conclusions about the prominent role of CDH11 should be treated as intriguing, but speculative.

      We extend our sincere gratitude to the peer reviewers for their invaluable and constructive feedback. We also wish to express our appreciation for the concise summary of our study and the recognition of the challenges posed by the current technological landscape in fully elucidating the phenotype.

      In response to the reviewer's concerns regarding the indirect effects of CDH11 manipulation on the physiology and cellular biology of tumor cells, we encourage readers to revisit Figure 3. In this figure, we not only silenced CDH11 in cancer cells but also in fibroblasts. The outcomes of this intricate experiment have been comprehensively discussed in the main text and are visually summarized in Supplemental Figure S2.

      Furthermore, we draw attention to a comprehensive review of our in vivo studies presented in Figure 6, wherein we exclusively silenced CDH11 in fibroblasts without any manipulation of the cancer cells. These findings underscore the molecular underpinnings of CDH11 as the mediator of cell hijacking. Consequently, we are confident that the reviewer's concerns regarding potential side effects of CDH11 manipulation on tumor cells, which could weaken the manuscript's conclusions, can be addressed.

      In conclusion, we wish to emphasize that we shared the same initial concerns as our reviewers when designing these studies. We have diligently endeavored to alleviate these concerns through a series of comprehensive in vitro, ex vivo, and in vivo experiments. Once again, we strongly encourage readers to explore our supplemental data for a more in-depth understanding. Thank you.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the reviewers for their remarks which significantly improved the paper. Following these remarks we completed the analysis and validation of our cryo-EM data and peformed several biochemical tests to support our conclusions, lending credbility to the paper. Please find our detailed answers bellow each recommendation of the reviewers.

      Major recommendations

      1) Errors and omissions in the presentation make the manuscript difficult to access.

      a) The text should be edited for grammatical errors more carefully

      • We corrected the grammatical errors.

      b) Figures should be labeled to allow the reader to follow the logic of the presentation and identify the features being discussed. Identification through the color coding (the identity of the histones, the location of zinc fingers, the active site, and so on) would be helpful.

      • We labeled the Rossman fold and Zn-finger domains in Figure 1 and described the histone color codes. The active site of SIRT6 is depicted in Figure 4.

      2) The recent publications from the Farnung/Cole and Peterson/Tan/Armache labs need to be cited and the results from Smirnova et al. compared and contrasted with those publications explicitly.

      • We added the following paragraph to the discussion section:<br /> “While this manuscript was under review two studies describing the structure of SIRT6-NCP appeared in press (Wang et al., 2023 ; Chio et al., 2023). The conclusion of these papers regarding the position of SIRT6 on the nucleosome and the unwinding of DNA by the enzyme are similar to our findings. We however dissected in addition the movements of SIRT6 on the nucleosome and analyzed via molecular dynamics the conformations of the H3 tail with respect to the SIRT6 active site. Our results point to the importance of the flexibility between the globular domains of SIRT6 and also explain how SIRT6 can access lysines that are much closer to the histone core than H3K9.”

      a) Notably, the Peterson/Tan/Armache labs suggest that H3K27 cannot be deacetylated by SIRT6 whereas the Farnung/Cole labs show deacetylation of H3K27 by SIRT6. Do the results of the Smirnova et al. structure help to resolve this situation?

      • We performed deacetylation tests of H3K27Ac nucleosomes and show that SIRT6 deacetylate H3K27Ac albeit at somewhat lower efficiency than H3K9Ac. Our molecular dynamics simulations explain how H3K27, which is close to the histone core, can still be reached by SIRT6 active site. We added the following text to the paper: “To lend support to this claim we tested whether SIRT6 can deacetylate residue H3K27 that was first acetylated by SAGA (Supplemental Fig. 7c). We find that indeed SIRT6 could efficiently deactylate H3K27Ac, although at a somewhat slower rate than H3K9Ac. We conclude that partial DNA unwrapping by SIRT6 allows H3-tail conformations that make lysines that are close to the core of H3 accessible to the enzyme.”

      b) The Farnung/Cole labs have visualized an intermediate state of deacetylation. How does this compare to the structure presented in this manuscript? Addressing these points would facilitate further research and discussion in the community.

      • We believe the resolution of the SIRT6 Rossmann fold precludes addressing these points.

      c) Can the authors exclude the possibility that the additional density observed in Supplemental Figure 6 is not coming from the H3 tail, as observed in the two other structures?

      • One density is the continuation of the H2A histone tail. We strongly believe that this density corresponds to this tail. The other density indeed can originate from the H3 tail. Therefore, we didn’t model anything inside it.

      d) It would be useful to comment on how much flexibility has been observed in the other structures for the SIRT6 interaction with the acidic patch, and also how other acidic-patch binding proteins compare with the results here.

      • We refrain from estimating the flexibility observed in the other structures as no such analysis is provided by these papers. Regarding the interaction with the acidic patch we mention that R175 packs against H2B L103 and serves as a classical “arginine anchor motif” and refer the reader to a review on the topic.

      e) Does the presence or absence of NAD+ affect the comparisons among the structures?

      • NAD+ binding might affect the fine structure of the active site although NAD+ was not observed in crystal stuctures of SIRT6 in its presence. The resolution of this part precludes further addressing this issue.

      3) The lack of biochemical validation of conclusions should be acknowledged and the reasoning behind this choice discussed.

      • We added experiments to validate our conclusions with biochemical tests. We produced nucleosomes with acetylatexd histone H3 by employing purified SAGA acetyltransferase complex. We isolated SIRT6 where the four residues implicated in interactions with the acidic patch are mutated to alanines (SIRT6-4A). We show that this mutant has very weak interaction with the nucleosome and much lower H3K9Ac deacetylation activity than WT. Similarly SIRT6-3A with mutations in the residues we suggest involved in binding to nucleosomal DNA also shows weak activity and binding to the nucleosome. We added Supplement Figure 7 that depicts the results of these experiments and embedded reference to these results in the approporiate sections of the text. Furthermore, we also show that SIRT6 is active in deacetylating H3K27Ac. This supports our molecular dynamics simulations showing that when SIRT6 binds the nucleosome, H3 tail can assume conformations where H3K27 is accessible by the enzyme’s active site. These results also appear in Supplement Figure 7.

      4) The authors nicely analyze and discuss the conformational flexibility of SIRT6 binding. This is an interesting finding, but Fig. 2 does not adequately convey this flexibility.

      • We now considerably improved Figure 2. We added panels c and f which depict clearly the movements we observe.

      5) The authors need to explain why two cryo-EM datasets were collected but were not merged, and the labeling of the datasets in the Supplemental Table appear to be switched.

      • The two datasets were collected with two very different pixel spacing therefore merging the two was possible only in Relion. This process, however, did not improve the resolution of the SIRT6’s Rossmann fold domain. We thank the reviewer to notice the discrepancy in the text and the Supplemental Table 1, it was corrected.

      6) Supplemental Figure 4 should be expanded to show additional representative densities with the respective fit of the model. This will allow the reader to better judge the quality of the data. At least the acidic patch interaction, the DNA-SIRT6 interactions, and the H2A should be shown in this context.

      • To illustrate the high-resolution features of the structure as well as the key regions we added Supplemental Figure 4.

      7) Standard elements of data analysis and validation should be included (angular distribution plots for cryo-EM reconstructions, a 3D FSC sphericity plot, a Q-score and EMRinger score for the cryo-EM data and atomic model, a model-to-map FSC curve). In general, model building is poorly described as it is unclear which maps (or to what degree different maps) were used for this process. This should be clarified in the methods section and in the Supplemental Table 1.

      • The model validation and data analysis details were added to Supplemental Figures 2 and 3 as well as in Supplemental Table 1.

      8) The provided maps also do not fully recapitulate the path of the H2A tail. The various density maps and PDB provided for this review do not support the final modeled residues of H2A between residues #118/119-123. This affects the validity of figure 3E and the discussion of the proximity of the potential substrates to the active site. The authors should clarify how they inferred that this is the H2A tail rather than the loosely bound SIRT6 Nterminal loop (whose stability could be altered by the presence or absence of NAD+) as suggested by overlaying the relevant crystal structures.

      • We added a panel to Supplemental Figure 4 (d) depicting the density where the H2A tail was modelled.

      9) The authors should explain how the data produced an asymmetrically oriented complex with a single SIRT6 molecule bound to one face. Were complexes with two SIRT6 molecules excluded? Is supplementary figure 4A the basis for the orientation and is this sufficient for this purpose?

      • Complexes with two SIRT6 molecules were present but only at around 1.5 percent of the whole dataset. These images were excluded from the refinement (shown in Supplementary Figure 2). The DNA orientation is depicted in Supplementary Figure 5A. The resolution obtained at the dyad (~2.5Å) allowed us to distinguish purine and pyrimidine bases. The Widom 601 sequence is asymmetric and the densities clearly show that there is only one orientation of the DNA observed with respect to SIRT6.

      10) The authors should clarify how supplemental figure 4B supports the conclusion that DNA is unwrapped. The density is not readily visible and docking of a simple DNA model in the ZN-focused map does not clearly rule out the possibility that this density comes from the H3 N-terminal tail.

      • We added to this figure the cryo-EM densities used to model the DNA path and the orientation of SIRT6. This image is now Supplemental Figure 5c.

      Minor recommendations

      1) The scale bar is missing for the 2D classes shown in Supplemental Figure 2.

      • We added the scale bar to the image depicting the 2D classes in Supplemental Figure 2.

      2) Masked classifications should be shown in the classification tree (Supplemental Figure 2 +3) with the masks shown as a transparent volume.

      • We now show the mask used for the 3D classifications of the SIRT6’s Rossman fold domain in Supplemental Figure 2.

      3) Supplemental Figure 3 should show the indicated 3D classifications in the classification tree.

      • We added the 3D classifications in Supplemental Figure 3.

      4) The authors should consider applying local CTF refinement and particle polishing to improve their resolution.

      • We did local and global CTF refinements. Polishing didn’t improve the resolution as movie frame alignment was done outside of Relion.

      5) The descriptions of the Widome 601 sequence orientation should be less ambiguous, perhaps mentioning the AT-rich and AT-poor arms instead of left and right arms.

      • We corrected the text as required.

      6) The statement "Such a large change in DNA trajectory is reminiscent of the chromatin-remodeler ATPases or pioneer transcription factors binding to nucleosome but was not observed in other histone modifiers" requires a citation.

      • We added approporiate references.

      7) The authors should provide a supplemental figure of the nucleosome-SIRT6 and PRC1-nucleosome structure comparison to complement the discussion section.

      • We refer the reader to the paper describing the PRC1-nucleosome structure.
    1. Author Response

      We would like to express our gratitude to the Editors and Reviewers for their thoughtful and helpful comments. We sincerely appreciate the opportunity to submit our revised manuscript titled “Predicting Ventricular Tachycardia Circuits in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy using Genotype-specific Heart Digital Twins” to eLife. We are delighted that our research in ARVC has garnered the interest of the three reviewers. Below, we provide our point-by-point responses to the reviewers’ comments. We have also incorporated the suggestions provided by the reviewers in our revised manuscript.

      Comments from Reviewer 1

      We thank Reviewer 1 for their positive assessment and thoughtful suggestions. Here are the responses to the comments of reviewer 1:

      Comment 1: One addition that could add more insight is to predict the effect of structural remodeling alone well, considering only normal electrophysiological models.

      We thank the reviewer to give this thoughtful suggestion to our experiment design. We would like to highlight that this suggestion was indeed taken into consideration in our study as all the patients’ hearts were modeled using the gene-elusive cell model before the structural-EP mismatch was implemented. The gene-elusive cell model is a baseline ten Tusscher (TT2) human ventricular model described in the “Cell-level modeling” of our Methods. Therefore, we have already examined the impact of structural remodeling alone in the study.

      Comment 2: Another interesting approach would be a sensitivity analysis, to determine how sensitive the VT circuits are to the specific geometry of the patient and remodeling that occurs during the disease, such an approach could also be used to determine how sensitive the outputs are to electrophysiological model inputs.

      We think this suggestion is of great value and could benefit our future ARVC studies. The reviewer pointed out the importance of investigating how sensitive the VT circuits are to the specific geometry/remodeling of the patient during disease progression. To achieve this, for each patient, a sequence of LGE-CMR images at different stages of this disease is required for model reconstruction; unfortunately, our cohort for this study does not incorporate such data.

      Comments from Reviewer 2

      We thank Reviewer 2 for the positive assessment, and here are the responses to the comments:

      Comment 1: I appreciate that the types of computational models detailed in this paper take enormous time to develop. However, to identify bottlenecks in the clinical workflow (and thus targets for future research), it may be nice for the authors to discuss the time taken to generate and run the models for each patient?

      We sincerely appreciate the valuable feedback from the reviewer. We recognize the importance of considering model generation and run time. In the introduction, we have highlighted the clinical challenge in managing ARVC ablation procedures, which is the inability to capture all the VT due to an incomplete understanding of VT mechanisms. We acknowledge the reviewer’s concern regarding the potential time taken by the model to predict VT circuits and whether this could hinder the integration into the current ablation procedure. However, it is important to clarify that our model is primarily based on clinical images obtained in advance of the procedure. As a result, there is sufficient time available to generate the results required for ablation planning.

      Comment 2: In the Materials and Methods section, some references are underlined? Is this a typo or meant to convey some particular information?

      We thank the reviewer for pointing this typo out and we have removed the underlining of references in our revised manuscript.

      Comment 3: The authors state that the cellular models are available from the CellML model repository. This is an excellent practice. However, the URL that is given points to the entire CellML website. It will be more useful for URLs that point to the specific models used in the study so that readers can be sure they are looking at the correct model.

      We appreciate the reviewer for this suggestion, and we have edited the URL in Data Availability to link to a specific cell model on the CellML website.

      Comment 4: In the abstract, the authors report the sensitivity, specificity, and accuracy of their computer models but fail to comment in the abstract that they are comparing against recordings from the patient during a previous EPS study. To assist further readers who are scanning the abstract, the authors may wish to add a sentence or two to detail what they are comparing their model results to.

      We thank the reviewer for the suggestion. This is a retrospective study. We recognize the importance of wording clarity in the abstract; in response, we have added a sentence in the abstract to clarify that we compared VT locations of Geno-DT with the ones recorded during clinical EPS to obtain sensitivity, specificity, and accuracy.

      Comment 5: In Table 1 some of the data is discrete e.g., the number of patients on a beta-blocker. The authors give a p-value for comparing the GE and PKP2 data and state in the caption that a Student's t-test has been used. Strictly speaking, a t-test is not really appropriate for the population proportion with non-parametric data. That said, the size (n) of the data here makes the p-values from any statistic very unreliable. Perhaps the authors might like to reconsider if p-values add anything to such data? If so, then the statistical test should be reconsidered.

      We truly appreciate the reviewer for pointing out this typo in the caption of Table 1. For the non-parametric discrete data, we used z-test, a common statistical method used to compare percentages, to get the p values, but we mistakenly only mentioned t-test in our caption. We acknowledge the limitation of our sample size and we have corrected this typo in our revision.

      Comment 6: I found Table 1 and its caption a little confusing. The authors put the range in [] brackets and then abbreviated standard deviation with () brackets. On initial reading, I incorrectly assumed that the numbers in the table in () brackets were standard deviations when, in fact, they are percentages. Perhaps the authors could consider changing the caption so that the percentage is in, say, {} brackets and make the caption say that values are given as n {%} etc.

      We appreciate the reviewer for pointing this out and we recognize that certain expression in the Table 1 caption is confusing. In our revised manuscript, we used n {%} to replace n (%) and deleted the abbreviated standard deviation which has not been used.

      Comment 7: In the caption for Figure 2 the authors present action potentials "at steady state". Adding the pacing frequency (or cycle length) for the steady state would be useful.

      We thank the reviewer for pointing this out. We agree that showing pacing frequency is important and we have made the edit in our revision.

      Comment 8: In Table 2 the VT locations are compared between the EPS and the Geno-DT model. The comparison metrics listed in the table should be better described in the table caption. It is unclear if the authors compare VT locations in the AHA segments or if the specific geometric location is used. If it is a geometric location, then I would have expected to see information on the mean error distance or similar information? If it is a comparison of AHA segments, there could be a problem if a VT location was very close to the border between segments. The predicted VT location might be very close to the measured VT location but may end up in a different segment? The authors may like to clarify the methodology and/or discuss these issues.

      We thank the reviewer for this comment. We recognize the need for clarification on the comparison metrics of Table 2. In the text related to Table 2, we used the wording “anatomical location” to avoid excessive repetition of mentioning AHA segments. However, we agree that reverting it back to the “AHA segment” will reduce confusion. Regarding the point of comparing exact locations the reviewer mentioned, in clinical settings, clinicians primarily rely on AHA segments to describe the VT locations during ablation and descriptions in the EP report, rather than using exact coordinates. As such, a match between our predicted AHA segments and clinical AHA segments is a direct comparison. This alignment provides a meaningful comparison and is sufficient for assisting ablation procedures.

      Comment 9: In Figure 7, activation maps are shown, and the row is labelled as Induced VTs/Geno-DT. Are the colour maps from the model or the EPS measurements? The last sentence of the caption indicates they are from the measurements, but such detailed full-wall maps seem to be from a model. The authors may like to clarify what the figure shows.

      We thank the reviewer for this comment. We understand the reviewer’s concern regarding the clarity of Figure 7’s caption. While we believe that the first bold sentence in the caption adequately clarifies that the results in Figure 7 are derived from the Geno-DT model, we agree with the reviewer that it is needed to further enhance the wording clarity. In response, we have made the necessary edits to the caption in our revised manuscript.

      Comments from Reviewer 3

      We thank Reviewer 3 for giving the positive assessment. Here are the responses to the comments.

      Comment 1: The small sample size is a limitation but has already been acknowledged and documented by the authors.

      We thank the author for this comment, and we acknowledged the small sample size as a limitation in our manuscript.

      Comment 2: Another limitation is the consideration of only two of the possible genotypes in developing the cell membrane kinetics, but again has been acknowledged by the authors.

      We thank the author for this comment, and we acknowledged the consideration of only two genotypes as a limitation in our manuscript. We hope to enlarge the genotype groups in our future ARVC studies.

    1. Author Response

      We thank the reviewers for their helpful comments and thorough assessment of our manuscript which will allow us to improve the work in a subsequent revision. Many suggestions, such as mutating residues to help validate the proposed site will be included in a future revision. Below we clarify three aspects that led to confusion in the initial review

      The comment of reviewer 2 that “... the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker, an interaction that is expected to delay fast inactivation if it happens at the resting state." is true. However, as explained in our manuscript (Fig. 7), we don’t expect binding at this position to happen in the resting state as the C-terminal domain is bound to this region, impeding PIP binding.

      Reviewer 2 also suggests that we produce a resting state model of Nav1.4 to replace/supplement the results we obtained using our resting Nav1.7 model. We chose to model Nav1.7 due to the availability of structures with different VSDs in the deactivated conformation, something that is not true for Nav1.4. While we plan to explore a Nav1.4 resting state based on the reviewer's suggestion, we note that this introduces an extra layer of uncertainty. However, due to sequence conservation of the gating charges and proposed binding site residues between Nav subtypes, we propose very similar modes of PIP binding among the Nav subtypes across the different conformations.

      Finally, we strongly disagree with the reviewer’s assessment that there are ‘There are a lot of incorrect statements in many areas’ and this may have come from a misreading of the mentioned sentence. The sentence in question reads "These diseases 335 are associated with accelerated rates of channel recovery from inactivation, consistent with our observations that an interaction between PI(4,5)P2 and the residue corresponding to R1469 in other Nav 337 subtypes could be important for prolonging the fast-inactivated state." To which the reviewer 2 states ‘Prolonging the fast inactivated state would actually reduce recovery from inactivation and not accelerate it.’ The statement quoted is not incorrect – from the original experiments we know that the presence of PIP prolongs the time spent in the fast inactivated state. Mutations at the PIP binding site are likely to reduce PIP binding, and with less PIP present the channel will recover from inactivation more quickly. We appreciate that this sentence could be reworded for clarity and will address this in our revision to prevent such misreading.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for your recent editorial decision on our manuscript. I have included a revised version of our manuscript in which we have addressed all of the required editorial and referees’ comments as requested. In summary, we have added substantial amounts of new data and analysis (new Fig. 5D; Supplementary Figures S1E, S3C, S3E, S3I, S4C), amended several figures (Figures 2 and 3), added a new supplementary Table (Table S2) and we have changed the text and figure labelling/presentation in appropriate places to clarify or correct the issues raised by the reviewers.

      In summary, we firmly believe that we have addressed all the outstanding issues in a positive manner and that the manuscript is now suitable for publication in eLife. I look forward to receiving your final editorial decision on this manuscript.

      eLife assessment:

      ZMYM2 is a transcriptional corepressor but little was known about how it is recruited to chromatin. This study reveals that ZMYM2 homes to distinct classes of retrotransposons bound by the TRIM28 and ChAHP complexes in human cells, an important finding in the field of transcriptional regulation. The evidence supporting the claims of the authors is solid, although inclusion of more functional data would have strengthened the original model proposed.

      We have taken all the comments on board and provided additional new experimental data where requested and more data analysis to substantiate our claims.

      Reviewer #1 (Public Review):

      Owen D et al. investigated the protein partners and molecular functions of ZMYM2, a transcriptional repressor with key roles in cell identity and mutated in several human diseases, in human U2OS cells using mass spectrometry, siRNA knockdown, ChIP-seq and RNA-seq. They tried to identify chromatin bound complexes containing ZMYM2 and identified known and novel protein partners, including ADNP and the newly described partner TRIM28. Focusing mainly on these two proteins, they show that ZMYM2 physically interacts with ADNP or TRIM28, and co-occupies an overlapping set of genomic regions with ADNP and TRIM28. By generating a large set of knockdown and RNA-seq experiments, they show that ZMYM2 co-regulates a large number of genes with ADNP and TRIM28 in U2OS cells. Interestingly, ZMYM2-TRIM28 do not appear to repress genes directly at promoters, but the authors find that ZMYM2/TRIM28 repress LTR elements and suggest that this leads to gene deregulation at distance by affecting the chromatin environment within TADs.

      A strength of the study is that, compared to previous studies of ZMYM2 protein partners, it investigates binding partners of ZMYM2 using the RIME method on chromatin. The RIME method makes it possible to identify low-affinity protein-protein interactions and proteins interactions occurring at chromatin, therefore revealing partners most relevant for gene regulation at chromatin. This allowed the identification of novel ZMYM2 partners not identified before, such as TRIM28. The authors present solid interaction data with appropriate controls and generated an impressive amount of datasets (ChIP-seq for TRIM28 and ADNP, RNA-seq in ZMYM2, ADNP and TRIM28 knockdown cells) that are important to understand the molecular functions of ZMYM2. These datasets were generated with replicates and will be very useful for the scientific community. This study provides important novel insights into the molecular roles of ZMYM2 in human U2OS cells.

      The authors could have been more precise in the manuscript title and abstract to emphasize that these findings apply to human cells, as indeed there is no demonstration yet that the findings presented here can be transposed to mouse cells.

      We have slightly changed the title and abstract to emphasise that the findings are in human cells.

      The manuscript's main conceptual advance is that the authors propose a novel model of gene regulation whereby transcriptional repressors of transposable elements could regulate genes at distance by modulating the local chromatin environment within TADs. Additional experiments would be needed to strengthen this model. For example the authors could have performed TRIM28 ChIP in ZMYM2-kd cells to test if ZMYM2 favors the recruitment of TRIM28 to its genomic targets, as well as ChIP-seq of repressive chromatin marks (such as H3K9me3) in ZMYM2-kd cells to investigate if the loss of ZMYM2 leads to reduced H3K9me3 in ERVs and over large regions surrounding the ERVs.

      We have tested whether ZMYM2 is required for TRIM28 binding at several loci and find no evidence for this (new Supplementary Fig. S3E). We now discuss this in the results text and discussion where we already suggested that TRIM28 is likely recruited by KRAB-zinc finger proteins and ZMYM2 is subsequently recruited to this complex. Future extensive work is required to understand the mechanistic functions of ZMYM2 in these regions.

      Reviewer #2 (Public Review):

      In this study the authors investigate functional associations made by transcription factor ZMYM2 with chromatin regulators, and the impact of perturbing these complexes on the transcriptome of the U2OS cell line. They focus on validating two novel chromatin-templated interactions: with TRIM28/KAP1 and with ADNP, concluding that via these distinct chromatin regulators, ZMYM2 contributes to transcriptional control of LTR and SINE retrotransposons, respectively.

      Strengths and weakness of the study:

      • The co-localization of ZMYM2 with ADNP and TRIM28 is validated through RIME, ChIP-seq and co-IP. (Notably, since both RIME and ChIP-seq rely on crosslinking, and the co-IP with TRIM28 required crosslinking due to being SUMO-dependent, only the ZMYM2-ADNP co-IP experiment demonstrates an interaction in the absence of crosslinking).

      This is not correct as the co-IP experiments between endogenous ZMYM2 and TRIM28 were not performed in the presence of cross linkers. They did have NEM added, but this was to inactivate SUMO proteases rather than to cross link proteins.

      • It is good that uniquely-mapped reads are used in the ChIP-seq analysis given the interest in repetitive elements. Likewise, though the RT-qPCR data in Fig5 should be complemented by analysis of the RNA-seq data that the authors already have, it seems that the primers are carefully designed such that a single retrotransposon copy is amplified.

      We re-analysed our RNA-seq data using the TEtranscripts tool and looked at TE transcription genome-wide. However very few TEs were expressed at high enough levels to get any statistically significant additional data beyond a few additional transposable elements. This likely results from the relatively low read depth we used and the lack of specific protocols being followed to preserve TE transcripts. We will return to the genome-wide effects in future studies where we plan to switch cell types and will generate more bespoke datasets (the current ones were designed for analysing effects on protein coding gene expression before we made the connection to TEs). We added additional text to the results section to indicate that we could not see widespread deregulation of subclasses of TEs but that this needs further work.

      • The top-scoring interactors are highly-abundant nuclear proteins: for example, data from the contaminant repository for affinity purification mass-spec data (https://reprint-apms.org/) show that TRIM28 is identified in 466 / 716 AP-MS experiments with a mean spectral count of 16. While this does not indicate that the ZMYM2-TRIM28 interaction is not 'true', it would have been helpful to further dissect the interaction to strengthen this conclusion. For example, it would be nice to see the co-IP (fig 3A) repeated from the cells expressing the ZMYM2 mutant that is no longer competent to bind SUMO (used in the ChIP-seq data of Fig 2). Alternatively - if the model is that ZMYM2 recruits SUMOylated TRIM28 with well-characterized TRIM28 mutants that lack SUMOylation.

      We are aware that TRIM28 is often present as an apparent contaminant in many mass spec studies. However we have provided co-IP, PLA and ChIP-seq data to support their co-association on chromatin. We also convincingly show that ZMYM2 and TRIM28 functionally converge on regulating the same gene expression programmes. As requested by the referee, we have added further data showing that the ZMYM2 protein that is defective in SUMO binding (ZMYM2(SIM2mut); new Supplementary Fig. S3C) shows reduced binding to TRIM28 in co-IP assays. This further strengthens the (SUMO-dependent) association between ZMYM2 and TRIM28.

      • The transcriptional response using bulk RNA-seq in ZMYM2-depleted cells is rather gene-centric despite the title of the paper being about TE transcription. In fact the only panels about TE transcription are the RT-qPCR data in Fig 5D,F. I may be missing something (and there aren't many details given about the RNA-seq experiments) but why not look at TE transcription in an unbiased way with the transcriptomic data at hand? I appreciate potential hazards of multi-mapping etc but it would be interesting to see at least some subfamily analysis (e.g. using the TEtranscripts tool). On a similar point, why not show some RNA-seq in the genome browser snapshots of the epigenomics - together with a RepeatMasker annotation track of TEs...

      See response to the same point above.

      While the results broadly support the authors' conclusions, I have the overall impression that the central claim of TE transcriptional regulation by ZMYM2 could be strengthened a lot with some fairly straightforward additional experiments and analyses.

      Reviewer #3 (Public Review):

      ZMYM2 is a transcriptional repressor known to bind to the post-translational modification SUMO2/3. It has been implicated in the silencing of genes and transposons in a variety of contexts, but lacking sequence-specific DNA binding, little is known about how it is targeted to specific regions. At least two reports indicate association with TRIM28 targets (Tsusaka 2020 Epigenetics & Chromatin, Graham-Paquin 2022 bioRxiv) but no physical association with TRIM28 targets had been observed. Tsusaka 2020 theorizes an indirect, potentially SUMO-independent, interaction via ATF7IP and SETDB1.

      Here, Owen and colleagues show that a subset of ZMYM2-binding sites in U2OS cells are clearly TRIM28 sites, and further find that hundreds of genes are silenced by both ZMYM2 and TRIM28. They next demonstrate that ZMYM2 homes to chromatin, and interacts with TRIM28, in a SUMOylation-dependent manner, suggesting that ZMYM2 is recognizing SUMOylation on TRIM28 itself. ZMYM2 separately homes to SINE elements bound by the ChAHP complex, in an apparently SUMOylation independent manner. Although this is not the first report to show physical interaction between ZMYM2 and ChAHP, it is the first to show that ZMYM2 homes to ChAHP-binding sites and functions as a corepressor at these sites.

      The mode by which ZMYM2 and TRIM28 coregulate genic targets remains somewhat unclear. TRIM28/ZMYM2 bind to LTR elements, loss of these proteins results in upregulation of genes distal to (but in the same TAD as) these binding sites.

      Overall, the manuscript is well-written, convincing, and fills a significant hole in our understanding of ZMYM2's mechanistic function.

      We thank the referee for his/her positive evaluation of the mechanistic insights we provide. We have further added to these through addressing the specific issues raised in their “recommendations for authors”.

      Recommendations for the authors:

      The reviewers appreciated the novelty of the findings, and in particular, the use of the RIME method to identify the protein partners of ZMYM2 while bound on chromatin, and multiple validation steps of these novel ZMYM2 interactors. However, they also felt that the model presented at the end of the manuscript seems preliminary and would deserve additional experiments to be really supported, the essential ones being listed below:

      1 - Despite the claimed scope of the manuscript on TE regulation, their expression analysis is limited to RT-qPCR and targeted to a few families or copies. Please use the RNA-seq data generated in U2OS cells depleted for ZMYM2 to assess retrotransposon expression genome-wide, performing both family-level and copy-level analyses, and compare with TRIM28-depleted U2OS cells.

      We re-analysed our RNA-seq data using the TEtranscripts tool and looked at TE transcription genome-wide. However very few TEs were expressed at high enough levels to get any statistically significant additional data beyond a few additional transposable elements. This likely results from the relatively low read depth we used and the lack of specific protocols being followed to preserve TE transcripts. We will return to the genome-wide effects in future studies where we plan to switch cell types and will generate more bespoke datasets (the current ones were designed for analysing effects on protein coding gene expression before we made the connection to TEs). We added additional text to the results section to indicate that we could not see widespread deregulation of subclasses of TEs but that this needs further work.

      2 - Clarify the relationship between dysregulated genes and TAD boundaries, as this seems important to support the model of distant gene regulation by the action of ZMYM2 on local chromatin environment within TADs (see comment of Reviewer #1 and #3).

      We have now provided further support for the idea that ZMYM2 functions within TADs as detailed below in response to the reviewers comments. New bioinformatics analysis has been done which is incorporated into the paper in Fig. 4D and Supplementary Fig. S4C.

      3 - Perform TRIM28 ChIP-seq in ZMYM2-kd cells, to prove that ZMYM2 indeed participates to TRIM28 recruitment to TE loci. This could be complemented by H3K9me3 ChIP-seq, to see if ZMYM2 depletion reduces H3K9me3 at retroytransposons, and over the regions surrounding ERVs. This last experiment seems also important for reinforcing the distant regulation model of nearby genes through ZMYM2-mediated repression of retrotransposons.

      As suggested by the referees below, we have tested whether ZMYM2 is required for TRIM28 binding at several loci and find no evidence for this (new Supplementary Fig. S3E). We now discuss this in the results text and discussion where we already suggested that TRIM28 is likely recruited by KRAB-zinc finger proteins and ZMYM2 is subsequently recruited to this complex. Future extensive work is required to understand the mechanistic functions of ZMYM2 in these regions.

      Reviewer #1 (Recommendations For The Authors):

      • Figure S1D is not clear. The authors want to investigate if ADNP and ZMYM2 regulate gene expression in the same directionality. They compare the genes down in siADNP and up in siZMYM2 (or vice versa) and show very small overlaps. If I understand correctly, this shows that very few genes are regulated in opposite directions by ADNP and ZMYM2 and consequently that they tend to regulate genes in the same directionality. This is not what is said in the text page 19 ("with no clear common roles as either an activator or repressor") and should be clarified. Furthermore, to compare if ADNP and ZMYM2 regulate genes in the same directionality, there are better ways to represent this, for example scatter plots of log2 FC in ADNP kd vs ZMYM2 kd. Similar criticisms apply to Fig S3F.

      We agree that the text could be clearer and have rewritten it as “….although the large numbers of genes directionally co-regulated by these two proteins (ie either positively or negatively) indicates no clear common role as either an activator or repressor”. We have also added a scatter plot to the supplementary data (Fig. S1E) to further emphasise the common directionality of effect as suggested by the reviewer. Similarly, we changed the text and have added a scatter plot to support the conclusions on ZMYM2 and TRIM28 functional interactions (new Fig. S3I).

      • The authors suggest an indirect control of genes by ZMYM2 within TADs (Fig 4C). Yet Fig 4C does not seem to address this point. Fig 4C shows that TADs with a ZMYM2/cluster 1 peak contain more upregulated than downregulated genes, but the key question should be: are upregulated genes significantly enriched in TADs containing a ZMYM2/cluster 1 peak compared to other TADs or other genomic regions?

      We have taken this suggestion on board and determined the frequency distribution of the number of TADs containing a gene upregulated (fold change >1.6; Padj <0.01) following ZMYM2 depletion. 10,000 iterations were performed by randomly selecting 216 TADs across all 3062 TADs. The observed number of TADs containing an upregulated gene (42) from 216 TADs containing a cluster 1 ZMYM2 peak is a clear outlier in this distribution (P-value = 0.0002) (see Supplementary Fig. S4C).

      • A key question not addressed in the manuscript is whether ZMYM2 participates in the recruitment of TRIM28 to ERVs. I recommend performing TRIM28 ChIP in ZMYM2-kd cells.

      We have tested whether ZMYM2 is required for TRIM28 binding at several loci and find no evidence for this (new Supplementary Fig. S3E). We now discuss this in the results text and discussion where we already suggested that TRIM28 is likely recruited by KRAB-zinc finger proteins and ZMYM2 is subsequently recruited to this complex. Future extensive work is required to understand the mechanistic functions of ZMYM2 in these regions.

      Reviewer #2 (Recommendations For The Authors):

      Please give more details of RNA-seq analyses in the experimental section (this will be particularly important if the comment about analysing TE transcription genome-wide is acted on).

      We have now expanded on the description of the RNA-seq analysis including adding in the mapping statistics to a new Supplementary table. We followed the referee’s useful suggestion of looking at TE transcription genome-wide. However very few TEs were expressed at high enough levels to get any statistically significant additional data. This likely results from the relatively low read depth we used and the lack of specific protocols being followed to preserve TE transcripts. We will return to the genome-wide effects in future studies where we plan to switch cell types and will generate more bespoke datasets (the current ones were designed for analysing effects on protein coding gene expression before we made the connection to TEs).

      Reviewer #3 (Recommendations For The Authors):

      Major Comments:

      • The relationship of TRIM28/ZMYM2 repression of LTRs and silencing within/between TADs is interesting but underdeveloped. Upon ZMYM2 depletion, the authors observe simultaneous upregulation of genes within TADs more often than would be expected by chance, but this analysis does not distinguish "proximal to" from "in the same TAD". If a ZMYM2 binding site is X bases from a gene TSS, is it more likely to regulate that gene if it is in the same TAD? This can and should be tested bioinformatically.

      The basic question the referee is asking is whether ZMYM2 affects gene expression at a certain distance irrespective of whether the TSS of the gene is in the same TAD. We have now tested this and added text to the results section. Basically we took all of the ZMYM2 regions associated with genes upregulated by ZMYM2 depletion that resided in the same TAD and calculated the peak to TSS distance. Then we searched in the opposite direction for the TSS of genes at a similar distance (+/-25%) that resided in an adjacent TAD. We then asked whether these genes were upregulated by ZMYM2 depletion. 102 ZMYM2 peaks were positioned within these distance constraints with at least one gene in an adjacent TAD (716 genes in total). Of these genes, only 11 were upregulated following ZMYM2 depletion. There is therefore not a general spreading of deregulation around ZMYM2 peaks in a distance-dependent manner.

      Furthermore, the authors note in the text and discussion that LTRs can demarkate TAD boundaries, but this is a distinct concept from the idea that they regulate genes within a TAD. Is there evidence that ZMYM2 binding sites are found at TAD boundaries?

      We have provided more evidence to support the associations of ZMYM2 peaks with TADs and now show that they are closer than randomly expected to TAD boundaries (Fig. 4D). However they are clearly not all located very close to the boundaries.

      • The analysis of transposons expression was limited to qPCR of a handful of elements. Since the authors have conducted RNA-seq of U2OS cells depleted for both TRIM28 and ZMYM2, they can determine if certain classes of transposons are globally upregulated.

      We re-analysed our RNA-seq data using the TEtranscripts tool and looked at TE transcription genome-wide. However very few TEs were expressed at high enough levels to get any statistically significant additional data. This likely results from the relatively low read depth we used and the lack of specific protocols being followed to preserve TE transcripts. We will return to the genome-wide effects in future studies where we plan to switch cell types and will generate more bespoke datasets (the current ones were designed for analysing effects on protein coding gene expression before we made the connection to TEs). We added additional text to the results section to indicate that we could not see widespread deregulation of subclasses of TEs but that this needs further work.

      Minor Comments:

      • Typo: "human HEK393 cells". They are HEK293 cells.

      We have corrected this error.

      • "These ADNP peaks showed enrichment of binding motifs for several transcription factors with the top two motifs for HBP1 and IRF both found in over 35% of target regions (Figure 1D)." According to Ostapcuz 2018, ADNP has its own motif (CGCCCYCTNSTG). It is intriguing that this does not appear enriched in ADNP sites in U2OS cells, this seems worthy of comment.

      This is a good point, so we did an additional search using the motif found in Ostapcuk 2018 and found this in 15% of ADNP binding regions. This value is substantially lower than the 63% seen previously. It therefore is present but is not the dominant motif. This new data and its implication regarding chromatin targeting mechanisms is now discussed in the Results section around Fig. 1D.

      • Figures S2F and S2G are central to the paper and belong in the main text.

      We have now added these to the main figures as requested (meaning that Fig.2 has now been split into two separate figures {2 and 3} as became too large for a single figure).

      • A supplementary table including libraries generated and mapping statistics should be included.

      We have now added this (new Supplementary Table S2)

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for submitting your article "Microhomology-Mediated Circular DNA Formation from Oligonucleosomal Fragments During Spermatogenesis" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the assessment has been overseen by a Reviewing Editor and Diane Harper as the Senior Editor.

      eLife assessment

      This study provides valuable information on the biogenesis of eccDNAs during spermatogenesis, i.e., eccDNAs in spermatogenic cells are not derived from miotic recombination hotspots but represent oligonucleosomal DNA fragments from apoptotic male germ cells, whose ends are ligated through microhomology-mediated end-joining. The study is currently incomplete because the method of bioinformatics needs more details and data interpretation should take the amplification bias into consideration.

      We highly appreciate the positive assessment of our manuscript. Following the insightful suggestions by editors and two reviewers, we have fully addressed two major concerns, i.e., the missing of method detail and the biased data interpretation.

      First, to provide the detail of our bioinformatics methods, i) We have illustrated the principle and steps of our eccDNA detection method by Figure 4C and Figure 4-figure supplement 2B, and submitted our source codes to GitHub (website); ii) We compared the performance of our methods in comparison with four established bioinformatics tools on both simulated and real datasets, and revealed that it has comparable sensitivity and specificity (Figure 4—figure supplement 2C and E), and much higher accuracy on the assignment of eccDNA boundaries (Figure 4—figure supplement 2A, D and F); and iii) we have added more description to help readers to better understand our method (see Methods – eccDNA Detection).

      Second, the amplification bias is indeed a problem of Circle-seq. Following editors’ and Reviewer #1’s insightful suggestions, we analyzed other datasets generated by amplification-free strategies (Mouakkad-Montoya et al., PNAS, 2021) and long-read sequencing (Henriksen et al., Mol Cell, 2022). We identified the presence of homologous sequences surrounding eccDNA breakpoints in both datasets (Figure 5-figure supplement 1E and F), suggesting the involvement of MMEJ-medicated ligation for the unexplored size populations of eccDNAs by Circle-seq as well. We have discussed this point and added one section to remind readers of the limitations of rolling-circle amplification-based Circle-seq (the 2nd paragraph of Discussion section).

      For your and reviewers’ convenience, all changes in the revised manuscript have been marked in red. We hope the modified manuscript addresses your and the reviewers’ concerns satisfactorily and is suitable for publication in eLife now.

      Reviewer #1 (Public Review):

      This study aims to address the mechanism of eccDNA generation during spermatogenesis in mice. Previous efforts for cataloging eccDNA in mammalian germ cells have provided inconclusive results, particularly in the correlation between meiotic recombination and the generation of eccDNA. The authors employed an established approach (Circle-seq) to enrich and amplify eccDNA for sequencing analyses and reported that sperm eccDNA is not associated with miotic recombination hotspots. Rather, the authors reported that eccDNAs are widespread, and oligonucleosomal DNA fragments from sperm undergoing apoptosis, with the ligation of DNA ends by microhomology-mediated end-joining, would be a major source of eccDNA.

      The strength of the study includes evaluating the eccDNA contents not only in sperm but also from earlier stages of cells in spermatogenesis. The differences in eccDNA size peaks between sperm and other progenitors, in particular, the unique peak in sperm around 360 bp, are intriguing. Results from sequencing data analysis were presented elegantly.

      We are grateful to Reviewer #1 for his or her recognition of the strength of this study.

      I also have critiques. First, the lack of eccDNA quality control step is a concern. Previous studies employed electron microscopy to ensure that DNA species are mostly circular before rolling-circle amplification. Phi29 polymerase is widely used for DNA amplification, including whole genome amplification of linear chromosomal DNA. Phi29 polymerase has a high processivity and strand displacement activity. When those activities occur within a molecule, it creates circular DNA from linear DNA in vitro. In vitro-created eccDNA from linear DNA would be randomly distributed in the genome, which may explain the low incidence of common eccDNA between replicates. Therefore, it will be crucial to show that DNA prior to amplification is dominantly circular. Electron microscopy would be challenging for the study because the relatively small number of cells were processed to enrich eccDNA. An alternative method for quality controls includes spiking samples with linear and circular exogenous DNA and measuring the ratios of circular/linear control DNA before and after column purification/exonuclease digestion. eccDNA isolation procedures can be validated by a very high circular/linear control DNA ratio.

      We greatly appreciate Reviewer #1's valuable suggestions. We have introduced an exogenous circular DNA (pUC19) into our samples and measured its abundance relative to a linear DNA locus (H19 gene) before and after eccDNA isolation procedures according to Reviewer #1's suggestion. As anticipated, we observed significant enrichment of pUC19 following eccDNA isolation (new Figure 1-figure supplement 2A). These results affirm the high selectivity of our protocol in enriching eccDNAs.

      Another critique is regarding the limitation of the study. It is important to remind the readers of the limitations of the study. As the authors mentioned, rolling circle amplification preferentially increases the copy numbers of smaller eccDNA. Therefore, the native composition of eccDNA is skewed. In addition, the candidate eccDNAs are identified by split reads or discordant read pairs. The details of the mapping process are unclear from the methods, but such a method would require reads with high mapping quality; the identification of eccDNA is expected to require sequencing reads that are mapped to genomic locations uniquely with high confidence, and reads mapped to more than one genomic location, such as highly similar repeat sequences or duplications, are eliminated. Such identification criteria would favor eccDNA formed by little or no homology at the junction sequences, and eliminate eccDNA formed by long homologies at the ends, such as eccDNA formed exclusively by satellite DNA. Therefore, it is not surprising that the authors found the dominance of microhomology-mediated eccDNA. It remains to be determined whether small eccDNA with microhomologies are the dominant species of eccDNA in the native composition. In this regard, it is noted that similar procedures of eccDNA enrichment (column purification, exonuclease digestion, and rolling circle amplification ) revealed variable sizes and characteristics of eccDNA in sperm (human from Henriksen et al. or mice from this study), dependent on the methods of sequencing (long-read or short-read sequencing). Considering these limitations, the last sentence of the introduction, "We conclude that germline eccDNAs are formed largely by microhomology mediated ligation of nucleosome protected fragments, and barely contribute to de novo genomic deletions at meiotic recombination hotspots" needs to be revised.

      We thank Reviewer #1 for bringing attention to the limitations of the study. Since rolling circle amplification preferentially increases the copy numbers of smaller eccDNA, the exact size distribution of eccDNA in native composition is yet to be determined. As pointed out by Reviewer #1, our mapping and eccDNA detection processes might indeed introduce some biases since we only focused on uniquely-mapped reads. We have addressed and incorporated Reviewer #1’s perspectives in our revised manuscript, as detailed in the 2nd paragraph of Discussion section.

      Despite these limitations, microhomology mediated ligation of DNA fragments seems to be the major mechanism of eccDNA biogenesis nonetheless. We analyzed eccDNA datasets generated through long-read sequencing (Henriksen et al., Mol Cell, 2022) or amplification-free strategies (Mouakkad-Montoya et al., PNAS, 2021). Although these eccDNAs represented size populations that were largely missed by this study, our sequence feature analyses also revealed the presence of homologous sequences surrounding eccDNA breakpoints, as depicted in the newly added Figure 5-figure supplement 1E and F. Considering that we could not totally overcome these biases in this study, we have toned down some statements and revised the last sentence of the introduction as follows: “We conclude that germline eccDNAs are likely formed by microhomology mediated ligation of nucleosome-protected fragments, and barely contribute to de novo genomic deletions at meiotic recombination hotspots.”

      Small eccDNA (microDNA) data from various mouse tissues are available from the study by Dillion et al., (Cell Reports 2015). Authors are encouraged to examine whether the notable findings in this study (oligonucleosomal-sized eccDNA peaks and the association with apoptotic cell death) are unique to sperm or common in the eccDNA from other tissues.

      We are thankful to Reviewer #1 for this suggestion. We analyzed eccDNA data from various mouse tissues (Dillion et al., Cell Rep, 2015) to see whether our findings are unique to sperm or common for other tissues. Sequence-based prediction revealed significantly higher nucleosome occupancy probability for ~180 bp and ~360bp eccDNA regions, suggesting their origin from oligonucleosomal fragments (Figure 5-figure supplement 1A). In contrast to simulated controls (~20%), more than 1/3 of eccDNAs had microhomologous sequences, most of which were shorter than 5bp (Figure 5-figure supplement 1B). The remaining 2/3 of eccDNAs had the same sequence motifs between eccDNA starts and sequences following eccDNA ends, and between eccDNA ends and sequences in front of eccDNA starts (Figure 5-figure supplement 1C). The genomic distribution of eccDNAs closely matched with that of eccDNAs whose generation was dependent on apoptotic DNA fragmentation (new Figure 5-figure supplement 1D). Altogether, these results indicate microhomology directed ligation of oligonucleosomal fragments in apoptotic cells significantly contributes to eccDNA biogenesis in different mouse tissues. We have described this part in the revised manuscript (see the last 2nd paragraph of Results section).

      Reviewer #2 (Public Review):

      This study presents a useful investigation of eccDNAs in spermatogenesis of mouse. It provides evidence about the biogenesis of eccDNAs and suggests that eccDNAs are derived from oligonucleosmal DNA fragmentation during apoptosis by MMEJ and may not be the direct products of germline deletions. However, the method of data analyses were not fully described and data analysis is incomplete. It provides additional observations about the eccDNA biogenesis and can be used as a starting point for functional studies of eccDNA in sperms. However, many aspects about data analyses and data interpretations need to be improved.

      We thank Reviewer #2 for his or her critical reading. We have provided more method details, performed additional analyses and made some clarifications in our revised manuscript (see below).

      • Most of the conclusions made by the work are only based on the bioinformatics analyses, the validation of these foundlings using other method (biochemistry/molecular biology method) are missing. For example, no QC results presented for the eccDNA purification, which may show whether contaminates such as linear DNA or mitochondria DNA have been fully removed. Additionally, it is also helpful to use simple PCR to test the existence of identified eccDNAs in sperm or other samples to validate the specificity of the Circle-seq method.

      Following both this Reviewer’s and Reviewer #1’s suggestions, we performed quality control of eccDNA purification. First, we introduced an exogenous circular DNA (pUC19) into our samples and measured its abundance relative to a linear DNA locus (H19 gene) before and after eccDNA isolation procedures. As anticipated, we observed significant enrichment of pUC19 following eccDNA isolation (Figure 1-figure supplement 2A). Second, mitochondria DNA is supposed to be cleaved into linear DNA by PacI and degraded by exonuclease. As expected, the abundance of mitochondria DNA significantly decreased after eccDNA isolation procedures (Figure 1-figure supplement 2B). Third, we performed PCR using outward primers and validated three randomly-selected eccDNAs (Figure 1-figure supplement 2C).

      • The reliability of the data analysis methods is uncertain, as the authors constructed and utilized their own pipeline to identify eccDNAs, despite the availability of established bioinformatics tools such as ECCsplorer, eccFinder, and Amplicon Architect. Moreover, the lack of validation of the pipeline using either ground truth datasets or simulation data raises concerns about its accuracy. Additionally, the methodology employed for identifying eccDNA that encompasses multiple gene loci remains unclear.

      We thank Reviewer 2 for pointing out this problem. In the original version of our manuscript, focusing on one eccDNA dataset generated in this study, we have compared the performance between our method and established methods for identification of eccDNA regions, such as Circle_finder, Circle_Map and ecc_finder. Our method has comparable sensitivity and specificity with existing methods, especially Circle_finder and Circle_Map (original Figure 4—figure supplement 2C). We also used one specific genomic region to show that existing methods identified the same eccDNA regions but misassigned the eccDNA boundaries (original Figure 4—figure supplement 2A). In the revised manuscript, we have further included ECCsplorer for comparison. Since Amplicon Architect is more specifically designed for detection of ecDNAs, it was not included in our comparison. Following Reviewer #2’ suggestions, we simulated paired-end reads derived from a set of eccDNAs with homologous sequences around breakpoints and employed all methods for eccDNA identification. In total, 97.9%, 97.9%, 97.4%, 95.3% and 91.1% eccDNA regions could be detected by our method, Circle_Map, Circle_finder, ecc_finder and ECCsplorer, respectively (Figure 4—figure supplement 2C). This result suggest that our method has comparable performance in detecting eccDNA regions. However, only our method could faithfully assign breakpoints with 97.4% accuracy, in contrast to no more than 15% by other methods (Figure 4—figure supplement 2D).

      As pointed out by Reviewer #2, similar to ECCsplorer, Circle_finder, Circle_Map and ecc_finder, our method fails to identity eccDNAs that encompass multiple gene loci. We have reminded readers of this limitation in our revised manuscript. Besides the schematic workflow (Figure 4—figure supplement 2B), we have included more method details to help readers better understand how our method works (see Methods – eccDNA Detection).

      • Although the author stated that previous studies utilizing short-read sequencing technologies may have incorrectly annotated eccDNA breakpoints, this claim requires careful scrutiny and supporting evidence, which was not provided in the manuscript.

      Following this Reviewer’s suggestions, we conducted a systematic evaluation of the performance of various existing methods, namely Circle_finder, Circle_Map, ECCsplorer and ecc_finder, for eccDNA breakpoint annotation.

      First, we simulated paired-end reads derived from a set of eccDNAs with homologous sequences around breakpoints and employed all different methods for eccDNA identification. As expected, our method could correctly assign breakpoints for 97.4% eccDNAs (Figure 4—figure supplement 2D), in contrast to no more than 15% by other methods (Figure 4—figure supplement 2D).

      Second, we examined the performance of all methods on one dataset generated in this study. Our method detected 59,680, 54,898, 32,993 and 22,019 eccDNAs with homologous sequences that were also detected by Circle_finder, Circle_Map, ECCsplorer and ecc_finder, respectively. Remarkably, we observed that at least 60% of breakpoints were misannotated by the existing methods (Figure 4—figure supplement 2F).

      We have included an example in Figure 4—figure supplement 2A, where all existing methods incorrectly annotated the eccDNA breakpoints when homologous sequences were present. These results highlight the advantage of our method over existing methods in accurately annotating eccDNA breakpoints in the presence of homologous sequences.

      • The similarity between the eccDNA profiles of human and mouse sperm remains uncertain, and therefore, analyses of human eccDNA data and comparisons between the two are necessary if the authors claim that their findings of widespread eccDNA formation in mouse spermatogenesis extend to human sperms.

      Our Fig. 5 have shown that human sperm eccDNAs are originated from oligonucleosomal fragmentation (Fig. 5A-C), not associated with meiotic recombination hotspots (Fig. 5D and E) but formed by microhomology directed ligation (Fig. 5F and G). These findings are consistent with what we observed in mouse sperm eccDNAs. To further substantiate our findings, we analyzed an additional eccDNA dataset from human sperms generated by long-read sequencing (Henriksen et al., Mol Cell, 2022). Although predominantly composed of large-sized eccDNAs, the analysis of sequence features also indicated their association with microhomology directed ligation (Figure 5-figure supplement 1E). Overall, the eccDNA profiles in human and mouse sperm exhibit notable similarities.

      Reviewer #1 (Recommendations For The Authors):

      In the last sentence of the abstract, the authors stated, "provide a potential new way for quality assessment of sperms." There is no basis for the claim in the abstract. The authors need to mention the association of eccDNA with apoptosis somewhere to claim it.

      We have revised the Abstract as suggested.

      Some of the references need to be clarified. For example, Coquelle et al., 2002 described the BFB cycles and common fragile sites, but the report does not seem to be relevant to eccDNA. Mouakkad-Montoya et al., 2021 enriched eccDNA without rolling-circle amplification.

      Thanks for pointing this out. We cited Coquelle et al., 2002 to list known biogenesis mechanisms for ecDNAs but not eccDNAs. We have deleted Mouakkad-Montoya et al., 2021 in our revised manuscript, as it did not involve rolling-circle amplification.

      Reviewer #2 (Recommendations For The Authors):

      • It is not clear why the authors took 3000bp as the cutoff to divide eccDNAs into short and long categories. How many long eccDNAs in these samples?

      Henriksen et al identified size range of sperm eccDNAs as ~3–50 kb. We therefore used 3kb as an arbitrary cutoff to better compare two different eccDNA populations with those reported by Henriksen et al. SPA, RST, EST and sperm cells have 278, 609, 373 and 691 eccDNAs respectively that are longer than 3000bp. We have clarified this in the revised manuscript.

      • In figure 2D,2E, what is the zero point in the heatmaps? The 5', 3' end or center of eccDNA? Please make it clear in figure and main text.

      The zero point represents the center of eccDNA regions. We have clarified this in the revised manuscript.

      • In line 245, the author mentioned that "periodic distribution of nucleosomes was observed for ~360bp eccDNAs but not for ~180bp ones, indicating that eccDNAs from di-nucleosomes but not mono-nucleosomes preferentially originate from well-positioned nucleosome arrays (Figure 2E)". Please explain how to make the conclusion from the Figure 2E?

      Taking the H3K27me3-marked nucleosome as an example, vertical stripes were distributed every ~180bp for ~360bp eccDNAs, as shown by heatmap (more evident if in an enlarged view), and periodic signal distribution was apparent for ~360bp eccDNAs (Figure 2E), as shown by meta-gene analysis on top of heatmap (Figure 2B). However, such pattern was not observed for ~180bp eccDNAs. Similar results could also be observed for nucleosomes marked with other histone variants and histone modifications (H3, H3K27ac, H3K4me1, H3K9ac, H3K36me3, H3K9me3 in Figure 2E). Thus, eccDNAs from di-nucleosomes but not mono-nucleosomes preferentially originate from well-positioned nucleosome arrays in sperm.

      • In line 261, the author mentioned: "the large-sized sperm eccDNAs detected in this study also displayed weak but apparent negative correlation with gene density and Alu elements (Figure 3C and D)". However, the data didn't show the "apparent negative correlation", as only one or two data points may support this conclusion and the p-values are not even close to 0.05.

      Many thanks for pointing this out. We have toned down this statement as “the large-sized sperm eccDNAs detected in this study displayed a weak negative correlation with gene density or Alu elements (Figure 3C and D)”.

      • The enrichment of both active (H3K27ac, H3K9ac) and repressive (H3K9me3) histone markers in the original loci of eccDNA poses an intriguing question: how can this seemingly contradictory pattern be explained? In the H3K9me3 heatmap, the average level of H3K9me3 in eccDNA is lower than control's, how to interpret the result?

      We found that small-sized eccDNAs were more enriched at H3K27ac-marked euchromatin regions (Figure 2C-E and 3A), while large-sized ones were more enriched at H3K9me3-marked heterochromatin regions (Figure 3A). This is probably because heterochromatin regions are too condensed to be fragmented into smaller pieces for small-sized eccDNA formation, in comparison with euchromatin regions. We have included this information in our revised manuscript.

      H3K9me3 histone marks are enriched at repeat sequences that are widely distributed within the mouse genome. Moreover, the H3K9me3 ChIP-seq dataset we analyzed in this study had the highest number of ChIP-seq peaks, compared to ChIP-seq datasets of other histone modifications. Thus, even random control would probably have stronger ChIP-seq signals than small-sized eccDNAs (e.g., ~180bp or ~360bp eccDNAs) that were preferentially generated from active regions.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Developing vaccination capable of inducing persistent antibody responses capable of broadly neutralizing HIV strains is of high importance. However, our ability to design vaccines to achieve this is limited by our relative lack of understanding of the role of T-follicular helper (Tfh) subtypes in the responses. In this report Verma et al investigate the effects of different prime and boost vaccination strategies to induce skewed Tfh responses and its relationship to antibody levels. They initially find that live-attenuated measles vaccine, known to be effective at inducing prolonged antibody responses has a significant minority of germinal center Tfh (GC-Tfh) with a Th1 phenotype (GC-Tfh1) and then explore whether a prime and boost vaccination strategy designed to induce GC-Tfh1 is effective in the context of anti-HIV vaccination. They conclude that a vaccine formulation referred to as MPLA before concluding that this is the case.

      Clarification: MPLA serves as the adjuvant, and the vaccine formulation is characterized as a Th1 formulation based on the properties of the adjuvant.

      Strengths: While there is a lot of literature on Tfh subtypes in blood, how this relates to the germinal centers is not always clear. The strength of this paper is that they use a relevant model to allow some longitudinal insight into the detailed events of the germinal center Tfh (GC-Tfh) compartment across time and how this related to antibody production.

      Weaknesses: The authors focus strongly on the numbers of GC-Tfh1 as a proportion of memory cells and their comparison to GC-Tfh17. There seems to be little consideration of the large proportion of GC-Tfh which express neither CCR6 and CXCR3 and currently no clear reasoning for excluding the majority of GC-Tfh from most analysis. There seems to be an assumption that since the MPLA vaccine has a higher number of GC-Tfh1 that this explains the higher levels of antibodies. There is not sufficient information to make it clear if the primary difference in vaccine efficacy is due to a greater proportion of GC-Tfh1 or an overall increase in GC-Tfh of which the percentage of GC-Tfh1 is relatively fixed.

      We appreciate the reviewer's comment. Indeed, while there is substantial literature on Tfh subtypes in blood, the strength of our study lies in utilizing a relevant model to provide longitudinal insights into the dynamics of the germinal center Tfh (GC-Tfh) compartment over time and its relationship to antibody production. Regarding the concern about the comprehensive analysis of GC Tfh subsets, including GC-Tfh1, GC-Tfh17, and others not expressing CCR6 and/or CXCR3, we fully acknowledge its importance. To address this, we will conduct a detailed analysis of GC Tfh and GC Tfh1 frequencies, encompassing subsets without CCR6 and CXCR3 expression, to provide a more comprehensive view of the GC-Tfh population in our analysis.

      Reviewer #2 (Public Review):

      Summary:

      Anil Verma et al. have performed prime-boost HIV vaccination to enhance HIV-1 Env antibodies in the rhesus macaque model. The authors used two different adjuvants, a cationic liposome-based adjuvant (CAF01) and a monophosphoryl lipid A (MPLA)+QS-21 adjuvant. They demonstrated that these two adjuvants promote different transcriptomes in the GC-TFH subsets. The MPLA+QS-21 adjuvant induces abundant GC TFH1 cells expressing CXCR3 at first priming, while the CAF01 adjuvant predominantly induced GC TFH1/17 cells co-expressing CXCR3 and CCR6. Both adjuvants initiate comparable Env antibody responses. However, MPLA+QS-21 shows more significant IgG1 antibodies binding to gp140 even after 30 weeks.

      The enhancement of memory responses by MPLA+QS-21 consistently associates with the emergence of GC TFH1 cells that preferentially produce IFN-γ.

      Strengths:

      The strength of this manuscript is that all experiments have been done in the rhesus macaque model with great care. This manuscript beautifully indicated that MPLA+QS-21 would be a promising adjuvant to induce the memory B cell response in the HIV vaccine.

      Weaknesses:

      The authors did not provide clear evidence to indicate the functional relevance of GC TFH1 in IgG1 class-switch and B cell memory responses.

      We appreciate the recognition of our meticulous work in the rhesus macaque model and the potential of MPLA+QS-21 as an adjuvant for HIV vaccine-induced humoral immunity. We acknowledge the need to provide clearer evidence of the functional relevance of GC Tfh1 in IgG1 class-switching and B cell memory responses. We will attempt to address this concern in our revisions.

    1. Author Response:

      We thank the editors and reviewers for their thoughtful and constructive assessment of our manuscript. In the upcoming revision process, we plan to address key concerns highlighted by the reviewers. While the bulk of our data involved the use of chemical SOD1 inhibitors, we intend to assess their on-target efficacy by measuring SOD activity after treatment. Additionally, we plan to perform key experiments to measure oxidative stress and DNA damage in SOD1-deletion cell lines to compare against the effects of chemical SOD1 inhibition. We acknowledge the lack of consideration for SOD2 and plan to explore changes in mitochondrial SOD2 expression and function in PPM1D-mutant cells at baseline and after SOD1-deletion. We will refine the text to clarify the data interpretation and elaborate on the limitations of our study in the discussion. Altogether, we thank the reviewers for their suggestions to improve our study and we hope that these additional experiments will provide additional evidence that SOD1 is a dependency in PPM1D-mutant leukemia cells.

    1. Author Response

      Reviewer #1 (Public Review):

      The current manuscript by Liu et al entitled "Discovery and biological evaluation of a potent small molecule CRM1 inhibitor for its selective ablation of extranodal NK/T cell lymphoma" reports the identification of a novel CRM1 inhibitor and shows its efficiency against extranodal natural killer/T cell lymphoma cells (ENKTL).

      This is a very timely and very original study with potential impact in a variety of pathologies not only in ENKTL. However, the main conclusions of the work are not supported by experimental evidence.

      Many thanks for your very kind words about our work. We are excited to hear that you think our manuscript is original with considerable translational impact to the field. We are grateful for your valuable time and efforts you have spent to provide your very insightful comments, which are of great help for our revision.

      The study claims that LFS-1107 reversibly inhibits the nuclear export receptor CRM1 but the authors only show that the compound binds to CRM1 and that the CRM1 substrate IκBα accumulates in the cell nucleus upon LFS-1107 treatment. The evidence is indirect and alternative scenarios are certainly possible.

      Many thanks for this critical comment. We have conducted extra experiments to demonstrate that LFS-1107 can reversibly inhibit the nuclear transport machinery mediated by CRM1. Namely, culturing the medium for two hours after LFS-1107 treatment restored the transport of IκBα from the nucleus to the cytoplasm. Please see Figure 2 -Figure Supplement 3 for more details.

      On the other hand, the manuscript is not always well-written and insufficiently referenced.

      Thanks for this critical comment. This has been fixed. We have checked through the manuscript with extensive language editing. Moreover, we have added more references to the manuscript.

      The nuclear translocation in figure 2G is not convincing. The western blot in figure 2G shows that LFS-1107 treatment induces IκBα expression, and both cytoplasmic and nuclear amounts increase in a dose-dependent manner. Together, these data do not support nuclear IκBα accumulation upon LFS-1107 treatment.

      Thanks for this critical comment. This has been fixed. We have reconducted the Western experiments and our results revealed that only nuclear IκBα amount was increased upon the treatment of LFS-1107. In contrast, cytoplasmic IκBα amount was decreased after the treatment of LFS-1107. Please see Figure 2J for more details.

      Reviewer #2 (Public Review):

      Indeed, ENKTL is a rather deadly tumor with unmet medical needs. The work is novel in the sense that they designed and identified a very potent inhibitor homing at CRM1 via a deep-reinforcement learning model to suppress the overactivation of NF-κB signaling, an underlying mechanism of ENKTL pathogenesis. The authors demonstrated that LFS-1107 binds more strongly with CRM1 (approximately 40-fold) as compared to KPT-330, an existing CRM1 inhibitor. Another merit of the small-molecule inhibitor is that LFS-1107 can selectively eliminate ENKTL cells while sparing normal blood cells. Their animal results clearly demonstrated that the small-molecule inhibitor was able to extend mouse survival and eliminate tumor cells considerably. Overall, the manuscript may provide a possible therapeutic strategy to treat ENKTL with a good safety profile. The manuscript is also well-written. The weakness of the manuscript is that some details for the design and evaluation of the small-molecular inhibitor are missing.

      We are truly grateful for your very kind words about our work. It is very encouraging to know that you think our work is relatively novel and of significance for the field. We sincerely appreciate the valuable time and kind efforts that you have spent on the thorough review of our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      “The authors use hM4Di to "silence" Fos-tagged neurons in the basal forebrain, but they have not validated the efficiency or the possible various effects of this reagent.

      It is possible that hM4Di actually has a relatively small effect on suppressing the AP activity of neurons. Nevertheless, hM4Di might still be an effective manipulation, because it was shown to additionally reduce transmitter release at the nerve terminal (see e.g. Stachniak et al. (Sternson) 2014, Neuron). Thus, the authors should evaluate in control experiments whether hM4Di expression plus CNO actually electrically silences the AP-firing of ChAT neurons in the BF as they seem to suggest, and/or if it reduces ACh release at the terminals. For example, one experiment to test the latter would be to perfuse CNO locally in the BLA; after expressing hM4Di in the cholinergic neurons of the BF. At the very least, the assumed action of hM4Di, and the possible caveats in the interpretation of these results should be discussed in the paper.”

      We find that activation of hM4Di with clozapine in basal forebrain cholinergic neurons results in clear alterations to neuronal activation in projection targets and in behavior (Figures 3, Figure 3-Supplement 1, Figure 5, Figure 5-Supplement 1, Figure 5-Supplement 2, Figure 6-Supplement 1 and Figure 8). Previous studies demonstrated that activation of hM3Dq or hM4di in cholinergic neurons results in changes to electrical activity and behavioral response (Zhang et al. 2017 & Jin et al. 2019). Though we are unable to distinguish whether the effects on behavior in our experiments are a result of decreases in ACh release at terminals, inhibition of action potential firing, or both, our behavioral findings are consistent with demonstrations that inhibition of basal forebrain cholinergic neurons can alter behavior. See Page 17 Lines 488-493 for a discussion.

      “The names of brain areas like "NBM/SIp" and "VP-SIa" need to be better introduced, and somehow contextualized (in the Introduction, and also at first reading in the Results).”

      We agree that our prior presentation of these regions was confusing and in general the boundaries of these regions are not well-defined in the field. We have included a description of anatomical landmarks and bregma coordinates to clarify our definitions of the regions NBM/SIp (Page 4 Line 103-104) and VP/SIa (Page 4 Line 107-108).

      “Figure 3C: Application of CNO on the memory recall day leads to a strong reduction in CS-driven freezing. However, in this experiment, and also in Fig. S7, the pre-tone value of freezing is also strongly reduced. This would indicate that the activity of NBM/SIp cells (or else, ACh-release from these cells - see also Major point 1), also influences contextual learning. The authors should, first, statistically, test these effects (I am not sure this was done). If these differences are significant, a possible role of ACh in contextual fear learning should be discussed. Has it been shown before whether ACh is involved in contextual fear learning? Does this indicate the involvement of another target area of ACh neurons (e.g., the hippocampus?).”

      We statistically compared the pre-tone freezing response between Sham and hM4Di groups across our experiments and found no significant differences in pre-tone freezing between the groups (Figure 3D- Sham vs. ADCD-hM4Di, Pre-tone p=0.3544; Figure 5B- Sham vs. hM4di, Pre-tone p=0.0679; Figure 5C- Sham vs. hM4Di, Pre-tone p=0.0966; Figure 5-Supplement 2A- Sham vs. hM4Di, Pre-tone p>0.99). These comparisons can also be reviewed in the statistical reporting table uploaded along with the manuscript.

      “The discussion could be improved by better comparing what they found, to the wider literature. For example, previous papers studying other neuromodulatory systems found evidence for a modulation of neuromodulator release after learning, e.g. see Martins and Froemke 2015 Nat. Neuroscience for the noradrenergic system, Tang et al. (Schneggenburger lab) 2020 J. Neuroscience for the dopaminergic system and fear learning; and Uematsu et al., 2017, Nat. Neuroscience for the noradrenergic system and fear learning. Maybe the authors could include these and similar references when revising their discussion to take into account a broader view of previous findings related to other neuromodulatory systems.”

      Our study joins the growing body of literature demonstrating stimulus-encoding and rapid stimulus-contingent responses in various neuromodulatory systems in learning and memory recall. We have now added a substantial discussion, detailing both the similarities and differences between our findings and those found in the dopaminergic, serotonergic, noradrenergic, and oxytocinergic systems in fear learning. See Pages 20-21 Lines 575-605.

      Reviewer 2 (Public Review):

      “Throughout the paper, the authors use comparisons of cell activity between groups to address questions about projection-specific and cue-specific cell activation and reactivation. However, statistical comparisons are sometimes done between biological replicates (e.g. Fig. 5A), whereas a lot of them are done between technical replicates (e.g. Fig. 2B, 5B, 7B). Adding statistics that compare biological replicates would help increase confidence in the results.”

      We have replotted our data as a comparison of biological replicate (by individual animal) in new versions of Figures 1-8, and Figure 1-Supplements 1-3, Figure 5-Supplements 1 & 2, Figure 6-Supplements 1 & 2, Figure 7-Supplement 1, and Figure 8-Supplement 1. Correspondingly, all statistical analyses have been conducted comparing biological replicates. To note, these changes have not changed the overall conclusions of each figure. The sample size, statistical test and p-values for our comparisons are included in the figure legends and in the newly included statistical reporting table.

      "To demonstrate engram-like specificity, in figure 4C the authors show fold change in cholinergic reactivation in low and high responders (animals that show low and high defensive freezing upon cue presentation) as normalized by cell activity while sitting in the home cage. However, the authors also collected a better control for this comparison, which is shown in figure S4, where the animals were exposed to an unconditioned tone cue. Comparing fold change to this tone-alone condition would provide stronger evidence for the authors' point, as this would directly compare the specificity of cholinergic reactivation to a conditioned vs an unconditioned cue. A discussion of the same comparison is relevant for figure 2 (and is shown in figure S4) but is not mentioned in the text.”

      We have evaluated the cholinergic response to the tone using GRABACh3.0 as a readout of ACh release in the BLA, and using IEG expression as a readout of cholinergic neuron activation. We find no significant increase in ACh release in the BLA in response to tone presentation (Figure 1C-left, 1D-left) and no significant increase in tone associated reactivation of cholinergic neurons (using IEG as a readout, 2C/D, Figure 1-Supplement 2, Figure 1-Supplement 3, Figure 6-Supplement 1A) unless the tone has been previously paired with a foot shock(see Figure 1C-right, 2C, 3D). In addition, we find no statistically significant differences between home cage and tone alone conditions (Figure 2C – home cage-home cage condition vs. tone-tone condition, p=0.5012; Based on these analyses, we use the home cage group as our control group for comparison.

      “The significant correlation between cue-evoked percent change in defensive freezing from pretone and fold change in cholinergic cell activity relative to the home cage that is shown in figure 4D is somewhat confusing. Is the correlation considering all the points shown (high and low responders as depicted by black and grey points)? It's first reported as one correlation but then is discussed as two populations that have different results. Further, is the average amount of reactivation for the home-cage controls used here the same denominator for each reported animal? Similarly to the point above, a correlation looking at fold change from tonealone would also be helpful to determine the degree to which cholinergic reactivation is specific to threat-association learning versus the more general attentional component that this system is known for.”

      We have substantially modified this figure, now new Figure 6, to clarify our point. Along with this revision, we have removed the correlation plots and corresponding analyses from the revised version of the manuscript and figures.

      Figure 6 now begins with behavior data from a distinct cohort of mice outlining our criteria for high vs. low responders (Figure 6A/B). In Figure 6C, conducted in a separate cohort of mice that only underwent behavioral testing to clarify the definition of high vs. low responders, we note via schematic that ADCD labeling was carried out during the recall session (unlike Figure 2). In panel D, we show fold change of activated cholinergic neurons stratified by High vs. Low responder status. This fold change is normalized to the average activation from the home cage control animals in each experimental cohort. Taken together we find animals with a ~2 fold increase in activation of cholinergic neurons display significant, distinguishable freezing in response to the tone as compared to pretone freezing. We find that this cluster of activated neurons is segregated to the anterior NBM/SIp (Figure 6E).

      Regarding the involvement of cholinergic reactivation tone response (attention) rather than learning - in Figure 1-Supplement 3, we evaluate ACh release and behavioral response in mice that were exposed to three shocks alone (no tone) on day 1 and then exposed to a single (novel) tone on day 2. In these mice we find no significant change in ACh release in the BLA in response to tone, and no significant increase in freezing behavior in response to the tone. In Figure 2D, we evaluate reactivation of cholinergic neurons in a similar context and find that this group does not significantly differ from the home cage → home cage group. Further, we present that this home cage group does not significantly differ from Low Responders. As such, we find significant reactivation of cholinergic neurons in animals with increased responsiveness to the CS tone during the recall session (High Responders).

      “The compelling argument of this paper is that the authors are separating out the general attention role typically attributed to the cholinergic system from a more specific, engram-based role. Given the importance of untangling this, it would useful to see the recorded traces and behavioral scoring for the data shown in figure S2B. For example, was the higher slope in the recorded cholinergic response during unconditioned tone 1 also accompanied by an increase in freezing, which later went away with additional non-reinforced tones? Given that the animals were not habituated to tones (according to the Methods), this activity could be related to a habituation/general attention response, which may then be weaker than the learned response.”

      We include individual traces of GRABACh3.0 release in the BLA in response to the unconditioned tone from a protocol with 3x tone presentation on Day 1 and tone presentation on Day 2 (Figure 1-Supplement 2C). We have also included average + SEM traces for the entire duration of the tone presentation for the three unconditioned tones in this paradigm along with an inset showing 1s before and after tone onset (Figure 1Supplement 2D). Finally, we include individual traces of GRABACh3.0 release in the BLA in response to the first (naïve) tone from mice that underwent the training (tone + shock) followed by recall (tone) paradigm in Figure 1-Supplement 4C, left. None of the unconditioned tone responses were statistically significantly different from the preceding baseline. Instead, we find the learned response is significantly higher than the response baseline (Figure 1D).

    1. Author Response

      Reviewer #1 (Public Review):

      The authors used MD simulations to investigate the role of N-terminal myristoylation and the presence of two SH domains on the allosteric regulation of c-Abl kinase. Standard established MD simulation methods and analyses were applied, including the force distribution analysis (FDA) method developed by Grater et al. some time ago.

      The system is large and the conformational changes are complicated. In light of this, and aggravated by the fact that direct comparison with - and critical testing against - experimental data is not possible in the present case, I consider the overall simulation times to be rather short (several repeats, but only 500 ns). So there might be statistical convergence issues. Especially also because at least some of the starting structures were generated from available experimental structures after some modifications/modelling, and they might thus be out of equilibrium and need some time to fully relax during the MD simulations.

      Unfortunately, I cannot find any convergence tests concerning the length of the simulations, which are usually considered to be standard analyses (Appendix Fig. 5 shows the effect of different thermostats and capping of the peptide chain, but no tests concerning simulation time). This could be critical in the present case, where the authors acknowledge themselves (e.g., on p. 4) that there are only subtle differences between the different simulation systems and the variations within a given system are larger than the relevant (putative) differences between systems (Fig. 1 C, D, E).

      We thank the reviewer for taking the time and critically assessing our manuscript. We appreciate and have addressed the raised concerns as follows. We have quadrupled the simulation time to 2 µs for 20 out of the 30 replicates and show the updated results for these. We refer the reviewer to the modified Fig. 2 and 3 (former Fig. 1 and 2) with the updated data. Our main conclusions remained unchanged, namely that Myr unbinding shifts the overall kinase domain dynamics towards an active state. We furthermore still observe allosteric signal propagation from the Myr binding site to the active site along the alpha_F helix and a collaborative effect of Myr and the SH domains. Only some minor points were not confirmed after analyzing the longer simulations, for example the force differences transmitted to the A-loop upon SH domain binding/unbinding (former Fig. 2D), and changes in amplitude of N- and C-lobe opening upon Myr unbinding (former Fig. 1E). Furthermore, to demonstrate convergence, we added block and autocorrelation analyses for Fig. 1 (now Fig. 2) to Fig. 2 – fig supplement 3, and observed good convergence across all systems. Finally, we also increased simulation times of the umbrella sampling from 50ns to 200ns, again without that the quantitative trends and our conclusions have changed (see also next point).

      Issues with statistical convergence are expected not only for the standard MD simulations but also for the umbrella sampling simulations, as 50 ns sampling per window is nowadays not considered state of the art and is likely insufficient for quantitative binding free energy calculation, especially for membranes (see, e.g., DOI 10.1021/ct200316w). However, worrying about this latter aspect might neither be useful nor needed, because in our view the statement that myristoyl groups can bind to the membrane and that they can compete with binding in the hydrophobic protein pocket can hardly be considered a surprise and would not have required any simulation at all in my view because the experimental K_D values are available (Table 1). The very unfavourable K_d values for unbinding of Myr from both the hydrophobic protein pocket as well as from the membrane in fact show that this is not how it is expected to work in reality. The fully solvated state will be avoided due to its high free energy. Instead, isn't the myristoyl expected to directly transition from the pocket into the membrane, after membrane binding of the kinase in a proper orientation?

      The experimental values were determined with different methods, i.e. estimated from zeta potential measurements in case of the membrane and calorimetry, which only considered the kinase domain instead of the SH3-SH2-kinase complex, in case of Abl. We thus found it appropriate to perform Umbrella Sampling simulations to ensure comparability. Additionally, these allowed us to study the effects of different alpha_I helix conformations, which had a significant impact on the free energy of Myr unbinding, precisely Abl with a partially unfolded helix reflected the experimental energy better than the crystal structure with a kinked helix. We highlight this more explicitly in the corresponding Discussion section. Regarding the simulation time per sampling window, we did a block analysis (Fig. 5 – fig supplement 1) as suggested in the cited reference and also extended the time of each sampling window from 50 ns to 200 ns. This did not significantly alter the results and, importantly, the relative differences between Abl and the membrane stayed the same and are in good agreement with the experimental values.

      Concerning the metadynamics simulations, these are usually done to obtain a free energy landscape. Why was this not attempted here? In the present case, the authors seemed to have used metadynamics only for generating starting structures, with different degrees of helicity of the alpha_I part, for subsequent standard MD simulations. Not surprisingly, nothing much happened during the latter, and conformers with kinked/partially unfolded alpha_I as well as conformers with straight alpha_I were both found to be "stable", at least on the short simulation time scale. It could also not be expected that the SH domain would spontaneously detach in response to helix straightening - again, this would require much longer simulation times than 500 ns. Nevertheless, alpha_I straightening might very well reduce the binding affinity towards SH - this can only be explicitly studied with free energy simulations, however.

      Our main goal was indeed to achieve different alpha_I helix conformations for subsequent Umbrella Sampling simulations, and found that helix formation is in principle possible without SH2 domain unbinding. We would like to emphasize the impact of the different helix conformations on the free energy of Myr unbinding, which further highlights the need to investigate these structures. We chose Metadynamics to obtain them because it only facilitates the transition away from the kinked conformation without biasing towards certain end structures or transition pathways, which we found advantageous compared to alternative methods such as targeted MD. The reason for not reporting a free energy surface is that we considered the helicity of all seven residues making up the kink within a single CV, which smeared the energy landscape to the point that it is almost completely flattened. Furthermore, orthogonal CVs such as new interactions between the alpha_I helix with the SH2 domain or positional adjustments of the SH2 domain would have to be considered for a reliable quantitative result. We nevertheless observed transient SH2 domain unbinding during the applied time scale and added histograms to Fig. 4 – fig supplement 1 (former appendix Fig. 4) to make this more obvious.

      Reviewer #2 (Public Review):

      The manuscript aims at understanding how the fatty acid ligand MYR inhibits the activity of Abl kinase. Despite a wealth of structural and biochemical data, a key mechanistic understanding of how MYR binding could inactive Abl was missing.

      The authors used equilibrium and enhanced molecular dynamics (MD) simulations to masterfully answer open questions left by extensive experimental data in the mechanistic understanding of this system. The authors took advantage of several state-of-the-art simulation techniques and carefully planned simulations to extract a coherent understanding from a wealth of experimental facts.

      The manuscript convincingly identifies an allosteric regulation by MYR. Allostery is often a source of confusion and sometimes is used as a magic catch-it-all explanation for poorly understood phenomena. Here, the authors show very compelling evidence of the existence of an allosteric mechanism. Also, they identify the physical origin of the allosteric pathway, providing a clear mechanistic understanding at the residue-level resolution. This is an impressive achievement.

      We thank the reviewer for appreciating our work and its significance for understanding Abl regulation.

      By leaving a pocket in the protein, MYR enables the protein's activation. But MYR is a highly hydrophobic molecule surrounded by water. Where could it go rather than quickly binding back to the protein pocket? By asking this reasonable question, the authors propose an exciting mechanistic hypothesis. The physical proximity of Abl kinase to a cellular membrane could lead to a competition between the protein and the membrane for MYR, leading to a novel layer of regulation for this kinase. Free energy calculations performed by the authors show that this hypothesis is reasonable from the thermodynamic point of view.

      From a broader perspective, this manuscript is an important contribution to the discussion of four outstanding topics. 1) myristoylation is an example of lipidation, a post-translational modification where an acyl chain is covalently linked to a protein. The role of post-translational modifications has been greatly underappreciated and investigated in the MD community. However, as all the work on Sars-Cov2 and this contribution show, post-translational modifications can be crucial to understanding function. Ignoring them could lead to severely biased results. 2) the debate on the nature of allostery is still on the rage. Some authors claim that looking for a residue-level mechanistic chain of events that explains the allosteric action does not make sense and that the only way of thinking about allostery is as a sudden global change of the conformational landscape. Here, the authors show that instead, it is possible and leads to an essential understanding. 3) The authors hypothesize a novel crosstalk between the Abl and cellular membranes mediated by MYR. This exciting and far-reaching hypothesis opens the door to new complex layers of regulation. I suspect that these crosstalks between cytosolic proteins, or the soluble domain of membrane-tethered proteins and membranes, are much more ubiquitous than what has been appreciated so far. 4) From a methodological point of view, this manuscript represents a masterful use of simulations to put existing experimental data in a coherent picture. It is an example of the use of MD simulations at its best, where the simulations make sense of experiments, integrate existing data into a unified picture, and lead to new hypotheses that can be tested in future experiments.

      We thoroughly appreciate the reviewers positive feedback and the valuable suggestions for improvement below.

      It would be superb if the authors could propose precise predictions that could inspire future experiments. Now that they present a residue-resolution allosteric pathway, can they suggest point mutations that would interrupt it?

      We have added a short segment to the end of the discussion proposing possible experiments.

    1. Author Response

      Thank you for providing us with the reviewer comments. We will provide the revised manuscript at a later stage as recommended.

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors used machine learning algorithm to analyze published exosome datasets to find biomarkers to differentiate exosomes of different origin.

      Strengths:

      The performance of the algorithm are generally of good quality.

      Weaknesses:

      The source datasets are heterogeneous as described in Figure 1 and Figure 2, or Line 72-75; and therefore questionable.

      We thank the reviewer for this assessment. The commonly used biomarkers of exosomes exhibit heterogeneous presence and abundance within the exosomes derived from different cell lines, tissue, and biological fluids. The primary goal of this study was to identify universal exosomal biomarkers that remain consistent across different sources of exosomes, unaffected by potential isolation and quantification bias. This objective was achieved through an integration of datasets from different sources, which allowed for the subsequent identification of common proteins associated with exosomes. Among the 18 protein markers identified, it is noteworthy that they are universally abundant in all cell lines and their exosomes. We believe that despite the heterogeneity of the datasets used here, the identification of 18 universal protein markers in exosomes from diverse sources is a strength of this analysis.

      Reviewer #2 (Public Review):

      Summary:

      This is a fine work on the development of computational approaches to detect cancer through exosomes. Exosomes are an emerging biomarker resource and have attracted considerable interests in the biomedical field. Kalluri and co-workers collected a large sample pool and used random forest to identify a group of protein markers that are universal to exosomes and to cancer exosomes. The results are very exciting and not only added new knowledge in cancer research but also a new and advanced method to detect cancer. Data was presented very nicely and the manuscript was well written.

      Strengths:

      Identified new biomarkers for cancer diagnosis via exosomes.

      Developed a new method to detect cancer non-invasively.

      Results were presented nicely and manuscript were well written.

      Weaknesses:

      N/A.

      We appreciate the the enthusiastic assessment of our study by the reviewer.

      Reviewer #3 (Public Review):

      In the current study, Li et al. address the difficulty in early non-invasive cancer diagnosis due to the limitations of current diagnostic methods in terms of sensitivity and specificity. The study brings attention to exosomes - membrane-bound nanovesicles secreted by cells, containing DNA, RNA, and proteins reflective of their originating cells. Given the prevalence of exosomes in various biological fluids, they offer potential as reliable biomarkers. Notably, the manuscript introduces a new computational approach, rooted in machine learning, to differentiate cancers by analyzing a set of proteins associated with exosomes. Utilizing exosome protein datasets from diverse sources, including cell lines, tissues, and various biological fluids, the study spotlights five proteins as predominant universal exosome biomarkers. Furthermore, it delineates three distinct panels of proteins that can discern cancer exosomes from non-cancerous ones and assist in cancer subtype classification using random forest models. Impressively, the models based on proteins from plasma, serum, or urine exosomes achieve AUROC scores above 0.91, outperforming other algorithms such as Support Vector Machine, K Nearest Neighbor Classifier, and Gaussian Naive Bayes. Overall, the study presents a promising protein biomarker signature tied to cancer exosomes and proposes a machine learning-driven diagnostic method that could potentially revolutionize non-invasive cancer diagnosis.

      We appreciate this positive assessment of our work.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The study by O'Reilly and Delis provides a valuable data-driven framework for extracting task-related muscle synergies in a step towards the understanding and practical use of synergies in real scenarios (e.g., evaluation of patients in a clinical environment). The approach is incomplete since the authors did not compare their method with classical physiologically grounded approaches for assessing muscle synergies. In this sense, the comparisons with classical approaches would clarify if physiological assemblies were preserved and were not altered to incorporate task space variables. Despite limitations, the proposed framework would interest motor control and neural engineering researchers.

      We thank the editors for the positive assessment of our work and appreciate their constructive feedback. In our revised manuscript, we believe we have sufficiently addressed the identified limitations by a) comparing our approach to existing physiologically-based methods, providing thorough comparisons of their respective outputs, b) applying it to a dataset of post-stroke participants to demonstrate that it can identify physiologically-interpretable markers of motor recovery and c) providing examples to demonstrate how readers can interpret the novel perspective introduced.

      Reviewer #1 (Public Review):

      The proposed study provides an innovative framework for the identification of muscle synergies taking into account their task relevance. State-of-the-art techniques for extracting muscle interactions use unsupervised machine-learning algorithms applied to the envelopes of the electromyographic signals without taking into account the information related to the task being performed. In this work, the authors suggest including the task parameters in extracting muscle synergies using a network information framework previously proposed. This allows the identification of muscle interactions that are relevant, irrelevant, or redundant to the parameters of the task executed.

      The proposed framework is a powerful tool to understand and identify muscle interactions for specific task parameters and it may be used to improve man-machine interfaces for the control of prostheses and robotic exoskeletons.

      With respect to the network information framework recently published, this work added an important part to estimate the relevance of specific muscle interactions to the parameters of the task executed. However, the authors should better explain what is the added value of this contribution with respect to the previous one, also in terms of computational methods.

      We thank the reviewer for their constructive comments. We have adjusted the introduction section of the manuscript to better explain the added value of this framework over previous work. Specifically, we draw the reviewer’s attention to the following updated section of the introduction:

      “In [11], we considered, key limitations among current approaches to muscle synergy analysis in extracting functionally relevant and interpretable patterns of muscle activity [12]. We proposed a combinatorial approach based on information- and network-theory and dimensionality reduction (the network-information framework (NIF)) that significantly improved the generalisability of the extraction process by, among others, removing restrictive model assumptions (e.g. linearity, same mixing coefficients) and the reliance on variance-accounted-for (VAF) metrics [12]. By determining the pairwise mutual information between muscles, this innovation paved the way for the appropriate mapping of muscular interactions to the task space. To elaborate on the significance of this development, the extraction of motor patterns in isolation of the task space comes at the expense of both functional and physiological relevance [12,13]. Furthermore, effective methods for mapping large-scale physiological dynamics to behaviour is a current gap across the neurosciences [14]. Thus, here we build on this work by, for the first time, directly including task space parameters during muscle synergy extraction. In doing so, we address these current research gaps, progressing muscle synergy research and successful engineering applications in a fruitful direction [12,15,16]. This enables us, in a novel way, to dissect the concept of the muscle synergy and therefore quantify interactions between muscle activations with shared or complementary functional roles. “

      In general, the method proposed relies on several hyperparameters and cost functions that have been optimized for the specific datasets. A sensitivity analysis should be performed, varying these parameters and reporting the performance of the framework.

      We thank the reviewer for this comment which enabled us to clarify a potential misunderstanding. Our proposed framework does not require setting or varying hyperparameters to optimise cost functions.

      For model-rank specification, a modularity maximising cost-function is used which determines what partitioning of the networks results in maximal modularity. We have offered two alternative approaches using this cost-function which consistently converge on the same solution. To further ensure the representativeness of this solution, we also offer a consensus-based approach where we apply these alternative approaches to individual participant or task data, then group the collective partitions together and re-apply the approaches. One of these approaches (Equation 2.2) requires two hyperparameters, γ and ω, which adjust the intra- and inter- network layer resolutions. As stated in the manuscript, we set both of these parameters to 1, thus nullifying their presence in the cost-function and aligning our work with the classical notion of modularity. Across the two alternative approaches to model-rank specification, the solution is unique and data-driven and has a demonstratable generalisability across datasets.

      The only other cost-function present in the framework is during dimensionality reduction, which is a standard loss function used across the muscle synergy analysis literature. Thus, the approach is essentially parameter-free and we now have mentioned this more explicitly in the manuscript:

      “To empirically determine the number of components to extract in a parameter-free way, we then concatenated these adjacency matrices into a multiplex network and employed network community-detection protocols to identify modules across spatial and temporal scales (fig.3(D)) [29–32,44].”

      “In its generalised multilayer form, the Q-statistic is given an additional term to consider couplings between layers l and r with intra- and inter-layer resolution parameters γ and ω (Equation 2.2). Here, μ is the total edge weight across the network and γ and ω were set to 1 in the current study for classical modularity [30], thus removing the need for any hyperparameter tuning.”

      It is not clear how the well-known phenomenon of cross-talk during the recording of electromyographic muscle activity may affect the performance of the proposed technique and how it may bias the overall outcomes of the framework.

      Indeed artifacts such as crosstalk are a standard issue across the EMG literature and may impact the performance of subsequent analyses where prevalent in the dataset. Crosstalk is expected to be present irrespective of the task and so should not affect redundant and synergistic muscle representations, however it could be present in the task-irrelevant muscle interactions extracted. Due to the prominence of long-range functional connections with the task-irrelevant representations extracted, we suggest that such artifacts are unlikely to have played a prominent role in the extracted patterns. Nonetheless, we have recognised this possibility with the following updated sentence in the Discussion section:

      “Although distinguishing task-irrelevant muscle couplings may capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles including gross motor functions [65], the maintenance of internal joint mechanics and reciprocal inhibition of contralateral limbs [20,50].”

      Reviewer #2 (Public Review):

      This paper is an attempt to extend or augment muscle synergy and motor primitive ideas with task measures. The authors idea is to use information metrics (mutual information, co-information) in 'synergy' creation including task information directly. My reading of the paper is that the framework proposed radically moves from attempts to be analytic in terms of physiology and compositionality with physiological bases, instead into more descriptive ML frameworks that may not support physiological work easily.

      We thank the reviewer for taking the time to provide a thorough commentary on this manuscript. An overall aim in developing this framework is to build on other recent developments in providing a more fine-grained functional architecture underlying movement control [1,2]. It is a requirement for the successful communication and introduction of this toolbox to the field to provide readers with an understanding of how to use the framework and an intuition on how to interpret the results. Thus, we agree with the reviewer that functional interpretations are of crucial use.

      We also agree with the reviewer that maintaining a physiological underpinning is a desirable direction for the field and should not be made secondary to functional descriptions. In our updated version of this manuscript, we have therefore included direct comparisons with the gold-standard in the field for muscle synergy extraction, namely non-negative matrix factorisation based muscle synergy extraction (see ‘Building on current approaches to muscle synergy analysis’ and fig.5-6 of revised manuscript) [3,4]. In these comparison, we show how our framework goes beyond this current approach in terms of functional insight while still maintaining physiological relevance. Indeed, in the revised manuscript we also include a fourth dataset comprising post-stroke participants and healthy controls (Fig.6). We demonstrate, through a simple example application to this dataset, how our proposed framework can produce more predictive representations of motor impairment than the gold-standard approach. The representations we identified were discriminative of motor impairment measured via the Fugl-Meyer assessment using just one trial per participant. This improves considerably upon the sensitivity of the current approach to altered motor patterns which have predominantly required many trials and participants to gain significance [5,6]. Thus, the patterns we extract are a more comprehensive representation of the actual underlying physiological state of the participants.

      This approach is very different from the notions of physiological compositional elements as muscle synergies and motor primitives, and to me seems to really be striving to identify task relevant coordinative couplings. This is a meta problem for more classical analyses. Classical analyses seek compositional elements stable across tasks. These elements may then be explored in causal experiments and generative simulations of coupling and control strategies. The present work does not convince me that the joint 'meta' analysis proposed with task information added is not unmoored from physiology and causal modeling in some important ways. It also neglects publications and methods that might be inconvenient to the new framework.

      We would be very interested in receiving the reviewer’s suggestions of existing approaches that we have not incorporated here and would be happy to discuss these in the revised manuscript.

      Information based separation has been used in muscle synergy analyses using infomax ICA, which is information not variance based at core. Though linear mixing of sources is assumed, minimized mutual information is the basis.

      We agree with the reviewer that ICA relies on information measures, however it does not incorporate task-space information. The novelty of our approach lies in the characterisation of muscle interactions with respect to the task at hand. If the reviewer could provide references to this statement, we would be able to consider this further.

      Physiological causal testing of synergy ideas is neglected in the literature reviews in the paper. Although these are in animal work, the clear connection of muscle synergy choices and analyses to physiology is important and needs to be managed in the new methods proposed. Is any correspondence assumed? Possible?

      We agree with τhe reviewer that this a crucial element of muscle synergy research and will aim to address it in our future work. However, we would like to point out that the current manuscript is a “tools and resources” article aiming to introduce a new framework. In our revised manuscript, we have incorporated an application of the framework to a dataset from post-stroke patients to demonstrate the use of the framework in clinical settings to identify biomarkers and use them to make predictions of motor recovery (see Fig.6 of updated manuscript).

      Questions and concerns with the framework as an overall tool:

      First, muscle based motor information sources have influences on different time scales in the task mechanics. Analyses of synergies in the methods proposed will be very much dependent on the number and quality of task variables included and how these are managed. Standardizing and comparing among labs, tasks sets and instrumentation differences is not well enough considered as a problem in this new proposed method toolset, at least in my reading. Will replication, and testing across groups ever be truly feasible in this framework?

      We agree with the reviewer that this important point can be a limitation of the applicability of the framework. For this reason, we chose a “holistic” approach, applying the framework to several datasets collected in different settings, and selecting different kinds of task variables to extract muscle networks from. Crucially, we used a leave-one-task-out and leave-one-participant-out cross validation procedure to specifically address this point. Our results showed that the extracted couplings are robust irrespective of the task variable and/or participant excluded and this lends credit to the generalisability of the framework.

      Muscle based motor information sources have influences on different time scales in the task mechanics. Kinematic analyses, dynamic analyses and force plate analyses of the same task may provide task variables that alter the results in the proposed framework it seems.

      As we have mentioned above, here we used all the above types of task variables together to illustrate the range of measures that can be included in the proposed framework and showed that the outputs are robust to the exclusion of any task/participant. This point is especially evident for dataset 3 results, where high levels of generalisability were found despite the inclusion of kinematic, dynamic and IMU data (see Table 1. of original submission and updated manuscript). We believe that this is an advantage of the approach as it allows researchers to apply the method to different kinds of measurements they may have collected and gain insights into the relationships of muscle couplings with kinematic/dynamic/force parameters. This will also enable scientists to attribute different functional roles to the identified couplings and it is something we plan to do in future applications of the framework.

      Second, there is a sampling problem in all synergy analyses. We cannot record all muscles or all task parameters. Examining synergies across multiple tasks seeks 'stationary' compositionality. Including task specific elements may or may not reinforce or give increased coordinative precision to the stationary compositionality.

      We fully agree that this is a limitation of all synergy analyses and aimed to consider this study a step in the direction of addressing this limitation by providing the research community with a toolbox that can be used to quantify muscle couplings that can have different levels of task specificity.

      To me the new methods proposed seem partly orthogonal to the ideas of stable compositionality. The 'synergies' obtained will likely differ, and are more likely to be coordinative control groupings of recurrent task and muscle motifs (based on instrumentation) which may or may not relate to core compositionality in physiology. Is there any expectation that the framework should relate to core compositionality and physiology. This is not clear in the paper as written.

      In our new analysis, we have compared the proposed approach to existing physiologically-based methodologies and showed that the new framework can capture several salient physiological features of movement that the current NMF-based approach cannot. For example, as we have moved away from optimising variance accounted for metrics, our framework can identify subtle muscle couplings that have important functional roles. These subtle couplings are often not captured in current muscle synergy analysis as, against physiological relevance, higher amplitude muscles often take prominence. Further, by directly including task parameters during extraction, we can determine the muscles that have a functional role concerning the included task parameter rather than inferring this relationship indirectly using knowledge about the task executed. In our updated manuscript, by applying the framework to post-stroke participants (see Fig.6), we were also able to demonstrate that the extracted couplings are associated with functional parameters of motor recovery and have a clear link with the physiological state of individual participants.

      It would be useful to explore the approach with a range of neuromechanical models and controllers and simulated data to explore the issues I am raising and convince readers that this analysis framework adds clarity rather than dissolving the generalizability and interpretability of analyses in terms of underlying causal mechanisms.

      The authors need to better frame their work in relation to causal analyses if they are claiming links to muscle synergies analyses and claim extension/refinement. Alternatively, these may not be linked, and instead parallel approaches exploring different hypotheses and goals using different organizational data descriptors.

      To address the reviewers concerns here, we have included in the updated manuscript a toy example simulating situations in which pairs of muscles would have a redundant or synergistic functional relationship (see Fig.2). This simulation gives clear intuition on situations where two muscles (e.g. an antagonist-agonist pair) may share functionally similar or complementary information about task direction (left vs right). In particular, within the main text describing this figure, we state how current NMF based approaches consider muscles functionally equivalent when they share similar magnitude activations, whereas our framework captures muscles with identical task information. Thus, our work is an extension of current approaches towards understanding causal mechanisms. The suggestion to use neuromechanical models is valuable, however we consider it beyond the scope of this work. This “Tools and Resources” paper is aimed at introducing the computational framework for the analysis of large-scale muscle couplings in task space. Our future work will use this framework to address unanswered questions in the field and we hope that it will be helpful for other scientists in testing their hypotheses.

      To me this appears a data science tool that may not help any reductionist efforts and leads into less interpretable descriptions of motor control. Not invalid, but sufficiently different that common term use muddies the water.

      We believe that the novel evidence we provided both on simulated and real data have contributed to a better interpretability of the approach outcomes. Specifically, we have introduced examples showing the functional roles of the different types of interactions as well as the predictive power of the outputs. Concerning the use of the term synergy, we have provided a clear description throughout the manuscript regarding the interpretation of synergy vs redundancy in the novel perspective we propose. For example in the discussion section:

      “ We thus sought to provide greater nuance to the notion of ‘working together’ by defining motor redundancy and synergy in information-theoretic terms [6,56]. In our framework, redundancy and synergy are terms describing functionally similar and complementary motor signals respectively, introducing a new perspective that is conceptually distinct from the traditional view of muscle synergies as a solution to the motor redundancy problem [3,6,7]. In this new definition of muscle interactions in the task space, a group of muscles can ‘work together’ either synergistically or redundantly towards the same task. In doing so, the perspective instantiated by our approach provides novel coverage to the partitioning of task-relevant and -irrelevant variability implemented by the motor system along with an improved specificity regarding the functional roles of muscle couplings [20–22]. Our framework emphasises not only the role of functionally redundant muscle couplings that result from the underlying degeneracy of the motor system, but also of complementary, synergistic dependencies that are important for communication and integration across specialised neural circuitry [57,58]. Thus, the present study aligns the muscle synergy concept with the current mechanistic understanding of the nervous system whilst offering an analytical approach amenable to the continued advances in large-scale data capture [14,59].”

      Reviewer #3 (Public Review):

      In this study, the authors developed and tested a novel framework for extracting muscle synergies. The approach aims at removing some limitations and constrains typical of previous approaches used in the field. In particular, the authors propose a mathematical formulation that removes constrains of linearity and couple the synergies to their motor outcome, supporting the concept of functional synergies and distinguishing the task-related performance related to each synergy. While some concepts behind this work were already introduced in recent work in the field, the methodology provided here encapsulates all these features in an original formulation providing a step forward with respect to the currently available algorithms. The authors also successfully demonstrated the applicability of their method to previously available datasets of multi-joint movements.

      Preliminary results positively support the scientific soundness of the presented approach and its potential. The added values of the method should be documented more in future work to understand how the presented formulation relates to previous approaches and what novel insights can be achieved in practical scenarios and confirm/exploit the potential of the theoretical findings.

      Strengths:

      This work proposes a novel framework that addresses physiologically non-verified hypothesis of standard muscle synergy methods: it removes restrictive model assumptions (e.g. linearity, same mixing coefficients) and the reliance on variance-accounted-for (VAF) metrics.

      The method is solid and achieves the prescribed objectives at a computational level and in preliminary laboratory data.

      A toolbox is available for testing the methods on a larger scale.

      The paper is well written and shows a high level of innovation, original content and analysis

      Weaknesses:

      Task performance variables could be specified in more quantitative definition in future work (e.g.: articular angles rather than a generic starting point- end point).

      We agree with this point and will incorporate it in future work. Our aim here was to show that the framework would work with any task variable and that scientists can use it to identify the relevance of muscle interactions to different types of task parameters.

      The paper does not show a comparison with previous approaches (e.g.: NMF) or recently developed approaches (such as MMF).

      We have now illustrated such a comparison on two datasets and explained more how the new framework can dissect the different types of muscle groupings (see ‘Building on current approaches to muscle synergy analysis’ section and Fig.5-6 of revised manuscript).

      A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.

      In our revised manuscript, we have introduced 2 new applications of the framework to real data to exemplify its use for a) functional interpretability and b) identification of biomarkers (see ‘Building on current approaches to muscle synergy analysis’ section and Fig.5-6 of revised manuscript). We also point towards its use in movement restoration and augmentation devices and in the clinical setting in the discussion section:

      “The separate quantification of these muscle interaction types opens up novel opportunities in the practical application of muscle synergy analysis, as demonstrated in the current study through the identification of a significant predictor of motor impairment post-stroke from single-trials [5,12,65]. For instance, these distinct representations may encapsulate different neural substrates that can be specifically assessed at the muscle-level for the purpose of bodily restoration and augmentation [66]. Uncovering their neural underpinnings is an interesting topic for future research.”

      In this work, the effort of the authors aimed at developing the field is clear. It is fundamental to develop novel frameworks for synergy extraction and use them to make them more interpretable and applicable to real scenarios, as well as more adherent to recent findings achieved in motor control and neuroscience that are not reflected in the standard models. At the same time, muscle synergies are being used more and more in research but their impact in practical scenarios is still limited, probably because synergies have rarely been analyzed in a functional context. This paper shows a very in-depth analysis and a novel framework to interpret data that links to the task space from a functional perspective. I also found that the results on the datasets are very well commented but could expand more to show why using this framework is advantageous.

      There are some key points for discussion that follow from this paper which can be described more, maybe in future work, and that might contribute to major developments in the field, including:

      The understanding of how the separation between relevant (redundant and synergistic) and irrelevant synergies impact on synergy analysis in practical works;

      We have now introduced new figures (Fig. 5 and 6) to the revised manuscript, demonstrating simple applications of the framework and providing intuition regarding the outputs. We have also added points to the Discussion commenting on the differences between types of couplings and how they can be interpreted in future works:

      “Our framework emphasises not only the role of functionally redundant muscle couplings that result from the underlying degeneracy of the motor system, but also of complementary, synergistic dependencies that are important for communication and integration across specialised neural circuitry [57,58]. Thus, the present study aligns the muscle synergy concept with the current mechanistic understanding of the nervous system whilst offering an analytical approach amenable to the continued advances in large-scale data capture [14,59].”

      “Although distinguishing task-irrelevant muscle couplings may capture artifacts such as EMG crosstalk, our results convey several physiological objectives of muscles including gross motor functions [64], the maintenance of internal joint mechanics and reciprocal inhibition of contralateral limbs [19,49]. Thus, task-irrelevant muscle interactions reflect both biomechanical- and task-level constraints that provide a structural foundation for task-specific couplings. The separate quantification of these muscle interaction types opens up novel opportunities in the practical application of muscle synergy analysis, as demonstrated in the current study through the identification of a significant predictor of motor impairment post-stroke from single-trials [5,12,65]. For instance, these distinct representations may encapsulate different neural substrates that can be specifically assessed at the muscle-level for the purpose of bodily restoration and augmentation [66]. Uncovering their neural underpinnings is an interesting topic for future research.”

      Interpreting how different synergistic organizations described in this work allows to better describe data from real scenarios (e.g.: motor recovery of patients after neurological diseases);

      We have now added an example application of the framework to a dataset of stroke patients (Fig.6) and identified a redundant muscle patterns that are predictive of functional measures.

      Discussing in detail how the presented findings compare with standard algorithms such as NMF to determine the added value provided with this approach;

      As indicated above, we have now shown such a comparison on two new datasets (see Fig.5-6 of revised manuscript).

      Describe how redundant synergies reflect real neural organization and - if their "existence" is confirmed - how they contribute to redesign the concept of muscle synergies and of modular/synergistic control in general.

      This is an important point that we have now addressed more in our Discussion by relating redundant muscle couplings to degeneracy in the motor system and synergistic couplings to integrative dynamics by higher-level processes. We have also added a simple simulation illustrating how synergistic and redundant interactions co-exist and represent different contributions to task performance (see Fig.2 of revised manuscript).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Summary of changes

      I thank the reviewers for their thorough feedback on this paper and providing me with such a detailed list of recommendations. I have been able to incorporate many of their suggestions, which I believe has greatly improved this paper.

      The most important changes:

      • I added comparisons to the lexicon- and rule-based sentiment algorithms TextBlob and VADER to Supplementary Fig. 4. This shows the superiority of ChatGPT in scoring the sentiment of scientific texts compared to existing and already-validated tools for sentiment analysis based on natural language processing. [Suggestion Reviewer 2]

      • I added the measure intra-class correlation to Fig. 3b, emphasizing the inconsistency in sentiment scores across different reviews of the same paper. [Suggestion Reviewer 3]

      • I added Supplementary Fig. 6, in which I directly propose different experiments to test the causes of the observed gender effects on peer review. [Suggestion Reviewer 3]

      • I further studied the issue of variability in responses by ChatGPT (Supplementary Fig. 2), and learned that this has greatly improved in the latest version of ChatGPT (for Version Aug 3, 2023, R2 values of 0.99 (sentiment) and 0.86 (politeness) were reached). I show these findings in Supplementary Fig. 2. [Suggestions Reviewers 1 and 3]

      • Throughout the manuscript (most notably in the Abstract and Discussion), I emphasize that this is a proof-of-concept study, and make suggestions on how to scale this up across journals and fields. I also toned down certain claims given the relatively small sample size of this study, including in the abstract. I also more prominently and elaborately discuss the limitations of the study in the Discussion section. [Suggestions Reviewers 1, 2 and 3]

      • I made many smaller changes to text, figures and references on the basis of the reviewers’ comments. [Suggestions Reviewers 1, 2 and 3]

      Notably, Reviewer 3 has provided me with a very detailed list of recommendations for follow-up experiments. I appreciate their ideas, and I am currently considering different options for future work. Specifically I am looking to team up with a journal to perform the experiments laid out in Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted papers. As suggested by this reviewer, I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review.

      Based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      Reviewer #1 (Public review)

      Strengths:

      The innovative method is the biggest strength of this article. Moreover, the method can be implemented across fields and disciplines. I myself would like to see this method implemented in a grander scale. The author invested a lot of effort in data collection and I especially commend that ChatGPT assessed the reviews twice, to ensure greater objectivity.

      I want to thank this reviewer for commending the innovative methodology of this study. I appreciate that this reviewer would like to see this methodology implemented at a grander scale, which is a view that I share. I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores).

      The reviewers have provided me with a list of potential follow-up experiments, and I am currently considering different options for future work. Specifically I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript of a journal. In addition, as suggested by Reviewer #3, I am looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Importantly, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Weaknesses:

      I have several concerns regarding the methodology of the article. The first relates to the fact that the sample is not random. The selection of journal and inclusion and exclusion criteria do not contribute well to the strength of the evidence.

      Indeed, the inclusion of only accepted manuscript from a single journal is the biggest caveat of this paper. I have re-written much of the Abstract to emphasize that this is a proof-of-concept paper, hoping that other researchers concurrently expand this method to larger and more diverse datasets.

      An important methodological fact is that the correlation between the two assessments of peer reviews was actually lower than we would expect (around 0.72 and 0.3 for the different linguistic characteristics). If the ChatGPT gave such different scores based on two assessments, should it not be sound to do even more assessments and then take the average?

      This was a great recommendation by this reviewer, and a point also raised by Reviewer #3. Based on their suggestion, I looked into how each additional iteration of scoring would reduce the variability of scoring for a subset of papers (thus being able to advice users on an optimal number of iterations).

      Interestingly, I observed that ChatGPT has become significantly more reliable in providing sentiment and politeness scores in recent versions. For the latest version (ChatGPT Aug 3, 2023), R2 = 0.992 for sentiment and R2 = 0.859 for politeness were reached for two subsequent iterations of scoring. Unfortunately, OpenAI does not allow access to previous version of ChatGPT, so the current dataset could not be re-scored. Yet, based on these data, there may no longer be a need for people to perform repeated scoring. I show these data in Supplementary Fig. 2, as I believe this is very useful information for people who are interested in using this tool.

      Reviewer #1 (Recommendations to author)

      I had some difficulties reading the article, so it would maybe help to structure the article more (e.g. In the introduction there are three aims stated, so the Statistical Analysis section could be divided in three sections, and instead of the link to figures, the author could state which variables were analysed in a specific manner) to be easier to comprehend the details. Also, I found on one place that the sample consisted of 572 reviews, and on other that it was 558.

      These are very good points. I re-wrote the statistical analysis for clarity (Page 7 of the manuscript). The 558 reviews was a mistake from my part, as I forgot to include the fourth review for the 14 papers that received four reviews in the histograms of Fig. 2b and the accompanying text. This has been updated.

      For figures 1a and 1b it could be considered to enter the table instead of several figures.

      I thank the reviewer for pointing this out. I tried this suggestion, but I found it to reduce the readability of the paper. As an alternative, I now provide an Excel spreadsheet with all the raw data, so people can find all the characteristics of the included papers.

      99.8% of the reviews analysed were assessed as polite. This is, in my opinion, extremely important finding, which shows that reviewers are still holding to certain degree of standards in communication, and it can be mentioned in the abstract.

      I very much agree with this reviewer; this has now been added to the Abstract.

      In results you state that QS World Ranking is "imperfect" measure. When stating that in the results section, it poses the question why it is used in the study, so maybe it is more suitable for the discussion.

      This point is well taken. Even though the QS World Ranking score is imperfect, I still think it can be useful, as a rough proxy of perceived prestige of an institution. I now removed this “imperfect measure” statement from the Results section, and moved it to the Discussion (Page 5).

      In the Results section, instead of using only p values, please add measures of effect (correlations, mean differences), to make it easier to place in the context.

      For the significant effects of Fig. 4, I have added these to the figure legends. Please note that the used statistical tests are non-parametric, so I reported the Hodges-Lehmann differences (which is the median of all possible pairwise differences between observations from the two groups).

      I think the results interpretation should be softened a bit, or the limitations of the study should be placed as the second paragraph in the discussion, since this was only specific journal with specific subfield.

      I agree with this reviewer that the relatively small sample size of this paper demands more careful wording. Throughout the manuscript, I have toned down claims, and emphasized the “proof of concept” nature of this study (for example in the Abstract). I also moved the limitations section to the second paragraph of the Discussion, and elaborate more on the study’s caveats.

      Methods:

      The measure Review time was assessed from submission to acceptance, but this does not need to be review time since it takes a lot of time sometimes to find reviewers. that needs to be stated as the limitation.

      This point is well taken. I changed this to “Paper acceptance time” in Fig. 3 and the accompanying text.

      Gender name determination methods differed between the assessment of the first authors and the last authors, and that needs stronger explanation.

      I appreciate this reviewer raising this point, which has also been raised by Reviewer #3. For this paper, I have carefully weighed the pros and cons of automated versus manual gender determination. Initially, my intention was to rely only on a programmatic method to identify authors' names. However, I came to realize that there were inaccuracies in senior author gender predictions made by ChatGPT/Genderize. This was evident to me due to my personal familiarity with some of these authors, either because they are famous or through personal interactions. It seemed problematic to me to proceed with this analysis knowing that these misclassifications would introduce unnecessary variability to the dataset.

      The advantage of the relatively small sample size in this study was the opportunity to manually perform this task, rather than being fully dependent on algorithms. While I attempted manual gender identification for the first author as well, this was way more challenging due to their limited online presence. The discrepancy in gender identification accuracy between first and senior authors did not go unnoticed, and I acknowledge the issue it presents. I also recognize that, unlike senior authors, reviewers may not necessarily be familiar with the first authors of the papers they evaluate, as indicated in the original submission of this paper. In light of this, I sought input from several PIs who often serve as reviewers. Their feedback confirmed that they typically possess knowledge of senior authors' identities, for example through conferences, whereas the same is not true for first authors. Yet, this may be different for other scientific disciplines, where the pool of reviewers might be bigger.

      Notably, for future studies I may make a different decision, especially when I use larger datasets that require me to automate the process.

      I also realize that my rationale for the different methods of gender determination was not explained well enough in the original submission; I now explain my reasoning more elaborately on Page 7 on the manuscript.

      For sentiment analysis: Please state based on what the GPT made a decision? Which program? (e.g. for gender it used genderize.io)

      This has been added to Page 7.

      Finally, your entire analysis can be made reproducible (since everything is publicly available). You can share ChatGPT chats as online materials with variables entered with the dataset analysed and the code. This would increase the credibility of the findings.

      I will make the entire raw dataset available through the eLife website, including all reviews and their scores.

      Reviewer #2 (Public review)

      Strengths include:

      1) Given the variability in responses from ChatGPT, the author pooled two scores for each review and demonstrated significant correlation between these two iterations. He confirmed also reasonable scoring by manipulating reviews. Finally, he compared a small subset (7 papers) to human scorers and again demonstrated correlation with sentiment and politeness.

      2) The figures are consistently well presented and informative. Figure 2C nicely plots the scores with example reviews. The supplementary data are also thoughtful and include combination of first/last author genders. It is interesting that first author female last author male has the lowest score.

      3) A series of detailed analysis including breaking down reviews by subfield (interesting to see the wide range of reviewer sentiment/politeness scores in computational papers), institution, and author's name and inferred gender using Genderize. The author suggests that peer review to blind the reviewers to authors' gender may be helpful to mitigating the impoliteness seen.

      Thank you.

      Weaknesses include:

      1) This study does not utilize any of the wide range of Natural Language Processing (NLP) sentiment analysis tools. While the author did have a small subset reviewed by human scorers, the paper would be strengthened by examining all the reviews systematically using some of the freely available tools (for example, many resources are available through Hugging Face [https:// huggingface.co/blog/sentiment-analysis-python ]). These methods have been used in previous examinations of review text analysis (Luo et al. 2022. Quantitative Science Studies 2:1271-1295). Why use ChatGPT rather than these older validated methods? How does ChatGPT compare to these established methods? See also: colab.research.google.com/drive/ 1ZzEe1lqsZIwhiSv1IkMZdOtjPTSTlKwB?usp=sharing

      This was a great recommendation by this reviewer, and I have tested ChatGPT against TextBlob and VADER, the two algorithms also used by the Luo et al. study — see Supplementary Fig. 4. Perhaps unsurprisingly, these algorithms performed very poorly at scoring sentiment of the reviews. Please note that I also tested these two algorithms at scoring individual sentences, Tweets and Amazon reviews, which it did very well (i.e., the software package was working correctly). Thus, ChatGPT is better at scoring scientific texts than TextBlob and VADER, likely because these algorithms struggle with finding where in the review the sentiment is conveyed. I now discuss this on Pages 1, 3 and 4 of the manuscript.

      2) The author's claim in the last paragraph that his study is proof of concept for NLP to analyze peer review fails to take into account the array of literature already done in this domain. The statement in the introduction that past reports (only three citations) have been limited to small dataset sizes is untrue (Ghosal et al. 2022. PLoS One 17:e0259238 contains over 1000 peer review documents, including sentiment analysis) and reflects a lack of review on the topic before examining this question.

      I thank this reviewer for pointing me to this very useful study. I regret missing this one in my initial submission; I now discuss this paper in Pages 1 and 5 of the manuscript.

      3) The author acknowledges the limitation that only papers under neuroscience were evaluated. Why not scale this method up to other fields within Nature Communications? Cross-field analysis of the features of interest would examine if these biases are present in other domains.

      I share this reviewer’s opinion that it would be very interesting to expand this analysis to different subfields. I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores). The different reviewers have provide me with a list of potential follow-up experiments, and I am currently considering different options for future work, including expanding into different fields within Nature Communications. Additionally, I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript papers of a journal. I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Yet, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals.

      The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Reviewer #3 (Public review)

      Strengths:

      On the positive side, I thought the use of ChatGPT to score the sentiment of text was novel and interesting, and I was largely convinced by the parts of the methods which illustrate that the AI provides broadly similar sentiment and politeness scores to humans who were asked to rank a sub-set of the reviews. The paper is mostly clear and well-written, and tackles a question of importance and broad interest (i.e. the potential for bias in the peer review process, and the objectivity of peer review).

      Thank you.

      Weaknesses:

      The sample size and scope of the paper are a bit limited, and I have written a long list of recommendations/critiques covering diverse aspects including statistical/inferential issues, missing references, and suggestions for other material that could be included that would greatly increase the usefulness of the paper. A major limitation is that the paper focuses on published papers, and thus is a biased sample of all the reviews that were written, which prevents the paper properly answering the questions that it sets out to answer (e.g. is peer review repeatable, fair and objective).

      I very much appreciate this reviewer taking the time to provide me with such a detailed list of recommendations. Below, I will respond to this list in a point-by-point manner.

      Reviewer #3 (Recommendations to author)

      My main issues with the paper are that it is not very ambitious, and gave me the impression the aim was to write the first paper using ChatGPT to address this question, rather than to conduct the most thorough and informative investigation that would have been feasible (many obvious questions that could be addressed are not tackled, since the sample size is small and restricted). There are also issues with selection bias, and the statistical analysis, that have possibly led to erroneous inferences and greatly limit what conclusions can be drawn from the analysis. I hope my comments of use in further improving the paper.

      The repeatability of ChatGPT when calculating the two linguistic characteristics is low. Taking the average of multiple assessments is one way to deal with this. To verify that taking the average of, say, 5 scores gives a repeatable score, the author could consider calculating 10 scores for a set of 20-30 reviews, calculating two scores for each review using the first 5 and second 5 ChatGPT ratings, and then calculating repeatability across the 20-30 reviews. It is important to demonstrate that ChatGPT is sufficiently repeatable for this new method to be useful.<br /> Also, it might be possible to automate this process a bit to save time - e.g. the author could change the ChatGPT prompt, like "please rate the politeness of this review from -100 to +100, do it 10 times independently, and print your 10 ratings as well as their average". Hopefully the AI is smart enough to provide 10 independently-computed ratings this way, saving the need to copypaste the prompt into the chat box 10 times per review.

      This was a great recommendation by this reviewer, and a point also raised by Reviewer #1. Based on their suggestion, I looked into how each additional iteration of scoring would reduce the variability of scoring for a subset of papers (thus being able to advice users on an optimal number of iterations). I also tested this Reviewer’s suggestion to ask ChatGPT to score many times, and give separate scores for each iteration — this worked very well.

      Interestingly, I observed that ChatGPT has become significantly more reliable in providing sentiment and politeness scores in recent versions. For the latest version (ChatGPT Aug 3, 2023), R2 = 0.992 for sentiment and R2 = 0.859 for politeness were reached for two subsequent iterations of scoring. Unfortunately, OpenAI does not allow access to previous version of ChatGPT, so the current dataset could not be re-scored. Yet, based on these data, there may no longer be a need for people to perform repeated scoring. I show these data in Supplementary Fig. 2, as I believe this is very useful information for people who are interested in using this tool.

      To my mind, the main reason to use an AI instead of one or more human readers to rank the sentiment/politeness of peer reviews is to save time, and thereby allow this study to have a larger sample size than would be feasible using human readers. With this in mind, why did you choose to download only 200 papers, all from the discipline of Neuroscience, and only from Nature Communications? It seems like it would be relatively easy to download papers from many more journals, fields of research, or time periods if using AI-based methods, and in fact it would have been feasible (though fairly laborious) for one person to read and classify the sentiment of the reviews for 200 papers.

      As well as providing more precise estimates of the parameters you are interested in (e.g. the consistency of reviews, and the size of the difference in reviewer sentiment between author genders), expanding the sample beyond this small set of papers would allow you to address other interesting questions. For example, you could ask whether the patterns observed for neuroscience are similar to those in other research disciplines, whether Nature Comms is representative of all journals (given there are other journals with public reviews), and you could test whether the male-female differences have become greater or smaller over time (e.g. by comparing the male-female differences observed in the past to the effect size observed in 2022-23). Additionally, the main analyses in this paper would have higher statistical power - for example, you only include 53 papers with a female senior author, giving you quite low power/ precision to estimate the gender difference in the average sentiment of reviews (given the high variance in sentiment between papers).

      I want to thank this reviewer for taking the time about possible ways to increase the impact of this work. I agree, these are all great suggestions, and there are many possibilities to apply ChatGPTbased natural language processing to scientific peer review. Respectfully, I chose to continue with publishing this work in the form of a proof-of-concept paper, because I currently do not have the resources to perform this (quite labor intensive) study. Below I will explain my reasoning, that I also shared with Reviewers #1 and #2.

      I initially only included Neuroscience papers, because I was uncertain whether I would be able to properly assess the reviews from different scientific disciplines (and thus judge whether ChatGPT was able to provide plausible scores). The different reviewers have provide me with a list of potential follow-up experiments, and I am currently considering different options for future work, including expanding into different fields within Nature Communications. Additionally, I am looking to team up with a journal to perform the experiments laid out in (the new) Supplementary Fig. 6 of the new paper, to study whether I can find evidence of bias across rejected and accepted manuscript papers of a journal. I am also looking into ways to automate data collection using APIs, and by utilizing the rapidly expanding databases for transparent peer review. Yet, based on this preprint, I have received messages from academics that are interested in using generative AI to study scientific texts. By revising this manuscript now, I hope to provide them with the tools to concurrently expand the analysis of peer review into different scientific disciplines and journals. The comments I received from the different reviewers made me realize that I did not describe the intent of this paper well enough in the original submission. I rewrote much of the Abstract, to emphasize the proof-of-concept nature of this study, and rewrote the Discussion to focus more on the limitations of the study.

      Also, if you could include some reviews of papers that were reviewed double-blind, you could test whether the gender-related differences in peer reviews are ameliorated by double-blind reviewing. Nature Comms (and many other journals with open review) do have some double-blinded papers, and there is evidence that that double-blinding is preferentially selected by authors who think they will experience discrimination in the peer review process (DOI: 10.1186/s41073-018-0049-z), and also that double-blinding does ameliorate bias (DOI: 10.1111/1365-2435.14259), so this seems very relevant to the ideas under study here.

      I note that the PLOS journals allow open peer review, and there is an API for PLOS which one can use to download the reviews for a given paper (e.g. try this query to get to the XML file of a paper which has open peer review: http://journals.plos.org/plosone/article/file?id=10.1371/ journal.pone.0239518&type=manuscript). Using an API could allow this project to be scaled up, because you can programmatically search for the papers with open reviews, download those reviews using the API and some code, and then score them using the same ChatGPT-based methods used for Nature Comms. Also, Publons recently merged with Web of Science (Clarivate), and you can now read all the open peer reviews on Web of Science for papers which had open review (e.g. for this paper: https://www-webofscience-com.napier.idm.oclc.org/wos/woscc/fullrecord/WOS:000615934800001). It would be possible to write to Web of Science, request access to their data or search engine, and programmatically download many thousands of papers and their associated reviews, and then use ChatGPT or a similar AI to score them all (especially if you can pass the reviews to ChatGPT for scoring programmatically, instead of manually copy-pasting the reviews into the chat box one at a time as it appears was done in the present study).

      These are great suggestions, and I have different plans for follow-up studies, including the use of APIs to download large batches of peer reviews. The analyses in this paper have been performed in February of this year, even before the ChatGPT API had been released, which did not let me automate the process at that time. As a result, these analyses have been performed manually. I realize that the field is moving rapidly, and that there are now different options to scale this up quickly.

      I plan on using the suggestions from this Reviewer for follow-up experiment in a next paper, and publish this revision as a proof-of-concept paper. In this way, different researchers can optimally use ChatGPT-based sentiment analyses for similar studies without a delay.

      As you acknowledge, there is a selection bias in this study, since you only include papers that were ultimately published in Nature Comms (missing reviews of papers that were rejected). This is a really big limitation on the usefulness of some of your analyses. For example, you found no relationship between author institutional prestige and reviewer sentiment. This could be evidence of a fair and impartial review process (which seems unlikely!), or it could be a direct result of selection bias (specifically a "collider bias", like the famous example involving height and skill among professional basketball players). The likelihood that a paper is published is positively related both to its quality and the prestige held by the authors, we might expect a flatter (or even negative) correlation between prestige and reviewer sentiment among papers that were published than among the whole set of papers (like how the correlation between height and speed/skill is less positive among NBA players than among the general population, since both height and speed/skill provide advantages in basketball).

      I agree with this reviewer that the selection bias is a major limitation of this study. I rewrote much of the Abstract and Discussion to tone down claims, and more prominently discuss the limitations of this study. I also made several suggestions for follow-up experiments.

      In the section "Consistency across reviewers", you write that there was little similarity between review sentiment scores from different reviewers from the same paper, and then write "This surprising result indicates high levels of disagreement between the reviewers' favorability of a paper, suggesting that the peer review process is subjective." However I disagree with this conclusion for three reasons:

      • Firstly, your dataset only includes papers that were published, and thus there is a selection bias against manuscripts where both/all reviewers disliked the paper - the removal of this (probably large) set of reviews will add a (potentially very strong) downward bias to your estimate of how consistent the review process is (since you are missing all those papers where the reviewers agreed). I think that one cannot properly answer the question "are reviewers consistent in their appraisals" without having access to papers that were rejected as well as those that were accepted.

      I agree with this reviewer that there is a selection bias in this study, which I acknowledged throughout the initial submission of this manuscript. Indeed, having access to reviews of rejected papers will greatly increase my confidence in this finding. However, if there is consistency across reviewers in the entire pool of (post-review rejected+accepted) manuscripts, some of that has to trickle down into the pool of accepted papers. The correlation between sentiment scores of the different reviewers is so strikingly low (or even absent) that I simply cannot envision a way in which there is consistency across reviewers in the pre-editioral decision stage. Yet, I realize that this point is debatable. Therefore, I changed the phrasing of the Discussion section, including the following sentence:

      That being said, the extremely low (or even absent) relation between how different reviewers scored the same paper was striking, at least to this author.

      • Secondly, the method used to assess whether the reviews for each paper tend to be similar (shown in Figure 3b) does not fully utilize the information contained in the data and could be replaced with another method. (In the paper 3 univariate regressions compare the sentiment scores for R1 vs R2, R1 vs R3, and R2 vs R3, which needlessly splits up the data in the case of papers with more than 2 reviewers, reducing power.) You could instead calculate the intraclass correlation coefficient (aka 'repeatability'), to determine what proportion of the variance in sentiment scores is between vs within papers (I suggest using the excellent R package rptR for this). Note that the sentiment scores are not normally distributed, and so regular regression (as you used) or one-way ANOVA (which you might be tempted to use for the ICC calculation) are not ideal - consider using a GLM or transformation (the rptR package automates the tricky calculation of repeatability for generalized models).

      I thank this reviewer for pointing me towards this option. I added this analysis to Fig. 3b, which confirmed the inconsistency in sentiment scores for reviews of the same paper (ICC = 0.055). As suggested by this reviewer, I decided to perform the ICC on log-transformed data, as ICC calculation is very sensitive to non-normally distributed data.

      • Thirdly, an alternative and very plausible hypothesis for this lack of similarity (besides peer review being highly subjective) is that ChatGPT is estimating the "true sentiment" of a review (i.e. what the reviewer intended to say) with some amount of error (e.g. due to limitations/biases in the AI, or reviewers struggling to make themselves understood due to issues such as writing in a second language, typos, or writing under time pressure), which dilutes the similarly in the estimated sentiment of the reviews. In other words, if the true sentiment values are strongly correlated, but there is random error in how those values are estimated by ChatGPT, then the correlation between reviewer scores for each paper will tend to zero as the error tends to infinity. Furthermore a nebulous quality like "sentiment" cannot be fully summarised in a single variable running from -100 to +100, and if you had used a more multi-dimensional classification system for the reviews (or qualitative assessment by human readers) you might have found that there is a bit more correspondence (I'm speculating here, but I think you cannot really exclude this and the paper doesn't mention this limitation).

      This point is well taken. I added caveats to the Discussion section on Page 5. Altogether, after taking these caveats into account, I do believe that this analysis convincingly demonstrates subjectivity in the peer review of this subset of papers. That said, I hope that my re-written discussion and additional analysis have added the necessary nuance to this point.

      In Figure 3C, you write "Contribution of paper scores to review time". This strongly implies to the reader that the sentiment scores inferred for the reviews have a causal effect on the review time. This is imprecise writing (since the scores were calculated by you after the papers were published, and thus cannot be causal - you mean that the actual reviews affected the review time, not the scores), but more importantly you cannot infer any causality here since your dataset is observational/correlational. You could fix this by re-phrasing to emphasise this, e.g. "Statistical associations between paper scores and review time".

      This is a very good point raised by this reviewer. I have corrected the phrasing so it no longer implies causality.

      For the analysis shown in Figure 4d and Figure 4e, I am not certain what you mean by "data split per lowest/median/highest sentiment score". This is ambiguous, and I am also not sure what the purpose of this analysis is or what it shows - I suggest re-writing for greater clarity (and ideally providing the code used in all your analyses) and perhaps revising the analysis. Additionally, an important missing piece of information from this analysis (and most analyses in the paper) is the effect size. For example, you don't report what is the difference in politeness score and sentiment score between male and female authors, and what is the SE and 95% CIs for this difference. From eyeballing the figure, it looks like the difference in politeness is about 4 points on your 200point scale - this is small in absolute terms, but might be quite large in relative terms given that "politeness score" usually hovered around a small part of the full 200-point scale. What is this as a standardised effect size (i.e. in terms of standard deviations, as captured by effect sizes like Cohen's d and Hedges' g)? Calculating this (and its 95% CIs) would allow you to say whether the difference between genders is a "big effect", and give an idea of your confidence in your effect size estimate and any inferences drawn from it. You even discuss the effect size in your discussion, so it would help to calculate the standardised effect size. If you're not familiar with effect size and why it's useful, I found this paper very instructive: https://onlinelibrary.wiley.com/ doi/abs/10.1111/j.1469-185X.2007.00027.x

      I agree with this reviewer that this phrasing was ambiguous. I now rephrased this on Page 4 of the manuscript:

      To study whether these more impolite reviews for female first authors were due to an overall lower politeness score, or due to one or some of the reviewers being more impolite, I split the reviews for each paper by its lowest/median/highest politeness score. I observed that the lower politeness scores for first authors with a female name was driven by significantly lower low and median scores (Fig. 4d, bottom panel). Thus, the least polite reviews a paper received were even more impolite for papers with a female first author.

      I also added effect sizes of the significant effects from Fig. 4 to its figure legend. Please note that the used statistical tests are non-parametric, so I reported the Hodges-Lehmann differences (which is the median of all possible pairwise differences between observations from the two groups).

      "Double-blind peer review has been debated before, but has come under scrutiny for various reasons" - this is vague and unhelpful. I think it's worthwhile to properly engage with the debate and the substantial body of evidence in your paper, given your main focus is on potential bias in the review process based on authors' identities (e.g. gender, institutional prestige).

      I thank the reviewer for pointing this out. I rephrased this sentence to indicate that there is evidence that it helps to remove certain forms of bias (Page 5):

      To address this issue, double-blind peer review, where the authors' names are anonymized, could be implemented. Evidence suggests that this is useful in removing certain forms of bias from reviewing8,9, but has thus far not been widely implemented, perhaps because some studies have cast doubt on its merits21,22.

      I have also added a Supplementary Fig. 6 to this paper, in which I lay out how my tool can be used to study bias by applying it to single- and double-blinded reviews (see also my answer to the other question about this topic below).

      On a related note, in the first paragraph, when discussing the potential of single-blind review to allow reviewers to essentially discriminate against papers by women, there is a key missing citation. This year, the first truly experimental test of this hypothesis was published (DOI: 10.1111/1365-2435.14259); a journal conducted a randomised controlled trial in which submitted manuscripts were reviewed either single- or double-blind. They found no effect of author gender on reviewer ratings or editorial decisions (though there was an effect of review type on success rate of authors from different countries). It would be better to cite this instead of reference 6, which as you acknowledge is methodologically flawed. This paper is also worth a read given your focus on Nature journals: DOI: 10.1186/s41073-018-0049-z.

      This point is well taken. I now cite this paper (citation #8) and rephrased this part of the Introduction (Page 1).

      "Another - arguably more simple - solution [compared to double-blind peer review] could be for reviewers to be more mindful of their language use." Here, you seem to be saying that we don't need to blind author names during peer reviewers, because it would simpler if all reviewers were simply nicer! I object to this because A) double-blind review is easy to implement, and greatly reduces the opportunity to tune the review to the author's identity (and there is some experimental evidence that it works in this regard), and B) it seems like wishful thinking to say that we don't need to implement measures that reduce the scope for bias, because all reviewers could instead stop using impolite language.

      This is a very valuable comment. I rephrased this to emphasize that this is an additional measure.

      "reviewers may want to use ChatGPT to extract a politeness score for their review before submitting" Yes, that's an interesting idea, and I can imagine that some (probably small) proportion of reviewers will be interested in doing this. But I think you should think bigger about wholesale changes to the review system that are possible because of AI like ChatGPT. For example, the submission platforms where reviewers submit their reviewers (e.g. ScholarOne, Manuscript Central) could be updated to use AI to pre-screen draft reviews, and issue a warning to reviewers, like "Our AI assistant has indicated that the writing in this review might be impolite (example phrases here) - would you like to edit your review before you submit it?" Also, reviewcredit platforms like Publons could display not only the number of reviews that someone wrote, but an AI-generated assessment of how constructive, detailed, and polite their reviews are (this would help nudge people into writing better reviews, and also give credit where it's due to careful reviewers, which is part of the aim of Publons and similar platforms). This is just off the top of my head - there are many other good ideas about how AI could transform the peer review process. Indeed, AI is already good enough to generate quite useful peer reviews and constructive criticism of draft papers, and will surely get better at this... this surely has lots of implications for science publishing over the coming decades.

      These are great suggestions for implementation of this tool. I now end the first paragraph of the Discussion (Page 4) with the following sentence:

      Such an automated language analysis of peer reviews can be used in different ways, such as afterthe-fact analyses (as has been done here), providing writing support for reviewers (for example by implementation in the journal submission portal), or by helping editors pick the best papers or most constructive reviewers.

      "Further research is required to investigate the reasons behind this effect and to identify in what level of the academic system these differences emerge." Here you could mention what this research would be - I think you'd need the full sample of reviewed papers, not just those that were accepted. Spell out what analyses would be required to test and falsify the various (very plausible and interesting) competing hypotheses that you mention for the male-female difference in sentiment scores.

      Great point. I added a Supplementary Fig. 6, in which I show a visual depiction of the experiments that can be performed to answer these questions.

      "areas of concern were discovered within the academic publishing system that require immediate attention. One such area is the inconsistency between the reviews of the same paper, highlighting the need for greater standardization in the peer review process." I disagree here. I think it is natural for there to sometimes be differences in how two or more reviewers rate the quality of a paper, even if the peer review process were carefully standardised (e.g. via the use of a detailed "peer review form", which helps guide reviewers to comment on all important aspects of the paper - some journals use these). This is because reviewers differ in their experience, expertise, or interests, and so some reviewers will catch mistakes that others miss, or request stylistic changes that others would not. More broadly, it's often not possible to write a version of the paper that satisfies all possible reviewers.

      I re-phrased part of the Discussion on Page 5 to indicate other sources of inter-reviewer variability. Specifically, I mention that some variability in sentiment can be expected based on the different backgrounds of the reviewers:

      Notably, some level of variability may be expected, for example due to different backgrounds, experiences, and biases of the reviewers. In addition, ChatGPT may not always reliably assess a reviews sentiment, adding some spurious inter-reviewer variability.

      Yet, as also mentioned in my response to one of the previous questions, I still find the the extremely low levels of consistency striking, even after taking these possible sources of interreviewer variability into account.

      "the maximum score an institution could receive was 100 (in 2023 this was Massachusetts Institute of Technology)" - this seems unnecessary information (just mention the score runs from 0-100).

      I agree with this reviewer that this was unnecessary information. This has been removed.

      "reviewers are generally familiar with the senior author of papers they review and thus are likely aware of their gender identity." This seems like a strong assumption, and you don't provide any evidence for it Speaking personally, as a reviewer and journal editor I am often not familiar with the senior author, or I am familiar with the first author - I am not sure how often I know the senior author but not the first author or vice versa. It's also not always the case that the first author is a junior scientist and the last author a senior, famous one, as you imply. I suggest that you use the same approach to score the gender of both author positions, namely inferring their gender programmatically from their name (I agree that generally the important thing for the purposes of this study is the gender that reviewers will infer from the name, not the author's actual gender, and so gender estimation from first names is the correct approach).

      I appreciate this reviewer raising this point, and I have carefully weighed the pros and cons of both approaches. Initially, my intention was to rely only on a programmatic method to identify authors' names. However, I came to realize that there were inaccuracies in senior author gender predictions made by ChatGPT/Genderize. This was evident to me due to my personal familiarity with some of these authors, either because they are famous or through personal interactions. It seemed problematic to me to proceed with this analysis knowing that these misclassifications would introduce unnecessary variability to the dataset.

      The advantage of the relatively small sample size in this study was the opportunity to manually perform this task, rather than being fully dependent on algorithms. While I attempted manual gender identification for the first author as well, this was way more challenging due to their limited online presence. The discrepancy in gender identification accuracy between first and senior authors did not go unnoticed, and I acknowledge the issue it presents. I also recognize that, unlike senior authors, reviewers may not necessarily be familiar with the first authors of the papers they evaluate, as indicated in the original submission of this paper. In light of this, I sought input from several PIs who often serve as reviewers. Their feedback confirmed that they typically possess knowledge of senior authors' identities, for example through conferences, whereas the same is not true for first authors. Yet, this may be different for other scientific disciplines, where the pool of reviewers might be bigger.

      Notably, for future studies I may make a different decision, especially when I use larger datasets that require me to automate the process. I now more elaborately explain why I made this decision on Page 7 of the manuscript.

      In the Abstract, you write "suggesting a gender disparity in academic publishing". This part of the sentence contains no information about what you think is the cause of the male/female difference, and no further interpretation of its ramifications, so I think you can just remove it (because "disparity" just means a difference, so you are effectively saying something redundant like "there was a difference between papers with male and female senior authors, suggesting there is a difference")

      I thank the reviewer for pointing this out. I replaced the latter part of this sentence with “(…) for which I discuss potential causes.”, which I think is better than a short summary of potential causes which may lack the nuance that such a topic deserves.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First of all, we would like to again thank the reviewers for their work. We appreciate the constructive review comments and useful suggestions to further improve our article. With those comments in mind, we have now revised our manuscript. Please see below for a point-by-point response (our responses in green) to all comments.

      Reviewer #1 (Recommendations For The Authors):

      Sun and colleagues outline structural and mechanistic studies of the bacterial adhesin PrgB, an atypical microbial cell surface-anchored polypeptide that binds DNA. The manuscript includes a crystal structure of the Ig-like domains of PrgB, cryo-EM structures of the majority of the intact polypeptide in DNA-bound and free forms, and an assessment of the phenotypes of E. faecalis strains expressing various PrgB mutants.

      Generally, the study has been conducted with a good level of rigor, and there is consistency in the findings. However, I do have some specific technical concerns relating to the study that necessitate the undertaking of additional experiments. These are summarized as follows:

      1) Recombinant PrgB188-1233 produced in the study purifies as a mixture of monomeric and dimeric species separatable by SEC. There is very limited discussion in the text re. the significance and/or implications of this. Is it feasible that the dimeric form is biologically relevant in the context of the in vivo situation? Or alternatively, is this simply an artifact of protein production?

      Experimental data that we published in 2018 indeed indicates that the dimer is relevant in the in vivo situation. We did not discuss this here since this was discussed in detail in the previous paper: Schmitt et al, 2018. We have now added a bit more information on this in the results section, highlighting this, so that it is clearer to the reader (lines 114-116).

      2) The authors see no evidence of the adhesive domain of PrgB in their PX structure highlighting that this must have been cleaved during crystallisation. Is this claim supported by an inspection of the crystal packing? It could be that this region of the protein is dynamic within the context of the crystal and is thus not observed. This should be clarified in the text either way.

      The crystal packing does not provide any space for the PAD. We have added this to the results section. We have added a sentence describing this in lines 122-124.

      3) The Cryo-EM structures reported are both at ~10-angstrom resolution. Are the authors truly confident in the placement of their crystal structures on these maps? Visual inspection indicates that their positioning of the PrgB domains into the EM envelopes is somewhat questionable. The authors need to provide some quantitative measures of the quality of their domain fitting. The narrative of the manuscript very much hinges on this being correct.

      This is something that the other reviewer also commented on. The fitting of the crystal structures in the maps are indeed not optimal, but was the best we could do with the available data. In line with point #6, we have now constructed new protein variants of the stalk domain (the four Ig-like domains) alone, and have assayed it’s interaction with the PAD in vitro using native gels and size exclusion chromatography. The outcome of these experiments is that the two domains do not interact in any substantial way on their own. Thus, the added experiments do not support the hypothesis that the PAD interacts with the Ig-like domains, at least not without the local high concentration provided by the linker region in the in vivo situation.

      To account for these new experiments, we have moved the cryo-EM structure to the supplement, and rewritten this part of the manuscript to say that the cryo-EM data indicated that there might be an interaction, but that we have not been able to verify this in vitro, indicating that if the interaction at all exists it must have a low affinity and is likely not physiologically relevant. In line with this, we have also further modified the text throughout the manuscript to account for this.

      4) The manuscript would be significantly strengthened if the authors could include confirmatory hydrodynamic data in support of the observed conformational reorganization of PrgB in the presence of DNA. SAXS analysis of the DNA-free and bound complexes would be ideal for this and would also help address the issues raised above in pt 3.

      To analyze PrgB radius with and without DNA, we tried both SEC-MALS and DLS experiments. It proved difficult to obtain precise and reproducible values, but the initial data indicated that no large changes were observed upon DNA binding. As we could also not measure specific interaction between the PAD and the stalk in vitro, we did not perform SAXS experiments. As mentioned in the response to point #3, we have modified the results and discussion regarding the potential interaction of th PAD and Stalk domains.

      5) The authors present binding studies of various PrgB mutant-expressing strains. A number of the mutations generated delete significant portions of the polypeptide. Can the authors confirm that these mutant proteins are correctly folded despite the introduced mutations? It could be that loss of function is simply a consequence of mutation-induced misfolding. I would like to see some confirmatory data (CD, SEC, etc.) in support of the foldedness of the mutant proteins.

      We cannot completely rule out that the folding of some of the variants is affected in E. faecalis. However, CD or SEC experiments would only give indications of the contrary if the overall fold had been majorly affected in an in vitro situation where the protein is not anchored to the E. faecalis cell wall.

      To alleviate this valid concern, we probed if all variants are correctly exported and linked to the cell-wall. Therefore we have now extracted the cell wall of E. faecalis producing wild-type or variant PrgB and performed Western blot . The results of the Western blot with cell wall extract largely matches the whole cell experiments that were in the initial manuscript. If a protein variant was largely misfolded, it would likely not be targeted and linked to the cell-wall, nor would it be stable in vivo. We have added this new data as a new fig 3 – figure supplement 1 and on lines 201-214

      6) The authors suggest a direct interaction between the PAD and the stalk domains in PrgB. The discussion of this is very generic and no evidence to support this is provided other than the 10-angstrom resolution EM map. If they believe this to be the case, then additional evidence should be provided.

      Answer: As mentioned previously, we have now performed additional in vitro experiments to probe this potential interaction, but conclude that this indication from the EM data is likely not a real high affinity interaction. In line with this, we have modified the results and discussion regarding this point, see also response to point #3 and 4.


      Reviewer #2 (Recommendations For The Authors):

      As currently presented, I don't feel that the cryoEM data support the authors' proposed model, largely because the fit of the crystal structures to the EM volumes does not seem entirely reasonable for the apo- dataset and because the EM volume for the ssDNA bound dataset is not even contiguous. For me to believe the model as it is currently built, I would want to see a dataset with the PAD deleted, showing that its proposed density disappears, or a dataset with a PAD-specific antibody as a fiducial marker. It would be nice to see some goodness of fit metric with a comparison to other crystal structures fit such low-resolution data as well. At the very least, the authors must include the standard cryoEM workflow supplementary figure showing representative micrographs, 2Ds, and 3Ds along with particle numbers.

      In line with the comments raised by reviewer #1, we have now added more experiments where we have analyzed the potential interaction between PAD and the stalk domain. From this new data, it looks like they do not interact with any substantial affinity, at least not on their own without any linker region holding them together, and that this interaction if it all exist likely is not physiologically relevant. The cryo-EM data has been moved to the supplement as we agree with both reviewers that the resolution, and the fitted model, is not good enough to draw any hard conclusions. The standard table for the cryoEM workflow was present as supplementary table 2, where eg particle numbers etc are described, but we have now also added a new supplementary fig 2 – figure supplement 2 that shows the EM processing workflow, including representative micrographs, 2D and 3D classes. We debated whether we should remove the EM data, but decided against it in line of transparency and to explain why the interaction studies with the PAD and stalk domains were performed.

      The X-ray crystallographic structure is very nice, but I was a bit surprised by the R factors in Table 1. After downloading the structure factors and coordinates from the PDB (thank you for depositing before submission!) I was able to see quite a few positive peaks in the difference map that could probably use some cleaning up. I realize I may just be a bit of a masochist when it comes to adding/deleting waters and moving around side chains to get things just right, but for such lovely data, I would have liked to see the model polished up a bit more. I was going to say that the isopeptide bond should be modelled, but I can see from a cursory Google that the authors did in fact try to find a way to model this and that it is indeed a bit of a pain.

      The model refinement proved surprisingly recalcitrant with regards to the remaining difference density, so we took the decision to only model what was solidly there (which leads to slightly higher R factors). We did indeed try to model the isopeptide bond, but we did not find a good way to do so (despite trying quite extensively), and ended up determining them as a linker in the PDB file, so that the bond shows up when one opens the structure in eg. Pymol.

      For protein production/purification in general I would have liked to see actual traces for the gel filtration and pure protein on a gel in a supplementary figure. I strongly believe that this type of information is so critical for future researchers looking to replicate or build upon published work so that they have some sense that what they are doing is working in the way it should be.

      We have now added a supplementary figure (as new Fig. 1 – figure supplement 1) that shows SEC and SDS-PAGE for the purification of PrgB188-1233.

      Finally, I think for the in vivo data it only makes sense to show the reader whether any or all the differences measured across your different mutants are statistically significant. Having done the graphing and analysis in GraphPad this should be a simple thing to achieve.

      We have now added statistical test (One way Anova) that show the statistical significance between the mutants, and show that in Fig 3 and Fig 4.

      Overall, I think it's a very nice paper and while I feel that the cryoEM data in its current form doesn't support the model of occlusion from PrgA, I also don't think that removing the cryoEM data and that specific mechanistic idea from the paper detracts from its overall message and impact.

      Thank you for those comments.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      p. 5, l. 87-90: The control of flgM by OmrA/B (PMID 32133913) and the antisense RNA to flhD (PMID 36000733) are other examples of known regulatory RNAs that impact the flagellar regulon.

      We thank the reviewer for pointing out these references and have added citations to them (page 5, lines 87-91).

      p.11/Fig. 3: it is intriguing that ArcZ and RprA, two of the rpoS-activating sRNAs, repress lrhA. I realize that it is outside of the scope of this study, but have the authors considered the possibility that ArcZ or McaS could have a role in the previously reported repression of rpoS by LrhA (PMID 16621809)?

      We agree that it is intriguing that ArcZ and RprA, two of the rpoS-activating sRNAs, repress lrhA, and added mention of this regulatory connection (page 12, lines 247-250).

      p. 13/l. 272: I do not understand why the authors say that "r-proteins were almost exclusively found in chimeras with MotR and FliX and no other sRNAs...", given that several other chimeras between r-prot and other sRNAs are found

      While some r-proteins encoding genes were found with other sRNAs in RIL-seq datasets, MotR and FliX generally had the highest numbers. The text was revised to better describe the RIL-seq data for r-proteins interaction partners (page 14, lines 291-295), and a new panel showing the S10 operon with all the interacting sRNAs was added to Figure 3—figure supplement 1B.

      Fig. 4 and 5: One possible improvement would be to more systematically assess the effect of base-pairing mutants of the sRNAs, such as MotRM1 or FliXM1 on fliC and rps/rpl genes in vivo. This is especially important for the mutants that affected the sRNA effects in the in vitro probing assays, such as UhpU-M2, MotR-M1 and FliX-S-M1 on fliC (Fig. S7)

      As suggested, we examined fliC mRNA levels across growth in motR-M1 and fliX-M1 chromosomal mutants. The results of these northern assays, now shown in Figure 8—figure supplement 1, are consistent with our model as we observed delayed expression of fliC mRNA in motR-M1 background and premature expression in fliX-M1 background (page 21, lines 444446, 449-453).

      Fig. 5: it may be worth including a schematic of the whole S10 operon to highlight its length and its organization?

      As suggested, a schematic representation of the S10 operon was added to Figure 3—figure supplement 1 with a summary of the RIL-seq data for this operon.

      Probing data (Fig. 5, S7 and S9): in general, it is difficult to differentiate the thin and thick brackets, and what is indicated by the dashed brackets is not always clear. Maybe using a color-code instead could help? Highlighting the predicted pairing regions on the different gels could be useful as well.

      We thank the reviewer for this suggestion and color-coded the brackets (Figure 5, Figure 4figure supplement 2, and Figure 5-figure supplement 2). The correspondences to regions of predicted pairing are described in the figures legends.

      Fig. S10: The experimental evidence used to support FliX-dependent degradation of the rpsS mRNA is indirect (primer extension to observe higher levels of cleavage intermediates). It would be nice to be able to observe a decrease in the mRNA levels as well, either by Northern, or primer extension from a region more distant to the FliX pairing site.

      The S10 operon is long (~5 KB). We have tried multiple probes for this mRNA and detect many bands with each, likely due to extensive regulation of this operon. We think teasing out the origin of the different bands to appropriately interpret changes in patterns will require a significant amount of work.

      legend of Fig. S10: from the gel, it seems that only the plasmids differ in the samples, and it is not clear where the data corresponding to the WT strain mentioned in the legend is shown

      The samples shown in this figure are all for the indicated plasmids in the WT strain. We corrected the figure legend.

      Table S1: please define the NOR (normalized odds ratio?)

      The definition of Normalized Odds Ratio was added to the legend of Supplementary file 1.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      Figure 1B. Please add a negative control (which could be in the supplementary section) from a large section showing transcripts that are not directly influenced by Hfq.

      We think the flgKLO browser in this figure serves as a negative control; flgK and flgL clearly are not enriched on Hfq in contrast to FlgO. Figure 1B was generated using published datasets that are easily accessible to the readers at a genome browser and show many other examples of transcripts that are not influenced by Hfq: https://genome.ucsc.edu/cgi-bin/hgTracks?hubUrl=https://hpc.nih.gov/~NICHD- core0/storz/trackhubs/ecoli_rilseq/hub.hub.txt&hgS_loadUrlName=https://hpc.nih.gov/~NICHDcore0/storz/trackhubs/ecoli_rilseq/session.txt&hgS_doLoadUrl=submit

      Line 158. MotR* is a more abundant version of [the constitutively overexpressed] MotR. Is there a Northern or qPCR to confirm this? While I understand the relevance of these mutated constructs, their high expression can lead to artefactual effects.

      This is a valuable point and therefore we provided a northern blot to document the relative levels of MotR and MotR* (Figure 2—figure supplement 1A).

      Figure 2. The overexpression of MotR/MotR* from a plasmid is increasing the number of flagella. However, when the MotR gene is deleted, is there a reduction of the number of flagella? Same question with FliX: what happens when the fliX gene is deleted? According to the model described in the manuscript, we should expect fewer flagella in ΔmotR background and an increased number of flagella in ΔfliX background. Both Figure 2 and Figure 8 would benefit from additional experiments with deleted motR and fliX genes.

      We agree that experiments regarding the endogenous effects of endogenous sRNAs are important. We provided such data in Figure 8 and Figure 8—figure supplement 1 for MotR and FliX in a variety of assays: flagella numbers by electron microscopy, motility and competition assays, expression of flagellar genes by RT-qPCR and western analysis. The chromosomallyexpressed MotR-M1 and FliX-M1 base pairing mutants did show the expected phenotypes of reduced and increased numbers of flagella, respectively (Figure 8A-B). As suggested by reviewer 1, we added northern analysis that examined fliC mRNA levels across growth in motRM1 and fliX-M1 chromosomal mutants. The results of these northern assays are consistent with our model as we observed delayed expression of fliC mRNA in motR-M1 background and premature expression in fliX-M1 background. We went to the trouble of constructing strains carrying point mutations in the chromosomal copies of these genes rather than deletions to avoid interfering with the expression of motA and fliC given that MotR and FliX encompass the 5’ and 3’ UTRs, respectively.

      Figure 3 is key to demonstrating the sRNAs pairing with their specific targets and potential effect on bacterial swimming. However, these results would be more relevant with endogenous expression of the sRNAs and demonstration of their effects on the same targets. A Northern blot showing the overproduced sRNA level compared to endogenous sRNA level could help us appreciate the expression ratio.

      The levels of the UhpU, MotR and FliX expressed from the overexpression plasmids are at least 100-fold higher than the endogenous levels. Thus, we agree that assays of chromosomal deletion/point mutants are important experiments. We did construct chromosomal uhpU-M1 and uhpU∆seed sequence mutants. However, under the conditions assayed, the uhpU chromosomal mutations did not result in observable effects on motility or FlhD-SPA protein levels. It is possible we would be able to detect differences between the wild type and uhpU chromosomal mutant strains under different growth conditions or in different assays, but this would require a significant amount of work. For many other sRNA chromosomal mutations have no or only subtle effects, suggesting redundancy between sRNAs or sRNA roles in fine tuning gene expression.

      Figure 4. In panel B, the empty plasmid pZE alone seems to positively affect the flagellin expression when compared to the WT background. This can also be seen in Figure 4C. There is no fliC signal with empty plasmid pBR* but a strong fliC signal with empty plasmid pZE. Maybe the authors can explain this in the manuscript.

      With respect to panel B and Figure 4—figure supplement 1A, we agree that there is some variation between the levels of flagellin in the WT and pZE control samples, possibly due to the addition of antibiotic to the pZE culture. We added quantification of the bands in Figure 4— figure supplement 1 to better document the changes in flagellin levels.

      With respect to panel C, the pBR samples were collected in crl+ background while the pZE samples were collected in crl- background, which explains the lack of fliC signal in the pBR control sample. This is now noted in the figure legend.

      In lines 154-157, the justification for using two plasmids is described. An IPTG-inducible Plac promoter, the pBR*, is used because the constitutive overexpression of UhpU is resulting in mutated UhpU clones. These observations suggest a toxic expression level of UhpU that the cell can only tolerate when the UhpU RNA is somewhat deactivated by mutations. This does not seem like a detail and could be discussed further.

      We agree with the reviewer that this observation is important and now mention that it suggests at a critical UhpU role (page 8, lines 160-163).

      Figure 5E and I. While the bindings of MotR on rpsJ and Flix-S on rpsS are clear, the resolution of both gels in the areas of binding (upper part of both gels) could be improved.

      We found it tricky to choose the mRNA fragments for the in vitro structure probing for the regions of predicted pairing internal to CDSs. Given that we hoped to retain native RNA folding, we chose long fragments; for rpsJ, we started with the +1 of S10 leader and for rpsS, we started 147 nt into the CDS, a region that overlaps the region that was cloned to the rpsS-rplV-gfp fusion. Consequently, the region of base pairing is in the upper part of both gels. The gels were already run for an unusually long time. Thus, we do not think the resolution could be improved further. Nevertheless, we think the region of protection is evident for both mRNAs.

      Minor comments:

      Fig 1B. The promoter symbols are extremely small, please increase the size.

      As suggested, we have enlarged the promoter symbols in Figure 1B as well as in Figure 3A.

      Line 211. "the lrhA mRNA has an unusually long 5´ UTR". How long exactly?

      The 5’ UTR of the lrhA mRNA is 371 nt long. This is now mentioned in the text (page 11, line 224)

      Line 320. Should "Fig 9C" be "Fig S9C" instead?

      We thank the reviewer for noticing this typo. Callouts to supplementary figures have now been renumbered per eLife format.

      Line 384. Something seems to be missing in the sentence "a representative combined class 2 and 3 promoter".

      The sentence has been modified to clarify the designation (page 19, lines 409-411).

      Reviewer #3 (Recommendations For The Authors):

      Recommendation to clarify/strengthen the presentation of science in the paper:

      Lines 102-103: Can the authors provide some more information on how the sRNAs were initially discovered to be potentially sigma-28 dependent and selected?

      As suggested, we expanded the section discussing the discovery and the selection of these sRNAs (page 6, lines 104-109).

      Lines 192-193: It would be helpful to provide a bit more information in the main text about what are the different RIL-seq data sets (18 in total).

      As suggested, we now provide more details about the different RIL-seq datasets we used in the analysis (page 10, lines 202-205).

      It would be helpful to specify the criteria for "top" interactions in targets retrieved from RIL-seq data (Table S1 and text, e.g., line 273): e.g. number of conditions, number of chimeras, etc.

      As suggested, we now more explicitly specify the criteria for selecting targets to characterize (page 10, lines 205-206).

      Fig. 4B/ S6 and line 242: The flagellin amount in the empty vector control (pZE) looks higher than in WT, and the stated effect of MotR/MotR* OE on flagellin is not very clear from the blot. The "cross-reacting band" above flagellin also seems to vary among strains. Could the authors include a quantification of flagellin protein amount and normalize relative to a housekeeping protein (e.g., GroEL), instead of Ponceau S as loading control?

      We agree that there is some variation between the levels of flagellin in the WT and pZE control sample, possibly due to the addition of antibiotic to the pZE culture. We added quantification of the bands in Figure 4—figure supplement 1 to better document the changes in flagellin levels.

      Figure legends: It would be helpful to have a bit more information about the method used/displayed image rather than stating results in the legends.

      As suggested, we now provide a bit more information about the methods used/displayed image in the figure legends to allow for easier comprehension of the data presented in the figures (while trying to balance this with the length of the legends).

      Fig. 2: Please include a scale for all electron microscopy images or, if it is the same for all panels, state it in the figure legend. Moreover, the same image is used for the pZE control in panel C, E and Figure S4A/C. It would be better to show different fields of bacteria for the pZE sample.

      As is now mentioned in the legends to Figure 2, Figure 2—figure supplement 2, and Figure 8, the same scale was used for all panels. We thought it was better to show the same image for the pZE control in the different panels to emphasize that these samples were all analyzed on the same day.

      Fig. 2: The sRNA OE strains seem to show some heterogeneity in cell length (pZE-MotR) or width (pZE-FliX). The authors could, e.g., check whether this is a phenotype correlated to sRNA OE by quantifying these parameters for different fields and comparing to WT or comment on this in the text if this is not consistently seen.

      We also were intrigued by the slightly different sizes and widths of cells in the EM images. However, our statistical analysis did not reveal significant differences between the different samples. We now comment on this (page 53, lines 1178-1179).

      As a follow-up to this study, it would be interesting to assess the impact of MotR and FliX regulation of ribosomal protein synthesis on overall ribosome activity (e.g., via Ribo-seq), also considering that antitermination regulates rRNA transcription. In the case of MotR, the authors suggest that MotR upregulation of S10 protein might not only impact antitermination, but also lead to the formation of more active ribosomes that would increase flagellar protein synthesis (lines 359-362). However, in the RNA-seq performed in OE MotR* several transcripts encoding rRNA and ribosomal proteins are significantly downregulated compared to EVC (Supplementary Table S2). Could the authors comment on this?

      We share the reviewer’s enthusiasm for follow-up work and thank for the suggested experiments. We hope we will be able to decipher the full mechanism of MotR and FliX action on ribosomal protein synthesis in future experiments. The observation that some ribosomal protein-coding gene levels are reduced in the RNA-seq experiment with overexpression of MotR* is interesting but we do not have an explanation other than the fact that the samples were collected early in exponential growth. We now mention the observation in the text (page 19, lines 404-407).

      Considering that OE of the WT MotR appears to increase fliC mRNA abundance but has no strong impact on flagellin protein levels, can the authors speculate what is the physiological relevance of MotR* for flagellin production?

      We agree that while we do see significant increases in the flagella number and fliC mRNA abundance with MotR and MotR* overexpression, the western analysis did not reveal a striking increase in flagellin levels and also wonder how MotR strongly increases the flagella number, which requires flagellin subunits, but only has a weak effect on the intercellular levels of flagellin. One possibility explanation is that it is more difficult to see significant increases for a protein whose levels are high to begin with. These points are now discussed (page 13, lines 264-269).

      Fig. 4C: The pZE samples seem to show variable expression of fliC mRNA although the samples are collected at the same timepoints. Try to clarify in the text.

      The northern membrane on the bottom was exposed for a longer time due to the lower fliC mRNA levels in the samples with FliX overexpression. We now note these differences in the legends to Figure 4 and Figure 4—figure supplement 1.

      Fig. 7/S13: While a volcano plot for MotR is shown in Fig. 7A, quantification of GFP reporter fusion regulation is shown for MotR. Quantifications of MotR are shown in Fig. S13. Maybe swap the figures.

      Given that the data for MotR are in the supplement figures for all other figures we would also like to retain this distribution for Figure 7 (aside from the volcano plot since this experiment was only carried out for MotR).

      Lines 135-136 (Fig. S1B): on the northern blots, only sRNA levels of MotR are comparable between rich and minimal media (excluding M63 G6P and M63 gal). Most other sRNA seem to be more abundantly expressed in minimal media conditions compared to LB. Maybe rephrase.

      As suggested, the text was revised to point out the differences in the sRNA levels for cells grown in different growth media (page 7, lines 140-144).

      Lines 229-234: this paragraph seems not directly connected to the aims of the study (i.e., no effect on motility tested of these other sRNAs) and could be removed (or moved to discussion).

      We appreciate the reviewer’s suggestion but, considering Reviewer 1’s comments, think that showing the regulation of lrhA by other sRNAs has value in highlighting the complexity of the regulatory circuit. We have revised the text to incorporate Reviewer 1’s suggestions and better explain why these results are intriguing (page 12, lines 247-250).

      Line 200 and Fig. S5: For FlgO sRNA only one target was identified in RIL-seq. This gene could be specified and labeled in Fig. S5 and the text. Does FlgO also bind ProQ?

      We now mention the single FlgO target (gatC) detected in four datasets (page 10, lines 213215). In Figure 3—figure supplement 1, we labeled only targets that we followed up with in the current study. Therefore, to be consistent, we prefer not to label gatC in the FlgO plot. FlgO was found to co-immunoprecipitate with ProQ but at much lower levels than with Hfq, and to have very few RNA partners (Melamed et al., 2020).

      Lines 493-498: It is mentioned that the four sRNAs were also detected in recent RIL-seq experiments of Salmonella and EPEC. Are any of the here identified targets also found in other species or was none detected as analyses were carried out under conditions that do not favor flagella expression?

      The targets identified in this study were not detected in the Salmonella and EPEC RIL-seq datasets. However, the Salmonella and EPEC experiments were carried out under different growth conditions. Based on the sequence conservation of the Sigma 28-dependent sRNAs across several bacterial species (Figure 8—figure supplement 2), we do think overlapping targets will be found in other bacterial species under the appropriate growth conditions.

      The strongest evidence of MotR dependent target regulation is the one on rpsJ, which does not necessarily require the additional experiments with MotR. Since the authors were able to show upregulation of the rpsJ-gfp reporter upon OE of MotR WT, it would have strengthened the results if they performed the experiments in Fig. S8C with MotR WT. Similary as an increase of flagella number was seen with OE of MotR WT in Fig. 2A, the effect of the OE S10∆loop could be compared to OE MotR instead of OE MotR (Fig. 6A). At least if would be helpful, to briefly comment on why MotR* was used instead of MotR WT for these experiments.

      As suggested, we state MotR was used in some assays given the stronger effects for some phenotypes (page 10, lines 196-197). We think, given that we established MotR and MotR cause the same effects, with increased intensity for the latter, it is reasonable to use MotR* in some of the experiments.

      p. lines 482-491 and 508-511: The authors discuss that both UhpU sRNAs and RsaG sRNA from S. aureus are derived from the 3'UTR of uhpT, but conclude there is no overlap regarding flagella regulation, suggesting independent evolution of these sRNAs. However, the authors also mention that UhpU sRNA has many additional targets beyond LhrA involved in carbon and nutrient metabolism. Thus, maybe regulation of metabolic traits could be a conserved theme and function for UhpU and RsaG? Maybe try to comment on or better connect these two parts in the discussion.

      As suggested, we now comment on the possibility of the regulation of metabolic traits being a conserved theme and function for UhpU and RsaG (page 24, lines 520-527).

      Check the text for consistency regarding the use of italics for gene names (e.g., legend of Figs. 7 and 8)

      The text was corrected.

      Please introduce abbreviations, e.g., G6P (line 139), REP (line 150), ARN (line 258), NOR/U (Table S1 legend)

      As suggested, we now introduce the abbreviations for G6P (page 7, line 142), REP (page 8, lines 155-156), and NOR (Supplementary file 1 legend). Regarding ARN, these sequences are already written in parentheses in the same sentence. However, we revised this to “ARN motif sequences” (page 13, line 278).

      Fig. S1A: Highlight REP sequence mentioned in text (line 150).

      REP sequences are now highlighted in gray in Figure 1—figure supplement 1A.

      Fig. S1C: It would be helpful to list number nt positions on the sRNAs based on full-length transcripts.

      The corresponding positions based on the full-length transcripts have also been added to this figure.

      Fig. S2: Adjust the position of UhpU-S label.

      UhpU-S label position was adjusted.

      Fig. S6: Include UhpU in the figure title.

      UhpU was added to the title.

      Fig. S10: It would be helpful to indicate on the figure (or state more clearly in the legend) which RNA was extracted from WT or ΔfliCX background.

      The samples shown in the Figure are all in a WT strain. We corrected the figure legend accordingly.

      Line 290: the effect is on flagella number, not motility.

      This typo is now corrected (page 15, line 312).

      Fig. S8: One-way ANOVA (panel A legend)

      This typo is now corrected (page 64, line 1433).

      Line 320: Fig. S9C instead of 9C

      We thank the reviewer for noticing the typo. The numbering of the supplementary figures has now been changed to the eLife format.

      It would be helpful to add reference for statement in line 57.

      A reference to (Fitzgerald et al., 2014) was added as suggested.

      Add PMID:32133913 as reference for post-transcriptional regulation of the flagellar regulon in the introduction (lines 87-91)

      The indicated reference was added as suggested (page 5, lines 87-91).

      Legend Fig. S6: expand view -> expanded view

      This typo is now corrected (page 63, line 1406).

      line 513: sRNA -> sRNAs

      This typo is now corrected (page 25, line 549).

      Fig. 8G: Maybe include lrhA as target of UhpU sRNA at top of the cascade.

      As suggested lrhA has been added as a target of UhpU at the top of the cascade.

  2. Sep 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      • The improvement of the gene annotations of the ferret genome was an important part of this study, and so I would recommend that the authors have a results section and figure dedicated to documenting this.

      Thank you so much for appreciating our efforts on improving gene models, which was indeed a critical part in this study. According to the reviewer’s suggestion, we added a new section to the main text, “Improvement of the gene model for scRNA-seq of ferrets” with a figure (Fig.1 C, D, E).

      • Are the references to figure S8A, B alright (line 306)? In fact, that entire figure was not well described or out of place. In general, unlike the rest of the manuscript, the section dealing with the human-ferret comparison was a little bit confusing, and the figure legends were not extremely helpful. Could the authors please revisit the main text and figure legends of this section for clarity?

      We agree with the reviewer’s recommendation. We removed references to Figure S8A, B. In place of that, we explained the reason more carefully; “We chose a recently published human dataset (Bhaduri et al, 2021) for comparison, because this study containing GW25 dataset which included more tRG cells than previous studies that did not contain GW25 data. Furthermore, we used only data at GW25”

      We also revised several parts in this section to understand more easily by additional explanations as well as in the legends of Fig. 7 and Fig. S8.

      Reviewer #2 (Recommendations For The Authors):

      I have a few very minor comments on the manuscript.

      • I would caution the authors against claiming that they have demonstrated bona fide generation of ependymal cells from tRG cells. While the expression of FOXJ1 is a very good indication, they have not demonstrated the morphological transformation of a tRG cell into an ependymal cell.

      We agree the reviewer’s opinion. We have never thought that we proved that tRG differentiates ependymal cells, but we consider that this is highly likely the case (We use the term “suggest” in the abstract). To prove this genetically, we extensively tried to knock the EGFP gene into the CRYAB gene by the CRISPR/Cas9 method, to be able to show the lineage relationship between tRG and ependymal cells. However, we have so far failed to do this for a year trial. We also tried to just label tRG with EGFP and follow it in the slice culture.

      However, we failed to keep the slice in the culture until we observed the transition from tRG shape to the ependymal shape. It seems to be a slow process. What we could do was to observe the transition from single cilia to multi-cilia, which is part of the morphological transition from epithelial neural stem cells such as Radial Glia to an ependymal-like sheet form. To prove this transition from tRG to ependymal cells (and also astrocytes) is one of the most important issue which needs some new idea, technique or strategy.

      • There are several typos throughout the manuscript that I would recommend fixing for example, page 5 line 123 says "OLIGO2" instead of "OLIG2"

      Thank you so much. We carefully read and corrected typos. We wish we corrected all of them.

      Besides these two points, the manuscript is already prepared to a high standard.

      I really appreciate reviewersʼ efforts to finish reviews in a short time, responding to our request related to the first authorʼs thesis application.

    2. Author Response

      Summary of reviewers recommendations.

      Reviewer 1

      Point# 1. Make a new section in the text with a figure about the improvement of the genomic information (gene modeling) of ferrets ".

      Point# 2. the references to figure S8A, B alright (line 306)?

      Point# 3. Revise the main text and figure legends of the section dealing with the human-ferret comparison for clarity.

      Reviewer 2

      Point# 4. Weaken (change the text from “conclusive” to suggestive” ) the expression that we identified that tRG become ependymal cells, because we have not demonstrated the morphological transformation of a tRG cell into an ependymal cell, which is practically difficult although we have shown morphological change in terms of the single-cilia to multi-cilia form transition (Fig. S6A).

      Point# 5. Correct several typos throughout the manuscript that I would recommend fixing for example, page 5 line 123 says "OLIGO2" instead of “OLIG2.

      Provisional revision plan and our responses.

      Point #1 The new section for the improvement of gene models will be made by transferring the part of methods to the main text and Fig S2B,C to new Figure 1 with one schematic panel.

      Point #2; We cited (Bhaduri et al., 2020) as a reference in the figure S8A , while "Bhaduri et, al, 2021” was cited in the text. Which is correct? We will correct this, by choosing the correct one. Descriptions are indeed poor regarding Fig. S8A and S8B in the text as well as in the legends.

      Point #3 : We will describe the methods of comparison between ferrets and humans more thoroughly, by adding definition of words such as gene scores, subtype scores in the main text. (as well, the explanation of (Figure S3C) will be improved. ). Legends for Fig. 6 are too simple. So we would explain more in these legends. Explanations of analysis and figures, which we made, responding to the reviewer comments of “review commons” are generally not easy to understand with too short explanations, comparing with complexity of figures and contents, let’s say, Figure S8A-D. We will give more explanations for each of panel in Figure S8A-D, and E and F.

      Point #4; The authors' response to this point goes like this; we totally agree that we need to genetically labeling (knocking in the Cryab gene) to prove “tRG cells differentiate ependymal cells”. We tried many times but eventually failed. We have partially show single-cilia to multi-cilia transition which is characteristic to epithelial-ependymal transition. This process appears to take a long time and therefore, morphological tracing by time-lapse imaging in tissue culture is not a realistic way, Therefore, we weakened the conclusion; it is "highly likely" that tRG cells differentiate to be ependymal cells.

      Point#5: We will survey typos-> correct them, by all authors read the manuscript carefully again.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is a valuable investigation of the chromatin dynamics throughout the cell cycle by using fluorescence signals and patterns of GFP-PCNA and CY3-dUTP, which labels newly synthesized DNA. The authors report reduced chromatin mobility in S relative to G1 phase. The technology and methods used are solid, but the significance of the work is reduced by the model system employed, the HeLa cell line, which has a greatly abnormal genome.

      We have obtained data from a diploid human cell that validates the reduction of S-phase chromatin mobility.

      Public Review:

      The manuscript presented by Pabba et al. studied chromatin dynamics throughout the cell cycle. The authors used fluorescence signals and patterns of GFP-PCNA (GFP tagged proliferating cell nuclear antigen) and CY3-dUTP (which labels newly synthesized DNA but not the DNA template) to determine cell cycle stages in asynchronized HeLa (Kyoto) cells and track movements of chromatin domains. PCNA binds to replication forks and form replication foci during the S phase. The major conclusions are: (1) Labeled chromatin domains were more mobile in G1/G2 relative to the S-phase. (2) Restricted chromatin motion occurred at sites in proximity to DNA replication sites. (3) Chromatin motion was restricted by the loading of replisomes, independent of DNA synthesis. This work is based on previous work published in 2015, entitled "4D Visualization of replication foci in mammalian cells corresponding to individual replicons," in which the labeling method was demonstrated to be sound. Although interesting, reduced chromatin mobility in S relative to G1 phase is not new to the field.

      It was first shown in yeast (Heun et al. 2001; DOI:10.1126/science.1065366) that the S-phase mobility is reduced compared to the G1 phase. This was followed by other papers showing the same in yeast [(Gasser 2002; DOI: 10.1126/science.1067703), (Smith et al. 2019; DOI: 10.1091/mbc.E19-08-0469)]. The relation between chromatin motion and cell cycle progression in the mammalian genome is less studied. Over recent years there have been a few studies that addressed chromatin mobility and cell cycle progression but from a different perspective. In the publication Nozaki et al. (2017; DOI:10.1016/j.molcel.2017.06.018) chromatin motion analysis was performed on single histones. The study did not find a significant change of histone/nucleosome mobility measured during cell cycle progression. Using CRISPR/dCas9 to label random DNA loci, Ma et al. (2019; DOI:10.1083/jcb.201807162) found that chromatin motion in S-phase was significantly lower than in the G1 phase. However, most of the studies measure the chromatin motion using either insertion of ectopic loci or proteins marking the loci (dCas9) or histones. Using either ectopic loci addition or CRISPR/dCas9 might have an effect on the chromatin mobility itself and measuring single histone motion is not equivalent to measuring the motion of DNA segments. We, therefore, opted to label the DNA directly using the replication of the DNA. In this manner we preserve the native chromatin structure and, thus, motion.

      Importantly, in addition to measuring decreased DNA motion in S-phase, our study indicates that it is not the DNA synthesis per se but the loading of replisomes onto chromatin that slows down its motion. This allowed us to propose a mechanism on how chromatin motion is affected by DNA replication in S-phase.

      The genome in HeLa cells is greatly abnormal with heterogeneous aneuploidy, which makes quantification complicated and weakens the conclusions.

      We agree that the HeLa cells are aneuploid and we have addressed the heterogeneity of HeLa Kyoto within our detection methods (for clarification see point 3). To validate our conclusions in normal diploid human cells, we performed the chromatin mobility analysis using human fibroblasts (IMR90 cells in figures 2, 3 and S2) and plotted the MSD curves for different cell cycle stages. The outcome of this analysis showed that the mobility of chromatin in diploid fibroblasts in S-phase is lower than in G1 and G2. In fact, this effect is stronger in IMR90 cells than in HeLa Kyoto cells. Hence, this is not an aneuploid tumor cell phenomenon.

      The manuscript is difficult to follow in places due to insufficient clarity. The manuscript should be written in a way that can be understood without referencing previous articles. Overall, the work is moderately impactful to the field.

      Major recommendations:

      1) In Figure 1B, the illustration and images for S phase are confusing. The author should specify which is early S and which is late S. Do the yellow circles represent GFP-PCNA foci? How did the authors distinguish mid S from early S and late S (in Figure 2)? Are all images in Figure 1 scaled to the same contrast threshold?

      The yellow circles correspond to the colocalized signal of GFP-PCNA and Cy3-dUTP that overlap and represent the labeled chromatin sites that are replicated in the next cell cycle.

      We clarified all the points mentioned above and updated figure 1 and figure 2 accordingly.

      2) In Figure 2B, the y-axis is marked as "Frequency of cells" but the equation listed below is counting DNA (per focus). How to convert DNA (per focus) to DNA (per cell)? The x-axis is marked as "Genome size" without any unit (e.g., kb? Mb?) The x-axis seems to be the C factor, not the genome size.

      To determine the amount of DNA present in each labeled DNA focus, we first segmented the whole nucleus and measured the total intensity of DAPI (DNA amount) which is called IDNA TOTAL. Then the labeled replication foci are segmented and the intensity of label present in each segmented foci is measured (IRFi). Throughout the S-phase progression the amount of DNA increases twofold from early to late S-phase. The cells at each cell cycle stage were determined using the PCNA pattern. By plotting the frequency (number of cells) and the relative genome content normalized to the G1 stage we calculated the relative genome size otherwise called cell cycle correction factor for each stage from G1 to G2. The ratio of DNA intensity in labeled replication (IRFi)/ to the total DNA intensity of DAPI (IDNA total) gives the fraction of DNA present in each foci compared to the whole nucleus. This ratio was then multiplied by the genome size (Kbp) of HeLa Kyoto cells which was measured and published in Chagin et al. (2016; DOI:10.1038/ncomms11231). This gives us the approximate amount of DNA present in each labeled replication foci in Kbp. Since the genome duplicates over cell cycle stages, the measured DNA content in IRFi was corrected to the cell cycle stage (determined by PCNA) by multiplying the cell cycle correction factor.

      3) HeLa cells are known to be highly heterogeneous and heavily aneuploidy. Cells in one sample have different numbers of chromosomes ranging from 50 - 80. Therefore, GS (genome size) for each cell should not be the same. Using one constant GS in the equation for every cell introduces errors. Has the cell-to-cell variation been considered and corrected in the data? If not, the authors should provide information regarding cell-to-cell variations, such as the intensity variation of nuclear DAPI signals in synchronized cells.

      It is true that the HeLa genome is aneuploid. However, the heterogeneity of the genome is true, if one compares different HeLa strains as studied in Frattini et al. (2015; DOI:10.1038/srep15377), where they show the variability of genome and RNA expression profiles and small genomic rearrangements among different HeLa strains. However, to our knowledge, it is not studied extensively or shown whether the heterogeneity and aneuploidy would also be a cell to cell variation. Therefore, we performed a control experiment to verify the variability between HeLa Kyoto cells, where we either synchronized or not and stained with DAPI and the DNA content profiles of all cells were plotted as a histogram (supplementary figure 1B) to show that cell to cell variations is not present and by synchronizing, we see that the cell population in G1, has similar DNA content showing that the cell to cell variability is negligible in our detection methods. Nonetheless, we have obtained data using normal diploid human fibroblasts, which validated our outcome.

      STABLE:

      Macville, Merryn, et al. "Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping." Cancer research 59.1 (1999): 141-150.

      UNSTABLE:

      Liu, Yansheng, et al. "Multi-omic measurements of heterogeneity in HeLa cells across laboratories." Nature biotechnology 37.3 (2019): 314-322.

      Landry, Jonathan JM, et al. "The genomic and transcriptomic landscape of a HeLa cell line." G3: Genes, Genomes, Genetics 3.8 (2013): 1213-1224.

      4) The chromatin foci are in a variety of sizes and intensities. How were boundaries of foci determined? Weak foci were picked up in one image but not in another. This is a concern because the size of the chromatin domain could influence mobility measurement. The authors should provide control experiments or better explanations for detecting and selecting chromatin foci.

      The method for detecting chromatin foci is described in “Materials and Methods” section “Automated tracking of chromatin structures in time-lapse videos”. “Chromatin structures are detected by the spot-enhancing filter (SEF) (Sage et al., 2005; doi:10.1109/TIP.2005.852787) which consists of a Laplacian-of-Gaussian (LoG) filter followed by thresholding the filtered image and determination of local maxima. The threshold is automatically determined by the mean of the absolute values of the filtered image plus a factor times the standard deviation.” For reasons of consistency, we used the same threshold factor for all images of an image sequence. Therefore, depending on the intensity distribution in an image, it can happen that weak foci are not detected in some images. Alternatively, one could manually adapt the threshold factor for all single images, which, however, would be subjective. We now added the information that we used the same threshold factor for all images of an image sequence.

      5) In Figure 3, the authors combined MSD from G1 and G2 in one group. Has any published data suggested that chromatin dynamics are the same in G1 and G2?

      To clarify this we separated G1 and G2 mobility measurements in supplementary figure S2 and updated the figures and text accordingly.

      6) In Figure 3B, cytoplasmic CY3-dUTP foci are found in the G1/G2 and S images. Are these CY3-dUTP aggregates? If so, are they also found in the nucleus? What is the mobility of the cytoplasmic CY3-dUTP foci?

      These are aggregates and not found in the nucleus. These foci were excluded from the analysis by using a nuclear mask based on the PCNA signal. This information was added to the figure 3B legend.

      7) In Figure 4, how is colocalization defined? 1.8 um is approximately the size of a chromosome territory, which is much larger than 0.5 Mb. Two foci that are 1.8 um apart should not be considered in the same chromosome.

      We agree that colocalized would indeed mean that the signals are overlapping. Therefore, we updated the figures and text as center to center distance or proximity analysis.

      Minor comments:

      1) Figure 3D should be presented by a box and whisker plot. The histogram does not show an actual distribution of the data.

      The histograms shown in figure 3D is the average mean square displacement measurement value for different cell cycle stages. These are the same data shown in the table. Therefore, the histogram is removed and the table in figure 3C is retained.

      2) Please explain Figure 3C error bars in the figure legend. Are they SD?

      The error bars of the MSD curves (highlighted in bright color around the curves) in figure 3C show the standard error of the mean (SEM) representing the deviations between the MSD curves for an image sequence. We clarified this in the legend of Figure 3C.

      3) In Figure 5C, some western blotting results seem to be assembled from replicate experiments. Comparing signals from one experiment with the same background is suggested.

      We made sure that the western blots from the same replicates are cropped and the information is also added to the respective figure legends.

    1. Author Response

      Reviewer #1 (Public Review):

      Like the "preceding" co-submitted paper, this is again a very strong and interesting paper in which the authors address a question that is raised by the finding in their co-submitted paper - how does one factor induce two different fates. The authors provide an extremely satisfying answer - only one subset of the cells neighbors a source of signaling cells that trigger that subset to adopt a specific fate. The signal here is Delta and the read-out is Notch, whose intracellular domain, in conjunction with, presumably, SuH cooperates with Bsh to distinguish L4 from L5 fate (L5 is not neighbored by signal-providing cells). Like the back-to-back paper, the data is rigorous, well-presented and presents important conclusions. There's a wealth of data on the different functions of Notch (with and without Bsh). All very satisfying.

      Thanks!

      I have again one suggestion that the authors may want to consider discussing. I'm wondering whether the open chromatin that the author convincingly measure is the CAUSE or the CONSEQUENCE of Bsh being able to activate L4 target genes. What I mean by this is that currently the authors seem to be focused on a somewhat sequential model where Notch signaling opens chromatin and this then enables Bsh to activate a specific set of target genes. But isn't it equally possible that the combined activity of Bsh/Notch(intra)/SuH opens chromatin? That's not a semantic/minor difference, it's a fundamentally different mechanism, I would think. This mechanism also solves the conundrum of specificity - how does Notch know which genes to "open" up? It would seem more intuitive to me to think that it's working together with Bsh to open up chromatin, with chromatin accessibility than being a "mere" secondary consequence. If I'm not overlooking something fundamental here, there is actually also a way to distinguish between these models - test chromatin accessibility in a Bsh mutant. If the author's model is true, chromatin accessibility should be unchanged.

      I again finish by commending the authors for this terrific piece of work.

      Thanks! It is a crucial question whether Notch signaling regulates chromatin landscape independently of a primary HDTF. We will include this discussion in the text and pursue it in our next project. We think Notch signaling may regulate chromatin accessibility independently of a primary HDTF based on our observation: in larval ventral nerve cord, all motor neurons are NotchON neurons while all sensory neurons are NotchOFF neurons; NotchON neurons share similar functional properties, despite expressing distinct HDTFs, possibly due to the common chromatin landscape regulated by Notch signaling.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors explore how Notch activity acts together with Bsh homeodomain transcription factors to establish L4 and L5 fates in the lamina of the visual system of Drosophila. They propose a model in which differential Notch activity generates different chromatin landscapes in presumptive L4 and L5, allowing the differential binding of the primary homeodomain TF Bsh (as described in the co-submitted paper), which in turn activates downstream genes specific to either neuronal type. The requirement of Notch for L4 vs. L5 fate is well supported, and complete transformation from one cell type into the other is observed when altering Notch activity. However, the role of Notch in creating differential chromatin landscapes is not directly demonstrated. It is only based on correlation, but it remains a plausible and intriguing hypothesis.

      Thanks for the positive feedback!

      Strengths:

      The authors are successful in characterizing the role of Notch to distinguish between L4 and L5 cell fates. They show that the Notch pathway is active in L4 but not in L5. They identify L1, the neuron adjacent to L4 as expressing the Delta ligand, therefore being the potential source for Notch activation in L4. Moreover, the manuscript shows molecular and morphological/connectivity transformations from one cell type into the other when Notch activity is manipulated.

      Thanks!

      Using DamID, the authors characterize the chromatin landscape of L4 and L5 neurons. They show that Bsh occupies distinct loci in each cell type. This supports their model that Bsh acts as a primary selector gene in L4/L5 that activates different target genes in L4 vs L5 based on the differential availability of open chromatin loci.

      Thanks!

      Overall, the manuscript presents an interesting example of how Notch activity cooperates with TF expression to generate diverging cell fates. Together with the accompanying paper, it helps thoroughly describe how lamina cell types L4 and L5 are specified and provides an interesting hypothesis for the role of Notch and Bsh in increasing neuronal diversity in the lamina during evolution.

      Thanks for the positive feedback on both manuscripts.

      Weaknesses:

      Differential Notch activity in L4 and L5:

      ● The manuscript focuses its attention on describing Notch activity in L4 vs L5 neurons. However, from the data presented, it is very likely that the pool of progenitors (LPCs) is already subdivided into at least two types of progenitors that will rise to L4 and L5, respectively. Evidence to support this is the activity of E(spl)-mɣ-GFP and the Dl puncta observed in the LPC region. Discussion should naturally follow that Notch-induced differences in L4/L5 might preexist L1-expressed Dl that affect newborn L4/L5. Therefore, the differences between L4 and L5 fates might be established earlier than discussed in the paper. The authors should acknowledge this possibility and discuss it in their model.

      We agree. Historically, LPCs are thought to be homogenous; our data suggests otherwise. We now emphasize this in the Discussion as requested. We are also investigating this question using single cell RNAseq on LPCs to look for molecular heterogeneities. Thanks for the great comment!

      ● The authors claim that Notch activation is caused by L1-expressed Delta. However, they use an LPC driver to knock down Dl. Dl-KD should be performed exclusively in L1, and the fate of L4 should be assessed.

      Dl is transiently expressed in newborn L1 neurons. To knock down Dl in L1, we need to express Dl-RNAi before Dl protein is expressed in newborn L1; the only known Gal4 line expressed that early is the LPC-Gal4 that we used. There is no L1-gal4 line expressed early enough to eliminate L1 expression of Dl.

      ● To test whether L4 neurons are derived from NotchON LPCs, I suggest performing MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter.

      We agree! Whether L4 neurons are derived from NotchON LPCs is a great question. However, MARCM clones in early pupa with an E(spl)-mɣ-GFP reporter will not work because E(spl)-mɣ-GFP reporter is only expressed in LPCs but not lamina neurons. We now mention this in the Discussion.

      ● The expression of different Notch targets in LPCs and L4 neurons may be further explored. I suggest using different Notch-activity reporters (i.e., E(spl)-GFP reporters) to further characterize these. differences. What cause the switch in Notch target expression from LPCs to L4 neurons should be a topic of discussion.

      Thanks! It is a great question why Notch induces Espl-mɣ in LPCs but Hey in new-born neurons. However, it is not the question we are tackling in this paper and it will be a great direction to pursue in future. We will add this to our Discussion.

      Notch role in establishing L4 vs L5 fates:

      ● The authors describe that 27G05-Gal4 causes a partial Notch Gain of Function caused by its genomic location between Notch target genes. However, this is not further elaborated. The use of this driver is especially problematic when performing Notch KD, as many of the resulting neurons express Ap, and therefore have some features of L4 neurons. Therefore, Pdm3+/Ap+ cells should always be counted as intermediate L4/L5 fate (i.e., Fig3 E-J, Fig3-Sup2), irrespective of what the mechanistic explanation for Ap activation might be. It's not accurate to assume their L5 identity. In Fig4 intermediate-fate cells are correctly counted as such.

      Thanks for the comment! We will annotate Pdm3/Ap+ as L4/L5 fate in the corresponding figures.

      ● Lines 170-173: The temporal requirement for Notch activity in L5-to-L4 transformation is not clearly delineated. In Fig4-figure supplement 1D-E, it is not stated if the shift to 29{degree sign}C is performed as in Fig4-figure supplement 1A-C.

      Thank you for catching this. We will correct it in the text.

      ● Additionally, using the same approach, it would be interesting to explore the window of competence for Notch-induced L5-to-L4 transformation: at which point in L5 maturation can fate no longer be changed by Notch GoF?

      Our data show that Bsh with Notch signaling in newborn neurons specifies L4 fate while Bsh without Notch signaling in newborn neurons specifies L5 fate. Therefore, we think the window of fate competence is during newborn neurons. We will include the data to support this.

      L4-to-L3 conversion in the absence of Bsh

      ● Although interesting, the L4-to-L3 conversion in the absence of Bsh is never shown to be dependent on Notch activity. Importantly, L3 NotchON status is assumed based on their position next to Dl-expressing L1, but it is not empirically tested. Perhaps screening Notch target reporter expression in the lamina, as suggested above, could inform this issue.

      Our data show that the L4-to-L3 conversion in the absence of Bsh and in the presence of Notch activity while the L5-to-L1 conversion in the absence of Bsh and in the absence of Notch activity. Therefore, Notch activity is necessary for the L4-to-L3 conversion. Unfortunately, currently we only have Hey as an available Notch target reporter in new-born neurons. To tackle this challenge in the future, we will profile the genome-binding targets of endogenous Notch in newborn neurons. This will identify novel genes as Notch signaling reporters in neurons for the field.

      ● Otherwise, the analysis of Bsh Loss of Function in L4 might be better suited to be included in the accompanying manuscript that specifically deals with the role of Bsh as a selector gene for L4 and L5.

      That is an interesting suggestion, but without knowing that Bsh + Notch = L4 identity the experiment would be hard to interpret. Note that we took advantage of Notch signaling to trace the cell fate in the absence of Bsh and found the L4-to-L3 conversion (see Figure 5G-K).

      Different chromatin landscape in L4 and L5 neurons

      ● A major concern is that, although L4 and L5 neurons are shown to present different chromatin landscapes (as expected for different neuronal types), it is not demonstrated that this is caused by Notch activity. The paper proves unambiguously that Notch activity, in concert with Bsh, causes the fate choice between L4 and L5. However, that this is caused by Notch creating a differential chromatin landscape is based only in correlation. (NotchON cells having a different profile than NotchOFF). Although the authors are careful not to claim that differential chromatin opening is caused directly by Notch, this is heavily suggested throughout the text and must be toned down.e.g.: Line 294: "With Notch signaling, L4 neurons generate distinct open chromatin landscape" and Line 298: "Our findings propose a model that the unique combination of HDTF and open chromatin landscape (e.g. by Notch signaling)" . These claims are not supported well enough, and alternative hypotheses should be provided in the discussion. An alternative hypothesis could be that LPCs are already specified towards L4 and L5 fates. In this context, different early Bsh targets in each cell type could play a pioneer role generating a differential chromatin landscape.

      We agree and appreciate the comment, it is well justified. We have toned down our comments and clearly state that this is a correlation that needs to be tested for a causal relationship. Thank you for requesting it!

      ● The correlation between open chromatin and Bsh loci with Differentially Expressed genes is much higher for L4 than L5. It is not clear why this is the case, and should be discussed further by the authors.

      We agree, and think in L5 neurons, the secondary HDTF Pdm3 also contributes to L5 specific gene transcription during synaptogenesis window, in addition to Bsh. We will include this in the text.

    1. Author Response

      Reviewer #1 (Public Review):

      In this very strong and interesting paper the authors present a convincing series of experiments that reveal molecular mechanism of neuronal cell type diversification in the nervous system of Drosophila. The authors show that a homeodomain transcription factor, Bsh, fulfills several critical functions - repressing an alternative fate and inducing downstream homeodomain transcription factors with whom Bsh may collaborate to induce L4 and L5 fates (the author's accompanying paper reveals how Bsh can induce two distinct fates). The authors make elegant use of powerful genetic tools and an arsenal of satisfying cell identity markers.

      Thanks!

      I believe that this is an important study because it provides some fundamental insights into the conservation of neuronal diversification programs. It is very satisfying to see that similar organizational principles apply in different organisms to generate cell type diversity. The authors should also be commended for contextualizing their work very well, giving a broad, scholarly background to the problem of neuronal cell type diversification.

      Thanks!

      My one suggestion for the authors is to perhaps address in the Discussion (or experimentally address if they wish) how they reconcile that Bsh is on the one hand: (a) continuously expressed in L4/L4, (b) binding directly to a cohort of terminal effectors that are also continuously expressed but then, on the other hand, is not required for their maintaining L4 fate? A few questions: Is Bsh only NOT required for maintaining Ap expression or is it also NOT required for maintaining other terminal markers of L4? The former could be easily explained - Bsh simply kicks of Ap, Ap then autoregulates, but Bsh and Ap then continuously activate terminal effector genes. The second scenario would require a little more complex mechanism: Bsh binding of targets (with Notch) may open chromatin, but then once that's done, Bsh is no longer needed and Ap alone can continue to express genes. I feel that the authors should be at least discussing this. The postmitotic Bsh removal experiment in which they only checked Ap and depression of other markers is a little unsatisfying without further discussion (or experiments, such as testing terminal L4 markers). I hasten to add that this comment does not take away from my overall appreciation for the depth and quality of the data and the importance of their conclusions.

      Great suggestions, we will discuss these two hypotheses as requested.

      Bsh initiates Ap expression in L4 neurons which then maintain Ap expression independently of Bsh expression, likely through Ap autoregulation. During the synaptogenesis window, Ap expression becomes independent from Bsh expression, but Bsh and Ap are both still required to activate the synapse recognition molecule DIP-beta. Additionally, Bsh also shows putative binding to other L4 identity genes, e.g., those required for neurotransmitter choice, and electrophysiological properties, suggesting Bsh may initiates L4 identity genes as a suite of genes. The mechanism of maintaining identity features (e.g., morphology, synaptic connectivity and functional properties) in the adult remains poorly understood. It is a great question whether primary HDTF Bsh maintains the expression of L4 identity genes in the adult. To test this, in our next project, we will specifically knock out Bsh in L4 neurons of the adult fly and examine the effect on L4 morphology, connectivity and function properties.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors explore the role of the Homeodomain Transcription Factor Bsh in the specification of Lamina neuronal types in the optic lobe of Drosophila. Using the framework of terminal selector genes and compelling data, they investigate whether the same factor that establishes early cell identity is responsible for the acquisition of terminal features of the neuron (i.e., cell connectivity and synaptogenesis).

      Thanks for the positive words!

      The authors convincingly describe the sequential expression and activity of Bsh, termed here as 'primary HDTF', and of Ap in L4 or Pdm3 in L5 as 'secondary HDTFs' during the specification of these two neurons. The study demonstrates the requirement of Bsh to activate either Ap and Pdm3, and therefore to generate the L4 and L5 fates. Moreover, the authors show that in the absence of Bsh, L4 and L5 fates are transformed into a L1 or L3-like fates.

      Thanks!

      Finally, the authors used DamID and Bsh:DamID to profile the open chromatin signature and the Bsh binding sites in L4 neurons at the synaptogenesis stage. This allows the identification of putative Bsh target genes in L4, many of which were also found to be upregulated in L4 in a previous single-cell transcriptomic analysis. Among these genes, the paper focuses on Dip-β, a known regulator of L4 connectivity. They demonstrate that both Bsh and Ap are required for Dip-β, forming a feed-forward loop. Indeed, the loss of Bsh causes abnormal L4 synaptogenesis and therefore defects in several visual behaviors. The authors also propose the intriguing hypothesis that the expression of Bsh expanded the diversity of Lamina neurons from a 3 cell-type state to the current 5 cell-type state in the optic lobe.

      Thanks for the excellent summary of our findings!

      Strengths:

      Overall, this work presents a beautiful practical example of the framework of terminal selectors: Bsh acts hierarchically with Ap or Pdm3 to establish the L4 or L5 cell fates and, at least in L4, participates in the expression of terminal features of the neuron (i.e., synaptogenesis through Dip-β regulation).

      Thanks!

      The hierarchical interactions among Bsh and the activation of Ap and Pdm3 expression in L4 and L5, respectively, are well established experimentally. Using different genetic drivers, the authors show a window of competence during L4 neuron specification during which Bsh activates Ap expression. Later, as the neuron matures, Ap becomes independent of Bsh. This allows the authors to propose a coherent and well-supported model in which Bsh acts as a 'primary' selector that activates the expression of L4-specific (Ap) and L5-specific (Pdm3) 'secondary' selector genes, that together establish neuronal fate.

      Thanks again!

      Importantly, the authors describe a striking cell fate change when Bsh is knocked down from L4/L5 progenitor cells. In such cases, L1 and L3 neurons are generated at the expense of L4 and L5. The paper demonstrates that Bsh in L4/L5 represses Zfh1, which in turn acts as the primary selector for L1/L3 fates. These results point to a model where the acquisition of Bsh during evolution might have provided the grounds for the generation of new cell types, L4 and L5, expanding lamina neuronal diversity for a more refined visual behaviors in flies. This is an intriguing and novel hypothesis that should be tested from an evo-devo standpoint, for instance by identifying a species when L4 and L5 do not exist and/or Bsh is not expressed in L neurons.

      Thanks for the appreciation of our findings!

      To gain insight into how Bsh regulates neuronal fate and terminal features, the authors have profiled the open chromatin landscape and Bsh binding sites in L4 neurons at mid-pupation using the DamID technique. The paper describes a number of genes that have Bsh binding peaks in their regulatory regions and that are differentially expressed in L4 neurons, based on available scRNAseq data. Although the manuscript does not explore this candidate list in depth, many of these genes belong to classes that might explain terminal features of L4 neurons, such as neurotransmitter identity, neuropeptides or cytoskeletal regulators. Interestingly, one of these upregulated genes with a Bsh peak is Dip-β, an immunoglobulin superfamily protein that has been described by previous work from the author's lab to be relevant to establish L4 proper connectivity. This work proves that Bsh and Ap work in a feed-forward loop to regulate Dip-β expression, and therefore to establish normal L4 synapses. Furthermore, Bsh loss of function in L4 causes impairs visual behaviors.

      Thanks for the excellent summary of our findings.

      Weaknesses:

      ● The last paragraph of the introduction is written using rhetorical questions and does not read well. I suggest rewriting it in a more conventional direct style to improve readability.

      We agree, and will update the text as suggested.

      ● A significant concern is the way in which information is conveyed in the Figures. Throughout the paper, understanding of the experimental results is hindered by the lack of information in the Figure headers. Specifically, the genetic driver used for each panel should be adequately noted, together with the age of the brain and the experimental condition. For example, R27G05-Gal4 drives early expression in LPCs and L4/L5, while the 31C06-AD, 34G07-DBD Split-Gal4 combination drives expression in older L4 neurons, and the use of one or the other to drive Bsh-KD has dramatic differences in Ap expression. The indication of the driver used in each panel will facilitate the reader's grasp of the experimental results.

      We agree, and will update the figure annotation.

      ● Bsh role in L4/L5 cell fate:

      o It is not clear whether Tll+/Bsh+ LPCs are the precursors of L4/L5. Morphologically, these cells sit very close to L5, but are much more distant from L4.

      Our current data show L4 and L5 neurons are generated by different LPCs. However, currently we don’t have tools to demonstrate which subset of LPCs generate which lamina neuron type. We are currently working on a followup manuscript on LPC heterogeneity, but those experiments have just barely been started.

      o Somatic CRISPR knockout of Bsh seems to have a weaker phenotype than the knockdown using RNAi. However, in several experiments down the line, the authors use CRISPR-KO rather than RNAi to knock down Bsh activity: it should be explained why the authors made this decision. Alternatively, a null mutant could be used to consolidate the loss of function phenotype, although this is not strictly necessary given that the RNAi is highly efficient and almost completely abolishes Bsh protein.

      The reason we chose CRISPR-KO (L4-specific Gal4, uas-Cas9, and uas-Bsh-sgRNAs) is that it effectively removed Bsh expression from majority of L4 neurons. However, it failed to knock down Bsh in L4 neurons using L4-split Gal4 and Bsh-RNAi because L4-split Gal4 expression depends on Bsh. We will include this explanation in the text.

      o Line 102: Rephrase "R27G05-Gal4 is expressed in all LPCs and turned off in lamina neurons" to "is turned off as lamina neurons mature", as it is kept on for a significant amount of time after the neurons have already been specified.

      Thanks; we will make that change.

      o Line 121: "(a) that all known lamina neuron markers become independent of Bsh regulation in neurons" is not an accurate statement, as the markers tested were not shown to be dependent on Bsh in the first place.

      Good point. We will rephrase it as “that all known lamina neuron markers are independent of Bsh regulation in neurons”.

      o Lines 129-134: Make explicit that the LPC-Gal4 was used in this experiment. This is especially important here, as these results are opposite to the Bsh Loss of Function in L4 neurons described in the previous section. This will help clarify the window of competence in which Bsh establishes L4/L5 neuronal identities through ap/pdm3 expression.

      Thanks! We will include Gal4 information in the text for every manipulation.

      ● DamID and Bsh binding profile:

      ○ Figure 5 - figure supplement 1C-E: The genotype of the Control in (C) has to be described within the panel. As it is, it can be confused with a wild type brain, when it is in fact a Bsh-KO mutant.

      Great point! Thank you for catching this and we will update it.

      ○ It Is not clear how L4-specific Differentially Expressed Genes were found. Are these genes DEG between Lamina neurons types, or are they upregulated genes with respect to all neuronal clusters? If the latter is the case, it could explain the discrepancy between scRNAseq DEGs and Bsh peaks in L4 neurons.

      We did not use “L4-specific Differentially Expressed Genes”. Instead, we used all genes that are significantly transcribed in L4 neurons (line 209-210).

      ● Dip-β regulation:

      ○ Line 234: It is not clear why CRISPR KO is used in this case, when Bsh-RNAi presents a stronger phenotype.

      As we explained it above, the reason we chose CRISPR-KO (L4-specific Gal4, uas-Cas9, and uas-Bsh-sgRNAs) is that it effectively removed Bsh expression from majority of L4 neurons. However, it failed to knock down Bsh in L4 neurons using L4-split Gal4 and Bsh-RNAi because L4-split Gal4 expression depends on Bsh. We’ll include this explanation in the text.

      ○ Figure 6N-R shows results using LPC-Gal4. It is not clear why this driver was used, as it makes a less accurate comparison with the other panels in the figure, which use L4-Split-Gal4. This discrepancy should be acknowledged and explained, or the experiment repeated with L4-Split-Gal4>Ap-RNAi.

      I think you mean 6J-M shows results using LPC-Gal4. We first tried L4-Split-Gal4>Ap-RNAi but it failed to knock down Ap because L4-Split-Gal4 expression depends on Ap. We will add this to the text.

      ○ Line 271: It is also possible that L4 activity is dispensable for motion detection and only L5 is required.

      Thanks! Work from Tuthill et al, 2013 showed that L5 is not required for any motion detection. We will include this citation in the text.

      ● Discussion: It is necessary to de-emphasize the relevance of HDTFs, or at least acknowledge that other, non-homeodomain TFs, can act as selector genes to determine neuronal identity. By restricting the discussion to HDTFs, it is not mentioned that other classes of TFs could follow the same Primary-Secondary selector activation logic.

      That is a great point, thank you! We will include this in the discussion.

    1. Author Response

      Reviewer #2 (Public Review):

      The authors describe the synthesis and testing of the anti-cancer activity of a new molecule CK21 against pancreatic cancer mouse models. This part of the study is very strong showing regression of pancreatic tumors at non-toxic concentrations, which is very hard to achieve for practically uncurable pancreatic cancer. Authors synthesized CK21 as an analog of a known inhibitor of RNA synthesis which is very toxic. The authors did very little attempt to understand whether the mechanism of anti-cancer efficacy of CK2 is similar to this known inhibitor of transcription or not. One cannot compare gene expression profiles between untreated and CK21-treated cells, taking into account that CK2 may inhibit the expression of all genes. The effect of CK2 on general transcription needs to be tested first, and then based on this data absolute changes in the expression of genes may be considered for the revealing of the mechanism of activity of CK21.

      We also appreciated the toxicity concerns; thus, we designed the transcriptomic analysis on the human organoid cultured cells for early time points of 3, 6, 9 and 12 h, and with a CK21 concentration of 50nM, to ensure that at the time of harvest, the cells were ~100% viable. At these time points, many genes were upregulated but defined by IPA as enriched for cell death (apoptosis and necrosis), senescence and cell cycle arrest (Fig 5). This led us to hypothesize that the direct effect of CK21 on the tumor cells is the induction of apoptosis, but via multiple pathways.

      Reviewer #3 (Public Review):

      This manuscript describes CK21, a modified version of Triptolide, a natural compound with antcancer activities, to improve its bioavailability. The authors tested the compound in two human pancreatic cancer cell lines, in vitro and in vivo. The authors also use two human organoid lines derived from pancreatic cancer, and mouse KC and KPC cell lines. In all models, CK21 treatment induces dose-dependent cytotoxicity. In vivo, CK21 causes tumor regression. The authors perform gene expression analysis and show that treated organoids have generally lower transcription, consistent with cytotoxicity, and a reduction in the KFkB pathway activation.

      Key experiments that would strengthen the current manuscript are: the inclusion of normal cell lines and organoids, too, presumably, show no cytotoxic effect. If that is the case, the authors would have the opportunity to compare responses and determine whether a tumor-specific mechanism can be defined.

      Our in vivo studies suggest that CK21 is more specific to tumors, as CK21 ≤3 mg/kg treated mice were 100% viable and gained weight comparably to no treatment group (Fig.2d). Furthermore, in vitro studies with primary fibroblast cells indicate that comparable significant toxicity to CK21 after 72h culture was observed at 500 nM (Fig.s2). In contrast, CK21 induced significant toxicity in AsPC1 and Panc-1 cells at 50 nM (Fig. 1f.)

      The authors observe that few gene changes - besides from overall lowering in transcription, occur upon treatment with CK21. They suggest that the drug acts through inhibition of the NFkB pathway and an increase in reactive oxygen species (ROS). However, no experiments to test whether either/both of these findings explain the cytotoxic effect (rescue experiments would be particularly valuable).

      We performed a rescue study using an ROS inhibitor (acetylcysteine) but observed no significant effect (data not shown). We speculate that ROS and/or NF-B might function synergistically; additionally, it is possible that other mechanisms might be involved in the anti-tumor effects of CK21.

      In the last figure, the authors text whether CK21 is immunosuppressive by testing immunity against a mis-matched tumor cell line (using KPC tumors, mixed strain, in mixed strain mice). The immunity against HLA mis-matched cells is a very strong immune reaction, and mild immune suppression might be missed, which diminishes the value of these findings.

      KPC-960 tumor cells were derived from KPC (C57BL/6 background); therefore, KPC-960 tumors were HLA matched with host C57BL/6 mice. We were surprised to observe spontaneous rejection of the KPC-960 tumor line, since this contrasts with Torres et al. 2013. We speculate that this could be due to the increased number of passages resulting in antigenic drift, which may result in the accumulation of mutations that induce spontaneous rejection.

      We agree that there might be mild immunosuppression that we did not detect; we have included this caveat in the discussion. KC-6141 tumor cells used as CTL targets were from KC mice (mixed background – B6.129).

    1. Author Response

      Reviewer #1 (Public Review):

      Zhao et al. investigated the molecular nature of the binding site for carbohydrates within the UDP-sugars known to activate the P2Y14 receptor. In order to do so, they built a molecular model of the hP2Y14, docked the corresponding agonists, and performed MD simulation on the resulting complexes. The modeling was used to identify the key molecular interactions with a cluster of charged residues in the extracellular side of the TM region of the receptor, which they show are conserved within the P2Y receptors. The binding site of the UDP region was, not surprisingly, overlapping with the analogous ADP binding site experimentally observed for the P2Y12 receptor, and consequently, the region that recognizes the sugars could be anticipated. Nevertheless, the detailed modeling and simulation work shows the consistency of this hypothesis and provides a quantification of the particular interactions involved, pinpointing specifically the residues candidate to be involved in the recognition of sugars.

      It follows the characterization, by functional assays, of the effect of single-point mutations of these residues in the efficacy of the different UDP-sugars. Here the results show a tendency to correlate with the molecular models, however some of the data has very low statistical significance and consequently the interpretation and conclusions extracted from this data should be taken with caution. This pertains to the particular role of the identified residues in the binding of the different sugars, which in some cases should be taken as a suggestion rather than a proof, though the general conclusion of the identification of the binding region for the sugar, its conservation among P2Y receptors and the role of some specific residues in sugar recognition seems convincing and the data are conveniently presented.

      Finally, the design of ADP-sugars that activate the P2Y12 receptor, based on the transferability of the observations with the UDP-sugars for the P2Y14 receptor, is a first indication that such a recognition is possible and should happen in an analogous binding region. However, the low potencies exhibited by the ADP-sugars, in the micromolar range, are too far from the ADP agonist and the relevance of this mechanism remains to be proved. The difference between P2Y12 and P2Y14, with the last one showing much higher potencies for UDP-sugar derivatives than P2Y12 for the corresponding ADP-sugars, remains an interesting question not explored in this manuscript.

      Thanks for your valuable comments. We have revised the interpretation of the data that has relatively low statistical significance in the manuscript. The conclusions extracted from this data have also been modified as suggestions. In this work, to investigate whether sugar nucleotides can also activate human P2Y12, we tested three ADP-sugars for human P2Y12. Discovery of highly potent P2Y12 agonists requires screening of a large number of compounds. It is possible there are the other ADP-sugars, which are highly potent P2Y12 agonists. It is technically challenging to synthesize ADP-sugars. Currently, we can only obtain ADP-Glc, ADP-GlcA and ADP-Man. Once the other ADP-sugars are available for us, we will test them and try to discover highly potent agonists in the future work. The highly potent agonists will be useful chemical tools to unveil the relevance mechanism of P2Y12. To explore the nature of binding site of the P2Y12 and P2Y14, we performed more experiments of mutagenesis study and added relevant data in the revised manuscript.

      Reviewer #2 (Public Review):

      The manuscript employs multiple approaches, including molecular docking, molecular dynamic simulations, and functional experiments to uncover a distinct uridine diphosphate-sugar-binding site on P2Y14 - a key drug target for inflammation and immune responses. Overall, the manuscript is clearly written, and the experimental techniques are well-documented. However, it may benefit from further analysis, particularly in terms of validating the binding pose.

      Thanks for your comments. We used MMPBSA to analyze the ligand-binding energy for each receptor residue using MD trajectories. To further characterize the ligand-binding pose, we calculated the percentage of occurrence of hydrogen binding between the ligand and the carbohydrate-binding site (K277, E278, R253 and K77). We also calculated the ligand RMSF and ligand RMSD to show the stability of the ligand-binding pose and the simulation convergence. These data have been included in the revised manuscript.

    1. Author Response

      Reviewer #3 (Public Review):

      Seeking a selective inhibitor that precisely inhibits on-target activities and avoids side effects is a major challenge in the field of drug discovery and therapeutics. The authors proposed an alternative method that combines multiple inhibitors to maximize on-target inhibition and minimize off-target inhibition. Focusing on the kinase-inhibitor interaction dataset, the authors developed a quantitative way to measure the selectivity for mixtures of inhibitors by using the Jenson-Sahannon distance metric. The method sounds technical.

      From their computation and assays, the multi-compound-multitarget scoring (MMS) method framework was validated to be able to select a combination of inhibitors that is more selective than a single highly selective inhibitor for one kinase target, or for multiple targets. The MMS method is a promising solution to reduce off-target effects and could be applicable to other inhibitor-target interactions. My suggestion is that a comparative analysis of MMS with other similar methods can be conducted to highlight the advantage of MMS over others.

      We thank the reviewer for this excellent summary and their suggestions. We agree that comparing new methods to prior ones is an important step in benchmarking new approaches and methods. However, to our knowledge, no other method exists for calculating selective combinations of kinase inhibitors. We compare our JSD selectivity scoring metric to other representative target-specific and non target-specific selectivity metrics (Figure 2 Figure Supplement 2).

      The paper is not well organized and not easily readable. For example, first, the captions of the figures are two long; some of these texts could be moved to methods or results sections. Second, the concept of "penalty distribution" or "penalty prior" is vital to understand the MMS method, thus, at least a brief definition and introduction should be put in the main text rather than supporting method, as well as the rationale to use it. Third, the method section can be divided into several subsections with clear organizations and connections. Fourth, what is the difference between "a less selective inhibitor profile" and "an even less selective inhibitor profile" in Figure 3? Overall, the details of the paper are difficult to understand in the current version. I suggest rewriting the paper in a more concise and logical style.

      We appreciate these suggestions and have significantly edited and revised our manuscript in order to facilitate clear communication. Specifically:

      1) We have added an additional description of the penalty distribution to the description of the MMS method in the main Results section of the manuscript as opposed to solely in the Materials and Methods section.

      2) We have provided a high-level concise summary of the MMS method in the results section in order to help orient a reader to the method. This description follows the same order (1 to 5) as the associated Figure 2, we hope this helps more clearly communicate the method.

      3) We have moved descriptive figure captions to the methods section and, in general, substantially reduce the size of figure captions.

      4) We have subdivided the Materials and Methods section as suggested.

      5) We now describe in our main text how the simulated profiles were generated by smoothing the PKIS2645-like profile with two restraints; non-zero activity for LS inhibitors, and similar on-target probability for PKIS2-645-like, RS, and LS inhibitors to facilitate direct comparisons. We provide a new figure to quantify the selectivity of these simulated inhibitors and their similarity with true compounds (Figure 3 Figure Supplement 1).

      6) We have removed content from the introduction and results sections that was less important to communicate to a general audience in order to make the manuscript more concise. We have also removed or condensed extraneous supplemental figures that were not required to communicate the central results and findings of experiments (ex: supplemental figures for Figure 3 and Figure 4 from the prior submission).

    1. Author Response

      Joint Public Review

      (1) The developed model considers the interaction of multiple signaling networks that are essential for morphogenesis and homeostasis in the intestinal tissue, as well as other elements that had been proposed as relevant in the literature. Nevertheless, the details of how these interactions are modeled couldn't be evaluated in the current revision as the model was not shared with the reviewers and it is not available yet online, nor specified in any detail in the current manuscript. Additionally, how quantitative information from Wnt and BMP signaling pathways is incorporated in a quantitative way in the model is not clear.

      Model files are provided with this reply. These are ‘.jl’ files for use with Julia. The model (the files provided with this reply) will be freely publicly available through BioModels upon acceptance of this manuscript for publication.

      The model includes abstracted values to reproduce Wnt and BMP signalling gradients and their effect on cell proliferation and differentiation to generate the three-dimensional crypt spatial cell distribution. To further clarify the implementation of the quantitative information from Wnt and BMP signalling pathways in the model, we have added the following paragraph in the Appendix Section 8) Cell fate: proliferation, differentiation, arrest, apoptosis

      "…During this migration the Wnt content in absorptive progenitors is halved in each division and, away from Wnt sources, progressively decreases, while BMP signals increase, towards the villus. In our model, differentiation into enterocytes occurs when progenitors encounter a BMP signal level, higher that their Wnt signal content. For instance, in the ileal crypt in homeostasis this occurs approximately at cell position 16 from the crypt base, where progenitors migrating from the stem cell niche reach a reduced content of Wnt signals of about 8 a.u. On the other hand, the BMP signalling level has a maximum value of 64 at approximately cell position 23 from the crypt base, where BMP signals are generated by mature enterocytes. These BMP signals diffuse towards the crypt base and, hence, decrease exponentially to reach values of 8 a.u. at approximately position 16, which, hence, enable differentiation into enterocytes. Epithelial injuries resulting in a decreased number of enterocytes reduce BMP signal production and its diffusion range which results in the enlargement of the proliferation compartment as cells encounter the required level of BMP signals for differentiation only at higher positions in the crypt."

      (2) Some conclusions by the authors are not properly justified in the text, as "Paneth cells are the main driver behind the differential mechanical environment in the niche", "Wnt-mediated feedback loop prevents the uncontrolled expansion of the niche", the specific effect of p27 in contrast with Wee1 phosphorylation over the cell cycle length, and "their recovery [absorptive progenitors] started before the end of the treatment, driven by a negative feedback loop from mature enterocytes to their progenitors".

      We have reworded these statements as described below.

      The paragraph “Paneth cells are the main driver behind the differential mechanical environment in the niche, where cells with longer cycles accumulate more Wnt and Notch signals. In agreement with experimental reports {Pin, 2015 #719}, in our model Paneth cells are assumed to be stiffer and larger than other epithelial cells, requiring higher forces to be displaced and generating high intercellular pressure in the region” has been modified and now reads as follows “In agreement with experimental reports {Pin, 2015 #719}, Paneth cells are assumed to be stiffer and larger than other epithelial cells, requiring higher forces to be displaced and generating high intercellular pressure in the niche. Due to this increased mechanical pressure, cells in the niche have longer division cycles and can accumulate more Wnt and Notch signals.”

      The sentence “Wnt-mediated feedback loop prevents the uncontrolled expansion of the niche” has been deleted from paragraph, that now reads “To generate a niche of stable size, we implemented a negative Wnt-mediated feedback loop that resembles the reported stem cell production of RNF43/ZNRF3 ligands to increase the turnover of Wnt receptors in nearby cells {Hao, 2012 #2086;Koo, 2012 #2089;Clevers, 2013 #538;Clevers, 2013 #2098}. Similarly, in our model, a number of stem cells in excess of the homeostatic value reduces cell tethering of Wnt ligands and hence inhibits Paneth and stem cell generation (Figures 1A-B).”

      Regarding the specific effect of p27 in contrast with Wee1 phosphorylation over the cell cycle length. We have simplified the text in the main manuscript that now reads “Using the model of Csikasz-Nagy et al. {Csikasz-Nagy, 2006 #1870}, we modulated the duration of G1 through the production rate of the p27 protein. The p27 protein has been reported to regulate the duration of G1 by preventing the activation of Cyclin E-Cdk2 which induces DNA replication and the beginning of S-phase {Morgan, 2007 #2073}. We, hence, hypothesized that rapid cycling absorptive progenitors located in regions of low mechanical pressure outside the stem cell niche have low levels of p27, which bring forward the start of S-phase to shorten G1 (Figures 2D). In support of this hypothesis, it has been demonstrated that p27 inhibition has no effect on the proliferation of absorptive progenitors {Zheng, 2008 #2074} (see the Appendix for a full description).

      In the Appendix Section 2 we provide an extended explanation of the use of the p27 and Wee1 kinetic governing parameters to decrease the length of the cell cycle by decreasing mainly G1 but maintaining the length of S phase constant, which is as follows

      "Regarding G1 phase, the p27 protein has been reported to regulate the duration of G1 by preventing the activation of Cyclin E-Cdk2 which induces DNA replication and defines the beginning of S-phase {Morgan, 2007 #2073}. We hypothesized that fast cycling cells have low levels of p27 which result in earlier DNA replication, bringing forward the start of S-phase and shortening the length of G1. In support of this hypothesis, it has been experimentally demonstrated that inhibiting p27 has no effect on the proliferation of absorptive progenitors {Zheng, 2008 #2074}. In the Csikasz-Nagy model {Csikasz-Nagy, 2006 #1870}, the duration of G1 can be modulated through the parameter V_si, which is the basal production rate of p21/p27 (in the Csikasz-Nagy model, the p21 and p27 proteins are represented by a single variable, here we refer to that model quantity as p21/p27).

      Additionally, the end of S-phase is associated with the decrease of Wee1 to basal levels due to Cdc14 mediated phosphorylation of Wee1. In the Csikasz-Nagy model {Csikasz-Nagy, 2006 #1870}, this reaction is described by a Goldbeter-Koshland function, which includes the parameter KA_Wee1p to regulate the level of Cdc14 required for the phosphorylation of Wee1.

      Therefore, we modified these two parameters, V_si and KA_Wee1p, to ensure that variations of the cycle duration mostly impact on G1 while the length of S phase remains constant. We assumed that the value of the two parameters scales linearly with the duration of the division cycle, t_cycle, between a lower and upper bound, which prevent aberrant behaviour of the cell cycle model in the dynamically changing conditions of the crypt."

      The paragraph related to “their recovery started before the end of the treatment…” sentence has been amended in the text and now reads “Simulated proliferative absorptive progenitors were indirectly affected by stem cell ablation and their decrease was followed by a reduction in mature enterocytes. The progenitors recovered soon after treatment interruption to later reach values above baseline when responding to the negative feedback signalling from mature enterocytes (Figure 3A).”

      (3) Only the results of the "main" model are shown, with no information about its sensitivity to parameter values, and how their conclusions depend on specific decisions on the model. For example, the authors said that "an optimal crypt cell composition is achieved when BMP and Wnt differentiation thresholds result in progenitors dividing approximately four times before differentiating into enterocytes", but the results of alternative scenarios are not shown.

      To address this comment, we have included a new section in the Appendix, called “What-if Analysis”, and new figures (Figure S4-S8) with simulations of alternative scenarios affecting the main signalling pathways that govern crypt composition, in particular, we simulated stronger and weaker Wnt, BMP, Notch and ZNRF3/RNF43 signalling.

      We attach the new section here:

      "10) What-if Analysis

      We investigated the effect on the simulated crypt of increasing and decreasing the strength of the main signalling pathways, Wnt, BMP and ZNRF3/RNF43 signalling, and modifying the Notch thresholds. For each alternative parameterisation, except when decreasing ZNRF3/RNF43 signalling, the simulation was run for 30 days to ensure stability was reached with the new parameter set and the final 10 days were included in the analysis. When decreasing ZNRF3/RNF43 signalling, we simulated 60 days to demonstrate the expansion of the niche and analysed the final 10 days. The reference parameter set used as baseline was the ileal mouse crypt parameter set reported in Appendix Table 1. In all cases, we only consider modifications of one signalling mechanism at a time.

      To study alternative Wnt signalling scenarios, we used the WntRange parameter (Appendix Table 1), to double and halve the spreading area of Wnt signals emitted by Paneth cells while we maintained the original WntRange value for Wnt-emitting mesenchymal cells at the bottom of the crypt (Appendix Section 7.1) (Figures S4A-S4F). When WntRange was doubled, we observed increased number of stem and Paneth cells in a noticeably enlarged niche (Figures S4C-S4D), with cells choosing the stem cell fate instead of differentiating into absorptive progenitors. On the other hand, decreasing Wnt signalling, by halving WntRange in Paneth cells but maintaining its homeostatic value in mesenchymal cells, resulted in no apparent changes in the niche cell composition (Figures S4E-S4F) which resembled published experimental results of persisting functional stem cells after Paneth cell ablation {Durand, 2012 #434}.

      The ZNRF3/RNF43-mediated negative feedback mechanism regulates the size of the niche by modulating Wnt signalling. We simulated increasing and decreasing the strength of the ZNRF3/RNF43, by doubling and halving, respectively, the parameter Z described in the Appendix Section 7.2 (Figures S5A-S5F). Following the increase of the intensity of ZNRF3/RNF43 signalling, we observed a decrease in the number of stem and Paneth cells together with relatively minor changes in the transit-amplifying region (Figures S5C-S5D). On the other hand, when decreasing ZNRF3/RNF43 signalling levels, the niche expanded , resulting in a crypt dominated by Paneth and stem cells (Figures S5E-S5F ) which replicates reported experimental phenotypes {Koo, 2012 #2089}.

      To modify Notch signalling, we increased and decreased by 1 A.U. the Notch threshold required for lateral inhibition (Figures S6A-S6F). This Notch signalling threshold determines the number of contacting Notch-secreting cells (secretory lineage) to inhibit the differentiation of stem cells into the secretory lineage. Thus, increasing this Notch threshold enhances the production of secretory cells leading to the increase of Paneth, goblet and enteroendocrine cells (Figure S6C-S6D). Alternatively, decreasing the Notch threshold enhances differentiation into the absorptive lineage, reducing the number of Paneth and secretory cells (Figure S6E-S6F).

      We modified the range of diffusion of BMP signals by doubling and halving the parameter A , (Figures S7A-S7F) which denotes the amount of diffusing BMP signals towards the base of the crypt (Appendix Section 7.4). When we increased the BMP signalling range, enterocytes differentiated at lower crypt positions effectively reducing the transit-amplifying zone (Figure S7A, Figure S7B). Decreasing BMP signalling strength by halving A resulted in the increase of proliferative absorptive progenitors, which reach higher positions in the crypt (Figure S7C-S7D). The niche was largely unaffected in both cases (Figure S7E-S7F)."

      (4) Regarding the construction of the model, the authors used "counts of Ki-67 positive cells recorded by position" while the original data reported "overall cell counts per crypt and villus". Some explanation about how this conversion was made, why it is valid, as well as any potential problems, is needed. Additionally, the model is based on experiments done by others in mouse models; the similarity to the response in human intestinal crypts is not discussed.

      Ki-67 immunostaining data during 5-FU treatment was derived from the same experiments. The overall cell counts per crypt and villus are published in {Jardi, 2022 #2416}. For this manuscript, we reanalysed the intestinal samples to estimate counts of cell types by position in the crypt.

      We have clarified the text, which now reads …“The samples from this later study {Jardi, 2022 #2416} were analysed again to count Ki-67 positive cells at each position along the longitudinal crypt axis, for 30-50 individual hemi crypt units per tissue section per mouse as previously described {Williams, 2016 #2165}.”

      We agree that the understanding of the translation of results derived from animal models into a human or clinical context is of high relevance. The mouse crypt is a model of choice to study epithelial biology and exhibits remarkable similarities with the human crypt. In our team, we are focussed on developing translational modelling strategies and have a version of the model that describes a human crypt. That model assumes mostly conserved crypt biology and structure across species and includes changes in parameter values needed to compensate reported differences in morphometrics and cell cycle duration. Due to the relevance and extent of this translational work, we chose to focus on the mouse crypt entirely in this manuscript. We think the translational modelling strategy to explore the quantitative translation between human and mouse and/or other species/settings merits a full report.

      (5) The authors imply that their mathematical model of the intestinal crypt is an improvement over those already published but there is no direct comparison or review of the literature to substantiate this claim.

      An extended literature review including more details of previous ABMs to enable a direct comparison with our model is now included in the manuscript and reads as follows:

      “Several agent-based models (ABMs) have been proposed to describe the complexity and dynamic nature of the intestinal crypt. Early models were used as in silico platforms to study the dynamics and cellular organisation of the crypt. For instance, one of the pioneering ABMs was used to study the distribution and organisation of labelling and mitotic indices {Meineke, 2001 #326}. This model comprises a fixed ring of Paneth cells beneath a row of stem cells, which divide asymmetrically to produce a stem cell and a transit-amplifying cell that terminally differentiates after a fixed number of divisions. Some subsequent models are lattice-free, recapitulate neutral drift of equipotent stem cells and describe proliferation and cell fate regulated by a fixed Wnt signalling spatial gradient, which is defined by the distance from the crypt base, with proliferating cells progressing through discrete phases of the cell cycle and showing variable duration of the G1 phase {Pitt-Francis, 2009 #129}. Further model refinements can be seen in the model of Buske et al (2011), with stochastic cell growth and division time {Buske, 2011 #1}, Wnt levels defined by the fixed local curvature of the crypt and lateral inhibition driven by Notch signalling. Here, we present a lattice-free agent-based model that describes the spatiotemporal dynamics of single cells in the small intestinal crypt driven by the interaction of surface tethered Wnt signals, cell-cell Notch signalling, BMP diffusive signals, RNF43/ZNRF3-mediated feedback mechanisms and the cycle protein network responding to the crypt mechanical environment. We show that our computational model enables the simulation of the ablation and recovery of the stem cell niche as well as of how drug-induced molecular perturbations trigger a cascade of disruptive events spanning from the cell cycle to single cell arrest and/or apoptosis, altered cell migration and turnover and ultimately loss of epithelial integrity.”

      (6) The authors claim that the simulated data and the available mouse data match up. Nevertheless, the data vs the model still appear both quantitatively and qualitatively different (as presented in Figures 2E, F, and 5C, D). This puts in doubt how much the model can actually reproduce the experimental data. In conclusion, the model would benefit from further refinement, particularly if the goal is to use the model for predicting the dynamics of oncogenic drug candidates.

      To address this comment, we have made several adjustments: we refined the counting algorithm that determines cell position and improved the Ki67 and BrdU staining simulations by modifying the simulated staining criteria and adding an estimation of the experimental error to the simulated responses. A description of these changes is described in a new section in the appendix called “ABM simulation of Ki-67 and BrdU Staining”

      With these changes we think we have achieved a more satisfactory agreement between observed and predicted results and updated all figures with Ki67 and BrdU staining simulated results.

    1. Author Response

      We are grateful to the editors and the reviewers for the thorough evaluation of our manuscript and their feedback, as it allows us to provide additional clarification of our findings and improve the manuscript.

      In their evaluation reviewers raised a key conceptual point linked to the inhibitory mechanism that appeared to be insufficiently explained in the manuscript, leading to a misconception regarding the physiological relevance. They have also missed experimental data related to the concentrations of Aβ used and their relevance for Alzheimer’s disease (AD). We believe that our studies, although performed in vitro in model systems, provide novel conceptual framework and shed light on the unexplored mechanisms underlying AD.

      We discuss these points below in a provisional response to their comments.

      Reviewer #1 (Public Review):

      Summary:

      Human Abeta42 inhibits gamma-secretase activity in biochemical assays.

      Strengths:

      Determination of inhibitory concentration human Abeta42 on gamma-secretase activity in biochemical assays.

      Weaknesses:

      Human Abeta42 may concentrate up to microM order in endosomes.

      This is correct.

      If so, production of Abeta42 would be attenuated then lead to less Abeta deposition in the brain. The authors finding is interesting but does not fit the physiological condition in the brain.

      We thank the reviewer for raising this key conceptual point, as this gives us the opportunity to clarify it for the future readers.

      The characterized inhibitory mechanism is more complex than the reviewer’s interpretation, and a number of factors must be considered. Indeed, our data show that Aβ42 upon intracellular concentration inhibits γ-secretase activity, resulting in increased γ-secretase substrate (C-terminal fragment, CTF) levels. It is important however to highlight that this inhibition is competitive in nature, implying that it is partial, reversible, and regulated by the relative concentrations of the Aβ42 peptide (inhibitor) and the substrates. The model that we put forward is that cellular uptake and intracellular concentration of Aβ42 facilitates γ-secretase inhibition, which results in the accumulation of APP-CTFs (and γ-secretase substrates in general). However, as Aβ42 levels fall, the increased concentration of substrates shifts the equilibrium towards their processing and Aβ production. As Aβ42 concentration raises again, equilibrium is shifted back towards inhibition and so on. This inhibitory mechanism will translate into pulses of (partial) γ-secretase inhibition, which will alter γ-secretase mediated signalling (arising from increased CTF levels or decreased release of soluble intracellular domains from substrates). These alterations may affect the dynamics of systems oscillating in the brain, such as NOTCH signalling, implicated in memory formation (2), and potentially others (related to e.g. cadherins, p75 or neuregulins).

      It is worth noting that oscillations in γ-secretase activity induced by treatment with a γ-secretase inhibitor (semagacestat) have been proposed to have contributed to the cognitive alterations observed in semagacestat treated patients in the failed Phase-3 IDENTITY clinical trial (2, 3); and that semagacestat, like Aβ42, acts as a high affinity competitor of substrates (Koch et al, 2023). We will include this clarification in the discussion of the revised manuscript and create an additional figure presenting the proposed mechanism.

      It is not clear whether the FRET-based assay in living cells really reflect gamma-secretase activity.

      The specificity of this assay is supported by the γ-secretase inhibitor treatment included as a positive control (Figure 3). In addition, the following literature supports that this assay truthfully assesses γ-secretase activity in cellular context (4-7).

      Processing of APP-CTF in living cells is not only the cleavage by gamma-secretase.

      This is correct, and therefore we have analysed the contribution of other APP-CTF degradation pathways by performing cycloheximide-based stability assay in the presence of γ-secretase inhibitor. Quantitative analysis of the levels of both APP-CTFs and APP-FL over the 5h time-course failed to reveal significant differences between Aβ42 treated cells and controls. As expected, Bafilomycin A1 treatment markedly prolonged the half-life of both proteins (Figure 7B & C). The lack of a significant impact of Aβ42 on the half-life of APP-CTFs under the conditions of γ-secretase inhibition is consistent with the proposed inhibitory mechanism. Finally, we note that the inhibition will not only affect APP-CTF, but also the processing of γ-secretase substrates in general.

      Reviewer #2 (Public Review):

      Summary:

      In the current study, the authors tested the hypothesis that Aβ42 toxicity arises from its proven affinity for γ-secretases. Specifically, the increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. They showed that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including (CTFs of APP, p75 and pan-cadherin. Moreover, Aβ42 dysregulated cellular homeostasis by inducing p75-dependent neuronal death. Because γ-secretases process many other membrane proteins, including NOTCH, ERB-B2 receptor tyrosine kinase 4 (ERBB4), N-cadherin (NCAD) and p75 neurotrophin receptor (p75-NTR), revealing a broad range of downstream signaling pathways, including those critical for neuronal structure and function. Hence, they propose to identification of a selective role for the Aβ42 peptide, and raise the intriguing possibility that compromised γ-secretase activity against the CTFs of APP and/or other neuronal substrates contributes to the pathogenesis of AD. Overall, the data are not very convincing to support the main claim.

      Strengths.

      Different in vitro and cellular approaches are employed to test the hypothesis.

      Weaknesses.

      The experimental concentrations for Aβ42 peptide in the assay are too high, which are far beyond the physiological concentrations or pathological levels. The artificial observations are not supported by any in vivo experimental evidence.

      It is correct that in the majority of the experiments we used low μM concentrations of Aβ42. However, we would like to note that we also performed experiments where conditioned medium collected from human APP.Swe expressing neurons was used as a source of Aβ. In these experiments total Aβ concentration was in low nM range (0.5-1 nM) (Figure 4G). Treatment with this conditioned medium led to the increase APP-CTF levels, supporting that low nM concentrations of Aβ are sufficient for partial inhibition of γ-secretase.

      We would like to underline that Aβ is estimated to be present in the brain in concentration ranging from fM to mM, depending on the pool (soluble, aggregated, fibrillar, etc) that is considered (8, 9). However, it is rather the local than the global concentration of Aβ that is critical for the disease pathogenesis. In this regard, it is proposed that as AD progresses Aβ42 slowly accumulates in the endo-lysosomal system wherein it reaches μM concentrations that are required for aggregation and seeding (1, 10, 11). Our findings are consistent with the analysis showing that extracellular soluble Aβ42 peptide, at low nM concentrations, is taken up by cortical neurons and neuroblastoma (SH-SY5Y) cells, and concentrated in the endo-lysosomal system wherein effective peptide concentrations reach ~2.5 μM (1). Hence, a slow vesicular peptide accumulation and/or degradation imbalance (1, 11, 12) could lead to several order of magnitude increases in the effective concentration of Aβ42 over the span of years to decades in AD pathogenesis. We note that our experimental settings, using low μM concentrations of extracellular Aβ42 over 24h treatment, were designed to accelerate this 'peptide concentration’ process in vitro. As discussed in our report, a high μM Aβ peptide concentration in the endo-lysosomal system not only leads to aggregation but also facilitates γ-secretase inhibition. Of note, we are currently developing protocols and will undertake follow up studies to quantitatively define the Aβ concentration in synaptosomes and endosomes in AD brain, as well as in in vitro systems (i.e. cells treated with Aβ preparations obtained from AD brains).

      Finally, we would like to highlight that analyses of the brains of the AD affected individuals have shown that APP-CTFs accumulate in both sporadic and genetic forms of the disease (13-15); and recently, Ferrer-Raventós et al have revealed a correlation between APP-CTFs and Aβ levels at the synapse (13).

      To conclude, we would like to highlight that as clarified above, the Aβ peptide concentrations and the conditions tested fit well within pathophysiology, and that the data presented in our report collectively provide evidence in support of an Aβ42-mediated inhibitory effect on γ-secretase.

      References:

      1. X. Hu et al., Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci U S A 106, 20324-20329 (2009).
      2. B. De Strooper, Lessons from a failed γ-secretase Alzheimer trial. Cell 159, 721-726 (2014).
      3. R. S. Doody et al., A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N Engl J Med 369, 341-350 (2013).
      4. M. C. Houser et al., A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. Sensors (Basel) 20, (2020).
      5. M. C. Q. Houser et al., Limited Substrate Specificity of PS/γ-Secretase Is Supported by Novel Multiplexed FRET Analysis in Live Cells. Biosensors (Basel) 11, (2021).
      6. M. Maesako et al., Visualization of PS/γ-Secretase Activity in Living Cells. iScience 23, 101139 (2020).
      7. M. Maesako, M. C. Q. Houser, Y. Turchyna, M. S. Wolfe, O. Berezovska, Presenilin/γ-Secretase Activity Is Located in Acidic Compartments of Live Neurons. J Neurosci 42, 145-154 (2022).
      8. B. R. Roberts et al., Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET. Brain 140, 1486-1498 (2017).
      9. J. A. Raskatov, What Is the "Relevant" Amyloid β42 Concentration? Chembiochem 20, 1725-1726 (2019).
      10. M. P. Schützmann et al., Endo-lysosomal Aβ concentration and pH trigger formation of Aβ oligomers that potently induce Tau missorting. Nat Commun 12, 4634 (2021).
      11. E. Wesén, G. D. M. Jeffries, M. Matson Dzebo, E. K. Esbjörner, Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1-42) compared to Aβ(1-40). Sci Rep 7, 2021 (2017).
      12. M. F. Knauer, B. Soreghan, D. Burdick, J. Kosmoski, C. G. Glabe, Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta protein. Proc Natl Acad Sci U S A 89, 7437-7441 (1992).
      13. P. Ferrer-Raventós et al., Amyloid precursor protein Neuropathol Appl Neurobiol 49, e12879 (2023).
      14. M. Pera et al., Distinct patterns of APP processing in the CNS in autosomal-dominant and sporadic Alzheimer disease. Acta Neuropathol 125, 201-213 (2013).
      15. L. Vaillant-Beuchot et al., Accumulation of amyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer's disease models and human brains. Acta Neuropathol 141, 39-65 (2021).
    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you very much for the kind comments about our manuscript. We have improved the text to address all reviewers’ comments and suggestions. Additionally, we corrected and improved the supplementary tables.

      Reviewer #1 (Public Review):

      This paper provides new evidence on the relationship between genetic/chromosome divergence and capacity for asexual reproduction (via unreduced, clonal gametes) in hybrid males or females. Whereas previous studies have focussed just on the hybrid combinations that have yielded asexual lineages in nature, the authors take an experimental approach, analysing meiotic processes in F1 hybrids for combinations of species spanning different levels of divergence, whether or not they form asexual lineages in nature. As such, the findings here are a substantial advance towards understanding how new asexual lineages form.

      The quality of the work is high, the analyses are sound, and the authors sensibly link their observations to the speciation continuum. I should also add that the cytogenetic work here is just beautiful!

      A key finding is that the precondition for asexual reproduction - the formation of unreduced gametes - is not unusual among hybrid females, so that we have to consider other factors to explain the rarity of asexual species - a major unresolved issue in evolutionary biology. This work also highlights a previously overlooked effect of chromosome organisation on speciation.

      Thank you for the nice comments about our work as well as for appreciating our cytogenetics work and figures.

      Reviewer #2 (Public Review):

      The authors investigate the origin of asexual reproduction through hybridization between species. In loaches, diploid, polyploid, and asexual forms have been described in natural populations. The authors experimentally cross multiple species of loaches and conduct an impressively detailed characterization of gametogenesis using molecular cytogenetics to show that although meiosis arrests early in male hybrids, a subset of cells in females undergo endoreplication before meiosis, producing diploid eggs. This only occurred in hybrids of parental species that were of intermediate divergence. This work supports an expanding view of speciation where asexuality could emerge during a narrow evolutionary window where genomic divergence between species is not too high to cause hybrid inviability, but high enough to disrupt normal meiotic processes.

      Thank you.

      I enjoyed reading this study and I appreciate the amount of work it takes to conduct these types of cytogenetic experiments. But, my main concern with this study is I was left wondering if the sample sizes are large enough to get a sense how variable endoreplication is in these loach species. Most of the hybrids between species are the result of crosses between 1-2 families. Within males and females, meiocyte observations are limited to a handful of pachytene and diplotene stages. I think it would be helpful to be more transparent about the sample sizes in the main text.

      Thank you for raising this point. We have improved the Supplementary Tables S2 and S3 to clarify how many individuals we analyzed from each genetic family and added this information to the main text. In total we obtained 12 combinations with 19 F1 hybrid families. For the combination, C. elongatoides x C. taenia hybrids we obtained three families, for C. elongatoides x C. ohridana, C. elongatoides x C. tanaitica, C. elongatoides x C. bilineata and C. ohridana x C. bilineata, we obtained two families For the rest of the combinations of hybrids we obtained single family. From these families, 79 individuals were used for the analysis of the meiocites. Additionally, 24 parental individuals, males and females, were analysed. For the parental species, we analysed 852 cells, for hybrid males we investigated 244 cells, and 665 cells for hybrid females.

      Along these lines, the authors argue against the possibility that endoreplication may be predisposed to occur at a higher rate in some species (line 291). Instead, they suggest that endoreplication is a result of perturbing the cell cycle by combining the genomes of two different species. Their main argument is based on gonocyte counts from parental females in a previous reference. It is essential to include counts from the parents used in this study to make a clear comparison with the F1s.

      Thank you, we agree with your comment and included the observations of meiocytes from several parental species, i.e. C. elongatoides, C. taenia, C. pontica, C. tanaitica, and C. ohridana. Among 852 cells analyzed, we did not observe cells with duplicated genomes and abnormalities in chromosomal pairing. By contrast, among 665 pachytene cells of F1 hybrid females, we revealed altogether ~1% of endoreplicated ones. We tested these data by binomial GLM and found these differences to be significant, suggesting that sexuals, even if they may have some unnoticed duplication events, clearly have a significantly lower incidence of abnormal pachytene cells. We have now included this information in the main text.

      In the discussion (lines 320-333), the authors postulate the sex-specific clonality they observe could be a result of Haldane's rule. Given these fish do not have known sex chromosomes, I do not find this argument strong. Haldane's rule refers to the exposure of recessive incompatibilities with the sex chromosomes in the hybrid heterogametic sex. This effect would therefore be limited to degenerated sex chromosomes where much of the sequence content on the Y or W has been lost. These species may have homomorphic sex chromosomes, but if this is the case, they likely are not very degenerated. Instead, it seems more plausible that the sex-specific effect the authors observe is due to intrinsic differences of spermatogenesis and oogenesis. Is there any information about sex-specific differences in the fidelity of gametogenesis from other species that would support a higher likelihood of endoreplication?

      Thank you for this important question, however, we think it was a misunderstanding. We do not postulate that our observation conforms to Haldanes’ rule as, by contrast to this rule based on sex chromosomes, our previous publication demonstrated that whatever the gonadal sex differentiation is in our taxa, the ability to overcome sterility by asexual gametogenesis is always confined to female gonadal environment (or oogenesis in general), even in the transplanted spermatogonial cells (Tichopad et al. 2022). What we meant by our text is that our results do not fully conform to Haldane’s rule. We therefore reworded our text to rule out such a misconception.

      Nonetheless, we note that it has been demonstrated that Haldanes’ rule is also applicable to species with little differentiated sex chromosomes (e.g. Presgraves and Orr 1998) and that recessive incompatibilities are not the only explanation as faster male theory or faster X may also apply in such cases (Dufresnes et al. 2016). Therefore, we have kept our remarks about Haldane’s rule here. Moreover, for several parental species, we preliminary found the occurrence of an XY gonadal sex differentiation system, albeit these are unpublished and need further validation.

      The final thing I was left wondering about was this missing link between endoreplication and activating the embryonic development of the diploid egg. In these loach species, a sperm is required to activate egg development, but the sperm genome is discarded (line 100). What is the mechanism of this and how does it evolve concurrently during hybridization?

      Thank you for the comment. There have been many speculations about why gynogens actually need sperm to activate their egg development, but to our knowledge, no explanation has been validated to date. Interestingly, a recent theoretical model by Fyon et al. BiorXiv 2023 suggested that the ability of sperm exclusion may evolve separately from the ability to produce clonal eggs. Hence, this topic is complex and remains unresolved, and we feel that it is out of the scope of the present MS. We have slightly modified the text and added 2 refs., to address your suggestion.

      Reviewer #1 (Recommendations For The Authors):

      The paper is well prepared - though the resolution of Fig 1 on the pdf is rather poor.

      Thank you! We have now provided the high-resolution figures.

      Overall, I have few suggestions for improvements:

      Line 58. How does endoduplication itself "overcome accumulated incompatibilities" other than failure of synapsis? Perhaps by maintaining the F1 state, and so avoiding reduced fitness arising from recombination and disruption of coadapted gene combinations.

      We have added a sentence to the main text “Premeiotic genome endoreplication thus not only ensures clonal reproduction but also allows hybrids to overcome problems in chromosome pairing that would otherwise lead to their sterility 15,17.” that we hope sufficiently addresses this issue.

      Line 118 - please explain the AKD index here - as you have some in SI. Also please be clearer on how you measure genetic divergence as proportion of heterozygous SNPs - presumably this is via exon sequences from F1 females?

      Please note that we have explained the AKD index in the relevant part of the Methods section already. However, we have now also added a brief explanation to the Results section, as suggested. We apologize for imprecise description of the genetic divergence measurements. As described in the Methods section, this is not measured by heterozygosity (as we wrongly stated here), but as p-distance among sequences of coding regions between parental species.

      Lines 126 ff. It is unfortunate that the design of the crosses was not more balanced or extensive. Nonetheless, I do appreciate the effort involved here and think the results are solid as is.

      Thank you.

      Line 142. Please define PS and TB (and other acronyms) at first use.

      We have added the definition for all acronyms at the first use.

      Lines 192-193. What about EP and EN - as shown to have unreduced gametes in Fig. 2?

      Thank you for this question. Based on analyses of the diplotene stage, we showed that EP and EN hybrids produced diploid eggs. However, in pachytene, we did not find duplicated oocytes due to the rarity of endoreplication. Similarly, the low incidence of duplicated pachytene cells was observed in natural as well as F1-hybrids in loaches and reptiles (Newton et al., 2016, Dedukh et al., 2021, 2022).

      Lines 217-219. The observed correlation of chromosome divergence (AKD index) and numbers of bivalents in pachytene makes sense and is an important observation. Did this GLM simultaneously consider the effect of genetic divergence (as implied in methods)?

      Thank you for this comment. We originally tested separately the fit of two models, one with AKD and the other with SNP divergence. Since the AKD model significantly outperformed the SNP-based one, we focused our interpretation on the former. However, as you suggested, we now re-calculated the model taking into account the joint effects of both predictors in a single model and indeed, this model outperformed both single predictors. In conclusion, while AKD is still the strongest single predictor for the observed amounts of bivalents, the additional effect of genetic distance still significantly improves the model fit. We have now included this result into the main text.

      This finding does not alter our conclusions, it just suggests that the effect of chromosomal morphology is probably more complex, involving the role of more subtle sequence divergence or structural variants.

      Line 242. The Discussion is a great read - careful interpretation and a really interesting interpretation in context of the broader literature.

      Thank you for the appreciation. Your positive feedback and evaluation are highly motivating us to expand our work.

      Line 396. Some references from book chapters (18, 52) are incomplete. Please fix.

      We have now corrected these references accordingly.

      Reviewer #2 (Recommendations For The Authors):

      Transparency about meiocyte sample sizes: These counts are all in supplemental table 3. From this table, it is unclear if a majority of these meiocytes are from a single individual or from multiple males or females. Or, in the crosses where there are multiple families, are the meiocytes sampled from all families? I am trying to get a sense whether endoreplication and the fidelity of oogenesis could be influenced by genetic variants segregating within species. If the meiotcytes are only sampled from a single individual from a single cross, you may not see this variation. If this is the case, perhaps the correlation between genetic divergence and the formation of asexual clones may not be as strong. Additional replicates may not be feasible, but at a minimum I think it would be helpful to address whether endoreplication could or could not be variable and if the sample sizes are sufficient.

      Thank you for raising this point. We have improved the Supplementary table to clarify how many individuals we analyzed from each family and added this information to the main text. Unfortunately, additional replicates are not feasible due to the long generation time of the fish. We otherwise agree with your comment and included this point in the Discussion.

      Gonocyte counts from parental females: The authors say they "analysed hundreds of gonocytes of sexual females without a single incidence of genome endoreplication." I could not find a clear count in the references given. They note that the incidence of endoreplication was very low in pachytene cells in this study (0.7%).

      Thank you, we agree with your comment and included the observations of meiocytes from several parental species, i.e. C. elongatoides, C. taenia, C. pontica, C. tanaitica, and C. ohridana. Among 852 cells analyzed, we did not observe cells with duplicated genomes and abnormalities in chromosomal pairing. By contrast, among 665 pachytenic cells of F1 hybrid females, we revealed altogether ~1% of endoreplicated ones. We tested these data by binomial GLM and found these differences to be significant, suggesting that sexuals, even if they may have some unnoticed duplication events, clearly have significantly lower incidence. of abnormal pachytene cells. We have now included this information in the main text.

      They refer to supplemental table 4 (line 196), which does not exist in the supplement. The authors should report these numbers in the revised manuscript.

      Thank you for pointing this out. We have corrected the name of the supplementary table, it actually is supplementary table S3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      1) Utilization of known AhR ligands as controls will strengthen the interpretation of the conclusions.

      We agree with the reviewer that AhR ligands could be used as controls for delineating structure-activity relationships and cell context-specific effects. However, such studies are beyond the scope of the current manuscript. The AhR has many endogenous ligands, including several tryptophan derived metabolites, that have been shown to elicit different responses depending on the dose and cell type. Our unpublished data show that the expression of AhR target genes such as Cyp1a1, Cyyp2e1, and Tiparp were not modulated by I3A in RAW cells, which suggests that the observed effects may occur independent of the AhR.

      Reviewer #2:

      Specific comments:

      1) The title is misleading "Microbially-derived indole-3-actate" suggests that this article is about the production of I3A by the gut microbiota, in fact this is a dietary supplementation article. The title needs to reflect this fact.

      Our title reflects the natural source of I3A in mice. We used oral supplementation to study the effects of this metabolite. Per suggestion by the reviewer, we changed the title as follows: <br /> “Oral supplementation of gut microbial metabolite indole-3-acetate alleviates diet-induced steatosis and inflammation in mice”

      2). The description of the amount of I3A in the drinking water is not properly described. The actual concentration in the drinking water should be given.

      The concentration of I3A in drinking water was as follows: WD50 = 0.5mg/ml and WD100 = 1mg/ml. We added this information in the revised manuscript.

      3) The serum concentration data of I3A is critical data and should be moved in Figure 1.

      We have now included serum levels of I3A as part of Figure 1.

      4) The authors should have determined the actual concentration of indole-3-actetate in serum by running a standard curve of I3A during the LC-MS analysis. Also, recovery and matrix effects should be determined. Without this information their data will be difficult to compare to other studies.

      We agree with the reviewer that quantification of I3A in serum would be useful. However, we are unable to do so due to limited sample available as well as concerns with sample integrity after long-term storage.

      5) In the data in Figure S1C, there appears to be only 2-3 mice out of nine that exhibit a difference in serum indole-3-acetate levels between the WD-50 and WD-100. Do the authors have an explanation for this small difference compared to the other endpoints assessed?

      The serum I3A measurements at week 16 are a snapshot that may not reflect tissue levels due to differences in water intake, I3A metabolism in the body, and/or elimination of I3A. The other phenotypic assays are physiological measurements that reflect the result of sustained administration of I3A.

      6) Since the Ah receptor may play a role in the results obtained CYP1A1 mRNA levels in the liver and intestinal tract should have been measured.

      We measured alterations in Cyp1a1 mRNA in the liver and no significant change was observed in the WD50 and WD100 groups relative to controls. Also, see response to reviewer 1.

      7) The main mechanistic experiment performed is shown in Figure 6 and the figure legend states that they are examining macrophages, but these are cell lines, they are macrophages models, and this should be clearly stated. The first two panels are liver data, so the title of the figure legend needs to reflect that fact.

      We agree and have changed the title of Figure 6 to “I3A modulates AMPK phosphorylation and suppresses RAW 264.7 macrophage cell inflammation in an AMPK dependent manner”.

      8) In Figure 6, 1 mM I3A is added to the cells, how is this very high concentration relevant to the concentrations observed in vivo? Does adding 1 mM acetate to the cell culture media lower the pH of the media and could this influence the results obtained? Would acetic acid yield the same results? Could treatment with an acid even explain in vivo results?

      It is difficult to match the concentration of I3A in the in vitro experiments to liver tissue concentrations. Addition of 1 mM I3A did not lower the pH of cell culture media or reduce the viability of cultured RAW 264.7 macrophages. As I3A is not known to degrade into acetic acid and indole, we do not expect acetic acid to recapitulate the effects elicited by I3A.

      Reviewer #3:

      My primary concern with the manuscript is the organization and interpretation of the data. It appears that little effort was given by the authors on interpreting the data and digesting it for the reader into a coherent package. Rather, the authors have collected a vast amount of data and organized it without much thought about what the reader would take away from it. Furthermore, it seems the authors have taken this as an opportunity to overload this manuscript with data that are superfluous to the conclusions the authors draw at the end. Based on this, I think the authors need to invest more time into distilled their complex biological data into a unifying scientific interpretation for the readers that advances our understanding of I3A. My suggestions for the authors are described below.

      1) The data lack a rationale behind how they are organized within the manuscript. For example, the authors will combine disparate biological pathways and lump data together without logic as in Figure 2. Why are inflammatory pathways and bile acid synthesis combined in a figure? What was the rationale?

      We respectfully disagree that the data are presented without rationale. Both inflammation and bile acid dysregulation are commonly observed with NAFLD and thus are presented in two separate panels of Figure 2 (A, inflammatory cytokines, and B bile acids).

      2) The authors give very little effort to performing integrative omics analysis even though multi-omics is provided. Example given, the authors provide proteomic data on the fatty acid metabolism pathway, however, no mention of this pathway within the metabolomic dataset. Vice versa, the authors provide in depth investigation in the metabolic changes within the tryptophan pathway, however, no investigation into the proteomic changes that may underlie this phenomenon. It would be recommended that the authors invest more energy into performing more in-depth analysis of their multi-omics data presented.

      We attempted to co-analyze the proteomic and metabolomic data, but this analysis was not informative. Protein and metabolite abundances do not necessarily correlate, and the two types of omics data carry different observation biases. For example, label-free, untargeted proteomics data favor abundant proteins, whereas untargeted metabolomics data are influenced by concentration and ionization efficiency, among other factors. Therefore, we opted to analyze the two datasets independently, and then linked the findings from the two analyses using biological pathways as guides. For example, we describe changes in acyl-carnitine and discuss how this observation is consistent with changes in abundance of fatty acid metabolism enzymes.

      3) Figures 1&2 shows that low dose treatment reduces inflammation but does not alter hepatic TG levels. This is in direct disagreement with the graphical model provided by the authors (Supp. Fig 9). In the author's model, I3A is directing hepatic lipid metabolism through modulation of macrophage inflammation. This interpretation is erroneous and needs to be reevaluated by the authors. Furthermore, the tryptophan pathway and bile acid pathways are not even represented in the model, which begs the question of why that data are included in the manuscript to begin with.

      We would like to respectfully point out that Figure 1D does show a statistically significant (p < 0.05) difference in liver TG between the WD and WD100 groups. Supp. Figure S9 is meant to be a summary of the main biochemical changes elicited by I3A that we have shown in the current study (e.g., the involvement of AMPK) rather an atlas of all the changes detected in the metabolomics and proteomic data. Specifically, we have not included the tryptophan or bile acid pathways as we do not have mechanistic information on how these changes are mediated by I3A.

      4) The authors switch from hepatocytes to macrophages without giving any rationale, The authors need to invest more time into describing a logical flow of thought when assembling the manuscript.

      We mention the rationale for investigating the effect of I3A on macrophages in the introduction (last paragraph of the section): “In vitro, both I3A and TA attenuated the expression of inflammatory cytokines (Tnfα, Il-1β and Mcp-1) in macrophages exposed to palmitate and LPS.”. We also explain why we used an in vitro model, RAW cells, at the beginning of the corresponding Results section: “Since our previous study found that the metabolic effects of I3A in hepatocytes depend on the AhR, we tested if this was also the case in macrophages.” Moreover, the strong effects of I3A on liver inflammatory cytokines also motivates the macrophage experiments.

    1. Author Response

      We thank the Editors and the Reviewers for the time spent on our manuscript entitled “The CD4 transmembrane GGXXG and juxtamembrane (C/F)CV+C motifs mediate pMHCII-specific signaling independently of CD4-Lck interactions”. We appreciate the helpful feedback and the opportunity to participate in eLife’s new model for publishing.

      We are writing to provide the following provisional author responses for posting with the first version of the reviewed preprint:

      1) To address comments about the limited scope of this study and referencing of the Methods section to our prior study, we would like to note that we submitted the current study via the Research Advance mechanism. Our goal was to build upon the conclusions of our 2022 eLife publication (PMID: 35861317) and address an unresolved question from that study (as nicely summarized by Reviewer #2). In the current manuscript we present data from reductionist experiments that were designed specifically for this purpose and, as noted by the reviewers, we provide answers to the question being asked. We think that the Research Advance mechanism is an ideal opportunity to make these results available to the field given the stated purpose of such articles (for reference: “A Research Advance might use a new technique or a different experimental design to generate results that build upon the conclusions of the original research by, for example, providing new mechanistic insights or extend the pathway under investigation…”).

      a. The Methods were not duplicated in this manuscript because we referenced our prior study as per instructions for the Research Advance mechanism.

      2) The constituent residues of the motifs analyzed in this and our prior study were determined to be functionally significant in vivo through the computational reconstruction of CD4’s evolutionary history, which provided us with data from ~435 million years of natural experiments with CD4 in numerous jawed vertebrate species. We agree that having conditional knock-in mice of these CD4 mutants, and those characterized in our last study, would be useful for determining how these mutations impact T cell development, activation, differentiation, and effector function. Given the costs involved with making genetically engineered mouse model systems, the computational and experimental data we have generated in the current and prior study will help us prioritize next steps to dig deeper into the details of why the residues we are studying are under purifying selection (fail to propagate to progeny if mutated, meaning terminal). In short, only now, with the data in hand, can we prioritize mouse studies. We think it is important for the advancement of the field that we make these results available in a timely manner rather than waiting to report them together with the results of mouse models once generated and analyzed.

      3) The reductionist experimental data presented here provide us with mechanistic insights into why the residues we are studying are functionally important. We therefore think it is of value to note that 58a-b- T cell hybridomas were used in seminal work that established a link between CD4Lck association, via motifs in the CD4 intracellular domain, and signaling output as measured by IL-2 production (Glaichenhaus, et al., 1991). Importantly, the impact of disrupting CD4-Lck interactions on proximal signaling were not interrogated until the work we describe here and in our preceding study, wherein we establish that CD4-Lck association does not regulate proximal signaling in 58a-b- T cell hybridomas. Given that this experimental system was used to help establish the dominant paradigm (i.e. the widely held view that CD4 recruits Lck to TCR-CD3 to initiate pMHCII-specific signaling), we think it is a legitimate system to directly test this model and further test core questions of CD4 function by employing more modern experimental techniques.

    1. Author Response:

      We would like to express our heartfelt gratitude for the reviewers’ scholarly and insightful reviews of our manuscript. The constructive comments and thought-provoking experimental proposals have been invaluable not only in improving the quality of this study but also in shaping the direction of future research. In revision, all comments will be addressed point-by-point, and the manuscript will be revised thoroughly. Here in this reply, we focus on the most critical issue regarding the source of noises during stability inference.

      When faced a stack of objects, individuals are more likely to assess taller stacks of objects as being more unstable compared to shorter ones (Fig. 2b & 2d). This bias persists even when comparing single objects of different heights that share the same contact area with the supporting surface. Known as “stability inference bias,” this phenomenon challenges deterministic models with a single, fixed vector for the representation of gravity’s direction (i.e., directly downward). To reconcile this bias with deterministic models, previous studies (e.g., Allen et al., 2020; Battaglia et al., 2013; Kubricht et al., 2017) have incorporated external noises such as perceptual uncertainty and external force perturbations to increase their fit to human performance, also pointed out by Reviewer 1.

      In this study, we introduced an alternative perspective through a stochastic model in which variability is instead embedded in the representation of gravity’s direction. In this framework, gravity’s direction is not a fixed vector but a distribution of possible vectors, with the vertical direction serving as the maximum likelihood. While the distinction between deterministic and stochastic models is conceptually clear, mathematically they are equivalent. In addition, our stochastic model does not negate the role of external noises in stability inference, because gravity is seldom the sole force acting upon a moving object in the physical world, as pointed out by Reviewer 1. Together, these two factors make it challenging to ascribe the source of variability to either external or internal noises (Smith & Vul, 2013). This is the major concern raised by all three reviewers.

      To distinguish between the deterministic and stochastic models, we designed a series of experiments aimed at demonstrating that internal noises, rather than external noises such as perceptual uncertainty or external force perturbations, influences our inference about object stability. However, the supporting evidence was dispersed and at times implicit throughout the manuscript. In revision, we will thoroughly clarify the ambiguities. In this reply, we will consolidate and present the evidence comprehensively.

      1. The examination of external noises.

      1.1 External Force Perturbations. Deterministic models suggests that during object stability inference, individuals implicitly assume the presence of external forces (e.g., wind) that could destabilize stacks. While this assumption aligns with the omnipresence of such forces in natural settings, it overlooks a crucial variable: the directionality of these external forces. In psychological studies, individual differences are commonly observed, and the perceived force direction is not an exception. That is, some may assume that it comes from the left, while others from the right. In essence, if external forces were to play a significant role in stability inference, one would expect the perceived force directions to exhibit non-uniform distributions (i.e., anisotropy) in the horizontal plane within individuals and to show substantial variability between individuals.

      Contrary to this expectation, our study revealed a different pattern. In the study, we specifically measured the distribution of 𝜑, the horizontal component reflecting the direction of object collapse. Our results indicated that all participants exhibited a uniform distribution of gravity’s directions in the horizontal plane (Fig. 1d right; Extended Data Fig. 2 and 3). This uniformity suggests that if external forces were a key determinant in stability inference, participants would have to assume a varying direction of external force in each trial—an assumption we consider unlikely. Instead, our RL model simulation suggests that the isotropy of 𝜑 arises from agent-environment interactions, notably in the absence of external forces (Extended Data Fig. 6).

      In summary, the uniform distribution of horizontal direction component, 𝜑, observed in all participants, challenges the argument for the dominant role of external forces in stability inference. We are sorry that this aspect was not explicitly emphasized in the original text, and in revision we will explain why external forces are unlikely to substantially shape our perception of object stability.

      1.2 Perceptual uncertainty. To assess the impact of perceptual uncertainty on stability inference, we examined whether the representation of gravity’s direction is cognitive impenetrable. Specifically, we posited that if noises are external (i.e., perceptual uncertainty), the inference bias should be modulated by task context; in contrast, if noises are internal, the stochastic representation of gravity’s direction will be encapsulated from the context. To test this idea, we inverted the virtual environment, making gravity appear to point upward (also see a similar idea by Reviewer 3). In this unfamiliar context, which diverges dramatically from daily experiences, one would expect heightened perceptual uncertainty, which according to deterministic models would result in a larger inference bias – manifested as an increased width of the distribution (𝜎) of gravity’s direction. Contrary to this prediction, we observed that the width of the distribution remained unchanged (Fig. 1d and 1f). Furthermore, there was a high correlation (r = 0.91) between widths in the upright and inverted conditions across participants (Extended Data Fig. 2 and 3).

      In summary, this finding suggests that the manipulation of perceptual uncertainty is unable to cognitively penetrate the representation of gravity’s direction, casting doubt on its dominant role in stability inference. We are sorry that in the original text, we did not clarify the rationale for employing the approach of cognitive impenetrability. In revision, this will be clarified.

      2. The origin of intrinsic noises in stability inference.

      In deterministic models, either external force perturbations or perceptual uncertainty is often assumed but rarely empirically tested. Indeed, these external noises are introduced primarily to account for observed biases in stability inference. In this study, we explicitly examined the possible origin of the intrinsic noises embedded in the representation of gravity’s direction. Without assumed perceptual uncertainty and external perturbation of forces, the RL model simulation showed that the distribution could evolve naturally based mainly on the agent’s experience, as it used the mismatch between the expectation and the observed state of the stack under natural gravity to update its representation of gravity’s direction (Fig. 3a). Importantly, the width of the distribution for the agent was comparable to that of human participants as measured in the psychophysics experiments (Fig. 3b). Therefore, the experience alone may be sufficient to generate stochastic representation of gravity’s direction, obviating the need for external noises.

      Taken together, these findings underscore the limitations of the combination of deterministic models and external noises in accounting for stability inference, and suggest that intrinsic noises embedded in the representation of gravity play a pivotal role in shaping our stability inference of the physical world.

      3. Thought experiments.

      Although the evidence shown above may provide valuable insights, our study does not definitively settle the debate between deterministic models and our proposed stochastic model. Specifically, our study only preliminarily investigates two sources of external noise, perceptual uncertainty and external force perturbations, leaving many other factors such as object mass and surface friction, unexplored (for studies on these factors, please see Hamrick et al., 2016). As such, the reviewers have proposed a series of thought experiments that warrant further investigation. Below, we enumerate some of them, followed by ours.

      3.1 Experiment 1. Reviewer 3 proposed a thought experiment in which participants assess stability of a single block of varying heights. The reviewer argues that a block, regardless of its height, will remain stable on a horizontal surface unless externally disturbed. This assertion is perfectly true in the physical realm. However, in the cognitive domain, both deterministic models and our stochastic model predict differently. Take an extreme example of a standing needle: while it would remain upright in the physical world without external disturbances, both deterministic and stochastic models, which account for mental inference of physical events, will predict a likelihood of it falling, aligning with our subjective feelings. This is because in both models, noises are considered in the intuitive physics engine. In deterministic models, external force perturbations, as well as perceptual uncertainty, are assumed to be omnipresent noises in probabilistic reasoning. In our stochastic model, noises are embedded in the representation of gravity’s direction. Therefore, although this thought experiment, along with other thought experiments on object mass, surface friction (proposed by Reviewer 3), and falling trajectories behind an occlude (proposed by Reviewer 1), is insightful, but it cannot serve to differentiate deterministic and stochastic models. 3.2 Experiment 2. Reviewer 2 suggested constructing a wall on one side of the virtual scene to make it improbable that participants would infer an external force perturbation emanating from that direction. In this setting, deterministic models would predict a non-uniform distribution of the horizontal component, 𝜑, skewed away from the wall. In contrast, according to our stochastic model, the distribution of 𝜑 would remain unaffected, maintaining the uniform distribution observed in previous experiments. Extending this logic, another test scenario could contrast an indoor scene with an outdoor scene. In a confined and static indoor environment, the likelihood of external force perturbations should be much lower than in a dynamic, open outdoor setting. Here, deterministic models would predict an increase in the width of the distribution, 𝜎, in the outdoor environment, whereas our model would anticipate no such change. The underlying rationale for these experiments parallels that of our previous setup (figure 1e), where we inverted the virtual environment and reversed the direction of gravity. Indeed, they all aim to assess the extent to which manipulations of external factors can cognitively penetrate the representation of gravity’s direction.

      3.3 Experiment 3: A noteworthy insight derived from our RL model simulation relates to variations in the number of blocks within the virtual worlds. Deterministic models would predict an enlarged bias in stability inference as the number of blocks increased, which is attributed to elevated levels of perceptual uncertainty and an expanded area susceptible to external force perturbations. However, the results from our RL model simulation contradict this prediction, revealing that an augmented number of blocks instead led to a narrowing of the width of the distribution. This decrease in width can be ascribed to richer information provided by a larger number of blocks for refining its representation of gravity’s direction. In line with this rationale, we propose a new experiment from the perspective of ecological psychology, which emphasizes that cognitive processes are shaped by our interactions with the environment. Specifically, we hypothesize that individuals raised in mountainous terrains may exhibit more accurate representations of gravity’s direction than those raised in flat terrains. This proposed experiment could not only help resolving the ongoing debate between two models to some extent, but also advocate future studies on intuitive physics within a more ecologically valid framework.

      To conclude, both deterministic and stochastic models align closely with Bayesian principles, where stability inference is conceptualized as probabilistic reasoning. Nevertheless, the divergence between them is no trivial, as it hinges on distinct philosophical assumptions about the relationship between the inner mind and the external world. Deterministic models propose that the mind serves as a faithful reflection of the world; therefore, gravity’s direction is represented as a single, fixed vector directly downward, the same as that in the world. In these models, uncertainty for probabilistic reasoning emanates from factors external to the module of the intuitive physics engine. In contrast, our stochastic model underscores the notion that the mind is an active inference machine, continually reinterpreting inputs from outside world; therefore, the mind gains increased adaptability, allowing for a more nuanced accounting of uncertainty in the world – factors often crucial for survival. Such active inference necessitates flexible representations; accordingly, within the model of intuitive physics engine, variations are embedded into the representation of gravity’s direction. While resolving this philosophical debate is beyond the capacity of the present study, we contend that the field of intuitive physics offers a valuable lens through which to pry open the complex interplay between the mind and the world we live in.

      References

      • Allen, K. R., Smith, K. A., & Tenenbaum, J. B. (2020). Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proceedings of the National Academy of Sciences, 117(47), 29302–29310.
      • Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an engine of physical scene understanding. Proceedings of the National Academy of Sciences, 110(45), 18327–18332.
      • Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: Current research and controversies. Trends in Cognitive Sciences, 21(10), 749–759.
      • Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics in Cognitive Science, 5(1), 185–199.
    1. Author Response:

      Reviewer #1 (Public Review):

      Summary: The authors made significant updates to Hippacampome.org including 50 new cell types.

      Strengths: The authors have been thorough in basing their views on peer-reviewed literature. They have made the data highly accessible and the user has the ability to control what is included.

      Weaknesses: There are many inconsistencies in the literature regarding cell types and how these are incorporated into hippocampome.org is not clear.

      We agree with the Reviewer that there can be inconsistencies in the literature, especially when it comes to nomenclature. This is why for Hippocampome.org v1.0 we decided to focus on the morphologies, the distributions of axons and dendrites across the layers and parcels of the hippocampal formation, rather than the names authors have applied to the neurons they are studying. We have also clarified our stance on nomenclature in our Brain Informatics manuscript that accompanied v1.1. We will revise the manuscript to make these points explicit.

      Properties are often a result of modeling and not biological data, and caveats to this approach, and other assumptions are unclear.

      The foundation for Hippocampome.org has always been the data that are published in the literature. Those include, among others, the axonal and dendritic spans in each layer and subregion, the molecular expression patterns, the total neuron count by layer and subregion, the membrane properties, firing patterns, and experimental synaptic signals and corresponding covariates. For all of those, we do not depend on how the data are modeled, although there is always some level of interpretation of the data to make them machine readable and ready for incorporation into our database. However, some of the simulation-ready parameters now also included in Hippocampome.org are indeed the result of modeling, such as the neuronal input/output functions (Izhikevich model) and the unitary synaptic values (Tsodyks-Markram model). Other simulation-ready parameters are the result of specific analysis approaches, including the connection probabilities (axonal-dendritic spatial overlaps) and the neuron type census (numerical optimization of all constraints). We plan to explicitly distinguish among these various cases in the revised manuscript.

      Several interneuron subtypes in the dentate gyrus do not appear to be listed, such as neurogliaform cells.

      The neuron types listed in Figure 2 of the current manuscript are only the new additions to the catalog of neuron types at Hippocampome.org v2.0. DG Neurogliaform cells were included in our original eLife manuscript, which described the deployment of v1.0 of the website. We will clarify this in the revisions.

      The nomenclature HIPROM should be distinguished or made synonymous with HIPP. Same for MOCAP and MOPP/HICAP.

      The Reviewer has referred to 5 separate neuron types in Hippocampome.org. Each neuron type has a unique distribution of axonal and dendritic invasions of the 26 layers and parcels of the hippocampal formation. For example, HIPROM cells have dendrites in the inner one-third of stratum moleculare, stratum granulosum, and hilus and axons in all four layers of the dentate gyrus in addition to axonal projections into CA3 stratum radiatum, stratum lucidum, stratum pyramidale, and stratum oriens. HIPP cells in contrast have dendrites only in the hilus and axons only in the outer two-thirds of stratum moleculare with no cross-subregional projections. Similar considerations distinguish MOPP, MOCAP, and HICAP cells in Hippocampome.org. In expanding the nomenclature to include the neuron types we first described at Hippocampome.org, we attempted to mimic the styling of the already established neuron types of the DG: HIPROM (Hilar Interneuron with PRojections to the Outer Molecular layer), HIPP (HIlar Perforant Path-associated), MOCAP (MOlecular Commissural-Associational Pathway-related axons and dendrites), MOPP (MOlecular layer Perforant Path-associated), and HICAP (HIlar Commissural-Associational Pathway-related). We intend to insert a paragraph in the revised version to clarify these issues.

      Dorsal ventral and sex differences are not mentioned.

      We thank the Reviewer for pointing this out. As a result of the dearth of literature describing differences between dorsal and ventral hippocampus when we first assembled Hippocampome.org v1.0, we made the decision to focus solely on the distributions of the axons and dendrites along the depth, or layers, of the hippocampal formation. As the amount of literature concerning relating to the other axes of the hippocampus continues to grow, we will gradually incorporate information along the added dimensions into our knowledge base. In the revised manuscript we intend to note this, and also stress the fact that Hippocampome.org contains knowledge from a mixture of sexes, and that whenever the original papers report the animal sex, so does our knowledge base. The revised manuscript will also mention that, whenever possible (e.g. synaptic physiology parameters), values are reported separately for males and females.

      Reviewer #2 (Public Review):

      Summary and strengths: The authors have developed a helpful resource for the community regarding hippocampal cell types and their interactions from many perspectives. There have been many updates to hippocampome v1.0 to v1.12, that are nicely summarized and explained (e.g., Table 1). The content and impact are also presented (Fig. 4).

      Weaknesses: My main comment is that it is not completely clear and/or it is a bit buried as to what makes this v2.0 (rather than v1.13). The title would seem to encompass it ('... enabling data-driven spiking neural network simulations...), but in the introduction, the authors seem to emphasize "50 newly identified neuron types...". Is it the case that launching network simulations (using CARLsim) was not possible up to v1.12? I don't think so? I think that this research advance is to announce and summarize the various updates and to demonstrate how network simulations can be easily done? If so, this should and could be made more clear so that the reader does not necessarily have to go through all the previous versions to understand what is 'special' or different about v2.0. This could perhaps be achieved by situating their tool and its goals relative to other efforts (e.g., blue brain project) that are mentioned in the Discussion?

      We thank the Reviewer for their helpful suggestions. Hippocampome.org v1.12 included the final piece needed, the synaptic physiology parameter values, to start fully simulating the hippocampal formation. In the revised manuscript, we will endeavor to emphasize more the specialness of v2.0 over the various v1.X in the Abstract, Introduction, and Discussion, in part by more fully describing the differences between our work and that of other efforts, such as the Blue Brain Project.

      Reviewer #3 (Public Review):

      Summary: The authors aim to provide a multidisciplinary resource on the structural and physiological organization of the hippocampal system and make the available experimental data available for further theoretical work, providing tools to do so in a very flexible and user-friendly way. Since this is a new version of an already existing data-resource, the authors certainly reach their aim and fulfil expectations that the reader might have. The content of the database is as good as the original data, collected from the published knowledge-database, sometimes with the help of the original authors, and the overall quality depends further on how the data are curated by the team of authors and many others who helped them. That process is briefly described and more details are available in descriptions of previous versions and on the website. The data extraction, examples of how data can be used, and the part on attempts to model the hippocampus are exciting and open doors to new and exciting research opportunities.

      Strengths: Excellent description with many outlined opportunities. Nicely illustrated and inviting to explore the online database.

      Weaknesses: The figures are complex, containing a heavy information load with many abbreviations. You need some general knowledge of the system in order to grasp the enormous potential of what is provided.

      We agree with the Reviewer that we generously used abbreviations throughout our figures as a means of conserving limited space. We have attempted to balance that by providing a complete glossary of all the abbreviations used throughout the manuscript. However, we will make an effort to supply definitions of the abbreviations in the figure captions and at their first use in the manuscript, or even replacing the abbreviations altogether in key places in the figures.

    1. Author Response

      We are very thankful for the editors' and reviewers' thoughtful feedback and criticisms on our manuscript. We have carefully considered all of the comments and will provide a revised manuscript with detailed responses as soon as we can. In the meantime, we will make our best effort to conduct additional experiments to further support our conclusions.We greatly appreciate the time and consideration given to improving our work.

      Reviewer #1 (Public Review):

      Summary:

      The question at hand is whether astrocytes contribute to the mechanism of long-term synaptic potentiation (LTP) at synaptic contacts between excitatory glutamatergic neurons and inhibitory neurons (E-I synapses). This is a legitimate query considering the immense body of work that has now established synaptic plasticity (LTP, LTD and spike-timing dependent plasticity) as an astrocyte-dependent process at excitatory synapses and, by contrast, the lack of knowledge on whether and how astrocytes control IN activity. Taking direct inspiration from that same body of work, authors recapitulate a number of experiments and approaches from prior seminal studies and provide evidence that E-I synapses in the stratum radiatum of the hippocampus display NMDAR-dependent plasticity, which can be suppressed by pharmacologically hindering astrocytes physiology, preventing astrocyte Ca2+ transients or blocking endocannabinoid CB1 receptors. Under any of these conditions, LTP can still be rescued by exogenously applying D-serine, a naturally occurring co-agonist of NMDARs primarily released by astrocytes. Coincidently, authors show that the conditions used to elicit LTP also cause a transient increase in NMDAR co-agonist site occupancy. Lastly, based on some evidence that gamma-CaMKII is predominantly expressed in INs rather than excitatory neurons, authors conducted AAV-mediated IN-specific gamma-CaMKII shRNA experiments and found that this is sufficient to suppress LTP at E-I synapses. They found that this approach also impairs contextual fear learning in behaving mice. Authors conclude that astrocytes gate LTP at E-I synapses via a mechanism wherein neuronal depolarization during LTP induction elicits endocannabinoid release which drives CB1-dependent astrocyte Ca2+ activity, causing the release of the NMDAR co-agonist D-serine (required for NMDAR activation).

      Strengths:

      This is an important question and the experimental work seems to have been conducted at high standards. The electrophysiology traces are impeccable, the experiments are well powered, including the behavioral testing, and multiple controls and validations are provided throughout. The figures are clear and easy to understand. Overall, the conclusions from the study are consistent, or partially consistent, by the findings.

      We greatly appreciate you taking the time to evaluate our study thoroughly and provide such thoughtful feedback.

      Main Weaknesses:

      1) A major point of concern is the lack of proper acknowledgment of the seminal studies that were mimicked in this manuscript, notably Henneberger et al, Nature 2010, Adamsky et al, Cell 2018; and Robin et al., Neuron 2017. The entire study design is a replica of these landmark studies: it isn't built upon or inspired from them, it exactly repeats the experiments and methods performed in them, coming dangerously close to being simply a hidden attempt to plagiarize published work. The resemblance goes as far as using an identical figure display (see Fig4.D vs Fig 2D of Ref#4). The issue is that authors frame the problem, scientist logic, reasoning, technical tricks, approaches, and interpretations as their own whereas, in reality, they were taken verbatim out of previous work and applied to a (shockingly) similar problem. The probity of the present study is thus in question. Authors need to clearly acknowledge, in all relevant instances, that the work presented here recapitulates the approach, reasoning and methodology used in past seminal studies that tackled the mechanisms of astrocyte regulation of LTP.

      Thank you very much for your review and valuable comments on our manuscript. We greatly appreciate your concern regarding the proper acknowledgment of previous studies. We sincerely apologize for not adequately citing and acknowledging the seminal works in our manuscript. We highly value avoiding academic misconduct.

      For the research design, although there are some similarities between our work and other studies, our key scientific questions and technical approaches are markedly different, as evidenced by our central hypothesis and experimental methods. We did not completely replicate their research design.

      Regarding research methods, many basic techniques like electrophysiology, chemogenetic are common experimental methods, not patented by any one paper. Our choice of methods is based on the research needs, not to replicate a particular paper. But we recognize that there are similarities in our experimental methods, specifically the chemogenetic stimulation of astrocytes to induce de novo LTP, which has been inspired by previous studies (Van Den Herrewegen et al. Molecular Brain (2021), Adamsky et al. Cell (2018), Nam et al. Cell reports (2019)). We were also inspired by the previous work of Henneberger et al. in Nature (2010) to investigate whether stimulation, specifically we using TBS (theta burst stimulation), could transiently increase NMDA receptor-mediated synaptic responses.

      For the similarity between our Fig. 4D and Fig. 2D of Ref. 4, it is primarily because both studies have the similar purpose(we monitored NMDA currents in interneurons, others monitored in pyramidal cells) using similar methods, but our figure layout follows a regular display pattern. Additionally, we would like to draw your attention to our previous studies, specifically Shen et al., Scientific Reports (2017), Supplementary figure 4, and Shen et al., Journal of Neurochemistry (2021), Supplementary figures 8 and 9. In these studies, we also employed a regular display pattern in our figure layouts. It is important to note that while there may be similarities in the figure arrangement, each study presents distinct findings and contributes to the broader understanding of the topic.Our use of a similar way to present data does not equal plagiarism. We apologize for any confusion caused by the lack of explicit citation and acknowledgment in our manuscript again. In the revised version, we will ensure to provide clear and detailed references to all relevant studies.

      In terms of citations, we have cited Henneberger et al, Nature 2010, Adamsky et al, Cell 2018; and Robin et al., Neuron 2017.'s work in multiple places, indicating we have learned from their research ideas and findings. We will supplement any missing citations. But overall, our work has distinct differences and innovations.

      We are not intended as a hidden attempt to plagiarize or simply replicate their methods. Rather, they are part of a deliberate effort to establish a comparable and reproducible experimental framework. Our study aims to validate and further explore the conclusions drawn by replicating the experiments of these seminal studies and deepening our understanding of the mechanisms of astrocyte regulation of LTPE-I.

      We sincerely appreciate your review and guidance. We will carefully consider your criticism and incorporate more accurate and thorough citations in the revised version, ensuring proper respect and acknowledgment of the previous works.

      2) Relatedly, in past work, field recordings were used to monitor LTP in hippocampal slices (refs 4, 26 and others). This method captures indiscriminately all excitatory synapses where glutamate is released to cause AMPAR-dependent (and NMDAR) transmembrane flux of cations in the postsynaptic element, including E-I synapses and not just E-E synapse like the authors claim. Therefore, a strong argument can be made that there is no actual ground to differentiate the present results from past ones.

      Thank you for your thoughtful comments regarding the differentiation of our results from previous studies. We appreciate the opportunity to address this issue and provide further clarification.

      Indeed, in past studies, field recordings were commonly utilized to monitor long-term potentiation (LTP) in hippocampal slices. It is true that this method captures all flux of cations in excitatory synapses, inhibitory synapses and glia. This includes both excitatory-excitatory (E-E) and excitatory-inhibitory (E-I) synapses.

      When using the LTP recording protocol, one limitation is that the experimenter cannot determine the exact contribution of E-E and E-I currents to the recorded current. Additionally, it is not possible to know, with the same induction protocol, the specific effects on E-E synapses versus E-I synapses. It is plausible that E-E synapses could undergo LTP, while E-I synapses could undergo LTD, or vice versa.

      Thus, it becomes crucial to carefully dissect the functioning of E-I synapses and investigate how astrocytes modulate these synapses. Past field recordings have provided important insights, our selective interrogation of the astrocyte-E-I synapse interface represents a conceptual advance to delineate the nuanced modulation of distinct synaptic connections by astrocytes. We specifically focus on studying the modulation of E-I synapses by astrocytes and aim to elucidate the intricate dynamics and underlying mechanisms. By untangling the complex contributions of astrocytes to E-I synapse function and plasticity, we can unveil novel aspects of neuroglial interactions and advance our understanding of the fundamental principles governing neural network activity.

      3) There is a general lack of excitement about this study. One reason is that it replicates almost identically past work, as mentioned above. Another is that the scientific question and importance of the findings are not framed appropriately. The work is presented as an astrocyte-focused investigation, but it has very limited value to the astrocyte field. The findings are, in all accounts, identical to those unveiled by previous work especially because E-I synapses are, in fact, excitatory synapses. Where this study does bring value, however, is to the field of interneurons, but it would need to be reframed to shift the emphasis from astrocytes to E-I connections. Authors would need to elevate the text by framing their work around relevant considerations, such as IN diversity, mechanisms of LTP in IN subtypes, role of E-I connections in hippocampal circuit function, information processing, behavior, spatial learning, navigation, or grid cells activity etc...

      We appreciate your insightful comments and concerns regarding the lack of excitement surrounding our study. We would like to clarify that while our study use similar certain methodologies, for example electrophysiology, chemogenetics and pharmacology, our research aims to provide a deeper understanding of the underlying mechanisms of how astrocytes regulate E-I synapses. We apologize if this replication aspect was not adequately highlighted in our manuscript, and we will make sure to emphasize the novel contributions of our study in the revised version.

      Regarding the framing of our study, we recognize the importance of interneurons and the role of E-I connections in hippocampal circuit function, information processing, behavior, spatial learning, navigation, and other relevant aspects. However, the scientific question and scope of the study are to explore whether and how astrocytes modulate E-I synapses. We believe that this study brings value to the field of astrocyte-neuron interaction. Of course, this study also brings value to the field of interneurons. Perhaps the lack of excitement among audiences stems from the mechanisms for astrocytes modulating E-I and E-E synapses are the same.

      4) A clear weakness of the study is that it fails to consider the molecular and functional diversity of interneurons in the stratum radiatum and provides no insights or considerations related to it. Authors provide no information on what type of IN were patched, or the location of their cell body in the s.r., effectively treating all patched IN as a homogeneous ensemble of cells - which they are not. Relatedly, the study is extremely evasive on the importance of the results in the context of inhibitory interneurons. This renders the significance of the insights highly uncertain and dampens both the impact of the study and the excitement it generates. Hippocampal interneurons are very diverse in molecular identity, sub-anatomical location, morphology, projections, connectivity and functional importance. Some experts go as far as recognizing 29 subtypes in the CA1, including 9 in the stratum radiatum alone (based on the location of their soma). However, this is neither addressed nor acknowledged by the authors, with the exception of a statement (line 659) where they claim to have "focused on a subpopulation of interneurons in the stratum radiatum" without providing any precision or evidence to corroborate this assertion. This diversity, alone, could explain why not all cells showed LTP, or why the mechanisms authors describe in the radiatum do not seem to be at play in the oriens. Hence, carefully considering the diversity of INs in the present work is necessary. It would refine and augment the conclusions of the paper. Instead of a sub-region specificity, the study might fuel the notion of an IN subtype specificity of LTP mechanisms, which is more useful to the field.

      Thank you very much for your review and valuable comments on our study. We agree with the point you raised regarding a clear weakness in our study, specifically the lack of consideration the diversity of interneurons in the stratum radiatum.

      As the reviewer notes, there are many subtypes of interneurons in hippocampal region CA1 that likely contribute in distinct ways to circuit function. Unfortunately we did not gather information on the specific molecular or morphological identity of the interneurons we recorded from.This is a limitation of our study. We will add discussion of this issue as a caveat, and highlighted it as an opportunity for future work to dissect how long-term potentiation in interneurons regulated by astrocytes may differ across interneuron subpopulations. Thank you once again for your insightful comments.

      5) Authors take several shortcuts. Some of the conclusions are a leap from the experiments and are only acceptable due to the close analogy with very similar investigations conducted in the past that provided identical results. For instance, the present study provides no evidence of any sort that D-serine is involved - rather, it provides evidence that the pathway at hand contributes to increasing the occupancy of the co-agonist binding site of NMDARs. Considering the absence of work demonstrating that D-serine is the endogenous co-agonist of NMDARs at E-I synapses, most of the authors claims on D-serine are unfounded. This would necessitate using tools such as the canonical D-serine scavengers DAAS or DsDA, serine racemase KO mice etc. Similarly, authors provide no compelling evidence that endocannabinoid CB1 receptors involved in this pathway are located on astrocytes

      Thank you for your insightful comments on our study. We appreciate your attention to detail and your concerns regarding our conclusions. We agree that further evidence is needed to establish the involvement of D-serine as the endogenous co-agonist of NMDARs at E-I synapses. We will take into consideration your suggestion of using tools such as D-serine scavengers to provide clearer evidence.

      Regarding the involvement of endocannabinoid CB1 receptors on astrocytes in this pathway, we provide evidence that astrocytic calcium signaling could blocked by CB1 receptor antagonist AM251, as shown in figure 3.However, we agree that further research is necessary to accurately identify the localization of CB1 receptors. As part of our future investigations, we will take note of this limitation in our discussion and emphasize the need for additional studies to explore the precise location of CB1 receptors. In addition, we will endeavor to perform immunohistochemistry to identify the exact location of CB1 receptors in astrocytes.

      Thank you once again for your valuable feedback. We will carefully address these concerns and make appropriate revisions to ensure the clarity and accuracy of our findings.

      6) An important caveat in this study is the protocol employed to induce LTP, which includes steps of sustained depolarization of the patched IN to -10mV. Neuronal depolarization is known to induce endocannabinoids production. In several instances, this was shown to 'activate' astrocytes and elicit the release of astrocyte-derived transmitters at nearby synapses. This implies that the endocannabinoid-dependent pathway described in the study is, most likely, artificially engaged by the protocol itself. Hence, the present work only provides evidence that an astrocyte-dependent, CB1-D-serine-pathway can be artificially called upon with this specific LTP protocol, but does not convincingly demonstrate that it is naturally occurring or necessary for plasticity at E-I synapses. Authors would need to thoroughly address this caveat by replicating some of their key findings (AM251, calcium-clamp, D-serine and CaMKII shRNA) using a protocol that does not entail the artificial depolarization of the patched interneuron.

      Thank you for raising this important point. We agree that the sustained depolarization protocol we used to induce LTP could potentially engage endocannabinoid signaling and astrocyte activation. However, we observed that preventing astrocyte Ca2+ transients or blocking endocannabinoid CB1 receptors prevented the induction of LTP by this depolarization protocol suggests that this astrocyte-endocannabinoid-dependent pathway is necessary,

      Importantly, synaptic depolarization of neurons can occur naturally during learning and memory. Though ‘artificial’ here, our protocol may mimic aspects of natural activity patterns that engage ‘endocannabinoid release’ and astrocyte involvement in plasticity.

      Another limitation of our study is that we currently cannot conclusively determine the source of the CB1. We cannot distinguish whether the CB1 originates from neurons or astrocytes based on our current experiments. We will explicitly acknowledge this caveat in the discussion, noting that further experiments are needed to clarify the cellular origin of the CB1. Thank you for drawing our attention to this critical issue - we will refine the manuscript accordingly to more comprehensively and accurately present the study conclusions and limitations. Your feedback helps improve the rigor of our research.

      7) Reading and understanding are hindered by a rather vast array of issues with the text itself. It needs thorough editing for typos, misnomers, meaning-altering errors in syntax, and a number of issues with English.

      Thank you very much for your review and feedback on our text. We highly appreciate your comments and take them seriously. We will carefully address the issues you mentioned and thoroughly edit the text to eliminate any typos, misnomers, syntax errors that may alter the meaning, and other English-related issues. We truly value your input and appreciate your patience as we work on these improvements.

      Reviewer #2 (Public Review):

      Summary:

      This work explores the implication of astrocytes in the regulation of long-term potentiation of excitatory synapses onto inhibitory neurons in CA1 hippocampus. They found that astrocytes of a sub-region of CA1 regulate this plasticity through their activation of endocannabinoids that lead to the release of the NMDA receptor co-agonist, D-serine.

      Strengths:

      The experiments are well considered and conceptualized, and use appropriate tools to explore the role of astrocytes in the tripartite synapse. The results highlight a novel role of astrocytes in an important aspect of the synaptic regulation of the hippocampal circuit. There are extensive levels of analysis for each experimental group of evidence.

      Thank you for your positive feedback on our study. We appreciate your recognition of the careful consideration and conceptualization of our experiments, as well as the use of appropriate tools to investigate the role of astrocytes in the tripartite synapse. We are pleased to hear that the results have highlighted a novel role of astrocytes in an important aspect of synaptic regulation in the hippocampal circuit.

      Thank you for taking the time to review our work and for providing such positive feedback. We will continue to improve and refine our study based on your valuable comments.

      Weaknesses:

      The authors underscore and used an oversimplified view of the heterogeneity of interneuron populations and their selective roles in the hippocampal network. Also, there is an uneven level of astrocyte-selective tools used in the different experiments which creates an uneven strength of arguments and conclusions regarding the role of glial cells. Finally, the wording used by the authors often lead to some confusion or sense of overinterpretation

      We appreciate the reviewer raising these important points about the characterization of interneuron and astrocyte populations in our study. We agree that oversimplifying or overlooking cellular heterogeneity could undermine the conclusions. In the revised manuscript, we will:

      1) Add more detailed discussion of interneuron diversity. We will note this as an area for further study.

      2) Review the wording used when describing results and conclusions, ensuring we avoid overstating interpretations of the data.

      Thank you again for the thoughtful feedback.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are very grateful to the reviewers for their insightful and detailed analysis of our work, in particular to reviewer 2. We also would like to thank the Elife editorial team for organizing this form of public review and debate, which we believe will be of interest to the science community.

      Reviewer #1 (Public Review):

      Despite durable viral suppression by antiretroviral therapy (ART), HIV-1 persists in cellular reservoirs in vivo. The viral reservoir in circulating memory T cells has been well characterized, in part due to the ability to safely obtain blood via peripheral phlebotomy from people living with HIV-1 infection (PWH). Tissue reservoirs in PWH are more difficult to sample and are less well understood. Sun and colleagues describe isolation and genetic characterization of HIV-1 reservoirs from a variety of tissues including the central nervous system (CNS) obtained from three recently deceased individuals at autopsy. They identified clonally expanded proviruses in the CNS in all three individuals.

      Strengths of the work include the study of human tissues that are under-studied and difficult to access, and the sophisticated near-full length sequencing technique that allows for inferences about genetic intactness and clonality of proviruses. The small sample size (n=3) is a drawback. Furthermore, two individuals were on ART for just one year at the time of autopsy and had T cells compatible with AIDS, and one of these individuals had a low-level detectable viral load (Figure S1). This makes generalizability of these results to PWH who have been on ART for years or decades and have achieved durable viral suppression and immune reconstitution difficult.

      While anatomic tissue compartment and CNS region accompany these PCR results, it is unclear which cell types these viruses persist in. As the authors point out, it is possible that these reservoir cells might have been infiltrating T cells from blood present at the time of autopsy tissue sampling. Cell type identification would greatly enhance the impact of this work. Several other groups have undergone similar studies (with similar results) using autopsy samples (links below). These studies included more individuals, but did not make use of the near-full length sequencing described here. In particular, the Last Gift cohort, based at UCSD and led by Sara Gianella and Davey Smith, has established protocols for tissue sampling during autopsy performed soon after death. https://pubmed.ncbi.nlm.nih.gov/35867351/ https://pubmed.ncbi.nlm.nih.gov/37184401/

      We agree with reviewer 1 that studies to identify specific cell types that harbor intact HIV-1 in individual tissue compartments would be very informative; our group has recently initiated such studies.

      Overall, this small, thoughtful study contributes to our understanding of the tissue distribution of persistent HIV-1, and informs the ongoing search for viral eradication.

      We thank reviewer 1 for these encouraging remarks.

      Reviewer #2 (Public Review):

      The manuscript by Sun et al. applies the powerful technology of profiling viral DNA sequences in numerous anatomical sites in autopsy samples from participants who maintained their antiviral therapy up to the time of death. The sequencing is of high quality in using end-point dilution PCR to generate individual viral genomes. There is a thoughtful discussion, although there are points that we disagree with. This is an important data set that increases the scope of how the field thinks about the latent reservoir with a new look at the potential of a reservoir within the CNS.

      We greatly appreciate the comments by reviewer 2 and would like to thank them for their detailed and very knowledgeable analysis of this paper.

      1) The participants are very different in their exposure to HIV replication and disease progression. Participant 1 appears to have been on ART for most of the time after diagnosis of infection (16 years) and died with a high CD4 T cell count. The other two participants had only one year on ART and died with relatively low CD4 T cell counts (under 200). This could lead to differences in the nature of the reservoir. In this regard, the amount of DNA per million cells appears to be about 10-fold lower across the compartments sampled for participant 1. Also, one might expect fewer intact proviruses surviving after 16 years on ART compared to only 1 year on ART. The depth of sampling may be too limited and the number of participants too few to assess if these differences are features of these participants because of their different exposures to HIV replication. On the positive side, finding similarities across these big differences in participant profiles does reinforce the generalizability of the observations.

      Many thanks for pointing this out. We also noticed that the total number of HIV-1 proviruses is smaller in our study participant 1 (who had been on ART for 16 years), compared to study persons 2 and 3 with more limited treatment durations (1-2 years), however, due to the small number of study persons, we think we cannot use these results for inferring how treatment duration influences viral reservoir size in tissues.

      2) The following analysis will be limited by sampling depth but where possible it would be interesting to compare the ratio of intact to defective DNA. A sanctuary might allow greater persistence of cells with intact viral DNA even without viral replication (i.e. reduced immune surveillance). Detecting one or two intact proviruses in a tissue sample does not lend itself to a level of precision to address this question, but statistical tests could be applied to infer when there is sampling of 5 or more intact proviruses to determine if their frequency as a ratio of total DNA in different anatomical sites is similar or different. This would allow adjustment for the different amount of viral DNA in different compartments while addressing the question of the frequency of intact versus defective proviruses. One complication in this analysis is if there was clonal expansion of a cell with an intact genome which would represent a fortuitous overrepresentation intact genomes in that compartment.

      We have performed the analysis suggested by reviewer 2 and included a diagram reflecting the ratio of intact/defective proviruses as a new supplemental figure (Figure S2). Unfortunately, we do not feel comfortable to draw any real conclusions from this additional analysis; the sample sizes are simply too limited.

      3) The key point of this work is that the participants were on therapy up to the time of death ("enforcing" viral latency). The predominance of defective genomes is consistent with this assumption. Is there data from untreated infections to compare to as a signature of whether the viral DNA population was under selective pressure from therapy or not? Presumably untreated infections contain more intact DNA relative to total DNA. This would represent independent evidence that therapy was in place.

      We agree that an analysis of autopsy samples from untreated persons living with HIV-1 would be of great interest, and are actively collaborating with neuropathologists from multiple sites to obtain such samples. Yet, we are not convinced that selection pressure on reservoir cells during ART can be appropriately identified through quantitative virological assays. Rather, we feel that the selection of proviruses can be best assessed when qualitative parameters, including proviral integration sites and their position relative to host epigenetic chromatin features, are evaluated.

      4) There are several points in Figure 5 to raise about V3 loop sequences. The analysis includes a large number of "undetermined" sequences that did not have a V3 loop sequence to evaluate. We would argue it is a fair assumption that the deleted proviruses have the same distribution of X4 and R5 sequences as the ones that have a V3 sequence to evaluate. In this view it would be possible to exclude the sequences for which there is no data and just look at the ratio of X4 and R5 in the different compartments, specifically does this ratio change in a statistically significant way in different compartments? The authors use "CCR5 and non-CCR5" as the two entry phenotypes. The evidence is pretty strong that the "other" coreceptor the virus routinely uses is CXCR4, and G2P is providing the FPR for X4 viruses. Perhaps the authors are trying to create some space for other coreceptors on microglia, but we are pretty sure what they are measuring is X4 viruses, especially in this late disease state of participant 2. Finally, we have previously observed that the G2P FPR score of <2 is a strong indicator of being X4, FPR scores between 2 and 10 have a 50% chance of being X4, and FPR scores above 10 are reliably R5 (PMID27226378). In addition, we observed that X4 viruses form distinct phylogenetic lineages. The authors might consider these features of X4 viruses in the evaluation of their sequences. Specifically, it would be helpful to incorporate the FPR scores of the reported X4 viruses.

      Many thanks for these thoughts. We have now included FPR scores for all sequences and considered sequences with FPR score <2 as X4-tropic. Among 497 proviral sequences derived from all three participants, only 14 proviral sequences had FPR scores between 2 and 10 and their tropism was classified as CCR5 in the new Figure 5. We agree that viral tropism analysis of proviral sequences from the CNS would be of particular interest for study subject 2; however, most brain-derived sequences from that person had large deletions in the env region, precluding an analysis of viral tropism.

      5) We have puzzled over the many reports of different cell types in the CNS being infected. When we examined these cell types (both as primary cells and as iPSC-derived cells), all cells could be infected with a version of HIV that had the promiscuous VSV-G protein on the virus surface as a pseudotype. However, only macrophages and microglia could be infected using the HIV Env protein, and then only if it was the M-tropic version and not the T-tropic version (PMID35975998). RNAseq analysis was consistent with this biological readout in that only macrophages and microglia expressed CD4, neurons and astrocytes do not. From the virology point of view, astrocytes are no more infectable than neurons.

      We appreciate these comments. As described in our discussion, we agree that the role of astrocytes as target cells for HIV-1 infection is highly controversial; we look forward to future opportunities to evaluate HIV sequences in sorted astrocytes from autopsy tissues.

      6) The brain gets exposed to virus from the earliest stages of infection but this is not synonymous with viral replication. Most of the time there is virus in the CSF but it is present at 1-10% of the level of viral load in the blood and phylogenetically it looks like the virus in the blood, most consistent with trafficking T cells, some of which are infected (PMID25811757). The fact that the virus in the blood is almost always T cell-tropic in needing a high density of CD4 for entry makes it unlikely that monocytes are infected (with their low density of CD4) and thus are not the source of virus found in the CNS. It seems much more likely that infected T cells are the "Trojan Horse" carrying virus into the CNS.

      We appreciate the reviewer’s referral to Greek mythology and agree that the hypothesis of infected T cells acting as “Trojan horses” is more intuitive and better supported by available data. We have adjusted our discussion accordingly.

      7) While all participants were taking antiretroviral therapy at the time of their death, they were not all suppressed when the tissues were collected. The authors are careful not to mention "suppressive ART" in the text, which is appreciated. However, the title should be changed to also reflect this fact.

      Thanks for pointing this out. From our perspective, ART is never fully suppressive, as low-level viremia (below the detection threshold of commercial PCR assays) is detectable in almost all ART-treated persons. As such, it is not clear to us that “suppressive” necessarily implies suppression below the detection limits of commercial PCRs. We argue that ART can also be suppressive when plasma viral loads are in the range of 100 copies/ml, as they are in our study subject 3. Nevertheless, we have changed the title to avoid confusion.

      Reviewer #1 (Recommendations For The Authors):

      I encourage the authors to compare their autopsy and tissue sampling procedures to those used by The Last Gift researchers and consider including references to this ongoing study. If the authors plan to continue in this line of research, the field would greatly benefit from a collaboration that would bring together their excellent and advanced PCR technique with the larger sample size offered by The Last Gift. Lastly, is there some way to simultaneously determine cell type when NFL sequencing is performed?

      We look forward to collaborating with investigators from the Last Gift Cohort in the future and have integrated additional references in the manuscript to acknowledge their work. At the current stage of technology development, we think that sorting of infected cells based on canonical markers of defined cell populations is the preferred approach for identifying phenotypic properties of infected cells; however, expansion of the PheP-Seq assay (Sun et al., Nature 2023), may facilitate this process in the future.

      Reviewer #2 (Recommendations For The Authors):

      1) The authors have chosen to lump all R5 viruses together in terms of their entry phenotype, giving all viruses an equal chance of infecting all potentially susceptible cell types. This ignores the fact that normal HIV is selected to infect cells, requiring a high density of CD4 as is found on T cells. We use the term R5 T cell-tropic to describe "normal" HIV. The ability to efficiently enter cells that have a low density of CD4, such as macrophages and microglia, involves the evolution of a distinct phenotype, termed macrophage tropism (PMID24307580, and work of others). This happens most often in the CNS where T cells are infrequent thus potentiating evolution to infect an alternative cell type. This change in entry phenotype is dramatic and, like X4 viruses, results in phylogentically distinct lineages (PMID22007152). There are no sequence signatures for M-tropic viruses as there are for X4 viruses, but the fact that there are sequences shared between the CNS and lymphoid tissue makes it much more likely that there are T cells migrating around the body, including into the CNS, that are carrying R5 T cell-tropic virus with them, with the cells potentially clonally expanding in situ in the CNS. The persistence of a potential CNS T cell reservoir was the point we were trying to make in our recent paper (ref. 38), not only that these CSF rebound viruses were R5 viruses but they were selected for replication in T cells as seen by their dependence of a high density of CD4 for entry. This is the conclusion one would reach if clonally expanded viral sequences were shared between two lymphoid compartments. It is not necessary to ascribe properties of infection and clonal amplification to microglia cells when a more parsimonious explanation is that there are low levels of T cells in the CNS, especially in the absence of entry phenotype data showing these sequences encode an M-tropic entry phenotype. As is the authors are just adding to the unproven belief that virus in the CNS must be in myeloid cells, which in this case in particular we suspect is the wrong interpretation.

      We are impressed by reviewer 2’s recent work, suggesting the viral reservoir in the CNS may primarily consist of clonally-expanded R5 T-cell tropic viruses. We have adjusted our discussion to emphasize this possibility, and to highlight that viral entry phenotyping data will be informative for better understanding viral persistence in the brain.

      2) The authors noted that the frequency of intact proviruses is highest in the lymph nodes of 2/2 participants for which they had lymph node samples, relative to the other tissues examined. They thus conclude, "Together, these results indicate that intact HIV-1 proviruses are preferentially detected in lymphoid and gastrointestinal (GI) tissues." However, an examination of Figure 2 reveals that the total HIV copy number is highest in the lymph nodes of these two people. Thus, it doesn't seem like HIV is preferentially intact in the lymph nodes as much as they sampled more provirus from that tissue and therefore were able to detect more intact proviruses.

      We have adjusted our manuscript to indicate that the highest numbers of intact HIV-1 proviruses were present in lymph nodes, both in terms of absolute numbers and after normalization to the total numbers of cells analyzed.

      3) In Figure 1A, the legend should be changed so that "PMSC" is spelled out as "premature stop codon" for ease of reading. This is done for Figure 1B.

      We have corrected this issue as suggested by the reviewer.

      4) The pie charts in Figure 5 could be better labeled for ease of interpreting. In Figure 5C, instead of just labeling it as "P2" it could be "Distribution of CXCR4-using proviruses, P2", as an example. As it stands, it is hard to know what the figure is describing without reading the text.

      We have changed this accordingly.

      5) While all participants were taking antiretroviral therapy at the time of their death, they were not all suppressed when the tissues were collected. The authors are careful not to mention "suppressive ART" in the text, which is appreciated. However, the title should be changed to also reflect this fact.

      Thanks for pointing this out. From our perspective, ART is never fully suppressive, as low-level viremia (below the detection threshold of commercial PCR assays) is detectable in almost all ART-treated persons. As such, it is not clear to us that “suppressive” necessarily implies suppression below the detection limits of commercial PCRs. We argue that ART can also be suppressive when plasma viral loads are in the range of 100 copies/ml. Nevertheless, we have changed the title to avoid confusion.

      Editorial comments:

      In addition to the reviewers suggestion, we feel that adding more information on how you define intact proviral sequence, e.g. are only disrupted essential genes or also in accessory genes considered? Previous studies have shown that brain-derived HIV-1 strains are usually CCR5-tropic, show high affinity for the CD4 receptor and frequently contain defective vpu genes. Some information and discussion if the brainderived sequences confirm these previous finding seems of significant interest.

      As described in our previous work (e. g. Lee et al, JCI 2017; Jiang et al, Nature 2020), accessory genes are not considered in our definition of “genome intactness”; this is consistent with approaches other investigators have chosen (e. g. Hiener et al, Cell Reports 2017). Within the genome intact sequences we identified in the CNS in our study persons, we found no evidence for deletions of vpu sequences; this has been emphasized in the revised manuscript.

    1. Author Response

      We thank the reviewers and editors for their deep, thoughtful and constructive assessment of our manuscript. We nevertheless would like to reply to the Reviewers reports.

      Reviewer #1.

      (...) The data can be well described by three components involving a closed state and two open states O1 and O2, in which the second component O2 is the one affected by the mutations and deletions

      This statement is not completely clear to us. What we propose is that O1 is not visible in WT, only in the mutants. What would be affected is the access to O1 and the transition between O1 and O2, but not O2 itself.

      From the beginning, it becomes challenging for non-experts to grasp the structural basis of the perturbations that are introduced (ΔPASCap and E600R), because no structural data or schematic cartoons are provided to illustrate the rationale for those deletions or their potential mechanistic effects. In addition, the lack of additional structural information or illustrations, and a somewhat confusing discussion of the structural data, make it challenging for a reader to reconcile the experimental data and mathematical model with a particular structural mechanism for gating, limiting the impact of the work.

      Thank you very much for pointing this out and our apologies for the missing cartoon. It will be provided in the revised version.

      There are several concerns associated with the analysis and interpretations that are provided. First, the conductance-voltage (G-V) relations for the mutants do not seem to saturate, and the absolute open probability is not quantified for any mutant under any condition. This makes it impossible to quantitatively compare the relative amplitudes of the two components because the amplitude of the second component remains undetermined. […] This reduces confidence in the parameters associated with G-V relations, as the shape and position of both components might change significantly if longer pulses were used.

      We agree that the endpoint of activation is ill-defined in the cases where a steady-state is not reached. This does indeed hamper quantitative statements about the relative amplitude of the two components. However, while the overall shape does change, its position (voltage dependence) would not be affected by this shortcoming. The data therefore supports the claim of the “existence of mutant-specific O1 and its equal voltage dependence across mutants.”

      Further, because the mutant channel currents do not saturate at the most positive potentials and time intervals examined, the kinetic characterization based on reaching 80% of the maximum seems inappropriate, because the 100% mark is arbitrary.

      We agree that the assessment of kinetics by a t80% is not ideal. We originally refrained from exponential fits because they introduce other issues when used for processes that are not truly exponential (as is the case here). To address the concerns, we will add time constants from these fits in the revised version. Please note that in Figure 3, we do provide time constants, and they support the statement made.

      Further, the kinetics for some of the other examined mutants (e.g. those in Fig. 2A) are not shown, making it difficult to assess the extent to which the data could be affected by having been measured before full equilibration.

      This seems to be a misunderstanding. ∆2-10 kinetics is shown in Fig. 2c. ∆-eag is shown in Fig. 3. We will make sure to state this explicitly in the revised version.

      For example, I would expect that the enhanced current amplitudes from Figure 5 are only transient, ultimately reaching a smaller steady-state current magnitude that depends only on the stimulation voltage and is independent of the pre-pulse. The entire time course including the rise-time and decay is not examined experimentally. This raises concern on whether occupancy of state O1 might be overestimated under some experimental conditions if a fraction of the occupancy is only transient. The mathematical model is not utilized to examine some of these slower relaxations - this may be because the model does not reproduce these slow processes, which would represent a serious shortcoming given that the slow kinetics appear to be intrinsic to transitions around state O1.

      Thank you for thinking so deeply about the problem. We identified the same questions and did explore them using the model (Figure 8 c). Your intuition is confirmed there, the slow kinetics leads to a decrease of O1 occupancy after a transient accumulation. We intend to study this experimentally as well in the revised version.

      The significance of the results with the Δ2-10.L341Split is unclear. First, structural as well as functional data has established that the coupling of the voltage sensor and pore does not entirely rely on the S4-S5 linker, and thus the Split construct could still retain coupling through other mechanisms, which is consistent with the prominent voltage dependence that is observed. If both state O1 and O2 require voltage sensor activation, it is unclear why the Split construct would affect state O1 primarily, as suggested in the manuscript, as opposed to decreasing occupancy of both open states.

      Thank you for pointing out the unclear nature of our arguments. We rephrase in the following and will do so in the revised document: If, in non-split mutants, the upward transition of S4 allows entry to O1, it is reasonable to assume that the movement is not transmitted the same way in the split and the transition into O1 is less probable. The observation that, in the split, entry into O1 requires higher depolarization and appears to be less likely, suggests that downstream of S4 (beyond position 342), there is a mechanism to convey S4 motion to the gate of the mutants.

      The figure legends and text do not describe which solutions exactly were utilized for each experiment, [...] Because no zero-current levels are shown on the current traces, it becomes very hard to determine which voltages correspond to each of the currents (see Fig. 1A).

      Will be corrected.

      … the rationale for choosing some solutions over others is not properly explained. […] The reversal potential for solutions used to measure voltage-activation curves falls right at the spot where occupancy of the first component peaks (e.g. see Figure 1B). […] It is unclear whether any artifacts could have been introduced to the mutant activation curves at voltages close to the reversal potential.

      The high potassium extracellular solution was chosen to obtain tail currents of sufficient size, warranting precise determination of the reversal potential for every individual experiment. In this way, we ensured that there were no artifacts introduced to the activation curves. Tail currents were used when closing was reasonably fast (∆PASCapL322H and E600RL322H), but otherwise, we used the amplitude at the end of the pulse to get the reversal potential.

      One key assumption that is not well-supported by the data pertains to the difference in single-channel conductance between states O1 and O2 - no analysis or discussion is provided on whether the data could also be well described by an alternative model in which O1 and O2 have the same conductance. No additional experimental evidence is provided related to the difference in conductance, which represents a key aspect of the mathematical model utilized to interpret the data.

      We agree that the relative conductance of O1 and O2 is a key point. Our proposal mainly stems from the data presented in Fig. 4 and the amplitudes of the two components of the tail at potentials where both states are visible. We also agree that whole cell currents represent a product of occupancy and conductance and that only single channel recordings can produce unambiguous proof for the higher conductance of O1. We have embarked on a series of experiments directly addressing this in the mutants that will be reported in the revised version. Still, we did explore this issue with the model. Following the path of the least number of assumptions, we initially tested models with equal conductance for both states. None of these models was able to reproduce the shape of the tails and the prepulse-dependent increase.

      The CaM experiments are potentially very interesting and could have wide physiological relevance. However, the approach utilized to activate CaM is indirect and could result in additional non-specific effects on the oocytes that could affect the results.

      Thank you for the appreciative comments about the relevance of our results. We are aware of the potential side effects of the use of thapsigargin and ionomycin, but we still used this approach as an established method to raise intracellular Ca2+. This said, we would like to point out that the effects of Ca2+ increase on channel behavior do revert with a time course that mirrors the estimated time course of Ca2+ itself (supplement 1 to figure 7), suggesting that we are monitoring a Ca2+-dependent event.

      The description of the mathematical model that is provided is difficult to follow, and some key aspects are left unclear, such as the precise states from which state O1 can be accessed, and whether there is any direct connectivity between states O1 and O2 - different portions of the text appear to give contradictory information regarding these points.

      This seems to be a misunderstanding: supplement 1 to figure 8 graphically details the model’s layout and explicitly shows the connections to the two open states. It also shows that these are not connected. We will make sure that the text is more clearly stating this fact. We did explore models with one open state connected to more than one other state (loops) and found that none of these models can reproduce the large range of depolarizations for with conductance is reduced as compared to lower and higher depolarization (Figure 1).

      Several rate constants other than those explicitly mentioned to represent voltage sensor activation are also assigned a voltage dependence - the mechanistic basis of that voltage dependence is unclear.

      Some fundamental properties we observed in the mutants can be explained with constant, voltage-independent rate constants into and out of both open states. Specifically, it was possible to achieve behavior very close to that displayed in Figure 8c with constant η, θ, ε, and ζ. We then attempted to also reproduce the strong prepulse-dependence (Figure 6A and B) and found that we needed additional degrees of freedom to incorporate both behaviors with one parameter set. We could either add more states, and thereby rates, or introduce voltage dependence to η and θ. With already 32 states and 10 rates, we decided to adopt the less complex model variant. We agree that this probably reduced the interpretability of the model. As a rule, a transition with a voltage-dependence of the functional form of Eq.1 corresponds to the kinetic properties of two or three transitions, where one is voltage-independent (setting the maximal rate) and one has the classical exponential shape expected from truly molecular transitions.

      We also agree that, conceptually, the transitions between the two layers – tentatively associated with a transition in the ring structure– should be voltage-independent. Interestingly, their voltage dependence is very similar to the voltage dependence of the early activation, i.e. centered at -100 and -120mV, similar to β. We therefore attempted to replace the voltage dependence of κ and λ with a state-dependence. To this end, we introduced a parameter that modified κ and λ depending on the state’s position along the α-β axis. While it seemed possible to include all desired features in a model with state-dependent κ and λ, it proved extremely difficult to tune the parameters. Eventually, we reverted to purely voltage-dependent and not state-dependent transition rates κ and λ. Nevertheless, we believe that their voltage dependence could be replaced by some form of state-dependence, i.e. by rates κ and λ that change systematically from the left-hand side of the scheme to its right-hand side.

      Finally, a clear mechanistic explanation for the full range of effects that the ΔPASCap and E600R mutants have on channel function is lacking, as well as a detailed description of how those newly uncovered transitions would influence the activity of the WT channel.

      We agree. Ultimate mechanistic explanations will have to await data from protein structures of intermediate states and in particular the mutant-specific open state.

      …as well as a detailed description of how those newly uncovered transitions would influence the activity of the WT channel; this latter point is important when considering whether the findings in the manuscript advance our understanding of the gating mechanism of Kv10 channels in general, or are specific to the particular mutants that are studied.

      We still do not know if the transitions to O1 are identical in the mutants and WT, although our data opens the path to dissecting the interplay of intracellular domains and voltage sensor. We think that the results are relevant for KCNH channels in general because we have made visible otherwise invisible states.

      It is unclear, for example, how both the mutation or the deletion at the cytoplasmic gating ring enable conduction by state O1, especially when considering the hypothesis put forward in this study that transition to O1 exclusively involves transitions by the voltage sensor and not the cytoplasmic gating ring.

      The transition to O1 is in our model made possible by a displacement of the voltage sensor. In our view, when this occurs with a properly folded and positioned intracellular ring, permeation (access to O1) is precluded. It is precisely the distortion in the intracellular ring induced by mutation or deletion what allows access to O1.

      It is also not clearly described whether a non-conducting state with the equivalent state-connectivity as O1 can be accessed in WT channels, or if a state like O1 can only be accessed in the mutant channels. Importantly, if a non-conducting state with the same connectivity to O1 were to be accessed in WT channels, it would be expected that an alternating pulse protocol as in Fig. 4 would result in progressively decreasing currents as the occupancy of the non-conducting state equivalent to O1 is increased. Because this is not the case, it means that mutation and deletion cause additional perturbations on the gating energetics relative to WT, which are not clearly fleshed out.

      Thank you for highlighting this important question. Following the arguments in the answer to the previous comment, our experiments cannot provide proof for the existence or accessibility of O1 in WT channels. We favor the interpretation that it is not accessible, because, as you point out, this is supported by the outcome of the alternating pulse on WT (figure 4A) and the paradoxical effect of CaM activation. However, this interpretation hinges on the hypothesis that the kinetics of entry into and departure from O1 would be the same in WT channels, as it is in the mutants. Because transitions into a non-conducting O1 would be only indirectly observable in the WT channel, this assumption would be extremely difficult to test.

      Reviewer #2.

      WT EAG currents are far right shifted compared to previously published data. It is not clear whether it is the recording conditions but at 0 mV very few channels are open. Compare this with recordings reported previously of the same channel hEAG1 by Gail Robertson's lab (Zhao et. al. (2017) JGP). In that case, most of the channels are open at 0 mV. There must be at least 25 mV shift in voltage-dependence. These differences are unusually large.

      G-V curves presented in the literature show a large variability. Depending on the conditions, reported V1/2 values in Xenopus oocytes range from -43 mV (Schönherr et al., 2002 DOI: 10.1016/s0014-5793(02)02365-7) to +16 mV (Lörinczi et al, 2015 DOI: 10.1038/ncomms7672) through +4.1 mV (Lörinczi et al., 2016 DOI: 10.1074/jbc.M116.733576), or +10 mV (in the IUPHAR database). The results in the current manuscript are not significantly different from our previously published results on WT channels. In the report the reviewer is referring to, one source of the difference could be that Zhao et al. had no independent information about the reversal potential. In our experiments, we used solutions with high [K]ext. This places the reversal potential in a voltage range within measurable eag currents and thus allows direct determination of the reversal potential, together with the slow kinetics of the tails and the negative shift in the activation. We would argue that this makes the G-V curves less prone to assumptions, albeit for the price of large error bars around the reversal potential. Additionally, the presence of Mg2+ in the extracellular solutions can change the apparent V1/2 depending on the stimulation protocol.

      In most of the mutants, O2 state becomes more prevalent at potentials above +50 mV. At these potentials, endogenous voltage-dependent currents are often observed in xenopus oocytes. The observed differences between the various mutants might simply be a function of the expression level of the channel versus endogenous currents.

      Because we were aware of the potential issue of endogenous chloride currents in oocytes, we included data recorded in chloride-free solutions. Those show comparable results, and thus we conclude that endogenous currents are not the origin of the differences between mutants. We will clarify which solutions were used in the figure legends of the revised version and also include the argument against sizable endogenous current contributions in the revision. In a separate line of experiments, we expressed some of the mutants in HEK cells. Despite small current amplitudes, we were able to replicate the findings of two components, providing oocyte-independent evidence for the existence of a second open state.

      Voltage-dependence of the kinetics of WT currents appears a bit strange. Why is the voltage-dependence saturated at 0 mV even though very few channels have activated at that point? I cannot imagine any kinetic model that can lead to such unusual voltage-dependence of kinetics.

      The fact that voltage dependence of open probability and voltage dependence of activation time constant do not align reflects the multi-state nature of the underlying gating scheme. More than one of several sequential transitions limit the overall kinetics. In this case, the apparent kinetics can reflect a different “bottleneck” transition at different voltage ranges.

      One of the other concerns I have is that in many cases, it is clear that the pulse is too short to measure steady-state voltage-dependence. For instance, the currents in -160 mV and -100 mV in Figure 6A and 6B are not saturated.

      While we agree that steady-state curves can simplify quantitative evaluation – especially the normalization applied in the I/Imax curves in figure 6 – the conclusion of two components is independent of the absolute amplitude under steady state. The fact that in the raw current traces in Figure 6A, after a -160V prepulse, the same current amplitude is reached for two depolarizations (60 and 90 mV) but not for the intermediate depolarization, can only be explained by an I-V curve that has a minimum. Therefore, the raw data directly support the evidence of finding two components, even if the subsequent analysis is affected by insufficient test pulse durations.

      Reviewer #3

      Although very well established, the experimental conditions used in the present manuscript introduce uncertainties, weakening their conclusions and complicating the interpretation of the results. The authors performed most of their functional studies in Cl-based solutions that can become a non-trivial issue when the range of voltages explored extends to very depolarizing potentials such as +120mV. Oocytes endogenously express Ca2+-activated Cl- channels that will rectify Cl- at very depolarizing potentials -due to an increase in the driving force- and contribute dramatically to the current's amplitude observed at the test pulse in the voltage ranges where the authors identify the second open state.

      As stated above, because we were aware of the potential issue of endogenous chloride currents in oocytes, we performed many of the experiments in chloride-free solutions. We conclude that endogenous currents are not the origin of the differences between mutants because the results were comparable regardless of the presence of chloride. We will clarify which solutions were used in the figure legends of the revised version and also include the argument against sizable endogenous current contributions in the revision. In a separate line of experiments, we expressed some of the mutants in HEK cells. Despite small current amplitudes, we were able to replicate the findings of two components, providing oocyte-independent evidence for the existence of a second open state.

      The authors propose a two-layer Markov model with two open states approximating their results. However, the results obtained with the mutants suggest an inactivated state accessible from closed states and a change in the equilibrium between the close/inactivated/open states that could also explain the observed results; therefore, other models could approximate their data.

      In the process of model development, we tested a large number of configurations. Those included models with a single open state which we connected to two closed (or inactivated) states that were not directly connected to each other and populated at different voltage ranges. In doing so, we attempted to allow access to the single open state from different regions of the “state-space”, reflecting the two voltage ranges of high conductance. However, in our hands, such a “loop” in the state-space inadvertently leads to a weak separation of the two states and a weak effect of prepulse potentials. The underlying reason is that given the short activation and deactivation time constants, a single open state in a loop provides an effective short-cut, linking otherwise separated parts of the state-space. To achieve the clear separation of the two component’s voltage dependence, two open states that are not connected to each other were essential. As we wrote in response to other comments above, the ultimate proof of two different open states cannot come from modeling, but from single channel measurements.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In their manuscript, Brischigliaro et al. show that the disruption of respiratory complex assembly results in Drosophila melanogaster results in the accumulation of respiratory supercomplexes. Further, they show that the change in the supercomplex abundance does not impact respiratory function suggesting that the main role of supercomplex formation is structural. Overall, the manuscript is well written and the results and conclusion are supported. The D. melanogaster system, in which the abundance of supercomplexes can be altered through the genetic disruption of the assembly of the individual complexes, will be important for the field to discover the role of the supercomplexes. This manuscript will be of broad interest to the field of mitochondrial bioenergetics. The findings are valuable and the evidence is convincing.

      Strengths

      The system developed in which the relative levels of SCs can be varied will be extremely useful for studying SC physiology.

      The experiments are clearly described and interpreted.

      Weaknesses

      The statement in the abstract regarding low amounts of SCs in "insect tissues" needs further support or should be narrowed. I am only aware of detailed characterization of the mitochondrial SC composition from D. melanogaster, which is insufficient to make a broad statement about the large and diverse category of insects. This should be rewritten.

      Thank you for the comment. We have amended the text accordingly.

      In the introduction (line 76) and discussion (line 283), the authors reference the CoQ binding sites in CI and CIII2 being "too far apart" to allow for substrate channeling. The distance between the active sites, though significant, is insufficient to rule out substrate channeling. A stronger argument arises from the fact that the CoQ sites of both CI and CIII2 are open to the membrane and that there are no clear barriers for the free exchange of CoQ with the membrane pool.

      Thank you for the comment. We have modified both sentences accordingly.

      Line 195, the slight elevation in CI amounts referred to here, does not appear to be statistically significant and therefore should not be discussed a being altered relative to the control.

      To address this point of criticism we have revisited the statistical analysis, originally done by 2-way ANOVA and post-hoc test. After giving it some thought, we now consider that this might not have been the correct way to analyze either the mitochondrial respiratory chain (MRC) activity data or the densitometric quantifications. We have now used unpaired two-tailed Student’s t-test to compare the pairs of either KO or KD vs CTRL. The reason is that since the measurement of each individual MRC activity is actually an independent assay, it should be considered separately. The same applies to the densitometry because the absolute values of the intensity of individual CI and that within SCs largely differ. Therefore, we think that it is more correct to compare the abundance of individual CI in the WT vs. either KO or KD pairs and the abundance of the CI in SC independently using a t-test. With these new statistical analyses, the difference in the enzyme activity of CI reported in figure 4D is now significant, which we consider reflects better our observations. Also, with these new analyses, the difference in the amounts of CI+CIII are significantly higher in the Coa8 KD (Figure S1B). Therefore, the original affirmation is correct and we have left the sentence as it was.

      Figure 4H, the assignments of the observed larger bands seem incorrect. The largest band (currently assigned as SC I1+III2+IV1) represents too large of a shift for only the addition of CIV and the band currently assigned at SC I1+III2 appears to also contain CIV. The identity of these bands should be reevaluated and additional experiments are needed to definitively prove their identity. This uncertainty should be addressed experimentally or made more explicit in the text.

      Thank you for the comment. Taking a closer look at the images, we have to agree with the Reviewer that the assignment was incorrect. The higher band is too large indeed and the reviewer is correct that the band that we previously assigned as CI1+CIII2 does appear to contain CIV as well. Therefore, we have changed the labeling of that to CI1+CIII2+CIV1 because the stoichiometry is compatible with the apparent MW. Also, we have renamed the higher MW band to HMW-SC (high-MW SC) of uncertain nature (unknown stoichiometry) but clearly containing all three complexes I, III and IV. We amended the text (lines 219-221) plus figures 5H and S1 accordingly.

      Line 302, the authors state that the structural basis for less SC in D. melanogaster is "due to a more stable association of the NDUFA11 subunit..." However, this would not result is a less stable SC association and only explains why NDUFA11 is more stably associated with CI in the absence of CIII2. The more likely structural reason for the observation of less SC in D. melanogaster is the N-terminal truncation of Dm-NDUFB4 relative to mammalian NDUFB4. This truncation results in the loss of a major SC interaction site between CI and CIII2 in the matrix.

      Thank you for pointing this out. We have amended the text accordingly.

      Reviewer #2 (Public Review):

      Respiratory chain complexes assemble in higher-ordered structures termed supercomplexes or respirasomes. The functional significance of these assemblies is currently investigated, there are two main hypothesis tested, namely that supercomplexes provide kinetic advantages or structural stability. Here, the authors use the fruitfly to reveal that, while the respiratoy chain in the organism normally does not form higher-order assemblies, it does so under conditions when their assembly is impaired. Because the rather moderate increase in supercomplex formation does not change oxygen consumption stimulated by CI or CII substrate, the authors conclude that supercomplex formation has more a structural than a functional role. The main strength of this work is that the technical quality of the experiments is high and that the authors induced defects in respiratory chain assembly through sets of well-controlled genetic models. The obtained data are mostly descriptive using standard approaches and are very well executed. The authors claim that their experiments allow to conclude that the role of supercomplex formation is restricted to a structural role and, hence, exclude a function directly related to electron transport efficiency. However, while the authors can show convincingly that supercomplexes form in the mutants, but not in the wild type, their main claim is not well supported by data and both the structural mechanism of supercompelx formation and their significance remain unknown. While the supercomplex formation observed only in mitochondrial mutants per se is interesting, it would be good to great to define structural aspects of supercomplex formation and their potential impact on the stability of the respiratory chain complexes in these mutants.

      We thank the Reviewer for the positive assessment of our work and the suggestions to improve the manuscript.

      Reviewer #1 (Recommendations For The Authors):

      The sentence on line 90, which starts "This is in contrast with..." is unclear and needs to be rewritten.

      Thank you. We have modified the sentence to make it clearer.

      Lines 153 and 155, reference is made to tissue specific expression patterns but no literature reference is provided.

      Thank you for the comment. The tissue specific expression patterns of the different isoforms are reported in the FlyBase database. We added the link to website in the text.

      Line 188, "...homogenates in presence of..." should read "homogenates in the presence of..."

      Thank you. Amended.

      Line 336, "...lower to the increase..." should read "...lower than the increase..."

      Thank you. Amended.

      Reviewer #2 (Recommendations For The Authors):

      • In order to unravel the molecular mechanism by which supercomplexes form in the mutant, it would be important to identify the factor mediating this. Prime candidates would be additional proteins that co-purify of co-fractionate with the respiratory chain when they assemble into supercomplexes or changes in the lipid composition of the mitochondria, where cardiolipin has been shown to stabilize supercomplex formation. The inclusion and analysis of complexome data for all mutants would be excellent, plus an MS analysis of a purified supercomplex.

      Thank you for the suggestion to which we completely agree. We have taken a closer look to the hierarchical clustering of peptide intensities in our complexome profiling data, which clusters the proteins according to their similarity in electrophoretic migration within the complexes. We have specifically looked for proteins in which the peptide intensity changed in a similar fashion as the complex I structural subunits. Among the four candidate proteins (Uniprot IDs Q8SXY6, Q95T19, Q9W0Y6, Q9VJQ3), only Q95T19 — Serine--tRNA synthetase-like protein Slimp is annotated as a mitochondrial protein. This protein is a Drosophila-specific paralog of the mitochondrial Serine-tRNA synthetase generated by gene duplication (PMID: 20870726), which carries out a function linking mitochondrial translation with mtDNA maintenance (PMID: 30943413). Therefore, in principle we would not consider it as a good candidate to be a ‘SC assembly factor’. The identification of factors promoting the formation of SC in Drosophila under these conditions is definitely an important point warranting future investigation.

      • The authors could define the stability of the respiratory chain complexes through metabolic pulse-chase labeling experiments. This could reveal that the role of supercomplex formation is indeed structural, improving stability.

      We agree that this would be an important piece of information to understand the phenomenon we have observed. Unfortunately, it is technically impossible to perform metabolic labeling of mitochondrial proteins in whole flies. It would be possible to perform in organello pulse-chase labelling, however our previous experience indicates that complex I does not completely assemble de novo in isolated mitochondria (PMID: 20385768).

      • The authors should analyze oxygen consumption from mitochondria isolated from larvae as in the other experiments on enzyme activities or the (high-quality) BN-PAGE, and not from whole flies that are homogenized. Moreover, they need to determine the quantities of the complexes by complementary experiments (MS, Western blotting or spectroscopy).

      Thank you for the comments. However, we believe that repeating the entire analyses with the larvae would not add significant information to the work and the main interpretation would not change, as the main claim of the paper is based on the data collected on adult flies. In addition, the band patterns of MRC complexes in the BNGE is the same between larvae and adults and therefore, does not depend on the developmental stage. Regarding the quantification of the complexes, we think that the data provided by using complementary approaches such as in gel activity assays (IGA), western blot (WB) and kinetic assays of MRC enzymatic activities, allowed us to confidently determine the amount of the individual complexes. Hence, we performed IGA assays and enzymatic activity assays (which reflect the amounts of fully assembled and functional complexes) in triplicate (independent samples). For the WB analyses, due to the scarcity of some of the antibodies available to detect the Dm MRC proteins, which were a kind gift of Dr. Edward Owusu-Ansah (Columbia University), we decided to pool the three independent samples of each group before running them through the Blue-Native gels. The densitometric curves of the WB bands (Figure S2) show the abundance of each individual MRC complex within the ‘free’ and SC forms. We prioritized the BN analyses over SDS-PAGE and WB analysis, as we consider that just measuring the steady-state levels of MRC subunits is not as informative, because it is possible that certain subunits are present in the mitochondrial membranes but not assembled into the final mature structures.

      • Can changes in Coenzyme Q levels explain the absence of a defect on electron transport? This could be determined for the mutant as well as the wild type animals.

      We agree that this would be a relevant aspect to investigate. For example, determining whether lower CoQ levels are able to maintain the same respiratory activities in the models in which higher amounts of SCs are formed, as it was proposed in Shimada et al. (PMID: 29191512) would be very interesting. However, the fact that the mild KD models show no MRC enzymatic defects whatsoever (Figure 4D, Figure 5I and Figure 6I), provides the most straightforward explanation to the observed absence of respiratory defects.

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #1:

      Comment on revised manuscript: Thank you for your responses - they have addressed most of my concerns.

      We thank the reviewer again for their assistance in improving our manuscript.

      Reviewer #2:

      Additional context:

      The sex differences between the samples are interesting as effects of sex are commonly found in AAC tasks. It would be interesting to look at the main model comparison with sex included as a covariate.

      Firstly, we thank the reviewer for their re-evaluation of our manuscript.

      To the reviewer’s comment, we apologise for the lack of clarity. The analyses included in our revision were indeed based on the main logistic regression model of choice, including sex and age as covariates. We have clarified this in the manuscript as follows:

      While sex was significantly associated with choice in the hierarchical logistic regression in the discovery sample (β = 0.16 ± 0.07, p = 0.028) with males being more likely to choose the conflict option, this pattern was not evident in the replication sample (β = 0.08 ± 0.06, p = 0.173), and age was not associated with choice in either sample (p > 0.2).

      As it is difficult to include sex as a covariate in the reinforcement learning models in the classical sense as in a linear regression, we assessed sex effects on the individual parameters produced by these models instead, as follows:

      Comparing parameters across sexes via Welch’s t-tests revealed significant differences in reward sensitivity (t289 = -2.87, p = 0.004, d = 0.34; lower in females) and consequently reward-punishment sensitivity index (t336 = -2.03, p = 0.043, d = 0.22; lower in females i.e. more avoidance-driven). In the replication sample, we observed the same effect on reward-punishment sensitivity index (t626 = -2.79, p = 0.005, d = 0.22; lower in females). However, the sex difference in reward sensitivity did not replicate (p = 0.441), although we did observe a significant sex difference in punishment sensitivity in the replication sample (t626 = 2.26, p = 0.024, d = 0.18).

      Could the authors double check the mean/SD of approach in each group for typos? The numbers are identical.

      Thank you for spotting this – the means were indeed similar (discovery: 0.521, replication: 0.516), but the standard deviations were marginally different (discovery: 0.140, replication: 0.148). We have amended the manuscript to reflect this, as follows:

      Across individuals, there was considerable variability in overall choice proportions (discovery sample: mean = 0.52, SD = 0.14, min/max = [0.03, 0.96]; replication sample: mean = 0.52, SD = 0.15, min/max = [0.01, 0.99]).

      Reviewer #3:

      The revised paper commendably adds important additional information and analyses to support these claims. The initial concern that not accounting for participant control over punisher intensity confounded interpretation of effects has been largely addressed in follow-up analyses and discussion.

      I commend the authors on their revisions. My initial concerns have been largely addressed. Minor suggestions below.

      We thank the reviewer again for their assistance in improving our analyses and manuscript.

      Changing the visualisation of the logistic regression model in Figure 2 to tertiles instead of quartiles seems expedient, and does not properly address the points raised by the other reviewers. The argument that non-linear trends in the extreme bins are due to less data is plausible, but unsatisfying given how reliable the pattern seems to be (across samples, with small standard error) and . It is possible, albeit perplexing, that the influence of punishment probability on choice is non-linear. I think the current figure with tertiles is acceptable, but I would suggest including the figures with non-linear data as a supplementary figure, for sake of transparency and reader interest.

      We agree that this is likely more complex than a simple linear effect (in the logistic space), especially given the concurrent reward probabilities which also fluctuate in the task. We also agree that the non-linear figures should be made available in the interests of transparency, and have included them in the Supplementary Materials.

      We direct interested readers to the relevant section from the figure legend as follows:

      "Figure 2. Predictors of choice in the approach-avoidance reinforcement learning task. … We show linear curves here since these effects were estimated as linear effects in the logistic regression models, however the raw data showed non-linear trends – see Supplementary Figure 15."

      We have included the non-linear figures in Supplementary Section 9.11 Effects of outcome probabilities on choice in the task: non-linear effects as Supplementary Figure 15.

      As an aside, the argument that approach-avoidance joystick tasks do not have a non-human counterpart misconstrues the translational root of these tasks, which was (at least in part) an attempt to model (successfully or not) general approach/avoidance processes measured in non-human tasks, e.g. appetitive/aversive runway tasks using rodents.

      Our aim in this manuscript was to develop a task that was closely matched to non-human counterparts in both the experimental procedure (choice over reward/punishment outcomes) and cognitive process involved (simultaneous reward/punishment learning). With this in mind, we wanted to convey that non-human and human measures of approach/avoidance processes were historically distinct in terms of the procedures (e.g. using a joystick vs navigating a runway, due to ethological differences), and that this was potentially problematic with respect to computational validity. However, at this early point in the introduction, it was unnecessary to make a strong distinction between these tasks, which as the reviewer duly notes, follow similar approach/avoidance principles and share similar experimental roots. Therefore, we have opted to omit the reference to translational similarity in the relevant text, as follows:

      In humans, on the other hand, approach-avoidance conflict has historically been measured using questionnaires such as the Behavioural Inhibition/Activation Scale (Carver and White 1994), or cognitive tasks that rely on motor/response time biases, for example by using joysticks to approach/move towards positive stimuli and avoid/move away from negative stimuli (Guitart-Masip, Huys et al. 2012, Phaf, Mohr et al. 2014, Kirlic, Young et al. 2017, Mkrtchian, Aylward et al. 2017).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This manuscript by He et al. explores the molecular basis of the different stinging behaviors of two related anemones. The freshwater Nematostella which only stings when a food stimulus is presented with mechanical stimulation and the saltwater Exaiptasia which stings in response to mechanical stimuli. The authors had previously shown that Nematostella stinging is calcium-dependent and mediated by a voltage-gated calcium channel (VGCC) with very pronounced voltage-dependent inactivation, which gets removed upon hyperpolarization produced by taste receptors.

      In this manuscript, they show that Exaiptacia and Nematostella differing stinging behavior is near optimal, according to their ecological niche, and conforms to predictions from a Markov decision model.

      It is also shown that Exaiptacia stinging is also calcium-dependent, but the calcium channel responsible is much less inactivated at resting potential and can readily induce nematocyte discharge only in the presence of mechanical stimulation. To this end, the authors record calcium currents from Exaipacia nematocysts and discover that the VGCCs in this anemone are not strongly inactivated and thus are easily activated by mechanical stimuli-induced depolarization accounting for the different stinging behavior between species. The authors further explore the role of the auxiliary beta subunit in the modulation of VGCC inactivation and show that different n-terminal splice variants in Exaiptacia produce strong and weak voltage-dependent inactivation.

      The manuscript is clear and well-written and the conclusions are in general supported by the experiments and analysis. The findings are very relevant to increase our understanding of the molecular basis of non-neural behavior and its evolutionary basis. This manuscript should be of general interest to biologists as well as to more specialized fields such as ion channel biophysics and physiology.

      Some findings need to be clarified and perhaps additional experiments performed.

      1) The authors identify by sequencing that the Exaiptacia Cav is a P-type channel (cacna1a). However, the biophysical properties of the nematocyte channel are different from mammalian P-type channels. The cnidarian channel inactivation is exceedingly rapid and activation happens at relatively low voltages. These substantial differences should be mentioned and commented on.

      First, we thank Reviewer 1 for thoughtful and detail-oriented comments, as well as their shared appreciation for the molecular basis of unique behaviors. Indeed, Nematostella and rat CaV channels exhibit striking differences in inactivation (both fast and steady-state). We previously described this in Weir et al., 2020 and added additonal text to ensure that this result is clear.

      2) The currents from Nematostella in Figure 3d seem to be poorly voltage-clamped. Poor voltage-clamp is also evident in the sudden increase of conductance in Figure 3C and might contribute to incorrect estimation of voltage dependence of activation and if present in inactivation experiments, also to incorrect estimation of the inactivation voltage range. This problem should be reassessed with new data.

      Because it is necessary to use small-tipped pipettes to get recordings from small and technically challenging nematocytes, there is imperfect voltage clamp that is evident in the steep activation curves. This issue should have little effect on the inactivation curves determined with 1s pre-pulses because poor voltage control occurs transiently at the beginning of the pre-pulse. In our case, current is measured in response to a brief maximally activating pulse followed by a nearly 1s period. Thus, error should be minimal in inactivation curves if the test pulse is a maximally activating voltage. We ensured that these protocols are clearly described in the Methods to address this issue. In addition, we are confident in the described inactivation values because they are generally consistent with channel properties measured in a heterologous expression system in which we do not have this problem and see the same differences in inactivation (also see Weir et al., 2020).

      3) While co-expression of the mouse Cav channel with the beta1 isoform from Exaiptacia indeed shifts inactivation to more negative voltages, it does not recapitulate the phenotype of the more inactivated Ca-currents in nematocytes (compare Figures 4d and 5d). It should be explained if this might be due to the use of a mammalian alpha subunit. Related to this, did the authors clone the alpha subunit from Exaiptacia? Using this to characterize the effect of beta subunits on inactivation might be more accurate.

      While the cnidarian CaVβ subunits indeed shift inactivation consistent with native properties, we agree that using the Exaiptasia alpha subunit would be more accurate. We were unable to successfully clone and heterologously express this subunit, however, we did express all subunits from Nematostella and made chimeric channels in which alpha, alpha2d, or CaVβ were swapped between Nematostella and mammalian channels. These experiments demonstrated the requirement and sufficiency of the CaVβ subunit in altering inactivation (Weir et al., 2020). Furthermore, we were able to express CaVβ subunits from a variety of other cnidarians, all of which affected inactivation properties. Thus, we are confident in the conclusion that CaVβ subunits are major contributors to molecular tuning of cnidarian CaV channels. Future studies aim to incorporate describing properties of the alpha subunit from Exaiptasia and other cnidarians.

      4) The in situ shown in Figure 4b are difficult to follow for a non-expert in cnidarian anatomy. Some guidance should be provided to understand the structures. Also, for the left panels, is the larger panel the two-channel image? If so, blue would indicate co-localization of the two isoforms and there seems to be a red mark in the same nematocyte.

      We thank the reviewer for this important comment and have modified the figure to enhance visual guidance. We more clearly highlighted the nematocyte in the single and two-channel images and selected the clearest representative images. For additional reference, previous studies beautifully illustrate the unusual morphology of nematocytes, including the relative localization of the nematocyst and nucleus in the context of cnidarian tissues (Babonis and Martindale, 2017).

      Reviewer #2 (Public Review):

      This manuscript links the distinctive stinging behavior of sea anemones in different ecological niches to varying inactivation properties of voltage-gated calcium channels that are conferred by the identity of auxiliary Cavbeta subunits. Previous work from the Bellono lab established that the burrowing anemone, Nematostella vectensis, expresses a CaV channel that is strongly inactivated at rest which requires a simultaneous delivery of prey extract and touch to elicit a stinging response, reflecting a precise stinging control adapted for predation. They show here that by contrast, the anemone Exaiptasia diaphana which inhabits exposed environments, indiscriminately stings for defense even in the absence of prey chemicals, and that this is enabled by the expression of a CaVbeta splice variant that confers weak inactivation. They further use the heterologous expression of CaV channels with wild type and chimeric anemone Cavbeta subunits to infer that the variable N-termini are important determinants of Cav channel inactivation properties.

      1) The authors found that Exaiptasia nematocytes could be characterized by two distinct inactivation phenotypes: (1) nematocytes with low-voltage threshold inactivation similar to that of Nematostella (Vi1/2 = ~ -85mV); and (2) a distinct population with weak, high-voltage threshold inactivation (Vi1/2 = ~ -48mV). What were the relative fractions of low-voltage and high-voltage nematocytes? Do the low-voltage Exaiptasia nematocytes behave similarly to Nematostella nematocytes with respect to requiring both prey extract and touch to discharge?

      We thank Reviewer 2 for thoughtful comments and questions. Nematocyte patch clamp is technically challenging due to small size, large nematocyst, and, notably, the explosive discharge involved in stinging! Therefore, we only patch clamped a small number of cells. Despite this limitation, we were able to observe two distinct nematocyte populations based on physiological properties. Yet, we did not observe a correlation with morphology and cannot make broad comments on relative fractions. Because morphology was generally similar and Exaiptasia nematocytes discharge even from touch alone, it remains unclear whether the low-voltage population behaves similarly to Nematostella nematocytes that only discharge in response to chemicals and touch. Future in vivo approaches could be used to address this question.

      2) The authors state in Fig 3 legend and in the results that Exaiptasia nematocyte voltage-gated Ca2+ currents have weak inactivation compared with Nematostella. This description is imprecise and inaccurate. Figure 3 in fact shows that Exaiptasia nematocyte voltage-gated Ca2+ currents display a faster rate of inactivation compared to Nematostella Ca2+ currents. A sub-population of Exaiptasia nematocytes does display less resting state (or steady-state) inactivation compared to Nematostella Ca2+ currents. The authors need to be more accurate and qualify what type of inactivation property they are talking about.'

      We thank Reviewer 2 for this attention to detail and have defined this phrasing early in the text.

      3) In a similar vein, the authors need to be more accurate when referring to 'rat beta' used in heterologous expression experiments. It should be made explicit throughout the manuscript that the rat beta isoform used is rat beta2a. Among the distinct beta isoforms, beta2a is unique in being palmitoylated at the N-terminus which confers a characteristic slow rate of inactivation and a right-shifted voltage-dependence of steady-state inactivation consistent with the data shown in Fig. 4D. Almost all other rat beta isoforms do not have these properties.

      We used the rat CaVβ2a for comparison because it shares the highest homology with Nematostella CaVβ (Weir et al., 2020). We have now more clearly defined the rat subunit in the text and legends.

      4) The profiling of the impact of different Cnidarian Cavbeta subunits on reconstituted Ca2+ channel current waveforms is nice (Fig 5 and Fig 5S1). The N-terminus sequence of EdCaVβ2 is different from palmitoylated rat beta2a, though both have similar properties in showing slow inactivation and a right-shifted voltage-dependence of steady-state inactivation. Does EdCaVβ2 target autonomously the plasma membrane when expressed in cells? If so, this would reconcile with what was previously known and provide a rational explanation for the observed functional impact of the distinct Cavbetas.

      As far as we understand the question, our data support that Exaiptasia CaVβ2 targets the plasma membrane for a number of reasons: 1) Expressing Exaiptasia CaVβ2 produces consistent properties in comparison with other CaVβs, suggesting a homogenous population of channel complexes; 2) Distinct cnidarian-Exaiptasia CaVβ2 chimeras produce distinct and internally consistent properties; and 3) Expressing P/Q-type CaV alpha + alpha2d subunits without CaVβ in cell lines does not produce robust measurable voltage-gated currents. We further tested this in our case and found the same result: at an equivalent maximally activating step using the same protocol, we measured 458.68 ± 179.88pA average current amplitude for +Exaiptasia CaVβ2 (n = 6) and 43.03 ± 17.64pA average current amplitude for -CaVβ2 (n = 4).

      Reviewer #3 (Public Review):

      Summary:

      The present article attempts to answer both the ultimate question of why different stinging behaviours have evolved in Cnidiarians with different ecological niches and shed light on the proximate question of which electro-physiological mechanisms underlie these distinct behaviours.

      Account of major methods and results:

      In the first part of the paper, the authors try to answer the ultimate question of why distinct dependencies of the sting response on internal starvation levels have evolved. The premise of the article that Exaiptasia's nematocyte discharge is independent of the presence of prey (Artemia nauplii) as compared to Nematostella's significant dependence of the discharge on the presence of actual prey, is shown be a robust phenomenon justified by the data in Figure 1.

      The hypothesis that defensive vs. predatory stinging leads to different nematocyte discharge behaviours is analysed in mathematical models based on the suitable framework of optimal control/decision theory. By assuming functional relations between the:

      1) cost of a full nematocyte discharge and the starvation level.

      2) probability of successful predation/avoidance on the discharge level.

      3) desirability/reward of the reached nutritional state.

      Based on these assumptions of environmental and internal influences, the optimal choice of attack intensity is calculated using Bellman's equation for this problem. The model predictions are validated using counted nematocytes on a coverslip. The scaling of normalised nematocyte discharge numbers with scaled starvation time is qualitatively comparable to what is predicted from the models. The abundance of nematocytes in the tentacles was, on the other hand, independent of the starvation state of the animals.

      Next, the authors turn to investigate the proximate cause of the differential stinging behaviour. The authors have previously reported convincing evidence that a strongly inactivating Cav2.1 channel ortholog (nCav) is used by Nematostella to prevent stinging in the absence of prey (Weir et al. 2020). This inactivation is released by hyperpolarising sensory inputs signalling the presence of prey. In this article, it is clearly shown by blocking respective currents that Exaiptasia, too, relies on extracellular Ca2+ influx to initiate stinging. Patch clamp data of the involved currents is provided in support. However, the authors find that in addition to the nCav with a low-inactivation threshold, Exaiptasia has a splice variant with a higher inactivation threshold expressed (Figure 3D).

      The authors hypothesise that it is this high-threshold nCav channel population that amplifies any voltage depolarisation to release a sting irrespective of the presence of prey signals. They found that the β subunit that is responsible for Nematostella's unusually low inactivation threshold exists in Exaiptasia as two alternative splice isoforms. These N-terminus variants also showed the greatest variation in a phylogenetic comparison (Figure 5), rendering it a candidate target for mutations causing variation in stinging responses.

      Appraisal of methodology in support of the conclusions:

      The authors base their inference on a normative model that yields quantitative predictions which is an exciting and challenging approach. The authors take care in stating the model assumptions as well as showing that the data indeed does not contradict their model predictions. The interesting comparative nature of the modelling part of the study is complicated by slightly different cost assumptions for the two scenarios. Hence, Figure 2 needs to be carefully digested by readers.

      We thank the reviewer for their careful revision of our work and excellent comments. We simplified Figure 2 considerably to make it easier to digest. We now compare the stinging response for predation vs defense under the same exact definition of cost per nematocyte for both models. You can find examples 1 and 2 in Figure 2 and examples 3 and 4 in Supplementary Figure 3 (see response below).

      It would be even more prudent to analyse the same set of cost-of-discharge vs. starvation scenarios for both species. Specifically, for Nematostella the complete cost-of-discharge vs starvation-state curves as for Exaiptasia (Figure 2E, example 2-4) could be used. It is likely that the differential effect size of Nematostella and Exaiptasia behaviour is the strongest if only the flat cost-of-discharge vs starvation is used (Figure 2A) for Nematostella. But as a worst-case comparison the other curves, where the cost to the animal scales with starvation would be a good comparison. This could help the reader to understand when the different prediction of Nematostella's behaviour breaks down. In addition, this minor change could shed light on broader topics like common trade-offs in pursuit predation.

      The results hold even when the cost increases moderately with starvation: Figure 2 now shows results with the same cost for predatory and defensive stinging (cost defined in Figure 2A, former examples 1 and 4). Predatory stinging robustly increases with starvation and defensive stinging remains constant or decreases. Interestingly, the fit between theory and data for both anemones improves by using the increasing cost (open circles in Figure 2E right). For other choices of increasing cost functions, defensive stinging will always decrease, and even more so if the cost increases dramatically (like for the former Examples 2 and 3). In contrast, predatory stinging will switch behavior if the cost increases too much with starvation (results with former Examples 2 and 3, now in Supplementary Figure 3 and theoretical arguments in Supplementary Information). Note however that these assumptions are less realistic because they necessitate that the cost of stinging for well-fed animals is negligible with respect to the cost for starved animals. A formal proof of the asymptotic solution for predatory stinging with varying cost is beyond the scope of this work and is subject of ongoing work where we consider implications for Markov Decision Processes in continuous space state.

      The qualitatively similar scaling of the model-derived relation between starvation and sting intensity with the counted nematocytes for different feeding pauses is evidence that feeding has indeed been optimised for the two distinct ecological niches. To prove that Exaiptasia uses a similar Ca2+ channel ortholog as well as a different splice variant, the authors employed both clean electrophysiological characterisaiton (Figure 3) as well as transcriptomics data (Figure 4S1).

      To strengthen the authors' hypothesis that variation in the N-termini leads to changes in Ca2+ channel inactivation and hence altered stinging, the response sequence variability of 6 Cnidaria was analysed.

      Additional context:

      Although, the present article focuses on nematocytes alone, currently, there has been a refocus in neurobiology on the nervous systems of more basal metazoans, which received much attention already in the works of Romanes (1885). In part, this is driven by the goal to understand the early evolution of nervous systems. Cnidarians and Ctenophors are exciting model organisms in this venture. This will hopefully be accompanied by more comparative studies like the present one. Some of the recent literature also uses computational models to understand mechanisms of motor behaviour using full-body simulations (Pallasdies et al. 2019; Wang et al. 2023), which can be thought of as complementary to the normative modelling provided by the authors.

      Comparative studies of recent Cnidarians, such as the present article, can shed light on speculative ideas on the origin of nervous systems (Jékely, Keijzer, and Godfrey-Smith 2015). During a time (the Ediacarium/Cambrium transition) that has seen the genesis of complex trophic foodwebs with preditor-prey interaction, symbioses, but also an increase of body sizes and shapes, multiple ultimate causes can be envisioned that drove the increase in behavioural complexity. The authors show that not all of it needs to be implemented in dedicated nerve cells.

      References:

      Jékely, Gáspár, Fred Keijzer, and Peter Godfrey-Smith. 2015. "An Option Space for Early Neural Evolution." Philosophical Transactions of the Royal Society B: Biological Sciences 370 (December): 20150181. https://doi.org/10.1098/rstb.2015.0181.

      Pallasdies, Fabian, Sven Goedeke, Wilhelm Braun, and Raoul-Martin Memmesheimer. 2019. "From Single Neurons to Behavior in the Jellyfish Aurelia Aurita." eLife 8 (December). https://doi.org/10.7554/elife.50084.

      Romanes, G. J. 1885. Jelly-Fish, Star-Fish and Sea-Urchins: Being a Research on Primitive Nervous Systems. Appleton.

      Wang, Hengji, Joshua Swore, Shashank Sharma, John R. Szymanski, Rafael Yuste, Thomas L. Daniel, Michael Regnier, Martha M. Bosma, and Adrienne L. Fairhall. 2023. "A Complete Biomechanical Model of hydra Contractile Behaviors, from Neural Drive to Muscle to Movement." Proceedings of the National Academy of Sciences 120 (March). https://doi.org/10.1073/pnas.2210439120.

      Weir, Keiko, Christophe Dupre, Lena van Giesen, Amy S-Y Lee, and Nicholas W Bellono. 2020. "A Molecular Filter for the Cnidarian Stinging Response." eLife 9 (May). https://doi.org/10.7554/elife.57578.

      We appreciate the excellent suggestion to further discuss non-neuronal adaptations in the context of studying the evolution of behavior. We have added additional text to the Discussion to cover this interesting field.

    1. Author Response

      We thank the editors for their care in handling our manuscript. We also thank the reviewers, especially reviewer 2, for their thorough comments. We will work to address their concerns in a revised version and provide some initial comments below.

      A major concern of two reviewers was that odour profiles were not quantified rigorously. We acknowledge that our study does not achieve the level of quantitative rigour standard in most chemical ecology work. We plan to conduct a few additional analyses to help address this shortcoming. We will also adjust the text to clarify the semi-quantitative nature of the data.

      Reviewers also suggested using several different analytical approaches (e.g., different column, different sorbent) to broaden the type and number of detectable compounds. The reviewers rightly point out that such choices strongly affect which compounds we are likely to sample. No single approach is comprehensive, and ours is no exception. We will work to ensure that the appropriate caveats are included prominently in the text.

      However, we believe this concern in fact underscores a special strength of our study: analysing the odour of a large number of species in a single study using the same analytical approach, so that the inherent biases of different approaches do not complicate cross-species comparisons. We are aware of very few such large-scale studies in any system and welcome suggestions from reviewers or readers of any we might have overlooked.

      In general, we believe many of the reviewers’ methodological concerns reflect standards in the field of chemical ecology established for studies that aim to describe the odour of one or a few species as comprehensively as possible with a high level of quantitative rigour. This was not our goal, and we will temper our language in the revised paper to make that clear. Instead, we aimed to sample as broadly as possible across species to gain insight into the general statistics of a large 'odour landscape' or 'odour space' — an endeavour that, to our knowledge, is less common in the chemical ecology literature. In doing so, we prioritized breadth over depth. We believe the resulting dataset provides solid evidence for our major conclusions, though we will revisit our analyses and conduct a small number of additional experiments to further substantiate our claims.

    1. Author Response:

      We thank the reviewers and editors for their constructive and encouraging feedback on our manuscript. We have carefully studied the reviewer comments and found that we agree with almost all of them; we will implement these suggestions and prepare a revised submission. In particular, we will aim to address the reviewers’ valid concerns regarding metagenomic detection limits via a high-sensitivity re-analysis of the data based on metagenomic read mapping, orthogonal to our current analyses based on read mapping to mOTU single copy marker genes. Moreover, we will revise the manuscript text for clarity and streamline the phrasing on some observations and claims. We are confident that our work will improve as a result and look forward to future feedback and interactions.

      Sincerely, for the authors,

      Sebastian Schmidt & Peer Bork

    1. Author Response

      Joint Public review

      The manuscript by Mitra and coworkers analyses the functional role of Orai in the excitability of central dopaminergic neurons in Drosophila. The authors show that a dominant-negative mutant of Orai (OraiE180A) significantly alters the gene expression profile of flight-promoting dopaminergic neurons (fpDANs). Among them, OraiE180A attenuates the expression of Set2 and enhances that of E(z) shifting the level of epigenetic signatures that modulate gene expression. The present results also demonstrate that Set2 expression via Orai involves the transcription factor Trl. The Orai-Trl-Set1 pathway modulates the expression of VGCC, which, in turn, are involved in dopamine release. The topic investigated is interesting and timely and the study is carefully performed and technically sound; however, there are several major concerns that need to be addressed:

      1) In Figure S2E, STIM is overexpressed in the absence of Set2 and this leads to rescue. It is presumed that STIM overexpression causes excess SOCE, yet this is rarely the case. Perhaps the bigger concern, however, is how excess SOCE might overcome the loss of SET2 if SET2 mediates SOCE-induced development of flight. These data are more consistent with something other than SET2 mediating this function.

      Our statement that STIM overexpression overcomes deficits in SOCE is based on the following published work:

      1. Studies of SOCE in wildtype cultured larval Drosophila neurons demonstrated that overexpression of STIM raised SOCE to the same extent as co-expression of STIM and Orai in the WT background (Chakraborty et al, 2016; Figure 1D).

      2. Both Carbachol-induced IP3-mediated Ca2+ release and SOCE (measured by Ca2+ add back after Thapsigargin-induced store depletion) were rescued in primary cultures of IP3R hypomorphic mutant (itprku) Drosophila neurons by overexpression of STIM (Agrawal et al., 2010; Figure 8A-G).

      3. Deb et al., 2016 (Supplementary Figure 2h,i) reaffirmed that overexpression of STIM significantly improves SOCE after Thapsigargin-induced passive store-depletion in Drosophila neurons expressing IP3RRNAi.

      4. Consistent with the cellular rescue of SOCE, defects in flight initiation and physiology observed in the heteroallelic IP3R hypomorphic background (itprku) could be rescued by overexpression of STIM (Agrawal et al., 2010; Figure 3A-E) as well as Orai (Venkiteswaran and Hasan, 2009; Figure 3).

      5. In Figure S2E, we show that flight deficits arising from THD’> Set2RNAi are rescued upon overexpression of STIM (i.e. THD’>Set2RNAi; STIMOE). Here and in another recent publication (Mitra et al., 2021) we show that neurons expressing Set2RNAi exhibit reduced expression of the IP3R and reduced ER-Ca2+ release presumably leading to reduced SOCE. As mentioned above we have consistently found that STIM overexpression raises both IP3-mediated Ca2+ release and SOCE in Drosophila neurons.

      In this study, we propose that Ca2+ release through the IP3R followed by SOCE are part of a positive feedback loop driving expression of Set2 which in turn upregulates expression of mAChR and IP3R (Figure 3F) to regulate dopaminergic neuron function. Our observation that loss of Set2 (THD’>Set2RNAi) can be rescued by STIM overexpression is consistent with this model because:

      1. Loss of Set2 (THD’>Set2RNAi) results in downregulation of several genes including mAChR and IP3R leading to decreased SOCE.

      2. As evident from our previous studies increased STIM expression in the Set2RNAi background (THD’>Set2RNAi; STIMOE) is expected to enhance SOCE which we predict would rescue Set2 expression leading to rescue of other Set2 dependent downstream functions like flight (Figure 2D).

      2) In Figure 3, data is provided linking SET2 expression and Cch-induced Ca2+ responses. The presentation of these data is confusing. In addition, the results may be a simple side effect of SET2-dependent expression of IP3R. Given that this article is about SOCE, why isn't SOCE shown here? More generally, there are no measurements of SOCE in this entire article. Measuring SOCE (not what is measured in response to Cch) could help eliminate some of this confusion.

      We will re-write this section in the revised version for better clarity and explain how Set2-dependent IP3R expression is an important component of Orai-mediated Ca2+ entry in fpDANs. Here, we propose that IP3-mediated Ca2+ release and SOCE, through Orai, are together part of a positive feedback loop driving transcription of Set2 which in turn upregulates mAChR and IP3R expression (Figure 3F). We hypothesized that the observed loss of CCh-induced Ca2+ response in the Set2RNAi background (Figure 3B-D; THD’>Set2RNAi) results from decreased itpr and mAChR expression and verified this in Figure 3E. This is further validated by the rescue of CCh-induced Ca2+ response and itpr/mAChR expression in the OraiE180A background upon Set2 overexpression (Figure 3B-E; THD’>OraiE180A; Set2OE). We were constrained to measure CCh-induced Ca2+ responses in OraiE180A expressing neurons for the following reasons:

      1. SOCE measurements through Tg mediated store Ca2+ release followed by Ca2+ add back require a 0 Ca2+ environment that can only be achieved in culture. The Drosophila brain is bathed in hemolymph which contains Ca2+ and there do not exist any methods to readily deplete Ca2+ from the tissue to create a 0 Ca2+ environment without also effecting the health of the neurons.

      2. Cultures of the subset of dopaminergic neurons (THD’) we have focused on in this study were not feasible due to the small number of neurons being studied from the total number of dopaminergic neurons in the brain (~35/400). In previous studies we have shown that SOCE post-Tg induced store depletion is abrogated in cultured dopaminergic neurons from Drosophila upon expression of OraiE180A (Pathak et al., 2015).

      Furthermore, Carbachol-induced IP3-mediated Ca2+ release is tightly coupled to SOCE in Drosophila neurons (Venkiteswaran and Hasan, 2009) and Ca2+ release from the IP3R is physiologically relevant for flight behavior in THD’ neurons (Sharma and Hasan, 2020).

      3) A significant gap in the study relates to the conclusion that trl is a SOCE-regulated transcription factor. This conclusion is entirely based on genetic analysis of STIMKO heterozygous flies in which a copy of the trl13C hypomorph allele is introduced. While these results suggest a genetic interaction between the expression of the two genes, the evidence that expression translates into a functional interaction that places trl immediately downstream of SOCE is not rigorous or convincing. All that can be said is that the double mutant shows a defect in flight which could arise from an interruption of the circuit. Further, it is not clear whether the trl13C hypomorph is only introduced during the critical 72-96 hour time window when the Orai1E180E phenotype shows up. The same applies to the over-expression of Set2 and the other genes. If the expression is not temporally controlled, then the phenotype could be due to the blockade of an entirely different aspect of flight neuron function.

      The idea that Trl functions downstream of Orai-mediated Ca2+ entry in THD’ neurons is based on the following genetic evidence:

      1. In Figure 4D, we show evidence of genetic interaction between trl-STIM and trl-Set2. The rescue of trl13c/STIMKO with STIM overexpression in THD’ neurons indicates that excess SOCE (driven by STIMOE) may activate the residual Trl (there exists a WT Trl copy in this genetic background) to rescue THD’ flight function. This is further supported by the rescue of trl/STIMKO with Set2 overexpression in THD’ neurons, which is consistent with the feedback loop model proposed in Figure 5C - where we propose that reduced SOCE leads to reduced ‘activated’ Trl and thus reduced Set2 expression, and the latter is rescued by SET2OEThe manner in which SOCE ‘activates’ Trl is the subject of ongoing investigations.

      2. The trl hypomorphic alleles (including trl13C) exist as genetic mutants and they affect Trl function in all tissues throughout development. While we concede that these mutant alleles would affect multiple functions at other stages of development, which may impinge on the phenotypes noted in Figure S4B, we have used a targeted RNAi approach to validate Trl function specifically in the THD’ neurons (Figure 4C).

      3. Overexpression mediated rescues (including Set2) were not induced only during the critical 72-96 hrs APF developmental window. Having established that Orai function drives critical gene expression during this window (Figure 1), it is reasonable to assume that Set2 rescue of loss of flight in OraiE180A occurs in the same time window where flight is disrupted.

      4- In Figure 4, data is shown that SOCE compensates for the loss of Trl, the presumed mediator of SOCE-dependent flight. The fact that flight deficits are rescued by raising SOCE in the absence of Trl is very inconsistent with this conclusion.

      We apologise for this confusion and will clarify in the revision. trl13c is a recessive allele of Trl and should be written as such throughout the text and in the figures (i.e trl13c and NOT Trl13c). In all cases of Trl mutant rescue by STIMOE and Set2OE there exists residual Trl that can be activated by excess SOCE thus leading to the rescue. This is true for trl13C/ STIMKO where each mutant is present as a heterozygote (the complete genotype of this strain is STIMKO/+; trl13c/+; this will be corrected in the revision). Similarly, for TrlRNAi we expect reduced levels (but not complete loss) of Trl. Thus the SOCE rescue of loss of Trl occurs in conditions where Trl levels are reduced but NOT absent. Homozygous trl null mutants are lethal.

      5- In Figure 5 (A-C), data is provided that Trl transcripts are unaffected by loss of SOCE and that overexpression cannot rescue flightlessness. From this, the authors conclude that this gene "must" be calcium responsive. While that is one possibility, it is also possible that these genes are not functionally linked.

      The idea that Trl is functionally linked to SOCE is based on the following evidence:

      1. In Figure 4C we show that flight defects caused by partial loss of Trl (THD’>TrlRNAi) were rescued by STIM overexpression (THD’>TrlRNAi; STIMOE). As mentioned above we have found that STIM overexpression raises SOCE.

      2. Heteroalleles of the trl13C hypomorph exhibit a strong genetic interaction with a single copy of the null allele of STIMKO as shown by the flight deficit of trl13c/+; STIMKO/+ (trl13C/STIMKO ) flies (Figure 4D). The genotypes will be corrected in the revision.

      3. Flight defects in trl13C/STIMKO flies could be rescued by STIM overexpression in the THD’ neurons (trl13C/STIMKO; THD’>STIMOE)

      4. In Figure 4E, we show that partial loss of Trl in THD’ neurons (THD’>TrlRNAi) leads to decreased expression of the Ca2+ responsive genes mAChR, itpr, and Set2 genes indicating that Trl is a constituent of the SOCE-driven transcriptional feedback loop (Figure 5C).

      Since we could not detect a well-defined Ca2+ binding domain in Trl, we hypothesize that it could be activated by a Ca2+ dependent post-translational modification. Phosphoproteome analysis of Trl demonstrated that it does indeed undergo phosphorylation at a Threonine residue (T237; Zhai et al., 2008), which lies within a potential site for CaMKII. Independently, CaMKII has been identified as a binding partner of Trl from a Trl interactome study (Lomaev et al., 2018). Past work from our group (Ravi et al., 2018) identified a role for CaMKII in THD’ neurons in the context of flight. We are currently testing if CaMKII functions downstream of SOCE in THD’ neurons to mediate flight and will update this information in the next version of the manuscript.

      6) There is no characterization of SOCE in fpDANs from flies expressing native Orai or the dominant negative OraiE180A mutant. While the authors refer to previous studies, as the manuscript is essentially based on Orai function thapsigargin-induced SOCE should be tested using the Ca2+ add-back protocol in order to assess the release of Ca2+ from the ER in response to thapsigargin as well as the subsequent SOCE.

      The fpDANs consist of 16-19 neurons in each hemisphere (PPL1 are 10-12 and PPM3 are 6-7 cells; Pathak et al., 2015). Measuring SOCE from these neurons in vivo is not possible due to the presence of abundant extracellular Ca2+ in the brain. Given their sparse number, it proved technically challenging to isolate the fpDANs in culture to perform SOCE measurements using the Ca2+ add back protocol. Due to these reasons, we have relied upon using Carbachol to elicit IP3-mediated Ca2+ release and SOCE as a proxy for in vivo SOCE. In previous studies we have shown that Carbachol treatment of cultured Drosophila neurons elicits IP3-mediated Ca2+ release and SOCE (Agrawal et al., 2010; Figure 8). Moreover, expression of OraiE180A completely blocks SOCE as measured in primary cultures of dopaminergic neurons (Pathak et al., 2015; Figure 1E). Hence we have not repeated SOCE measurements from all dopaminergic neurons in this work. In the revised version we will explicitly state this weakness of our study and the reasons for it.

      7) In the experiments performed to rescue flight duration in Set2RNAi individuals the authors overexpress STIM and attribute the effect to "Excess STIM presumably drives higher SOCE sufficient to rescue flight bout durations caused by deficient Set2 levels.". This should be experimentally tested as the STIM:Orai stoichiometry has been demonstrated as essential for SOCE.

      The assumption that STIM overexpression drives higher SOCE is based upon previously published work from Drosophila neurons (Agrawal et al., 2010; Chakraborty et al, 2016; Deb et al., 2016) which demonstrates that excess WT STIM overcomes IP3R deficiencies (RNAi or hypomorphic mutants) to rescue SOCE. We agree that STIM-Orai stoichiometry is essential for SOCE, and propose that the rescue backgrounds possess sufficient WT Orai, which is recruited by the excess STIM to mediate the rescue. We will reference the earlier work to validate our use of STIMOE for rescue of SOCE.

      Here, we propose that Set2 is part of a positive feedback loop driving transcription of mAChR and IP3R (Figure 3F). In keeping with this hypothesis, we posit that the phenotypes observed in the Set2RNAi background (Figure 2D) result from decreased itpr and mAChR expression (validated in Figure 3E). This is further validated by the Set2 overexpression mediated rescue of OraiE180A (Figure 2D) and rescue of itpr/mAChR expression in the OraiE180A background (Figure 3B-E; THD’>OraiE180A; Set2OE).

      8) The authors show that overexpression of OraiE108A results in Stim downregulation at a mRNA level. What about the protein level? And more important, how does OraiE108A downregulate Stim expression? Does it promote Stim degradation? Does it inhibit Stim expression?

      We hypothesize that changes in STIM mRNA observed in the THD’ > OraiE180A neurons stems from an overall reduction in IP3-mediated Ca2+ release and SOCE due to loss of Trl-Set2 driven gene expression detailed in our transcriptional feedback loop model (Figure 5C). We will attempt to explain this aspect more clearly in the next version of the manuscript. While we agree that measuring levels of STIM protein would be helpful, estimation of protein levels from a limited number of neurons (~35 cells per brain) is technically challenging. The STIM antibody does not work well in immunohistochemistry. In the absence of any experimental evidence we cannot comment on how expression of OraiE180A might affect STIM protein turnover.

      9) Lines 271-273, the authors state "whereas overexpression of a transgene encoding Set2 in THD' neurons either with loss of SOCE (OraiE180A) or with knockdown of the IP3R (itprRNAi), lead to significant rescue of the Ca2+ response". This is attributed to a positive effect of Set2 expression on IP3R expression and the authors show a positive correlation between these two parameters; however, there is no demonstration that Set2 expression can rescue IP3R expression in cells where the IP3R is knocked down (itprRNAi). This should be further demonstrated.

      The rescue of IP3R expression by Set2 overexpression in itprRNAi was demonstrated in a different set of Drosophila neurons in an earlier study (Mitra et al., 2021) and has not been repeated specifically in THD’ neurons. Similar to the previous study, here we tested CCh stimulated Ca2+ responses of THD’ neurons with itprRNAi and itprRNAi; SetOE (Fig S3), which are indeed rescued by SET2OE.

      10) The data presented in Figure 3E should be functionally demonstrated by analyzing the ability of CCh to release Ca2+ from the intracellular stores in the absence of extracellular Ca2+.

      CCh-mediated Ca2+ release from the intracellular stores in the absence of extracellular Ca2+ has been described in primary cultures of Drosophila neurons in previously published work (Venkiteswaran and Hasan, 2009; Agrawal et al., 2010) This work focuses on a set of 16-19 dopaminergic neurons in a hemisphere of the Drosophila central brain. It is technically challenging to generate a 0 Ca2+ environment in vivo, which is essential for measuring store Ca2+ release. Given their meagre numbers, primary cultures of these neurons is not readily feasible.

      11) The conclusion that SOCE regulates the neuronal excitability threshold is based entirely on either partial behavioral rescue of flight, or measurements of KCl-induced Ca2+ rises monitored by GCaMP6m in DAN neurons. The threshold for neuronal excitability is a precise parameter based on rheobase measurements of action potentials in current-clamp. Measurements of slow calcium signals using a slow dye such as GCaMp6m should not be equated with neuronal excitability. What is measured is a loss of the calcium response in high K depolarization experiments, which occurs due to the loss of expression of Cav channels. Hence, the use of this term is not accurate and will confuse readers. The use of terms referring to neuronal excitability needs to be changed throughout the manuscript. As such, the conclusions regarding neuronal excitability should be strongly tempered and the data reinterpreted as there are no true measurements of neuronal excitability in the manuscript. All that can be said is that expression of certain ion channel genes is suppressed. Since both Na+ channels and K+ channel expression is down-regulated, it is hard to say precisely how membrane excitability is altered without action potential analysis.

      The claim that SOCE influences neuronal excitability is based on the following observations:

      1. Interruption of the transcriptional feedback loop involving SOCE, Trl, and Set2 through loss of any of its constituents, results in the downregulation of VGCCs (Figure 5G, 6H), which are essential components of action potentials.

      2. OraiE180A mediated loss of SOCE in THD’ neurons abrogates the KCl-evoked depolarization response (Figure 6B, C) measured using GCaMP6m. We verified that this response requires VGCC function using pharmacological inhibition of L-type VGCCs (Figure 6E, F).

      3. SOCE deficient THD’ neurons, which were presumably compromised in their ability to evoke action potentials could be rescued to undergo KCl-evoked depolarisation by expression of NachBac, which lowers the depolarization threshold (Figure 7C, D) or through optogenetic stimulation using CsChrimson (Figure 7F).

      We agree that ‘neuronal excitability threshold’ is a precise electrophysiological parameter that has not been directly investigated here by measurement of action potentials. Therefore, references to neuronal excitability will be tempered throughout the revised manuscript and be replaced with a more generic reference to ‘neuronal activity’. In this context we propose to include further evidence supporting reduced excitability of THD’ neurons upon loss of SOCE in the revision.

      Since one of the key functional outcomes of activity during critical developmental periods such as the 72-96 hrs APF developmental window identified in this study, is remodelling of neuronal morphology, we decided to investigate the same in our context. Neuronal activity can drive changes in neurite complexity and axonal arborization (Depetris-Chauvin et al., 2011) especially during critical developmental periods (Sachse et al., 2007). To understand if Orai mediated Ca2+ entry and downstream gene expression through Set2 affects this activity-driven parameter, we investigated the morphology of fpDANs, and specifically measured the complexity of presynaptic terminals within the 2’1 lobe MB using super-resolution microscopy. We found striking changes in the neurite volume upon expression of OraiE180A which could be rescued by restoring either Set2 (OraiE180A; Set2OE) or by inducing hyperactivity through NachBac expression (OraiE180A ; NachBacOE). These data will be included in the revised manuscript.

      12) Related, since trl does not contain any molecular domains that could be regulated by Ca2+ signaling, it is unclear whether trl is directly regulated by SOCE or the regulation is highly indirect. Reporter assays evaluating trl activation upon Ca2+ rises would provide much stronger and more direct evidence for the conclusion that trl is a SOCE-regulated TF. As such the evidence is entirely based on RNAi downregulation of trl which indicates that trl is essential but has no bearing on exactly what point of the signaling cascade it is involved.

      We agree that luciferase Trl reporters would provide a direct method to test SOCE-mediated activation. Future investigations will be targeted in this direction. Regarding possible mechanisms of Trl activation - since we could not detect a well-defined Ca2+ binding domain in Trl, we hypothesize that it may be phosphorylation by a Ca2+ sensitive kinase. Phosphoproteome analysis of Trl indicates that it does indeed undergo phosphorylation at a Threonine reside (T237; Zhai et al., 2008), which may be mediated by the Ca2+ sensitive kinase-CaMKII based on binding partners identified in the Trl interactome (Lomaev et al., 2018). Past work (Ravi et al., 2018) has indeed demonstrated a requirement for CaMKII in THD’ neurons for flight. We are currently testing whether CaMKII functions downstream of SOCE in these neurons to mediate flight, and will be updating this information in the next version of the manuscript.

      13) Are NFAT levels altered in the Orai1 loss of function mutant? If not, this should be explicitly stated. It would seem based on previous literature that some gene regulation may be related to the downregulation of this established Ca2+-dependent transcription factor. Same for NFkb.

      As mentioned in the text in lines (307-309), Drosophila NFAT lacks a calcineurin binding site and is therefore not sensitive to Ca2+ (Keyser et al., 2007). In the past we tested if knockdown of NF-kB in dopaminergic neurons gave a flight phenotype and did not observe any measurable deficit. From the RNAseq data we find a slight downregulation of NFAT (0.49 fold, p value=0.048) and NF-kb (0.26 fold, p value =0.258) the significance of which is unclear at this point. We did not find any consensus binding sites for these two factors in the regulatory regions of downregulated genes from THD’ neurons.

      14) Does over-expression of Set2 restore ion channel expression especially those of the VGCCs? This would provide rigorous, direct evidence that SOCE-mediated regulation of VGCCs through Set2 controls voltage-gated calcium channel signaling.

      Set2 overexpression in the OraiE180A background indeed restores the expression of VGCC genes (Figure 6H).

      15) All 6 representative panels from Figure 3B are duplicated in Figure 4G. Likewise, 2 representative panels from Figure 5H are duplicated in Figure 6D. Although these panels all represent the results from control experiments, the relevant experiments were likely not conducted at the same time and under the same conditions. Thus, control images from other experiments should not be used simply because they correspond to controls. This situation should be clarified.

      We regret the confusion caused by the same representative images for the control experiments. These will be replaced by new representative images for Figure 5H in the next updated version of the manuscript.

      16) The figures are unusually busy and difficult to follow. In part this is because they usually have many panels (Fig. 1: A-I; Fig. 2, A-J, etc) but also because the arrangement of the panels is not consistent: sometimes the following panel is found to the right, other times it is below. It would help the reader to make the order of the panels consistent, and, if possible, reduce the number of panels and/or move some of the panels to new figures (eLife does not limit the number of display items).

      The image panels will be rearranged for ease of reading in the next updated version of the manuscript.

      17) As a final recommendation, the reviewers suggest that the authors a- Reword the text that refers to membrane excitability since membrane excitability was not directly measured here. b-Explain why STIM1 rescues the partial loss of flight in Set2 RNAi flies (Fig. S2E); and c- Explain how/why trl is calcium regulated and test using luciferase (or other) reporter assays whether Orai activation leads to trl activation.

      a. Textual references to membrane excitability will be appropriately modified.

      b. We have provided a detailed explanation for how STIM overexpression might rescue the phenotypes caused by Set2RNAi in Point 1. In short, these phenotypes depend upon IP3R mediated Ca2+ entry driving a transcriptional feedback loop. We relied upon past reports that STIM overexpression upregulates IP3R-mediated Ca2+ release and SOCE in Drosophila itpr mutant neurons (Agrawal et al., 2010; Chakraborty et al, 2016; Deb et al, 2016). We therefore propose that STIM overexpression in the Set2RNAi background rescues IP3R mediated Ca2+ release followed by SOCE, which drives enhanced Set2 transcription, counteracting the effects of the RNAi. We will explain this more clearly with past references in the next revision.

      c. We have provided a detailed response to this comment in Point 12. Briefly, we agree that building luciferase reporters for Trl could be an ideal strategy to test for its responsiveness to SOCE and needs to be done in future. As an alternate strategy, we have looked at data from existing studies of interacting partners of Trl (Lomaev et al., 2017) and identified CamKII, which is both Ca2+ responsive (Braun and Schulman, 1995; Yasuda et al., 2022), and thus might activate Trl through a phosphorylation-switch like mechanism. Moreover, a previous publication identified a requirement for CamKII in THD’ neurons for Drosophila flight (Ravi et al., 2018). We are testing the ability of a dominant active version of CamKII to rescue THD’>E180A flight deficits and will include this information in the next version of the manuscript.

      References

      1. Agrawal N, Venkiteswaran G, Sadaf S, Padmanabhan N, Banerjee S, Hasan G. Inositol 1,4,5-Trisphosphate Receptor and dSTIM Function in Drosophila Insulin-Producing Neurons Regulates Systemic Intracellular Calcium Homeostasis and Flight. J Neurosci. 2010;30:1301-1313. doi:10.1523/jneurosci.3668-09.2010
      2. Braun AP, Schulman H. A non-selective cation current activated via the multifunctional Ca(2+)-calmodulin-dependent protein kinase in human epithelial cells. J Physiol. 1995. 488:37-55. doi:10.1113/jphysiol.1995.sp020944
      3. Chakraborty S, Deb BK, Chorna T, Konieczny V, Taylor CW, Hasan G. Mutant IP3 receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai interactions in Drosophila neurons. J Cell Sci. 2016. 129:3903-3910. doi:10.1242/jcs.191585
      4. Deb BK, Pathak T, Hasan G. Store-independent modulation of Ca2+ entry through Orai by Septin 7. Nat Commun. 2016. 7:11751. doi:10.1038/ncomms11751
      5. Depetris-Chauvin A, Berni J, Aranovich EJ, Muraro NI, Beckwith EJ, Ceriani MF. Adult-specific electrical silencing of pacemaker neurons uncouples molecular clock from circadian outputs. Curr Biol. 2011. 21:1783-1793. doi: 10.1016/j.cub.2011.09.027.
      6. Keyser P, Borge-Renberg K, Hultmark D. The Drosophila NFAT homolog is involved in salt stress tolerance. Insect Biochem Mol Biol. 2007. 37:356-362. doi:10.1016/j.ibmb.2006.12.009
      7. Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells. 2021. 10:2777. doi:10.3390/cells10102777
      8. Lomaev D, Mikhailova A, Erokhin M, et al. The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS One. 2017. 12:e0173602. doi:10.1371/journal.pone.0173602
      9. Mitra R, Richhariya S, Jayakumar S, Notani D, Hasan G. IP3/Ca2+ signals regulate larval to pupal transition under nutrient stress through the H3K36 methyltransferase dSET2. Development. 2021. 148:dev199018. doi:10.1101/2020.11.25.399329
      10. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015. 35:13784-13799. doi:10.1523/jneurosci.1680-15.2015
      11. Ravi P, Trivedi D, Hasan G. FMRFa receptor stimulated Ca2+ signals alter the activity of flight modulating central dopaminergic neurons in Drosophila melanogaster. Barsh GS, ed. PLOS Genet. 2018. 14:e1007459. doi:10.1371/journal.pgen.1007459
      12. Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LB. Activity-dependent plasticity in an olfactory circuit. Neuron. 2007. 56:838-50. doi: 10.1016/j.neuron.2007.10.035.
      13. Sharma A, Hasan G. Modulation of flight and feeding behaviours requires presynaptic IP3Rs in dopaminergic neurons. Elife. 2020;9. e62297.doi:10.7554/elife.62297
      14. Venkiteswaran G, Hasan G. Intracellular Ca2+ signalling and store operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci. 2009.106:10326-10331. doi: 10.1073/pnas.0902982106
      15. Yasuda R, Hayashi Y, Hell JW. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory. Nat Rev Neurosci. 2022. 23: 666-682 doi:10.1038/s41583-022-00624-2
      16. Zhai B, Villén J, Beausoleil SA, Mintseris J, Gygi SP. Phosphoproteome Analysis of Drosophila melanogaster Embryos. J Proteome Res. 2008. 7:1675-1682. doi:10.1021/pr700696a
    1. Author Response

      Reviewer #1 (Public Review):

      This manuscript describes conditions under which "Self-inactivating Rabies" (SiR) can be grown to limit mutations that would allow the virus to replicate in the absence of TEV protease. It is also shown that neurons directly infected with a non-mutated virus remain healthy and that the virus does not mutate in the brain in vivo. Remarkably there is nothing in the manuscript to address the obvious question that is raised by the observation that such mutations were occurring around the time of the initial description of circuit tracing with this virus. Can the transsynaptic tracing experiments in the absence of TEV expression (as described in their original Neuron paper) be replicated with SiR that is not mutated? This obvious omission suggests that the authors might have conducted such experiments and were unable to replicate their published results. It is imperative that the authors be forthcoming about whether they have conducted such experiments and what were the results. If they have not conducted such experiments, they should do them and include the results here. Regardless of the outcome, the results should be published. If they cannot replicate their results, then the reliability of the Neuron paper is in doubt.

      How do the results presented here relate to the results published in the Neuron paper and why are they not definitive with respect to the utility of SiR? The original publication in Neuron presents results that do not appear to be plausible and are best explained by the possibility that some experiments described in that manuscript were conducted using mutated SiR. This became most apparent when shortly after the Neuron publication, the Tripodi lab shared SiR as well as TEV expressing cell lines for propagation with other labs. Several of those groups observed that when they progagated the SiR received from the Tripodi lab, there was a mutation that removed the linkage of the PEST targeting sequence to N. This would be expected to allow the virus to replicate and spread without the need for TEV protease to remove the PEST sequence - precisely the phenotype observed in the trans-synaptic tracing experiments described in the Neuron paper. In the Neuron paper, culture experiments showed that the N-PEST (SiR) rabies could not replicate in the absence of TEV. And additional experiments showed that the virus is not toxic to neurons directly infected. These are the same experiments that are replicated in this submission. But then (in the Neuron paper) comes the unlikely report that this virus can spread trans-synaptically in vivo, in the absence of TEV expression. An alternative explanation would be that the virus used for those experiments was mutated and that is why TEV expression was not needed. There are no experiments in the original Neuron paper that address this possibility. Specifically, the experiments in Neuron describing cell survival during trans-synaptic tracing are not adequate to rule this out. This is because the two timepoints during which neurons were counted correspond to an early time when labeled neurons would be expected to still be accumulating and a later time that might be past the peak and represent a time when many neurons have died. To quantify proportions of neurons that survive, it is necessary to follow the same neurons over time, as has been done to demonstrate that only about half of neurons infected with G-deleted rabies die (half survive). Until tests are conducted testing whether TEV expression is required to obtain trans-synaptic labeling with an SiR that is known to not be mutated, it is irrelevant whether mutations can be prevented under particular culture conditions. The utility of this virus depends on whether it can be used for trans-synaptic tracing without toxicity and this manuscript presents no experiments to address that. Further, the omission of such experiments is glaring, as it is difficult to imagine that they have not been attempted.

      We thank the reviewer for giving us the opportunity to improve on this point. We have performed additional experiments to confirm the ability of revertant-free SiR virus to spread transsynaptically in vivo. Our data shows that non-mutated SiR spreads transsynpatically in the mouse brain when complemented with G. In addition, we also tested the effect of the addition of TEVp to the starter neuronal population and found that it can significantly improve spreading efficiency. These data confirm the transsynaptic spreading capabilities of unmutated SiR in line with our original report. Furthermore, the data show the enhancing effect on the spreading efficacy of supplementing TEVp to the starter cells, broadly in line with what was recently reported by Jin et al., 2023. We have discussed the implications of these findings and suggested future directions in the main text and discussion.

      Additionally, for completeness, we also assessed the spread efficiency of the recently generated SiR-N2c (based on the CVS-N2c rabies strain) in presence and absence of TEVp. We found that SiR-N2c spreads significantly better in the BLA-> NAc circuit than the original SiR (based on the SAD-B19 strain), and that the same spreading efficiency is not achieved by complementing SiR-B19 with the G from CVS_N2c Rabies strain. Interestingly, we found only a very small effect of the addition TEVp to the starting cells on the number of transsynaptically labelled cells with SiR-N2c. We have discussed the implications of these findings in the main text and discussion.

      Changes in the manuscript: We have updated Figure 1 with the addition of a 6-month time point and update the main text accordingly. The updated paragraph is provided here:

      "Results, SiR transsynaptic spreading.

      We then tested the ability of revertant-free SiR to trace neural circuits transsynaptically in the mouse brain. ΔG-Rabies vectors can be pseudotyped with the chimeric EnvA glycoprotein to selectively infect neurons expressing the TVA receptor, which is not endogenously expressed by mammalian cells (Wickersham et al., 2007b). We injected the nucleus accumbens (NAc) of CRE-dependent tdTomato reporter mice with an AAV expressing either TVA and the rabies G or TVA only. After 3 weeks, we re-injected the NAc with EnvA-pseudotyped revertant-free SiR-CRE or EnvA-pseudotyped SiR-G453X-CRE and assessed the CRE-dependent tdTomato expression presynaptically, in the basolateral amygdala (BLA). At 1 month post SiR injection, we detected no tdTomato+ cells in the BLA in TVA-only-injected animals, confirming the G-dependency for SiR transsynaptic spreading (Fig 5B-C). In contrast, as expected, transsynaptic spreading was apparent in the TVA+G condition. We observed similar numbers of presynaptically traced neurons in both SiR-CRE and SiR-G453X-CRE injected brains (169 ± 24 and 190 ± 36 tdTomato+ neurons, respectively; two-tailed t-test, P = 0.64; Fig 5B-C). However, tdTomato+ microglial cells were only detected in the SiR-G453X-CRE condition indicating the re-emergence of toxicity of the revertant mutants (Fig 5B). We also tested the effect of supplying TEV protease to the starting cells, as this has been suggested to be a necessary step to ensure transsynapitc spreading. While the previous experiments unambiguously show that TEVp is not necessary for the transsynaptic spreading of SiR, the injection of an AAV expressing TEVp in the NAc did lead to an increase in the number of transsynaptically labelled BLA neurons (366 ± 69 tdTomato+ neurons; two-tailed t-test, P = 0.04; Fig 5C), indicating that TEVp-dependent SiR reactivation in starter cells can improve its spreading (Jin et al., 2023).

      We recently showed that a novel SiR-N2c vector, derived from the neurotropic CVS-N2c Rabies strain, displays enhanced transsynaptic spreading and improved peripheral neurotropism over the original SAD B19-derived SiR (Lee et al., 2023). Hence, for completeness, we compared the transynaptic spreading efficacty of EnvA-pseudotyped revertant-free SiR-N2c and the original SiR. SiR-N2c labelled a greater number of BLA neurons at 1 month p.i. than what was detected with SiR (1691 ± 112 tdTomato+ neurons traced by SiR-N2c; two-tailed t-test, P = 2x105; Fig 5D-E). Additionally, TEVp expression in the starter cells in SiR-N2c tracing experiments had a negligible effect on the overall transsynaptic spreading (1934 ± 135 tdTomato+ neurons traced by SiR-N2c in presence of TEVp; two-tailed t-test, P = 0.24; Fig 5D-E). Since the use of G from the CVS-N2c Rabies strain (G_N2c) has been shown to improve ΔG-Rabies (SAD-B19) retrograde tracing (Zhu et al., 2020), we tested if complementing EnvA-pseudotyped SiR with G_N2c in the NAc could increase its spreading. While we detected more BLA tdTomato+ neurons than in our previous experiments, complementing SiR with G_N2c still labelled less neurons than SiR-N2c, even when TEVp was provided to the starter cells (487 ± 164 and 844 ± 14 tdTomato+ neurons traced by SiR in absence or presence of TEVp, respectively; Fig 5D-E)."

      Discussion

      "ΔG-Rabies vectors are powerful tools for the dissection of neural circuit organization thanks to their ability to spread retrogradely to synpatically-connected neurons. Here, we show that EnvA-pseudotyped revertant-free SiR vectors effectively spread transsynpatically in the mouse brain. Importantly, the co-delivery of an AAV expressing TEVp in addition to G increase the number of traced neurons in presynaptic areas, likely due to the TEVp-dependent reactivation of SiR in vivo (Ciabatti et al., 2017), in line with recent results (Jin et al., 2023). This should be considered when planning transsynaptic tracing experiments using SiR. To improve SiR spreading efficiency, further studies should investigate the use of inducible TEVp, as we previously showed (Ciabatti et al., 2017), that could maximise spreading efficiency while minimising possible side effects of prolonged protease expression.

      Interestingly, we found that the recently developed SiR-N2c vector, generated by applying the same proteasome-targeting modification to the genome of the CVS-N2c ΔG-Rabies strain (Lee et al., 2023), show a higher number of retrogradely labelled neurons compared to the original SiR (SAD-B19) (Fig 5). Additionally, the co-delivery of TEVp had a smaller effect on the number of neurons transsynaptically-traced by SiR-N2c. Interestingly, the gap in trassynaptic spreading efficacy between SiR (SAD-B19) and SiR-N2c could not be filled by complementing the SiR with the neurotropic G_N2c. This could be linked to a more efficient packaging of SiR-N2c by G_N2c (Reardon et al., 2016; Sumser et al., 2022) or by the particularly high speed of CVS-N2c strain propagation (~12hrs)(Callaway, 2008; Hoshi et al., 2005). These results point to SiR-N2c as the vector of choice for transsynaptic experiments."

      Other comments:

      "A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, represents the first tool for open-ended genetic manipulation of neural circuits." It is not clear what the authors intend to be claiming with respect to "open-ended genetic manipulation of neural circuits" but it is clear that this assertion is overblown. There are numerous tools that are available for genetic manipulation of neural circuits. This is not the first, won't be the last, and it is arguably not the best.

      We have rephrased this sentence.

      Changes in the manuscript: The updated paragraph and figure panel is provided here:

      Abstract

      "A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits."

      "Interestingly, a fraction of tdTomato+ neurons survived in ΔG- Rab-CRE-injected brains, differing from what we observed when injecting ΔGRab-GFP, where no cells were detected at 3 weeks p.i. (Fig 3CD) (Ciabatti et al., 2017). " This is a known result (same as Chatterjee et al., 2018) with a known mechanism. GFP expression is not observed because the rabies virus transitions from transcription to replication resulting in the termination of GFP expression. But Cre-recombination of the genome permanently labels cells with TdTomato. This is how Chatterjee et al. demonstrated that half of the neurons infected with G-deleted rabies survive. They imaged cells and saw that the GFP disappeared but the cells marked by Cre-recombination and RFP expression remained healthy indefinitely. The consideration of this in the Introduction is strange. There is no reason to suppose that Cre expression would somehow protect cells from rabies infection and there is no need to propose any such mechanism to explain the observed results.

      This consideration is a response to the suggestion, proposed in Matsuyama et al 2019, that the toxicity reduction observed in ΔG-Rab-CRE could be linked to the expression of Cre recombinase compared to a cytosolic protein.

      "Here we show that revertant-free SiR-CRE efficiently traces neurons in vivo without toxicity in cortical and subcortical regions for several months p.i.."

      This wording is disingenuous and appears to be intentionally misleading. "Trace" implies that circuits were traced by transynaptic labeling, which they were not.

      To avoid any misunderstanding, we have now changed trace to infect.

      Changes in the manuscript: The updated sentence is provided here:

      Abstract

      "Here we show that revertant-free SiR-CRE efficiently infect neurons in vivo without toxicity in cortical and subcortical regions for several months p.i.."

      Reviewer #2 (Public Review):

      The study by Ciabatti et al examined the mutation issue for self-inactivating rabies (SiR), which was found by other labs. The authors identified the mutations in the rabies genome and showed that this mutation occurred more frequently after multiple passage of production cell lines with suboptimal TEVp expressions. The authors further showed that such mutation did not accumulate in vivo and that SiR-labeled cells remained alive across longitudinal imaging in vivo.

      In this study, the rabies genome is rigorously examined by sequencing many viral particles from independent preparations. The rabies with point mutation in the PEST domain is directly engineered for sequencing and infection test. Overall, the mutation issue is well addressed by the authors and the conclusions are well supported, but some more aspects of discussion and data analysis need to be extended for an easier production of SiR in a condition not that optimal.

      1) The authors stated that one should produce SiR from cDNA in order to avoid the potential mutation in SiR. From a practical point of view, it would be much better to amplify the rabies from a stock virus directly in the production cell lines. Any discussion or exploration on this direction would be appreciated in the field.

      We thank the reviewer for giving us the opportunity to improve on this point. We have added in the discussion a paragraph suggesting the number of passages to be used during production for the packaging cells and viral stocks, referring to the equivalent passage in our experiments.

      Changes in the manuscript: The updated paragraph is provided here:

      Discussion

      "Notably, we found that TEVp activity inevitably decreases after several passages of amplification of HEK-TTG, thus fresh low passage packaging cells should always be used to produce SiR preparations. Our results suggest that stock for packaging cells should be made within a couple of passage after selection is established, and then used freshly defrosted to produce SiR viruses (equivalent to P0 cells in Fig 2B-C). Similarly, SiR supernatant stocks should be made directly from cDNA transfection and amplified for a maximum of 2 passages (equivalent to SiR P0 in Fig 2E) before being used for large scale SiR productions."

      2) 6 passages of production cell lines are not that extensive. In Fig.2C, there was already some level of TEVp activity reduction at 2nd passage. It is not clear to me that how the TEVp activity reduction naturally happens. Is there some room to play around puromycin concentration to maintain high TEVp activity?

      As mentioned in the previous point, we have added in the discussion a paragraph describing the recommended number of passages to be used during production of the packaging cells and viral stocks, referring to the equivalent passage in our experiments. We clarified that our starting P0 conditions for packaging cells and stock SiR viruses were equivalent to already amplified stocks ready for viral production, which would add only 1-2 passages.

      Reviewer #3 (Public Review):

      This paper is a response to the report by Lin et al., bioRxiv 2022 (DOI: https://doi.org/10.1101/550640) that mutations in the genome of SiR were identified, which could result in a canonical G-deleted Rabies virus.

      Strengths:

      First, the authors found that SiR production from cDNA leads to revertant-free viruses by analyzing a total of 400 individual viral particles obtained from 8 independent viral productions with Sanger sequencing. Next, they identified the molecular mechanisms of mutations in the SiR; they found that extensive amplification of packaging cells HEK-TGG leads to the selection of clones with suboptimal TEVp expression level, which leads to the accumulation of revertant mutants, where, as the authors discuss, the revertant mutants have a specific replication advantage. Based on these observations, the authors recommend producing SiR freshly from cDNA with low passage packaging cells. Lastly, the authors observed that SiR-infected hippocampal and cortical neurons can survive for longer periods of time than the neurons infected with revertant mutants or a canonical G-deleted Rabies virus by combining next-generation sequencing of RNAs isolated from infected tissue and 2-photon in vivo longitudinal imaging of infected cortical neurons. Together, these findings support the idea that the degradation of N by PEST-mediated cellular mechanism results in the self-inactivation of SiR as suggested in the original SiR manuscript (Ciabatti et al., Cell 2017). Thus, SiR remains a powerful viral tool for the chronic investigation of neuronal circuitry and function as long as the virus is prepared in a way the authors recommend.

      Weaknesses:

      While most of the findings are solid, some conclusions are not fully supported by the data presented. The authors need to address the following points: Reviewer #3

      1) In Figure 3B-D, the authors concluded that SiR-CRE -infected cells did not show cell death in contrast to Rab-CRE and SiR-G453X, but it cannot be fully supported only by this experiment. The authors should consider the potential variance in infection efficiency in each experimental animal and show evidence of suppressed cell death. In addition, it needs to be confirmed that SiR-Cre is diminished in infected cells at later times. The authors should explain and address these concerns by conducting additional experiments, for example, cleaved caspase-3 staining and quantification of virus RNA levels in each time point as performed in their previous study Ciabatti et al., Cell 2017 (DOI: 10.1016/j.cell.2017.06.014).

      We thank the reviewer for the suggestion and give the opportunity to strengthen our work. We have added an analysis of the rabies transcripts over time in SiR-infected hippocampi (Fig S4). The drastic decrease of SiR RNA, along with the finding that the numbers of tdTomato-positive cells remain comparable at each time points support the reduction in mortality in SiR infected cells. We have added this data and clarified this point in the text..

      Changes in the manuscript: The updated paragraph is provided here:

      Results: Difference in cytotoxicity between ΔG-Rabies, PEST-mutant SiR and SiR

      "We detected no decrease of tdTomato+ neurons in SiR-infected hippocampi (4109 ± 266 tdTomato+ neurons at 1 week p.i.; 4458 ± 739 tdTomato+ neurons at 2 months p.i.; one-way ANOVA, F = 0.08, p = 0.92, Fig 3C-D) while only 44% of tdTomato+ neurons were detected in Rabies-targeted and 60% in SiR-G453X-targeted hippocampi at 2 months p.i. (1422 ± 184 at 1 week versus 624 ± 114 at 2 months p.i. for ΔGRab; one-way ANOVA, F = 11.55, p = 0.003; 3052+508 at 1 week versus 1829+198 at 2 months p.i. for SiR-G453X; one-way ANOVA, F = 4.27, p = 0.05; Fig 3C-D). Additionally, we confirmed inactivation of revertant-free SiR by analysing the decrease of Rabies transcripts in the infected hippocampi over times (Fig S4). These results support the lack of toxicity of SiR on the infected neurons, in line with our previous findings (Ciabatti et al., 2017). Moreover, these data confirm the requirement for an intact PEST sequence to sustain the self-inactivating behaviour of SiR and suggest that PEST-targeting mutations do not occur in vivo."

      2) In Figure 3E-F, to ensure the long-term stability of SiR-Cre in the vivo mouse brain, authors conducted SMRT sequencing 1 week after the virus infection. To test the potential slow accumulation of mutations at 1-month and 2-month, the authors should perform the same experiment at these time points. Only when SiR-Cre was undetected at 1-month and 2-month, would it be reasonable to show only 1-week data, however, such data is not presented.

      We thank the reviewer for the suggestion. We have added an analysis of the Rabies transcript in the infected Hippocampi showing a drastic decrease of SiR RNA over time. This result, along with the finding that similar numbers of tdTomato-positive cells are detected in the infected hippocampi over time, support our choice of an early time point to find emergence and accumulation of revertant mutations.

      3) In figure 4, the authors used only 2 mice for this experiment, although this is one of the most important experiments to ensure SiR-infected cells stay alive for the long term in vivo animals. It should be confirmed whether the conclusion remains the same by increasing the number of animals.

      While we understand why the reviewer put forward this suggestion, we believe that our choice of number of animals is appropriate as the investment in time and resources to adding further animals would not strengthen our conclusion (which we have indirectly assessed previously (Ciabatti et al 2017) and here in Fig 3). For completeness, we have added a Fig4_S1with the images of all the ROI at every time points used in Fig 4.

      4) The legend in Table 3 doesn't match the contents.

      We thank the reviewer for pointing this out, in response we have now updated Table 3.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for reviewing our manuscript " Energy Coupling and Stoichiometry of Zn2+/H+ Antiport by the Cation Diffusion Facilitator YiiP". After carefully considering the reviewer's comments, we have made substantial changes to the manuscript, which we believe is now much improved. In addition to clarifying various points raised by the reviewers, we have also added a variety of new data from both experimental and computational studies. We hope that these changes will satisfy the reviewers such that we can move forward towards finalizing the publication process.

      New data added to this revision includes

      • SEC profiles comparing D287A and D287/H263A before and after complex formation with Fab to illustrate formation of higher order oligomerization (Suppl. Fig. 6).

      • Control trace from MST using Mg2+ to illustrate reproducibility (Suppl. Fig. 6).

      • Results from MD simulation of D72A mutant to explore the Asp72-Arg210 salt bridge as a stabilizing element (Fig. 4)

      • Analysis of cavities in WT and D70A_asym structures to illustrate occlusion of site A (Suppl. Fig. 13).

      • In addition, we have redone MD simulations for YiiP with site B empty. These simulations were originally done (3 x 1 μs) with a modified version of the zinc dummy model and we have redone them (6x1 μs) using our previously published zinc dummy model to be strictly consistent with other simulations on holo, apo and D72A structures. The new results are qualitatively consistent with the previous simulations and our conclusions remain unchanged.

      In addition, the text has been modified and several figures have been updated to address concerns of the reviewers as described below.

      Although figures will ultimately be renumbered to conform with eLife formatting, they have retained their original numbers for this revision to prevent confusion, except that Suppl. Fig. 13 is a new figure added at the request of reviewer 2.

      Reviewer #1 (Recommendations For The Authors):

      I have only a few comments that might need clarification from the authors:

      • If the unbinding of Zn2+ to site B triggers the occlusion (and maybe the OF state) and the external pH does not affect that binding, how is it prevented from being always bound to Zn2+ and thus occluded also while it should be transporting protons (B to C panels in Figure 5)? Are there some other factors that I am missing?

      Our data shows that the affinity of site B is low (micromolar), especially relative to the concentration of free Zn within the cytosol (picomolar - nanomolar). Therefore, we would expect that site B is normally empty and that the resting state would be represented by panel D in Figure 5. An elevation of Zn concentration, or delivery of Zn to the transporter by some as yet uncharacterized binding protein, would initiate the cycle starting with panel E.

      It is notable that the TM2/TM3 loop adopts a novel conformation in the occluded state, in which it extends to interact with the CTD (panel G in Figure 5). In this conformation, the Zn binding site is disrupted, thus preventing binding of additional Zn ions to the TM2/TM3 loop. Although we do not know how this loop behaves as the protein transitions to the outward-facing state (panels A & B), it is tempting to speculate that it retains the extended conformation until the protein returns to the inward-facing, resting conformation in panel D. This idea has been added to the revised manuscript (line 464).

      In addition, we have added a sentence (line 507) to explicitly state our assumption that Zn only binds to site B in the IF state.

      • I am not an expert on experiments, but the results for mutants that abolish site C are difficult to understand. For D287A/H263A, the SEC columns data suggest a population of higher oligomers. Still, for the D70A/D287A/H263A and D51A/D287A/H263A, they showed a native dimer. I understand your suggestion that the Fab induces the domain swap, but how do you explain the double mutant SEC column result? Please elaborate.

      The unexpected behavior of site C mutants certainly introduces complexity into our study. Considering all the ins and outs of our analyses, we are confident that site C is a high-affinity site that is constitutively occupied and serves as a structural site to stabilize the architecture of the native homodimer. In the original submission, we included SEC profiles for D287A and D287A/H263A in Suppl. Fig. 4 as well as profiles for D70A/D287A/H263A and D51A/D287A/H263A in Suppl. Fig. 6. The former in Suppl. Fig. 4 characterize the complex between mutant YiiP and Fab (for cryo-EM), whereas the latter in Suppl. Fig. 6 represent YiiP in the absence of Fab (for MST). In the absence of Fab, the mutations do not alter the elution volume at ~12 ml, consistent with the conclusion that the native YiiP homodimer remains unperturbed. In the presence of Fab, mutations affect the SEC profile in two ways: a shift in the main peak to ~11 ml, and appearance of a subsidiary peak at ~10 ml. The shift of the main peak can be explained by formation of a complex between YiiP and Fab. Presence of the subsidiary peak - seen for D70A, D287A, and D287A/H263A mutants - can be explained by formation of a dimer of dimers (4 YiiP + 4 Fab), which could be isolated as a subpopulation of particles during the processing of cryo-EM images. For D70A and D287A, the individual dimers were unperturbed in this dimer-of-dimers. In fact, we used masking and signal subtraction to isolate the individual dimers and included them in the final reconstruction together with the more prevalent dimeric species (2 YiiP + 2 Fab).

      The D287A/H263A-Fab complex behaved differently. The main peak of the SEC profile was shifted to 10 ml, indicating that a dimer of dimers was the prevalent complex; absence of a peak at 11 ml indicated that isolated dimeric complexes were no longer present in the solution. Furthermore, the subsidiary peak was at ~9 ml, indicating an even larger complex not seen in the other preparations. The appearance of particles in cryo-EM images were distinct from the other mutants (e.g., compare 2D classes shown in panels C and D in Suppl. Fig. 4). 3-D structures revealed dimer-of-dimers with the domain swap as well as larger linear oligomers. Although not well resolved due to preferred orientation, it appears that these linear oligomers consist of a propagated domain swap.

      We have included some new data to bolster our conclusion that, although the D287A/H263A mutant destabilized site C, Fab binding was responsible for inducing the domain swap. The new data, presented in Suppl. Fig. 6, shows an SEC profile for a preparation of D287A/H263A both before and after formation of the complex with Fab. In addition to including this new data, we have amplified our description of these SEC profiles under the heading "Zn2+ binding affinity" in the paragraph starting on line 289 to try to clarify this complex issue for the reader.

      • Since in the D287A mutant, you are disrupting the preferred tetrahedral coordination of Zn2+, but it still binds, do you observe any waters that compensate for the missing aspartate? Maybe in the MD simulations?

      Unfortunately, the resolution of the cryo-EM maps are not high enough to resolve water molecules that we assume are present at sites B and C. For the MD simulations, we did not use mutants, but simply removed Zn from each of the sites. So we are unfortunately not able to answer this question with the available data.

      Reviewer #2 (Recommendations for The Authors):

      1) It is no doubt that cryo-EM structures of four types of zinc-binding site mutants of a bacterial Zn2+/H+ antiporter YiiP provide important insight into distinct structural/functional roles of each of the binding sites. However, overall resolution of the cryo-EM maps presented in this paper is not high enough to address the Zn2+ coordination structures, the kinked TM5 segment seen in a D51A mutant, and the extended conformation of TM2/TM3 loop seen in the D70A asymmetric dimer. It would be better to highlight the density of the above regions and discuss the vitality of their structure models. Similarly, the presence of additional water molecules at sites B and C (line 117) do not seem convincing.

      We are completely sympathetic with the recommendation of illustrating the map quality as thoroughly as possible. We hope that interested readers will download map and model from the respective PDB and EMDB repositories and see for themselves. Nevertheless, we have provided several new figure panels to illustrate explicitly the densities associated with the kinked TM5 segment in the D51A mutant (Suppl. Fig. 2) and the extended TM2/TM3 loop in the D70A mutant (Suppl. Fig. 5) and have referred to them at appropriate places in the text (line 128 and line 151). In Suppl. Fig. 5, we also included figure panels to show densities for this loop in WT and D287A/H263A mutants.

      It is true that the maps are generally of insufficient resolution to clearly define the coordination of Zn. The relevant densities are shown for all sites in all mutants in Suppl. Fig. 2. Despite this shortcoming, the coordination geometry is well established by the previous, higher resolution X-ray crystal structure as well as by MD simulations. Each site is shown in the insets of Fig. 1b, c and d. The new cryo-EM densities and resulting models are consistent with this coordination, which we have now pointed out in the legend to Fig. 1. The important point is that the new cryo-EM maps document the occupancy of ions at the individual sites as well as the large scale conformational changes associated with this occupancy, which was the main goal of the study.

      Finally, we agree that the presence of additional water molecules at the sites is not well supported; because this issue has little bearing on our analysis, these comments have been removed.

      2) Identification of the occluded state in D70A asymmetric dimer is exciting, hence this reviewer recommends the authors to highlight the structure of this state more effectively in comparison with the IF/OF states. It would be better to show the side views of the superimposition between the occluded and IF/OF states, and the pore profile and radius in the TM domain of these three states. The authors should also show the density map of site A (including M2 and M5) in the occluded protomer of the asymmetric dimer in Suppl. Fig. 2. Additionally, the authors should include information regarding the cytosolic or periplasmic view in the legend of Figure 3A, B, D, F, G, and H.

      As suggested, we have prepared a new supplemental figure juxtaposing the IF and occluded states and depicting differences in pore radius and accessibility of site A (Suppl. Fig. 13, initially referred to on line 152 and various other locations in the manuscript with methods described on line 680). However, we unfortunately do not have a structure in the OF state to complete this comparison.

      The density map for site A including M2 and M5 of the occluded protomer is shown in Suppl. Fig. 2 in which density thresholds have been adjusted to show the helices.

      We have updated the figure legend for Figure 2 (referred to as Figure 3 by the reviewer) with the orientation of view, which are all from the cytoplasm looking toward the membrane.

      3) MST analyses using the YiiP mutants with a single Zn2+-binding site at different pH are useful, and the data interpretation in combination with computational approaches of CpHMD and MST inference are nice challenges, indeed. However, it may, in a sense, appear that the MD simulations have been carried out intentionally and/or forcibly so that the outcomes are compatible with the experimental MST data. Although this is not unusual or unacceptable, this reviewer is concerned that the determined pKa values of some residues, especially Asp residues at Site A, are unusually high. The validity of this outcome should be discussed from physicochemical viewpoint; what factors raise the pKa of Asp51 and Asp159 so high. In this context, the MST inference titration curve seems unusually steep for D159 (and H155), of which validity needs to be discussed. This reviewer is also concerned about the large variations per measurement in the MST experiments (Suppl. Fig 6 E, F, and G). Are such large variations common to this experiment? Optimization of the measurement conditions such as protein concentration, and/or increase of AlexaFluor-488 labeling efficiency might greatly improve the reproducibility per measurement. The authors should include information on which residue(s) is labeled with AlexaFluor 488 in YiiP (line 641).

      One of the outcomes of our so-called MST-inference algorithm was the conclusion that protonation states for H155 and D159 were coupled. The basis for this conclusion is described in some detail in the Methods section (paragraph starting on line 1025) and results in cooperativity in the protonation state of these two residues. This cooperativity explains the unusually steep binding curve in Suppl. Fig. 10e. We added a couple of sentences to explain this result in the Results under "Zn2+ binding affinity", line 352.

      There is indeed precedent for increased pKas of acidic residues based on experimental measurements for Glu and inferred for Asp, both in membrane proteins. Computational approaches similar to the ones we use (including some of our own earlier work) have also pointed to elevated pKas by 1-3 units for Asp residues. We included a paragraph in the Discussion of Stoichiometry and energy coupling (line 537) citing these references and explaining that such pKa shifts reflect strong Coulomb interactions of titratable residues in close proximity in the low dielectric environment of the membrane.

      We believe there is a misunderstanding about our presentation of raw data for the MST experiments in Suppl. Fig. 6. Panels E, F and G show an overlay of data from the entire Zn titration, which is therefore expected to change according to the Zn concentration in each capillary. We have revised the corresponding legend to clarify the plots. We have also included traces from a Mg2+ titration as a negative control that better illustrates the reproducibility of these measurements.

      The AlexaFluor dye contained the reactive NHS group which preferentially targets the N-terminus of the polypeptide chain. Although labeling of lysine side chains is possible, we do not expect much given the low labeling stoichiometry of ~1:1 used for our experiments. We updated the Methods section under MST experiments (line 689) with this information.

      Reviewer #3 (Recommendations For The Authors):

      By measuring the binding affinity of site A using the D70A mutant that retains site C at pH 5.6 is should be possible to verify if the affinity reported in Table 2 is affected by the quaternary structure of the system. The 40-fold difference in affinity between site A and site C at pH 5.6 should be sufficiently large to permit a meaningful measurement.

      To address this suggestion, we have included additional data in Table 2 from the D70A/D287A mutant. Based on the cryo-EM structure of D287A, we expect that site C is still intact, which is why it was omitted from the original manuscript. However, the affinities measured at pH 6 and 7 are very consistent with those from the triple mutant (D70A/D287A/H263A), supporting the idea that complete abolishment of site C does not affect measurement of affinity at sites A or B. This additional data is presented in the section on "Zn2+ binding affinity" on line 304. We also note that the SEC profiles in the absence of Fab are consistent with formation of the native homodimer for all the mutants, as described in our response to reviewer 1 and now shown in Suppl. Fig. 6.

      More details should be provided on the force field used for zinc(II) ions in MD simulations. Currently, there is only a reference to another article, where this info is in the caption of a supplementary figure.

      We added a summary of our previous work to develop a non-bonded dummy model for Zn(II) on line 727 in the Methods section entitled "Overview of the MD simulations. However, we would like to point out that all details on the parameter development and the parameters themselves are stated in the Methods section “Classical force field model for Zn(II) ions” in our previous paper [Lopez-Redondo et al, J Gen Physiol 143 (2021)] and parameter files are available as package 2934 in the Ligandbook repository https://ligandbook.org/package/2934 .

      We also realized that in the originally submitted version of this manuscript we reported “empty site B” simulations with an updated and experimental non-bonded Zn(II) dummy model that has close to experimental first-solvation shell water residence times but slightly worse solvation free energy. Although that does not really matter for these simulations because there was no Zn2+ ion in site B, we nevertheless performed a new set of 6 x 1 µs simulations with our published (J Gen Physiol 2021) Zn(II) model to make all simulations fully consistent with each other. The results remained qualitatively the same, with a lack of zinc ions in site B leading to increased flexibility in the TM2/3 loop and ultimately destabilization of the TMD-CTD interaction.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We sincerely appreciate the opportunity to revise the manuscript and the reviewers' critical comments and valuable suggestions. After carefully revising the manuscript, we strongly believe that the reviewers' comments are invaluable and will significantly enhance the quality of the manuscript and contribute to our future research. Following the reviewers' comments, we conducted a comprehensive and meticulous review, addressing each point individually and making extensive modifications and corrections. The responses to each question are provided in a point-by-point manner as follows:

      Reviewer 1:

      This study delves into the impact of imidacloprid, an insecticide documented for its toxicity towards honeybees, on the development of bee larvae. The investigation involved exposing bee larvae to various concentrations of imidacloprid, and observing the resultant effects.

      The findings of this study revealed that imidacloprid exerted a dose-dependent delay in the development of bee larvae, marked by reductions in body mass, width, and an overall decline in the growth index. Moreover, at elevated concentrations, imidacloprid was observed to impair neural transmission, induce oxidative stress, inflict damage to the gut, and inhibit hormones and genes essential for development. The larvae were found to engage antioxidant defense systems and deploy detoxification mechanisms to mitigate these effects.

      However, the manuscript could be significantly enhanced through several improvements. Firstly, the structure of the manuscript warrants refinement to foster coherence and clarity. Additionally, there is a need for careful reevaluation of the concentrations of imidacloprid employed in the study, to ensure their relevance and applicability. In terms of references, greater attention to accuracy in citation is imperative.

      Furthermore, while the authors have provided an overview of the general effects of imidacloprid on both vertebrates and invertebrates, the inclusion of a more exhaustive literature review with a specific focus on honey bees and other insects would bolster the context and significance of this research. This would be particularly beneficial in the introduction section, which should be subjected to a major revision.

      In summary, this study offers preliminary evidence of the detrimental effects of imidacloprid on the development of bee larvae by interfering with molting and metabolism. This research holds potential as a valuable resource for assessing the risks posed by pesticides to juvenile stages of various animal species.

      On behalf of all the authors, I express our most sincere gratitude for your critical comments and suggestions. Following your suggestions, we have thoroughly reviewed and revised the entire manuscript, including the issues of imidacloprid concentration and citation accuracy you raised. More importantly, we have significantly revised the structure and content of the introductory section of the manuscript to include many more detailed reviews of critical literature, with particular attention to the overview of relevant research on honey bees, Drosophila, and other insects, to promote coherence and clarity of the introduction and to enhance the context and importance of this research. We hope that these changes meet with your approval. Overall, your valuable comments have greatly improved the quality of the manuscript and will facilitate our future research.

      Q1: Line 48, "Adults exposed to high doses of imidacloprid experience", please provide a more precise value for the high doses.

      Thank you very much for your comments. Following your suggestion, we have provided precise values for high doses of imidacloprid for adult exposure based on the study by Dr. Wu et al. 2001.

      Q2: Line 82, There are several larvae effect reports using next generation sequencing approach. The authors should include those related references in this section.

      Thank you for your comments. We have included relevant references in our revised manuscript.

      Q3: Line 394, for the concentration design, the maximum concentration of imidacloprid used in this study is 377 ppb, which is from the imidacloprid residue level in beeswax. Bees don't consume beeswax, and the reference is wrong.

      Thank you for raising this critical issue. As you point out, bees do not eat beeswax, but it is important to stress that this may well mean that the bee larvae themselves are exposed to higher doses. Therefore, in this study, we ultimately designed for the worst-case scenario of 377 ppb of imidacloprid residues in beeswax. We would like your agreement on this point. In addition, we have corrected the citation errors in the references here and included them in the revised manuscript.

      Reviewer 2:

      This study provides evidence on the ability of sublethal imidacloprid doses to affect growth and development of honeybee larva. While checking the effect of doses that do not impact survival or food intake, the authors found changes in the expression of genes related to energy metabolism, antioxidant response, and P450 metabolism. The authors also identified cell death in the alimentary canal, and disturbances in levels of ROS markers, molting hormones, weight and growth ratio. The study strengths come from applying these different approaches to investigate the impacts of imidacloprid exposure. The study weaknesses are not providing an in-depth investigation of the mechanisms behind the impacts observed and not bringing the results in light of the current literature. For instance, the authors' hypothesis is based on two main points, the generation of ROS that leads to gut cell death and energy dysfunction, and the increased P450 expression. They propose this increases P450 expression which in turn increases energy consumption and could contribute to developmental retardation. There is however no investigation on the mechanisms of ROS generation (it could be through mitochondrial damage, Nox/ Duox activity, NOS activity, P450s activity, etc). A link between higher P450 expression and increased energy consumption leading to energy deprivation is also missing. It would also be important for the authors to provide a more complete literature review as previous works have investigated imidacloprid sublethal dose impacts in larval stages for bees and other insect models.

      I greatly appreciate your insightful comments and valuable suggestions on behalf of all the authors. Thank you for identifying the limitations of this study and providing valuable comments and suggestions. These comments and suggestions have significantly improved the quality of the paper and will facilitate our future research. Following your comments, we have revised and corrected the manuscript point by point. We hope that these corrections meet with your approval.

      Q1: Abstract: It would be important to rephrase the abstract to make it clear when authors are talking about gene expression results or functional assays.

      Thank you for your comment. Following your suggestion, we have revised the abstract to make it clearer, especially the description of the gene expression results. Please see lines 15-34 in our revised manuscript.

      “Abstract Imidacloprid is a global health threat that severely poisons the economically and ecologically important honeybee pollinator, Apis mellifera. However, its effects on developing bee larvae remain largely unexplored. Our pilot study showed that imidacloprid causes developmental delay in bee larvae, but the underlying toxicological mechanisms remain incompletely understood. In this study, we exposed bee larvae to imidacloprid at environmentally relevant concentrations of 0.7, 1.2, 3.1, and 377 ppb. There was a marked dose-dependent delay in larval development, characterized by reductions in body mass, width, and growth index. However, imidacloprid did not affect larval survival and food consumption. The primary toxicological effects induced by elevated concentrations of imidacloprid (377 ppb) included inhibition of neural transmission gene expression, induction of oxidative stress, gut structural damage, and apoptosis, inhibition of developmental regulatory hormones and genes, suppression of gene expression levels involved in proteolysis, amino acid transport, protein synthesis, carbohydrate catabolism, oxidative phosphorylation, and glycolysis energy production. In addition, we found that the larvae may use antioxidant defenses and P450 detoxification mechanisms to mitigate the effects of imidacloprid. Ultimately, this study provides the first evidence that environmentally exposed imidacloprid can affect the growth and development of bee larvae by disrupting molting regulation and limiting the metabolism and utilization of dietary nutrients and energy. These findings have broader implications for studies assessing pesticide hazards in other juvenile animals”

      Q2: Line 55-58: rephrase the sentences to make it clear that imidacloprid was not created in 1925, but only in the 90's.

      Thank you for pointing out this error. We have corrected the citation. Please see the line 58 in our revised version.

      Q3: Line 88: typo: " remain to be systematically investigated"

      Thank you for pointing out this error. We have rewritten the sentence. Please see lines 121-122 in our revised manuscript.

      Q4: Introduction is lacking important citations, a few of the important ones are: Farooqui 2013 (doi: 10.1016/j.neuint.2012.09.020.) - hypothesis linking neonic exposure, nAChRs receptors, and ROS in honeybees; Ihara et al 2020 (https://doi.org/10.1073/pnas.2003667117) - the targets of imidacloprid in honeybees; Martelli et al 2020 (https://doi.org/10.1073/pnas.2011828117) - mechanistic investigation of imidacloprid sublethal damage in Drosophila; Whitehorn et al 2018 (doi: 10.7717/peerj.4772) - investigation of imidacloprid sublethal dose impact on growth and development of butterflies; Chen et al 2021 (doi: 10.3390/ijms222111835) - sublethal effects of imidacloprid exposure on gene expression in honeybees at different life stages. It is important that the authors perform a more complete literature search to compare their work to previous ones, drawing conclusions and highlighting their novelties.

      We greatly appreciate your insightful comments and valuable suggestions. Following your suggestions, we have made significant revisions to the structure and content of the Introduction section. We have incorporated the critical literature you provided and other relevant literature reviews, with a particular emphasis on studies of bees, fruit flies, and other insects. These revisions aim to improve the coherence, clarity, background, and significance of the Introduction. We hope that these modifications meet with your approval. Please see the red text in the Introduction section in our revised version.

      Q5: Line 104: Explanation on the doses used should be included here, not later in the methods. Also, important to highlight that whereas the doses tested were found in bee products, they likely mean that the bees themselves were being exposed to even higher doses.

      Thank you for your comment. Following your suggestions, we have moved the explanation of the imidacloprid doses used in this study to the Results section, as you mentioned. Please see lines 138-142 in our revised manuscript.

      Q6: Line 112: It is important to identify the neuronal targets of imidacloprid in honeybees. Many are known. Some of the nAChRs targets were not investigated in this study (such as subunit alpha8 and beta1). Plus, is alpha2 an imidacloprid target? How does the expression of other nAChRs subunits compares? Importantly, these genes are expressed mostly in the nervous system, so a more correct approach would be a tissue specific analysis. The lack of tissue specific analysis is a consistent flaw throughout the methodological design.

      Thank you very much for your important comment. Bees have more than ten nAChR subunit members. Imidacloprid inhibits acetylcholinesterase activity by competitively binding to acetylcholinesterase receptors. As you noted, this study did not investigate the expression of all nAChR subunits, including the alpha8 and beta1 subunits, in different tissues, which is a shortcoming of our study. We have always failed to make a technological breakthrough and cannot dissect to obtain important tissues from developing larvae alone. We have therefore had to abandon this design and use the whole larva as a sample for measurement. We are aware that this is a shortcoming of this research. In the future, we will make a breakthrough in technology and conduct a comparative analysis of all nAChR subunit genes in different organizations and developmental stages to obtain more comprehensive and accurate data. Thank you again for raising this important issue and for your valuable suggestions.

      Q7 ~ Q9: Line 125: P450s expression may have opposite behavior when exposed to insecticides depending on tissue (such as brain and fat body). When checking whole larva gene expression, the tissue specific profiles become diluted and thus less reliable (for reference, check: https://doi.org/10.1073/pnas.2011828117); Line 131: Again, for the analysis of oxidative stress it would be important to investigate a tissue specific expression pattern and measurement of ROS markers. Investigating different time points during the exposure also adds to the mechanistic understanding. Do all tissues respond in the same way? In which tissue does an increase in ROS generation start? How? Does it spread to other tissues? By which mechanisms is it generated; Results in general: Tissue specific analyses and more time points can provide a better understanding of how sublethal imidacloprid doses impact growth and survival. Thinking about the doses of choice in light of what bees might be exposed is also important. The mechanistic understanding is missing in the paper, and without it the study does not add much in comparison to previous ones.

      Thank you very much for your valuable comments. As you pointed out, the intensity of P450 detoxification and oxidative stress varies considerably between tissues. When checking whole larva gene expression, the tissue-specific profiles become diluted, which is detrimental to elucidating mechanisms. In this study, we encountered technical barriers in obtaining independent samples of specific tissues for anatomical sampling. As a result, we had to forego analysis of some specific tissues, including the tissue-differentiated analyses of P450 gene expression patterns and ROS markers that you mentioned. We only examined larval overall detoxification and antioxidant responses to imidacloprid toxicity. While we do not believe that data from specific tissues are fully representative of the complex overall picture of larvae, there is no doubt that the decision to study larvae as a whole does not contribute to our complete understanding of the mechanisms by which imidacloprid causes larval developmental retardation and larval responses to imidacloprid toxicity. In addition, the fact that this study only analyzed one-time points during imidacloprid exposure and did not design and comparatively analyze different time points limits our complete understanding of the above mechanisms. In summary, as you have pointed out, tissue-specific analyses and more time points could better understand how sublethal doses of imidacloprid affect growth and survival. In future studies, we will overcome the technical challenges and refer to your suggestions for further systematic and in-depth mechanistic studies specifically targeting imidacloprid toxicity in different tissues at different exposure times and incorporate your suggestions, such as whether the response is consistent across all tissues, the origin of the increase in ROS production, how it increases, whether it spreads to other tissues, and the underlying mechanisms into the next experimental design. Again, Thank you for your constructive and valuable comments, which have provided valuable insight for our study on mechanisms. Undoubtedly, these comments will enhance the innovativeness of our study and greatly facilitate our future research.

      Q10: Line 236: The conclusion that mitochondrial dysfunction is taking place is not well corroborated. Are there changes in mitochondrial aconitase activity to suggest the mitochondrial origin of ROS? How do mitochondria look like under electron microscopy? Evidence for mitochondrial damage from functional assays? Could the ATP reduced levels be caused by increased consumption by other systems, instead of reduced production? Without functional assays to demonstrate mitochondrial dysfunction the indirect measurements of gene expression at most suggest expression perturbations in mitochondria for the point in time when gene profiles were examined.

      Thank you for the comments. Based on the data of the present study, i.e., suppression of mitochondrial oxidative phosphorylation (COX17, NDUFB7) and expression of genes of its alternative glycolytic pathways (Gapdh, Oscillin), as well as a decrease in the ATP content, suggests that imidacloprid exposure leads to impaired energy metabolism in larvae and not to mitochondrial dysfunction. We have corrected this uncritical language presentation error. Please see the lines 267 and 275 red text in our revised version. We hope that this correction will meet with your approval.

      Q11: Though not the aim of the study, an important step forward would be to investigate whether these doses that do not impact survival but cause growth retardation could affect the many stereotypical behaviors displayed by the worker bees when they reach the adult life. Without this sort of analysis, it is difficult to stablish whether the doses tested will impact the colony health.

      Thank you very much for your valuable suggestions, which give us broader ideas for our subsequent, more in-depth work on the mechanism of toxicity. Inspired by your suggestion, we plan to conduct further studies to investigate the effects of different levels of imidacloprid exposure on the developmental process of bee larvae and the underlying mechanism of toxicity. We will also investigate the intrinsic link between this juvenile toxicity and behavioral and physiological defects in adult individuals.

      Q12: Line 376: the authors do not provide a link to their hypothesis that increased P450, and antioxidant response is reducing larvae nutrient supply.

      Thank you for your comment. I apologize for not fully understanding your point. If you mean that the hypothesis proposed in this study that increased P450 and antioxidant responses reduce larval nutrient energy supply is not well-founded, we have already addressed this in the previous paragraph. See Figure 7 and lines 395-399 for more details in our revised manuscript.

      Q13: Line 393: Were the colonies single-cohort? Were the frames from different hives mixed together to create the experimental groups? Or each experimental group comes from a different frame/colony? This information is important to establish how much genetic variation might exist between the different experimental groups.

      Thank you for your comment. In this study, the selected colonies were healthy and not exposed to pathogens or pesticides. Two-day-old larvae from the same frames of the same hive were individually transferred to sterile 24-well cell culture plates. The plates contained a standard diet containing royal jelly, glucose, fructose, water, and yeast extract. We have included the above text in our revised manuscript. Please see the lines 430-432 red text in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Please find enclosed our revised manuscript entitled “An unconventional gatekeeper mutation sensitizes inositol hexakisphosphate kinases to an allosteric inhibitor”. We would like to thank the editorial team and the reviewers for carefully reading the manuscript and for raising a number of valuable points. We have included additional data and discussion to address the questions raised. Please find the point-by-point responses below.

      Reviewer #1:

      1) While I understand that FMP-201300 is a tool (proof-of-concept) compound it would be useful to know if it has activity against IP6K1 (or IP6K2) in cells.

      We were of course curious about this as well. Unfortunately, our attempts to generate cell lines in which IP6K1 or IP6K2 carry the gatekeeper mutation using CRISPR/Cas editing have not been successful so far. Nevertheless, to obtain information on the permeability and cellular activity of FMP-201300, we decided to treat wt cells, since the compound also inhibited IP6K1-wt and IP6K2wt at higher concentrations.

      In a previous study, we could show that reduced intracellular 5PP-InsP5 levels lead to a decrease in rRNA synthesis (https://doi.org/10.1101/2022.11.11.516170). We now repeated this experiment with FMP-201300, along-side the known IP6K inhibitors TNP and SC-919, and could show that FMP-201300 it is able to reproduce this phenotype, strongly suggesting it is capable to diffuse through the cell membrane and act on IP6Ks. We have included this data as a new Figure (Figure S10) and in the discussion part of the manuscript.

      2) Did the authors try docking studies to gain insight into the binding site of FMP-201300?

      The reviewer raises an important point, and we indeed strongly considered docking studies during the progress of the project. However, given that the HDX-MS data show that the region around the αC-helix becomes much more flexible upon introducing the gatekeeper mutation, we were concerned that docking studies (which would be based on the static wt structure) may not accurately reflect the more dynamic state of the mutated IP6K.

      Upon consulting with our colleagues with expertise in docking and molecular dynamics simulations, we believe that MD simulations would need to be performed to obtain a more realistic picture of this protein ligand interaction, which we would like to pursue in the future.

      3) Regarding the SAR, it would be useful to know if both carboxylic acids are required for allosteric inhibition.

      Given the available data, it appears very likely that both carboxylic acids are required for the inhibitor to unfold its potency. Compound A2, which only contained one carboxylate group, showed drastically reduced potency. We have altered the text in the main manuscript to get this point across more clearly.

      4) It would be helpful if the authors presented a model for how they think the Leu210 to Valine mutation sensitizes IP6K1 to FMP-201300.

      We agree that it is important to better visualize the structural factors that play a role in the sensitization towards the compound. We have generated a new Figure 5 (and the old Figure 5 is now Supplementary Figure 9), and added a section to demonstrate how we propose the mutation leads to the sensitization of IP6K1 to FMP-201300. For a better understanding, we have also included a depiction how the mutation already affects the apo structures. Furthermore, we have added some text in the HDX section, to better describe the proposed mechanism.

      Minor:

      1) Figure 4: The authors should use the same units in panels a and b.

      Thank you for pointing this out, the figure was edited accordingly.

      2) In the supplementary Excel file, it would be helpful to include a tab that contains a legend.

      A contents page was added to help describe the layout of the supplementary Excel file.

      Reviewer #2:

      Overall, this is an excellent study of high quality. The identified FMP-201300 has the potential for further compound and probe development. My only minor comment is that the authors could spend more time discussing the proposed allosteric binding mode of FMP-201300 and provide more detailed figures to highlight the proposed interactions with the protein and the conformational changes that must ultimately take place to accommodate the allosteric modulator. I appreciate that the co-crystallization experiments did not yield bound inhibitor structures, but perhaps the authors could consider MD simulations to complete their study. However, that could be a story in itself and should not be a must for the publication of this great work.

      We agree with the reviewer (and also reviewer 1) that it is important to better visualize the structural factors that play a role in the sensitization towards the compound. We have generated a new Figure 5 (and the old Figure 5 is now Supplementary Figure 9), and added a section to demonstrate how we propose the mutation leads to the sensitization of IP6K1 to FMP-201300. For a better understanding, we have also included a depiction how the mutation already affects the apo structures. Furthermore, we have added some text in the HDX section, to better describe the proposed mechanism. In brief, we propose that the mutation leads to increased flexibility of the region in the mutation, allowing accommodation of FMP-201300 and ATP. These same regions are also the regions that have large decreases in deuterium exchange upon addition of the inhibitor.

      We also appreciate the comment about using computational methods, to predict the binding site (also a remark from reviewer 1). We strongly considered docking studies during the progress of the project. However, given that the HDX-MS data show that the region around the αC-helix becomes much more flexible upon introducing the gatekeeper mutation, we were concerned that docking studies (which would be based on the static wt structure) may not accurately reflect the more dynamic state of the mutated IP6K. As the reviewer points out, MD simulations would likely be needed to obtain a more realistic picture of this protein ligand interaction, which we would like to pursue in the future.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      Overall, I quite enjoyed reading the manuscript and found it very well-structured and organized. I congratulate the authors for building this nice research. I do have a few major points to raise, but probably they would not affect the general message of the manuscript.

      Thank you for taking the time to review our manuscript and the positive feedback. Following your suggestions, we have corrected some mistakes and added clarifications and a few of the suggested quality checks on the models. However, we decided not to run new analyses as: i) we believe there would be minor changes to the general message of the manuscript; and ii) while some suggested analyses are compelling, they are difficult to implement for different reasons or are outside the scope of the paper (clarified below).

      I was confused about how IUCN data were used. The IUCN predictors are not mentioned in the model equations presented in the manuscript, but their effect size is reported in Figure 2.

      Thank you for highlighting this issue. This was a typo: we forgot to mention the variable in both equations 1 and 2. Changed accordingly.

      In the manuscript Methods, it is said that IUCN data was classified into 3 categories. I believe there was a mix of mechanisms in measuring it this way since at least two processes might be underlying IUCN data. First, one can inspect whether there is an effect on "scientific/societal interest" for assessed vs non-assessed species. This would not have any relationship with the assessed status itself. Assessed species are any with LC, NT, VU, EN, CR, EW, EX statuses, whereas non-assessed species might include DD and NE. Second, one may observe an effect of threat status itself, with threatened species being more researched than non-threatened species, this would only be possible for assessed species, although there are methods out there to impute missing statuses. By inspecting Figure 2, I got the feeling that only the second option was explored, but this would need to be confirmed.

      We couldn’t test the effect of single categories (LC, NT, VU, EN, CR, EW, EX) because observations within factor levels were unbalanced. So, we re-grouped the different categories into three levels: “Threatened” (EX, EW, CR, EN and VU), “Non-Threatened” (NT and LC), and “Unknown” (DD and NE) and only tested this variable (your second option). Note that the effect size of the level Unknown is not shown in Figure 2 as this is the reference category. This is clarified in the caption of Figure 2.

      In Figure 2, I was confused about the presence of three categories of domain. In the text, it states that four categories have been used. I believe these domains are non-mutually exclusive, that's why there is a fourth category. Would it not be better to assess the influence of domain through three dummy variables (terrestrial, marine, freshwater), where multiple presences (1's) would indicate the "multiple" category?

      We opted for a categorical variable (rather than a dummy) to have the same number of variables in the two groups (‘species’ vs ‘culture’). This is needed for the variance partitioning analysis (VPA), because an unbalanced number of variables in one group of a VPA can artificially inflate R2 (see, e.g., this source: https://www.davidzeleny.net/anadat-r/doku.php/en:varpart). As for Figure 2, the level “Multiple”, being the reference category, is not shown. This is clarified in the caption: “Baseline levels for multilevel factor variables are: Domain [Multiple]”.

      At present, I felt that the spatial components of your data were unexplored. Since you have centroids representing species distribution, it could be interesting to explore the presence of the species within protected areas or biodiversity hotspots. That might be something triggering at least scientific interest. Also, one can derive information about the major habitat of species occurrence (either using IUCN Major Habitat classification) or extracting overlap of species centroids with WWF biomes (e.g., simplified to just forested vs non-forested habitats; https://ecoregions.appspot.com/). Another point very common to research exploring biodiversity shortfalls is the proximity to research institutions (https://doi.org/10.1111/2041-210X.13152). And since societal interest is also being explored, what about the proximity to major cities (doi:10.1038/nature25181). Finally, other metrics derived from species centroids could inform "tropicality", if the species is tropical or not. Most often, the tropics species are neglected in comparison with those occurring in temperate regions.

      We thank the reviewer for this suggestion, and we are aware that there are important spatial drivers of interest as highlighted in earlier research. Indeed, the spatial aspects of the data were somewhat underexplored as a deliberate choice because we hope to carry out additional work to explore these aspects in more detail. Nevertheless, we included the centroid of each species range as a broad proxy of its distribution, to help explore, for example, the role of species latitudinal distribution in driving interest metrics. We have also considered the suggestions provided as additional analyses, but we find these may be challenging to implement with the current data for a few reasons. First, each species centroid was calculated based on GBIF occurrences and therefore represents the midpoint of all locations, but not necessarily an area that is known to be occupied by the species. Using the centroid to assess whether a species is located in a given biome or within protected areas using this approach would therefore be potentially misleading (for example, for some terrestrial species it may fall in the sea, and vice versa). Also, for the same reasons, taking the centroid to estimate the species accessibility or proximity to research institutions may be misleading. We find that while important, these spatial aspects require a more nuanced approach to be explored in detail.

      I was also thinking about the influence of time on the models. Species described long ago are often more known to people and scientists and had more "time" to be researched. Although metrics of societal interest were restricted to the last decade here, that does not necessarily mean that peoples' interest is not affected by their accumulated experiences. Similar reasoning applies to scientific interests, which have a lengthier time frame (~80 years). That said, the year of description or time since description could be added to capture some metric of time.

      This is a good point, which we discussed prior to running the analysis. Indeed, there is evidence that such accumulated experiences can drive species interest as our own research has also previously highlighted (e.g. see Ladle et al. 2017 doi: 10.1002/pan3.10053). However, we felt that comparing the date of description as a proxy of accumulated human experiences with species was only fair within major biological groups and not between them. This is because taxonomic practices, definitions, and methods vary widely between biological groups. We therefore decided not to include time since description as a variable driving the measures of scientific and societal interest in this work. Nevertheless, we recognize the importance of the history of such experiences in driving human interest in species, and the consequences emerging from the loss of such links, and have thus included a brief discussion of this topic in the manuscript (see lines 177-182).

      Model residuals could be checked for phylogenetic or spatial autocorrelation. I am aware there is no phylogenetic tree used, but the hierarchical taxonomy could be used (Phylum / Class / Order / Family / Genus) as a proxy for phylogenetic relationship.

      We agree. Indeed, the hierarchical taxonomy was already included as a random factor (Phylum / Class / Order) in eq. 1. Note that we excluded Family and Genus from the random structure because in most Phyla a single genus and family has been sampled (as well as due to model convergence problems).

      Concerning the spatial autocorrelation, one could check whether model residuals and their respective coordinate centroids of each species range. It is stated that GLMM has been used to avoid these non-independence issues, but it would be interesting to check whether residuals remained free of them.

      Good suggestion, although the use of centroids may not be the most appropriate since it is only a rough approximation of each species distribution (see previous answer). Still, out of curiosity, we checked whether the random factor on biogeography was enough to capture residual spatial autocorrelation in the models. For this, we used the R package DHARMa, which performs a Moran's I test for distance-based autocorrelation. Given that some coordinates were duplicated, we grouped residuals by biogeographic regions (DHARMa requires all coordinates to be unique). Neither the Web of Science nor the Wikipedia models had spatial autocorrelation in the residuals:

      Web of Science model: observed = –0.20482, expected = –0.14286, sd = 0.10682, p-value = 0.561

      Wikipedia model: observed = –0.180820, expected = –0.142857, sd = 0.055513, p-value = 0.4941

      A last point, it would be interesting to provide some sort of inset plots, such as barplots or donut plots (within the current plots), showing the proportion of species with respect to major clades and biogeographical regions.

      This is a good suggestion, but we couldn’t find a good way to show this as an inset. We added a barchart showing the number of species in each Phyla/Division in the supplementary materials (Figures S2C). As for the proportion of species in each region, we thought it would be redundant with Figure S1 (summarizing spatial information in sampled species).

      Reviewer #2 (Public Review):

      Using standard and widely used tools, the authors revealed the factors (cultural, phenotypic, phylogenetic, etc.) shaping societal and scientific interest in natural species around the globe. The strength of this manuscript (and the authors') lies in its command of the available literature, database and variable management and analysis, and its solid discussion. The authors thus achieved a manuscript that was pleasant to read.

      Thank you for taking the time to review our manuscript and the positive feedback.

      While I agree that doing a global study requires losing details of local patterns, maybe this is exactly the biggest shortcoming of the manuscript, oblivious to how different cultures (compare USA to PNG, for example) are reflected in these global patterns.

      Related to this previous point, my only other comment is about using English as a reference of societal interest (i.e., the presence of a common name in English). While English may be widespread in Academia, it is still not that common in other societal circles, especially those not using Wikipedia for lack of internet access.

      We acknowledge the limitation of this choice, as well as our limited capacity to represent specific cultural contexts with our approach. Our decision to consider only the existence of English common names as a variable was partly driven by practical reasons, and partly by the very factors the reviewer highlights. Indeed, many cultures, communities and social circles do not use English frequently and also do not use the internet frequently. One consequence of this is also that the information compiled for species in other languages is more restricted than that available in English, including the existence of vernacular names. In languages other than English, it may even be the case that several common language names exist in reference to the same species, and this number may be an even better reflection of their cultural importance, but sadly this information is not comprehensively indexed across languages and biological groups which prevented us from considering it. On the other hand, most species have been attributed English common names as part of legislative, scientific and other societal processes, and it is therefore likely that if they are important in any specific cultural setting, they will probably also have a vernacular English language name. Ultimately, while we recognize the potential limitations of this decision, we felt that considering English common names was the simplest and less biassed approach to represent the degree with which a species is individually recognized nowadays. We now better expose the reasons for the decision to consider only English common names, and the limitations associated with it in the manuscript (lines 178-193).

    1. Author Response

      eLife assessment

      This study reports the fundamental discovery of a novel structure in the developing gut that acts as a midline barrier between left and right asymmetries. The evidence supporting the dynamics, composition, and function of this novel basement membrane in the chick is in parts solid and in others convincing, but the investigation of its origin and impact on asymmetric organogenesis is not yet conclusive. This careful work is of broad relevance to anyone interested in patterning mechanisms, the importance of the extracellular matrix, and laterality disorders.

      We extend our sincere gratitude to the editors at eLife for their meticulous evaluation of our manuscript, as well as the valuable insights shared in this Public Review. We also wish to convey our appreciation to the reviewers for their thought-provoking suggestions, which we are enthusiastic about integrating into our revised work. In this provisional response, our primary focus is to address the two main concerns raised: the necessity for functional data to elucidate the importance of the barrier, and the imperative to resolve uncertainties regarding its origin. We are dedicated to addressing these important points, and believe they will greatly enhance the quality and significance of our manuscript.

      Joint Public Review:

      When the left-right asymmetry of an animal body is established, a barrier that prevents the mixing of signals or cells across the midline is essential. Such a midline barrier preventing the spreading of asymmetric Nodal signaling during early left-right patterning has been identified. However, midline barriers during later asymmetric organogenesis have remained largely unknown, except in the brain. In this study, the authors discovered an unexpected structure in the midline of the developing midgut in the chick. Using immunofluorescence, they convincingly show the chemical composition of this midline structure as a double basement membrane and its transient existence during the left-right patterning of the dorsal mesentery, which authors showed previously to be essential for forming the gut loop and guiding local vasculogenesis. Labelling experiments suggest a physical barrier function, to cell mixing and signal diffusion in the dorsal mesentery. Cell labelling and graft experiments rule out a cellular composition of the midline from dorsal mesenchyme or endoderm origin and rule out an inducing role by the notochord. Based on laminin expression pattern and Ntn4 resistance, the authors propose a model, whereby the midline basement membrane is progressively deposited by the descending endoderm.

      Laterality defects encompass severe malformations of visceral organs, with a heterogenous spectrum that remains poorly understood, by a lack of knowledge of the different players of left-right asymmetry. This fundamental work significantly advances our understanding of left-right asymmetric organogenesis, by identifying an organ-specific and stage-specific midline barrier. The complexities of basement membrane assembly, maintenance, and function are of importance in several other contexts, as for example in the kidney and brain. Thus, this original work is of broad interest.

      Overall, reviewers refer to a strong and elegant paper discovering a novel midline structure, combining classic but challenging techniques, to show the dynamics, chemical, and physical properties of the midline. However, reviewers also indicate that further work will be necessary to conclude on the origin and impact of the midline for asymmetric organogenesis. Three issues have been raised to strengthen the claims:

      1) The function of the midline as a physical barrier requires clarification. Dextran injection here seems to label cells and not the extracellular space. By counting the proportion of dextran-labeled cells rather than dextran intensity itself, the authors do not measure diffusion per se, but rather cell mixing.

      We agree that an additional means of showing the barrier function is important. We are currently addressing this using a fluorescently tagged derivative of the drug AMD3100 that we recently synthesized, per Poty et al. 2015. We previously showed that AMD3100 perturbs left sided CXCR4-dependent vasculogenesis when introduced on the left side of the dorsal mesentery (DM), but not when introduced on the right (Mahadevan et al. 2014). These data suggest that a midline barrier prevents diffusion of AMD3100 across the DM. We are currently characterizing the extracellular diffusion of this fluorescent derivative through the DM to complement our previous dextran data.

      Additionally, we should emphasize that the dextran-injected embryos shown in Fig. 6 D-F were isolated two hours post-injection, a timeframe insufficient for cell migration to occur across the DM (Mahadevan et al., 2014). We also collected additional post-midline stage embryos ten minutes after dextran injections - too short a timeframe for significant cellular migration (Mahadevan et al., 2014). Importantly, the fluorescent signal in those embryos was comparable to that observed in the embryos in Fig. 6. Thus, we believe the movement of fluorescent signal across the DM when the barrier starts to fragment (HH20-HH23) is unlikely to represent cell migration. More than a decade of DNA electroporation experiments of the left vs. right DM by our laboratory and others have never indicated substantial cell migration across the midline (Davis et al., 2008; Kurpios et al., 2008; Welsh et al., 2013; Mahadevan et al., 2014; Arraf et al. 2016; Sivakumar et al., 2018; Arraf et al. 2020; and Sanketi et al., 2022). This is also shown in our current GFP/RFP double electroporation data in Fig. 2 G-H, and DiI/DiO labeling data in Fig. 2 E-G. Collectively, our experiments suggest that the dextran signal we observed at HH20 and HH23 is likely not driven by cell mixing.

      2) The descending endoderm zippering model for the formation of the midline lacks direct evidence. The claim of an endoderm origin is based on laminin expression, but the laminin observed in the midline with an antibody may not necessarily correspond to the same subtype assessed by in situ hybridization.

      We have attempted to address this important issue by introducing several tagged laminin constructs, LAMB1-GFP, LAMB1-His, and LAMC1-His, to the endoderm via DNA electroporation to try to label the source of the basement membrane. However, despite endogenous laminin production and export within the endoderm, there appeared to be no export of any of the tagged proteins to the endodermal basement membrane. This experiment was further complicated by the necessarily large size of these constructs at 10-11kb due to the size of laminin subunit genes, resulting in low electroporation efficiency. Although we have not yet determined an alternative way to directly test the endodermal origin hypothesis, we are committed to exploring specific methods to help us test this in future experiments.

      The midline may be Ntn4 resistant until it is injected in the relevant source cells.

      Ntn4 has been shown to disrupt both nascently assembling and preformed mature basement membranes (Reuten et al., 2016). As such, we feel that this particular membrane’s resistance to degradation is likely not predicated by its stage of assembly.

      Alternative origins could be considered, from the bilateral dorsal aortae or the paraxial mesoderm, which would explain the double layer as a meeting point of two lateral tissues.

      We agree that alternate origins of the midline basement membrane cannot be ruled out from our existing data. We have indeed considered the bilateral dorsal aortae and the paraxial mesoderm as possibilities. However, at the earliest stages of midline basement membrane emergence, the dorsal aortae are already significantly distant from the nascent basement membrane, as are the somites, which have not yet undergone epithelial-to-mesenchymal transition. Fig. S2 G provides an example of a very early midline basement membrane without dorsal aortae or somite contact. Because this particular image is from a section that is fairly posterior in the HH12-13 embryo, it is thus less developed in pseudo-time and gives a window on midline formation in even earlier stage embryos. This is in contrast to the spatially close relationship of the midline basement membrane with the notochord and endoderm. In the context of potential dorsal aortae contributions, it is worth noting that the basement membrane of vascular endothelial cells has a distinct composition from a non-vascular basement membrane. For example, vascular endothelial cells produce only alpha 4 and alpha 5 laminin subunits but contain no alpha 1 subunit in any known species (reviewed in DiRusso et al., 2017). Thus, endothelial cell-derived basement membranes would not contain the alpha 1 laminin subunit that we used in our studies as a robust marker of the midline basement membrane. Note in Fig. 3 E-H and J-J’’’ the absence of dorsal aortae labeling using our laminin alpha 1 antibody. The dorsal aortae are also richer in fibronectin, as seen in Fig. S2, while the midline ECM exhibits far less fibronectin staining. While it may be possible that the converging aortae compress the midline ECM into a more compact structure, we feel direct contribution of basement membrane components is unlikely.

      3) The title implies a role of the midline in left-right asymmetric gut development. However, the importance of the midline is currently inferred from previously published data and stage correlations and will require more direct evidence.

      We agree that we have not fully and directly demonstrated the extent of the role of the midline in enabling the asymmetry of DM compartments during gut development. We propose the following revised title: “An atypical basement membrane forms a midline barrier during left-right asymmetric gut development”. It is important to note that we have made diligent efforts to investigate the functionality of the midline basement membrane through various methods in which we are highly experienced. However, while targeting either the left or right side of the DM is relatively straightforward, accessing the midline presents substantial challenges. We attempted physical perturbation using in vivo laser ablation, but we observed no significant effect or stable disruption of the midline. Additionally, our attempts at ablation using diphtheria toxin proved to be too harsh on the endoderm, preventing reliable and consistent data interpretation. We have tried electroporating MMP9 and MMP2 into the DM, but these did not produce any appreciable effect on the midline. We are also concerned that directly injecting MMPs or other enzymes may lead to injection-related tissue damage to the embryo that may be difficult to separate from direct MMP digestion of the matrix. However, we firmly believe that our inference regarding the involvement of the midline ECM in the asymmetry of DM compartments is robust, based on the functionally distinct yet closely positioned cell populations of the DM, and the timing of the midline in relation to the establishment of these asymmetric compartments. Notably, recent research conducted in our laboratory has highlighted the vital necessity of maintaining the separation of diffusible signaling molecules, such as Bmp4, from these neighboring cell populations, which would otherwise be in direct contact if not for the presence of the midline basement membrane (Sanketi et al., 2022). We will continue developing specific methods to perturb the midline in preparation of a revised manuscript.

    1. Author Response

      The following is the authors’ response to the previous reviews

      We thank the Reviewers and Editors for the evaluation of our revised manuscript.

      We especially value the careful assessment of Reviewer 1; at the same time, we clearly disagree with the reviewer’s statement that the revised manuscript “is essentially unchanged”. As appreciated by the other Reviewers, we performed a key experiment (in our opinion the only conclusive experiment) to further solidify that FK506-treatment kills parasites in a FK506-independent manner. Of note, however, Reviewer 1 made us aware of an error in the legend of Figure 4F, which likely contributed to the confusion regarding the antiplasmodial effect of FK506: Unfortunately, we missed updating this legend to appropriately imbed the new experiment. We therefore incorrectly stated that parasites were exposed to FK506 for 48 hours after FK506 treatment at 4-10 hpi and 36-42 hpi in G1. In contrast to the experiments described in the initial submission, parasite survival was not measured 48 h later, but in G2 ring stage parasites, i.e. at a time point during which parasitemia is not affected by the knockout of PfFKBP35. We have now corrected this. As pointed out correctly by Reviewer 1, it would otherwise not be possible to disentangle the effects of the gene knockout and the drug. The setup we now present in Figure 4F, however, is clearly able to do so.

      We apologize for the inaccuracy and hope this resolves the ambiguities regarding the FKBP35-independent antimalarial effect of FK506. In line with the comments of Reviewers 2 and 3, we believe that our findings on FK506 activity are of particular importance for the malaria research community. We therefore hope that the final eLife assessment will reflect this.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      1) Overall, this is a useful tool, the data is well-presented, and the paper is well-written. However, the predictions are only compared with two existing reconstruction tools though more have been recently published

      The aim of this work was to facilitate high-throughput generation of strain-specific metabolic models e.g. at the scale of 100s -1000s as indicated throughput the introduction (see lines 74-82, 91-94), and therefore we only compared tools which were capable of high-throughput analysis via command line and excluded others (e.g. merlin). We have now tested this against the other recent command line tool, gapseq which had escaped our gaze. Thank you for bringing this to our attention. Additionally, we have included KBase (ModelSEED, a web-based app that does not support high-throughput analysis) to allow for readers to interpret the results in the context of community standard approaches, since KBase is a popular tool.

      We have added an explicit statement about the choice of approaches, now at lines 194-199 as follows:

      “We compared the output and performance of Bactabolize to the two previously published tools that can support high-throughput analyses i.e. CarveMe (30) and gapseq (31). To aid interpretation in the context of community standard approaches, we also include a comparison to the popular web-based reconstruction tool, KBase (ModelSEED), and a manually curated metabolic reconstruction of K. pneumoniae strain KPPR1 (also known as VK055 and ATCC 43816, metabolic model named iKp1289) (15).”

      The methods section was updated accordingly (now lines 552-558):

      “A draft model was generated using gapseq version 1.2 with the ‘doall’ command using the unannotated genome (as gapseq does not take annotated input files). Gap-filling was subsequently performed using the ‘fill’ command and a custom M9 media file to match the nutrient list found in Bactabolize (https://github.com/kelwyres/Bactabolize/blob/main/data/media_definitions/m9 _media.json).

      Finally, a draft model was constructed using the annotated genbank K. pneumoniae KPPR1 file and the KBase narrative (15) (https://narrative.kbase.us/narrative/ws.14145.obj.1).”

      The results section (now lines 193-308) and Figure 2 have also been updated / restructured to reflect the new analyses, and include a comparison of the relative compute times for the construction of models (lines 281-291) as follows:

      “While model features and accuracy are essential metrics for comparison, computation time is also a key consideration for high-throughput analyses. We recorded the time required for each tool to build draft models for 10 of the completed KpSC genomes used in the quality control framework (see below) on a high-performance computing cluster (Intel Xeon Gold 6150 CPU @ 2.70GHz and 155 GB of requested memory on a CentOS Linux release 7.9.2009 environment. CarveMe KpSC pan was the fastest with a mean of 20.04 (range 19.90 - 20.18) seconds, followed by CarveMe universal at 30.28 (range 29.20 - 31.80) seconds, then Bactabolize KpSC pan at 98.05 (range 92.19 - 100.4) seconds. KBase took 183.50 (range 120.00 - 338.00) seconds per genome via batch analysis, including genome upload time and queuing. gapseq took 5.46 (range 4.55 - 6.28) hours to produce draft models (not including the required gap-filling), consistent with previous reports (37).”

      Finally, the whole discussion has been updated and substantially restructured (lines 472-474, 475-493, 494-512). Specific mentions to the new analyses are at lines:

      472-474: “Consistent with this assertion, our draft KPPR1 model constructed with KBase (without manual curation) was an outlier in terms of the very low number of genes, reactions and metabolites that were included.”

      475-493: “CarveMe with universal model (30) and gapseq (31) are the current gold standard automated approaches for model reconstruction, and we show that a draft KpSC model generated by Bactabolize with the KpSC pan v1 reference resulted in similar or better accuracy for phenotype prediction (Figure 2). Both the CarveMe universal and gapseq models resulted in high numbers of true-positive and true-negative growth predictions. However, these were also accompanied by comparatively higher numbers of false-positive predictions that resulted in a lower overall accuracy for substrate usage analysis compared to Bactabolize with the KpSC-pan v1 reference (Figure 2), and comparatively lower precision and specificity for the gene essentiality analysis. False-positive predictions may indicate that the relevant metabolic machinery are present in the cell but were not active during the growth experiments (e.g. due to lack of gene expression). In this regard, false-positives are not always a sign of model inaccuracy. However, false-positive predictions can also occur from incorrect gene annotations e.g. due to reduced specificity of ortholog assignment resulting from the use of the universal model without manual curation. Given a key objective here is to facilitate high-throughput analysis for large numbers of genomes, it is not feasible to expect that all models will be manually curated, and therefore we believe that identifying fewer genes with lower overall error rates provides greater confidence in the resulting draft models. We also note that the BiGG universal reference model which CarveMe leverages is no longer being actively maintained. In contrast, user defined reference models can be iteratively curated and updated to incorporate new knowledge and data as they become available.”

      510-512: “However, gapseq’s long compute time makes it inappropriate for application to datasets comprising 100s-1000s of genomes (such as have become increasingly common in the bacterial population biology literature).”

      2) My understanding is that the tool requires a set of reference reconstructions for other strains of the target species. If no reference reconstruction is available for another strain of the target species, can this species not be reconstructed?

      Any input reference can be used to generate models however, single strain models matching the target species, or ideally a species-specific panreference, are recommended for best results. We have added a discussion on these points at lines 128-133:

      “For optimum results we suggest using a pan-model that captures as much diversity as possible for the target species or group of interest, because Bactabolize’s reconstruction method is reductive i.e. each output strainspecific model will include only genes, reactions and metabolites that are present in the reference or a subset thereof (although novel genes, reactions and metabolites can be added via manual curation).”

      We expand on these points further in the discussion:

      494-512: “Bactabolize’s reference-based reconstruction approach is reductive, meaning the resultant draft models will comprise only the genes, reactions and metabolites present in the reference, or a subset thereof, and will not include novel reactions unless they are manually identified and curated by the user. This is an important caveat that should be considered carefully for application of Bactabolize to large genome data sets, particularly for genetically diverse organisms such as those in the KpSC. For optimum results we suggest using a curated pan-model that captures as much diversity as possible for the target species or group of interest. While we acknowledge that a reasonable resource investment is required to generate a high-quality reference, we have shown that a pan-model derived from just 37 representative strains can be sufficient to support the generation of highlyaccurate draft models (Figure 2 and 5). Additionally, we note that it is possible to use a single strain reference model, which should ideally represent the same or closely related species to that of the input genome assemblies, in order to facilitate accurate identification of gene orthologs. It is technically possible to use an unrelated reference model, but this is expected to result in inaccurate and/or incomplete outputs and has not been tested in this study. In circumstances were no high quality closely-related reference model is available, we recommend alternative reconstruction approaches that leverage universal databases e.g. CarveMe (30) or gapseq (31). However, gapseq’s long compute time makes it inappropriate for application to datasets comprising 100s-1000s of genomes (such as have become increasingly common in the bacterial population biology literature).”

      3) How do the reconstructions generated by Bactabolize compare to those generated by other reconstruction tools besides CarveMe and ModelSEED, e.g., gapseq (Zimmermann et al, Genome Biology 2021. 22:81) or merlin (Capela et al, Nucleic Acids Res 2022, 50(11):6052-6066?

      See response to rev 1 point 1.

      4) How are the accuracy, specificity, and sensitivity of the pan-models calculated? Is the compared experimental data on the species level?

      We used the pan-model as a reference from which we generated a strain-specific model for K. pneumoniae KPPR1 (using Bactabolize and CarveMe). This strain-specific metabolic model was then used to simulate growth phenotypes and compared to published experimental data for KPPR1. This was described in the methods section, including the calculations for the metrics (lines 589-593); however, we have also expanded the description within the results section to clarify the approach (lines 201-209):

      “De novo draft models for strain KPPR1 were built using; i) Bactabolize with the KpSC pan v1 reference; ii) CarveMe, with its universal reference model (CarveMe universal); iii) CarveMe, with KpSC-pan v1 reference (CarveMe KpSC pan); iv) gapseq; and v) KBase (ModelSEED). ….. Subsequently, each model was used to predict growth phenotypes; i) in M9 minimal media with different sole sources of carbon, nitrogen, phosphorus and sulfur; and ii) for all possible single gene knockouts in LB under aerobic conditions. The predicted phenotypes were compared directly to the published phenotype data.” [Note the published data are cited in the previous manuscript sentence, not shown here].

      5) The link https://github.com/rrwick/GFA-dead-end-counter, in line 286 does not work.

      Link regenerated – now at line 451-452 and 604

      Reviewer #2

      1) KpSC pan-metabolic reference model is provided. Are they required as input for Bactabolize? Are the gene, metabolite information open accessible by users? o See response to reviewer 1 point 2 above and;

      All data for the KpSC pan-model described in this work are accessible in the model files and amino acid + nucleotide files + data table at https://github.com/kelwyres/KpSC-pan-metabolic-model. This is also linked in the manuscript at line 631 and in the Data availability statement at line 661.

      2) In the results section "description of Bactabolize", the authors present technical details on how to generate a metabolic model. For the input and output, please provide concrete examples to show the functionality of Bactabolize.

      Detailed instructions, example code and example input/output files are available via the Bactabolize GitHub repository: https://github.com/kelwyres/Bactabolize.<br /> Instructions and example code can be found on the wiki: https://github.com/kelwyres/Bactabolize/wiki Test data and example files are at: https://github.com/kelwyres/Bactabolize/tree/main/data/test_data

      The Github repository is linked in the manuscript at lines 95, 124, 552, and 667, and we have added a further reference at line 124, which mentions the example code/data: “Full documentation, including example code and test data are available at the Bactabolize code repository (https://github.com/kelwyres/Bactabolize).”

      3) To generate metabolic models, the authors present comparison results with other methods. However, the authors only present the numbers in genes, metabolites and substrates. Since the interactions between gene, metabolite, and substrate are also critical, if possible, please provide the coverage details about these interactions. Venn diagram is recommended to compare these coverage differences.

      Two additional supplementary figures have been generated (Figures S5 and 6) showing Venn diagrams of metabolites and reactions for the highthroughput analysis approaches that are most relevant to this work (see also response to rev 1, point 1). These are discussed at lines 224-237:

      “Figures S5 and S6 show the overlaps of metabolites and reactions between the high-throughput reconstruction methods after processing with MetaNetX (59) to standardise the reaction and metabolite nomenclatures (excluding CarveMe pan for simplicity and given the likely problems of reaction oversubscription). The majority of the reactions included in the Bactabolize model were conserved in either the CarveMe universal model (n = 1225, 53.2%), gapseq model (n = 54, 2.3%) or both (n = 665, 28.9%). The reaction overlap was skewed to the CarveMe universal model which shared 1225 reactions that were conserved in the Bactabolize model but absent from the gapseq model. Notably, the gapseq model contained a large number (2200) of unique reactions (70.4% of those in the model). Similarly, the vast majority of metabolites in the Bactabolize model were conserved in one or both of the other models (n = 917, 85.6%). However, it is likely that true overlaps between methods are underrepresented due to the different reaction identifiers and chemical synonyms used within the BiGG (Bactabolize, CarveMe) vs ModelSEED nomenclatures (gapseq), which are difficult to harmonise in an automated manner even after the application of MetaNetX.”

      Figure 2 shows not only the model numbers but also includes benchmarking to real phenotypic data in 2DEFG as the key mode of comparison between models. This encompasses meaningful interactions between gene, metabolic and substrate. The results are discussed at length in text at lines 253-271:

      “We assessed the performance of each model for in silico prediction of growth phenotypes compared to the previously published experimental data (15). Accuracy, sensitivity, specificity, precision and F1 scores were calculated (60). Note that the specific set of growth substrates and gene knockouts that can be simulated is determined by the sets of genes and metabolites captured by each model and is therefore model-dependent (Data S1 and S2). Among those with matched experimental phenotype data, the Bactabolize and CarveMe universal models were able to predict growth for a greater number of carbon, nitrogen, phosphorous and sulfur substrates than gapseq, CarveMe KpSC pan, KBase and iKp1289 models (Figure 2C, Data S1). While the CarveMe universal model had the highest number of truepositive growth predictions overall (n = 132 of 617 total predictions), it also had a comparably high number of false-positive predictions (n = 39 of 617 total predictions, Figure 2D). Similarly, the gapseq and iKp1289 models resulted in 31 (262 total predictions) and 50 (513 total predictions) falsepositive predictions, respectively. In contrast, the Bactabolize model had fewer false-positive predictions (n = 21 of 505 total predictions) alongside a high number of true-positive predictions (n = 117 of 505 total predictions), resulting in the highest overall accuracy metrics (Figure 2E, Data S1). The KBase model was a notable outlier, associated with a high number of falsenegative predictions (n = 31 of 103 total predictions) and low false-positive predictions (n = 3 of 103 total predictions), presumably resulting from the very low number of genes and reactions included in the model, driving low sensitivity and accuracy.”

      Lines 272-280:

      “The gene essentiality results showed that gapseq produced the highest absolute number of true-positive gene essentiality predictions (n = 79 of), followed by Bactabolize KpSC pan (n = 44 of 1220 total predictions), then CarveMe universal (n = 39 of 1951 total predictions). CarveMe universal had the largest number of true-negatives by a wide margin (n = 1599 of 1951 total predictions), followed by gapseq (n = 1085 of 1403 total predictions), then Bactabolize KpSC pan (n = 939 of 1220 total predictions), driving their high accuracies (83.96%, 82.96% and 80.57%, respectively). The Bactabolize model was associated with the greatest overall precision and specificity (Figures 2F & 2G) while the gapseq model resulted in the highest F1-score and sensitivity.”

      4) Are quality control and gap-filling needed to be processed when constructing a new metabolic model?

      Our goal here was to implement an approach to support high-throughput analyses (see response to rev 1 point 1), including leveraging draft genome assemblies as the bases for the construction of strain-specific metabolic models. As part of this work, we have described a robust quality control (QC) framework for screening draft K. pneumoniae genomes i.e. to identify genome assemblies that should not be used. We developed this framework by comparison to models generated for matched completed genomes. Our analyses demonstrate the importance of applying QC to the input draft genome assemblies. When appropriate QC is applied to the input genomes, the resultant draft models show a high degree of completeness compared to the matched models derived from complete genomes. The draft models can also be used to simulate growth phenotypes with high accuracy as compared to those simulated for the matched complete genome models.

      No specific QC was applied to the draft models themselves, other than confirmation of positive growth prediction in m9 minimal media plus glucose (which is expected to support growth of all K. pneumoniae). In cases where the input assembly passed our QC criteria but the resultant model was unable to simulate growth in m9 minimal media plus glucose, gap-filling may be optionally applied. Again, by comparison to the simulated phenotypes from matched complete genome models, we show that these gap-filled draft models can produce accurate phenotype predictions. See lines 396-404:

      “Of the 901 draft genome assemblies which passed our QC criteria (≤200 assembly graph dead ends), 23 of the resulting draft models failed to simulate growth in M9 minimal media with glucose (despite capturing ≥99% of the genes and reactions in the corresponding complete models). It is expected that all KpSC models should be able to simulate growth on M9 media with glucose as a sole carbon source, as this central metabolism is universal amongst KpSC. To replace missing, critical reactions required for growth on M9 with glucose, we investigated model gap-filling using the patch_model command of Bactabolize. We then assessed the accuracy of the gap-filled models for prediction of growth on the full range of substrates, as compared to the predictions from the corresponding complete models.” Lines 409-413: “Substrate usage predictions from the 21 successfully gap-filled models were highly accurate, with 18/21 having a prediction concordance of ≥99% across all 846 growth conditions (12/21 had 100% concordance) (Figure S9). We therefore conclude that models generated for genome assemblies passing our QC criteria, which have been gap-filled to successfully simulate growth on minimal media plus glucose, are suitable for the prediction of growth across a range of substrates.”

      5) Are there any visualization results to check the status of the generated draft model?

      No. This is a tool for large-scale and rapid production of metabolic models, and phenotype prediction and we have not included visualisation tools. Third party tools are available e.g. https://fluxer.umbc.edu/. We do provide optional generation of MEMOTE reports at lines 136-138:

      “Draft genome-scale metabolic models are output in both SMBL v3.1 (41) and JSON formats (one pair of files for each independent strain-specific model), along with an optional MEMOTE quality report (42)”.

      Reviewer #3

      1) The justification and evaluation of the generated models are inadequate and onedimensional. The authors only focus on statistics such as the number of reactions and genes in the models, which does not accurately depict the completeness of the model.

      The reviewer has misunderstood how we have used ‘completeness’ in this manuscript. In the section describing our novel QC framework, we use this term to refer to the relative completeness of draft models generated from draft genome assemblies as compared to curated models generated from complete genome assemblies for the same strains. The latter were considered as the ‘complete’ models for this purpose. We are not referring to any measure of network or metabolic pathway completeness. We specifically refer to gene and reaction capture compared to the ‘complete’ models because these features directly reflect the problem we are trying to address i.e. that draft genome assemblies may not contain the complete set of genes that are truly present in the underlying genome. We have updated the manuscript text to further clarify the problem we aim to address in this section and justify the use of gene and reaction capture metrics:

      Lines 310-319: “There are now thousands of bacterial genomes available in public databases, the majority of which are in draft form, comprising 10s to 1000s of assembly contigs. This fragmentation of the genome is caused by repetitive sequences that cannot be resolved by the assembly algorithm and/or sequence drop-out. The latter can result in the loss of genetic information such that some portion of genes present in the underlying genome are lost from the genome assembly (either completely or partially). This in turn, poses a limitation for the reconstruction of metabolic models using these assemblies, since most published approaches use sequence searches to predict the presence/absence of genes and their associated enzymatic reactions. Therefore, if we are to use public genome data for high-throughput metabolic modelling studies, it is essential to evaluate the expected model accuracies and understand the minimum input genome quality requirements.”

      The biological accuracy of the curated ‘complete’ models has been described previously, and this is now noted in the text at lines 320-324:

      “Here we performed a systematic analysis leveraging our published curated KpSC models (n=37, (14)), which were generated using completed genome sequences and were therefore considered to represent ‘complete’ models for which the underlying genome sequence contains all genes that are truly present in the genome (note the biological accuracy of these models was reported previously (14) and is not the subject of the current study).”

      Throughput the manuscript we not only compare models in terms of the numbers of genes and reactions, but through comparison of binary growth predictions. Specifically, in the Performance Comparison section (Bactabolize vs other approaches) we use comparison of predicted to experimental phenotypes for strain KPPR1 (see response to rev 1 point 4 for details). In the QC Framework section we compare the predictions derived from draft models generated from draft genome assemblies to those derived from the matched ‘complete’ models, and report the concordance as a measure of impact of input assembly quality (lines 309-394). In the final results section (Predictive accuracy of draft models), we generate 10 additional models and compare the growth predictions to matched experimental data (lines 414-433). We view these phenotype prediction comparisons as the ultimate measure of ‘completeness’ with which to assess our models, because these data have direct biological meaning.

      2) The authors have not provided evidence or discussion on the accuracy of any metabolic fluxes, which are considered to be crucial for reconstructing metabolic models. Additionally, the authors have not mentioned the importance of non-growth associated maintenance and the criticality of biomass composition analysis, both of which significantly determine the fluxes in the system.

      We acknowledge the importance of flux calculations and accurate biomass compositions when using genome-scale models to quantitatively predict growth rates. However, at this stage, the reconstructions developed using Bactabolize are intended for binary predictions and comparisons of growth capabilities on various substrates. The accuracies we report are based on measures of network completion (presence/absence of relevant reactions leading to growth or no-growth phenotypes) rather than specific growth rates. Thus, the models generated by Bactabolize can be used to explore diversity at the strain level in terms of growth capabilities and can serve as a scaffold for building detailed (customized biomass), strain-specific models. Measuring biomass composition and metabolic flux analysis require significant experimental comparisons that are outside the scope of the current study but could be performed for target strains based on reconstructions developed using Bactabolize.

      3) It would be interesting to compare the accuracy of the models generated using Bactabolize with those manually curated.

      We did exactly this. We compared the manually curated model iKp1289 as part of our benchmarking. Lines 194 – 199:

      “We compared the output and performance of Bactabolize to the two previously published tools that can support high-throughput analyses i.e. CarveMe (30) and gapseq (31). To aid interpretation in the context of community standard approaches, we also include a comparison to the popular web-based reconstruction tool, KBase (ModelSEED), and a manually curated metabolic reconstruction of K. pneumoniae strain KPPR1 (also known as VK055 and ATCC 43816, metabolic model named iKp1289) (15).”

      Unfortunately, as far as we aware there are currently no other published manually curated models for strains with matched phenotype data that are also not included as part of our pan-reference model (the latter is a key point to ensure a fair comparison of models generated using our pan-reference vs those generated with a universal reference).

      4) The authors have not provided evidence or discussion on the accuracy of any metabolic fluxes, which are considered to be crucial for reconstructing metabolic models.

      See response to rev 3, point 2.

      5) The justification regarding the completeness of the models requires further discussion.

      See response to rev 3, point 1.

      6) A detailed discussion on the importance of manually curated models would significantly enhance the quality of the manuscript.

      This has been added at lines 458-474:

      “Traditionally, genome-scale metabolic reconstruction approaches have relied upon significant manual curation efforts. While there will always remain a need for high quality curated models, such resource intensive approaches preclude their application at scale, and have therefore limited analyses to small numbers of individual strains (15, 16). However, automated reconstruction approaches can support the generation and comparison of multiple strain-specific draft models from which meaningful biological insights can be derived (61). Additionally, the quality of curated models is likely to vary depending on their age, level and type of curation, as well as the approach used for preliminary drafting. Indeed it is possible for automated approaches to outperform manually curated models; a draft model for K. pneumoniae KPPR1 generated using Bactabolize with the KpSC pan-v1 reference model outperformed the manually curated iKp1289 model representing the same strain (15). iKp1289 was published in 2017 (6 years prior to this study) and was initially drafted via the KBase pipeline (33), which uses RAST to annotate the sequences with Enzyme Commission numbers. It has been demonstrated several times that the Enzyme Commission scheme has systematic errors (62, 63), leading to a loss in accuracy when compared to the ortholog identification methods used by automated approaches. Consistent with this assertion, our draft KPPR1 model constructed with KBase (without manual curation) was an outlier in terms of the very low number of genes, reactions and metabolites that were included.”

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Recommendations For The Authors):

      1) Overall, the novel phylogenetic analyses presented are satisfactory. With this new piece of information in hand, I would suggest using maximum-likelihood analyses as the major evidence supporting ortholog annotations. In fact, it would be best advised to add the bootstrap support analyses (perhaps over new trees) to the phylogenies presented in the supplement.

      Thank you for suggestion. Although it would make sense to present phylogenetic trees constructed by maximum-likelihood analyses, we decided to keep the original trees (for CDCA7 and HELLS) in supplemental figures for an aesthetic reason. For example, for CDCA7/zf-4CXXC_R tree made by maximum likelihood method *Hif2_data2_zf4CXXC_R1_iqtree.txt), it would have been easier to visualize if the plant CDCA7 clade was positioned at the bottom, not the top, of the tree, as the topology was identical in both cases. Unfortunately, as the calculated result randomly put plant CDCA7 clade at the top, plant CDCA7 clade appears to be separated from the clades representing the rest of CDCA7 homologs. While we could manually adjust this in the final drawing, we wanted to avoid that.

      2) There are still a few places in the main text where RBH - and is associated E-value - is used as evidence of orthology. As mentioned in my original review, this is evidence for homology, not orthology. Please make sure to amend the final text (for example in the first paragraph of the result section).

      We concurred and amended the manuscript following this recommendation.

      3) We agree with reviewer 1 that part of the functional considerations outside of the human and frog example should be softened, or clearly labelled as an hypothesis - which is now supported by this interesting study

      I assume that this is related to Introduction of CDCA7. As this study defined CDCA7 homologs in result section We believe that this point has been addressed in our last revision.

      4) In addition, make sure to indicate in the main text state the point about DNMT3 nomenclature (w.r.t. DRM).

      In page 10, we added a sentence below to clarify this point.

      “In this report, we call a protein DNMT3 if it clusters into the clade including metazoan DNMT3, plant DNMT3, and DRM.”

    2. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important manuscript reveals signatures of co-evolution of two nucleosome remodeling factors, Lsh/HELLS and CDCA7, which are involved in the regulation of eukaryotic DNA methylation. The results suggest that the roles for the two factors in DNA methylation maintenance pathways can be traced back to the last eukaryotic common ancestor and that the CDC7A-HELLS-DNMT axis shaped the evolutionary retention of DNA methylation in eukaryotes. The evolutionary analyses are solid, although more refined phylogenetic approaches could have strengthened some of the claims. Overall, this study should be useful for researchers studying DNA methylation pathways in different organisms, and it should be of general interest to colleagues in the fields of evolutionary biology, chromatin biology and genome biology.

      We sincerely appreciate constructive comments and suggestions by the reviewers and a fair and accurate summary by the monitoring editor. Below we made point-by-point responses to reviewers’ comments.

      Reviewer #1 (Public Review):

      Overall, I find the work performed by the authors very interesting. However, the authors have not always included literature that seems relevant to their study. For instance, I do not understand why two papers Dunican et al 2013 and Dunican et al 2015, which provide important insight into Lsh/HELLS function in mouse, frog and fish were not cited. It is also important that the authors are specific about what is known and in particular about what is not known about CDCA7 function in DNA methylation regulation. Unless I am mistaken, there is currently only one study (Velasco et al 2018) investigating the effect of CDCA7 disruption on DNA methylation levels (in ICF3 patient lymphoblastoid cell lines) on a genome-wide scale (Illumina 450K arrays). Unoki et al 2019 report that CDCA7 and HELLS gene knockout in human HEK293T cells moderately and extremely reduces DNA methylation levels at pericentromeric satellite-2 and centromeric alpha-satellite repeats, respectively. No other loci were investigated, and it is therefore not known whether a CDCA7-associated maintenance methylation phenotype extends beyond (peri)centromeric satellites. Thijssen et al performed siRNA- mediated knockdown experiments in mouse embryonic fibroblasts (differentiated cells) and showed that lower levels of Zbtb24, Cdca7 and Hells protein correlate with reduced minor satellite repeat methylation, thereby implicating these factors in mouse minor satellite repeat DNA methylation maintenance. Furthermore, studies that demonstrate a HELLS-CDCA7 interaction are currently limited to Xenopus egg extract (Jenness et al 2018) and the human HEK293 cell line (Unoki et al 2019). Whether such an interaction exists in any other organism and is of relevance to DNA methylation mechanisms remains to be determined. Therefore, in my opinion, the conclusion that "Our co- evolution analysis suggests that DNA methylation-related functionalities of CDCA7 and HELLS are inherited from LECA" should be softened, as the evidence for this scenario is not very compelling and seems premature in the absence of molecular data from more species.

      We appreciate this reviewer’s thorough reading of our manuscript.

      Regarding the citation issues, we will cite Dunican 2013 and Dunican 2015. In addition, we went through the manuscript to update the citations.

      As pointed out by the reviewer, the role of CDCA7 in genome DNA methylation was extensively studied in Velasco et al 2018. The result, together with Thijssen et al (2015), and Unoki et al. (2018), supports the idea that ZBTB24, CDCA7 and HELLS act within the same pathway to promote DNA methylation, the pattern of which is overlapping but distinct from DNMT3B-mediated methylation. This observation suggests that a ZBTB24- CDCA7-HELLS mechanism for DNA methylation may involve an alternative DNMT. Interestingly, our analysis of the gene presence-absence pattern revealed that the presence of CDCA7 coincides with DNMT1 more than DNMT3 genes. Indeed, while CDCA7 is lost from diverse branches of eukaryote species, genomes encoding CDCA7 always encode HELLS, and almost always encode DNMT1. Based on this observation, we speculate the role of CDCA7 is tightly linked to HELLS and DNA methylation throughout evolution.

      As pointed out by Reviewer 1, the link between CDCA7, HELLS and DNA methylation has not been determined experimentally across these species. However, based on our previously published and unpublished data, we are confident about the functional interaction between CDCA7 and HELLS in Xenopus laevis and Homo sapiens.

      Furthermore, the importance of HELLS homologs in DNA methylation has been extensively studied in human, mice and plants. We hope our current study will motivate the field to experimentally test the evolutionary conservation of HELLS-CDCA7 interaction, as well as their importance in DNA methylation, in other species.

      The authors used BLAST searches to characterize the evolutionary conservation of CDCA7 family proteins in vertebrates. From Figure 2A, it seems that they identify a LEDGF binding motif in CDCA7/JPO1. Is this correct and if yes, could you please elaborate and show this result? This is interesting and important to clarify because previous literature (Tesina et al 2015) reports a LEDGF binding motif only in CDCA7L/JPO2.

      We searched for a LEDGF binding motif ({E/D}-X-E-X-F-X-G-F, also known as IBM described in Tesina et al 2015) in vertebrate CDCA7 proteins, and reported their positions in Figure 2A. Examples of identified LEDGF-binding motifs are now presented in Fig. 2C.

      To provide evidence for a potential evolutionary co-selection of CDCA7, HELLS and the DNA methyltransferases (DNMTs) the authors performed CoPAP analysis. Throughout the manuscript, it is unclear to me what the authors mean when referring to "DNMT3". In the Material and Methods section, the authors mention that human DNMT3A was used in BLAST searches to identify proteins with DNA methyltransferase domains. Does this mean that "DNMT3" should be DNMT3A? And if yes, should "DNMT3" be corrected to "DNMT3A"? Is there a reason that "DNMT3A" was chosen for the BLAST searches?

      As described in the Methods section, both Human DNMT1 and DNMT3A were used to initially identify any proteins containing a domain homologous to the DNA methyltransferase catalytic domain. Within Metazoa, if their orthologs exist, the top hit from BLAST search using human DNMT1 and DNMT3A show E-value 0.0, and thus their orthology is robust. This is even true for DNMT1 and DNMT3 homologs in the sponge Amphimedon queenslandica, which is one of the earliest-branching metazoan species. For other DNMTs, such as DNMT2, DNMT4, DNMT5, DNMT6, we conducted separate BLAST searches using those proteins as baits as described in Methods. The methyltransferase domain was then isolated using the NCBI conserved domains search. The selected DNMT domain sequences were aligned with CLUSTALW to generate a phylogenetic tree to further classify DNMTs. In response to reviewer #2’s comments, we also generated another multi-sequence alignment of DNMTs using MUSCLE v5 and conducted maximum-likelihood-based phylogenetic tree assembly using IQ-TREE (new Fig. S6). The overall topology of these trees is consistent except for orphan DNMTs. It has been suggested that vertebrate DNMT3A and DNMT3B are derived from duplication of a DNMT3 gene of chordates ancestor (e.g., Liu et al 2020, PMID 31969623). As such many invertebrates encode only one DNMT3. As previously shown (Yaari et al., 2019, PMID 30962443), plants have two distinct DNMT3-like protein family, the ‘true DNMT3’ and DRM, the plant specific de novo DNMT that is often considered to be a DNMT3 homolog (see Reviewer 2’s comment). Our phylogenetic analysis successfully deviated the clade of DNMT3 and DRM from the rest of DNMTs (Figure S6). Yaari et al noted that PpDNMT3a and PpDNMT3b, the two DNMT3 orthologs encoded by the basal plant Physcomitrella patens, are not orthologs of mammalian DNMT3A and DNMT3B, respectively. Therefore, to minimize such nomenclature confusions, any DNMTs that belong to either the DNMT3 or DRM clades indicated in Figure S6 are collectively referred to as ‘DNMT3’ throughout the paper (see Figure S2 for overview).

      CoPAP analysis revealed that CDCA7 and HELLS are dynamically lost in the Hymenoptera clade and either co-occurs with DNMT3 or DNMT1/UHRF1 loss, which seems important. Unfortunately, the authors do not provide sufficient information in their figures or supplementary data about what is already known regarding DNA methylation levels in the different Hymenoptera species to further consider a potential impact of this observation. What is "the DNA methylation status" of all these organisms? This information cannot be easily retrieved from Table S2. A clearer presentation of what is actually known already would improve this paragraph.

      As the DNA methylation status of the species in the Hymenoptera clade has not been comprehensively tested, we initially did not include this information to Figure 7. However, during the course of the revision, we realized that Bewick et al.2017 (PMID 28025279) reported that DNA methylation is absent from the braconid wasp Aphidius ervi. We originally conducted synteny analysis on Aphidius gifuensis, which has a chromosome-level genome assembly with annotated proteins available in NCBI, whereas annotated proteins for Aphidius ervi protein are not available in NCBI. By conducting tBLASTn search against the Aphidius ervi genome, we now found that the presence/absence pattern of CDCA7, HELLS, DNMT1, DNMT3 and UHRF1 in Aphidius ervi is identical to that of Aphidius gifuensis, with a caveat that genome assembly of Aphidius ervi is at scaffold-level. In other words, DNA methylation, DNMT1 and CDCA7 are absent in Aphidius ervi, where 5mC is undetectable. Additionally, we also realized that the DNA methylation status reported for some species in Bewick et al. 2017 was inferred from the CpG frequency instead of the direct experimental detection of methylated cytosines. Therefore, we have amended Table S3 to indicate the presence of 5mC only for those species where this was experimentally tested. As such, we now consider the DNA methylation status of Fopius arisanus, which lacks DNMT1 and CDCA7, to be unknown.

      Altogether, among the 17 Hymenoptera species that we analyzed (listed in the amended Table S3), the 8 species that have detectable DNA methylation all encode CDCA7, whereas the 2 species that do not have detectable DNA methylation lack CDCA7. We will note this finding in the revised text, and include the known 5mC status in the new Figure 7.

      Furthermore, A. thaliana DDM1, and mouse and human Lsh/Hells are known to preferably promote DNA methylation at satellite repeats, transposable elements and repetitive regions of the genome. On the other hand, DNA methylation in insects and other invertebrates occurs in genic rather than intergenic regions and transposable elements (e.g. Bewick et al 2017; Werren JH PlosGenetics 2013). It would be helpful to elaborate on these differences.

      We were aware of this interesting point, which was discussed in the third paragraph of the Discussion. To better illustrate this point, we now expanded the Discussion (page 14) to speculate about the role of DNA methylation in insects, where emerging evidence indicates the importance of DNMT1 in meiosis. It should be noted that, in the Arabidopsis ddm1 mutant, reduction of CG methylation of gene bodies is common (50% of all methylated euchromatic genes) (Zemach et al, 2013). In addition, hypomethylation is not limited to satellite repeats and transposable elements in ICF patients defective in HELLS or CDCA7 (Velasco et al., 2018).

      Reviewer #2 (Public Review):

      In this manuscript, Funabiki and colleagues investigated the co-evolution of DNA methylation and nucleosome remolding in eukaryotes. This study is motivated by several observations: (1) despite being ancestrally derived, many eukaryotes lost DNA methylation and/or DNA methyltransferases; (2) over many genomic loci, the establishment and maintenance of DNA methylation relies on a conserved nucleosome remodeling complex composed of CDCA7 and HELLS; (3) it remains unknown if/how this functional link influenced the evolution of DNA methylation. The authors hypothesize that if CDCA7-HELLS function was required for DNA methylation in the last eukaryote common ancestor, this should be accompanied by signatures of co-evolution during eukaryote radiation.

      To test this hypothesis, they first set out to investigate the presence/absence of putative functional orthologs of CDCA7, HELLS and DNMTs across major eukaryotic clades. They succeed in identifying homologs of these genes in all clades spanning 180 species. To annotate putative functional orthologs, they use similarity over key functional domains and residues such as ICF related mutations for CDCA7 and SNF2 domains for HELLS. Using established eukaryote phylogenies, the authors conclude that the CDCA7-HELLS-DNMT axis arose in the last common ancestor to all eukaryotes. Importantly, they found recurrent loss events of CDCA7-HELLS-DNMT in at least 40 eukaryotic species, most of them lacking DNA methylation.

      Having identified these factors, they successfully identify signatures of co-evolution between DNMTs, CDCA7 and HELLS using CoPAP analysis - a probabilistic model inferring the likelihood of interactions between genes given a set of presence/absence patterns. As a control, such interactions are not detected with other remodelers or chromatin modifying pathways also found across eukaryotes. Expanding on this analysis, the authors found that CDCA7 was more likely to be lost in species without DNA methylation.

      In conclusion, the authors suggest that the CDCA7-HELLS-DNMT axis is ancestral in eukaryotes and raise the hypothesis that CDCA7 becomes quickly dispensable upon the loss of DNA methylation and/or that CDCA7 might be the first step toward the switch from DNA methylation-based genome regulation to other modes.

      The data and analyses reported are significant and solid. However, using more refined phylogenetic approaches could have strengthened the orthologous relationships presented. Overall, this work is a conceptual advance in our understanding of the evolutionary coupling between nucleosome remolding and DNA methylation. It also provides a useful resource to study the early origins of DNA methylation related molecular process. Finally, it brings forward the interesting hypothesis that since eukaryotes are faced with the challenge of performing DNA methylation in the context of nucleosome packed DNA, loosing factors such as CDCA7-HELLS likely led to recurrent innovations in chromatin-based genome regulation.

      Strengths:

      • The hypothesis linking nucleosome remodeling and the evolution of DNA methylation.

      • Deep mapping of DNA methylation related process in eukaryotes.

      • Identification and evolutionary trajectories of novel homologs/orthologs of CDCA7.

      • Identification of CDCA7-HELLS-DNMT co-evolution across eukaryotes.

      Weaknesses:

      • Orthology assignment based on protein similarity.

      • No statistical support for the topologies of gene/proteins trees (figure S1, S3, S4, S6) which could have strengthened the hypothesis of shared ancestry.

      We appreciate the reviewers’ accurate summary, nicely emphasizing the importance of the our study. We agree that better phylogenetic analysis for orthology assignment will strengthen our conclusion. Having anticipated this weakness, however, we specifically conducted a CoPAP analysis exclusively for Ecdysozoa specieswhich supported our major conclusion, as orthology assignment is straightforward in these species. For example, if we conduct BLAST search against the clonal raider ant Oocerea biroi protein dataset using human HELLS as a query, top 1 hit is a protein sequence annotated as one of three isoforms of ‘lymphoid-specific helicase” (i.e., HELLS), with E value 0.0. Similarly, the top BLAST hit from the Oocerea biroi dataset using human DNMT1 as a query also returns with isoforms of DNMT1 with E value 0.0. As such, there are little disputes in orthology assignment in Ecdysozoa. Outside of Chordata, classification of DNMTs, particularly in Excavata and SAR, require more extensive identification in these supergroups. Our current orthology assignment for the major targets in this study (HELLS, DNMT1, DNMT3, DNMT5) is largely consistent with published results (Ponger et al., 2005 PMID 15689527; Huff et al, 2014 PMID 24630728; Yaari et al., 2019 PMID 30962443; Bewick et al., 2019 PMID 30778188). However, while we are preparing this response and re-crosschecking our assignments with these references, we realized that we had erroneously missed DNMT5 orthologs in Leucosporidium creatinivorum, Postia placenta, Armillaria gallica and Saitoella complicata, and a DNMT6 ortholog in Fragilariopsis cylindrus. We also recognized that DNMT4 orthologs were identified in Fragilariopsis cylindrus and Thalassiosira pseudonana in Huff et al 2014 (PMID 24630728), but in our phylogenetic analysis, these proteins form a distinct clade between DNMT1/Dim-2 and DNMT4 (original Figure S6), although the confidence level of this classification by Huff et al was not strong. To resolve this potential confusion in DNMT annotations, we generated new multiple sequence alignments with MUSCLE v5 and IQ-TREE 2 (maximum likelihood-based method, coupled with selection of optimal substitution model and bootstrapping). The tree topology was not significantly altered between the two methods, except for the unambiguous location of orphan DNMTs and DNMT4-related proteins. To avoid unnecessary confusion in the DNMT annotations, we decided to present MUSCLE-IQ- TREE for the DNMT phylogenetic tree and classification (new Fig. S6). The raw results of IQ-TREE analysis for CDCA7/zf-4CXXC_R1, HELLS SNF2 domain, and DNMTs are included as Dataset S1-S3. We then conducted CoPAP analysis using the corrected classification. As it is not clear a priori if fungal specific CDCA7-like proteins (now referred to as CDCA7F with class II zf-4CXXC_R1) should be considered CDCA7 orthologs, we conducted CoPAP against two lists; the first list includes CDCA7F in the CDCA7 group, whereas the second list includes a separate category of class II zn-4CXXC_R1, which includes CDCA7F. Both results show slightly different topology in the coevolutionary linkages but support our major conclusion that CDCA7 coevolved with DNMT1-UHRF1 and HELLS. These new CoPAP results are shown in Fig. S7.

      Reviewer #1 (Recommendations For The Authors):

      Summary

      Last sentence: "...a unique specialized role of CDCA7 in HELLS-dependent DNA methylation maintenance...". What do the authors mean?

      Our analysis strongly indicates that CDCA7 is dispensable in systems lacking HELLS and DNMT (particularly DNMT1). In other words, species preserve CDCA7 only if it has both HELLS and DNMT1 (or in some cases DNMT5). The importance of HELLS homologs in DNA methylation has been extensively studied in human, mouse and plants. However, in these studies, substantial DNA methylation remains despite the defective HELLS/DDM1 (especially in euchromatic regions). Additionally, there are species (e.g., Bombyx mori) that have DNMT1 and detectable DNA methylation but lacks HELLS and CDCA7. These observations suggest that the role of CDCA7 must be unique and specialized in a way that it is strongly coupled to HELLS-dependent DNA methylation (but not HELLS-independent DNA methylation), and that this function of CDCA7 seems to be inherited from the last eukaryotic common ancestor.

      Introduction

      • page 3: "DNMTs are largely subdivided into maintenance and de novo DNMTs" - Which species are the authors referring to?

      As described in the cited reference (Lyko 2018), maintenance DNA methylation and de novo DNA methylation are well accepted functional classification of DNA methylation. It is also currently accepted that distinct DNMTs execute maintenance DNA methylation or de novo DNA methylation, although crosstalk between these processes has been reported. Therefore, we stated, “DNMTs are largely subdivided into maintenance DNMTs and de novo DNMTs”, and this subdivision is species independent.

      • page 3" "Maintenance DNMTs recognize hemimethylated CpGs. " - Can the authors please define the species and/or literature they are referring to? This seems important to clarify. For instance, mammalian DNMT1 requires a co-factor, UHRF1, which recognizes hemimethylated DNA and H3K9me3 (Bostick et al 2007).

      We meant to describe, “Maintenance DNMTs directly or indirectly recognize hemimethylated CpGs…”. The specific requirement of UHRF1 for DNMT1-mediated maintenance DNA methylation is explained in the subsequent sentence “In animals…”. In the case of Cryptococcus neoformans, DNMT5 recognizes hemimethylated DNA independently of UHRF1 in vitro to execute maintenance methylation.

      • page 3: The authors may want to mention that A. thaliana also has a de novo DNA methyltransferase, DRM2, a homolog of the mammalian DNMT3 methyltransferases. This seems important, since they show in Figure 1 that a de novo methyltransferase is found in A. thaliana. Also, later in their manuscript they mention plant de novo DNA methylation.

      Thanks for pointing this out. As shown in Figure 5, we classified plant DRMs as DNMT3-like proteins, but we now note this in the Introduction.

      • page 3: Sentence starting "In about 50% of ICF patients,..." - Why is DNMT3B referred to as "de novo", is it not a de novo DNA methyltransferase?

      You are correct. Quotation marks are now removed to avoid unnecessary confusion.

      • page 4: Sentence starting "Indeed, the importance of HELLS/CDCA7 in DNA methylation maintenance...", - Which references (Han et al., 2020; Ming et al., 2021; Unoki, 2021; Unoki et al., 2020) provide experimental evidence for a role of CDCA7 in DNA methylation maintenance by DNMT1?

      Thanks for pointing out the typo. “/CDCA7” is now removed.

      • page 5: Sentence starting "Indeed, it has been shown that DNMT3A..." - Should DNMTB be DNMT3B?

      Yes. This is now corrected.

      Results

      • Page 5: Sentence starting "However, we identified a protein..." - No A. thaliana reference?

      We added Zemach et al 2010, and Chan et al 2005.

      • Figure 2B: "ICF4 mutations" should this be "ICF3 mutations"?

      • Figure 3: "ICF4 mutations" should this be "ICF3 mutations"?

      • Figure 4: "ICF4 mutations" should this be "ICF3 mutations"?

      • Figure S1: Orange colored "CDC7L (fish), CDC7e, CDC7, CDC7L" is there an "A" missing?

      • Figure S5: "ICF4 mutations" should this be "ICF3 mutations"?

      These typos are now corrected. Thank you.

      • Figure S7: What is "CDCA7(II)" referring to, "zf-4CXXC_R1 class II (plants)"?

      The original CDCA7 (II) included proteins with class II zf-4CXXC_R1, which are found in plants, fungi, Acanthamoeba castellanii and Amphimedon. Among those species, the prototypical CDCA7 orthologs are absent only in fungi. It has been a priori unclear if fungal proteins with class II zf-4CXXC_R1 (now we term CDCA7F) should be included in CDCA7 for CoPAP analysis. Although we originally included CDCA7F in CDCA7, we now show the results of two analyses. In the first one (Fig. S7A) CDCA7F was included in CDCA7, whereas in in the second one (Fig. S7B) CDCA7F was included in the separate category of class II zf-4CXXC_R1. Topologies of two results are slightly different, but they both show coevolutionary linkage between the CDCA7 and DNMT1- UHRF1 cluster.

      • Figure 4 and 5: In the case of preliminary genome assemblies what is the difference between empty squares with dotted lines and filled squares without dotted lines?

      As it is difficult to be certain of a gene’s absence (did the species lose the gene or is it simply not annotated due to incomplete genome coverage?), we illustrated the absence of a gene in preliminary genome assemblies with an empty square with dotted outline. Since the presence of a gene is evident regardless of the level of genome assembly, the presence of a gene is represented with filled squares with solid lines, even for preliminary genome assemblies.

      • Figure 1: Why was Mus musculus - one of the main model organisms used for many DNA methylation studies not included? Also what are empty and filled squares?

      Filled and empty squares indicate the presence and absence of the indicated genes, respectively. Clarifying statement is now added in the figure legends. Mus musculus is now included in the figure.

      • Figure S2: Adding the existence of DNA methylation and DNMT3 in the bottom right part of the figure (overall no of species) would make this panel more informative

      We included this overview to summarize the co-retention of CDCA7, HELLS and maintenance DNMTs across the analyzed species. We decided not to include DNA methylation, since DNA methylation status is known for only a fraction of the listed species. Inclusion of DNMT3 will introduce too many possible gene presence-absence combinations to convey a clear message. However, we now mention in the revised text (page 11, second paragraph) that unlike the prevalent co-retention of DNMT1 in species with CDCA7, we identified several species that possess CDCA7, HELLS and DNMT1 but lack DNMT3. These examples include insects such as the bed bug Cimex lectularius and the red paper wasp Polistes canadensis.

      • Page 6: Sentence starting "This leucine zipper sequence is highly conserved..." - Figure/Reference missing?

      The sequence alignment of the leucine zipper is now shown in Fig. 2C.

      • page 6: Sentence starting "In contrast to zf-4CXXC_R1 motif-containing proteins..." - The authors may want to mention the role of the CXXC zf domain in KDM2A/B, DNMT1, MLL1/2 and TET1/3 and what the CDCA7 CXXC zf domain is/could be required for.

      The notion that zf-CXXC binds to nonmethylated CpG is now included. Due to the substantial difference between zf-CXXC and zf-4CXXC_R1, we hesitated to relate the function of zf-4CXXC_R1 with zf-CXXC, but we now discuss a potential role of zf- 4CXXC_R1 in sensing DNA methylation status in Discussion (Page 13).

      • page 7: Sentence starting "Second, the fifth cysteine is replaced..."- Zoopagomycota" - Figure 4A does not have this labeling, one has to deduce this from Figure 4B.

      We fixed this by including the list of Zoopagomycota species in the main text.

      • page 7: Sentence containing "Neurospora crassa DMM-1 does not directly regulate DNA methylation or demethylation but rather..." - How does the information about DMM- 1 relate to what is shown in Figure 4B, to CDCA7, HELLS and DNMTs? Please clarify.

      Both Neurospora DMM-1 and Arabidopsis IBM1 contain the JmjC domain and are implicated in an indirect control mechanism of DNA methylation. Since it has never been pointed out that they have a divergent zf-4CXXC_R1 domain, which clearly shares the origin with CDCA7 proteins, we thought that this is important to note. We realized that we did not clearly mark Neurospora XP-956257 as DMM-1 in Fig. 4B. This is now fixed.

      • Heading "Systematic identification of CDCA7, HELLS and DNMT homologs in eukaryotes". When mentioning CDCA7 the authors may want to decide on the use of one consistent definition of "prototypical (Class I) CDCA7-like proteins (i.e. CDCA7 orthologs)" "Class I CDCA7 proteins". Constantly changing the way how they refer to these proteins is very confusing.

      We now make it clear that we call proteins with class I zf-CXXC_R1 motif CDCA7 orthologs. We also define class II zf-4CXXC_R1 (as those with a substitution at ICF- associated glycine residue). Since no clear CDCA7 orthologs can be found in fungi, we now call fungi proteins with class II zf-4CXXC_R1 “CDCA7F”, implying its ambiguous orthology assignment.

      Under this heading there is also no mention of DNMTs. Instead, the authors introduce DNMTs under the heading "Classification of DNMTs in eukaryotes" - Please clarify.

      This is now corrected.

      • page 9: Sentence containing "... presence of DNMT1, UHRF1 and CDCA7 outside of Viridiplantae and Opisthokonta is rare". What does "rare" mean? How is UHRF1 relevant here?

      Among the 32 species outside of Viridiplantae and Opisthokonta, only the Acanthamoeba castellanii genome encodes clear orthologs of DNMT1, UHRF1 and CDCA7. Although it is often difficult to deduce if the selected panel of species is a reasonable representation, we think that it is not unreasonable to state that Acanthamoeba is a rare case to encode this set of proteins outside of Viridiplantae and Opisthokonta. We include UHRF1 since it is a well-established activator of DNMT1, and indeed our CoPAP analysis showed a tight coevolution of UHRF1 with DNMT1. Outside of Viridiplantae and Opisthokonta, only Acanthamoeba castellanii and Naegleria gruberi encode UHRF1. Interestingly, these two species also encode CDCA7 and HELLS.

      Having said that, we rephrased this sentence, which reads; “Species that encode a set of DNMT1, UHRF1, CDCA7 and HELLS are particularly enriched in Viridiplantae and Metazoa.”

      • page 11: Sentence containing "..., that the function of CDCA7-like proteins is strongly linked to HELLS and DNMT1,..." What do the authors mean with "the function of CDCA7-like proteins"? And what happened to DNMT3?

      Our observation that almost all species that contain CDCA7 (including fungal CDCA7F) also have DNMT1 and HELLS, despite the frequent loss of these genes in species that do not contain CDCA7, indicates “that the function of CDCA7-like proteins is strongly linked to HELLS and DNMT1”. We found only 2 species that possesses CDCA7 (class I or class II) but not DNMT1 among the panel of 180 species. These 2 exceptional species, Naegleria gruberi and Taphrina deformans, do encode UHRF1-like proteins and a DNMT (an orphan DNMT in N. gruberi and DNMT4 in T. deformans). In contrast, we found 26 species that possess CDCA7 (or CDCA7F) but not DNMT3 (Table S1), so the linkage between CDCA7 and DNMT3 is weaker.

      • page 11: Sentence containing "..., CDCA7 is lost from this gene cluster in parasitoid wasps, including Ichneumonoidea wasps and chalcid wasps". This sentence is confusing because already in an earlier paragraph the authors say that "Microplitis demolitor lost CDCA7" and in the following sentence they say "...among Ichneumonoidea wasps, CDCA7 appears to be lost in the Braconidae clade, ...". It would greatly help this reader if the authors could streamline these sentences and also decide on whether CDCA7 is lost in M. demolitor or CDCA7 appears to be lost in M.demolitor.

      The confusion was in part due to the difficulty in differentiating between the true loss of a gene versus its apparent absence in a species due to an incomplete genome assembly, including for of M. demolitor. To verify that the loss of CDCA7 was not due to gaps in the genome assembly, we executed the synteny analysis. However, we edited this section to improve the readability (Page 12-13).

      What could be the role for HELLS/CDCA7 in insect DNA methylation? In several cases, the authors analyses reveal co-evolutionary links between DNMT3 (DNMT3A?) and CDCA7/HELLS. I do not understand why this finding is not really discussed by the authors. Instead there is a strong focus on replication-uncoupled DNA methylation maintenance. Could the authors elaborate why?

      The role of DNA methylation in insects is largely unclear, so discussion must be highly speculative. A recent finding in the clonal raider ant, showing that DNMT1 is not essential for development but is critical for oogenesis, pointed toward a possible more universal role of DNA methylation in meiosis. Stimulated from a finding in Neurospora, where DNA methylation is required for homolog pairing during meiosis, we discuss a speculative model that DNA methylation status acts as a hallmark to distinguish between healthy/young DNA and old/mutated (or competitive/pathogenic) DNA at homolog pairing during meiosis (page 14).

      Regarding the cases where CDCA7 and DNMT3 are co-lost, we had discussed about this phenomenon at the last section of Result, stating, “This co-loss of CDCA7 and DNA methylation (together with either DNMT1-UHRF1or DNMT3) in braconid wasps suggests that evolutionary preservation of CDCA7 is more sensitive to DNA methylation status per se than to the presence or absence of a particular DNMT subtype.” Please note that we found several lineages that lacks CDCA7 but has DNMT1 (and DNMT3), whereas almost all species that has CDCA7 also has DNMT1 (but not necessarily DNMT3). Supported with our CoPAP analyses, our results indicate the tight functional link between CDCA7 and DNMT1, but it does not necessarily mean that CDCA7 does not play any role related to DNMT3 or de novo methylation. Clarification of this point and our speculation of how CDCA7 loss is linked to reduced requirement of DNA methylation are discussed in page 13 and 14 with additional texts.

      Discussion

      • page 12: Where is the data supporting. "... the red flour beetle Tribolium castaneum possesses DNMT1 and HELLS, but lost DNMT3 and CDCA7"?

      Figure 5, Figure S2 and Table S1. This is now noted in the text.

      • page 14: Based on which parts of their analyses or evidence from the literature can the authors speculate that "...the evolutionary arrival of HELLS-CDCA7 in eukaryotes might have been required to transmit the original immunity-related role of DNA methylation from prokaryotes to nucleosome-containing (eukaryotic) genomes"? Please clarify.

      This is inferred from the well-known role of DNA methylation in bacteria for defending against phage viruses. However, it was not correct to state that such a function was inherited from prokaryotes. It should be stated that it was inherited from the last universal common ancestor (LUCA). We also admit that it is not clear if such an immunity-related role was inherited from LUCA, or if it emerged through convergent evolution. Therefore, we amended this description to emphasize our hypothesis that the advent of CDCA7 was “a key step to transmit the DNA methylation system from the LUCA to the eukaryotic ancestor with nucleosome-containing genomes”.

      Supplementary Figures/Tables

      • page 26: Table S2 and Table S3, it seems that these tables show data that supports what is shown in Figure 7 and not Figure 5.

      You are correct. Thank you for pointing out the typos.

      Has the methylation status been assessed in C. glomerata, C. typhae, Chelonus insularis, Diachasma alloeum or Aphidius gifuensis? Please clarify in Table S2.

      Not to our knowledge. However, as we realized that absence of DNA methylation in Aphidius ervi was previously reported (Bewick et al 2017), we now included this data together with presence/absence analysis of DNMT1, UHRF1, DNMT3, CDCA7 and HELLS. Known presence/absence of DNA methylation is now shown in Fig.7.

      Reviewer #2 (Recommendations For The Authors):

      Recommendation to strengthen the paper:

      1) Phylogenetics:

      • Test and report the appropriateness of the substitution model used in protein alignments/trees.

      • Use Maximum likelihood methods and/or MCM Bayesian inference to build and report trees with well supported topologies. This is required to properly assign orthology (shared ancestry). This will avoid false interpretation due to technical limitation of similarity-based phylogenies (without statistical support). Figure S1, S3, S4 and S6.

      To address these points, we made new multisequence alignments using MUSCLE v6 and generated phylogenetic trees using the maximum likelihood-based IQ-TREE 2, where multiple models were screened. A consensus tree was generated after 1000 bootstrap replicates from the best alignment and model. The topology and assignment of these new trees were largely consistent with the original trees, except for some corrections in DNMT assignment as discussed below.

      1. We realized that we erroneously missed DNMT5 orthologs of Leucosporidium creatinivorum, Postia placenta, Armillaria gallica and Saitoella complicata., and DNMT6 orthologs from Fragilariopsis cylindrus reported in Huff et al 2014 (PMID 24630728). They are now included in the new list and CoPAP analysis.

      2. DNMT4 orthologs were identified in Fragilariopsis cylindrus and Thalassiosira pseudonana by Huff et al 2014 (PMID 24630728), but in our original phylogenetic analysis, these proteins form a distinct clade between DNMT1/Dim-2 and DNMT4. The new tree and classification are more consistent with Huff et al, so we present the new tree in Fig. S6 and conducted the classification based on this tree.

      Beside Fig. S6, we decided to maintain original Fig. S1, S3 and S4 (with a few adjustments) for better visibility, but we included the results of IQ-TREE analysis as Dataset S1-S3.

      The CoPAP analysis based on the revised assignment slightly changed the topology of coevolutionary linkages. In addition, we obtained a slightly different result depending on whether fungal specific CDCA7 with class II zn-4CXXC_R1 (now referred to as CDCA7F) is included as a CDCA7 ortholog or not. Despite this difference, we reproducibly observed the coevolutionary linkage between CDCA7 and DNMT1- UHRF1.

      • Be more careful with wording: RBH is not sufficient to call gene/proteins orthologs (e.g. Page 8). The above mentioned method will help you support this claim (+ synteny when you can).

      We were aware of this issue. This is why we conducted phylogenetic tree building based on sequence alignment of full-length HELLS (Fig. S3) and SNF2 domain only (Fig. S4), as explained in the text. We found that the RBH criterion is robust in Metazoa; orthologs are easily recognizable with very low E-value (0.0) and extensive homology over the full length of the protein, while synteny is not practical to employ in the diverse set of species.

      • Also, use "co-retention" or "co-evolution" but not "co-selection" when describing CoPAP results - as CoPAP does not test for signature of natural selection.

      This is a good point and is now corrected.

      • The statistics (p-val...) underlying the CoPAP analyses should be explained.

      The explanation is now added in Methods section.

      “A method to calculate p-value for CoPAP was described previously (Cohen et al., 2012, PMID 22962457). Briefly, for each pair of tested genes, Pearson's correlation coefficient was computed. Parametric bootstrapping was used to compute a p-value by comparing it with a simulated correlation coefficient calculated based on a null distribution of independently evolving pairs with a comparable exchangeability (a value reporting the likelihood of gene gain and loss events across the tree).”

      2) Figure S2 and S3 could be improved for readability

      After consideration of this criticism, we decided to keep their original formats for following reasons.

      Figure S2. The purpose of this list is to better visualize the comprehensive list shown in Table S2. A consolidated list is already shown in Figure 5. An alternative choice is to make a diagram where individual species names are unreadable. This kind of presentation is seen in many published papers, but we found that they are not helpful to check the details. As this is a supplementary figure, we prefer to show the detailed data that can be visible without a specialized software.

      Figure S3. This figure is included to show which SNF2 family proteins are more likely to be misassigned as HELLS/DDM1 orthologs. We believe that the figure serves this purpose.

      3) What is the meaning of the coloring patterns of ICF residues in znf?

      ICF residues are highlighted as light blue in the schematics to indicate its conservation. In the alignment, the coloring reflects the level of conservation within the shown set of proteins, and the choice of coloring was set by Jalview.

      4) To improve clarity: the introduction could be more focused on evolutionary considerations and functional link between CDCA7-HELLS and DNMTs.

      We revised the first paragraph of the introduction to illustrate this point.

      5) Could indicate the CDC7A loss / DNA methylation hypothesis in the abstract.

      We now included this hypothesis in the Abstract.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study provides insights into the early detection of malignancies with noninvasive methods. The study contained a large sample size with external validation cohort, which raises the credibility and universality of this model. The new model achieved high levels of AUC in discriminating malignancies from healthy controls, as well as the ability to distinguish tumor of origin. Based on these findings, prospective studies are needed to further confirm its predictive capacity.

      However, there are several concerns about the manuscript, which needs to be clarified or modified.

      1) The use of "multimodal model" will definitely increase workload of the testing. From the results of this manuscript, the integration of multimodal data did not significantly outperform the EM-based model. Is this kind of integration necessary? Is that tool really cost-effective? The authors did not convince me of its necessity, advantages, and clinical application.

      To provide further evidence supporting the advantages of using multimodal model (stack model) over EM-based model, we performed the DeLong test and provided data in Table S7 and Figure S6. Our data show that the stack model outperformed the EM-based model, with significantly higher AUC (AUC difference = 0.0286, p<0.0001). Moreover, the stack model exhibited significantly higher sensitivity for detecting cancer patients of five cancer types in both discovery (73.8% versus 59.5%, p<0.0001, Figure S6A) and validation cohort (72.4% versus 61.5%, p=0.0002, Figure S6B) at comparable specificity of > 95%. The number of misclassified cases were lower when using stack model as compared to the EM-based model (Figure S6C and S6D). Strikingly, we observed that the stack model significantly improved the sensitivity for detecting lung cancer patients compared to the EM based model in both discovery (78.5% versus 44.1%, Figure S6A) and validation cohort ( 83.7% versus 55.8%, Figure S6B), indicating that other ctDNA signatures are also the important biomarkers for detecting lung cancer. Therefore, we conclude that the combination of multiple signatures of ctDNA, ie. the multimodel approach, could improve the sensitivity of multi-cancer detection.

      Given the same wet lab protocol, the difference in computational time between a single EM-based model and the stack model is about 10-11 minutes per sample, but the real difference in analysis time can be reduced to ~1 min/sample by parallelization. With regards to the wet lab protocol, an important novelty of SPOT-MAS technology is its all-in-one approach that enables simultaneous analysis of different ctDNA signatures using a single blood draw and a single library reaction, greatly reducing the experimental cost. Thus, we strongly argue that our approach improves the detection sensitivity by increasing the breadth of ctDNA analysis while achieving cost effectiveness for sample preparation and sequencing with negligible trade-off of analysis time .

      We have also added the following sentences in the discussion to clarify this point. (Line 618-625)

      “Moreover, this study showed that the feature of EM achieved the highest performance among the five examined ctDNA signatures in discriminating cancer from healthy controls (Figure S6). Importantly, we found that combining EM with other ctDNA signatures in a stack model could further improve the sensitivity for detecting cancer samples, with significant improvement for lung cancer patients (Figure S6A and S6B). These findings highlighted that the multimodal analysis of multiple ctDNA signatures by SPOT-MAS could increase the breadth of ctDNA feature analysis, thus enhancing the detection sensitivity while maintaining the low cost of sample preparation and sequencing.”

      2) The baseline characteristics of part of the enrolled patients are not clear. It seems that some of the cancer patients were diagnosed only by imaging examinations. The manuscript described "staging information was not available for 25.7% of cancer patients, who were confirmed by specialized clinicians to have non-metastatic tumors". I have no idea how did this confirmation make? According to clinicians' experience only?

      Our study only recruited cancer patients with non-systemic-metastatic stages (Stage I-IIIA) in which cancer is localized to the primary sites and has not spread to other organs. We excluded patients who were diagnosed with metastatic stage IIIB and IV cancer. All healthy subjects were confirmed to have no history of cancer at the time of enrollment. They were followed up at six months and one year after enrollment. The majority of cancer patients (74.3%) were confirmed to have cancer by abnormal imaging examination and subsequent tissue biopsy confirmation of tumor staging and metastasis status. For patients with unavailable staging information (25.7%), they initially went to the study hospitals for imaging examination. Upon receiving positive imaging results (MRI scan or CT scan), they moved to another hospital for surgery, leading to missing tumor staging information at the original study hospitals. The metastasis status of these patients were later obtained via communications between the clinicians at the study hospitals and the clinicians at the surgery hospitals, subject to existing data sharing agreement between the two hospitals. For those with metastatic cancer or unclear metastatic status, they were excluded from our study.

      We have added the following sentences in the method (Line 127-135) and discussion section (Line 679-688).

      “Cancer patients were confirmed to have cancer by abnormal imaging examination and subsequent tissue biopsy confirmation of malignancy. Cancer stages were determined by the TNM (Tumor, Node, Metastasis) system classification according to the American Joint Committee on Cancer and the International Union for Cancer Control. Our study only recruited cancer patients with non-systemic-metastatic stages (Stage I-IIIA) in which cancer is localized to the primary sites and has not spread to other organs. We excluded patients who were diagnosed with metastatic stage IIIB and IV cancer. All healthy subjects were confirmed to have no history of cancer at the time of enrollment. They were followed up at six months and one year after enrollment to ensure that they did not develop cancer.”

      “For patients with unavailable staging information, their initial imaging examinations were conducted at the study hospitals. However, subsequent tests and surgical procedures were performed at a different hospital, as per the patients' preferences. Consequently, the original study hospitals lacked access to comprehensive tumor staging data. To address this limitation, the metastasis status of these patients was obtained via communication channels between the clinicians at the study hospitals and those at the surgery hospitals. This enabled the retrieval of limited information, adhering to an established data-sharing agreement between the two institutions. To maintain the robustness of our analysis, patients diagnosed with metastatic cancer or those with indeterminate metastatic status were subsequently excluded from the study.”

      3) It seems that one of the important advantages of this new model is the low depth coverage in comparing to previous screening models for cancer. The authors should discuss more on the reason why the new model could achieve comparable predictive accuracy with an obviously lower sequencing depth.

      We thanked the reviewer for the suggestion. We have added the following sentences in the discussion to explain why our assay could achieve good performance at low depth sequencing. (Line 571-584)

      “However, the low amount of ctDNA fragments in plasma samples of patients with early-stage cancer as well as the molecular heterogeneity of different cancer types are known as the major challenges for liquid biopsy based multi-cancer detection assays. Thus, sequencing at high depth coverages is required to capture enough informative cancer DNA fragments in the finite plasma sample to achieve early cancer detection. In support to this notion, many groups (1-4) have developed assays that exploited high depth coverage of sequencing to detect ctDNA fragments in plasma of early stage cancer patients. However, this strategy might not be cost effective and feasible for population wide screening in developing countries. Alternatively, we argued that increasing breadth of ctDNA analysis could maximize the ability to detect ctDNA fragments with heterogeneous genetic and epigenetic changes at shallow sequencing depth, thus improving the sensitivity for multicancer detection. To demonstrate the feasibility of this approach, we built a stacking ensemble model to combine nine different ctDNA signatures and demonstrated its superior performance on cancer detection in comparison to single-feature models (Figure 7B and 7C).”

      4) The readability of this manuscript needs to be improved. The focus of the background section is not clear, with too much detail of other studies and few purposeful summaries. You need to explain the goals and clinical significance of your study. In addition, the results section is too long, and needs to be shortened and simplified. Move some of the inessential results and sentences to supplementary materials or methods.

      We thank the reviewer for these constructive suggestions. Accrodingly, we have reduced the details of other studies (Line 85-91) as follows:

      “In recent years, there has been considerable interest in exploring the potential of ctDNA alterations for early detection of cancer (5, 6). One such approach is the PanSeer test, which uses 477 differentially methylated regions (DMRs) in ctDNA to detect five different types of cancer up to four years prior to conventional diagnosis (7). The DELFI assay employs a genome-wide analysis of ctDNA fragment profiles to increase sensitivity in early detection (1). Recently, the Galleri test has emerged as a multi-cancer detection assay that analyses more than 100,000 methylation regions in the genome to detect over 50 cancer types and localize the tumor site (8).”

      We have modified the text in the introduction to explain the goals and clinical significance of our study (Line 111-123)

      “In this study, we aimed to expand our multimodal approach, SPOT-MAS, to comprehensively analyze methylomics, fragmentomics, DNA copy number and end motifs of cfDNA and evaluate its utility to simultaneously detecting and locating cancer from a single screening test.” “Our findings demonstrate that the multimodal approach of SPOT-MAS enables profiling of multiple ctDNA signatures across the entire genome at low sequencing depth to detect five different cancer types in their early stages. Beyond detecting the presence of cancer signals, our assay was able to predict the tumor location, which is important for clinicians to fast-track the follow-up diagnostic and guide necessary treatment. Thus, SPOT-MAS has the potential to become a universal, simple, and cost-effective approach for early multi-cancer detection in a large population.”

      Reviewer #2 (Public Review):

      The authors tried to diagnose cancers and pinpoint tissues of origin using cfDNA. To achieve the goal, they developed a framework to assess methylation, CNA, and other genomic features. They established discovery and validation cohorts for systematic assessment and successfully achieved robust prediction power.

      1) Still, there are places for improvement. The diagnostic effect can be maximized if their framework works well in early-stage cancer patients. According to Table 1, about 10% of the participants are stage I. Do these cancers also perform well as compared to late stage cancers?

      We have performed the comparison of SPOT-MAS performance on different stages and provided the data in Supplementary table S8 and Supplementary Figure S4J and S4L. Our data showed that SPOT-MAS achieved lower sensitivity for detecting stage I and II cancers as compared to stage IIIA cancers in both discovery (61.54% and 69.82% for stage I and II respectively versus 78.67% for stage IIIA, Supplementary table 8) and validation cohort (73.91% and 62.32% for stage I and II, respectively versus 88.31% for stage IIIA, Supplementary table 8). This suggested that cancer stages can influence the performance of our models.

      2) Can authors show a systematic comparison of their method to other previous methods to summarize what their algorithm can achieve compared to others.

      We have conducted a systematic comparison of our method with others in the Supplementary Table S11.

      Reviewer #1 (Recommendations For The Authors):

      There are still points for the authors to clarify and consider for incorporation into revision.

      • Please first clarify the issues mentioned in "public review". Several complements are needed.

      We have addressed all of the reviewer’s comments in “public review”.

      1) Line 72-73: Different approaches of early cancer screening assays have different features, application scenarios, and of course, limitations. It's too vague to describe in this way. More importantly, diagnosis of malignancies relies on pathological diagnosis, I don't think the results of unsuccessful screening would be overdiagnosis and overtreatment. That's overstatements.

      We have rewritten the statement as follows (Line 72-75)

      “Although currently guided screening tests have each been shown to provide better treatment outcomes and reduce cancer mortality, some of them are invasive, thus having low accessibility. Importantly, most of them are single cancer screening tests, which may result in high false positive rates when used sequentially.”

      2) Line 115-130: The findings in this study shouldn't be introduced here.

      We have removed this section.

      3) Line 496-498: It surprised me that the model performed even better in independent validation cohort, which is quite different from the usual situations. Please explain it.

      We agree with the reviewer that model performance in independent validation cohort is often lower than in discovery cohort. In our case, we have carefully confirmed our data by utilizing cross-validation (CV). Cross-validation is a widely used process in which the data being used for training the model is separated into folds or partitions and the model is trained and validated for each fold; the performance estimates are then calculated to obtain mean and confidence interval (GraphPad Prism, Wilson/Brown method). To further confirm our findings, we have increased the cross-validation fold into 50, and consistently detected no significant difference in the performance between Discovery and Validation cohorts (p=0.1277, DeLong’s test).

      We have added the following sentence in the discussion to explain this (Line 633-635)

      “Despite a slightly higher AUC value in the validation cohort compared to the discovery cohort, no significant differences in AUC values were observed between the two cohorts at CV of 10 or 50 (p=0.1277, DeLong’s test).”

      4) Line 499-501: For the cut-off value selection, the authors thought that for cancer screening, specificity is more important than sensitivity? It's controversial. The sensitivity is only approximately 70%, I think that a missed diagnosis is even worse.

      We agree with the reviewer that both specificity and sensitivity are important metrics of a cancer detection test. However, there is a trade-off between sensitivity and specificity and the preference for either one of them remains a controversial topic. For a screening test, the preference should be determined by considering the prevalence of the disease, in this case - cancer. The low prevalence of cancers indicates that even a small percentage of false-positive test results due to low specificity of the assay, spread across a national population, would hugely increase the demand for confirmatory imaging as well as biopsy sampling of imaging-detected benign abnormalities (9). Thus, false positives have obvious implications for health-care resources as well as patient well-being. Conversely, higher sensitivities will make sure that more cancer cases are detected and avoid delays in diagnosis. To mitigate the impact of insufficient sensitivity of a cancer screening test, it is important to consult the test-takers that current liquid biopsy tests should only be used as a complementary approach to the available diagnosis tests to increase rates of cancer detection. To be used as a stand-alone test, further work is required to improve its performance, with more focus on increasing sensitivity while maintaining high specificity.

      We have added the following sentences in the discussion to explain why we set a high threshold of specificity (Line 660-671)

      “For an effective screening test, careful consideration of disease prevalence, cancer in this context, is imperative. Given the low prevalence of cancers, even a small proportion of false-positive test results arising from reduced assay specificity, if extrapolated to a national population, could significantly escalate the need for confirmatory imaging and biopsy procedures for benign abnormalities detected during screening. Thus, false-positives can have substantial implications for both healthcare resources and patient well-being. Conversely, a screening test with high sensitivity ensures that most cancer cases are detected and minimizes delays in diagnosis. To address potential limitations posed by low sensitivity in cancer screening tests, we suggest that current liquid biopsy tests should be employed as a complementary approach to existing diagnostic methods to enhance cancer detection rates. To be used a stand-alone test, further work is required to improve its performance, with a particular emphasis on improving sensitivity while preserving high specificity.”

      5) The methylation profiles have been used broadly in ctDNA, while your also integrated the fragmentomics, copy number aberration and end motif into the new model. In the discussion section, it would be better to further compare your new model with several previous models based on conventional ctDNA methylation markers (10, 11) for early detection of malignancies. What are the advantages of adding the other two types of data? Why the new model could achieve comparable predictive accuracy with an obviously lower sequencing depth?

      We thank the reviewer for the suggestion. We have added the following sentences in the discussion to highlight the novelty of our multimodal approach. (Line 587-610)

      “Previous studies have reported that methylation changes at target regions could be exploited for detecting ctDNA in plasma of patients with early-stage cancer (10, 11).”

      “In addition to methylation alterations, recent studies have revealed that the DNA copy number, fragmentomics profile (1) and end motif profile (12) at genome wide scales have been shown as useful features for healthy-cancer classification. Therefore, we propose that the combination of these markers might provide added value to increase the performance of liquid biopsy assays. We demonstrated that the same bisulfite sequencing data could be used to identify somatic CNA (Figure 4), cancer-associated fragment length (Figure 5) and end motifs (Figure 6), highlighting the advantage of SPOT-MAS in capturing the broad landscape of ctDNA signatures without high cost deep sequencing. For cancer-associated fragment length, we pre-processed this data into five different feature tables to better reflect the information embedded within the data. Overall, we integrated multiple features of ctDNA including methylation, fragment length, end motif and copy number changes into a multi-cancer detection model and demonstrated that this approach could distinguish healthy individuals with patients from five popular cancer types. This strategy enables increased breadth of ctDNA analysis at shallow sequencing depth to overcome the limitation of low amount of ctDNA fragments in plasma samples as well as molecular heterogeneity of cancers.”

      Moreover, we have conducted a systematic comparison of our method with others in the Supplementary Table 11.

      6) Line 667-668: The wording should be modest. "Successfully detect and localize" is not appropriate.

      We have rewritten the sentence. (Line 713-716)

      “Our large-scale case-control study demonstrated that SPOT-MAS, with its unique combination of multimodal analysis of cfDNA signatures and innovative machine-learning algorithms, can detect and localize multiple types of cancer with high accuracy at a low-cost sequencing.”

      Reviewer #2 (Recommendations For The Authors):

      1) Are the patients and controls all from Vietnam? If I am not mistaken, it is hard to find demographic information for controls. Also it is not clear if samples from controls were processed simultaneously or at a same institution or using the same protocol etc.

      We thank the reviewer for asking this question. All cancer patients and controls are from Vietnam, who were recruited from five hospitals including Medic Medical Center, University Medical Center Ho Chi Minh City, Thu Duc City Hospital, National Cancer Hospital and Hanoi Medical University. At each research sites, blood samples from both cancer patients and healthy subjects were collected in in Streck Cell-Free DNA BCT tubes and subsequently transported to a central laboratory located in Medical Genetics Institute for cfDNA isolation, library preparation and sequencing. In a recent publication (10), we have investigated the impact of logistic time and hemolysis rates of blood samples collected from different clinical sites on cfDNA concentration and sequencing quality. We did not observe any noticeable impact of such variations on cfDNA concentrations or sequencing library yields. However, future analytical validation studies are required to evaluate the impact of variation in sampling technique across different clinical sites on the robustness or accuracy of assay results.

      We have added the following sentences in the discussion to highlight this important point (Line 696-704)

      “At each research sites, blood samples from both cancer patients and healthy subjects were collected in in Streck Cell-Free DNA BCT tubes and subsequently transported to a central laboratory located in Medical Genetics Institute for cfDNA isolation, library preparation and sequencing. In a recent publication (10), we have investigated the impact of logistic time and hemolysis rates of blood samples collected from different clinical sites on cfDNA concentration and sequencing quality. We did not observe any noticeable impact of such variations on cfDNA concentrations or sequencing library yields. However, future analytical validation studies using a larger sample size are required to evaluate the impact of variation in sampling technique across different clinical sites on the robustness or accuracy of assay results.”

      References

      1. Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm DC, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385-9.

      2. Cohen JD, Li L, Wang Y, Thoburn C, Afsari B, Danilova L, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926-30.

      3. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol. 2020;31(6):745-59.

      4. Stackpole ML, Zeng W, Li S, Liu C-C, Zhou Y, He S, et al. Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer. Nature Communications. 2022;13(1):5566.

      5. Constantin N, Sina AA, Korbie D, Trau M. Opportunities for Early Cancer Detection: The Rise of ctDNA Methylation-Based Pan-Cancer Screening Technologies. Epigenomes. 2022;6(1).

      6. Phan TH, Chi Nguyen VT, Thi Pham TT, Nguyen VC, Ho TD, Quynh Pham TM, et al. Circulating DNA methylation profile improves the accuracy of serum biomarkers for the detection of nonmetastatic hepatocellular carcinoma. Future Oncol. 2022;18(39):4399-413.

      7. Chen X, Gole J, Gore A, He Q, Lu M, Min J, et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nature Communications. 2020;11(1):3475.

      8. Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, et al. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell. 2022;40(12):1537-49.e12.

      9. Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic - implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18(5):297-312.

      10. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155-61.

      11. Luo H, Zhao Q, Wei W, Zheng L, Yi S, Li G, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Sci Transl Med. 2020;12(524).

      12. Jiang P, Sun K, Peng W, Cheng SH, Ni M, Yeung PC, et al. Plasma DNA End-Motif Profiling as a Fragmentomic Marker in Cancer, Pregnancy, and Transplantation. Cancer Discovery. 2020;10(5):664-73.

    1. Author Response

      Pancreatic phenotype reported by Wang et al., 2019 (PMID 30324491)

      The reported human knockout of SLC39A5 (homozygous for R311* allele) suggests that SLC39A5 is dispensable for embryonic development with no adverse effect on postnatal pancreatic development or function (Saleheen D, 2017). Indicative of conserved expression and function, Slc39a5 is non-essential in mice, with homozygous or heterozygous deletion of Slc39a5 resulting in elevated serum zinc (Fig. 2) and no resulting impairment in pancreatic development or function (Fig. S3, S4E-F, S5E-F, S6E-F, S7E-F, S8A-H).

      The observed antihyperglycemic effects in the Slc39a5 LOF animals were not driven by changes in insulin production and/or clearance (Fig. S3, S4E-F, S5E-F, S6E-F, S7E-F, S8A-H). Our observations related to pancreatic function (both exocrine and endocrine; Fig. 3 and Suppl. Table 3-5) in the Slc39a5 LOF mice are in agreement with reported metabolic phenotyping by the International Mouse Phenotyping Consortium (https://www.mousephenotype.org/data/genes/MGI:1919336). Intriguingly, Wang et al. reported impaired insulin secretion in mice with Ins2-cre mediated deletion of Slc39a5 in β-cell cells (Wang X, 2019). These findings are difficult to interpret in light of single cell RNA-seq analyses of mouse pancreas demonstrating absence of Slc39a5 expression in Ins2+ pancreatic β-cells (The Tabula Muris Consortium, 2018 and 2020). Consistently, SLC39A5 expression in human pancreas is largely restricted to pancreatic acinar and ductal cells (Baron M, 2016; Muraro MJ, 2016; Xin Y, 2016).

      Taken together, these observations suggest that the protective metabolic changes are presumably extra-pancreatic in both mouse and human.

      Sex Differences:

      Slc39a5 LOF activates hepatic AMPK signaling in both sexes, hepatic AKT signaling is elevated in females, suggesting that the observed glucose lowering effects in the Slc39a5 LOF male mice is possibly driven by improvements in extra hepatic glucose metabolism in males or that the magnitude of zinc mediated protein phosphatase inhibition is insufficient to influence the hepatic PI3K/AKT signaling in males. Whether the promotion of hepatic AMPK and AKT signaling occurs solely as a result of zinc mediated inhibition of protein phosphatases or a result of concurrent convergent mechanisms potentially influenced by sex hormones remains to be resolved in future investigations.

      Overall, integrated analyses of the metabolic phenotyping in our models (both diet-induced and congenital obesity) are consistent with the well documented sex-dependent susceptibility to obesity-related metabolic alterations such as insulin resistance, hepatic steatosis and dyslipidemia (Goodpaster BH, 2003; Priego T, 2008; Medrikova D, 2012; Bertolotti M, 2014; Frias JO 2001; Krotkiewski M, 1983; Lebeck J, 2016).

    1. Author Response

      Reviewer #1 (Public Review):

      Medwig-Kinney et al perform the latest in a series of studies unraveling the genetic and physical mechanisms involved in the formation of C. elegans gonad. They have paid particular attention to how two different cell fates are specified, the ventral uterine (VU) or anchor cell (AC), and the behaviors of these two cell types. This cell fate choice is interesting because the anchor cell performs an invasive migration through a basement membrane. A process that is required for correct C. elegans gonad formation and that can act as a model for other invasive processes, such as malignant cancer progression. The authors have identified a range of genes that are involved in the AC/VC fate choice, and that imparts the AC cell with its ability to arrest the cell cycle and perform an invasive migration. Taking advantage of a range of genetic tools, the authors show that the transcription factor NHR-63 is strongly expressed in the AC cell. The authors also present evidence that NHR-63 is could function as a transcriptional repressor through interactions with a Groucho and also a TCF homolog, and they also suggest that these proteins are forming repressive condensates through phase separation.

      The authors have produced an extensive dataset to support their two primary claims: that NHR-67 expression levels determine whether a cell is invasive or proliferative, and also that NHR-67 forms a repressive complex through interactions with other proteins. The authors should be commended for clearly and honestly conveying what is already known in this area of study with exhaustive references. But absent data unambiguously linking the formation and dissolution of NHR-67 condensates with the activation of downstream genes that NHR-67 is actively repressing, the novelty of these findings is limited.

      Response 1.1: We thank the reviewer for recognizing the extensive dataset we provide in this manuscript in support of our claims that, (1) NHR-67 expression levels are important for distinguishing between AC and VU cell fates, and (2) NHR-67 interacts with transcriptional repressors in VU cells. We acknowledge that a complete mechanistic understanding of the functional significance of NHR-67 puncta is not possible without knowing direct targets of NHR-67 in the AC. Unfortunately, tools to identify transcriptional targets in individual cells or lineages in C. elegans do not exist, and generation of such tools would be beyond the scope of this work. This is evidenced by the fact that the first successful attempt to transcriptionally profile the AC was only posted as a preprint one month ago (Costa et al., doi: 10.1101/2022.12.28.522136). It is our hope that the findings we present here can be integrated with future AC- and VUspecific profiling efforts to provide a more complete picture of the functional significance of NHR-67 subnuclear organization.

      Reviewer #2 (Public Review):

      Medwig-Kinney et al. explore the role of the transcription factor NHR-67 in distinguishing between AC and VU cell identity in the C. elegans gonad. NHR-67 is expressed at high levels in AC cells where it induces G1 arrest, a requirement for the AC fate invasion program (Matus et al., 2015). NHR-67 is also present at low levels in the non-invasive VU cells and, in this new study, the authors suggest a role for this residual NHR-67 in maintaining VU cell fate. What this new role entails, however, is not clear. The model in Figure 7E shows NHR-67 switching from a transcriptional activator in ACs to a transcriptional repressor in VUs by virtue of recruiting translational repressors. In this model, NHR-67 actively suppresses AC differentiation in VU cells by binding to its normal targets and acting as a repressor rather than an activator. Elsewhere in the text, however, the authors suggest that NHR-67 is "post-translationally sequestered" (line 450) in nuclear condensates in VU cells. In that model, the low levels of NHR-67 in VU cells are not functional because inactivated by sequestration in condensates away from DNA. Neither model is fully supported by the data, which may explain why the authors seem to imply both possibilities. This uncertainty is confusing and prevents the paper from arriving at a compelling conclusion. What is the function, if any, of NHR-67 and so-called "repressive condensates" in VU cells?

      Response 2.1: As the reviewer correctly notes, we present two possible models in this manuscript. The interaction between NHR-67 and the Groucho/TCF complex in the VU cells could (1) switch the role of NHR-67 from a transcriptional activator to a transcriptional repressor, or (2) sequester NHR-67 away from its transcriptional targets. Indeed, we cannot definitively exclude the possibility of either model. In our resubmission, we will attempt to make this more clear in the text and by presenting both possible models in the summary figure (Fig. 7E).

      Below we list problems with data interpretation and key missing experiments:

      1) The authors report that NHR-67 forms "repressive condensates" (aka. puncta) in the nuclei of VU cells and imply that these condensates prevent VU cells from becoming ACs. Fig. 3A, however, shows an example of an AC that also assemble NHR-67 puncta (these are less obvious simply due to the higher levels of NHR-67 in ACs). The presence of NHR-67 puncta in the AC seems to directly contradict the author's assumption that the puncta repress the AC fate program. Similarly, Figure 5-figure supplement 1A shows that UNC-37 and LSY-22 also form puncta in ACs. The authors need to analyze both AC and VU cells to demonstrate that NHR-67 puncta only form in VUs, as implied by their model.

      Response 2.2: The puncta formed by NHR-67 in the AC are different in appearance than those observed in the VU cells and furthermore do not exhibit strong colocalization with that of UNC-37 or LSY-22. The Manders’ overlap coefficient between NHR-67 and UNC-37 is 0.181 in the AC, whereas it is 0.686 in the VU cells. Likewise, the Manders’ overlap coefficient between NHR-67 and LSY-22 is 0.189 in the AC compared to 0.741 in the VU cells. We speculate that the areas of NHR-67 subnuclear enrichment in the AC may represent concentration around transcriptional targets, but testing this would require knowledge of direct targets of NHR-67.

      2) While a pool of NHR-67 localizes to "repressive condensates", it appears that a substantial portion of NHR-67 also exists diffusively in the nucleoplasm. This would appear to contradict a "sequestration model" since, for such a model to work, a majority of NHR-67 should be in puncta. What proportion of NHR-67 is in puncta? Is the concentration of NHR-67 in the nucleoplasm lower in VUs compared to ACs and does this depend on the puncta?

      Response 2.3: The proportion of NHR-67 localizing to puncta versus the nucleoplasm is dynamic, as these puncta form and dissolve over the course of the cell cycle. However, we estimate that approximately 25-40% of NHR-67 protein resides in puncta based on segmentation and quantification of fluorescent intensity of sum Z-projections. We also measured NHR-67 concentration in the nucleoplasm of VU cells and found that it is only 28% of what is observed in ACs (n = 10). We disagree with the notion that the majority of NHR-67 protein should be located in puncta to support the sequestration model. As one example, previously published work examining phase separation of endogenous YAP shows that it is present in the nucleoplasm in addition to puncta (Cai et al., 2019, doi: 10.1038/s41556-019-0433-z). In our system, it is possible that the combination of transcriptional downregulation and partial sequestration away from DNA is sufficient to disrupt the normal activity of NHR-67.

      3) The authors do not report whether NHR-67, UNC-37, LSY-22, or POP-1 localization to puncta is interdependent, as implied in the model shown in Fig. 7.

      Response 2.4: It is difficult to test whether localization of these proteins to puncta is interdependent, as perturbation of UNC-37, LSY-22, and POP-1 result in ectopic ACs. Trying to determine if loss of puncta results in VU-to-AC transdifferentiation or vice versa becomes a chicken-egg argument. It is also possible that UNC-37 and LSY-22 are at least partially redundant in this context. We based our model, shown in Fig. 7E, on known or predicted protein-protein interactions, which we confirmed through yeast two-hybrid analyses (Fig. 7D; Fig. 7-figure supplement 1).

      4) The evidence that the "repressor condensates" suppress AC fate in VUs is presented in Fig. 4D where the authors deplete the presumed repressor LSY-22. First, the authors do not examine whether NHR-67 forms puncta under these conditions. Second, the authors rely on a single marker (cdh-3p::mCherry::moeABD) to score AC fate: this marker shows weak expression in cells flanking one bright cell (presumably the AC) which the authors interpret as a VU AC transformation. The authors, however, do not identify the cells that express the marker by lineage analyses and dismiss the possibility that the marker-positive cells could arise from the division of an ACcommitted cell. Finally, the authors did not test whether marker expression was dependent on NHR-67, as predicted by the model shown in Fig. 7.

      Response 2.5: For the auxin-inducible degron experiments, strains contained labeled AID-tagged proteins, a labeled TIR1 transgene, and a labeled AC marker. Thus, we were limited by the number of fluorescent channels we could covisualize and therefore could not also visualize NHR-67 (to assess for puncta formation) or another AC marker (such as LAG-2). We could have generated an AID-tagged LSY-22 strain without a fluorescent protein, but then we would not be able to quantify its depletion, which this reviewer points out is important to measure. We did visualize NHR-67::GFP expression following RNAi-induced knockdown of POP-1 and observed consistent loss of puncta in ectopic ACs. However, this again becomes a chicken-egg argument as far as whether cell fate change or loss of puncta causes the other.

      5) Interaction between NHR-67 and UNC-37 is shown using Y2H, but not verified in vivo. Furthermore, the functional significance of the NHR-67/UNC-37 interaction is not tested.

      Response 2.6: We attempted to remove the intrinsically disordered region found at the C-terminus of the endogenous nhr-67 locus, using CRISPR/Cas9, as this would both confirm the NHR-67/UNC-37 interaction in vivo and allow us to determine the functional significance of this interaction. However, we were unable to recover a viable line after several attempts, suggesting that this region of the protein is vital.

      6) Throughout the manuscript, the authors do not use lineage analysis to confirm fate transformation as is the standard in the field.

      Response 2.7: The timing between AC/VU cell fate specification and AC invasion (the point at which we look for differentiated ACs) is approximately 10-12 hours at 25 °C. With our imaging setup, we are limited to approximately 3-4 hours of live-cell imaging. Therefore, lineage tracing was not feasible for our experiments. Instead, we relied on visualization of established markers of AC and VU cell fate to determine how ectopic ACs arose. In Fig. 6B,C we show that the expression of two AC markers (cdh-3 and lag-2) turn on while a VU marker (lag-1) get downregulated within the same cell. In our opinion, live-imaging experiments that show in real time changes in cell fate via reporters was the most definitive way to observe the phenotype.

      There are 4 multipotential gonadal cells with the potential to differentiate into VUs or ACs. Which ones contribute to the extra ACs in the different genetic backgrounds examined was not determined, which complicates interpretation. The authors should consider and test the following possibilities: disruption of NHR-67 regulation causes 1) extra pluripotent cells to directly become ACs early in development, 2) causes VU cells to gradually trans-fate to an AC-like fate after VU fate specification (as implied by the authors), or 3) causes an AC to undergo extra cell division(s)?? In Fig. 1F, 5 cells are designated as ACs, which is one more that the 4 precursors depicted in Fig. 1A, implying that some of the "ACs" were derived from progenitors that divided.

      Response 2.8: When trying to determine the source of the ectopic ACs, we considered the three possibilities noted by the reviewer: (1) misspecification of AC/VU precursors, (2) VU-to-AC transdifferentiation, or (3) proliferation of the AC. We eliminated option 3 as a possibility, as the ectopic ACs we observed here were invasive and all of our previous work has shown that proliferating ACs cannot invade and that cell cycle exit is necessary for invasion (Matus et al., 2015; MedwigKinney & Smith et al., 2020; Smith et al., 2022). Specifically, NHR-67 is upstream of the cyclin dependent kinase CKI-1 and we found that induced expression of NHR-67 resulted in slow growth and developmental arrest, likely because of inducing cell cycle exit. For our experiment using hsp::NHR-67, we induced heat shock after AC/VU specification. For POP-1 perturbation, we explicitly acknowledged that misspecification of the AC/VU precursors could also contribute to ectopic ACs (Fig. 6A; lines 368-385). We could not achieve robust protein depletion through delayed RNAi treatment, so instead we utilized timelapse microscopy and quantification of AC and VU cell markers (Fig. 6B,C; see response 2.7 above).

      In conclusion, while the authors report on interesting observations, in particular the co-localization of NHR-67 with UNC-37/Groucho and POP-1 in nuclear puncta, the functional significance of these observations remains unclear. The authors have not demonstrated that the "repressive condensates" are functional and play a role in the suppression of AC fate in VU cells as claimed. The colocalization data suggest that NHR-67 interacts with repressors, but additional experiments are needed to demonstrate that these interactions are specific to VUs, impact VU fate, and sequester NHR-67 from its targets or transform NHR-67 into a transcriptional repressor.

      Response 2.9: We agree that, at this time, we cannot pinpoint the precise mechanism through which NHR-67 puncta function (i.e., by sequestering NHR-67 from DNA or switching the role of NHR-67 from activating to repressing). However, identification of NHR-67 puncta and their colocalization with UNC-37, LSY-22, and POP-1 in VU cells allowed us to discover an undescribed role for the Groucho/TCF complex in maintaining VU cell fate. This, combined with our evidence demonstrating that NHR-67 transcriptional regulation is important for distinguishing between AC and VU cell fate, are the main contributions of our study.

      Reviewer #1 (Recommendations For The Authors):

      I am not a C. elegans researcher and I find this paper fairly hard to follow. One major recommendation I would like to see is to improve the consistency of the labeling of the figures. There are many figures showing many things and I struggled to keep track of everything. For example, the thing that we are looking at in the microscope images (typically GFP tagged to a protein of interest) is sometimes labeled above the image, sometimes to the side, and sometimes within the panel. Experimental conditions are also formatted arbitrarily. As much as they can do so, could the authors try and make their labeling consistent? This would help me follow the data.

      Response 1.2: We thank the reviewer for this suggestion and have reorganized the figures (namely Figure 3, Figure 4, Figure 4–figure supplement 1, Figure 5, and Figure 6) such that the tagged allele or marker is labeled at the top, and the time, stage, and/or perturbation is labeled on the side.

      Is the yeast one-hybrid assay enough to confirm a direct interaction between HLH-2 and NHR-67? Obviously, it supports it, but since this is not a definitive test in C. elegans, I feel the description of this result should be modified to account for this.

      Response 1.3: We agree that the yeast one-hybrid assay identifies sequences that are capable of being bound to a protein and does not prove that a DNA-protein interaction occurs in vivo. We have modified our language describing this result in our resubmission (lines 222-224).

      NHR-67 and POP-1 eventually form two large spots. This observation supports the claims that these are condensates, but it is clearly different from the observations in Ciona where the condensates remain more or less stable until they quickly dissolve at the onset of mitosis. Do the authors have any idea why these condensates are behaving this way? Is it always two spots? This implies it is forming around some sort of diploid nuclear structure.

      Response 1.4: Hes.a puncta observed in Ciona were indeed shown to be dynamic, as puncta were captured fusing together (see Figure 6B of Treen et al., 2021). However, these puncta did not appear to coalesce into two puncta specifically, as is consistently observed with NHR-67 in C. elegans. We agree with the reviewer in that this observation is very interesting and likely correlates to a diploid nuclear structure, however we have yet to identify this.

      In Ciona, for the two examples of repressive condensates, it was shown that the removal of the C-terminal Groucho recruiting repressor domains of HesA end ERF disrupts condensate formation. Have the authors attempted a similar experiment for NHR-67 or Pop1?

      Response 1.5: We agree that this would have been an ideal experiment to perform. We attempted to remove the intrinsically disordered region found at the C-terminus of NHR-67 with CRISPR, but were unable to generate a stable line, suggesting that this region may be critical for NHR-67 function in other developmental stages or tissues.

      Other minor points:

      Fig 4D - I found the labeling of this figure the most confusing.

      Response 1.6: We thank the reviewer for bringing this to our attention. For this panel, in addition to the changes we made reference above (Response 1.2), we simplified the labeling of the TIR1 transgene and instead reference it in the figure legend for simplicity.

      Line 354 - I think this is mislabeled. Is it supposed to be Figure 5H, not 5F, and 5B, not 5C?

      Response 1.7: We thank the reviewer for spotting this error. This reference to Figure 5F has been updated and now correctly references Figure 5H (line 338).

      Reviewer #2 (Recommendations For The Authors):

      The authors use several methods to overexpress NHR-67 including 1) an NHR-67 transgene (Fig. 1), 2) overexpression of the transcriptional activator HLH-2 or 3) removal of a factor that normally degrades HLH-2 in VU cells (Fig. 2). In all cases, the rate of VU AC transformation is either very low (5%) or not reported but presumed to be zero, since other groups have done similar experiments and reported no such conversion (eg. Benavidez et al., 2022). What is the significance of this finding? Does this mean that high levels of NHR-67 are not sufficient to promote AC fate because NHR-67 is sequestered in puncta when expressed in VU cells? Fig. 2A suggests that NHR-67 is in puncta in all VUs where overexpressed. Would the inactivation of GROUCHO in that background result in extra ACs?

      Response 2.10: Indeed, we would expect that overexpression of NHR-67 may not normally be sufficient to induce cell fate transformation if the Groucho/TCF complex is still functional. Unfortunately we were unable to achieve strong depletion of UNC-37 and LSY-22 through RNAi, and thus relied on the auxin-inducible protein degradation system. Since we are limited by the number of fluorescent channels we can co-visualize, it would not be feasible to combine a heat-shock inducible transgene, a TIR1 transgene, an AID-tagged protein, and multiple cell fate markers.

      The data are often presented as numbers of animals with increased or decreased expression of a particular marker, but no quantification of expression is provided. For example, in Figure 1E, 32/35 animals are reported to exhibit ectopic expression of LIN-12 in the AC and reduced expression of LAG-2. What is the range of the increase/decrease in LIN-12/LAG-2 expression and how does this compare to natural variation in wild-type? The same concerns apply to Fig. 4D.

      Response 2.11: For resubmission, we have quantified the data shown in Figure 1E and now report expression levels of LIN-12::mNeonGreen and LAG-2::P2A::H2B::mTurquoise2 in Figure 1–figure supplement 2. We have also quantified the data in Figure 4D and now report expression levels of cdh-3p::mCherry::moeABD in Figure 4E. Quantification methods have been added to the Materials and Methods section (lines 612-617).

      The authors explain that it is difficult to study a repressive role for POP-1 as this protein functions in multiple developmental pathways and POP-1 depletion needs to be carefully timed for the data to be interpretable. The authors then go on to use RNAi to deplete POP-1 but do not describe in the methods how they achieve the needed precise temporal control.

      Response 2.12: We did indeed describe methods for the GFP-targeting nanobody, which we expressed under a uterinespecific promoter expressed after AC/VU specification. However, since the penetrance of phenotypes associated with this perturbation was low, we utilized RNA interference. We separated the cell fate specification and cell fate maintenance phenotypes by visualizing AC markers (Fig. 6A), which we would expect to be expressed at equal levels if ACs adopted their fate at the same time (via misspecification). We also paired these with a marker for VU cell fate and co-visualized them over time (Fig. 6B,C).

      The authors also do not report the efficiency of protein depletion by RNAi or Auxin treatment.

      Response 2.13: Auxin-induced depletion of mNeonGreen::AID::LSY-22 resulted in more than 90% decrease in expression (n > 75 uterine cells). The AID-tagged allele for UNC-37 was labeled with BFP, which was barely detectable by our imaging system and photobleached very quickly, so we did not quantify its depletion. However, considering that UNC37 and LSY-22 are both expressed fairly uniform and ubiquitously, and that LSY-22 is expressed at higher levels than UNC-37 at the L3 stage according to WormBase (31.9 FPKM vs. 23.5 FPKM), we would predict that its auxin-induced depletion would be just as potent if not moreso.

      Some of the work presented repeats previously published observations, and it is difficult at times to keep track of what is confirmatory and what is new. For example, this group already published on the enrichment of HLH-2 and NHR-67 in the AC, as well as the positive regulation of NHR-67 by HLH-2 (Medwig-Kinney et al 2020). Additionally, prior papers have already reported the interaction between HLH-2 and the nhr-67 locus.

      Response 2.14: The work presented in this manuscript does not repeat any previously published experiments. When we introduced the endogenously tagged NHR-67 and HLH-2 strains in previous work (Medwig-Kinney & Smith et al., 2020), we quantified expression of these proteins in the AC over time but did not compare expression between the AC and VU cells. Additionally, we previously showed that HLH-2 positively regulates NHR-67 in the AC (Medwig-Kinney & Smith et al., 2020), but never showed this is the case in the VU cells. Considering that this regulatory interaction was not observed in the AC/VU cell precursors, we believe that determining whether these proteins interact in the context of the VU cells was a valid question to address.

      Treen et al. 2021 are cited as prior evidence for the existence of "repressive condensates", however, that study does NOT experimentally demonstrate a function for these structures.

      Response 2.15: By “repressive condensates” we are referring to condensation of proteins known to be transcriptional repressors. While we agree that we were not able to demonstrate transcriptional repression of specific loci, our data showing that perturbation of the Groucho repressors UNC-37 and LSY-22 results in ectopic ACs is consistent with the hypothesis that these proteins repress the default AC fate. We have modified our title and text to more clearly distinguish our interpretations versus speculations.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank you for considering the above manuscript for publication in eLife and for sending it for review. We would like to thank the editors and reviewers for taking the time to read our manuscript and for their expert comments. These comments have been helpful and have improved our manuscript. We would like to address the following comments:

      eLife assessment

      This valuable study advances our knowledge of the effects of anxiety/depression treatment on metacognition, demonstrating that treatment increases metacognitive confidence alongside improving symptoms. The authors provide convincing evidence for the state-dependency of metacognitive confidence, based on a large longitudinal treatment dataset. However, it is unclear to what extent this effect is truly specific to treatment, as there was some improvement in metacognitive confidence in the control group.

      Thank you for this assessment of the paper. As the change in confidence was not significant among the control group, the last sentence is not factually correct – could we suggest that it be amended to the following: “However, it is unclear to what extent this effect is truly specific to treatment, as changes in metacognitive bias in the iCBT group were not statistically different from those in the control group.”

      Reviewer #1 (Public Review)

      1) It has been shown previously that there are relationships between a transdiagnostic construct of anxious-depression (AD), and average confidence rating in a perceptual decision task. This study sought to investigate these results, which have been replicated several times but only in cross-sectional studies. This work applies a perceptual decision-making task with confidence ratings and a transdiagnostic psychometric questionnaire battery to participants before and after an iCBT course. The iCBT course reduced AD scores in participants, and their mean confidence ratings increased without a change in performance. Participants with larger AD changes had larger confidence changes. These results were also shown in a separate smaller group receiving antidepressant medication. A similar sized control group with no intervention did not show changes.

      The major strength of the study is the elegant and well-powered data set. Longitudinal data on this scale is very difficult to collect, especially with patient cohorts, so this approach represents an exciting breakthrough. Analysis is straightforward and clearly presented. However, no multiple comparison correction is applied despite many different tests. While in general I am not convinced of the argument in the citation provided to justify this, I think in this case the key results are not borderline (p<0.001) and many of the key effects are replications, so there are not so many novel/exploratory hypothesis and in my opinion the results are convincing and robust as they are. The supplemental material is a comprehensive description of the data set, which is a useful resource.

      The authors achieved their aims, and the results clearly support the conclusion that the AD and mean confidence in a perceptual task covary longitudinally. I think this study provides an important impact to the project of computational psychiatry.Sspecifically, it shows that the relationship between transdiagnostic symptom dimensions and behaviour is meaningful within as well as across individuals.

      We thank the reviewer for their appraisal of our paper and positive feedback on the main manuscript and supplementary information. We agree with the reviewer that the lack of multiple comparison corrections can also justified by key findings being replications and not borderline significance. We have added this additional justification to the manuscript (Methods, Statistical Analyses, page 15, line 568: “Adjustments for multiple comparisons were not conducted for analyses of replicated effects”)

      Reviewer #2 (Public Review)

      The authors of this study investigated the relationship between (under)confidence and the anxious-depressive symptom dimension in a longitudinal intervention design. The aim was to determine whether confidence bias improves in a state-like manner when symptoms improve. The primary focus was on patients receiving internet-based CBT (iCBT; n=649), while secondary aims compared these changes to patients receiving antidepressants (n=82) and a control group (n=88).

      The results support the authors' conclusions, and the authors convincingly demonstrated a weak link between changes in confidence bias and anxious-depressive symptoms (not specific to the intervention arm)

      The major strength and contribution of this study is the use of a longitudinal intervention design, allowing the investigation of how the well-established link between underconfidence and anxious-depressive symptoms changes after treatment. Furthermore, the large sample size of the iCBT group is commendable. The authors employed well-established measures of metacognition and clinical symptoms, used appropriate analyses, and thoroughly examined the specificity of the observed effects.

      However, due to the small effect sizes, the antidepressant and control groups were underpowered, reducing comparability between interventions and the generalizability of the results. The lack of interaction effect with treatment makes it harder to interpret the observed differences in confidence, and practice effects could conceivably account for part of the difference. Finally, it was not completely clear to me why, in the exploratory analyses, the authors looked at the interaction of time and symptom change (and group), since time is already included in the symptom change index.

      We thank the author for their succinct summary of the main results and strengths of our study. We apologise for the confusion in how we described that analysis. We examine state-dependence., i.e. the relationship between symptom change and metacognition change, in two ways in the paper – perhaps somewhat redundantly. (1) By correlating change indices for both measures (e.g. as plotted in Figure 3D) and (2) by doing a very similar regression-based repeated-measures analysis, i.e. mean confidence ~ time * anxious-depression score change. Where mean confidence is entered with two datapoints – one for pre- and one for post-treatment (i.e. within-person) and anxious-depression change is a single value per person (between-person change score). This allowed us to test if those with the biggest change in depression had a larger effect of time on confidence. This has been added to the paper for clarification (Methods, Statistical Analysis, page 14, line 553-559: “To determine the association between change in confidence and change in anxious-depression, we used (1) Pearson correlation analysis to correlate change indices for both measures and, (2) regression-based repeated-measures analysis: mean confidence ~ time * anxious-depression score change, where mean confidence is entered with two datapoints (one for pre- and one for post-treatment i.e., within-person) and anxious-depression change is a single value per person (between-person change score)”).

      The analyses have also been reported as regression in the Results for consistency (Treatment Findings: iCBT, page 5, line 197-204: ‘To test if changes in confidence from baseline to follow-up scaled with changes in anxious-depression, we ran a repeated measure regression analyses with per-person changes in anxious-depression as an additional independent variable. We found this was the case, evidenced by a significant interaction effect of time and change in anxious-depression on confidence (=-0.12, SE=0.04, p=0.002)… This was similarly evident in a simple correlation between change in confidence and change in anxious-depression (r(647)=-0.12, p=0.002)”).

      2) This longitudinal study informs the field of metacognition in mental health about the changeability of biases in confidence. It advances our understanding of the link between anxiety-depression and underconfidence consistently found in cross-sectional studies. The small effects, however, call the clinical relevance of the findings into question. I would have found it useful to read more in the discussion about the implications of the findings (e.g., why is it important to know that the confidence bias is state-dependent; given the effect size of the association between changes in confidence and symptoms, is the state-trait dichotomy the right framework for interpreting these results; suggestions for follow-up studies to better understand the association).

      Thank you for this comment. We have elaborated on the implications of our findings in the Discussion, including the relevance of the state-trait dichotomy to future research and how more intensive, repeated testing may inform our understanding of the state-like nature of metacognition (Discussion, Limitations and Future Directions, page 10, line 378-380: “More intensive, repeating testing in future studies may also reveal the temporal window at which metacognition has the propensity to change, which could be more momentary in nature.”).

      Reviewer #3 (Public Review):

      1) This study reports data collected across time and treatment modalities (internet CBT (iCBT), pharmacological intervention, and control), with a particularly large sample in the iCBT group. This study addresses the question of whether metacognitive confidence is related to mental health symptoms in a trait-like manner, or whether it shows state-dependency. The authors report an increase in metacognitive confidence as anxious-depression symptoms improve with iCBT (and the extent to which confidence increases is related to the magnitude of symptom improvement), a finding that is largely mirrored in those who receive antidepressants (without the correlation between symptom change and confidence change). I think these findings are exciting because they directly relate to one of the big assumptions when relating cognition to mental health - are we measuring something that changes with treatment (is malleable), so might be mechanistically relevant, or even useful as a biomarker?

      This work is also useful in that it replicates a finding of heightened confidence in those with compulsivity, and lowered confidence in those with elevated anxious-depression.

      One caveat to the interest of this work is that it doesn't allow any causal conclusions to be drawn, and only measures two timepoints, so it's hard to tell if changes in confidence might drive treatment effects (but this would be another study). The authors do mention this in the limitations section of the paper.

      Another caveat is the small sample in the antidepressant group.

      Some thoughts I had whilst reading this paper: to what extent should we be confident that the changes are not purely due to practice? I appreciate there is a relationship between improvement in symptoms and confidence in the iCBT group, but this doesn't completely rule out a practice effect (for instance, you can imagine a scenario in which those whose symptoms have improved are more likely to benefit from previously having practiced the task).

      We thank the reviewer for commenting on the implications of our findings and we agree with the caveats listed. We thank the reviewer for raising this point about practice effects. A key thing to note is that this task does not have a learning element with respect to the core perceptual judgement (i.e., accuracy), which is the target of the confidence judgment itself. While there is a possibility of increased familiarity with the task instructions and procedures with repeated testing, the task is designed to adjust the difficulty to account of any improvements, so accuracy is stable. We see that we may not have made this clear in some of our language around accuracy vs. perceptual difficulty and have edited the Results to make this distinction clearer (Treatment Findings: iCBT, pages 4-5, lines 184-189: “Although overall accuracy remained stable due to the staircasing procedure, participants’ ability to detect differences between the visual stimuli improved. This was reflected as the overall increase in task difficulty to maintain the accuracy rates from baseline (dot difference: M=41.82, SD=11.61) to follow-up (dot difference: M=39.80, SD=12.62), (=-2.02, SE=0.44, p<0.001, r2=0.01)”.)

      However, it is true that there can be a ‘practice’ effect in the sense that one may feel more confident (despite the same accuracy level) due to familiarity with a task. One reason we do not subscribe to the proposed explanation for the link between anxious-depression change and confidence change is that the other major aspect of behaviour that improved with practice did so in a manner unrelated to clinical change. As noted above in the quoted text, participants’ discrimination improved from baseline to follow-up, reflected in the need for higher difficulty level to maintain accuracy around 70%. Crucially, this was not associated with symptom change. This speaks against a general mechanism where symptom improvement leads to increased practice effects in general. Only changes in confidence specifically are associated with improved symptoms. We have provided more detail on this in the Discussion (page 9, lines 324-326: “This association with clinical improvements was specific to metacognitive changes, and not changes in task performance, suggesting that changes in confidence do not merely reflect greater task familiarity at follow-up.”).

      2) Relatedly, to what extent is there a role for general task engagement in these findings? The paper might be strengthened by some kind of control analysis, perhaps using (as a proxy for engagement) the data collected about those who missed catch questions in the questionnaires.

      Thank you for your comment. We included the details of data quality checks in the Supplement. Given the small number of participants that failed more than one attention checks (1% of the iCBT arm) and that all those participants passed the task exclusion criteria, we made the decision to retain these individuals for analyses. We have since examined if excluding these small number of individuals impacts our findings. Excluding those that failed more than one catch item did not affect the significance of results, which has now been added to the Supplementary Information (Data Quality Checks: Task and Clinical Scales, page 5, lines 181-185: “Additionally, excluding those that failed more than one catch item in the iCBT arm did not affect the significance of results, including the change in confidence (=0.16, SE=0.02, p<0.001), change in anxious-depression (=-0.32, SE=0.03, p<0.001), and the association between change in confidence and change in anxious-depression (r(638)=-0.10, p=0.011)”).

      3) I was also unclear what the findings about task difficulty might mean. Are confidence changes purely secondary to improvements in task performance generally - so confidence might not actually be 'interesting' as a construct in itself? The authors could have commented more on this issue in the discussion.

      Thank you for this comment and sorry it was not clear in the original paper. As we discussed in a prior reply, accuracy – i.e. proportion of correct selections (the target of confidence judgements) are different from the difficulty of the dot discrimination task that each person receives on a given trial. We had provided more details on task difficulty in the Supplement. Accuracy was tightly controlled in this task using a ‘two-down one-up’ staircase procedure, in which equally sized changes in dot difference occurred after each incorrect response and after two consecutive correct responses. The task is more difficult when the dot difference between stimuli is lower, and less difficult when the dot difference between stimuli is greater. Therefore, task difficulty refers to the average dot difference between stimuli across trials. Crucially, task accuracy did not change from baseline to follow-up, only task difficulty. Moreover, changes in task difficulty were not associated with changes in anxious-depression, while changes in confidence were, indicating confidence is the clinically relevance construct for change in symptoms.

      We appreciate that this may not have been clear from the description in the main manuscript, and have added more detail on task difficulty to the Methods (Metacognition Task, page 14, lines 540-542: “Task difficulty was measured as the mean dot difference across trials, where more difficult trials had a lower dot difference between stimuli.”) and Results (Treatment Findings: iCBT, pages 4-5, lines 184-186: “Although overall accuracy remained stable due to the staircasing procedure, participants’ ability to detect differences between the visual stimuli improved.”). We have also elaborated more on how improvements in symptoms are associated with change in confidence, not task performance in the Discussion (page 9, lines 324-326: “This association with clinical improvements was specific to metacognitive changes, and not changes in task performance, suggesting that changes in confidence do not merely reflect greater task familiarity at follow-up”).

      4) To make code more reproducible, the authors could have produced an R notebook that could be opened in the browser without someone downloading the data, so they could get a sense of the analyses without fully reproducing them.

      Thank you for your comment. We appreciate that an R notebook would be even better than how we currently share the data and code. While we will consider using Notebooks in future, we checked and converting our existing R script library into R Notebooks would require a considerable amount of reconfiguration that we cannot devote the time to right now. We hope that nonetheless the commitment to open science is clear in the extensive code base, commenting and data access we are making available to readers.

      5) Rather than reporting full study details in another publication I would have found it useful if all relevant information was included in a supplement (though it seems much of it is). This avoids situations where the other publication is inaccessible (due to different access regimes) and minimises barriers for people to fully understand the reported data.

      We agree this is good practice – the Precision in Psychiatry study is very large, with many irrelevant components with respect to the present study (Lee et al., BMC Psychiatry, 2023). For this reason, we tried to provide all that was necessary and only refer to the Precision in Psychiatry study methods for fine-grained detail. Upon review, the only thing we think we omitted that is relevant is information on ethical approval in the manuscript, which we have now added (Methods, Participants, page 11, lines 412-417: “Further details of the PIP study procedures that are not specific to this study can be found in a prior publication (21). Ethical approval for the PIP study was obtained from the Research Ethics Committee of School of Psychology, Trinity College Dublin and the Northwest-Greater Manchester West Research Ethics Committee of the National Health Service, Health Research Authority and Health and Care Research Wales”). If any further information is lacking, we are happy to include it here also.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      The first line of the abstract refers to "metacognitive impairments", but the key result is a difference in the mean confidence rating - i.e. could be how participants are using the scale. It's not clear to me that lower mean confidence is necessarily an "impairment" (what's the "right" level of confidence 1-6 for a performance of 70% accuracy). The first line of discussion uses "metacognitive biases" which seems a more accurate description.

      We agree that the term bias is more appropriate to use in the Abstract, given that there is not set level to indicate any level of ‘impairment’ associated with under- or over-confidence. This has been changed to ‘biases’ as per the reviewer’s request (Abstract, page 2, line 49). Thank you for this suggestion.

      Reviewer #2 (Recommendations For The Authors):

      I would suggest being more cautious in the wording relating to the simple effect tests on changes across different treatment arms in the abstract - since no interaction was found it may suggest a difference between arms that is not found significantly. Also since comparison between arms was the secondary aim, first describe interaction effects before simple effects in results.

      Thank you for this suggestion, we agree that the lack of significant interaction effect of time and group on confidence is a key finding, which has now been included in the Abstract (page 2, lines 67-71). Additionally, we have rearranged the order of results so the interaction effects precede the simple effects (Results, Comparing iCBT, Antidepressant and Control Groups, page 7, lines 246 – 292:

      "When comparing the three groups directly, ANOVA analysis predicting anxious-depression scores with group and time as independent variables revealed a main effect of time (F(1, 1632)=62.99, p<0.001), a main effect of group (F(2, 1632)=249.74, p<0.001), and an interaction effect of group and time (F(2, 1632)=9.23, p<0.001). Examining simple effects in the antidepressant arm, there was a significant reduction in anxious-depression from baseline to follow-up (=-0.61, SE=0.09, p<0.001). Among controls, levels of anxious-depression did not significantly change (=0.10, SE=0.06, p=0.096). Further details of transdiagnostic clinical changes for the antidepressant and controls groups are presented in Figure 4A and Table S4.

      Predicting confidence scores using ANOVA analysis with group and time as independent variables revealed a main effect of time (F(1, 1632)=16.26, p<0.001), and no significant main effect of group (F(2, 1632)=2.35, p=0.096). The interaction effect of group and time on mean confidence was not significant (F(2, 1632)=0.60, p=0.550), suggesting that change in confidence did not differ across the three groups. Tests of simple effects revealed that mean confidence significantly increased from baseline (M=3.77, SD=0.88) to follow-up (M=4.07, SD=0.79) in the antidepressant arm (=0.31, SE=0.08, p<0.001) (Figure 4B). Among controls, there was no significant change in confidence from baseline (M=3.68, SD=0.86) to follow-up (M=3.79, SD=0.92) (=0.11, SE=0.07, p=0.103) (Figure 4B).

      With respect to task performance, there was a significant main effect of time (F(1, 1632)=15.17, p=0.001) and group (F(2, 1632)=4.56, p=0.011) on mean dot difference when the three groups were included in the model. The interaction effect of time and group on mean dot difference was not significant (F(2, 1632)=1.91, p=0.148), suggesting no differences across the groups in task difficulty changes. In the antidepressant arm, mean dot difference decreased from baseline (M=41.2, SD=13.3) to follow-up (M=35.3, SD=13.1) (=-5.91, SE=1.25, p<0.001), indicating increased task difficulty. There was no significant change in task difficulty among controls from baseline (M=43.0, SD=11.8) to follow-up (M=41.4, SD=13.6) (=-1.64, SE=1.30, p=0.210) (Figure 4C).

      While our sample was underpowered to examine individual differences, we conducted an exploratory analysis examining the connection between changes in anxious-depression symptoms and changes in confidence in the antidepressant and controls groups. When examining the effects of time, group and anxious-depression change on mean confidence, there was a significant interaction effect of time and anxious-depression change on mean confidence (F(1, 1626)=4.04, p=0.045), suggesting change in confidence is associated with change in anxious-depression. There was no significant three-way interaction of anxious-depression change, time and group on mean confidence when comparing the three groups (F(2, 1626)=0.08, p=0.928), indicating that the significant association between confidence change and anxious-depression change was not specific to any group. Although not significant, the association between change in confidence and change in anxious-depression was in the expected negative direction in the antidepressant arm (r(80)=-0.10, p=0.381), and among controls (r(86)=-0.17, p=0.111) (Figure 4D)."

      Reviewer #3 (Recommendations For The Authors):

      Some minor points:

      Intro

      1) Awkward wording on page 3: 'but little research on how it might impact on metacognition'

      We have amended this sentence to make it more clear that relatively less research has been conducted on metacognitive changes following iCBT. We have also provided more detail on a prior study that examined changes in metacognitive beliefs with iCBT, and how this differs from the current study (Introduction, page 3, lines 137-141: “Additionally, iCBT has demonstrated clinical effectiveness in terms of symptom improvement (22–24). While one study found that iCBT modified self-reported metacognitive beliefs (25), it remains unknown if metacognitive confidence in decision-making improves following successful iCBT”).

      2) On page 3 the authors note 'but studies typically lacked power to detect effects of antidepressants on cognitive abilities (30-33)' - however, surely this is a problem with this study too, and its relatively small sample of those taking antidepressants?

      Thank you for highlighting this. The power comment was in the reference to the larger iCBT arm in this study, but we can appreciate that its placement means that it could be interpreted as being in relation to our smaller antidepressant arm (which we acknowledge is also potentially underpowered). We have reworded this sentence to make it clearer that prior antidepressant studies have not examined the impact of changes in metacognition specifically (Introduction, page 4, lines 147-149: “However, studies examining the impact of antidepressants on cognition have typically focused on cognitive capacities other than metacognition (30–33)”).

      Results

      3) Fig 2 - please clarify what the error bars indicate.

      The error bars represent the standard error around the standardised beta coefficients, which I have added to the description of Figure 2 (page 4, lines 171-172: “The error bars represent the standard error around the standardised beta coefficient”).

      4) Awkward wording: 'though it went in the same direction (Figure 4B)'.

      This part of the sentence was removed to reduce confusion.

      5) This description of the results is somewhat overstated: 'suggesting change in confidence was dependent on change in anxious-depression' (page 7) - this could also be the other way around, or related to a third factor.

      We have changed this from ‘dependent’ to ‘is associated with’, which accounts for the unknown directionality and true dependency of confidence changes on changes in anxious-depression (Results, page 7, line 285: “…suggesting change in confidence is associated with change in anxious-depression”).

      Methods

      6) Please also show how the WSAS in a supplement.

      Although this comment is unclear, we have provided additional information on how each item of the WSAS was scored and the overall score range (Supplemental methods, page 2, lines 53-55: “Each WSAS item was scored from 0 ‘not at all’ to 8 ‘very severely’, with overall scores ranging from 0 to 40. Higher WSAS scores indicating higher levels of functional impairment (11)”.

    1. Author Response

      We thank the reviewers for their helpful comments and suggestions.

      eLife assessment

      This is an important contribution that extends earlier single-unit work on orientation-specific center-surround interactions to the domain of population responses measured with Voltage Sensitive Dye (VSD) imaging and the first to relate these interactions to orientation-specific perceptual effects of masking. The authors provide convincing evidence of a pattern of results in which the initial effect of the mask seems to run counter to the behavioral effects of the mask, a pattern that reversed in the latter phase of the response. It seems likely that the physiological effects of masking reported here can be attributed to previously described signals from the receptive field surround.

      We thank the reviewers for bringing up the relation of our results to findings from previous orientation-specific center-surround interactions studies. In our revision, we will add a paragraph discussing this important issue. Briefly, for multiple reasons, we believe that the majority of the behavioral and neural masking effects that we observe may be from target-mask interactions at the target location rather than from the effect of the mask in the surround. First, in human subjects, perceptual similarity masking effects are almost entirely accounted for by target-mask interactions at the target location and are recapitulated when the mask has the same size and location as the target (Sebastian et al 2017). Second, in our computational model (Fig. 8), the effect of mask orientation on the dynamics of the response are qualitatively the same if the mask is restricted to the size and location of the target. Third, in our model, our results are qualitatively the same when the spatial pooling region for the normalization signal is the same as that for the excitation signal. These points will be elaborated in the revised manuscript and points 2 and 3 will be demonstrated in a supplementary figure.

      We would also like to point out some key differences between the stimuli that we use and the ones used in most previous center-surround studies. First, in our experiments, the target and the mask were additive, while in most previous center-surround studies the target occludes the background. Such studies therefore restrict the mask effect to the surround, while in our study we allow target-mask interactions at the center. Second, most center-surround studies have a sharp-edged target/surround, while in our experiments no sharp edges were present. Unpublished results form our lab suggest that such sharp edges have a large impact on V1 population responses. We will expand on these issues in the revised manuscript. A third key difference is that our stimuli were flashed for a short interval of 250 ms corresponding to a typical duration of a fixation in natural vision, while most previous center-surround studies used either longer-duration drifting stimuli or very short-duration random-order stimuli for reverse-correlation analysis.

      In addition, we would like to emphasize that our results go beyond previous studies in two important ways. First, we study the effect of similarity masking in behaving animals and quantitatively compare the effect of similarity masking on behavior and physiology in the same subjects and at the same time. Second, VSD imaging allows us to capture the dynamics of superficial V1 population responses over the entire population of millions of neurons activated by the target at two important spatial scales. Such results therefore complement electrophysiological studies that examine the activity of a very small subset of the active neurons.

      Reviewer #1 (Public Review):

      This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings. But the work may be less original than the authors propose, and their overall framing strikes me as odd. Some additional clarifications could make the contribution more clear.

      Please see our reply above regarding the agreement with previous studies and framing.

      My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry et al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here.

      We thank the reviewer for the pointing out this previous work which we will cite in the revised version of the manuscript. For the reasons discussed above, while this study is interesting and related to our work, we believe that our results are quite distinct.

      • In the discussion (lines 315-316), they state "in order to account for the reduced neural sensitivity with target-background similarity in the second phase of the response, the divisive normalization signal has to be orientation selective." I wonder whether they observed this in their modeling. That is, how robust were the normalization model results to the values of sigma_e and sigma_n? It would be useful to know how critical their various model parameters were for replicating the experimental effects, rather than just showing that a good account is possible.

      Thank you for this suggestion. In the revised manuscript we will include a supplementary figure that will show how the model’s predictions are affected by the orientation tuning and spatial extent of the normalization signal, and by the size of the mask.

      • The majority of their target/background contrast conditions were collected only in one animal. This is a minor limitation for work of this kind, but it might be an issue for some.

      We agree that this is a limitation of the current study. These are challenging experiments and we were unable to collect all target/background contrast combinations from both monkeys. However, in the common conditions, the results appear similar in the two animals, and the key results seem to be robust to the contrast combination in the animal in which a wider range of contrast combinations was tested. We will add these points to the discussion in the revised manuscript.

      • The authors point out (line 193-195) that "Because the first phase of the response is shorter than the second phase, when V1 response is integrated over both phases, the overall response is positively correlated with the behavioral masking effect." I wonder if this could be explored a bit more at the behavioral level - i.e. does the "similarity masking" they are trying to explain show sensitivity to presentation time?

      We agree that testing the effect of stimulus duration on similarity masking is interesting, but unfortunately, it is beyond the scope of the current study. We would also like to point out that the duration of the presentation was selected to match the typical time of fixation during natural behaviors, so much shorter or much longer stimulus durations would be less relevant for natural vision.

      • From Fig. 3 it looks like the imaging ROI may include some opercular V2. If so, it's plausible that something about the retinotopic or columnar windowing they used in analysis may remove V2 signals, but they don't comment. Maybe they could tell us how they ensured they only included V1?

      We thank the reviewer for this comment. As part of our experiments, we extract a detailed retinotopic map for each chamber, so we were able to ensure that the area used for the decoding analysis lays entirely within V1. We will incorporate this information in the revised manuscript.

      • In the discussion (lines 278-283) they say "The positive correlation between the neural and behavioral masking effects occurred earlier and was more robust at the columnar scale than at the retinotopic scale, suggesting that behavioral performance in our task is dominated by columnar scale signals in the second phase of the response. To the best of our knowledge, this is the first demonstration of such decoupling between V1 responses at the retinotopic and columnar scales, and the first demonstration that columnar scale signals are a better predictor of behavioral performance in a detection task." I am having trouble finding where exactly they demonstrate this in the results. Is this just by comparison of Figs. 4E,K and 5E,K? I may just be missing something here, but the argument needs to be made more clearly since much of their claim to originality rests on it.

      We thank the reviewer for this comment. In the revised manuscript we will be more explicit and refer to the relevant figure panels (Fig 4D, E, J, & K vs. Fig 5D, E, J, & K) and report important values to substantiate this key claim.

      Reviewer #2 (Public Review):

      Summary

      In this experiment, Voltage Sensitive Dye Imaging (VSDI) was used to measure neural activity in macaque primary visual cortex in monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. Monkeys' ability to detect the target (indicated by a saccade to its location) was impaired by the mask, with the greatest impairment observed when the mask was matched in orientation to the target, as is also the case in human observers. VSDI signals were examined to test the hypothesis that the target-evoked response would be maximally suppressed by the mask when it matched the orientation of the target. In each recording session, fixation trials were used to map out the spatial response profile and orientation domains that would then be used to decode the responses on detection trials. VSDI signals were analyzed at two different scales: a coarse scale of the retinotopic response to the target and a finer scale of orientation domains within the stimulus-evoked response. Responses were recorded in three conditions: target alone, mask alone, and target presented with mask. Analyses were focused on the target evoked response in the presence of the mask, defined to be the difference in response evoked by the mask with target (target present) versus the mask alone (target absent). These were computed across five 50 msec bins (total, 250 msec, which was the duration of the mask (target present trials, 50% of trials) / mask + target (target present trials, 50% of trials). Analyses revealed that in an initial (transient) phase the target evoked response increased with similarity between target and mask orientation. As the authors note, this is surprising given that this was the condition where the mask maximally impaired detection of the target in behavior. Target evoked responses in a later ('sustained') phase fell off with orientation similarity, consistent with the behavioral effect. When analyzed at the coarser scale the target evoked response, integrated over the full 250 msec period showed a very modest dependence on mask orientation. The same pattern held when the data were analyzed on the finer orientation domain scale, with the effect of the mask in the transient phase running counter to the perceptual effect of the mask and the sustained response correlating the perceptual effect. The effect of the mask was more pronounced when analyzed at the scale.

      Strengths

      The work is on the whole very strong. The experiments are thoughtfully designed, the data collection methods are good, and the results are interesting. The separate analyses of data at a coarse scale that aggregates across orientation domains and a more local scale of orientation domains is a strength and it is reassuring that the effects at the more localized scale are more clearly related to behavior, as one would hope and expect. The results are strengthened by modeling work shown in Figure 8, which provides a sensible account of the population dynamics. The analyses of the relationship between VSDI data and behavior are well thought out and the apparent paradox of the anti-correlation between VSDI and behavior in the initial period of response, followed by a positive correlation in the sustained response period is intriguing.

      Points to Consider / Possible Improvements

      The biphasic nature of the relationship between neural and behavioral modulation by the mask and the surprising finding that the two are anticorrelated in the initial phase are left as a mystery. The paper would be more impactful if this mystery could be resolved.

      We thank the reviewer for the positive comments. In our view, while our results are surprising, there may not be a remaining mystery that needs to be resolved. As our model shows, the biphasic nature of V1’s response can be explained by a delayed orientation-tuned gain control. Our results are consistent with the hypothesis that perception is based on columnar-scale V1 signals that are integrated over an approximately 200 ms long period that incorporates both the early and the late phase of the response, since such decoded V1 signals are positively correlated with the behavioral similarity masking effect (Fig. 5D, J). We will explain this more clearly in the discussion of our revised manuscript.

      The finding is based on analyses of the correlation between behavior and neural responses. This appears in the main body of the manuscript and is detailed in Figures S1 and S2, which show the correlation over time between behavior and target response for the retinotopic and columnar scale.

      One possible way of thinking of this transition from anti- to positive correlation with behavior is that it might reflect the dynamics of a competitive interaction between mask and target, with the initial phase reflecting predominantly the mask response, with the target emerging, on some trials, in the latter phase. On trials when the mask response is stronger, the probability of the target emerging in the latter phase, and triggering a hit, might be lower, potentially explaining the anticorrelation in the initial phase. The sustained response may be a mixture of trials on which the target response is or is not strong enough to overcome the effect of the mask sufficiently to trigger target detection.

      It would, I think, be worth examining this by testing whether target dynamics may vary, depending on whether the monkey detected the target (hit trials) or failed to detect the target (miss trials). Unless I missed it I do not think this analysis was done. Consistent with this possibility, the authors do note (lines 226-229) that "The trajectories in the target plus mask conditions are more complex. For example, when mask orientation is at +/- 45 deg to the target, the population response is initially dominated by the mask, but then in mid-flight, the population response changes direction and turns toward the direction of the target orientation." This suggests (to this reviewer, at least) that the emergence of a positive correlation between behavioral and neural effects in the latter phase of the response could reflect either a perceptual decision that the target is present or perhaps deployment of attention to the location of the target.

      It may be that this transition reflected detection, in which it might be more likely on hit trials than miss trials. Given the SNR it would presumably be difficult to do this analysis on a trial-by-trial basis, but the hit and miss trials (which make each make up about 1/2 of all trials) could be averaged separately to see if the mid-flight transition is more prominent on hit trials. If this is so for the +/- 45 degree case it would be good to see the same analysis for other combinations of target and mask. It would also be interesting to separate correct reject trials from false alarms, to determine whether the mid-flight transition tends to occur on false alarm trials.

      If these analyses do not reveal the predicted pattern, they might still merit a supplemental figure, for the sake of completeness.

      We thank the reviewer for suggesting this interesting possibility. The analysis in the manuscript was based on both correct and incorrect trials, raising the possibility that our results reflect some contribution from decision- and/or attention-related signals rather than from low-level nonlinear encoding mechanisms in V1 that we postulate in our model (Fig. 8). To explore this possibility, we re-examined our results while excluding error trials. We found that our key results from Figs 4 and 5 – namely that there is an early transient phase in which the neural and behavioral similarity effects are anti-correlated, and a later sustained phase in which they are positively correlated – hold even for the subset of correct trials, reducing the possibility that decision/attention-related signals play a major role in explaning our results. We will include the results of this analysis as a supplementary figure in the revised manuscript. This analysis, however, does seem to reveal interesting differences between correct and incorrect trials which we will discuss in the revised manuscript. s

      References

      Sebastian S, Abrams J, Geisler WS. 2017. Constrained sampling experiments reveal principles of detection in natural scenes. Proc Natl Acad Sci U S A 114: E5731-e40

    1. Author Response

      The following is the authors’ response to the previous review

      In response to the additional concerns voiced by Reviewer# 2, we have conducted control simulations. The outcomes are summarized in the new supplements to Figure 3. They show that the model is robust under changes of short-term plasticity parameters and running speed.

      Below, we give a point-by-point response to the remaining comments of the editors and reviewers.

      Editorial Assessment: This important work presents an interesting perspective for the generation and interpretation of phase precession in the hippocampal formation. Through numerical simulations and comparison to experiments, the study provides a convincing theoretical framework explaining the segregation of sequences reflecting navigation and sequences reflecting internal dynamics in the DG-CA3 loop. This study will be of interest for researchers in the spatial navigation and computational neuroscience fields.

      We would like to thank the Editors very much for this positive assessment of our work!

      Reviewer #1

      In the manuscript entitled ”A theory of hippocampal theta correlations”, the authors propose a new mechanism for phase precession and theta-time scale generation, as well as their interpretation in terms of navigation and neural coding. The authors propose the existence of extrinsic and intrinsic sequences during exploration, which may have complementary functions. These two types of sequences depend on external input and network interactions, but differ on the extent to which they depend on movement direction. Moreover, the authors propose a novel interpretation for intrinsic sequences, namely to signal a landmark cue that is independent of direction of traversal. Finally, a readout neuron can be trained to distinguish extrinsic from intrinsic sequences.

      • The study puts forward novel computational ideas related to neural coding, partly based on previous work from the authors, including published (Leibold, 2020, Yiu et al., 2022) and unpublished (Ahmedi et al., 2022. bioRxiv) work. The manuscript will contribute to the understanding of the mechanisms behind phase precession, as well as to how we interpret hippocampal temporal coding for navigation and memory.

      I am very pleased to have seen major improvements in the manuscript regarding i) a clarification of the concepts of extrinsic and intrinsic mechanisms, and ii) overall arrangement of Figures but also iii) expanding on some important concepts such as the role of experience in determining the asymmetric connectivity that is necessary for intrinsic models of sequence generation.

      We are delighted to have been able to amend the Reviewer’s concerns voiced after the initial submission. We are very grateful for their many good suggestions that allowed us to make important additions to the revised manuscript.

      Reviewer #2

      • Place cells fire sequentially during hippocampal theta oscillations, forming a spatial representation of behavioral experiences in a temporally-compressed manner. The firing sequences during theta cycles are widely considered as essential assemblies for learning, memory, and planning. Many theoretical studies have investigated the mechanism of hippocampal theta firing sequences; however, they are either entirely extrinsic or intrinsic. In other words, they attribute the theta sequences to external sensorimotor drives or focus exclusively on the inherent firing patterns facilitated by the recurrent network architectures. Both types of theories are inadequate for explaining the complexity of the phenomena, particularly considering the observations in a previous paper by the authors: theta sequences independent of animal movement trajectories may occur simultaneously with sensorimotor inputs (Yiu et al., 2022).

      In this manuscript, the authors concentrate on the CA3 area of the hippocampus and develop a model that accounts for both mechanisms. Specifically, the model generates extrinsic sequences through the short-term facilitation of CA3 cell activities, and intrinsic sequences via recurrent projections from the dentate gyrus. The model demonstrates how the phase precession of place cells in theta sequences is modulated by running direction and the recurrent DG-CA3 network architecture. To evaluate the extent to which firing sequences are induced by sensorimotor inputs and recurrent network architecture, the authors use the Pearson correlation coefficient to measure the ”intrinsicity” and ”extrinsicity” of spike pairs in their simulations.

      I find this research topic to be both important and interesting, and I appreciate the clarity of the paper. The idea of combining intrinsic and extrinsic mechanisms for theta sequences is novel, and the model effectively incorporates two crucial phenomena: phase precession and directionality of theta sequences. I particularly commend the authors’ efforts to integrate previous theories into their model and conduct a systematic comparison. This is exactly what our community needs: not only the development of new models, but also understanding the critical relationships between different models.

      We also would like to express our gratitude to Reviewer 2 for their numerous constructive criticisms that led to a very much improved revised manuscript!

      Reviewer #2

      1) The choice of timescale parameters for input facilitation and synaptic depression is still not fully justified in my opinion. The authors themselves mention that previous experiments suggest wide ranges for both timescales. Given that the generation of intrinsic and extrinsic sequences in their model is primarily driven by these two mechanisms, their chosen timescales should significantly impact the simulation results. I urge the authors to discuss the potential effects of selecting different sets of timescales and the possible limitations of the current selection of 500ms for both.

      For instance, the authors state in the caption of Fig 1 that all simulated rat trajectories were set at a speed of 20cm/s, which is a rat’s walking speed. However, the running speed of rats can exceed 3m/s. In this case, none of the CA3 cells in the model would produce any extrinsic sequences since the animal would traverse the place fields much more rapidly, preventing the sensorimotor input from increasing as it does in the model.

      The reviewer raised the valid point that our simulations may be sensitive to the short-term plasticity time constants and running speeds. We therefore conducted new simulations illustrated in Figure 3—figure supplements 1 and 2.

      In agreement with the reviewer’s assertion, using the current model parameters, a higher running speed would not elicit extrinsic sequences due to the lack of depolarization from spatial input (Figure 3—figure supplement 2A). However, an increase of running speed also requires sensory inputs to be available on a larger spatial scale (width of the spatial input box in our case). Parra-Barrero et al., eLife 10:e70296 and Parra-Barrero & Cheng 2023, PLOS Comput. Bio. 19:e1011101, e.g., showed that place field sizes become larger under higher running speeds and consequently lengthen the theta sequences. With such modification, along with a longer DG projection length (|r|), we were able to recover the theta sequence at a higher speed (100 cm/s), using the same STD and STF time constants (Figure 3—figure supplement 2B). Furthermore, it has been shown that theta frequency increases with running speed (e.g., Rivas et al., 1996, Exp Brain Res 108:113-8). In our analysis, a higher theta frequency (12Hz instead of 10Hz) is also able to counteract the effect of running speed and leads to control-level like phase precession Figure 3—figure supplement 2C).

      Consistent with this finding, the original study of Romani & Tsodyks 2015, Hippocampus 25:94-105, found a fourfold increase of speed (from 0.05 to 0.2 fraction of the track per second) to not affect phase-position relations (with UD = 0.8 and 800ms STD time constant), likely due to the large place field sizes covering 1/3 of the track. Thus, phase precession may only be affected by high speeds in narrow place fields in which activity would only be present for few theta cycles thus naturally having limited capacity for phase coding.

      We further refrain from increasing the running speed beyond 1m/s (e.g. 3m/s as suggested by the reviewer), as the typical running speed of a rat in an 80cm square environment is between 20-40cm/s (Mankin et al. 2012, PNAS, 109:19462-19467). Even on linear tracks, reported running speeds hardly exceed 120 cm/s (e.g. Ahmed and Mehta, 2018, J Neurosci 32:73737383; Schmidt et al., 2009 J Neurosci 29:13232-13241). To our knowledge phase precession for speeds above 1.2 m/s has not been reported so far at all, certainly also owing to experimental challenges. We, however, would speculate that beyond 120 cm/s phase precession could be meaningful in large environmental enclosures with wide place cells. Thus a version of our input model with very large place field sizes should generally be able to also cover very high running speeds.

      To conclude, STD and STF time constants do not need to be in a precise range to accommodate the behavioural time scales if the sensory input changes on accordingly larger spatial scales.

      Following up on the reviewer’s additional concern, we also checked the effect of time constants on the theta sequences (while keeping the running speed unchanged). Decreasing the time constant of STF (τF) to 100ms would degrade the theta sequence due to a lack of depolarization, as sensory input reverts to its resting value ( =0) too fast, but at 250ms, the temporal correlation of theta sequences is largely maintained (Figure 3—figure supplement 1A). However, such effects can be compensated for by an increase in sensory input which promotes input facilitation (Figure 3—figure supplement 1B). Further increasing τF does not significantly affect theta sequences as the sensory input amplitude have asymptotically reached their target values (Figure 3—figure supplement 1A bottom). The temporal correlation of theta sequences is not sensitive to the change in the time constant of STD (τD) (Figure 3—figure supplement 1C), possibly because the synaptic resource of the place cells behind the animal is reliably depleted by strong depolarization despite a fast recovery time (τD=100ms).

      Since the relation between running speed and theta sequences has been thoroughly studied in Parra-Barrero et al. 2021 and Parra-Barrero & Cheng 2023, and the precise range of STD and STF time scales does not play a critical role in the temporal structure of theta sequence, we refrain from substantially revising the manuscript and only briefly add these points after Figure 3.

      2) This is a point I overlooked in the initial review. The synaptic depression fraction UD is set at 0.9 or 0.7, implying that the synaptic coupling weight between CA3 excitatory cells (and CA3 to DG) is almost entirely depleted within a few hundred milliseconds. To my limited neuroscience knowledge, I am not aware of any experimental results that corroborate this potentially bold setup, and I urge the authors to provide relevant experimental and theoretical references if they exist.

      Most crucially, I find this setup biased towards supporting the authors’ theory for intrinsic sequences because it essentially eliminates the possibility of any CA3 cell producing an effective output to other neurons after it fires. Hence, I question whether the simulation results would be much less clean if a more moderate depression factor UD were utilized.

      We thank the reviewer for giving us the opportunity to further clarify. 1) Probabilties of synaptic release (here called UD for consistency with the original work by Romani and Tsodyks), can attain a very wide range and indeed achieve values up to 0.9 (for review see e.g. Dobrunz LE, Stevens CF, 1997, Neuron, 18: 995-1008). 2) Contrary to the reviewer’s impression, a higher UD (0.7-0.9 in our case) would bias the simulation towards even more extrinsicity. Larger UD produces steeper phase precession in extrinsic sequences, because it (temporarily) generates an even stronger asymmetrical connectivity. 3) The extreme value of 0.9 was only used in Figure 1 to best illustrate the original Romani and Tsodyks 2015 idea. 4) Our simulations without recurrent synaptic connections (Figure 6) do not even require short-term synaptic depression. In view of these arguments we refrained from making further additions to the paper and refer the critical reader to this comment.

      • I have a few final suggestions for the authors in the hopes of further improving the manuscript for the neuroscience community:

      • line 62: sensorimotor input is present or ABSENT?

      Intrinsic activity signatures are found ”EVEN when sensorimotor feedback is present”, as one may assume that this input may be able to completely override the intrinsic patterns.

      • line 76: played out. colloquial, consider rewriting/explaining

      We use ”evoked” now.

      • line 104: second part of motivation for Izhikevich-type model is wordy, and grammatically incorrect.

      We have shortened the sentence.

      • on potential limitations of the model lines 116-120: is the use of a box an important assumption, as opposed to a more graded function, exponential or gaussian?

      Using-spike based input, it is not straight-forward how to implement a graded input. One way would be to employ a stochastic point process with graded firing probability. We, however, chose to use a nonlinear facilitation function (see below).

      • line 124 (equation) and 129-130: How crucial is the non-linearity in the synaptic variable for the results? This is a strong assumption, as the nonlinearity is the dominant effect (as opposed to a correction/perturbation). Are there any other contributions for this ramp of activity due to sensory input?

      We found results to fit best with a non-linear facilitation function (see above), and, as argued in the manuscript, facilitation indeed acts non-linearly owing to the calcium-dependence of synaptic release. We have added a comment to the Methods section explaining that we use facilitation to generate a graded spatial input.

      • line 187: ’...neglecting gamma activity in the model.’ I suggest removing this part of the sentence, unless you motivate why gamma would be relevant and the conditions for its generation.

      We have followed the reviewer’s suggestion.

    1. Author Response

      Thank you for allowing us to submit our manuscript to eLife and for the valuable feedback you have provided. We appreciate your recognition of the importance of our research question and the strengths of this study, including the use of a large sample size and heterogenous male and female rats, as well as the extensive behavioral data. We understand the concerns raised, and we believe that by addressing these concerns, we can further strengthen our manuscript and its contribution to the field of addiction research.

      Reviewer #1:

      Weaknesses: Language and statistical analysis can be improved.

      We acknowledge the concerns regarding language and statistical analysis. In the revised manuscript, we will thoroughly review and improve the language, ensuring clarity and coherence throughout the text. Additionally, we will reevaluate our statistical analysis, address any inconsistencies or shortcomings, and provide a clear explanation of our methods and results.

      Reviewer #2:

      Because the authors used so many rats (~600), it is not clear how strong the effects are. That is, a large n makes it easy to identify small effect sizes, but no effect sizes are presented regarding the findings.

      Concerning the effect sizes, we understand the importance of providing this information. In the revised manuscript, we will include effect sizes for our findings to better illustrate the magnitude of the observed effects and their practical significance.

      The Discussion includes parts that argue that the extended access model is a better model of addiction than short access and suggests that this paper provides support for that. However, there were no rats given short-access for the same period of time as the rats in this paper - i.e., no comparison group. Rather, the only comparison that can be made is as the rats transition from short to long access. The data in Figure 1B appear to show that the rats continue their increase in cocaine intake when they transition from short access to long access. The authors do not provide any statistical analyses about this escalation of intake during short access. However, they claim that "measures related to short-term cocaine intake" were orthogonal to those collected during longer access periods, yet it is not clear to me what measures those are. Nonetheless, as indicated in Figure 1H, it appears that the rats consistently shift from PC1 to PC2 across self-administration, regardless of whether they are in the short or long access period.

      That is, the long-access measures appear to simply be a continuation of the pattern begun during short access. As a result, notwithstanding the lack of a true short-access control group, it is difficult to see how the authors can draw conclusions about short vs. long access in this paper. Moreover, as illustrated in Figure 3A, the resilient vs. vulnerable subtypes are apparent during short access self-administration (i.e., they do not require long-access self-administration to develop or be revealed). This suggests, if anything, that short access would be sufficient for identifying such groups. Similarly, Figure 5 shows that short access would be sufficient to identify the "low" vulnerability quartile vs. the other three groups.

      We appreciate the concerns raised regarding the comparison between short and long access conditions. Note that the goal of the study was not to specifically compare short vs long access, but instead evaluate the relationship between addiction-like behaviors after long access. In the revised manuscript, we will focus on these findings and present a more accurate representation of the behavioral changes observed between short and long access conditions. By doing so, we believe that our conclusions will be better supported by the data, and our manuscript will provide a more comprehensive understanding of the factors contributing to addiction-like behaviors.

      During the discussion, the authors briefly discuss gender differences with regard to cocaine use disorder, with the authors trying to claim that women may be more vulnerable to cocaine use disorder. However, the two papers cited do not support that, as they are papers with rodents. A recent comprehensive review on humans with regard to cocaine craving and relapse noted no reliable gender differences (Nicolas et al., 2022, Pharmacological Reviews) and, as the authors themselves noted, men suffer from cocaine use disorder at higher rates than women.

      We apologize for any confusion regarding the discussion of sex differences in cocaine use disorder. We will revise this section in the manuscript to better reflect the current literature on human sex differences in cocaine craving and relapse, as well as the prevalence of cocaine use disorder.

      The authors noted that the rats received 0.5 mg/kg/infusion of cocaine but provided no explanation for how this dosing was maintained (or whether it was maintained) across the length of the study. Considering that rats, especially males, increase in size quite a bit during this stage, this could affect measures like intake as well as skew sex difference results. Likewise, the data are presented strictly in the number of cocaine infusions, which does not allow for consideration of body weight.

      In response to the concern about maintaining the 0.5 mg/kg/infusion cocaine dose throughout the study, we will explain our dosing procedures and any adjustments made to account for changes in body weight. Additionally, we will consider presenting data in terms of total cocaine intake (mg/kg) to account for potential differences in body weight between animals and sexes.

      In the Introduction, the authors make a number of arguments in the second paragraph that have no citations and, therefore, are unsupported.

      We will ensure that all statements in the Introduction are supported by appropriate citations, providing a solid foundation for our research question and the significance of our study.

      Reviewer #3:

      There are a number of factors - such as behavioral rate - that are not considered and likely co-vary with other measures. This is critical as previous work has shown that rate of behavior in reinforcement tasks is a large determinant of sensitivity to both drug effects on that behavior and punishers. This is not considered and but additional information and tempering the interpretation of the data would further strengthen the manuscript.

      We understand the concern regarding the potential influence of behavioral rates on our findings. In the revised manuscript, we will consider the impact of behavioral rates on our measures and discuss how they may have affected the results. By addressing this concern, we believe it will further strengthen the manuscript and provide a more comprehensive understanding of the factors contributing to addiction-like behaviors.

      We are confident that addressing these concerns will significantly improve our manuscript and provide a more robust and accurate representation of our findings. We appreciate the constructive feedback from the reviewers and look forward to submitting our revised manuscript to eLife.

    1. Author Response

      The following is the authors’ response to the original reviews

      Reviewer #1 (Recommendations for the authors):

      Major Concerns:

      1) There are numerous grammatical issues throughout the manuscript, and too much awkward jargon is used, such as "status of energy stresses", "ES-acetate". The characterization of acetate as an "energy stress" gives a negative connotation, which is unnecessary and confusing. Ketones are produced under the same circumstances but are a vital adaptive response, except for ketoacidosis. The terminology used throughout the manuscript is also vague, and some methodology is not adequately described in the Methods section. For example, the meaning of "preprandial" and "postprandial" is unclear, and there is no explanation of the related methodology.

      Thank you for your comments. We have replaced "status of energy stresses" with "energy stresses", in our revised manuscript. We agree with you that acetate and Ketone Bodies are produced under the same circumstances and their production is a result of a vital adaptive response. It is well known that the production of large amount of acetate and Ketone Bodies is an important physiological adaption of body in response to energy stresses such as prolonged starvation and untreated diabetes mellitus. In this context, we use “energy stress-acetate”, a term coined by ourselves to emphasize the condition of acetate production and its role under such condition. Based on your concerns, we have addressed the issues and provided a thorough description of the modifications made in the Methods section.

      2) The authors claim that acetate is a ketone body, which is incorrect. As the authors show, it is not produced by the ketogenic pathway or from the breakdown of ketones. Acetate is a carboxylic acid and specifically a short-chain fatty acid.

      We agree with you that our description of acetate as a ketone body is seemingly incorrect. Indeed, acetate is a short-chain fatty acid in terms of molecular structure. The classic Ketone Bodies include acetone, acetoacetate and beta-hydroxybutyrate, among which acetone and acetoacetate contain carbonyl group and can be considered as ketone, however beta-hydroxybutyrate which contains only hydroxyl and carboxyl groups is actually not a ketone but a short-chain fatty acid. Noteworthily, here our description of acetate as an emerging novel “ketone body” is not aimed to consider it as a real ketone in structure, but to emphasize the high similarity of acetate and the classic Ketone Bodies in the organ (liver) and substrate (fatty acids-derived acetyl-CoA) of their production, the roles they played (as important sources of fuel and energy for many extrahepatic peripheral organs), the feature of their catabolism (converted back to acetyl-CoA and degraded in TCA cycle), as well as the physiological conditions of their production (energy stresses such as prolonged starvation and untreated diabetes mellitus). To prevent any potential misunderstanding, we annotate the usage of "ketone body" with double quotation marks in our revised manuscript.

      3) The human subjects are not sufficiently characterized, and it is unclear whether they are T1DM or T2DM subjects. No information is provided on morphometrics, how and when serum was collected, exclusion criteria, medicines, etc. Proper characterization of human subjects is necessary before publishing such data.

      Thank you very much for your comments. We have added the description of subjects you mentioned in the Methods section.

      4) While Figure 4 is an essential set of experiments that demonstrate that ACOT12 is necessary for the induction of acetate during starvation in mice, the authors do not explain the source of basal levels of acetate that persist in mice lacking ACOT12. It is unclear whether this source is from other tissue or microbiota. Since loss of ACOT by ShRNA treatment resulted in ~25% reduction in acetate, it is very difficult to conceive how this produces the profound neurological and strength deficits presented in Supplemental Figure 8 (see last point below).

      Additionally, it is not clear how the control mice for the knockout studies were generated. Please clarify.

      In normal condition, the serum acetate level in mice is around 200 μM. Hepatic ACOT12 and ACOT8 enzymes seems to provide a serum acetate concentration of 60-90 μM, individually (Figure 4). The intestinal microbiota contributes a serum acetate concentration of 60-80 μM (Figure 2 and Figure supplement 1).

      During energy stress, the protein levels of ACOT12 and ACOT8 in the mouse liver were significantly upregulated (Figure 3 and Figure supplement 1), resulting in an significant increase of serum acetate level to approximate 400 μM. The acetate produced by ACOT12 (~200 μM) and ACOT8 (~200 μM) constitutes the main portion of serum acetate concentration under such condition (Figure 2), while the contribution of intestinal microbiota to serum acetate level is minimized (Figure 2 and Figure supplement 1). Elimination of either ACOT12 or ACOT8 reduces serum acetate level by up to 50% (Figure 4). However, such estimation is only a rough approximation and does not consider the possibility of compensatory upregulation of ACOT12 and ACOT8 in kidney when ACOT12 or ACOT8 is knocked out in liver.

      Acetate assumes the role as an important energy source in the case of reduced glucose utilization associated with diabetes. In this case, knockdown of ACOT12 or ACOT8 (shACOT12 or shACOT8) can remarkably reduce acetate production and consequently influence the Motor Function of mice to a certain extent.

      5) The results presented in Figure 5 are confusing, and the authors' interpretation needs elaboration. The FAO assay detects water-soluble 3H-metabolites and 3H2O, and etimoxir or CPT1 knockout completely inhibits FAO. Therefore, it is unclear how peroxisomes can produce acetate without generating water-soluble intermediates that are detectable in the assay. Further explanation and rationale for the authors' interpretation are necessary.

      Mitochondria serve as the primary organelle for the catabolism of oleic acid. However, in certain instances, fatty acid oxidation (FAO) can occur in the peroxisome, resulting in the production of medium-chain fatty acids and acetyl-CoA. Nevertheless, these medium-chain fatty acids cannot undergo further oxidation within the peroxisome. Instead, they must be transported out of the peroxisome and then into the mitochondria through CPT1 (carnitine palmitoyltransferase 1) for further oxidation.

      To assess FAO, we utilized a detection method based on 3H labeling in H2O in cells treated with [9,10-3H(N)]-oleic acid. The introduction of [9,10-3H(N)]-oleic acid leads to the production of 3H-labeled medium-chain fatty acids and acetyl-CoA within the peroxisome. The further oxidation of 3H-labeled medium-chain fatty acids in the mitochondria was inhibited by impeding the activity of CPT1, leading to the eventual decrease of 3H-labeled H2O. However, acetyl-CoA can still be converted to acetate by ACOT8. As a result, knockdown or etomoxir inhibition of CPT1, decreased more than one-half of U-13C-palmitate-derived U-13C-acetate production, in spite of mitochondria β-oxidation being nearly completely abolished.

      6) Figure 6F, which shows various fatty acyl-CoAs in MPHs, is not helpful on its own. It would be useful to compare this data to loss of function MPH data and to measure these acyl-CoAs in knockout liver. Additionally, since it is normal for liver acetyl-CoA concentration to change by several-fold in fasted and fed liver, this data from snap frozen liver tissue of ACOT12/8 KO mice would help prove the authors' point.

      We are grateful for your valuable advice. As you mentioned there are indeed several outstanding questions that require further clarification. To address these questions, we are currently in the process of developing an experimental mouse model in which ACOT12 and ACOT8 are conditionally knocked out. By virtue of this approach, we aim to acquire more substantial evidence to substantiate the aforementioned conclusions.

      7) Figure 7 suggests that loss of ACOT inhibits ketogenesis by decreasing HMGCS2 expression and increasing its acetylation. However, it is difficult to imagine that this the main mechanism considering the extraordinary ability of liver to handle high rates of acetyl-CoA conversion to ketones during fasting which, as the authors know, is the canonical mechanism by which mitochondrial CoA is preserved during elevated FAO. The manuscript (Figure 6 and 7) argues that it is the conversion of acetyl-CoA to acetate which is more important. A critical limitation of this argument is that ACOT12 is in cytosol (Figure 5), so while it spares CoA for fatty acid activation, it does not spare CoA for beta oxidation in mitochondria. That latter function is carried out by the ketogenic pathway. A second limitation is that the mechanism relies on citrate transport and ACLY activity, which is not generally thought to be very active in the ketogenic states of fasting and T1DM studied here. In essence, the mechanism relies on circular logic, whereby mitochondrial acetyl-CoA accumulates in the setting of impaired FAO, which then impairs ketogenesis and depletes CoA which then impairs FAO without lowering acetyl-CoA. I don't have a solution, but I think it is important to acknowledge the flaws in this proposed mechanism.

      As the Reviewer suggested, ACLY indeed plays a crucial role in fatty acid synthesis. Acetyl-CoA is transported out of the mitochondria in the form of citrate, which is subsequently broken down into acetyl-CoA by ACLY. Under conditions of sufficient nutrition, acetyl-CoA carboxylase 1 further activates acetyl-CoA to participate in fatty acid synthesis.

      In the context of an energy crisis resulting from low glucose utilization, we propose that ACLY might serve another pivotal role in addressing this energy deficit. In conditions such as untreated diabetes or prolonged starvation, glucose utilization is significantly reduced, leading to a reliance of body on fatty acid oxidation in liver to generate Ketone Bodies and acetate to fuels extrahepatic peripheral tissues and thus cope with the energy crisis. However, excessive fatty acid oxidation disrupts the balance between oxidized and reduced CoA, necessitating the production of both acetate and Ketone bodies to restore this equilibrium. Conventionally, fatty acid synthesis is inhibited during this period as AMPK is activated to suppress acetyl-CoA carboxylase 1 activity via phosphorylation in low-energy states. Based on our preliminary experimental results, the activity of ACLY and citrate transporter still appear to work well. It is possible that citrate-ACLY-ACOT12-acetate pathway is important for downregulating the level of mitochondria acetyl-CoA in energy crisis. According to previous studies, cytosolic reduced CoA has the capability to be transported into the mitochondria, thereby replenishing the acetyl-CoA pool within the mitochondria (PMID: 32234503). It is important to note that this remains a hypothesis requiring further testing.

      8) Figure 8 presents some deceptively complex MS data following a 13C-acetate injection. The data is presented in an unorthodox manner, as 13C-metabolite intensities, making it nearly impossible to properly interpret. Enrichment of TCA cycle intermediates are not always easy to interpret, but at minimum, this data needs to be presented as MIDs or fractional enrichments. If the data is not modeled, then it might be useful to at least perform a rudimentary precursor-product analysis (i.e. normalized to plasma acetate enrichment).

      Supplemental Figure 8 also introduces evidence for neurological and strength deficits in shACOT12/8 knockdown mice. It is an interesting observation, but there is no direct link to the metabolic studies in the main figure, which does not present data in the loss of function mice. Nor is this part of the story investigated in liver specific knockout mice. Figure 8 is the least developed part of the manuscript and could be removed without losing the impact of the story.

      We deeply appreciate your valuable suggestions. As mentioned previously, we are currently engaged in the development of an experimental mouse model where ACOT12 and ACOT8 are selectively knocked out. Subsequent experiments will be conducted to validate this model, and the resulting data will be presented in the form of MIDs or fractional enrichments, as per your suggestion.

      The evaluation of anxiety-related behavior is commonly done using the Elevated Plus Maze Test (EPMT), while working memory and cognitive functions are assessed through the Y-maze Test (YMZT) and Novel Object Recognition (NOR) Test. Measures such as forelimb strength and running time in the rotarod test, total distance in YMZT, total entries in YMZT, and total distance in the NOR test are indicators of muscle force and movement ability. Our data demonstrate that acetate plays a significant role in enhancing muscle force and facilitating coordinated neuromuscular movement. Interestingly, we found that ACOT12/8 knockdown in the early stages of diabetes mellitus does not have a pronounced impact on psychiatric, memory, and cognitive behaviors (Figure 8 and figure supplement 2). However, it is important to note that our study primarily focuses on elucidating the utilization of acetate during energy crises, such as untreated diabetes and chronic hunger. Our findings suggest that acetate is primarily utilized to enhance motor capacity rather than cognitive or neural activity.

      Reviewer #2 (Recommendations for the authors):

      The statement that acetate is an emerging ketone body is not correct. It is not a ketone, it is a carboxylic acid or a short-chain fatty acid. In my opinion, to avoid confusion this should be clarified.

      We agree with you that our description of this is not clear enough. Acetate is a short-chain fatty acid in terms of molecular structure indeed.

      The classic Ketone Bodies include acetone, acetoacetate and beta-hydroxybutyrate, among which acetone and acetoacetate contain carbonyl group and can be considered as ketone, however beta-hydroxybutyrate which contains only hydroxyl and carboxyl groups is actually not a ketone but a short-chain fatty acid.

      Noteworthily, here our description of acetate as an emerging novel “ketone body” is not aimed to consider it as a real ketone in structure, but to emphasize the high similarity of acetate and the classic Ketone Bodies in the organ (liver) and substrate (fatty acids-derived acetyl-CoA) of their production, the roles they played (as important sources of fuel and energy for many extrahepatic peripheral organs), the feature of their catabolism (converted back to acetyl-CoA and degraded in TCA cycle), as well as the physiological conditions of their production (energy stresses such as prolonged starvation and untreated diabetes mellitus). To prevent any potential misunderstanding, we annotate the usage of "ketone body" with double quotation marks in our revised manuscript.

      The reason for increased fatty acid delivery to the liver is explained by insulin resistance rather than by reduced carbohydrate availability.

      Patient characteristics should be provided.

      Thank you for your suggestions. We have revised our manuscript accordingly.

      Reviewer #3 (Recommendations for the authors):

      • Please include the rationale for having data from both C57BL/6 and BALC/c. In metabolic research, C57BL/6 is more commonly studied. The data between these two strains are similar, and one could be easily removed to limit redundancy.

      Thank you for bringing this issue to our attention in the manuscript. In metabolic research, C57BL/6 mice are more commonly utilized as a model organism than BALC/c mice indeed. In this study we try to elucidate a characteristic may be shared among different mammalian species, namely the ability to produce a substantial amount of acetate during energy crises. However, given the constraints of our experimental setup, we opted to employ C57BL/6 mice as the main animal model to investigate the underlying mechanism. BALC/c mice were used to confirm the underlying mechanisms governing acetic acid production.

      • In the experiments where ACOT8 and ACOT12 are selectively knocked out or knocked down, please include the levels of other ketone bodies, such as 3-HB and AcAC, from these experiments. While acetate production is diminished, there might or might not be a compensatory increase in the production of these metabolites. This would include experiments related to Figures 3, 4, and 5.

      Thank you for your valuable comments. As you mentioned, in diabetic mice where ACOT12 and ACOT8 are knocked down in liver, there is a significant down-regulation of 3-HB and AcAc (Figure 7B, C). Based on this observation, we hypothesize that ACOT12 and ACOT8 might also play a regulatory role in the formation and metabolism of ketone bodies during an energy crisis. However, the precise regulatory mechanism underlying this phenomenon requires further investigation.

      • From Figure 1 (source data 1), two patients with diabetes have concurrent cancer. Cancer cells have altered metabolism compared to native cells. Thus, it is possible that circulating acetate cells may be altered in these cancer patients, regardless of the presence of diabetes. This should be acknowledged. Otherwise, these two subjects should be taken out.

      Thank you for your suggestions. We have taken out these two subjects in our revised manuscript.

      • Can the authors expand on their thoughts on why some results from the behavioral tests are statistically significant while others are not? For example, many motor tasks such as forelimb strength, running time, total distance, and total entries significantly differ with ACOT8 and ACOT12 knockdown. However, more anxiety-based measures such as time in open arms, correct alteration, and object recognition are not statistically different.

      Thank you for your comments. The evaluation of anxiety-related behavior is commonly done using the Elevated Plus Maze Test (EPMT), while working memory and cognitive functions are assessed through the Y-maze Test (YMZT) and Novel Object Recognition (NOR) Test. Measures such as forelimb strength and running time in the rotarod test, total distance in YMZT, total entries in YMZT and total distance in the NOR test are indicators of muscle force and movement ability. Our data demonstrate that acetate plays a significant role in enhancing muscle force and facilitating coordinated neuromuscular movement. Interestingly, we found that ACOT12/8 knockdown in the early stages of diabetes mellitus does not have a pronounced impact on psychiatric, memory, and cognitive behaviors (Figure 8 and figure supplement 2). However, it is important to note that our study primarily focuses on elucidating the utilization of acetate during energy crises, such as untreated diabetes and chronic hunger. Our findings suggest that acetate is primarily utilized to enhance motor capacity rather than cognitive or neural activity.

    1. Author Response

      We are pleased that the data presented in our submission was found to be informative and suitable for publication in eLife. The Reviewers made several comments that we address below. They listed three weaknesses of our work: 1) details of RPE GLUT1 immunohistochemistry (IHC), 2) the mechanism of Arrdc4, and 3) the mechanism of HSP90AB1. Additional suggestions made by the Reviewers, aimed at elucidating mechanisms, are of great interest to us, but would require experiments that are beyond the scope of the current work.

      We provide the following provisional responses to the identified weaknesses:

      1) Reviewer 1 asked several questions regarding the IHC of GLUT1, including the number of retinas examined, the location and quantification of the staining, and our results relative to those of another publication.

      We injected more than one eye with each of the AAV-Best1-Txnip alleles.

      However, only one of the fully infected eyes of each allele was processed for GLUT1 IHC. We found the GLUT1 removal from the basolateral surface of the RPE by AAV-Best1-Txnip (i.e. the wild type full length allele) was complete, obvious, and consistent from eye to eye, as shown in our original publication (Xue et al., 2021, PMID: 33847261). It was obvious as the GLUT1 on the basolateral surface of the RPE is more easily scored than that on the apical surface. The photoreceptor inner segments and Müller glia microvilli also have GLUT1, and their processes are juxtaposed and/or intertwined with the apical processes of the RPE, making the apical process GLUT1 staining of the RPE much more difficult to score. In some sections where the RPE and the retina separate, we can score the apical process GLUT1 staining of the RPE, but we do not always have this situation in our sections. We should have been more explicit about the location of the IHC signal that we were referring to in the manuscript and will do so in the Revision.

      We present images in Figure 2 supplement 1 that are representative for each allele, in the one retina scored for each allele. As Dr. Xue was in the process of moving to China and setting up his own lab at the time of submission, additional retinas were not processed for IHC. However, his laboratory will examine the staining on additional retinas. Given that the results of the wild type allele were very reproducible, we do not anticipate different results from those we have presented for the new alleles. However, the quantification is difficult for the total GLUT1 protein within the RPE due to the ambiguities of staining in the photoreceptors and the Müller glia.

      As a separate issue, Reviewer #1 mentioned the work of another group (Wang et al., 2019, PMID: 31365873), which claimed that, on the apical surface of the RPE, GLUT1 is down-regulated in a RP mouse strain, RhoP23H. We have not consistently observed such a down-regulation of GLUT1 in other RP mouse strains such as rd1, rd10 or Rho-/- (unpublished data; see review Xue and Cepko, 2023, PMID: 37460158). However, we would like to point out that it is difficult to score GLUT1 staining on the RPE apical surface, as noted above. It is even more difficult in the degenerating retina where RPE and photoreceptor processes degenerate. For reference, one can see images of degenerating RPE apical processes in Wu et al. 2021 (PMID: 33491671).

      2) Little was known about the function of Arrdc4 until very recently. During our submission of this manuscript, a study was published concerning an Arrdc4 global knockout mouse by Richard Lee’s group. They proposed that Arrdc4 is critical for liver glucagon signaling, which could be negated by insulin (Dagdeviren et al, 2023, PMID: 37451484). The implication of this study to RP cone survival is unclear, but interestingly, the activation of insulin/mTORC1 pathway is helpful for RP cone survival, as first discovered by Claudio Punzo when a postdoc in our group (PMID: 19060896, PMID: 25798619).

      3) Little is known about the function of HSP90AB1. Recently, Ramamurthy’s group reported that knocking out HSP90AA1, a paralog of HSP90AB1 which has 14% different amino acids, led to rod death and correlated with PDE6 dysregulation (Munezero et al, 2023, PMID: 37172722). However, the exact role of HSP90AA1 in rods needs to be clarified, and the implications for HSP90AB1 in WT and/or RP cones are still unclear.

      The above responses will be incorporated to our next version of submission.

    1. Author Response

      Reviewer #1 (Public Review):

      The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      Unfortunately, studies conducted in South America to understand host use by Culex mosquitoes are very limited, and there are virtually no studies on the seasonal pattern of host use. In Argentina, there is some evidence (Stein et al., 2013; Beranek, 2018) regarding the seasonal change in host use by Culex species, including Culex quinquefasciatus, where the inclusion of mammals during the autumn has been observed. As part of a comprehensive study on characterizing bridge vectors for SLE and WN viruses, our research group is currently working on the molecular identification of blood meals from engorged females to gain deeper insights into the seasonal host use by Culex mosquitoes.

      While the seasonal change in host use by Culex quinquefasciatus has not been reported in Argentina so far, there has been an observed increase in reported cases of SLE virus in humans between summer and autumn (Spinsanti et al., 2008). It is based on this evidence that we hypothesize there is a seasonal change in host use by Culex quinquefasciatus, similar to what occurs in the United States. This is also considering that both countries (Argentina and the United States) have regions with similar climatic conditions (temperate climates with thermal and hydrological seasonality).

      I think the authors need to discuss more about the bigger question they were addressing. I think that the discussion section can be strengthened greatly by elaborating on whether there is evidence for a seasonal shift in host use pattern in Cx. quinquefasciatus in the southern latitudes. If yes, what alternate mechanisms they believe could be driving the seasonal change in host use in this species in the southern latitudes now that they show the 'deriving reproductive advantages' hypothesis to be not true for those populations.

      We will restructure our discussion to align it with our results, as suggested.

      Grammar and writing

      The manuscript will be grammatically revised.

      Reviewer #2 (Public Review):

      There is no replication built into this study. Egg lay is a highly variable trait, even within treatments, so it is important to see replication of the effects of treatment across multiple discrete replicates. It is standard practice to replicate mosquito fitness experiments for this reason. Furthermore, the sample size was particularly small for some groups (e.g. 15 egg rafts for the second gonotrophic cycle of mice in the autumn, which was the only group for which a decrease in fecundity and fertility was detected between 1st and 2nd gonotrophic cycles). Replicates also allow investigators to change around other variables that might impact the results for unknown reasons; for example, the incubators used for fall/summer conditions can be swapped, ensuring that the observed effects are not artifacts of other differences between treatments. While most groups had robust sample sizes, I do not trust the replicability of the results without experimental replication within the study.

      We agree egg lay is a variable trait and so we consider high numbers of mosquitoes and egg lay during experiments compared to our studies of the same topics. Evaluating variables such as fecundity, fertility, or other types of variables (collectively referred to as "life tables") is a challenging issue that depends on several intrinsic and extrinsic factors. Because of all of this, in some experiments, sample sizes might not be very large, and in several articles, lower sample sizes could be found. For instance, in Richards et al. (2012), for Culex quinquefasciatus, during the second gonotrophic cycle, some experiments had 13 or even 6 egg rafts. For species like Aedes aegypti, the sample size for life table analysis is also usually small. As an example, Muttis et al. (2018) reported between 1 and 4 engorged females (without replicates). Because of this, we do find our sample sizes quite robust for our results.

      Regarding the need to repeat the experiments in order to give more robustness to the study we also agree. However, after a review of the literature (articles cited in the original manuscript), it is apparent that similar experiments are not frequently repeated as such. Examples of this are the studies of Richards et al. (2012), Demirci et al. (2014) or Telang & Skinner (2019), which even manipulate several cages at a time as “replicates”, they are not true replicates because they summarise and manipulate all data together, and do not repeat the experiment several times. We see these “replicates” as a way of getting a greater N.

      As it was stated by the reviewer, repetition is a resource and time consuming activity that we are not able to do. Replicating the experiment poses a significant time challenge. The original experiment took over three months to complete, and it is anticipated that a similar timeframe would be necessary for each replication (6 months in total considering two more replicates). Given our existing commitments and obligations, dedicating such an extensive period solely to this would impede progress on other crucial projects and responsibilities. Given the limitations of resources and time and the infrequent use of experimental repetition in this type of studies, we suggest performing a simulation-based analysis. This approach involves generating synthetic data that mimics the expected characteristics of the original experiment and subsequently subjecting it to the same analysis routine. The main goal of this simulation will be to evaluate the potential spuriousness and randomness of the results that might arise due to the experimental conditions. We will introduce this simulation-based analysis in the next revised version of the manuscript.

      Considering the hypothesis is driven by the host switching observed in the field, this phenomenon is discussed very little. I do not believe Cx. quinquefasciatus host switching has been observed in Argentina, only in the northern hemisphere, so it is possible that the species could have an entirely different ecology in Argentina. It would have been helpful to conduct a blood meal analysis prior to this experiment to determine whether using an Argentinian population was appropriate to assess this question. If the Argentinian populations don't experience host switching, then an Argentinian colony would not be the appropriate colony to use to assess this question. Given that this experiment has already been conducted with this population, this possibility should at least be acknowledged in the discussion. Or if a study showing host switching in Argentina has been conducted, it would be helpful to highlight this in the introduction and discussion.

      We are aware that few studies regarding host shifting in South America are available, some such those conducted by Stein et al. (2013) and Beranek (2018) reported a moderate host switch for Culex quinquefasciatus in Argentina. We have already performed a study about seasonal host feeding patterns for this species. As you suggested, we could mention it in the discussion to highlight our partial findings. However, even though there are few studies regarding host shifting, our hypothesis is based mainly in the seasonality of human cases of WNV and SLEV, a pattern that has been demonstrated for our region, see for example the study of Spinsanti et al. (2008).

      The impacts of certain experimental design decisions are not acknowledged in the manuscript and warrant discussion. For example, the larvae were reared under the same conditions to ensure adults of similar sizes and development timing, but this also prevents mechanisms of action that could occur as a result of seasonality experienced by mothers, eggs, and larvae.

      We understand the confusion that may have arisen due to a lack of further details in the methodology. If we are not mistaken, you are referring to our oversight regarding the consideration of carry-over effects of larvae rearing that could potentially impact reproductive traits. When investigating the effects of temperature or other environmental factors on reproductive traits, it is possible to acclimate either larvae or adults. This is due to the significant phenotypic plasticity that mosquitoes exhibit throughout their entire ontogenetic cycle. In our study, we followed an approach similar to that of other authors where the adults are exposed to experimental conditions (temperature and photoperiod). For a similar approach you can refer to the studies conducted by Ferguson et al. (2018) for Cx. pipiens, Garcia Garcia & Londoño Benavides (2007) for Cx. quinquefasciatus and Christiansen-Jucht et al. (2014, 2015) for Anopheles gambiae.

      Beyond the issue of lack of replication limiting trust in the conclusions in general, there is one conclusion reached at the end of the discussion that would not be supported, even if additional replicates are conducted. The results do not show that physiological changes in mosquitoes trigger the selection of new hosts. Host selection is never measured, so this claim cannot be made. The results don't even suggest that fitness might trigger selection because the results show that physiological changes are in the opposite direction as what would be hypothesized to produce observed host switches. Similarly, the last sentence of the abstract is not supported by the results.

      We agree with this observation. However, we did not evaluate the impact of fitness on host selection in this study. Instead, we aimed to investigate the potential influence of seasonality on mosquito fitness as a potential trigger for a shift in host selection. We agree that we have incorrectly used the term “host selection” when we should actually be discussing “host use change”. Our results indicate a seasonal alteration in mosquito fitness in response to temperature and photoperiod changes. Building upon this observation, we will discuss into our hypotheses and theoretical model to explain this seasonal shift in host use.

      Grammar and writing

      The manuscript will be grammatically revised by a professional translator.

    1. Author Response

      Thank you for your thorough critique and thoughtful suggestions for improving our manuscript, "Homeostatic Synaptic Plasticity of Miniature Excitatory Postsynaptic Currents in Mouse Cortical Cultures Requires Neuronal Rab3A.” The reviewers’ detailed comments suggest that showing multiple types of graphs to demonstrate the presence of divergent scaling of mEPSC amplitudes in cultures from Rab3A wild type, and its disruption in cultures from Rab3A knockout mice, had the unintended consequence of obscuring the major results of our study. Furthermore, our proposal that the difference in characteristics of scaling of GluA2 receptor expression compared to that of mEPSC amplitudes, based on the ratio plots, indicated that a mechanism other than postsynaptic receptors likely contributes to the homeostatic increase in mEPSC amplitude was not convincing to the reviewers. Reviewers 2 and 3 point out these results might be explained by differences in the limitations and artifacts of the two very distinct techniques, electrophysiology and fluorescence imaging. In the revision we will acknowledge that a greater variability in the signal, or, more issues with signal over noise, might be present in imaging experiments compared to electrophysiology. This could explain the lack of identical effects on GluA2 receptors compared to mEPSC amplitudes in the matched experiments, but we maintain it is also possible that a greater variability in GluA2 responses is biologically meaningful. Further, an issue with the accuracy of imaging experiments to report the true receptor effects would also call into question the conclusion that receptors always increase after activity blockade. Finally, the graphs illustrating the detailed characteristics of scaling with rank order and ratio plots required pooling multiple samples per cell, which precludes application of standard statistical methods to determine whether effects or differences reach statistical significance. Therefore, we will remove the cumulative distribution functions, rank order plots, and ratio plots, and show only analyses that involve a single sample per cell. This major change will simplify and clarify the main findings, that homeostatic plasticity of both mEPSC amplitude and GluA2 receptor expression in mouse cortical cultures involves the synaptic vesicle protein Rab3A operating in neurons rather than astrocytes. We will focus our comparison between mEPSC amplitudes and receptors in the same cultures to differences between the magnitude of effects on the mean or median, and will make clear that overall, our data can be explained by two possibilities: 1) the presynaptic vesicle protein is acting via regulation of postsynaptic receptors alone, or, it is regulating both postsynaptic receptors and another contributor to mEPSC amplitude, possibly amount of transmitter released by a single vesicle. Either way, it is very surprising that this presynaptic protein is involved in postsynaptic changes, so our results represent a novel contribution to the field of homeostatic plasticity. In sum, the changes we propose should go a long way towards addressing the majority of the reviewers’ major critiques.

      A related issue raised by the reviewers was that the model describing potential presynaptic mechanisms of Rab3A in homeostatic plasticity was not supported by direct evidence (Figure 10). We meant the model to introduce the possibility of a presynaptic contribution to mEPSC amplitude and to stimulate future research, but clearly did not communicate its speculative nature, neither in the Figure legend nor in our discussion of potential mechanisms. In the revision, we will restrict the model to the direct findings in this study. Additionally, we will state where appropriate, that while previous findings at the mouse NMJ are consistent with a presynaptic role for Rab3A (Wang et al., 2011), in the current study there is no direct evidence for this idea in cortical cultures other than the quantitative differences in the fold increases in mEPSC amplitudes and GluA2 receptors which were assayed in the same cultures.

      We will submit a revised version addressing each of the reviewer’s concerns and suggestions as described above and below; these major modifications will greatly improve the readability of the manuscript and clarify the main results.

      Reviewer #1

      Koesters and colleagues investigated the role of the presynaptic small GTPase Rab3A in homeostatic scaling of miniature synaptic transmission in primary mouse cortical cultures using electrophysiology and immunohistochemistry. The major finding is that TTX incubation for 48 hours does not induce an increase in the amplitude of excitatory synaptic miniature events in neuronal cultures derived from Rab3A KO and Rab3A Earlybird mutant mice. NASPM application had comparable effects on mEPSC amplitude in control and after TTX, implying that Ca2+-permeable glutamate receptors are unlikely modulated during synaptic scaling. Immunohistochemical analysis revealed an increase in GluA2 puncta size and intensity in wild type, but not Rab3A KO cultures. Finally, they provide evidence that loss of Rab3A in neurons, but not astrocytes, blocks homeostatic scaling. Based on these data, the authors propose a model in which presynaptic Rab3A is required for homeostatic scaling of synaptic transmission through GluA2-dependent and independent mechanisms.

      While the title of the manuscript is mostly supported by data of solid quality, many conclusions, as well as the final model, cannot be derived from the results presented. Importantly, the results do not indicate that Rab3A modulates quantal size on both sides of the synapse. Moreover, several analysis approaches seem inappropriate.

      The following points should be addressed:

      1) The model shown in Figure 10 is not supported by the data. The authors neither provide evidence for two different functional states of Rab3A being involved in mEPSC amplitude modulation, nor for a change in glutamate content of vesicles. Furthermore, the data do not fully support the conclusion of a presynaptic role for Rab3A in homeostatic scaling.

      We will revise the model, removing presynaptic mechanisms for Rab3A and restricting it to the direct findings in this study.

      2) The analysis of mEPSC data using quantile sampling followed by ratio calculation is not meaningful under the tested experimental conditions because of the following reasons:

      (i) The analysis implicitly assumes that all events have been detected. The prominent mEPSC frequency increase after TTX suggests that this is not the case, i.e., many (small) mEPSCs are likely missed under control conditions.

      We explicitly addressed the potential contribution of missed mEPSCs that are below threshold in (Hanes et al., 2020). We found that even simulating a threshold of 7 pA, applied to data artificially modified by uniformly multiplying the control data set, did not generate a ratio plot with the increasing ratio over 75% of the data that we observe in the experimental data. Overall, the findings from simulating a threshold and a uniform multiplicative factor illustrate that the threshold issue does not cause major changes to the data. Furthermore, in cultures from Rab3A+/+ mice from the Rab3AEbd/+ colony, the mEPSC amplitudes were significantly smaller than those recorded in cultures from Rab3A+/+ mice from the Rab3A+/- colony (lines 327-329, 11 pa vs 13 pA), indicating that if there were smaller mEPSCs occurring in the Rab3A+/+ data set, we would have detected them. Although for these reasons we feel it is unlikely our ratio plot analysis is invalid, to clarify the result that homeostatic plasticity of mEPSC amplitude requires functioning Rab3A, we will remove the ratio plots.

      (ii) The analysis is used to conclude how events of a certain size are altered by TTX treatment. However, this analysis compares the smallest mEPSCs of the TTX condition with the smallest control mEPSCs, but this is not a pre-post experimental design. Variation between cells and between coverslips will markedly affect the results and lead to misleading interpretations.

      The rank order plot is a well-established plot to examine the mathematical transformation caused by homeostatic plasticity, first used in (Turrigiano et al., 1998). We included it here to facilitate comparison of our findings with previous results. We introduced the ratio plot in (Hanes et al., 2020), finding it shows more clearly differences occurring in the range of small mEPSC values. The reviewer is correct in that we are assuming the smallest mEPSCs before treatment should be matched with the smallest mEPSCs after treatment. It is almost impossible to do a pre-post experimental design for mEPSCs. Even when applying a treatment, for example acute perfusion with a receptor antagonist, to a single cell and recording mEPSCs before and after the treatment, it is not a true pre-post design at the level of mEPSC amplitudes, which come from many different inputs. The power of the method is that different characteristic mathematical transformations for different experimental conditions (e.g., genotype or activity protocol) support the idea that those conditions either involve different mechanisms or have altered the mechanism. Such differences might be missed by only comparing means or medians. However, we found no evidence that loss of Rab3A or expression of the Rab3A Earlybird mutant altered the mathematical transformation due to homeostatic plasticity, other than to reduce its magnitude across all amplitudes. Therefore, including these complex analyses is not adding anything to the finding that Rab3A plays a role in homeostatic plasticity of mEPSC amplitudes and they will be removed in the revision.

      (iii) The ratio (TTX/control) vs. control plots seem to suffer from a division by small value artifact (see Figure 6F).

      The reviewer is referring to findings on the ratio plot for receptor cluster area. Because the large ratios for the smallest control areas occur in the cultures prepared from wild type mice, and to a much lower extent in cultures prepared from Rab3A knockout mice, we think there is a biologically relevant increase in the TTX/CON ratio, since an artifact due to division by small values should be present in both data sets. However, we cannot rule out that the differences in ratio plot behavior between receptors and mEPSC amplitudes result from the different limitations in detection of receptor clusters vs. the limits of detection of mEPSCs, so we will remove the ratio plots and focus on comparison of means or medians.

      Correspondingly, ratio-analysis differs considerably for different control conditions (Fig. 1Giii, Fig. 2Giii, Fig. 6C, Fig. 9A).

      The reviewer is correct to point out that the ratio plot shows differences across control conditions (note, these differences are not obvious with the more standard rank order plot). The magnitude of the 50th percentile ratio differs across control conditions, and behaviors of the largest mEPSCs also differ, with some ratios going down at the highest control amplitudes (1Giii, 6C), and others continuing to increase with increasing control amplitude (2Giii, 9A). They all share the divergent increasing ratio from smallest mEPSC amplitude to around the 20 pA level. We attribute the differences in magnitude to the differences in experimental conditions: 1Giii is Rab3A+/+ from the +/+ colony; 1Giii is Rab3A+/+ from the Ebd/+ colony; 6C is a set of Rab3A+/+ cultures assayed several years after the set in 1Giii; 9A is a different culture condition altogether, with neurons being plated onto an already formed bed of astrocytes. Effects on the largest mEPSCs are likely attributable to the small number and high variability of amplitudes in this range. Since the variability in the very sensitive ratio plot have taken away from the main findings of homeostatic plasticity being disrupted in the absence of functioning Rab3A in neurons, we will remove the rank-order and the ratio plots from the manuscript.

      3) As noted by the authors in a previous publication (Hanes et al. 2020), statistical analysis of CDFs suffers from ninflation. In addition, the quantile sampling method chosen violates an important assumption of the K-S test. Indeed, pvalues for these comparisons are typically several orders of magnitude smaller. Given that the statistical N most likely corresponds to the number of cultures (see, e.g., https://doi.org/10.1371/journal.pbio.2005282), CDF comparisons are not informative and should thus not be used to draw conclusions from the data. The plots can be informative, though.

      As the reviewer acknowledges, we were very careful in (Hanes et al., 2020) to state that the p values could not be used to determine significance in the KS test of cumulative distributions for pooled data because the KS test assumes a single sample per cell. We also suggested in that study that the p values could be used in a comparative way for looking at data sets with similar (inflated) n values to say something about bigger or smaller differences. We failed to reiterate those caveats here. In reviewing the article “What is N” by (Lazic et al., 2018) (which we very much appreciate being shown by the reviewer), we agree that in the current study where we are attempting to show how the effect of homeostatic plasticity is or is not altered by loss of Rab3A function, it is imperative that we be able to make conclusions about statistical significance. The pooling approach is essential for having some sense of the mEPSC amplitude distributions, but that is not necessary for looking at the effect of Rab3A. Therefore, we will remove all analyses that involve pooling of multiple mEPSC amplitudes per cell.

      4) How does recoding noise and the mEPSC amplitude threshold affect "divergent scaling"?

      We addressed this in our 2020 paper (Hanes et al., 2020) where we showed that the experimental homeostatic increase in mEPSC amplitude cannot be simulated with uniform, multiplicative synaptic scaling whether we included or excluded distortion caused by a detection threshold.

      5) What is the justification for the line fits of the ratio data/how was the fit range chosen?

      We are assuming the reviewer is referring to the line fits for the rank-order data. If so, the fit range is the entire range of the data. This issue will be addressed by the removal of the rank-order plots from the manuscript.

      6) TTX application induces a significant increase in mEPSC amplitude in Rab3A-/- mice in two out of three data sets (Figs. 1 and 9). Hence, the major conclusion that Rab3A is required for homeostatic scaling is only partially supported by the data.

      Based on the p-values for comparison of means with a Kruskal-Wallis test, we would argue that TTX application does not show a significant increase in mEPSC amplitude in Rab3A-/- neurons (Figure 1 p-value = .318; Figure 9 p-value = .125) when comparing to untreated control mEPSC amplitude means. It is only when we use the KS test and the inflated n’s that we get a barely significant results, p = 0.042. Based on the Lazic article (Lazic et al., 2018), we would now conclude that we cannot use the KS p value in that analysis. We have tried to be clear that the effect of TTX application on mEPSC amplitude in Rab3A-/- neurons is not completely abolished, but rather is dramatically reduced, which we acknowledge in the manuscript (line 279). This issue will be addressed by removal of CDFs from the manuscript.

      7) Line 289: A comparison of p-values between conditions does not allow any meaningful conclusions.

      Although we feel that comparison of magnitude of effects can be stated in a qualitative way for similar sized pooled data sets with larger or smaller p-values, we agree that statistical significance has no meaning. This issue will be addressed by removing the CDF plots from the manuscript.

      8) There is a significant increase in baseline mEPSC amplitude in Rab3AEbd/Ebd (15 pA) vs. Rab3Aebd/+ (11 pA) cultures, but not in Rab3A-/- (13.6 pA) vs. Rab3A+/- (13.9 pA). Although the nature of scaling was different between Rab3AEbd/Ebd vs. Rab3AEbd/+, and Rab3AEbd/Ebd with vs. without TTX, the question arises whether the increase in mEPSC amplitude in Rab3AEbd/Ebd is Rab3A dependent. Could a Rab3A independent mechanism occlude scaling?

      We have acknowledged in the manuscript that one explanation for a failure to exhibit homeostatic plasticity in the cultures from Rab3A Earlybird mutant mice is that the already large basal amplitude occludes any further increase (line 366). In the revision we will make sure the occlusion possibility is highlighted, but we will also discuss other proteins that have been implicated in homeostatic plasticity that have caused an increase in mEPSC amplitude and/or AMPA receptors at baseline, for example, Arc/Arg3.1 KO (Shepherd et al., 2006; Beique et al., 2011); Homer KO (Hu et al., 2010) and inhibition of mir-186-5p (Silva et al., 2019).

      9) Figure 4: NASPM appears to have a stronger effect on mEPSC frequency in the TTX condition vs. control (-40% vs. 15%). A larger sample size might be necessary to draw definitive conclusions on the contribution of Ca2+-permeable AMPARs.

      We will acknowledge that Ca2+-permeable AMPARs could be contributing to the frequency increase following activity blockade and will also include analyses of frequency throughout the manuscript.

      10) The authors discuss previous papers showing changes in VGLUT1 intensity. Was VGLUT intensity altered in the stainings presented in the manuscript?

      We will perform analyses VGLUT1 intensity and include them in the manuscript.

      11) The change in GluA2 area or fluorescence intensity upon TTX treatment in controls is modest. How does the GluA2 integral change?

      The changes in GluA2 integrals look exactly like the changes in cluster size and were not included to simplify the results. But with the removal of the CDFs, rank order, and ratio plots, we can easily include integral measurements. What we did not observe was an additive effect with intensity and size such that the effects on integral were of greater magnitude or statistical significance than either alone. We will include the integral plots in the revised manuscript.

      12) The quantitative comparison between physiology and microscopy data is problematic. The authors report a mismatch in ratio values between the smallest mEPSC amplitudes and smallest GluA2 receptor cluster sizes (l. 464; Figure 8). Is this comparison affected by the fluorescence intensity threshold?

      What was the rationale for a threshold of 400 a.u. or 450 a.u.?

      We have acquired AOIs of receptor clusters at multiple threshold levels, and can examine whether the results are altered when using a low, medium or high threshold level.

      How does this threshold compare to the mEPSC threshold of 3 pA?

      The issue with values being below threshold in untreated cultures has been the concern in interpreting effects on mEPSC amplitudes, specifically, whether this mismatch contributes to divergent scaling. A problem of values being below a toohighly set threshold in the control and becoming detectable after the homeostatic plasticity produces a lower ratio than expected, because now there are values in the treated condition that were not present in the control condition. Instead, for GluA2 receptor cluster size, we observed higher TTX/CON ratios at the low end of the data set. So, based on this, the thresholds chosen for imaging are not having the same effect, if that is what is being asked. This issue will be addressed by removing ratio plots.

      The conclusion that an increase in AMPAR levels is not fully responsible for the observed mEPSC increase is mainly based on the rank-order analysis of GluA2 intensity, yielding a slope of ~0.9. There are several points to consider here: (i) GluA2 fluorescence intensity did increase on average, as did GluA2 cluster size. (ii) The increase in GluA2 cluster size is very similar to the increase in mEPSC amplitude (each approx. 18-20%). (iii) Are there any reports that fluorescence intensity values are linearly reporting mEPSC amplitudes (in this system)?

      We agree that our data show GluA2 receptors increase as based on cluster size, and did not mean to imply otherwise. Our conclusion that there is another contributor to mEPSC amplitude other than receptors is based on two main findings, 1) that the ratio plots for mEPSC amplitudes and receptor cluster size have distinctively different behaviors, and 2) that there are differences in either magnitude or direction of the TTX effect across 6 matched cultures, 3 from WT animals and 3 from TTX animals (see more explanation of this point below, in response to Reviewer 3). To our knowledge, no one has reported homeostatic plasticity effects on a culture by culture basis, and no one has compared imaging results and physiological results for the same cultures. We will remove the ratio plots and the conclusions based on the differences in behavior for mEPSC amplitudes and receptor cluster size. We will acknowledge in the revision that the differences in magnitude and direction across the 6 matched cultures could be due to the differences in limitations and artifacts of imaging fluorescent antibody staining vs. the limitations and artifacts of detecting mEPSCs electrophysiologically. However, we will continue to state that our results could also be due to the possibility that mEPSC amplitude is not changing in lockstep with receptor levels in every situation. To support this proposal, we will discuss those articles that include both measurements, and point out where mEPSC amplitude measurements and receptor levels match and where they do not.

      Antibody labelling efficiency, and false negatives of mEPSC recordings may influence the results. The latter was already noted by the authors.

      We will add the caveat that antibody labeling efficiency can vary between coverslips. Although we prepared single solutions that were applied to all coverslips in an experiment, this was not possible for the primary antibody to GluA2, which was added to live cultures in individual wells.(iv) It is not entirely clear if their imaging experiments will sample from all synapses. We will add to Materials and Methods that we sample from all the synapses that could be detected by the researcher on the primary dendrite of the pyramidal cell.

      Other AMPAR subtypes than GluA2 could contribute, as could kainate or NMDA receptors.

      This is true, other AMPARs (GluA3 and/or GluA4) could be contributing, but we only looked at the receptors well established to be contributing to homeostatic plasticity (GluA1 and GluA2). We will acknowledge the possible contribution of other AMPARs in the revised manuscript.

      Furthermore, the statement "complete lack of correspondence of TTX/CON ratios" is not supported by the data presented (l. 515ff). First, under the assumption that no scaling occurs in Rab3A-/- , the TTX/CON ratios show a 20-30% change, which indicates the variation of this readout. Second, the two examples shown in Figure 8 for Rab3A+/+ are actually quite similar (culture #1 and #2), particularly when ignoring the leftmost section of the data, which is heavily affected by the raw values approaching zero.

      We will remove the ratio plots from the manuscript and the arguments about differences between GluA2 receptors and mEPSC amplitudes that were based on them. However, we maintain that we have demonstrated a lack of consistent effect for GluA2 receptors and mEPSCs in the matched culture experiments. Yes, the readout of homeostatic plasticity in ratio plots for mEPSCs in the Rab3AKO reach over 1.1 in Figure 1, and as high a 1.2 in the cultures where Rab3AKO neurons were plated on Rab3AWT glia (Figure 9). Our point is that if we had measured GluA2 receptor responses to TTX in those same experiments, the ratios should have been above 1. However, in the experiments in which we measured both mEPSCs and GluA2 receptors, the ratios do not match. In culture #1, the ratio for mEPSCs was at 1 for more than 50% of the data, but for GluA2 receptors, was below 1 for more than 50% of the data. In culture #3, the ratio for mEPSCs was below 1 for more than 50% of the data, but for GluA2 receptors was close to 1.2 for 50% of the data. Only for culture #2 do the ratios appear to match. In the revised manuscript, the evidence that GluA2 receptors and mEPSCs are not changing in parallel will be based on the behavior of means or medians in untreated vs TTXtreated cultures, rather than ratio plots. It could be argued that we need a greater number of matched experiments to make conclusions, but the whole point of a matched experiment is that it should always show the same result—we are no longer dealing with the variability in the homeostatic plasticity itself. We will add a statement that the only three explanations left for the failure of mEPSC amplitudes and GluA2 receptors to change in parallel are 1) a true mismatch, 2) a sampling issue, or 3) technical artifacts that occur in one culture and not another.

      13) Figure 7A: TTX CDF was shifted to smaller mEPSC amplitude values in Rab3A-/- cultures. How can this be explained?

      Figure 7A depicts the pooled data that are shown separately for 3 cultures in Figure 8. We observed mEPSC amplitudes being smaller after TTX treatment in some range of the data for all three Rab3AKO cultures, suggesting that this may be a biological result rather than random variation around no change (which would be a ratio of 1). However, this effect is not significant at the level of means, nor in the KS test (which has the issue of inflated n in any case), so we did not highlight this point. This issue will be addressed by the removal of the CDF plots from the manuscript.

      Reviewer #2

      Technical concerns:

      1) The culture condition is questionable. The authors saw no NMDAR current present during spontaneous recordings, which is worrisome since NMDARs should be active in cultures with normal network activity (Watt et al., 2000; Sutton et al., 2006).

      The (Watt et al., 2000) study recorded mEPSCs in 0 Mg2+ (Figure 1). The (Sutton et al., 2006) study also shows an average mEPSC waveform (Figure 1D) that was recorded from in 0 Mg2+. Our extracellular recording solution contains Mg2+ (1.3 mM) so we likely are not observing NMDA-mediated currents because they are blocked with Mg2+ when strong depolarizations are prevented with TTX in the recording solution. We will add the idea that the NMDA currents are blocked by Mg2+ to Material and Methods.

      It is important to ensure there is enough spiking activity before doing any activity manipulation.

      We agree that it would be best if network spiking activity were monitored alongside mEPSC recordings, for example by culturing on multi-electrode arrays. Data from these measurements might explain culture to culture variability in homeostatic responses. To our knowledge, most other studies investigating homeostatic plasticity do not monitor network spiking activity in the same cultures that assay mEPSC amplitudes. This is something that the field should move towards. We will add the caveat that activity was not directly measured to the manuscript.

      Similarly, it is also unknown whether spiking activity is normal in Rab3A KO/Ebd neurons.

      Since we did not measure spiking activity, we cannot address whether the disruption in homeostatic plasticity in cultures prepared from Rab3A KO and Rab3AEbd/Ebd mutant mice is due to an alteration in network activity. If activity were already low in cultures prepared from these genetically altered mice, we would expect mEPSC amplitudes to be increased, compared to those measured in cultures from WT animals. That is not the case in cultures from Rab3A KO mice, so it is unlikely that network activity is reduced. However, mEPSC amplitudes are increased in Rab3AEbd/Ebd cultures, leaving open this possibility. It would have to be a defect unique to neurons in culture, since the Rab3AEbd/Ebd mouse appears normal in every way, suggesting action potential activity is occurring in the brains of these animals in vivo. We will add the possibility that activity is altered in the cultures from Rab3AKO and Rab3AEbd/Ebd to the manuscript.

      2) Selection of mEPSC events is not conducted in an unbiased manner. Manually selecting events is insufficient for cumulative distribution analysis, where small biases could skew the entire distribution. Since the authors claim their ratio plot is a better method to detect the uniformity of scaling than the well-established rank-order plot, it is important to use an unbiased population to substantiate this claim.

      MiniAnalysis (a standard program used for mEPSC event detection and analysis) selects many false positives with the automated feature (due to the very small sizes of events that are close to the noise level) so manual re-evaluation of the automated process is necessary to eliminate false positives. As soon as there is a manual step, bias is introduced. Interestingly, a manual reevaluation step was applied in a recent study that describes their process as ‘unbiased” (Wu et al., 2020). The alternative is to apply a very large threshold, reducing or eliminating false positives. However, this has the effect of biasing the data towards large events. In sum, we do not believe it is currently possible to perform a completely unbiased detection process. We feel that it is important to include as many small events as possible to reduce the problem of having events in the TTX experimental group that were not matched by events in the control experimental group, for the rank order and ratio plots, so setting the threshold low and manually detecting events accomplishes this. We will add to the Materials and Methods section that the person selecting events did not have information on whether the record was from an untreated or a TTX-treated cell at the time of selection. All of these issues, the potential for skewing the CDFs, and bias potentially interfering in the true rank order and ratio relationships, are addressed by removal of the CDFs, ratio and rank-order plots from the manuscript.

      3) Immunohistochemistry data analysis is problematic. The authors only labeled dendrites without doing cell-fills to look at morphology, so it is questionable how they differentiate branches from pyramidal neurons and interneurons. Since glutamatergic synapses on these two types of neuron scale in the opposite directions, it is crucial to show that only pyramidal neurons are included for analysis.

      MAP2, in addition to labeling dendrites, also labels the cell body, and we used the cell structure revealed by MAP2 staining to select pyramidal-shaped neurons. The selection of the primary dendrite of a pyramidal neuron was stated in lines 239-240 in Materials and Methods and lines 1094 in the figure legend, but we had not explicitly stated how we knew it was a pyramidal neuron. We will include a low power picture of each of the selected pyramidal neurons in the revision.

      Conceptual concerns:

      The only novel finding here is the implicated role for Rab3A in synaptic scaling, but insights into mechanisms behind this observation are lacking. The author claims that Rab3A likely regulates scaling from the presynaptic side, yet there is no direct evidence from data presented. In its current form, this study's contribution to the field is very limited.

      We acknowledge that a presynaptic mechanism is involved in the regulation of homeostatic plasticity by Rab3A is not supported by direct evidence in cortical cultures in this study. But we disagree that the study’s contribution is very limited.

      The revised manuscript will emphasize that there are only two possible mechanisms by which Rab3A is acting in homeostatic plasticity. Either this presynaptic vesicle protein is regulating postsynaptic receptors (an extremely surprising result for which we do have direct evidence), or, it is regulating quantal size from both sides of the synapse (supported by direct evidence from our previous study at the mouse neuromuscular junction in vivo, where receptors are not being upregulated during homeostatic plasticity, and, by indirect evidence in the current study, that receptors and mEPSCs are not being identically regulated in the same cultures). Furthermore, the first idea that follows from the effect of Rab3A on receptors is that it would be regulating release of factors from astrocytes, since this is a mechanism that has been shown to be involved in homeostatic plasticity, and we clearly disprove this hypothesis.

      1) Their major argument for this is that homeostatic effects on mEPSC amplitudes and GluA2 cluster sizes do not match. This is inconsistent with reports from multiple labs showing that upscaling of mEPSC amplitude and GluA2 accumulation occur side by side during scaling (Ibata et al., 2008; Pozo et al., 2012; Tan et al., 2015; Silva et al., 2019).

      We agree with the reviewer that many studies show an increase in receptors and mEPSC amplitudes after activity blockade. This is why we were very surprised in our initial experiments to find that there was not a consistent robust increase in receptors in our cultures. At that point we were only imaging, and we assumed that it was homeostatic plasticity that was not always robust. We decided it was essential to measure mEPSC amplitudes and image receptors in the same cultures. We expected to observe larger and smaller effects on mEPSC amplitudes from culture to culture that were paralleled by larger and smaller effects on receptors, but this is not what happened. We have gone back to the literature to look more closely at whether variability across cultures has ever been shown for mEPSC amplitudes, receptors, or both. In a survey of 14 studies, none report results culture by culture. To our knowledge, we are the first to report this variability in the receptor response, and the lack of correlation between mEPSC amplitudes and receptor responses, in the same cultures. That said, for the 4 examples provided by the reviewer, only 1 reports evidence relevant to our study that receptors and mEPSC amplitudes ‘occur side by side,’ which is the (Ibata et al., 2008) study. Here, 24 hr of TTX treatment of rat cortical cultures causes synaptically localized GluA2 receptors in confocal imaging, and mEPSC amplitudes, to both increase to around 130%. The (Pozo et al., 2012) study is not a study of activity blockade but of the effects of overexpressing beta-integrins in rat hippocampal cultures, and this causes both GluA2 receptors and mEPSC amplitudes to increase, but the GluA2 level is not restricted to synaptic sites, and, is expressed as the surface fraction (surface receptor/total receptor—total receptor being surface intensity plus internalized intensity) which increases from 0.5 to 0.55, or to 110%, while mEPSC amplitude increases to ~180%. The (Tan et al., 2015) study only provides Western blot data to show an increase of receptors to 125% in mouse cortical cultures in response to 48 hr TTX, with mEPSC amplitudes increased to ~140%, but the Western blot technique measures synaptic and nonsynaptic receptors on excitatory and inhibitory neurons, as well as receptors on astrocytes. Finally, in (Silva et al., 2019), the culture conditions for the imaging data and the mEPSC amplitude data are markedly different, with ‘low-density’ Banker cultures being used for the former, and ‘high-density’ cultures used for the latter, and the protocol to induce activity blockade is different from ours (noncompetitive AMPA and NMDA blockers); synaptic GluA2 receptors are increased to ~280% and mEPSC amplitudes to ~170%. In the revision we will carefully summarize the previous evidence for receptors and mEPSC amplitude responses to activity blockade. Since it is known that different protocols trigger different molecular mechanisms, for example, TTX + APV triggers a homeostatic plasticity that can be completely reversed by acute application of blockers of Ca-permeable receptors, whereas TTX alone triggers a plasticity that is insensitive to these blockers (Sutton et al., 2006), Figure 4E; (Soden and Chen, 2010); Figure 4A), we will keep our discussion restricted to studies using TTX alone for at least 24 hr. We will acknowledge that our finding that GluA2 receptors and mEPSC amplitudes are not varying in lockstep from culture to culture suggests there is another contributor to mEPSC amplitude, but that we cannot rule out it is due to a greater variability in signal, or more issues with signal over noise, in imaging experiments compared to electrophysiology experiments.

      Studies surveyed about reporting results by culture:

      (Ju et al., 2004; Stellwagen et al., 2005; Shepherd et al., 2006; Sutton et al., 2006; Cingolani and Goda, 2008; Hou et al., 2008; Ibata et al., 2008; Chang et al., 2010; Hu et al., 2010; Jakawich et al., 2010; Beique et al., 2011; Tatavarty et al., 2013; Diering et al., 2014; Sanderson et al., 2018)

      Further, because the acquisition and quantification methods for mEPSC recordings and immunohistochemistry imaging are entirely different (each with its own limitations in signal detection), it is not convincing that the lack of proportional changes must signify a presynaptic component.

      We agree with the reviewer that there is no way to compare absolute levels from one type of experimental technique to another, but whatever differences in technical issues there are for the two techniques, they should cause systemic errors and should not contribute to the differences between experiments. Most of the issues with imaging come down to variability in the intensity of fluorescence from experiment to experiment, since the antibody solutions are made anew each time, as is the fixation solution. In addition, the confocal microscope function can vary over time and give brighter or dimmer images. But those kinds of artifacts are addressed by using the same solutions on control and TTX-treated coverslips, and imaging control and TTX-treated coverslips in the same single 2-3 hour imaging session, so that whatever issues there are, they cannot contribute to the TTX effect itself. Therefore when we compare the TTX effect (TTX measurements compared to untreated measurements) from culture to culture and find that in one WT culture there was no increase in receptors but there was in mEPSC amplitude, it is difficult to explain how a limitation specific to the antibody imaging technique could produce such a result. Similarly, when we get the opposite result, that in one KO culture, receptors increased but mEPSC amplitudes did not, it is unclear how limitations in signal detection would produce such a result in one culture but not another. The one exception to this is that the primary GluA2 antibody has to be added individually to each coverslip before returning the dishes to the incubator in order to avoid the disruption to live cells that a complete removal of media would have had. The only remaining ‘artifact’ that could explain the results would be a greater variability in the imaging experiments due to limitations in the signal or the signal to noise ratio. In the revision we will report additional characteristics of imaging experiments, such as average intensity for each coverslip, and for each experiment, to address whether variability in fluorescence levels could explain the variability in TTX effects we observe. We will include the possibility that the mismatches in GluA2 receptors and mEPSCs could be caused by greater variability in the imaging experiments.

      2) The authors also speculate in the discussion that presynaptic Rab3A could be interacting with retrograde BDNF signaling to regulate postsynaptic AMPARs. Without data showing Rab3A-dependent presynaptic changes after TTX treatment, this argument is not compelling. In this retrograde pathway, BDNF is synthesized in and released from dendrites (Jakawich et al., 2010; Thapliyal et al., 2022), and it is entirely possible for postsynaptic Rab3A to interfere with this process cell-autonomously.

      In the revision, the model will focus on the direct findings of the manuscript and tone down the speculation about BDNF signaling, but in the Discussion we will add the possibility that a Rab3A-BDNF interaction could occur either presynaptically or postsynaptically. Interestingly, these articles suggest the postsynaptic BDNF is affecting presynaptic function, namely mEPSC frequency. It is conceivable it could presynaptically affect the vesicle’s release of transmitter.

      3) The authors propose that a change in AMPAR subunit composition from GluA2-containing ones to GluA1 homomers may account for the distinct changes in mEPSC amplitudes and GluA2 clusters. However, their data from the Naspm wash-in experiments clearly show that GluA1 homomer contributions have not changed before and after TTX treatment.

      Our apologies to the reviewer that we were not clear on this point. In lines 396 to 400 we were describing the significant effects that NASPM had on mEPSC frequency on both untreated and TTX-treated cells, despite having only modest, and not quite significant effects on mEPSC amplitude. We conclude from these results that there are synaptic sites that have only GluA1 homomers, and the mEPSCs from these sites are blocked 100% by NASPM. There may be an increase in such GluA1-only synapses after activity blockade, but nevertheless, these events do not contribute to the amplitude increase. So we did not mean to suggest that there is a shift from Glua2 containing to GluA1 containing receptors that leads to the amplitude increase and fully agree with the reviewer that the GluA1 homomer contributions to amplitude have not changed before and after TTX. We will clarify the difference between the contribution of GluA1 homomers to amplitude and frequency in the revised manuscript.

      Reviewer #3

      Summary: The authors clearly demonstrate the Rab3A plays a role in HSP at excitatory synapses, with substantially less plasticity occurring in the Rab3A KO neurons. There is also no apparent HSP in the Earlybird Rab3A mutation, although baseline synaptic strength seems already elevated. In this context, it is unclear if the plasticity is absent or just occluded by a ceiling effect due the synapses already being strengthened. The authors do appropriately discuss both options. There are also differences in genetic background between the Rab3A KO and Earlybird mutants that could also impact the results, which are also noted. The authors have solid data showing that Rab3A is unlikely to be active in astrocytes, Finally, they attempt to study the linkage between synaptic strength during HSP and AMPA receptor trafficking, and conclude that trafficking is largely not responsible for the changes in synaptic strength.

      Strengths: This work adds another player into the mechanisms underlying an important form of synaptic plasticity. The plasticity is only reduced, suggesting Rab3A is only partially required and perhaps multiple mechanisms contribute. The authors speculate about some possible novel mechanisms.

      Weaknesses: However, the rather strong conclusions on the dissociation of AMPAR trafficking and synaptic response are made from somewhat weaker data. The key issue is the GluA2 immunostaining in comparison with the mESPC recordings. Their imaging method involves only assessing puncta clearly associated with a MAP2 labeled dendrite. This is a small subset of synapses, judging from the sample micrographs (Fig 5). To my knowledge, this is a new and unvalidated approach that could represent a particular subset of synapses not representative of the synapses contributing to the mEPSC change. (they are also sampling different neurons for the two measurements; an additional unknown detail is how far from the cell body were the analyzed dendrites for immunostaining. While the authors acknowledge that a sampling issue could explain the data, they still use this data to draw strong conclusions about the lack of AMPAR trafficking contribution to the mEPSC amplitude change. This apparent difference may be a methodological issue rather than a biological one, and at this point it is impossible to differentiate these. It will unfortunately be difficult to validate their approach. Perhaps if they were to drive NMDA-dependent LTD or chemLTP, and show alignment of the imaging and ephys, that would help. More helpful would be recordings and imaging from the same neurons but this is challenging. Sampling from identified synapses would of course be ideal, perhaps from 2P uncaging combined with SEP-labeled AMPARs, but this is more challenging still. But without data to validate the method, it seems unwarranted to make such strong conclusions such as that AMPAR trafficking does not underlie the increase in mEPSC amplitude, given the previous data supporting such a model.

      We chose the primary dendrite to ensure we were not assaying dendrites from inhibitory neurons or on axons, but we will add in the revision that it is a limitation of our methods that we are not sampling all the synapses for each neuron. The majority of previous studies that establish that receptors are increased side by side with mEPSCs did not measure receptors and mEPSCs in the same cells, nor even in the same cultures. There is a recent study which employs dual recordings, transfection of GluA2 and VGlut1 constructs, and infusion of dyes to highlight cell morphology (Letellier et al., 2019), so in principle an experiment could be done in which synaptic GluA2 sites are imaged in a cell in which the mEPSCs are also measured. It would be difficult to make these measurements in the same cells before and after TTX treatment, since there is a high likelihood of damaging the cell upon electrode withdrawal and with the imaging process itself. In theory, only a few such experiments would be necessary to establish whether receptors and mEPSC amplitudes are varying in lockstep, and we will consider this for a future study. As stated in response to conceptual concern #1 in Reviewer 2’s comments, we will review the literature on previous studies’ demonstrations of increases in receptors and mEPSC amplitudes following activity blockade in more detail, including how the synaptic sites to be imaged were chosen, to address whether our selection of sites touching the primary dendrite is unvalidated.

      A sample from 3 articles:

      (Ibata et al., 2008), only information is that ‘distal dendrites’ were examined. The authors do not use a dendritic label. (Jakawich et al., 2010), ‘neurons with pyramidal-like morphology were selected for imaging,’ and ‘principal dendrite of each neuron was linearized’—but how these were identified is not clear, since MAP2 or other cellular labels are not described.

      (Silva et al., 2019), ‘dendrites with similar thickness and appearance were randomly selected using MAP2 staining,’ which suggests synaptic sites with GluA2 and VGLUT1 were selected on the basis of being close to or touching the MAP2 positive dendrite, although this is not stated explicitly.

      We can perform length measurements on the dendrites imaged and report this information in the revision, but the primary dendrite is the closest dendrite to the cell body.

      We have addressed the potential contribution of technical artifacts arising from the two distinct methods of measurement, imaging and electrophysiology, in our response to conceptual concern #1 of Reviewer 2.

      Other questions arise from the NASPM experiments, used to justify looking at GluA2 (and not GluA1) in the immunostaining. First, there is a frequency effect that is quite unclear in origin. One would expect NASPM to merely block some fraction of the post-synaptic current, and not affect pre-synaptic release or block whole synapses. It is also unclear why the authors argue this proves that the NASPM was at an effective concentration (lines 399-400).

      We observed a clear effect of NASPM reducing mEPSC frequency. We will state more clearly that we infer from the loss of mEPSCs after NASPM that such mEPSCs were from synaptic sites that had only GluA1 homomers, and acknowledge that this is an interpretation. We will also clarify that if our inference is correct, it would indicate that the dose of NASPM we used was 100% effective at blocking GluA1 homomers. The alternative explanation would be a presynaptic effect of NASPM, which has never been reported, to our knowledge.

      Further, the amplitude data show a strong trend towards smaller amplitude. The p value for both control and TTX neurons was 0.08 - it is very difficult to argue that there is no effect. And the decrease is larger in the TTX neurons. Considering the strong claims for a pre-synaptic and the use of this data to justify only looking at GluA2 by immunostaining, these data do not offer much support of the conclusions. Between the sampling issues and perhaps looking at the wrong GluA subunit, it seems premature to argue that trafficking is not a contributor to the mEPSC amplitude change, especially given the substantial support for that hypothesis. Further, even if trafficking is not the major contributor, there could be shifts in conductance (perhaps due to regulation of auxiliary subunits) that does not necessitate a pre-synaptic locus. While the authors are free to hypothesize such a mechanism, it would be prudent to acknowledge other options and explanations.

      We did not mean to suggest that there is no effect of NASPM on mEPSC amplitude. We will clarify that our data indicate that there is no effect of NASPM on the TTX effect on mEPSC amplitude. We agree with the reviewer that the effect of NASPM on frequency is of larger magnitude after TTX treatment, although the p value is larger than that for untreated cells, likely due to greater variability. We interpret this to mean that TTX treatment increases the proportion of synapses that have only GluA1 homomers. Nevertheless, the increase in GluA1 homomer sites does not appear to contribute to the overall increase in amplitude following TTX treatment, and we wanted to find the mechanism of the amplitude increase. That is why we focused on GluA2 receptors. We will acknowledge the limitation of basing our conclusions on only GluA2 receptors in the revision, as well as the possibility that there is a change in conductance. As stated in our response to Reviewer 2, we do not mean to state that GluA2 receptors do not go up after activity blockade, we find that this is the case. We are proposing an additional mechanism contributing to mEPSC amplitude to explain the different responses for GluA2 receptors vs. mEPSC amplitudes in some of the 6 matched experiments (3 WT and 3 KO).

      The frequency data are missing from the paper, with the exception of the NASPM dataset. The mEPSC frequencies should be reported for all experiments, particularly given that Rab3A is generally viewed as a pre-synaptic protein regulating release. Also, in the NASPM experiments, the average frequency is much higher in the TTX treated cultures. Is this statistically above control values?

      We will report frequency measurements for all experiments shown. Following TTX treatment, frequency variability increases enormously, with cells having as high as > 10 mEPSCs per second, and other TTX-treated cells with frequencies as low as < 1 mEPSC per second, so the TTX effect on frequency, and whether this effect is present or not in Rab3A KO and Rab3AEbd/Ebd is not completely clear, which is why we did not include those results previously.

      Unaddressed issues that would greatly increase the impact of the paper:

      1) Is Rab3A acting pre-synaptically, post-synaptically or both? The authors provide good evidence that Rab3A is acting within neurons and not astrocytes. But where it is acting (pre or post) would aid substantially in understanding its role (and particularly the hypothesized and somewhat novel idea that the amount of glutamate released per vesicle is altered in HSP). They could use sparse knock-down of Rab3A, or simply mix cultures from KO and WT mice (with appropriate tags/labels). The general view in the field has been that HSP is regulated post-synaptically via regulation of AMPAR trafficking, and considerable evidence supports this view. The more support for their suggestion of a pre-synaptic site of control, the better.

      We agree with the reviewer that this is the most important question to answer next. The approach suggested by the reviewer would be to record from Rab3A KO neurons in a culture where the majority of its inputs are Rab3A positive. If the TTX effect is absent from these cells, it would strongly indicate that postsynaptic Rab3A is required for homeostatic plasticity. There are not currently transgenic mice expressing GFP forms of Rab3A, so we would have to create one, or, transiently transfect Rab3A-GFP into Rab3AKO neurons. Given that under our experimental conditions, we require a very high density of neurons to observe the increase in mEPSC amplitude, it would be difficult to get the ratio of Rab3A-expressing neurons high enough using transfection to be sure that a given postsynaptic cell lacking Rab3A had a normal number of Rab3A-positive inputs and almost no Rab3A-negative inputs. It may be that the opposite experiment is more doable—an isolated Rab3A-positive neuron in a sea of Rab3A-negative neurons, which could be accomplished with a very low transfection efficiency. Another approach would be to use the fast off rate antagonist gamma-DGG, which is more effective against low glutamate concentrations than high glutamate concentrations (see (Liu et al., 1999; Wu et al., 2007). If gamma-DGG were less effective at reducing mEPSC amplitude in TTX-treated cells, compared to untreated cells, it would support the hypothesis that activity blockade leads to an increase in the amount of transmitter per vesicle fusion event. Further, if the change in gamma-DGG sensitivity after activity blockade were disrupted in cultures from Rab3A KO cells, it would support a presynaptic role for Rab3A in homeostatic plasticity of mEPSC amplitude. We have begun these experiments but are finding the surprising result that within a single recording, small mEPSCs and large mEPSCs appear to be differentially sensitive to gamma-DGG. To confirm that this is a biological characteristic, rather than an issue with the detection threshold, we will be repeating our experiments with a slow off rate antagonist that has same effect regardless of transmitter concentration. The complexity of these results precludes including them in the current manuscript.

      2) Rab3A is also found at inhibitory synapses. It would be very informative to know if HSP at inhibitory synapses is similarly affected. This is particularly relevant as at inhibitory synapses, one expects a removal of GABARs and/or a decrease of GABA-packaging in vesicles (ie the opposite of whatever is happening at excitatory synapses). If both processes are regulated by Rab3A, this might suggest a role for this protein more upstream in the signaling; an effect only at excitatory synapses would argue for a more specific role just at these synapses.

      The next question, after it is determined where Rab3A is acting, is whether it is required for other forms of homeostatic plasticity. This includes plasticity of GABA mIPSCs on pyramidal neurons, but also mEPSCs on inhibitory neurons, and, the downscaling of mEPSCs (and upscaling of mIPSCs) when activity is increased, by bicuculline for example. We will add a statement about future experiments examining other forms of plasticity to the discussion, and include examples where a molecular mechanism has mediated multiple forms, and those that have been shown to be very specific.

      Beique JC, Na Y, Kuhl D, Worley PF, Huganir RL (2011) Arc-dependent synapse-specific homeostatic plasticity. Proc Natl Acad Sci U S A 108:816-821.

      Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, Linden DJ, Sutula TP, McBain CJ, Worley PF (2010) Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13:1090-1097.

      Cingolani LA, Goda Y (2008) Differential involvement of beta3 integrin in pre- and postsynaptic forms of adaptation to chronic activity deprivation. Neuron Glia Biol 4:179-187.

      Diering GH, Gustina AS, Huganir RL (2014) PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 84:790-805.

      Hanes AL, Koesters AG, Fong MF, Altimimi HF, Stellwagen D, Wenner P, Engisch KL (2020) Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures. J Neurosci 40:4090-4102.

      Hou Q, Zhang D, Jarzylo L, Huganir RL, Man HY (2008) Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. Proc Natl Acad Sci U S A 105:775-780.

      Hu JH, Park JM, Park S, Xiao B, Dehoff MH, Kim S, Hayashi T, Schwarz MK, Huganir RL, Seeburg PH, Linden DJ, Worley PF (2010) Homeostatic scaling requires group I mGluR activation mediated by Homer1a. Neuron 68:1128-1142.

      Ibata K, Sun Q, Turrigiano GG (2008) Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57:819826.

      Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, Carruthers CJ, Sutton MA (2010) Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68:1143-1158.

      Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244-253.

      Lazic SE, Clarke-Williams CJ, Munafo MR (2018) What exactly is 'N' in cell culture and animal experiments? PLoS Biol 16:e2005282.

      Liu G, Choi S, Tsien RW (1999) Variability of neurotransmitter concentration and nonsaturation of postsynaptic AMPA receptors at synapses in hippocampal cultures and slices. Neuron 22:395-409.

      Pozo K, Cingolani LA, Bassani S, Laurent F, Passafaro M, Goda Y (2012) beta3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci U S A 109:1323-1328.

      Sanderson JL, Scott JD, Dell'Acqua ML (2018) Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca(2+)-Permeable AMPA Receptors. J Neurosci 38:2863-2876.

      Shepherd JD, Rumbaugh G, Wu J, Chowdhury S, Plath N, Kuhl D, Huganir RL, Worley PF (2006) Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52:475-484.

      Silva MM, Rodrigues B, Fernandes J, Santos SD, Carreto L, Santos MAS, Pinheiro P, Carvalho AL (2019) MicroRNA186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 116:5727-5736.

      Soden ME, Chen L (2010) Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci 30:16910-16921. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219-3228.

      Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM (2006) Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125:785-799.

      Tan HL, Queenan BN, Huganir RL (2015) GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proc Natl Acad Sci U S A 112:10026-10031.

      Tatavarty V, Sun Q, Turrigiano GG (2013) How to scale down postsynaptic strength. J Neurosci 33:13179-13189.

      Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892-896.

      Wang X, Wang Q, Yang S, Bucan M, Rich MM, Engisch KL (2011) Impaired activity-dependent plasticity of quantal amplitude at the neuromuscular junction of Rab3A deletion and Rab3A earlybird mutant mice. J Neurosci 31:3580-3588.

      Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG (2000) Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26:659-670.

      Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, Wu LG (2007) The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci 27:3046-3056.

      Wu YK, Hengen KB, Turrigiano GG, Gjorgjieva J (2020) Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. Proc Natl Acad Sci U S A 117:24514-24525.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript analyzes large-scale Neuropixels recordings from visual areas and hippocampus of mice passively viewing repeated clips of a movie and reports that neurons respond with elevated firing activities to specific, continuous sequences of movie frames. The important results support a role of rodent hippocampal neurons in general episode encoding and advance understanding of visual information processing across different brain regions. The strength of evidence for the primary conclusion is solid, but some technical limitations of the study were identified that merit further analyses.

      We thank the editors and reviews for the assessment and reviews. We have provided clarifications and updated the manuscripts to address the seeming technical limitations that are perhaps due to some misunderstanding, please see below. We provide additional results that isolate the contribution of pupil diameter, sharpwave ripple and theta power to show that movie tuning cannot be explained by these nonspecific effects. Nor are these mere time cells or some other internally generated patterns due to many differences highlighted below.

      Reviewer #1 (Public Review):

      Taking advantage of a publicly available dataset, neuronal responses in both the visual and hippocampal areas to passive presentation of a movie are analyzed in this manuscript. Since the visual responses have been described in a number of previous studies (e.g., see Refs. 11-13), the value of this manuscript lies mostly on the hippocampal responses, especially in the context of how hippocampal neurons encode episodic memories. Previous human studies show that hippocampal neurons display selective responses to short (5 s) video clips (e.g. see Gelbard-Sagiv et al, Science 322: 96-101, 2008). The hippocampal responses in head-fixed mice to a longer (30 s) movie as studied in this manuscript could potentially offer important evidence that the rodent hippocampus encodes visual episodes.

      We have now included citations to Gelbard-Sagiv et al. Science 2008 paper and many other references too, thank you for pointing that out. There are major differences between that study and ours.

      a. The movies used in previous study contained very familiar, famous people and famous events, and the experiment was about the patient’s ability to recall those famous movie episodes. In our case the mice had seen this movie clip only in two habituation sessions before.

      b. They did not look at the fine structure of neural responses below half a second whereas we looked at the mega-scale representations from 30ms to 30s.

      c. The movie clips in that study were in full color with audio, we used an isoluminant, black-and-white, silent movie clip.

      d. Their movie clips contained humans and was observed by humans, whereas our study mice observed a movie clip with humans and no mice or other animals.

      The analysis strategy is mostly well designed and executed. A number of factors and controls, including baseline firing, locomotion, frame-to-frame visual content variation, are carefully considered. The inclusion of neuronal responses to scrambled movie frames in the analysis is a powerful method to reveal the modulation of a key element in episodic events, temporal continuity, on the hippocampal activity. The properties of movie fields are comprehensively characterized in the manuscript.

      Thank you.

      Although the hippocampal movie fields appear to be weaker than the visual ones (Fig. 2g, Ext. Fig. 6b), the existence of consistent hippocampal responses to movie frames is supported by the data shown. Interestingly, in my opinion, a strong piece of evidence for this is a "negative" result presented in Ext. Fig. 13c, which shows higher than chance-level correlations in hippocampal responses to same scrambled frames between even and odd trials (and higher than correlations with neighboring scrambled frames). The conclusion that hippocampal movie fields depend on continuous movie frames, rather than a pure visual response to visual contents in individual frames, is supported to some degree by their changed properties after the frame scrambling (Fig. 4).

      Yes, hippocampal selectivity is not entirely abolished with scrambled movie, as we show in several figures (Figure 4d,g and Figure 4- figure supplement 6), but it is greatly reduced, far more than that in the afferent visual cortices. The fraction of tuned cells for scrambled movies dropped to 4.5% in hippocampus, which is close to the chance level of 3%. In contrast, in visual areas selectivity was still above 80%.

      Significant overlap between even and odd trials is to be expected for the tuned cells. Without a significant overlap, i.e. a stable representation, they will not be tuned. Despite this, the correlation between even and odd trials for the (only 4.5% of) tuned cells in the hippocampus was more than 2-fold smaller than (more than 80% of) cells in visual cortices. This strongly supports our hypothesis that unlike visual cortices, hippocampal subfields depended very strongly on the continuity of visual information. We have now clarified this in the main text.

      However, there are two potential issues that could complicate this main conclusion.

      One issue is related to the effect of behavioral variation or brain state. First, although the authors show that the movie fields are still present during low-speed stationary periods, there is a large drop in the movie tuning score (Z), especially in the hippocampal areas, as shown in Ext. Fig. 3b (compared to Ext. Fig. 2d). This result suggests a potentially significant enhancement by active behavior.

      There seems to be some misunderstanding here. There was no major reduction in movie tuning during immobility or active running. As we wrote in the manuscript, the drop in selectivity during purely immobile epochs is because of reduction in the amount of data, not reduction in selectivity per se. Specifically, as the amount data reduces, the statistical strength of tuning (z-scored sparsity) reduces. For example, if we split the total of 60 trials worth of data into two parts, the amount of data reduces to about half in each part, leading to a seeming reduction in selectivity in both halves. Figure 1-figure supplement 4c shows nearly identical tuning in all brain regions during immobility (red bars) and equivalent subsamples (yellow-orange) chosen randomly from the entire data, including mobility and immobility. We also show that the movie tuning persists in sessions with and without prolonged running behavior (Figure 1-figure supplement 7), as well as by splitting the data based on pupil dilation or theta power. Please see below for more details.

      Second, a general, hard-to-tackle concern is that neuronal responses could be greatly affected by changes in arousal or brain state (including drowsy or occasional brief slow-wave sleep state) in head-fixed animals without a task. Without the analysis of pupil size or local field potentials (LFPs), the arousal states during the experiment are difficult to know.

      In the revised manuscript we show that the behavioral state effects cannot explain movie tuning. Specifically:

      a. We compared sessions in which the mouse was mostly immobile versus sessions in which the mouse was mostly running. Movie tuned cells were found in both these cases (Figure 1-figure supplement 7).

      b. We detected and removed all data around sharp-wave ripples (SWR). Movie tuning was unchanged in the remaining data. (Figure 1-figure supplement 6).

      c. As a further control, we quantified arousal by two standard metrics. First within a session, we split the data into two groups, segments with high theta power and segments with low theta power. Significant movie tuning persisted in both.

      d. Finally, pupil dilation is another common method to estimate arousal, so data within a session were split into two parts: those with pupil dilation versus constriction. Movie tuning remained significant in both parts. See the new Figure 1-figure supplement 7.

      Many example movie fields in the presented raw data (e.g., Fig. 1c, Ext. Fig. 4) are broad with low-quality tuning, which could be due to broad changes in brain states. This concern is especially important for hippocampal responses, since the hippocampus can enter an offline mode indicated by the occurrence of LFP sharp-wave ripples (SWRs) while animals simply stay immobile. It is believed that the ripple-associated hippocampal activity is driven mainly by internal processing, not a direct response to external input (e.g., Foster and Wilson, Nature 440: 680, 2006). The "actual" hippocampal movie fields during a true active hippocampal network state, after the removal of SWR time periods, could have different quantifications that impact the main conclusion in the manuscript.

      We included the broadly tuned hippocampal neurons to demonstrate the movie-field broadening compared to those in visual areas. We now include more examples with sharp movie fields in the hippocampal regions (Figure 1a-d right column, 2d and h, Figure 1-figure supplement 5 and Figure 2-figure supplement 1). Further, as stated above, we detected sharp-wave ripples and removed one second of data around SWR. Movie tuning was unchanged in the remaining data. Thus, movie tuning is not generated internally via SWR (Figure 1-figure supplement 6). See also Figure 1-figure supplement 7 and Figure 2-figure supplement 8 and the response above.

      Another issue is related to the relative contribution of direct visual response versus the response to temporal continuity in movie fields. First, the data in Ext. Fig. 8 show that rapid frame-to-frame changes in visual contents contribute largely to hippocampal movie fields (similarly to visual movie fields).

      There seems to be some misunderstanding here. That figure showed that the frame-to-frame changes in the visual content had the highest effect on visual areas MSUA and much weaker in hippocampus (Extended Data Fig. 8, as per previous version, now Figure3-figure supplement 2). For example, the depth of modulation (max – min) / (max + min) for MSUA was 21% and 24% for V1 but below 6% for hippocampal regions. Similarly, the MSUA was more strongly (negatively) correlated with F2F correlation for visual areas (r=0.48 to 0.56) than hippocampal (0.07 to 0.3). Similarly, comparing the number of peaks or their median widths, visual regions showed stronger correlation with F2F, and largest depth of modulation than hippocampal regions, barring handful exceptions (like CA3 correlation between F2F and median peak duration). This strongly supports our claim that visual regions generated far greater response of the frame-to-frame changes in the movie than hippocampal regions.

      Interestingly, the data show that movie-field responses are correlated across all brain areas including the hippocampal ones.

      In Figure 3c we compared the MSUA responses with normalization between brain regions. Amongst the 21 possible brain region pairs, 5 were uncorrelated, 7 were significantly negatively correlated and 9 were significantly positively correlated.

      The changes in population overlap, number and widths of peaks are strongly correlated only between visual areas and some of the hippocampal region pairs. The correlation is much weaker for hippocampal-visual area pairs, but often significantly different from chance. This is quantified explicitly in the revised text Figure 3-figure supplement 2 with an additional correlation matrix at the right.

      This could be due to heightened behavioral arousal caused by the changing frames as mentioned above, or due to enhanced neuronal responses to visual transients, which supports a component of direct visual response in hippocampal movie fields.

      As shown in Figure 1-figure supplements 4,5,6 and 7 and described above, the effect of arousal as quantified by theta power of pupil diameter (or by accounting for running behavior or SWR occurrences) cannot explain the results in hippocampal areas and the correlations in multiunit responses are unrelated across many brain areas.

      Second, the data in Ext. Fig. 13c show a significant correlation in hippocampal responses to same scrambled frames between even and odd trials, which also suggests a significant component of direct visual response.

      This is plausible. The fraction of hippocampal cells which were significantly tuned for the scrambled presentation (4.5%) was close to chance level (3%), and this small subset of cells was used to compute the population overlap between even and odd trials in Figure 4-figure supplement 6 (Ext Fig. 13 with old numbering). As described above, this significant but small amount of tuning could generate significant population overlap, which is to be expected by construction.

      Is there a significant component purely due to the temporal continuity of movie frames in hippocampal movie fields? To support that this is indeed the case, the authors have presented data that hippocampal movie fields largely disappear after movie frames are scrambled. However, this could be caused by the movie-field detection method (it is unclear whether single-frame field could be detected).

      As described in the methods section, the movie-field detection algorithm had a resolution of 3.3ms resolution, which ensured that we could detect single frame fields. As reported, we did find such short movie fields in several cells in the visual areas. The sparsity metric used is agnostic to the ordering of the responses, and hence single frame field, and the resultant significant movie-tuning, if present, can be detected by our methods.

      Another concern in the analysis is that movie-fields are not analyzed on re-arranged neural responses to scrambled movie frames. The raw data in Fig. 4e seem quite convincing. Unfortunately, the quantifications of movie fields in this case are not compared to those with the original movie.

      We saw very few (3.6-4.9%) cells with significant movie tuning for scrambled presentation in the hippocampus. Hence, we did not quantify this earlier. This is now provided in new Figure 4-figure supplement 5. The amount of movie tuning for the scrambled presentation taken as-is, or after rearranging the frames is below 5% for all hippocampal brain regions and not significantly different between the two.

      Reviewer #2 (Public Review):

      Purandare and Mehta investigated the neural activities modulated by continuous and sequential visual stimuli composed of natural images, termed "movie-tuning," measured along the visuo-hippocampal network when the animals passively viewed a movie without any task demand. Neurons selectively responded to some specific parts of the movie, and their activity timescales ranged from tens of milliseconds to seconds and tiled the entire movie with their movie-fields. The movie-tuning was lost in the hippocampus but not in the visual cortices when the image frames were temporally scrambled, implying that the rodent hippocampus encoded the specific sequence of images.

      The authors have concluded that the neurons in the thalamo-cortical visual areas and the hippocampus commonly encode continuous visual stimuli with their firing fields spanning the mega-scale, but they respond to different aspects of the visual stimuli (i.e., visual contents of the image versus a sequence of the images). The conclusion of the study is fairly supported by the data, but some remaining concerns should be addressed.

      1) Care should be taken in interpreting the results since the animal's behavior was not controlled during the physiological recording.

      This was done intentionally since plenty of research shows that task demand (e.g., Aronov and Tank, Nature 2017) can not only modulate hippocampal responses but also dramatically alter them. We have now provided additional figures (Figure 1-figure supplement 6 and 7) where we quantified the effects of the behavioral states (sharp wave ripples, theta power and pupil diameter), as well as the effect of locomotion (Figure 1-figure supplement 4). Movie tuning remained unaffected with these manipulations. Thus, movie tuning cannot be attributed to behavioral effects.

      It has been reported that some hippocampal neuronal activities are modulated by locomotion, which may still contribute to some of the results in the current study. Although the authors claimed that the animal's locomotion did not influence the movie-tuning by showing the unaltered proportion of movie-tuned cells with stationary epochs only, the effects of locomotion should be tested in a more specific way (e.g., comparing changes in the strength of movie-tuning under certain locomotion conditions at the single-cell level).

      Single cell analysis of the effect of locomotion and visual stimulation is underway, and beyond the scope of the current work. As detailed in Figure 1-figure supplement 4, we have ensured that in spite of the removal of running or stationary epochs, as well as removal of sharp wave ripple events (Figure 1-figure supplement 6) movie tuning persists. Further, we now provide examples of strongly tuned cells from sessions with predominantly running or predominantly stationary behavior (Figure 1-figure supplement 7).

      2) The mega-scale spanning of movie-fields needs to be further examined with a more controlled stimulus for reasonable comparison with the traditional place fields. This is because the movie used in the current study consists of a fast-changing first half and a slow-changing second half, and such varying and ununified composition of the movie might have largely affected the formation of movie-fields. According to Fig. 3, the mega-scale spanning appears to be driven by the changes in frame-to-frame correlation within the movie. That is, visual stimuli changing quickly induced several short fields while persisting stimuli with fewer changes elongated the fields.

      Please note that a strong correlation between the speed at which the movie scene changed across frames was correlated with movie-field width in the visual areas, but that correlation was much weaker in the hippocampal areas (correlation values - (LGN +0.61, V1 +0.51, AM-PM +0.55 vs. DG +0.39, CA3 +0.58, CA1 +0.42, SUB +0.24). Please see Figure 3-figure supplement 2 and the quantification of correlation between frame-to-frame changes in the movie and the properties of movie fields.

      The presentation of persisting visual input for a long time is thought to be similar to staying in one place for a long time, and the hippocampal activities have been reported to manifest in different ways between running and standing still (i.e., theta-modulated vs. sharp wave ripple-based). Therefore, it should be further examined whether the broad movie-fields are broadly tuned to the continuous visual inputs or caused by other brain states.

      As shown in Figure 1-figure supplement 6, movie field properties are largely unchanged when SWR are removed from the data, or when the effect of pupil diameter or theta power were factored for (Figure 1-figure supplement 7).

      3) The population activities of the hippocampal movie-tuned cells in Fig. 3a-b look like those of time cells, tiling the movie playback period. It needs to be clarified whether the hippocampal cells are actively coding the visual inputs or just filling the duration.

      Tiling patterns would be observed when the maxima are sorted in any data, even for random numbers. This alone does not make them time cells. The following observations suggest that movie fields cannot be explained as being time cells.

      a. Time cells mostly cluster at the beginning of a running epoch (Pastalkova et al. Science 2008, MacDonald et al. Neuron 2011) and they taper off towards the end. Such large clustering is not visible in these tiling plots for movie tuned cells.

      b. Time fields become wider as the temporal duration progresses (Pastalkova et al. Science 2008, MacDonald et al. Neuron 2011) as the encoded temporal duration increases. This is not evident in any movie fields.

      c. Widths of movie fields in visual areas, and to a smaller extent in the hippocampal areas, were clearly modulated by the visual content, like the change from one frame to the next (F2F correlation, Figure 3-figure supplement 2).

      d. Tiling pattern of movie fields was found in visual areas too, with qualitatively similar pattern as hippocampus. Clearly, visual area responses are not time cells, as shown by the scrambled stimulus experiment. Here, neural selectivity could be recovered by rearranging them based on the visual content of the continuous movie, and not the passage of time.

      The scrambled condition in which the sequence of the images was randomly permutated made the hippocampal neurons totally lose their selective responses, failing to reconstruct the neural responses to the original sequence by rearrangement of the scrambled sequence. This result indirectly addressed that the substantial portion of the hippocampal cells did not just fill the duration but represented the contents and temporal order of the images. However, it should be directly confirmed whether the tiling pattern disappeared with the population activities in the scrambled condition (as shown in Extended Data Fig. 11, but data were not shown for the hippocampus).

      As stated above for the continuous movie, tiling pattern alone does not mean those are time cells. Further, tuning, and tiling pattern remained intact with scrambled movie in the visual cortices but not in hippocampus. We now added a new supplement figure – Figure 4-figure supplement 5 where we compared the movie tuning for scrambled presentation with and without rearranging the frames. Hippocampal tuning remains at chance levels.

      Reviewer #3 (Public Review):

      In their study, Purandare & Mehta analyze large-scale single unit recordings from the visual system (LGN, V1, extrastriate regions AM and PM) and hippocampal system (DG, CA3, CA1 and subiculum) while mice monocularly viewed repeats of a 30s movie clip. The data were part of a larger release of publicly available recordings from the Allen Brian Observatory. The authors found that cells in all regions exhibited tuning to specific segments of the movie (i.e. "movie fields") ranging in duration from 20ms to 20s. The largest fractions of movie-responsive cells were in visual regions, though analyses of scrambled movie frames indicated that visual neurons were driven more strongly by visual features of the movie images themselves. Cells in the hippocampal system, on the other hand, tended to exhibit fewer "movie fields", which on average were a few seconds in duration, but could range from >50ms to as long as 20s. Unlike the visual system "movie fields" in the hippocampal system disappeared when the frames of the movie were scrambled, indicating that the cells encoded more complex (episodic) content, rather than merely passively reading out visual input.

      The paper is conceptually novel since it specifically aims to remove any behavioral or task engagement whatsoever in the head-fixed mice, a setup typically used as an open-loop control condition in virtual reality-based navigational or decision making tasks (e.g. Harvey et al., 2012). Because the study specifically addresses this aspect of encoding (i.e. exploring effects of pure visual content rather than something task-related), and because of the widespread use of video-based virtual reality paradigms in different sub-fields, the paper should be of interest to those studying visual processing as well as those studying visual and spatial coding in the hippocampal system. However, the task-free approach of the experiments (including closely controlling for movement-related effects) presents a Catch-22, since there is no way that the animal subjects can report actually recognizing or remembering any of the visual content we are to believe they do.

      Our claim is that these are movie scene evoked responses. We make no claims about the animal’s ability to recognize or remember the movie content. That would require entirely different set of experiments. Meanwhile, we have shown that these results are not an artifact of brain states such as sharp wave ripples, theta power or pupil diameter (Figure1-figure supplement 6 and 7) or running behavior (Figure 1-figure supplement 4). Please see above for a detailed response.

      We must rely on above-chance-level decoding of movie segments, and the requirement that the movie is played in order rather than scrambled, to indicate that the hippocampal system encodes episodic content of the movie. So the study represents an interesting conceptual advance, and the analyses appear solid and support the conclusion, but there are methodological limitations.

      It is important to emphasize that these responses could constitute episodic responses but does not prove episodic memory, just as place cell responses constitute spatial responses but that does not prove spatial memory. The link between place cells and place memory is not entirely clear. For example, mice lacking NMDA receptors have intact place cells, but are impaired in spatial memory task (McHugh et al. Cell 1996), whereas spatial tuning was virtually destroyed in mice lacking GluR1 receptors, but they could still do various spatial memory tasks (Resnik et al. J. Neuro 2012).

      The experiments about episodic memory would require an entirely different set of experiments that involve task demand and behavioral response, which in turn would modify hippocampal responses substantially, as shown by many studies. Our hypothesis here, is that just like place cells, these episodic responses without task demand would play a role, to be determined, in episodic memory. We have emphasized this point in the main text (Ln 391-393 in the revised manuscript).

      Major concerns:

      1) A lot hinges on hinges on the cells having a z-scored sparsity >2, the cutoff for a cell to be counted as significantly modulated by the movie. What is the justification of this criterion?

      The z-scored sparsity (z>2) corresponds to p<0.03. This would mean that 3% of the results could appear by chance. Hence, z>2 is a standard method used in many publications. Another advantage of z-scored sparsity is that it is relatively insensitive to the number of spikes generated by a neuron (i.e. the mean firing rate of the neuron and the duration of the experiment). In contrast, sparsity is strongly dependent on the number of spikes which makes it difficult to compare across neurons, brain regions and conditions (See Supplement S5 Acharya et al. Cell 2016).

      To further address this point, we compared our z-scored sparsity measure with 2 other commonly used metrics to quantify neural selectivity, depth of modulation and mutual information (Figure 1-figure supplement 3). Comparable movie tuning was obtained from all 3 metrics, upon z-scoring in an identical fashion.

      It should be stated in the Results. Relatedly, it appears the formula used for calculating sparseness in the present study is not the same as that used to calculate lifetime sparseness in de Vries et al. 2020 quoted in the results (see the formula in the Methods of the de Vries 2020 paper immediately under the sentence: "Lifetime sparseness was computed using the definition in Vinje and Gallant").

      The definition of sparsity we used is used commonly by most hippocampal scientists (Treves and Rolls 1991, Skaggs et al. 1996, Ravassard et al. 2013). Lifetime sparseness equation used by de Vries et al. 2020, differs from us by just one constant factor (1-1/N) where N=900 is the number of frames in the movie. This constant factor equals (1-1/900)=0.999. Hence, there is no difference between the sparsity obtained by these two methods. Further, z-scored sparsity is entirely unaffected by such constant factors. We have clarified this in the methods of the revised manuscript.

      To rule out systematic differences between studies beyond differences in neural sampling (single units vs. calcium imaging), it would be nice to see whether calculating lifetime sparseness per de Vries et al. changed the fraction "movie" cells in the visual and hippocampal systems.

      As stated above, the two definitions of sparsity are virtually identical and we obtained similar results using two other commonly used metrics, which are detailed in Figure 1-figure supplement 3.

      2) In Figures 1, 2 and the supplementary figures-the sparseness scores should be reported along with the raw data for each cell, so the readers can be apprised of what types of firing selectivity are associated with which sparseness scores-as would be shown for metrics like gridness or Raleigh vector lengths for head direction cells. It would be helpful to include this wherever there are plots showing spike rasters arranged by frame number & the trial-averaged mean rate.

      As shown in several papers (Aghajan et al Nature Neuroscience 2015, Acharya et al., Cell 2016) raw sparsity (or information content) are strongly dependent on the number of spikes of a neuron. This makes the raw values of these numbers impossible to compare across cells, brain regions and conditions. (Please see Supplement S5 from Acharya et al., Cell 2016 for details). Including the data of sparsity would thus cause undue confusion. Hence, we provide z-scored sparsity. This metric is comparable across cells and brain regions, and now provided above each example cell in Figure 1 and Figure 1-figure supplement 2.

      3) The examples shown on the right in Figures 1b and c are not especially compelling examples of movie-specific tuning; it would be helpful in making the case for "movie" cells if cleaner / more robust cells are shown (like the examples on the left in 1b and c).

      We did not put the most strongly tuned hippocampal neurons in the main figures so that these cells are representative of the ensemble and not the best possible ones, so as to include examples with broad tuning responses. We have clarified in the legend that these cells are some of the best tuned cells. Although not the cleanest looking, the z-scored sparsity mentioned above the panels now indicates how strongly they are modulated compared to chance levels. Additional examples, including those with sharply tuned responses are shown in Figure 1-figure supplement 5 and Figure 2-figure supplement 1.

      4) The scrambled movie condition is an essential control which, along with the stability checks in Supplementary Figure 7, provide the most persuasive evidence that the movie fields reflect more than a passive readout of visual images on a screen. However, in reference to Figure 4c, can the authors offer an explanation as to why V1 is substantially less affected by the movie scrambling than it's main input (LGN) and the cortical areas immediately downstream of it? This seems to defy the interpretation that "movie coding" follows the visual processing hierarchy.

      This is an important point, one that we find very surprising as well. Perhaps this is related to other surprising observations in our manuscript, such as more neurons appeared to be tuned to the movie than the classic stimuli. A direct comparison between movie responses versus fixed images is not possible at this point due to several additional differences such as the duration of image presentations and their temporal history.

      The latency required to rearrange the scrambled responses (60ms for LGN, 74ms for V1, 91ms for AM/PM) supports the anatomical hierarchy. The pattern of movie tuning properties was also broadly consistent between V1 and AM/PM (Figure 2).

      However, all metrics of movie selectivity (Figure 2) to the continuous movie showed a consistent pattern that was the exact opposite pattern of the simple anatomical hierarchy: V1 had stronger movie tuning, higher number of movie fields per cell, narrower movie-field widths, larger mega-scale structure, and better decoding than LGN. V1 was also more robust to the scrambled sequence than LGN. One possible explanation is that there are other sources of inputs to V1, beyond LGN, that contribute significantly to movie tuning. This is an important insight and we have modified the discussion (Ln 315-325) to highlight this.

      Relatedly, the hippocampal data do not quite fit with visual hierarchical ordering either, with CA3 being less sensitive to scrambling than DG. Since the data (especially in V1) seem to defy hierarchical visual processing, why not drop that interpretation? It is not particularly convincing as is.

      The anatomical organization is well established and an important factor. Even when observations do not fit the anatomical hierarchy, it provides important insights about the mechanisms. All properties of movie tuning (Figure 2) –the strength of tuning, number of movie peaks, their width and decoding accuracy firmly put visual areas upstream of hippocampal regions. But, just like visual cortex there are consistent patterns that do not support a simple feed-forward anatomical hierarchy. We have pointed out these patterns so that future work can build upon it.

      5) In the Discussion, the authors argue that the mice encode episodic content from the movie clip as a human or monkey would. This is supported by the (crucial) data from the scrambled movie condition, but is nevertheless difficult to prove empirically since the animals cannot give a behavioral report of recognition and, without some kind of reinforcement, why should a segment from a movie mean anything to a head-fixed, passively viewing mouse?

      We emphasize once again that our claim is about the nature of encoding of the movie across these neurons. We make no claims about whether this forms a memory or whether the mouse is able to recognize the content or remember it. Despite decades of research, similar claims are difficult to prove for place cells, with plenty of counter examples (See the points above). The important point here is that despite any cognitive component, we see remarkably tuned responses in these brain areas. Their role in cognition would take a lot more effort and is beyond the scope of the current work.

      Would the authors also argue that hippocampal cells would exhibit "song" fields if segments of a radio song-equally arbitrary for a mouse-were presented repeatedly? (reminiscent of the study by Aronov et al. 2017, but if sound were presented outside the context of a task). How can one distinguish between mere sequence coding vs. encoding of episodically meaningful content? One or a few sentences on this should be added in the Discussion.

      Aronov et al 2017, found the encoding of an audio sweep in hippocampus when the animals were doing a task (release the lever at a specific frequency to obtain a reward). However, without a task demand they found that hippocampal neurons did not encode the audio sequence beyond chance levels. This is at odds with our findings with the movie where we see strong tuning despite any task demand or reward. These results are consistent with but go far beyond our recent findings that hippocampal (CA1) neurons can encode the position and direction of motion of a revolving bar of light (Purandare et al. Nature 2022). Please see Ln 373-382 for related discussion.

      These responses are unlikely to be mere sequence responses since the scrambled sequence was also fixed sequence that was presented many times and it elicited reliable responses in visual areas, but not in hippocampus. Hence, we hypothesize that hippocampal areas encode temporally related information, i.e. episodic content. We have modified the discussion to address these points.

      Reviewer #1 (Recommendations For The Authors):

      1) Are LFP data available in the data set? If so, can SWRs identified and removed to refine the quantification of movie fields?

      Done, see Figure 1-figure supplement 6.

      2) Can movie fields be analyzed in re-arranged neural responses (Fig. 4e) and compared to those in other cases already shown (Fig. 4b, c)?

      Done, even after rearrangement the strength of movie tuning for the scrambled presentation was low, and below 5% in all hippocampal regions. See Figure 4-figure supplement 5 for details.

      3) It seems the authors are not fully committed to a main conclusion in the present manuscript. The title and abstract seem to emphasize the similar movie responses across visual and hippocampal areas, but the introduction and discussion emphasize the episode encoding of hippocampal neurons. The writing could be more consistent and the main message could be clearer.

      Selective responses to the continuous movie showed similar patterns (prevalence of tuning, multi-peaked nature, relation with frame to frame changes in visual images) between visual and hippocampal regions. But the visual responses to scrambled presentation could be rearranged, and the latency for rearrangement increased from LGN to V1 to AM-PM. On the other hand, selectivity to the scrambled presentation was virtually abolished in hippocampus, and responses could not be rearranged to resemble the continuous movie sequences. To reconcile these differences, we have hypothesized here that the hippocampal responses are episodic in nature, and rely on temporal continuity, whereas the visual regions rely directly on the visual content in the images.

      4) Line #158: "Net movie-field discharges was also comparable across brain areas...". This statement is not supported by Fig. 2g, which shows a wide range of median values across brain areas.

      Thank you for pointing this out. The normalized firing in movie-fields used in that figure are within 3x between V1 and subiculum. We have modified the text to contrast this with the 10x difference between movie-field durations.

      5) Line #253: What the two numbers (87.8%, 10.6%) mean is unclear (mean or median values). These numbers also appear inconsistent with the mean+-se values in Fig. 4 legend.

      The numbers mentioned on Ln253, in the main text reflect the median visual continuity index, combining across cells from hippocampal or visual regions. On the other hand, values reported in the Fig 4 legend are for V1 and subiculum, which are the regions with smallest and largest visual continuity index, respectively. We have re-written the main text, and legends for better clarity.

      6) The Gelbard-Sagiv et al paper (Science 322: 96-101, 2008) could be cited and its relevance to the present study could be discussed.

      Done

      7) Are there neurons recorded from a non-visual sensory or motor cortical area in the same experiment? This may provide a key negative control for the non-specific modulation caused by behavioral states or visual transients.

      Owing to the nature of the experiments where the Allen Institute intended to study visual processing, we could not find any of the recorded brain regions without movie selectivity.

      8) The differences in hippocampal and visual move fields between active and stationary time periods could be explicitly quantified.

      We have shown several raster plots where the responses are quite similar during immobile and moving epochs. Our goal is to show that there is indeed comparable movie tuning when the animals is immobile versus any random state. Doing specific analysis of behavioral dependency is difficult because in many sessions the amount of time the mice ran in many sessions was very little. A thorough analysis overcoming these, and other challenges is beyond the scope of this paper.

      Reviewer #2 (Recommendations For The Authors):

      1) The methods to determine the boundaries of the movie-fields should be clarified, and the detected peaks and boundaries should be indicated in the relevant figures (e.g., Fig. 2c, 2d, and 2h) to help readers clearly understand how the movie-fields were defined and how the shapes of the movie-fields look like.

      Done.

      2) When testing the influence of locomotion on movie-tuning in Extended Data Fig. 3, a single cell-based analysis is further needed. For example, you need to check whether the z-scored sparsity within one cell varies or not depending on locomotion conditions (as in Extended Data Fig. 10a-c). In addition, it is recommended to exclude the cells significantly modulated by locomotion (e.g., running velocity) before defining the movie-tuned cells.

      We now show example cells from sessions with or without prolonged running bouts in Figure 1-figure supplement 7 that have strong movie selectivity. We have also assessed the effects of theta power and pupil dilation on movie tuning in that figure. A more thorough analysis of the combined effects of locomotion and movie tuning is underway, but beyond the scope of the current work.

      3) Regarding the time-cell-related issue raised in the public review, it would be nice if the authors confirm whether the tiling patterns of hippocampal subregions have been weakened by presenting the population activities for the scrambled condition as in the visual cortices in Extended Data Fig. 11a.

      We have clarified in the earlier responses, please see above.

      4) In Fig. 4 and Extended Data Fig. 3, the proportion of movie-tuned cells in the hippocampus seems to drop significantly after only a portion of trials under specific conditions were extracted. Although the authors addressed the stability issue by comparing the neural responses between even and odd trials, the concern about whether the movie-tuning is driven by a certain portion of trials still remains. To avoid such misunderstanding, as mentioned in comment no.2, tracking the changes in the z-scored sparsity of one cell between continuous and scrambled conditions should be provided. In addition, according to the methods, the scrambled condition was divided into two blocks of 10 trials each, possibly causing premature movie-tuned activities. Thus, it should be more appropriate to compare with the first 10 trials of each block in the continuous condition.

      Done.

      5) Explanations related to statistical analysis should be added to the methods sections. In Fig. 2a (and related figures with similar analysis), when comparing three or more groups, the Kruskal-Wallis test should be performed first to check whether there is a difference between the groups, and then pairwise comparisons should follow with adjusted p-values for multiple comparisons. Also, in Fig. 4b (and related figures), it seems that the K-S test was performed to test the changes in cell proportion by combining all brain regions, as far as I understand. However, it would be more appropriate to test the proportional changes by a Chi-square test within each region since the total numbers of cells should differ across the regions.

      Yes, we have used the KS test throughout the analyses, unless otherwise mentioned or appropriate.

      6) The labeling for firing rate is 'FR (sp/sec)' in Fig. 1, 2, and 4, but it is 'Firing rate (Hz)' in Fig. 3.

      This has been fixed now, and only Firing rate (Hz), is used throughout. Thank you for pointing this out.

      7) There is a typo in Extended Data Fig. 11b. "... across all tuned responses from (b)." It should be (a) instead of (b).

      Done

      Reviewer #3 (Recommendations For The Authors):

      While the study presents an interesting dataset and conceptual approach, there are ways in which the manuscript should be strengthened.

      Minor concerns:

      1) Related to point (5) above, what content did the hippocampal "movie fields" encode? It would add a substantive dimension to the paper if the authors included examples of what segments of the movie the cells responded to. Are there "pan left" cells, or "man gets in the car" cells? Or was it more arbitrary than that? What is an example of a movie feature lasting 50ms that is stably encoded by a mouse hippocampal neuron?

      We show example cells with very sharply tuned neural responses (Figure 2h). A thorough analysis of the visual content is in progress but beyond the scope of this paper.

      2) Line 24-seems like it should read "Consistent presentation of the movie..." , with "ly" dropped from "consistent".

      Done

      3) Line 43-seems to be missing the article "a", and should read "...despite strong evidence for A hippocampal role in...".

      We rewrote this sentence for better clarity

      4) Line 54-to clarify, the higher visual areas recorded were the anteromedial (AM) and posterior-medial (PM) areas? The text additionally indicates a "medio-lateral" extrastriate area, but there is no such area. Can the text be revised to clear this up?

      Sorry about this confusion, indeed we meant posterior-medial (PM). Thank you for pointing this out.

      5) Line 84, "rate" should be pluralized to "rates".

      Done

      6) Line 108- the extra "But" at the start of the sentence should be removed.

      Done

      7) Figure 2h-was there any particular arrangement for the cells in this sub-panel? If not, could they be grouped by sub-region (or proximity between sub-regions) so it appears less arbitrary?

      Done

      8) Extended data 2 figure legend for (b) is missing a "that": "Fraction of selective neurons that was significantly above chance.... Ranging from 7.1% in CA

      Done

      9) Line 144-145, there is an extra "and" in the sentence: ".... were typically neither as narrow AND nor as prominent...."

      Done

      10) Line 203-the first word in the line should be "frames" (plural).

      Done, thank you for pointing this out

      11) Line 281-in "...scrambled sequence"-"sequence" should be plural. It looks like the same is true in line 882, in the legend title for Extended Data Fig. 11.

      Since we only showed one scrambled sequence (which was repeated 20 times), we rewrote the relevant lines to be “the scrambled sequence”

      12) Line 923-the first sentence of the legend for Extended Data Fig. 14-to what data or study are the authors referring to in saying that "More than 50% of hippocampal place cells shut down during maze exploration."? This was confusing, please clarify.

      This reference has now been added.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      1.1 Fig. 1: A good control for these studies would be a TDP-43 variant with an RRM1 mutation that impairs RNA binding, but not an acetylation mimic (i.e. mutations affecting W113, R151, F147, or F149)

      In our original paper (Cohen et al, Nat Commun. 2015 Jan 5; 6:5845), we already characterized TDP-43 acetylation and employed a complete RNA-deficient mutant (F147/149L), as the reviewer suggested. In that original study, this mutant showed maximal RNA binding-deficiency, and therefore we proposed that acetylation mimic mutations represent a comparable RNA-binding deficient variant.

      1.2 Fig. 1: time and expression level can influence nuclear TDP-43 puncta formation. It is important that the authors take these into account when measuring puncta number/frequency.

      All expression levels and transfection/transduction times were identical across samples. We chose the optimal times to express TDP-43 constructs yet minimize toxicity and found that neuronal transduction at DIV10 and arsenite exposure on DIV14 in mature neurons was optimal.

      1.3 Fig. 2: to accurately refer to the nuclear foci as anisosomes, the authors will need to conduct higher-resolution imaging.

      We agree with the reviewer and since anisosomes are not well characterized in terms of their relationship to TDP-43 nuclear foci (and may represent only a subset of foci), we have now omitted any mention of anisosomes but instead refer to them in the discussion, where we suggest that TDP-43 K145Q foci may partially represent anisosomes.

      1.4 Fig. 2D: it seems as though the splicing reporter should have a fluorescence-based readout (red/green ratio, for instance). Is this the case, and is the ratio informative?

      We have now removed the splicing reporter data and replaced this with much more robust data showing RT-qPCR of downstream TDP-43 targets including Sortilin-1 (see the new revised Figure 2E and 3B-I).

      1.5 Line 145: "Overall, these results indicate that a single endogenously expressed acetylation-mimic TDP-43(K145Q) mutation is sufficient to alter TDP-43 localization, induce TDP-43 phase separation, and impair splicing in a murine primary neuron culture model." The authors did not assess phase separation in this study. Moreover, it would be more convincing to assess native splice targets of TDP-43 in K145Q primary neurons, rather than an exogenous splicing reporter.

      See comment 1.1 above. We have now avoided mentioning phase separation in the main text but mention this as a potential mechanism in the discussion. In addition, we have now evaluated native TDP-43 splice targeted in primary neurons.

      1.6 Fig. 4A: is the loss of neurons selective for a specific layer or region of the cortex?

      Since we did not observe any gliosis, we have gone back and completely re-evaluated neuronal loss since the concept of neurodegeneration is a critical question in the TDP-43KQ/KQ mice. We do not find any significant neuronal loss in the homozygous TDP-43KQ/KQ mice (see Figure 5).

      1.7 Fig. 6: The authors suggest that the large majority of splicing changes are direct results of the TDP43(K145Q) mutation and impaired RNA binding by TDP-43. However, without a direct assessment of TDP43(K145Q) target RNAs in comparison to those of TDP-43(WT), this is only an assumption. Moreover, given the fact that RNA-seq was performed in aged animals, the potential for indirect gene expression changes is very high.

      In our original study (Cohen et al, Nat Commun. 2015 Jan 5;6:5845), we showed that the K145Q is severely deficient in RNA binding. In this study, we now show strong evidence that many known targets of direct TDP-43 binding are dysregulated, supporting the expected loss of function if TDP-43 K145Q mutation abrogated RNA binding. Although we have not performed direct RNA binding studies to the Sort1 transcript, for example, other studies have clearly indicated that wild-type TDP-43 binds these targets. We infer that loss of function mutations (i.e., K145Q) impact direct targets of TDP-43. Future studies employing RNA-immunoprecipitation followed by RNA sequencing (RIP-seq) could be useful in this regard and will be required to mechanistically address this point.

      1.8 Sup Fig. 8 is very interesting and suggests that any TDP-43 variant that is unable to bind RNA may lead to upregulation of TDP43 RNA and phenotypes similar to those observed n K145Q animals. This is alluded to in the discussion but never specifically tested.

      Yes, we agree with this reviewer’s comment. Loss of RNA binding, whether due to acetylation (e.g., K145Q) or otherwise is expected to cause autoregulatory up-regulation of the TARDBP transcript and impact other targets, potentially yielding phenotypes similar to the TDP-43KQ/KQ mice. However, new in vivo models would be needed to prove this point. For example, in the future, we will consider this possibility by characterizing recently identified RNA-binding deficient familial TARDBP mutants (e.g., P112H or K181E).

      1.9 The authors should also provide some comment or potential explanation for why TDP43(K145Q) animals show no signs of motor neuron disease.

      We now show a moderate level of TDP-43 aggregation and hyper-phosphorylation in spinal cord of mutant mice in Figure 6 – Figure Supplement 3. We also speculate in the discussion why we observe aspects of TDP-43 dysfunction in spinal cord without overt motor phenotypes up until 18 months old.

      1.10 Line 79: "However, TARDBP mutations that disrupt RNA binding, and thereby may act in a similar manner to TDP-43 acetylation, have been identified in FTLD-TDP patients." Evidence suggests that the D169G mutation does not interfere with RNA binding. See Furukawa et al., 2016.

      We thank the reviewer for pointing this out. We have now removed the D169G mutation from the discussion.

      1.11 It is unclear why the authors focused solely on homozygous K145Q animals, rather than heterozygous mice.

      We focused initially on homozygous mutant mice to provide better statistical power to detect small effect sizes. However, we have now included a thorough analysis of heterozygous mice including molecular analysis of brain tissue and mouse behavior, as shown in Figure 4 – Figure Supplements 1-2 and Figure 6 – Figure Supplements 1-3.

      Reviewer #2

      2.1 A strength of this paper is the generation of a new mouse model to study the effects of K145 acetylation in TDP-43 proteinopathy. While the authors note an absence of a behavioral phenotype on neuromuscular testing in aged animals, it would be appropriate to include some analysis of spinal cord and skeletal muscle in this initial description of their model. At a minimum, I wonder if there is pathology in the cord (neuron loss, gliosis) or muscle (fiber atrophy) if insoluble p-TDP-43 is detectable in these tissues, and whether dysregulated splicing of TDP-43 target genes (such as shown in Fig 7) occurs at these sites.

      See comment 1.9 above. We analyzed TDP-43 aggregation, localization, and splicing in the spinal cord of TDP-43KQ/KQ mice and found mild loss of TDP-43 function that was comparable, though not to same extent, as that seen in hippocampus and cortex. We discussed these findings in the discussion and provide several possibilities for why there are no overt motor phenotypes in these mice. We note that TDP-43 Q331K knock-in mice also have cognitive but no motor deficits, suggesting TDP-43 dysfunction may preferentially (or at least initially) impact cognitive function (White et al, Nat Neurosci. 2018 Apr;21(4):552-563).

      2.2 Fig 2: Differences in the splicing reporter are hard to appreciate from the images shown in panel E. Is the quantification shown in panel F corroborated by an analysis of green vs yellow fluorescence or by another method? Quantification of results shown in panel 2G (from 3 biological replicates) should be included.

      We have now removed the splicing reporter data in lieu of the more robust RT-qPCR data shown in Figure 2E and 3B-I. We have also now included more biological replicates from our iPSC neuron imaging, as shown in Figure 3A. Due to time and resource constraints, we were not able to quantify the images shown in figure 3A, and reinforce in the text that our statements are qualitative. However, we were able to add quantitative analysis of TDP-43 dysfunction, by detecting genotype-dependent splicing changes in hiPSC neurons, as mentioned above, which strengthens our claim that TDP-43 dysfunction is prominent in this culture modee.

      2.3 Fig 4: Differences in NeuN quantification without changes in cresyl violet staining or gliosis are surprising and a bit difficult to understand. Is there confirmation of neuron loss through another metric? Is it possible that NeuN expression is lower in mutants without frank neuron loss? Also, although no significant differences were seen by IF for TDP-43 staining, did IF for phospho TDP-43 show differences? One might expect this to be the case given the biochemical findings in Fig 5.

      See comment 1.6 above. After a much more in-depth and rigorous assessment, we find little evidence for neurodegeneration. Given the transcriptome data showing that TDP-43 regulates a subset of synaptic genes, we suggest that synaptic deficits underlie the behavioral phenotype rather than neuronal loss.

      Regarding phospho-TDP-43 pathology by immunofluorescence (IF) staining, after much effort, we have not been able to detect phospho-TDP-43 pathology by IF in TDP-43KQ/KQ mice. Currently available phospho-TDP-43 antibodies (including those acquired from collaborators) do not work well to detect endogenous mouse TDP-43 by histology or IF staining, and therefore we are somewhat limited technically. Nonetheless, given the increase in phospho-TDP-43 in the insoluble fractions by western blotting combined with the increase in cytoplasmic TDP-43 via biochemical fractionation, our data suggest that phospho-TDP-43 is the relevant species accumulating in the cytoplasm of TDP-43KQ/KQ mice.

      2.4 Fig 5: Probing the NC fractions for phospho TDP-43 would be an interesting addition to support the conclusion that increased cytoplasmic localization of the KQ mutant occurs prior to its phosphorylation.

      We agree that this would be an excellent addition to our data. Unfortunately, after rigorous antibody validation experiments, we were not able to find a phospho-TDP-43 antibody that specifically detected phosphorylated TDP-43 and did not cross-react with unphosphorylated TDP-43 in the buffers used for N-C fractionations. We tested phospho-TDP antibodies in RIPA (soluble), Urea (detergent-insoluble), and the N-C fractionation buffers, using samples treated or untreated with lambda phosphatase (to de-phosphorylate TDP-43). Only one antibody reliably detected the phosphorylated TDP-43 and not the lambda phosphatase-treated TDP-43 samples, and only did so in the Urea buffer, which is shown by straight westerns in our manuscript. Because of these technical difficulties with the phospho-TDP-43 antibodies, this was a challenging point to address at the moment. As better phospho-TDP antibodies become available, we hope to be able to address this. We therefore cannot definitively conclude that cytoplasmic phospho-TDP-43 pathology is present in these mice, but nonetheless the total phospho-TDP-43 levels are significantly elevated in urea (insoluble) fractions.

      2.5 Fig 1: What quantitative criteria were used to distinguish between puncta and foci, as highlighted in panel A? What is the biological significance of this distinction? From the images in panel A, it is difficult to see the TDP-43 foci in wt and K145R expressing cells.

      Although the size of nuclear TDP-43 foci can be quite variable, and we are certainly interested in the biological significance of this parameter, we did not focus this study on size profiles of K145Q-induced foci, only their accelerated formation and abundance. Therefore, in the revised manuscript we chose not to explicitly state any differences in “foci” vs. “puncta” and now refer to all nuclear TDP-43 structures as “foci” (removed the word “puncta” throughout).

      2.6 Fig 3: In describing the results of context-dependent fear testing, it is more appropriate to state that significant deficits appeared at 18 months, deleting the word "more" on line 186.

      We have deleted the work “more”.

      Reviewer #3

      3.1 Multiple figures (1b, 1c, 2b, 2c, 4b, 4d, 4f, 4g, 4i, 4j) include data with multiple measurements per field of view and multiple fields of view per condition. It appears that each measurement was considered an "n" for ANOVA or t-tests, but the data structure violates the requirement that data points are independent. More rigorous statistical methods such as mixed effect models should be considered (see DOI: 10.1016/j.neuron.2021.10.030) which in many cases provide more statistical power. Mixed effects models are the more appropriate statistical method for much of their data. Should the authors want to reanalyze their data with this method, they can reach out to me for an introduction to this statistical model.

      We have now re-evaluated the figures mentioned using linear mixed effects models, similar to what the reviewer has mentioned. The new statistical measurements have been incorporated into the revised Figures 1, 2, and 5 (formerly Figure 4). A description of the statistical methods used is now provided in the revised methods section.

      3.2 In the introduction, the authors write "we avoid both TDP-43 overexpression and disruption of autoregulatory genomic elements of the endogenous Tardbp transcript" but they show that autoregulation is altered. So shouldn't the acetylation sites be considered a genomic element that regulates autoregulation?

      We agree and have now stated that our knock-in approach avoids disrupting surrounding genomic elements (as could occur with transgenic or gene replacement strategies, for example) in order to retain the native Tardbp gene in its unaltered form.

      3.3 Suggest editing the language regarding potential neurodegeneration/neuron loss as the same results could be obtained with tissue volume and/or developmental effects independent of progressive neurodegeneration.

      See comments 1.6 and 2.3 above. The language has been edited to reflect no apparent neurodegeneration.

      3.4 Sequencing the top predicted off-target loci in CRISPR'd mice and iPSC cell lines would help show the absence of off-target mutations.

      We described in the methods how potential off-target effects were avoided. We assessed the likelihood of off-target mutations using prediction algorithms to ensure low likelihood. All of the predicted exonic off-target sites have 4 mismatches, making them extremely unlikely to be mutated.

      3.5 The authors describe a subtle shift in electrophoretic mobility of the SORT1 protein band in figure 7d/e, but it is unclear why the entire SORT1 band should be shifted up in mutant mice given that the RNA analysis suggests that WT species (not the cryptically spliced +ex17b) is still the major RNA that is expressed. In addition, others have shown that the WT versus +ex17b bands can be resolved (see DOI: 10.1073/pnas.1211577110). Perhaps knockout/knockdown cells can facilitate by providing a positive control for sizing/separation of Sort1 by immunoblotting.

      Please refer to our RNA-seq data shown in Figure 8A. In WT mice, nearly 80% of Sort1 transcripts lack exon17b, while this number drops to 23% in the TDP-43KQ/KQ mice. Therefore, the abnormally spliced +ex17b becomes the dominant transcript in TDP-43KQ/KQ mice. Given the prominent +ex17b inclusion that we are observing at the transcript level, it is not surprising that we mostly observe the up-shifted ex17b-containing Sort1 protein band. We have been unable to resolve two distinct bands by immunoblotting in mouse tissues using multiple Sort1 antibodies, including those used in Prudencio et al Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21510-5. Nonetheless, the up-shifted Sort1 protein is clearly the abnormal variant, as it becomes destabilized in our mice. Another possibility is that partial loss of TDP-43 function, as we suspect occurs in the TDP-43KQ/KQ mice, may magnify (or enhance) the effects on Sort1 such that the dominant Sort1 variant observed is the +ex17b containing variant. We suspect this to be true since this phenomenon was also observed in the Prudencio et al study (see Figures 1-2 in that study).

      3.6 The authors may try to corroborate their CFTR splicing results by examining fluorescence as it appears that the construct allows for analysis of splicing differences using GFP vs mCherry expression. This is a minor point as RNA-seq analysis demonstrates abundant splicing changes in acetylation-mimic expression models.

      We have now removed the CFTR splicing data entirely and replaced it with more robust readouts of endogenous TDP-43 splicing targets both in vitro (Figure 2E, 3B-I) and in vivo (Figure 8B-C).

      3.7 Should the bars in figure 3d for 1 and 2 min be colored in grey/pink? It is unclear why they are clear and only outlined in color.

      This point is clarified in the revised Figure 4D legend. In our cue-dependent conditioned fear testing, the filled bars beyond 2 min represents the presence of the auditory cue (tone) and the period of statistical analysis.

      3.8 The statistical test used (Fisher's exact test?) for determining overlap between transcriptome datasets should be stated.

      We clarified our comment in the results section to reflect the use of over-enrichment analysis. In the methods section, it reads “Previously published differentially expressed genes from Hasan et al95 and Polymenidou et al96 were retrieved from the respective publications; significant over-enrichments as well as human gene symbol mappings to mouse orthologs were performed using gprofiler2 (g:Orth).”

    1. Author Response

      We thank the reviewers for their work, their careful reading of our manuscript, their appreciative evaluation and their comments and suggestions, which we will consider to ameliorate the paper. 

      For now, we anticipate two short considerations.  

      We agree that the PCR step in the ADSE evolutive process might introduce a bias in the population and that such effect should be better examined. We have in fact started performing new experiments, among which ADSE evolution cycles without resources. From the elements we currently have, we see the PCR bias effect as minor, not making a significant difference in the emergence and interaction of species we have reported. 

      ADSE protocol is markedly simpler than any other evolution protocol based on even the most basic cellular processes. However, many are the experimental parameters which can be changed in ADSE: initial DNAi population (level of randomness vs. combination of designed sequences), resource structure (resource sequence and length, bead-resource linker length and type), capture condition (length and concentration of DNAi, pH, temperature, bead density), amplification step (choice of polymerase and rate of mutation, length of primers, thermal protocol). The availability of these parameters is a strength of ASDE, making possible exploring a large variety of evolution condition and to introduce kinetic drifts (e.g. in the resources). At the same time, the variety of parameters prompted us to make choices as discussed in the article and to stick to them in all our experiments. The exploration of the many variants that can be considered, some of them very interesting, and some of which proposed by the reviewers, would require an important experimental work that we are planning to conduct for a few among these possibilities, to be part of future publications.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you for the helpful comments regarding our manuscript, "Association between APOL1 risk variants and the occurrence of sepsis among patients hospitalized with infections.” We have revised the title of the manuscript in response to reviewer comments. Additionally, we have updated the manuscript with analyses among patients with pre-existing renal disease alone as well as other items suggested by the reviewers. The Tables have been renumbered to accommodate these revisions.

      Public review:

      The study has main limitations which need to be addressed and there is lack of functional explanation of carriage. These limitations are: a) the lack of inclusion of non-Black patients; and b) the lack of appropriate explanation if results are false-positive since APOL1 provides risk for chronic renal disease (CRD) and patients with CRD are predisposed to sepsis. Sepsis occurred in 565 Black subjects, of whom 105 (29% ) had APOL1 high-risk genotype and 460 had-low risk genotype. Importantly, the risk for sepsis associated with APOL1 HR variants was no longer significant after adjusting for subjects pre-existing severe renal disease or after excluding these subjects. Thus, the susceptibility pathway seems to be: APOL1 variants > CKD > sepsis diathesis.

      Suggestions to the authors:

      • The authors need to provide analysis of patients of non-Black origin.

      We apologize for not fully clarifying that the APOL1 high-risk genotypes are virtually exclusive to populations of recent African ancestries,1–4 the majority of whom are identified as having Black race in our dataset.5 To illustrate the rarity of APOL1 high-risk genotypes in other reported races, we examined the frequency of these genotypes in White patients who had been hospitalized with infections at VUMC (comparable to the cohort of Black patients used in the study). Compared to the 361 out of 2242 (16.1%) Black patients hospitalized with infections carrying APOL1 high-risk genotypes, there were only 8 carriers of APOL1 high-risk genotypes out of 12,990 White patients (0.06%); of these 8, 2 patients developed sepsis during hospitalization. Due to a low number of carriers (n=8) and limited number of events (n=2), we could not proceed with further analysis. Patients reported as other races (e.g., Asian and American Indian) are less frequent than White or Black patients in the VUMC de-identified EHR; as such, we would anticipate similarly small, if any, numbers of high-risk genotypes among these groups, with insufficient power for meaningful analysis. Comparisons between racial groups that did not have carriage of the APOL1 high-risk genotypes would increase the possibility of confounding by factors associated with racial identity (e.g., social determinants of health), rather than genotype; as such, detected differences would likely reflect those factors, rather than the impact of APOL1.

      We have now added clarifying language in the Methods section.

      • The Table of demographics needs to include the type of infections and the underlying pathogen.

      Microbiological evidence of specific infection types is not available for the majority of records for patients hospitalized with infections (as well as sepsis); indeed, for many patients with common infections (e.g., pneumonia) the pathogen is often not identified.6 While we do not have details regarding the underlying pathogens, we were able to determine infection categories at admission. We now include details regarding the categories of infection based on ICD codes in Supplementary Table 1, and the updated Table 1 now includes that information for the APOL1 high-risk and low-risk groups. Given that individuals could have more than one type of infection, we also tested the number of types of infection and found no significant difference between the high-risk and low-risk genotypes (p=0.77).

      • The authors need to provide convincing analysis if results are false-positive since APOL1 provides risk for chronic renal disease (CRD) and patients with CRD are predisposed to sepsis. For this purpose, they have to provide evidence if the sepsis causes (both type of infection and implicated pathogens) in patients with CRD who are carriers of APOL1 variants are different than in patients with CRD who are not carriers of APOL1 variants.

      Indeed, we believe the presented findings suggest that the apparent association between APOL1 high-risk genotypes and sepsis is driven by associated pre-existing severe renal disease rather than APOL1 itself; we appreciate the suggestion to conduct additional analyses to assess whether APOL1 high-risk genotypes impact the occurrence of sepsis among those patients with pre-existing severe renal disease. We note that this analysis could also be biased towards detecting a spurious association between APOL1 high-risk genotypes and sepsis if, within the subgroup with pre-existing severe renal disease, patients with high-risk genotypes also have more severe pre-existing renal disease.

      Among the patients with pre-existing severe renal disease (n=458), 121 (26.4%) were carriers of the APOL1 high-risk genotypes. First, we assessed the severity of renal disease among these patients, detecting an association between APOL1 high-risk genotypes and greater severity (i.e., CKD stage 5/ESRD) when adjusted for age, sex, and 3 PCs: OR=2.29 (95% CI, 1.42-3.67, p=6.25x10-4). Then, we compared the primary outcome of sepsis in patients with APOL1 high-risk and low-risk genotypes for this subgroup. Despite the potential bias toward detecting an association between sepsis and the high-risk genotype based on the severity of pre-existing renal disease, there was no significant association between the high-risk genotypes and sepsis (OR=1.29, [95% CI, 0.84-1.98, p=0.25]). Finally, we assessed infection categories (as described in the above response) in this subgroup. We found no significant differences between the high-risk and low-risk genotypes in the frequency of any infection category.

      These results suggest that the APOL1 high-risk genotypes are not associated with an increased risk of sepsis among patients who have pre-existing severe renal disease. Taken with our other findings, the high-risk genotypes appear to have little or no association with sepsis beyond their association with renal disease. As such, drugs targeting those genotypes would likely have little effect in the acute setting of hospitalization with infection; rather, their primary contribution to the prevention of sepsis would need to target the prevention of underlying renal disease. We have revised our Methods, Results, and Discussion to include these findings.

      • Why concentrations of APOL1 were not measured in the plasma of patients?

      Although APOL1 high risk genetic variants have been repeatedly associated with renal-related clinical phenotypes, and many candidate mechanisms have been proposed,4 there has been contradictory evidence regarding whether the genetic variants could be linked to altered plasma APOL1 levels or whether APOL1 levels are related to elevated risk of renal disease. This is not surprising since it is the altered biological function of the APOL1 structural variant that is important, rather than the concentration of APOL1 protein. While some studies have detected an association between APOL1 high-risk genotypes and plasma levels among patients with renal disfunction and sepsis,7 other population studies have suggested no association between APOL1 plasma levels and renal function.8 Plasma APOL1 levels are seldom measured in clinical practice and thus were not available in this retrospective cohort. However, given the inconsistency of findings and the underlying biology of APOL1, we believe measurements of levels (rather than function) is unlikely to be illuminating.

      • Why analysis towards risk for death is not done?

      In the current study, we focused on the risk of in-hospital death. We did not include the risk of out-of-hospital death due to potential data fragmentation. Specifically, we only have access to the patient’s EHRs at VUMC, and death after hospital discharge is not always be included in a patient’s EHR unless relatives contact the hospital. As such, we focused on in-hospital death, which we validated previously with manual chart review.9 Paralleling the design from a previous publication assessing sepsis outcomes, we included discharge to hospice as part of our in-hospital death algorithm,10 as patients with a terminal illnesses are often discharged to hospice. However, to clarify this outcome component, we now refer to in-hospital deaths and discharge to hospice collectively as “short-term mortality.” In this study, of the 84 total patients with the “short-term mortality” outcome, 47 patients were in-hospital deaths and 37 patients were discharged to hospice. Parallel to the short-term mortality, we found no association with in-hospital death alone. Ln 190: discharge to hospice. I am not sure this can be translated in in-hospital mortality. As noted in the above response, we have rephrased this outcome component as “short-term mortality,” following the design of a previous publication assessing sepsis outcomes.10

      • The authors need to explain why functional information is not provided.

      Functional studies were not performed for several reasons. Animal models are problematic because mice do not have an ortholog to the human APOL1 gene, and the various models developed all have limitations, particularly when second and third perturbations (sepsis and renal impairment) would need to be introduced.11 Also, since we did not observe an association between the genotypes and sepsis independent of pre-existing severe renal disease, we did not pursue additional functional studies. We do describe existing functional analysis in the introduction and briefly in our discussion; we now note this limitation.

      • n 162-172: too many assumptions have been used for the trial; thus, progression to sepsis is difficult to define. According to Sepsis-3 sepsis is no more a continuum from infection to sepsis and septic shock. Some patients presented with sepsis (-1, 0, 1 days considered by the authors) and when electronic health records are used, we are not able to detect the exact timepoint of SOFA score turning to a 2-point increase. This is a major limitation of the methodology presented.

      Same applies for all comorbidities and data extracted from electronic health records.

      Thank you for highlighting this issue. We acknowledge that our choice of wording was unclear. The choice of ICD infection codes during the initial hospitalization window (i.e., -1, 0, 1 days) was aimed to generate a clean cohort of patients hospitalized with infections (i.e., not secondary infections or development of sepsis after an in-hospital procedure), rather than to establish a timeline of progression from infection to sepsis. As you correctly note, our algorithm would capture patients presenting with infection and concurrent sepsis at admission rather than progression to sepsis, and the exact timepoint of the SOFA score meeting the 2-point criterion is difficult to capture through the EHR. Accordingly, we conducted no time-dependent analysis in the current study. To more accurately convey the methodology of the current study (i.e., testing the association between APOL1 high-risk genotypes—which the patients were born with—and the risk of sepsis for patients hospitalized with infections), we revised the manuscript thoroughly, replacing “progression to sepsis” with “occurrence of sepsis” in the title, abstract as well as on pages 7, 8, and 19. We also acknowledge the limitations of using EHR in the Discussion.

      • P value significance thresholds were set at 0.05, except for the PWAS where the threshold was set at 0.05/5 (p13). It would be helpful to list at this point what the 5 outcomes were that led to this adjusted threshold.

      We have revised the manuscript accordingly.

      "Risk of sepsis was significantly increased among patients with high-risk genotypes (OR 1.29, 1.0 to 1.67, P1.29, CI 1.00-1.67, P<0.47)." Some would argue that a confidence interval that includes 1.0 indicates non-significance.

      While the lower bound of the confidence interval appears to meet the 1.0 threshold with only 2 decimal places (which would preclude significance), when taken to the 4th decimal place, the value is 1.0037, demonstrating that the 95% CI did not meet or cross under the 1.0 threshold, and thus the odds ratio should be considered significant (as evidenced by the p=0.047). This result is consistent with other studies that have detected an association between the high-risk genotypes and sepsis,7 but you correctly note that readers can discern from the confidence intervals that the finding is not strong.

      • The Discussion is too long and should be shortened.

      We have revised the Discussion. 

      References:

      1. Limou S, Nelson GW, Kopp JB, Winkler CA. APOL1 Kidney Risk Alleles: Population Genetics and Disease Associations. Adv Chronic Kidney Dis. 2014;21(5):426-433. doi:10.1053/j.ackd.2014.06.005

      2. Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol. 2011;22(11):2129-2137. doi:10.1681/ASN.2011040388

      3. Zhang J, Fedick A, Wasserman S, et al. Analytical Validation of a Personalized Medicine APOL1 Genotyping Assay for Nondiabetic Chronic Kidney Disease Risk Assessment. The Journal of Molecular Diagnostics. 2016;18(2):260-266. doi:10.1016/j.jmoldx.2015.11.003

      4. Daneshpajouhnejad P, Kopp JB, Winkler CA, Rosenberg AZ. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol. 2022;18(5):307-320. doi:10.1038/s41581-022-00538-3

      5. Dumitrescu L, Ritchie MD, Brown-Gentry K, et al. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet Med. 2010;12(10):648-650. doi:10.1097/GIM.0b013e3181efe2df

      6. Wiese AD, Griffin MR, Stein CM, et al. Validation of discharge diagnosis codes to identify serious infections among middle age and older adults. BMJ Open. 2018;8(6):e020857. doi:10.1136/bmjopen-2017-020857

      7. Wu J, Ma Z, Raman A, et al. APOL1 risk variants in individuals of African genetic ancestry drive endothelial cell defects that exacerbate sepsis. Immunity. 2021;54(11):2632-2649.e6. doi:10.1016/j.immuni.2021.10.004

      8. Kozlitina J, Zhou H, Brown PN, et al. Plasma Levels of Risk-Variant APOL1 Do Not Associate with Renal Disease in a Population-Based Cohort. J Am Soc Nephrol. 2016;27(10):3204-3219. doi:10.1681/ASN.2015101121

      9. Liu G, Jiang L, Kerchberger VE, et al. The relationship between high density lipoprotein cholesterol and sepsis: A clinical and genetic approach. Clin Transl Sci. 2023;16(3):489-501. doi:10.1111/cts.13462

      10. Alrawashdeh M, Klompas M, Simpson SQ, et al. Prevalence and Outcomes of Previously Healthy Adults Among Patients Hospitalized With Community-Onset Sepsis. Chest. 2022;162(1):101-110. doi:10.1016/j.chest.2022.01.016

      11. Yoshida T, Latt KZ, Heymann J, Kopp JB. Lessons From APOL1 Animal Models. Front Med (Lausanne). 2021;8:762901. doi:10.3389/fmed.2021.762901

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The authors of this manuscript characterize new anion conducting that is more red-shifted in its spectrum than prior variants called MsACR1. An additional mutant variant of MsACR1 that is renamed raACR has a 20 nm red-shifted spectral response with faster kinetics. Due to the spectral shift of these variants, the authors proposed that it is possible to inhibit the expression of MsACR1 and raACR with lights at 635 nm in vivo and in vitro. The authors were able to demonstrate some inhibition in vitro and in vivo with 635 nm light. Overall the new variants with unique properties should be able to suppress neuronal activities with red-shifted light stimulation.

      Strengths:

      The authors were able to identify a new class of anion conducting channelrhodopsin and have variants that respond strongly to lights with wavelength >550 nm. The authors were able to demonstrate this variant, MsACR1, can alter behavior in vivo with 635 nm light. The second major strength of the study is the development of a red-shifted mutant of MsACR1 that has faster kinetics and 20 nm red-shifted from a single mutation.

      Weaknesses:

      The red-shifted raACR appears to work much less efficiently than MsACR1 even with 635 nm light illumination both in vivo (Figure 4) and in vitro (Figure 3E) despite the 20 nm red-shift. This is inconsistent with the benefits and effects of red-shifting the spectrum in raACR. This usually would suggest raACR either has a lower conductance than MsACR1 or that the membrane/overall expression of raACR is much weaker than MsACR1. Neither of these is measured in the current manuscript.

      Thank you for addressing this crucial issue. We posit that the diminished efficiency of raACR in comparison to MsACR1 WT can be attributed to the tenfold acceleration of its photocycle. As noted by Reviewer 1, the anticipated advantages associated with a red-shifted opsin, particularly in in vivo preparations, are offset by its accelerated off-kinetics. Consequently, the shorter dwell time of the open state leads to a reduced number of conducted ions per photon. Nevertheless, the operational light sensitivity is not drastically altered compared to MsACR WT (Fig. 3C). We believe that the rapid kinetics offer interesting applications, such as the precise inhibition of single action potentials through holography.

      There are limited comparisons to existing variants of ACRs under the same conditions in the manuscript overall. There should be more parallel comparison with gtACR1, ZipACR, and RubyACR in identical conditions in cultured cell lines, cultured neurons, and in vivo. This should be in terms of overall performance, efficiency, and expression in identical conditions. Without this information, it is unclear whether the effects at 635 nm are due to the expression level which can compensate for the spectral shift.

      We compared MsACR1 and raACR with GtACR1 in ND cells in supplemental figure 4. We concur that further comparisons could be useful to emphasise both the strengths of MsACRs and applications where they may not be as suitable. We are currently in the process of outlining a separate article. We firmly believe that each ACR variant occupies a distinct application niche, which necessitates a more comprehensive electrophysiological comparison to provide valuable insights to the scientific community.

      There should be more raw traces from the recordings of the different variants in response to short pulse stimulation and long pulse stimulation to different wavelengths. It is difficult to judge what the response would be like when these types of information are missing.

      We appreciate Reviewer 1's feedback and have compiled a collection of raw photoresponses, encompassing various pulse widths and wavelengths, which can be found in the Supplementary materials (Supplementary Figures 4 and 5).

      Despite being able to activate the channelrhodopsin with 635 nm light, the main utility of the variant should be transcranial stimulation which was not demonstrated here.

      We concur with Reviewer 1's assessment that MsACR prime application is indeed transcranial stimulation. However, it's worth emphasising that the full advantages of transcranial optical stimulation become most apparent when animals are truly freely moving without any tethered patch cords. Our ongoing research in the laboratory is dedicated to the development of a wireless LED system that can be securely affixed to the animal's skull. We aim to demonstrate the potential of these novell optogenetic approaches in the field of behavioural neuroscience in the coming year.

      Figure 3B is not clearly annotated and is difficult to match the explanation in the figure legend to the figure. The action potential spikings of neurons expressing raACR in this panel are inhibited as strongly as MsACR1.

      We have enhanced the figure caption and annotations for clarity. The traces presented in Figure 3B are intended to demonstrate the overall effectiveness of each variant. However, it is in the population data analysis, as depicted in Figure 3E, where the meaningful insights are revealed.

      For many characterizations, the number of 'n's are quite low (3-7).

      We acknowledge Reviewer 1's suggestion regarding the in vivo data and agree with the importance of including more animals, as well as control animals. However, we are committed to adhering to the principles of the 3Rs (Replacement, Reduction, Refinement) in animal research, and given the robustness of our observed effects, we will add animals to reach the minimal number of animals per condition (n = 2) to minimise unnecessary animal usage while ensuring statistical power. We will continue to adhere to the established standards in the field, aiming for a range of 3 to 7 cells per condition, sourced from at least two independent preparations, to ensure the robustness and reliability of our in vitro data.

      Reviewer #2 (Public Review):

      Summary:

      The authors identified a new chloride-conducting Channelrhodopsin (MsACR1) that can be activated at low light intensities and within the red part of the visible spectrum. Additional engineering of MsACR1 yielded a variant (raACR1) with increased current amplitudes, accelerated kinetics, and a 20nm red-shifted peak excitation wavelength. Stimulation of MsACR1 and raACR1 expressing neurons with 635nm in mice's primary motor cortices inhibited the animals' locomotion.

      Strengths:

      The in vitro characterization of the newly identified ACRs is very detailed and confirms the biophysical properties as described by the authors. Notably, the ACRs are very light sensitive and allow for efficient in vitro inhibition of neurons in the nano Watt/mm^2 range. These new ACRs give neuroscientists and cell biologists a new tool to control chloride flux over biological membranes with high temporal and spatial precision. The red-shifted excitation peaks of these ACRs could allow for multiplexed application with blue-light excited optogenetic tools such as cation-conducting channelrhodopsins or green-fluorescent calcium indicators such as GCaMP.

      Weaknesses:

      The in-vivo characterization of MsACR1 and raACR1 lacks critical control experiments and is, therefore, too preliminary. The experimental conditions differ fundamentally between in vitro and in vivo characterizations. For example, chloride gradients differ within neurons which can weaken inhibition or even cause excitation at synapses, as pointed out by the authors. Notably, the patch pipettes for the in vitro characterization contained low chloride concentrations that might not reflect possible conditions found in the in vivo preparations, i.e., increasing chloride gradients from dendrites to synapses.

      We appreciate Reviewer 2’s feedback regarding missing control experiments. We will respond to these concerns in another section of our manuscript, as suggested. Regarding the chloride gradient, we understand the concerns of Reviewer 2, yet we chose these ionic conditions, particularly as they were used in the initial electrical characterization of GtACR1 in a neuronal context (Mahn et al., 2016). We will make sure to provide this context in our manuscript to justify our choice of ionic conditions.

      Interestingly, the authors used soma-targeted (st) MsACR1 and raACR1 for some of their in vitro characterization yielding more efficient inhibition and reduction of co-incidental "on-set" spiking. Still, the authors do not seem to have utilized st-variants in vivo.

      At the time of submission, due to the long-term absence of our lab technician, we were not able to produce purified viruses. Therefore, we decided to move on with the submission. We now produced the virus externally, and will provide the experiments.

      Most importantly, critical in vivo control experiments, such as negative controls like GFP or positive controls like NpHR, are missing. These controls would exclude potential behavioral effects due to experimental artifacts. Moreover, in vivo electrophysiology could have confirmed whether targeted neurons were inhibited under optogenetic stimulations.

      We have several non-injected control animals that we used to calibrate this particular paradigm and never saw similar responses. However, we acknowledge the suggestion of Reviewer 2 and will include the GFP-injected control as recommended.

      Some of these concerns stem from the fact that the pulsed raACR stimulation at 635 nm at 10Hz (Fig. 3E) was far less efficient compared to MsACR1, yet the in vivo comparison yielded very similar results (Fig. 4D).

      As outlined previously, the accelerated photocycle of raACR results in a reduction in photocurrent amplitude, consequently diminishing the potency of inhibition per photon. In the context of in vitro stimulation, where single action potentials are recorded, this reduction in inhibition efficiency is resolved. However, in the realm of in vivo behavioural analysis, the observed effect is not contingent on single action potentials but rather stems from the disruption of the entire M1 motor network. In this context, despite the reduced efficiency of the fast-cycling raACR, it still manages to interrupt the M1 network, leading to similar behavioural outcomes.

      Also, the cortex is highly heterogeneous and comprises excitatory and inhibitory neurons. Using the synapsin promoter, the viral expression paradigm could target both types and cause differential effects, which has not been investigated further, for example, by immunohistochemistry. An alternative expression system, for example, under VGLUT1 control, could have mitigated some of these concerns.

      Indeed, we acknowledge the limitations of our current experimental approach. We are in the process of planning and conducting additional experiments involving cre-dependent expression of st-MSACR and st-raACR in PV-Cre mice.

      Furthermore, the authors applied different light intensities, wavelengths, and stimulation frequencies during the in vitro characterization, causing varying spike inhibition efficiencies. The in vivo characterization is notably lacking this type of control. Thus, it is unclear why the 635nm, 2s at 20Hz every 5s stimulation protocol, which has no equivalent in the in vitro characterization, was chosen.

      We appreciate the valuable comment from the reviewer. The objective of our in vitro characterization is to elucidate the general effects of specific stimulation parameters on the efficiency of neuronal inhibition. For instance, we aim to demonstrate that lower light intensities result in less efficient inhibition, or that pulse stimulation may lead to a less complete inhibition, albeit significantly reducing the energy input into the system.

      In the in vivo characterization, we face constraints such as animal welfare considerations and limitations in available laser lines, which prevent us from exploring the entire parameter space as comprehensively as in the in vitro preparation. Additionally, it is important to note that membrane capacitance tends to be higher in vivo compared to dissociated hippocampal neurons. Consequently, we have opted for a doubled stimulation frequency from 10 Hz to 20 Hz and the stimulation pattern of 2 seconds ”on” and 5 seconds “off”. This approach allows the animals to spend less time in an arrested state while still demonstrating the effect of MsACR and variants.

      In summary, the in vivo experiments did not confirm whether the observed inhibition of mouse locomotion occurred due to the inhibition of neurons or experimental artifacts.

      In addition, the author's main claim of more efficient neuronal inhibition would require them to threshold MsACR1 and raACR1 against alternative methods such as the red-shifted NpHR variant Jaws or other ACRs to give readers meaningful guidance when choosing an inhibitory tool.

      The light sensitivity of MsACR1 and raACR1 are impressive and well characterized in vitro. However, the authors only reported the overall light output at the fiber tip for the in vivo experiments: 0.5 mW. Without context, it is difficult to evaluate this value. Calculating the light power density at certain distances from the light fiber or thresholding against alternative tools such as NpHR, Jaws, or other ACRs would allow for a more meaningful evaluation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the Editors for the opportunity to submit a revised manuscript, and the Reviewers for their positive evaluations and constructive comments. We feel that the comments and suggestions significantly improved the quality of our manuscript. We addressed all questions and suggestions in a point-by-point fashion below.

      Reviewer #1 (Public Review):

      This paper proposes and evaluates a new approach for the registration of human hippocampal anatomy between individuals. Such registration is an essential step in group analysis of hippocampal structure and function, and in most studies to date, volumetric registration of MRI scans has been employed. However, it is known that volumetric deformable registration, due to its formulation as an optimization problem that minimizes the combination of an image similarity term and relatively simple geometric regularization terms, fails to preserve the topology of complex structures. In the cerebral cortex, surface-based registration of inflated cortical surfaces is broadly preferred over volumetric registration, which often causes voxels of different tissue types to be matched (e.g., voxels belonging to a sulcus in one individual mapping onto voxels belonging to a gurys in another). The authors recognize that hippocampal anatomy is similarly complex, and, with proper tools, can benefit from surface-based registration. They propose to first unfold the hippocampus to a two-dimensional rectangle domain using their prior HippUnfold technique, and then to perform deformable registration in this rectangle domain, matching geometric features (curvature, thickness, gyrification) between individuals. This registration approach is evaluated by comparing how well hippocampal subfields traced by experts using cytoarchitectural information align between individuals after registration. The authors indeed show that surface-based registration aligns subfields better than volumetric registration applied to binary segmentations of the hippocampal gray matter.

      Overall, I find the methods and results in this paper to be convincing. The authors framed the comparison between surface-based and volumetric registration in a fair way, and the results convincingly show the advantage of surface-based registration. One slight limitation of the current study is that it is uncertain whether the benefits demonstrated here translate to in vivo MRI data for which the authors' HippUnfold algorithm is tailored. The current study utilized the unfolding technique used in HippUnfold on manual segmentations of high-resolution ex vivo MRI and blockface 3D volumes, which are likely closer to anatomical ground truth than automated segmentations of in vivo MRI. However, it is reasonable to assume that given that the volumetric registration to which the proposed approach was compared also used this high-detail data, the advantages of surface-based over volumetric registration would extend to in vivo MRI as well. However, I would encourage the authors to perform future evaluations on datasets with available in vivo and ex vivo MRI from the same individuals.

      We thank the Reviewer for the positive evaluation and the thoughtful feedback. We address each comment in the red text below.

      We have considered the Reviewer suggestion for a demonstration of the gains from our proposed method in MRI, and decided to include a new analysis of 7T in-vivo MRI data from 10 healthy participants (Supplementary Materials 1: in-vivo MRI demonstration).

      It is difficult to assess whether changes to the registration methods are indeed an improvement without same-subject “ground-truth” subfield definitions typically obtained from histology. In this new Supplementary Materials section, we demonstrate an overall sharpening of MRI-mapped features as an indirect indication of better inter-subject alignment (similar to the paper referenced in the comment, below). This is an important proof of concept that demonstrates that the gains made in the current project can be translated to in in-vivo MRI. We did not perform a demonstration of these gains in ex-vivo data, since this also comes with a host of challenges including access to such data and deformations and artifacts associated with ev-vivo scanning. However, we believe that the gains provided by our methods are limited mainly by image resolution and so while we note some concern about the gains from this method at 3T MRI, we expect that in ev-vivo gains provided by our method in higher resolution ex-vivo images should be consistent or better.

      We have added the following in-text Discussion of this new analysis (p. 13):

      “Ravikumar et al. (2021) recently performed flat mapping of the medial temporal lobe neocortex using a Laplace coordinate system as employed here, and showed sharpening of group-averaged images following deformable registration in unfolded space. This indirectly suggests better intersubject alignment. We perform a similar group-averaged sharpening analysis in Supplementary Materials 1: in-vivo demonstration. Though the gains in image sharpness observed here were modest, we note that current MRI resolution and automated segmentation methods allow for only imperfect hippocampal feature measures. We thus expect unfolded registration to grow in importance as MRI and segmentation methods continue to advance. “

      I would also like to point out the relevance of the 2021 paper "Unfolding the Medial Temporal Lobe Cortex to Characterize Neurodegeneration Due to Alzheimer's Disease Pathology Using Ex vivo Imaging" by Ravikumar et al. (https://link.springer.com/chapter/10.1007/978-3-030-87586-2_1) to the current work. This paper applied an earlier version of the unfolding method in HippUnfold to ex vivo extrahippocampal cortex and performed registration using curvature features in the rectangular unfolded space, also finding slight improvement with surface-based vs. volumetric registration, so its findings support the current paper.

      Thank you, we agree this is a highly relevant paper and have added a summary of it in the newly added Discussion paragraph which also outlines the new Supplementary Materials section (see previous comment).

      Overall, the paper has the potential to significantly influence future research on hippocampal involvement in cognition and disease. Outside of simple volumetry studies, most hippocampal morphometry studies rely on volumetric deformable registration of some kind, typically applied to whole-brain T1-weighted MRI scans. With HippUnfold available for anyone to use and not requiring manual registration, the paper provides a strong impetus for using this approach in future studies, particularly where one is interested in localizing effects of interest to specific areas of the hippocampus. Additional evaluation of in vivo HippUnfold using in vivo / ex vivo datasets, would make the use of this approach even more appealing.

      We would like to thank the Reviewer for their enthusiasm for the translatability of this work. We hope they are satisfied with our newly added in-vivo evaluation, and we appreciate the thoughtful suggestions.

      Reviewer #1 (Recommendations For The Authors):

      No additional recommendations.

      Reviewer #2 (Public Review):

      DeKraker et al. propose a new method for hippocampal registration using a surface-based approach that preserves the topology of the curvature of the hippocampus and boundaries of hippocampal subfields. The surface-based registration method proved to be more precise and resulted in better alignment compared to traditional volumetric-based registration. Moreover, the authors demonstrated that this method can be performed across image modalities by testing the method with seven different histological samples. While the conclusions of this paper are mostly well supported by data, some aspects of the method need to be clarified. This work has the potential to be a powerful new registration technique that can enable precise hippocampal registration and alignment across subjects, datasets, and image modalities.

      We thank the Reviewer for their thoughtful evaluation of our paper and helpful comments. We address them in the red text below each comment.

      Regarding the methodological clarification of the surfaced-based registration method, the last step of the process needs further clarification. Specifically, after creating the averaged 2D template, it is unclear how each individual sample is registered to sample1's space. If I understand correctly, after creating the averaged 2D template, each individual sample is then registered to sample1's space via the transform from each sample to the averaged template and then the inverse transform from the template to sample1's space. Samples included both left and right hemispheres, so were all samples being propagated to left hemisphere sample 1 space? The authors also note that a measure of the subfield labels overlap with that sample's ground-truth subfield definitions was calculated. Is this a measure of overlap, for example, between sample 3 (registered to sample 1 space) and the ground-truth (unfolded, not registered) sample 3 labels? It would be beneficial to provide a full walkthrough of one example sample to clarify the steps. Clarification of this aspect of the method is critical for understanding the evaluation of the method.

      We would like to thank the Reviewer for the suggestion, and have clarified the passage with the following walkthrough example as suggested by the Reviewer (p. 8):

      “For example, sample3 was unfolded and then registered to the unfolded average, making up two transformations. These were then concatenated with the inverse transformation of unfolded sample1 to the same unfolded average, and the inverse transformation of native sample1 to unfolded space. This concatenated transformation was used to project labels from sample3 native space directly to sample1 native space, which should ideally lead to near-perfect subfield alignment in sample1 native space. Dice overlap between sample1 and sample3 registered to sample1 was then calculated in sample1 native space.”

      Reviewer #2 (Recommendations For The Authors):

      Materials and Methods:

      In the Data section, it would be helpful for the authors to clarify whether each hippocampal histology sample is from a different individual or not. Additionally, for the 3D-PLI sample, the authors mention that the anterior/posterior parts of the hippocampus were cut off and the labels were extrapolated over the missing regions. It would be useful to know whether the extrapolation was done manually.

      Thank you, we have added separate labels (donors 1-4) for each individual from each dataset. We have also added that the 3D-PLI dataset was extrapolated manually. See the revised Materials and Methods: Data section.

      A small clarification, but for the morphological features calculated by HippUnfold, is thickness a measure of how much space each subfield takes up in the 2D unfolded space?

      Thickness is measured via HippUnfold, and we have clarified in-text that it is done in each subject’s native space (p. 6):

      Results:

      In the Results section, a brief summary or description of the Dice overlap metric would be helpful. The authors should also clarify if the Dice metric measures the overlap between an individual sample (e.g., sample3) that has been unfolded and registered/propagated to sample1 compared to the sample1 ground-truth subfields.

      We thank the Reviewer, and hope this is now clarified alongside the Reviewer’s Public comment with the addition of the example as quoted in our response to that comment.

      We also added to our description of Dice overlap as a measurement (p. 8):

      “The Dice overlap metric (Dice, 1945), which can also be considered an overlap fraction ranging from 0-1, was calculated for all subjects’ subfields registered to sample1.”

      Figure 3:

      In Figure 3A, it is unclear what "moving (sample 3)" refers to. Clarification is needed, and it would be helpful to know if this is sample 3 in native space before it has been unfolded/registered. In Figure 3B, there is a missing "native" before "folded" and "(right)" at the end of the sentence. With these edits, the sentence in the caption would read: "Each measure was calculated in unfolded space (left) and again in the first sample's (BigBrain left hemisphere) native folded space (right)."

      We thank the Reviewer, and have now changed “moving” to “sample3 before registration”, and added the suggested caption changes. See the revised Figure 3.

      Discussion:

      In the introduction, the authors provide a detailed description of the traditional 3D volumetric registration technique that utilizes gyral and sucal patterning as the primary feature for registration, along with other features such as thickness and intracortical myelin. Using their surface-based registration, the authors highlight an interesting finding that hippocampal curvature is the most informative individual feature, and thickness and curvature combined are the most informative features for registration and boundary alignment. In the discussion, it would be beneficial for the authors to discuss the relationship between curvature, thickness, and gyrification (e.g., is there overlapping information across these features) and comment on the reliability of these features observed in the current study compared to past work using traditional methods.

      This is an interesting point of discussion, thank you for raising it. We’ve added the following paragraph to the Discussion section (p. 13):

      “The feature most strongly driving surface-based registration in the present study was curvature. Many neocortical surface-based registration methods focus on gyral and sulcal patterning at various levels (e.g. strong alignment of primary sulci, with weaker weighting on secondary and tertiary sulci) (Miller et al., 2021). In the present study, hippocampal gyri are variable between samples and so could perhaps be thought of as similar to tertiary neocortical gyri, and this may help explain why gyrification was not the primary driving feature in aligning hippocampal subfields. The methods used to quantify gyrification are often related to curvature, but differ across studies. In the hippocampus, unlike in the neocortex, the mouth of sulci are wide and so sulcal depth, which is often used in defining neocortical gyrification index, is not straightforward to measure. Using HippUnfold, gyrification is defined by the extent of tissue distortion between folded and unfolded space, and individual gyri/sulci are hard to resolve in unfolded gyrification maps, but are readily visible in curvature maps. Thus, hippocampal curvature may be more informative simply due to higher measurement precision. Future work could also employ measures like quantitative T1 relaxometry or other proxies of intracortical myelin content (e.g. Tardif et al., 2015; Glasser et al., 2016; Paquola et al. 2018) for hippocampal alignment, but this is not possible in cross-modal work as in the various histology stains examined here.”

      Miscellaneous:

      There is a typo on page 11, line 318, with extra parentheses: "(e.g., (Borne et al., 2023;..."

      Thank you, we have corrected this error.

      Reviewer #3 (Public Review):

      Dekraker and colleagues previously developed a new computational tool that creates a "surface representation" of the hippocampal subfields. This surface representation was previously constructed using histology from a single case. However, it was previously unclear how to best register and compare these surface-based representations to other cases with different morphology.

      In the current manuscript, Dekraker and colleagues have demonstrated the ability to align hippocampal subfield parcellations across disparate 3D histology samples that differ in contrast, resolution, and processing/staining methods. In doing so, they validated the previously generated Big-Brain atlas by comparing seven different ground-truth subfield definitions. This is an impressive and valuable effort that provides important groundwork for future in vivo multi-atlas methods.

      We thank the Reviewer for their positive evaluations, and helpful suggestions. We provide responses to the recommendations in the red text below.

      Reviewer #3 (Recommendations For The Authors):

      There are a few points I think the authors should address, listed below.

      1) As the authors are well aware, subfield definitions vary considerably across laboratories. The current paper states that JD labeled the samples using three different atlas references: Ding & Van Hoesen, 2015; Duvernoy et al. ,2013, and Palomero-Gallagher et al., 2020. This is unclear, however, since these three references differ in their subfield definitions. For example, Ding & Van Hoesen and Palomero-Gallagher define a region called the prosubiculum (area between subiculum and CA1) but Duvernoy does not. Please clarify which boundary rules from which particular references were used here. How were discrepancies across these references resolved when applying labels to the current histological samples?

      We thank the Reviewer, and have added the following elaboration (p. 5):

      “Since these sources differ slightly in their boundary criteria, and no prior reference perfectly matches the present samples, subjective judgment was used to draw boundaries after considering all three prior works. The “prosubiculum” label used by Ding & Van Hoesen and Palomero-Gallagher et al. was included as part of the subicular complex. See Supplementary Materials 2: ground-truth segmentation for more details.”

      2) Another comment has to do more with the "style" of how this paper is written, especially given that this paper was submitted to eLIFE (i.e. not a specialty journal). For example, the motivation for the unfolded with and without registration methods was not well described. Similarly, there was almost no justification for the different methods applied in Figure 4 and I fear that the impact of these results will be lost on a non-expert reader.

      We added the following elaboration to the last paragraph of the Introduction section to motivate our benchmark against unfolding without registration (p. 3):

      “We benchmark this new method against unfolding alone, which provides some intrinsic alignment between subjects (DeKraker et al., 2018) but which we believe can be further improved with the present methods, and against more conventional 3D volumetric registration approaches.”

      We also added a Discussion paragraph on the results shown in Figure 4 which we hope helps to make these results more informative and impactful (p. 13):

      “The feature most strongly driving surface-based registration in the present study was curvature. Many neocortical surface-based registration methods focus on gyral and sulcal patterning at various levels (e.g. strong alignment of primary sulci, with weaker weighting on secondary and tertiary sulci) (Miller et al., 2021). In the present study, hippocampal gyri are variable between samples and so could perhaps be thought of as similar to tertiary neocortical gyri, and this may help explain why gyrification was not the primary driving feature in aligning hippocampal subfields. The methods used to quantify gyrification are often related to curvature, but differ across studies. In the hippocampus, unlike in the neocortex, the mouth of sulci are wide and so sulcal depth, which is often used in defining neocortical gyrification index, is not straightforward to measure. Using HippUnfold, gyrification is defined by the extent of tissue distortion between folded and unfolded space, and individual gyri/sulci are hard to resolve in unfolded gyrification maps, but are readily visible in curvature maps. Thus, hippocampal curvature may be more informative simply due to higher measurement precision. Future work could also employ measures like quantitative T1 relaxometry or other proxies of intracortical myelin content (e.g. Tardif et al., 2015; Glasser et al., 2016; Paquola et al. 2018) for hippocampal alignment, but this is not possible in cross-modal work as in the various histology stains examined here.”

      3) Finally, the application of the current work beyond the current dataset needs to be made more clear. From what I understand, the discussion says that using a multi-atlas approach with HippUnfold is unfeasible at this point. What kind of computational or technical developments need to take place in order for these labeled datasets to be used for this purpose? How can the current labeled datasets be used in other contexts?

      The question of translation to other contexts, namely, in-vivo MRI, was also raised by Reviewer 1, and as such we decided to include an additional analysis to explore this question (Supplementary Materials 1: in-vivo MRI demonstration). Validation using ground-truth subfields is not plausible in MRI, and so we show only an indirect validation of intersubject alignment based on the sharpening of group-averaged features following better alignment using the present methods. We believe this new analysis significantly clarifies the applications we have in mind for this work. See the new Supplementary Section for details, and also a summary of this analysis in the Discussion section (p. 13):

      “Ravikumar et al. (2021) recently performed flat mapping of the medial temporal lobe neocortex using a Laplace coordinate system as employed here, and showed sharpening of group-averaged images following deformable registration in unfolded space. This indirectly suggests better intersubject alignment. We perform a similar group-averaged sharpening analysis in Supplementary Materials 1: in-vivo demonstration. Though the gains in image sharpness observed here were modest, we note that current MRI resolution and automated segmentation methods allow for only imperfect hippocampal feature measures. We thus expect unfolded registration to grow in importance as MRI and segmentation methods continue to advance. “

      Multi-atlas approaches are also presently possible, but we believe HippUnfold can apply unfolding and subfield definition with even higher validity. Unfolding of the hippocampus was previously possible in-vivo but still showed limited intersubject alignment. The present work validates a novel alignment method ex-vivo, and now additionally shows that this can be translated to better alignment even at the resolution of in-vivo imaging. We hope the above new Discussion paragraph also helps to clarify this.

      4) A minor comment is that there are three panels (a,b,c) in Figure 4 but the figure legend does not describe them separately.

      We thank the Reviewer, and added a Figure legend for parts B and C.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for these helpful and thoughtful comments.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • What was the nature of the 0.1 increase in pH caused by illumination in CheRiff-negative cells? Is this thought to be a temperature effect?

      The increase in pHoran4 fluorescence in CheRiff-negative cells is most likely not from a pH change; rather, it most likely reflects blue light-mediated photoactivation of the mOrange-derived chromophore in pHoran4. Similar photoartifacts have been reported in other fluorescent protein reporters (see e.g. Farhi, Samouil L., et al. "Wide-area all-optical neurophysiology in acute brain slices." Journal of Neuroscience 39.25 (2019): 4889-4908.).

      The baseline measurement in CheRiff-negative cells is to control for this type of artifact. We subtract the mean signal from the CheRiff-negative cells to correct the signals from the CheRiff-positive cells, as described in the Main Text.

      • Does Kir2.1 have a proton conductance? Was the resting pH of HEK cells changed by Kir2.1 expression? Fig 2D suggest basal pH is equivalent +/- Kir2.1 but it would be good to show that data.

      This is an interesting question which our data do not answer conclusively. Since we used an intensiometric (as opposed to ratiometric) pH indicator, our measurements only provide relative pH changes. We assumed a constant initial pH. We have revised the text to make clear that this is an assumption.

      Prior studies of pH-dependent Kir2.1 activity did not find evidence of a proton current (i.e. no change in current upon extracellular acidification), though the channel is closed by intracellular acidification. See: Ye, Wenlei, et al. "The K+ channel KIR2. 1 functions in tandem with proton influx to mediate sour taste transduction." Proceedings of the National Academy of Sciences 113.2 (2016): E229-E238. We added this information to the text.

      The pKa of pHoran4 is 7.5, so a decrease in initial pH would decrease the slope of F vs pH. We observed higher (absolute value) F/F in the Kir2.1 expressing cells than in the non-expressing cells, confirming that the Kir2.1-expressing cells had larger CheRiff-mediated acidification than the Kir2.1-negative cells (Figure 2D). Thus this conclusion remains true regardless of whether Kir2.1 has a proton conductance.

      What channels/transporter mediate proton flux in CheRiff + Kir2.1 experiments? Is the increased proton flux simply due to more H+ ions passing through CheRiff when cells are hyperpolarized or may other voltage-dependent processes effect pH?

      Fig. 2G-M address this question, specifically. We targeted the blue light in a “zebra” pattern to only activate CheRiff in a subset of cells. We then used voltage imaging to show that the induced voltage spread over a much wider area than the blue-illuminated region, due to gap junction coupling between the cells. If protons flowed through some voltage-dependent channel other than CheRiff, then we would expect the acidification to follow the voltage profile. If protons primarily flowed through the CheRiff, then we would expect the acidification to follow the illumination profile. Fig. 2K and the following quantification show clearly that the acidification followed the illumination profile, and hence the proton current was primarily through CheRiff.

      • Is Kir2.1 included in the spatial illumination experiments (Fig. 2G-M)? If so, it would be helpful to note it. The color scheme suggest it is but it would be good to note it explicitly.

      Yes. Clarified in text.

      • Why is the acidification caused by 10 second of illumination smaller in Fig 2L, as compared to the equivalent experiment in 2D? Is this due to the spatial nature of the illumination? It seems that the pH change at the site of illumination should be equivalent between these 2 experiments.

      The illumination protocol between the two experiments has different duty cycles (compare Fig. 2C and 2J), so the time-averaged intensity is different. There can also be batch-to-batch variation in CheRiff expression which would alter the proton flux and thus pH change. To control for this, comparisons were always made between batches of cells prepared together.

      • The authors used 150 second illumination to examine pH changes but only 13.5 seconds to differentiate between pH changes caused by the light-activated conductance and those secondary to depolarization. Would pH changes lose their spatial limitations if a similar 150 second illumination was used? This is important because the pH change seen in the "Blue On" region was quite small.

      Yes, protons can diffuse between cells via gap junctions, smoothing out the spatial structure of the pH over long times. See e.g. Wu, Ling, et al. "PARIS, an optogenetic method for functionally mapping gap junctions." Elife 8 (2019): e43366.

      We used a short (13.5 s) protocol specifically to distinguish CheRiff-mediated acidification from acidification via other conductances in electrically coupled neighboring cells. If we had waited for longer, lateral proton diffusion could have muddied the interpretation of these experiments.

      • How long do action potentials shown in between illuminations in Fig 4H (ChR2 3M) last following cessation of illumination?

      The closing time, τoff, of the Channelrhodopsins are shown in Table 1. The ChR2-3M has an off-time of almost 2 seconds. The duration of post-stimulus persistent firing is expected to depend on the expression level of the ChR2-3M, the strength of the optogenetic stimulus and the excitation threshold of the neurons, i.e. on how far above threshold the neuron is at the moment the blue light turns off. Thus we expect the post-stimulus firing time to be highly variable between cells and also to depend on optogenetic stimulus strength. In our experiments action potentials were observed throughout the 0.5 s dark interval between stimuli.

      • While ChR2-3M construct may have promise for therapeutic applications, those strengths limit its use or basic science applications like circuit mapping. This should be noted in the discussion.

      Ok. We now mention this in the discussion.

      • Please define EPD50 within the text of the results section.

      Ok. Fixed.

      Reviewer #2 (Recommendations For The Authors):

      This is an interesting manuscript investigating a potential limitation of optogenetic manipulation of cell excitability and its solution. The work is conducted rigorously and explained clearly. I only have minor concerns:

      I think the impact of the study could be broadened by examining additional proton permeable opsins for their effects on intracellular pH. A single assay could be used to compare different opsins to CheRiff and show that the problem of intracellular acidification is not limited to CheRiff.

      Yes, this is interesting. There are so many opsins and illumination protocols in use that we could not do an exhaustive characterization; we encourage people to test their own opsin under their conditions if doing chronic simulation. The plasmid constructs used for this work are available on Addgene.

      I am not clear on what Figure S3A is showing because I cannot see a patterning like the one shown in Fig. 2H. Perhaps a higher magnification could solve the problem.

      Figure S3A does not have the zebra-striped pattern of Figure 2H. In Fig S3A, we used just one column of illumination. The point was to test the ability of each opsin to depolarize the HEK cells. We added images of the illumination pattern and adjusted the caption to make this clear.

      When discussing the sustained photocurrent of PsCatCh2.0, a reference to Govorunova et al. J. Biol. Chem. 2013 should be added as the low extent of light induced inactivation appears to be, at least in part, a characteristic of the particular type of opsin from P. subcordiformis.

      Added reference.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Please describe the criteria for binocularity of dLGN neurons, and what % of recorded neurons meet this criteria. Do all the example neurons in figure 1D meet the criteria for binocular neurons?

      We now include criteria for binocularity of dLGN neurons in the methods section on page 24, and mention the percentage of binocular neurons that we detected. We also indicate which of the example neurons in figure 1D are monocular or binocular according to these criteria. We would like to stress that these percentages are not representative for the level of binocularity in dLGN as a whole, as our recordings were limited to the frontal ipsilateral projection zone of dLGN, which is its most binocular region, and only units with a receptive field within 30o from the center were included in the analysis. We mention this in the discussion on page 23.

      Fig 1: Please perform statistical comparison of data presented in Figure 1c by genotype, as in other figures.

      We conducted post-hoc Tukey's tests exclusively when a significant interaction between phenotype and genotype was detected in the two-way ANOVA (as seen in Figs. 2B and 3E). This decision was made because interpreting a significant post-hoc test becomes uncertain when there is no interaction, which is evident in Fig. 1C. In that case, the posthoc Tukey's test yielded a p-value of 0.044 for the difference in RF size between KO NOMD and KO MD, while all other comparisons were not significant (WT NO-MD vs WT MD: P=0.15, WT NO-MD vs KO NO-MD: p=0.99, WT MD vs KO MD: p=0.21). However, since there was no significant interaction between genotype and phenotype, we cannot conclude that there is an effect in KO mice that is absent in WT mice. In Fig. 3B, all posthoc Tukey's tests resulted in P-values greater than 0.05.

      Fig 1e: There is no justification for splitting the data into two time epochs before and after 150 msec. A repeated measures anova of smaller time bins across the full time course would be more effective/appropriate here.

      The reviewer is correct. We have now performed a repeated measures ANOVA.

      Fig 2: GABA a1R KO results in a loss/absence of OD plasticity, not a reduction

      We agree. We have changed the wording.

      Fig 3: Please be specific about the location of V1 recordings. Was layer-specificity determined?

      The location of V1 recordings is mentioned in the methods section under “Electrophysiology recordings, visual stimulation and V1 silencing”, page 23. We have assessed OD per depth, but found that we do not have sufficient units to draw any conclusions about differences in plasticity per layer.

      Why is feedback from V1 more influential in dLGN OD plasticity in KO?

      We believe this is because the reduced thalamic inhibition causes the excitation/inhibition ratio to shift in favor of excitation. We discuss this more extensively on page 19 of the discussion.

      Fig 4: Inclusion of a GABA R antagonist protects thalamic axons from muscimol silencing (Liu BH, Wu GK, Arbuckle R, Tao HW, Zhang LI. Defining cortical frequency tuning with recurrent excitatory circuitry. Nat. Neurosci. 2007;10:1594-600.)

      We now mention the possible direct influence of muscimol on thalamic axons in the discussion on page 19 and cite the suggested article.

      The observation that feedback from primary visual cortex does not contribute to adult visual thalamus plasticity is interesting and important. The authors should expand on their discussion of this observation to include changes in cortical circuitry that may help to explain this observation.

      We have expanded this part of the discussion on page 20.

      The authors should describe the pathway by which inhibition enables plasticity in dLGN.

      We discuss this more extensively on page 17 in the updated manuscript.

      Reviewer #2:

      1) The current work was basically a follow-up of a previous study in juvenile mice, and the results were also very similar to the juvenile results (Sommeijer et al., 2017). One possible interpretation of the results is that the lack of OD plasticity in adult V1 and dLGN was caused by an early blockade of the development of the inhibitory circuit in dLGN, which retains the dLGN in an immature stage till adulthood. The authors indeed claimed in the discussion that the 2-day OD shift is intact in juvenile dLGN and V1 in KO mice, and provided evidence in supplementary figure that GABAergic and cholinergic synapse amount are similar between WT and KO mice. However, the 7-day OD shift is indeed defected in juvenile V1 and dLGN in KO mice (Sommeijer et al., 2017), and it is possible that this early functional deficit didn't induce a structural remodeling in adulthood. To better support the author's claim that the lack of adult V1 OD plasticity is specifically due to reduced dLGN synaptic inhibition, the author should generate conditional KO mice that dLGN synaptic inhibition was only interfered in adulthood.

      In order to address this criticism it is important to discuss the plasticity deficits in dLGN and V1 separately.

      Concerning V1 plasticity: We have previously shown that brief MD induces an OD shift in V1 of mice lacking thalamic synaptic inhibition in dLGN. OD plasticity induced by brief MD is a hallmark of critical period plasticity in V1, and it thus seems highly unlikely that critical period onset in V1 is defective or that development of V1 is halted in an immature state that does not support OD plasticity in thalamus-specific GABRA1 deficient mice.

      The observed plasticity deficit during the critical period was limited to the second stage of the OD shift in V1, which requires long-term monocular deprivation. The straightforward explanation for this result and our current findings is that both during the critical period and in adulthood, the second stage of OD plasticity in V1 induced by long-term monocular deprivation requires thalamic plasticity or inhibition. The proposed alternative, that lack of thalamic synaptic inhibition during development results in a possible lack of structural change in V1 that would cause a lifelong deficiency selectively affecting OD plasticity induced by long-term monocular deprivation, requires many more assumptions.

      Concerning dLGN plasticity: The simplest explanation for the observed lack of OD plasticity in dLGN is that it is a direct consequence of the absence of synaptic inhibition in the KO mice. However, an alternative explanation could indeed be that dLGN is kept in an immature (pre-critical period-like) state due to the developmental absence of synaptic inhibition. This situation would be analogous to that in V1 of GAD65 deficient mice (which have reduced GABA release), in which OD plasticity cannot be induced by brief monocular deprivation during the critical period or in adulthood (Fagiolini and Hensch, 2000). Because this deficit can be reversed by treating the mice with benzodiazepines (allosteric modulators of GABA receptors) at any age, it is thought that development of V1 in GAD65 mice is halted in a pre-critical period-like state until inhibition is strengthened. We cannot exclude that something similar occurs in dLGN of mice lacking thalamic synaptic inhibition, although we did not observe any changes in hallmarks of dLGN maturity, such as reduced receptive field size, and increased cholinergic and inhibitory bouton densities.

      However, if the analogy with the developmental deficit in V1 of GAD65 deficient mice is valid, the reduced plasticity is still likely to be a direct consequence of reduced inhibition. In GAD65 deficient mice, long term monocular deprivation during the critical period causes a full OD shift, showing that no additional deficits (besides reduced inhibition) limit OD plasticity in V1 of these mice (Gagiolini and Hensch 2000). And, as already mentioned, increasing inhibition rescues OD plasticity in GAD65 KO mice. Thus, the immature state of V1 in these mice is probably nothing more than a situation in which inhibition tone is too low to support efficient OD plasticity. In dLGN, knocking out GABRA1 at a later age could therefore also create a situation in which inhibition is too low to support thalamic OD plasticity, which is not different from the situation in which the gene is inactivated at birth. Only if lack of synaptic inhibition in thalamus affects another, unknown developmental process that is of importance later in life to support OD plasticity in dLGN, the proposed experiment would result in a different outcome. We are not convinced that this scenario is likely enough to justify repeating most of this study, but now using mice in which GABRA1 is inactivated in dLGN through bilateral AAV-cre injections.

      Independently of the exact cause of the plasticity deficit in dLGN, our results make clear that a cortical plasticity deficit in adulthood can have a thalamic origin, which we believe is an important insight that is highly relevant.

      We have included part of these arguments in the discussion on page 17.

      2) The authors found that in juveniles, dLGN OD shift is dependent on V1 feedback, but not in adults. However, a recent work showed that the effects of V1 silencing on dLGN OD plasticity could differ with various starting points and duration of the V1 silencing and MD (Li et al., 2023). Could the authors provide more details of the MD and V1 silencing for an in-depth discussion?

      We discuss some of the findings of the Li et al paper on pages 16 and 20 of the manuscript now.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Meta-cognition, and difficulty judgments specifically, is an important part of daily decision-making. When facing two competing tasks, individuals often need to make quick judgments on which task they should approach (whether their goal is to complete an easy or a difficult task).

      In the study, subjects face two perceptual tasks on the same screen. Each task is a cloud of dots with a dominating color (yellow or blue), with a varying degree of domination - so each cloud (as a representation of a task where the subject has to judge which color is dominant) can be seen an easy or a difficult task. Observing both, the subject has to decide which one is easier.

      It is well-known that choices and response times in each separate task can be described by a driftdiffusion model, where the decision maker accumulates evidence toward one of the decisions (”blue” or ”yellow”) over time, making a choice when the accumulated evidence reaches a predetermined bound. However, we do not know what happens when an individual has to make two such judgments at the same time, without actually making a choice, but simply deciding which task would have stronger evidence toward one of the options (so would be easier to solve).

      It is clear that the degree of color dominance (”color strength” in the study’s terms) of both clouds should affect the decision on which task is easier, as well as the total decision time. Experiment 1 clearly shows that color strength has a simple cumulative effect on choice: cloud 1 is more likely to be chosen if it is easier and cloud 2 is harder. Response times, however, show a more complex interactive pattern: when cloud 2 is hard, easier cloud 1 produces faster decisions. When cloud 2 is easy, easier cloud 1 produces slower decisions.

      The study explores several models that explain this effect. The best-fitting model (the Difference model is the paper’s terminology) assumes that the decision-maker accumulates evidence in both clouds simultaneously and makes a difficulty judgment as soon as the difference between the values of these decision variables reaches a certain threshold. Another potential model that provides a slightly worse fit to the data is a two-step model. First, the decision maker evaluates the dominant color of each cloud, then judges the difficulty based on this information.

      Thank you for a very good summary of our work.

      Importantly, the study explores an optimal model based on the Markov decision processes approach. This model shows a very similar qualitative pattern in RT predictions but is too complex to fit to the real data. It is hard to judge from the results of the study how the models identified above are specifically related to the optimal model - possibly, the fact that simple approaches such as the Difference model fit the data best could suggest the existence of some cognitive constraints that play a role in difficulty judgments.

      The reviewer asks “how the models identified above are specifically related to the optimal model”. We did fit the four models to simulations of the optimal model and found that the Difference model was the closest. However, we did not fit the parameters of the optimal model to the data (no easy feat given the complexity of the model) as the experiment was not designed to incentivize maximization of the reward rate and fitting would have been computationally laborious. We therefore focused on the qualitative features of the optimal model and how they compare to our models. We now also include the optimal model for the known color dominance RT experiment (line 420). We have also added a new paragraph in the Discussion on the optimal model at line 503 comparing it qualitatively to the Difference model.

      The Difference model produces a well-defined qualitative prediction: if the dominant color of both clouds is known to the decision maker, the overall RT effect (hard-hard trials are slower than easyeasy trials) should disappear. Essentially, that turns the model into the second stage of the twostage model, where the decision maker learns the dominant colors first. The data from Experiment 2 impressively confirms that prediction and provides a good demonstration of how the model can explain the data out-of-sample with a predicted change in context.

      Overall, the study provides a very coherent and clean set of predictions and analyses that advance our understanding of meta-cognition. The field would benefit from further exploration of differences between the models presented and new competing predictions (for instance, exploring how the sequential presentation of stimuli or attentional behavior can impact such judgments). Finally, the study provides a solid foundation for future neuroimaging investigations.

      Thank you for your positive comments and suggestions.

      Reviewer #2 (Public Review):

      Starting from the observation that difficulty estimation lies at the core of human cognition, the authors acknowledge that despite extensive work focusing on the computational mechanisms of decision-making, little is known about how subjective judgments of task difficulty are made. Instantiating the question with a perceptual decision-making task, the authors found that how humans pick the easiest of two stimuli, and how quickly these difficulty judgments are made, are best described by a simple evidence accumulation model. In this model, perceptual evidence of concurrent stimuli is accumulated and difficulty is determined by the difference between the absolute values of decision variables corresponding to each stimulus, combined with a threshold crossing mechanism. Altogether, these results strengthen the success of evidence accumulation models, and more broadly sequential sampling models, in describing human decision-making, now extending it to judgments of difficulty.

      The manuscript addresses a timely question and is very well written, with its goals, methods and findings clearly explained and directly relating to each other. The authors are specialists in evidence accumulation tasks and models. Their modelling of human behaviour within this framework is state-of-the-art. In particular, their model comparison is guided by qualitative signatures which are diagnostic to tease apart the different models (e.g., the RT criss-cross pattern). Human behaviour is then inspected for these signatures, instead of relying exclusively on quantitative comparison of goodness-of-fit metrics. This work will likely have a wide impact in the field of decisionmaking, and this across species. It will echo in particular with many other studies relying on the similar theoretical account of behaviour (evidence accumulation).

      Thank you for these generous comments.

      A few points nevertheless came to my attention while reading the manuscript, which the authors might find useful to answer or address in a new version of their manuscript.

      1) The authors acknowledge that difficulty estimation occurs notably before exploration (e.g., attempting a new recipe) or learning (e.g., learning a new musical piece) situations. Motivated by the fact that naturalistic tasks make difficult the identification of the inference process underlying difficulty judgments, the authors instead chose a simple perceptual decision-making task to address their question. While I generally agree with the authors’s general diagnostic, I am nevertheless concerned so as to whether the task really captures the cognitive process of interest as described in the introduction. As coined by the authors themselves, the main function of prospective difficulty judgment is to select a task which will then ultimately be performed, or reject one which won’t. However, in the task presented here, participants are asked to produce difficulty judgments without those judgements actually impacting the future in the task. A feature thus key to difficulty judgments thus seems lacking from the task. Furthermore, the trial-by-trial feedback provided to participants also likely differ from difficulty judgments made in real world. This comment is probably difficult to address but it might generally be useful to discuss the limitations of the task, in particular in probing the desired cognitive process as described in introduction. Currently, no limitations are discussed.

      We have added a Limitations paragraph to the Discussion and one item we deal with is the generalization of the model to more complex tasks (line 539).

      2) The authors take their findings as the general indication that humans rely on accumulation evidence mechanisms to probe the difficulty of perceptual decisions. I would probably have been slightly more cautious in excluding alternative explanations. First, only accumulation models are compared. It is thus simply not possible to reach a different conclusion. Second, even though it is particularly compelling to see untested predictions from the winning model in experiment #1 to be directly tested, and validated in a second experiment, that second experiment presents data from only 3 participants (1 of which has slightly different behaviour than the 2 others), thereby limiting the generality of the findings. Third, the winning model in experiment #1 (difference model) is the preferred model on 12 participants, out of the 20 tested ones. Fourth, the raw BIC values are compared against each other in absolute terms without relying on significance testing of the differences in model frequency within the sample of participants (e.g., using exceedance probabilities; see Stephan et al., 2009 and Rigoux et al., 2014). Based on these different observations, I would thus have interpreted the results of the study with a bit more caution and avoided concluding too widely about the generality of the findings.

      Thank you for these suggestions.

      i) We have now make it clear in the Results (line 126) that all four models we examine are accumu-lation models. In addition, we have added a paragraph on Limitations (line 530) in the Discussion where we explain why we only consider accumulation models and acknowledge that there are other non-accumulation models.

      ii) Each of three participants in Experiment 2 performed 18 sessions making it a large and valuabledataset necessary to test our hypothesis. We have now included a mention of the the small number of participants in Experiment 2 in a Limitations paragraph in the Discussion (line 539).

      iii) As suggested, we have now calculated exceedance probabilities for the 4 models which gives[0,0.97,0.03,0]. This shows that there is a 0.97 probability of the Difference model being the most frequent and only a 0.03 probability of the two-step model. We have included this in the results on line 237.

      3) Deriving and describing the optimal model of the task was particularly appreciated. It was however a bit disappointing not to see how well the optimal model explains participants behaviour and whether it does so better than the other considered models. Also, it would have been helpful to see how close each of the 4 models compared in Figures 2 & 3 get to the optimal solution. Note however that neither of these comments are needed to support the authors’ claims.

      The reviewer asks how close each of the four models is to the optimal solution. We did fit the four models to simulations of the optimal model and found that the Difference model was the closest. However, we did not fit the parameters of the optimal model to the data (no easy feat given the complexity of the model) as the experiment was not designed to incentivize maximization of the reward rate and fitting would have been computationally laborious. We therefore focused on the qualitative features of the optimal model and how they compare to our models. We now also include the optimal model for the known color dominance RT experiment (line 420). We have also added a new paragraph in the Discussion on the optimal model at line 503 comparing it qualitatively to the Difference model.

      4) The authors compared the difficulty vs. color judgment conditions to conclude that the accumulation process subtending difficulty judgements is partly distinct from the accumulation process leading to perceptual decisions themselves. To do so, they directly compared reaction times obtained in these two conditions (e.g. ”in other cases, the two perceptual decisions are almost certainly completed before the difficulty decision”). However, I find it difficult to directly compare the ’color’ and ’difficulty’ conditions as the latter entails a single stimulus while the former comprises two stimuli. Any reaction-time difference between conditions could thus I believe only follow from asymmetric perceptual/cognitive load between conditions (at least in the sense RT-color < RT-difficulty). One alternative could have been to present two stimuli in the ’color’ condition as well, and asking participants to judge both (or probe which to judge later in the trial). Implementing this now would however require to run a whole new experiment which is likely too demanding. Perhaps the authors could instead also acknowledge that this a critical difference between their conditions, which makes direct comparison difficult.

      We feel we can rule out that participants make color decisions (as in the color task) to make difficulty decisions. For example, making a color choice for 0% color strength takes longer than a difficulty choice for 0:52% color strengths. Thus, the difficulty judgment does not require completion of the color decisions. Therefore, average reaction time for a single color patch (C𝑆1) can be longer than the reaction time for the difficulty task which contains the same coherence (C𝑆1) for one of the patches. This is true despite the difficulty decision requiring monitoring of two patches (which might be expected to be slower than monitoring one patch). We have added this in to the Discussion at line 449.

      Reviewer #3 (Public Review):

      The manuscript presents novel findings regarding the metacognitive judgment of difficulty of perceptual decisions. In the main task, subjects accumulated evidence over time about two patches of random dot motion, and were asked to report for which patch it would be easier to make a decision about its dominant color, while not explicitly making such decision(s). Using 4 models of difficulty decisions, the authors demonstrate that the reaction time of these decisions are not solely governed by the difference in difficulties between patches (i.e., difference in stimulus strength), but (also) by the difference in absolute accumulated evidence for color judgment of the two stimuli. In an additional experiment, the authors eliminated part of the uncertainty by informing participants about the dominant color of the two stimuli. In this case, reaction times were faster compared to the original task, and only depended on the difference between stimulus strength.

      Overall, the paper is very well written, figures and illustrations clearly and adequately accompanied the text, and the method and modeling are rigor.

      The weakness of the paper is that it does not provide sufficient evidence to rule out the possibility that judging the difficulty of a decision may actually be comparing between levels of confidence about the dominant color of each stimulus. One may claim that an observer makes an implicit color decision about each stimulus, and then compares the confidence levels about the correctness of the decisions. This concern is reflected in the paper in several ways:

      We tested a Difference in confidence model (line 315) in the orginal paper and showed it was inferior to the Difference model. We did this for experiment 2, RT task so that we could fit the unknown color condition and try to predict the known color condition. To emphasize this model (which we think the reviewer may have missed) we have moved the supplementary figure to the main results (now Fig. 6) as we think it is very cool that we were able to discard the confidence model.

      When comparing the confidence model to the Difference we found the difference model was pre-Δ ferred with BIC of 38, 56, 47. We are unsure why the reviewer feels this “does not provide sufficient evidence to rule out the possibility that judging the difficulty of a decision may actually be comparing between levels of confidence about the dominant color of each stimulus.” We regard this as strong evidence.

      1) It is not clear what were the actual instructors to the participants, as two different phrasings appear in the methods: one instructs participants to indicate which stimulus is the easier one and the other instructs them to indicate the patch with the stronger color dominance. If both instructions are the same, it can be assumed that knowing the dominant color of each patch is in fact solving the task, and no judgment of difficulty needs to be made (perhaps a confidence estimation). Since this is not a classical perceptual task where subjects need to address a certain feature of the stimuli, but rather to judge their difficulties, it is important to make it clear.

      We now include the precise words used to instruct the participant (line 604): “Your task is to judge which patch has a stronger majority of yellow or blue dots. In other words: For which patch do you find it easier to decide what the dominant color is? It does not matter what the dominant color of the easier patch is (i.e., whether it is yellow or blue). All that matters is whether the left or right patch is easier to decide”.

      Knowing both colors or the dominant color is not sufficient to solve the task. Knowing both are yellow does not tell you which has more yellow which is what you need to estimate to solve the task. Again, we tested a confidence model in the original version of the paper and showed it was a poor model compared to the Difference model.

      2) Two step model: two issues are a bit puzzling in this model. First, if an observer reaches a decision about the dominant color of each patch, does it mean one has made a color decision about the patches? If so, why should more evidence be accumulated? This may also support the possibility that this is a ”post decision” confidence judgment rather than a ”pre decision” difficulty judgment. Second, the authors assume the time it takes to reach a decision about the dominant color for both patches are equal, i.e., the boundaries for the ”mini decision” are symmetrical. However, it would make sense to assume that patches with lower strength would require a longer time to reach the boundaries.

      In the Two-step model we assume a mini decision is made for the color of each stimulus. However, the assumption is that this is made with a low bound so it is not a full decision as in a typical color decision. Again estimating the colors from the mini decision does not tell you which is easier so you need to accumulate more evidence to make this judgment. In fact the Race model is a version of the two step in which no further accumulation is made after the initial decision and this model fits poorly (we now explain this on line 185). We assume for simplicity that the first stimulus to cross a bound triggers both mini color decisions. So although the bounds are equal the one with stronger color dominance is more likely to hit the bound first.

      We have already addressed this concern about the comparison with confidence above.

      3) Experiment 2: the modification of the Difference model to fit the known condition (Figure 5b),can also be conceptualized as the two-step model, excluding the ”mini” color decision time. These two models (Difference model with known color; two-step model) only differ from each other in a way that in the former the color is known in advance, and in the second, the subject has to infer it. One may wonder if the difference in patterns between the two (Figure 3C vs. Figure 6B) is only due to the inaccuracies of inferring the dominant color in the two-step model.

      In Experiment 2 the participant is explicitly informed as to the color dominance of both stimuli. Therefore, assuming the two-step model skips the first step and uses this explicit information in the second step, the difference and two-step model are identical for modeling Experiment 2. We explain this now on line 277.

      As the reviewer suggests, differences in predictions between the Difference and Two-step arise from trials in which there is a mismatch between the inferred dominant colors from the two-step model and the color associated with the final DVs in the Difference model. We now explain this on line 187. We do not see this as a problem of any sort but just defines the difference between the models. Note that the new exceedance analysis now strongly supports the Difference model as the most common model among the participants.

      An additional concern is about the controlled duration task: Why were these specific durations chosen (0.1-1.65 sec; only a single duration was larger than 1sec), given the much longer reaction times in the main task (Experiment 1), which were all larger on average than 1sec? This seems a bit like an odd choice. Additionally, difficulty decision accuracies in this version of the task differ between known and unknown conditions (Figure 7), while in the reaction time version of the same task there were no detectable differences in performance between known and unknown conditions (Figure 6C), just in the reaction times. This discrepancy is not sufficiently explained in the manuscript. Could this be explained by the short trial durations?

      The reviewer asks about the choice of stimulus durations in Experiment 2. First, RTs in Experiment 1 do not only reflect the time needed to make decisions but also contain non-decision times (0.23-0.47 s). So to compare decision time in RT and controlled duration experiment one must subtract the non-decision time from the RTs (the non-decision time is not relevant to the controlled duration experiment). Second, the model specifically predicts that differences in performance between the known and unknown color dominance conditions are largest for short duration stimulus presentation trials (see Fig. 7). We explain this on line 346. For long durations, performance pretty much plateaus, and many decisions have already terminated (Kiani 2008). We sample stimulus durations from a discrete truncated exponential distribution to get roughly equal changes in accuracy between consecutive durations (which we now explain at line 345).

      Group consensus review

      The reviewers have discussed with each other, and they have discussed a series of revisions which, if carried out, would make their evaluation of your paper even more positive. I outline them below in case you would be interested in revising your paper based on these reviews. You will see below that the reviewers share overall a quite positive evaluation of your study. All three limitations described in the Public Reviews could be addressed explicitly in the discussion which for the moment is limited to description and generalization of findings.

      1) The model selection procedure should be amended and strengthened to provide clearer results. As noted by one of the reviewers during the consultation session, ”the Difference model just barely wins over the two-step model, and the two-step model might produce the same prediction for the next experiment.” You will also see below that Reviewer #2 provides guidance to improve the model selection process: ”[...] the second experiment presents data from only 3 participants (1 of which has slightly different behaviour than the 2 others), thereby limiting the generality of the findings. Third, the winning model in experiment #1 (difference model) is the preferred model on 12 participants, out of the 20 tested ones. Fourth, the raw BIC values are compared against each other in absolute terms without relying on significance testing of the differences in model frequency within the sample of participants (e.g., using exceedance probabilities; see Stephan et al., 2009 and Rigoux et al., 2014).” Altogether, model selection appears currently to be the ’weakest’ part of the paper (Difference model vs. Two-step model, model comparison, how to better incorporate the optional model with the other parts). It would be great if you would improve this section of the Results.

      Thank you for these suggestions.

      i) We have now make it clear in the Results (line 126) that all four models we examine are accumu-lation models. In addition, we have added a paragraph on Limitations (line 530) in the Discussion where we explain why we only consider accumulation models and acknowledge that there are other non-accumulation models.

      ii) Each of three participants in Experiment 2 performed 18 session making it a large and valuabledataset necessary to test our hypothesis. We have now included a mention of the the small number of participants in Experiment 2 in a Limitations paragraph in the Discussion (line 539).

      iii) We have now calculated exceedance probabilities for the 4 models which gave [0,0.97,0.03,0]. This shows that there is a 0.97 probability of the Difference model being the most frequent and only a 0.03 probability of the two-step model. We have included this in the results on line 237.

      2) All reviewers have noted that the relation of the optimal model with the human data and theother models should be clarified and discussed in a revised version of the manuscript. You will find their specific comments in their individual reviews, appended below.

      We now include the optimal model for the known color dominance RT experiment (line 420). We have also added a new paragraph in the Discussion on the optimal model at line 503 comparing it to the Difference model.

      3) Finally, the exclusion strategy is also unclear at the moment and should be clarified and discussed explicitly somewhere in a revised version of the manuscript. Reviewers were wondering why so many participants were excluded from Experiment 1, and only 3 participants were included in Experiment 2. This should also be clarified better in the manuscript.

      We have clarified the exclusion criteria in the Methods at line 651 as a new subsection.

      The data quality problem with MTurk is well documented (Chmielewski, M & Kucker SC. 2020. An MTurk Crisis? Shifts in Data Quality and the Impact on Study Results. Social Psychological and Personality Science, 11, 464-473). Given that this was an online experiment on MTurk, it is hard to know exactly why some participants showed low accuracy, but it’s likely that some may have misunderstood the instructions in the difficulty task or they may have been unmotivated to do well in this highly repetitive task. Either reason would be problematic for our model comparisons that are based on choice-RT patterns. Note that the cut-offs we chose for inclusion were purely based on accuracy, whereas the modeling approach considered RTs, which importantly were not used as a inclusion criterion (see revised methods). Moreover, accuracy cut-offs were fairly lenient and mainly aimed to exclude participants who appeared to be guessing/misunderstood instructions (for reference: mean sensitivity of participants who were included was 2x higher than the cut-offs we used).

      Each of three participants in Experiment 2 performed 18 session making it a large and valuable dataset necessary to test our hypothesis. We have now included a mention of the the small number of participants in Experiment 2 in a Limitations paragraph in the Discussion (line 539).

      Reviewer #1 (Recommendations For The Authors):

      Thank you for an excellent paper, I enjoyed reading it a lot. I have a few questions that could potentially clarify some aspects for the reader.

      (1) It seems from the model fit plots (Figure 3) that the RT predictions of the model tend to overshoot in cases where one of the clouds is very easy. Could you include potential interpretations of this effect?

      We assume the reviewer is examining the Difference Model (i.e. the preferred model) panel when commenting on the overshoot. It is true the predictions for the highest coherence (bottom purple line) for RT is above the data but it is barely outside the data errorbars of 1 s.e. To be honest we regard this as a pretty good fit and would not want to over-interpret this small mismatch.

      (2) On page 4, around line 121, the study discusses the ”criss-crossing” effect in the RT data. You mention that the fact that RTs are long in hard-hard trials compared to easy-easy trials could be important here: ”These tendencies lead to a criss-cross pattern..”. It is confusing since, for instance, the race model does not have a criss-cross, but still exhibits the overall effect. I was intrigued bythe criss-crossing, and after some quick simulations, I found that the equation RT2 ∗ = 2 − 2 ∗ Cs12 − Cs22 + 6 ∗ (Cs1 ∗ Cs2)2 can (very roughly) replicate Figure 1d (bottom panel), so it seems that the criss-crossing effect must be produced by some interactive effect of color strengths on RTs. I wonder if you could provide a better explanation of how this interactive effect is generated by the model, given that it is the main interesting finding in the data. I believe at this point the intuition is not well-outlined.

      The criss cross arises through an interaction of the coherences as the reviewer suspects. That is, for the Difference model the RT related to abs(|Coh1|- |Coh2|). If we replace the first abs with a square we get

      |coh1|2 + |coh2|2 − 2|coh1||coh2|

      The larger this is, the smaller the RT so

      RT = constant − coh12 − coh22 + 2|coh1||coh2|

      which is very similar to the formula the reviewer mentions.

      We now supply an intuition as to why the criss-cross arises in the Difference model (line 167). We do not get a criss-cross in the race model, because there the RT is determined by the Race that that reaches a bound first. Because the races are independent, RTs will be fastest when coherence is high for either stimuli.

      (3) Am I wrong in my intuition that the two-step model would produce very similar predictions as the Difference model for Experiment 2? It would be great to discuss that either way since the twostep model seems to produce very close quantitative and pretty much the same qualitative fit to the data of Experiment 1.

      In Experiment 2 the participant is explicitly informed about the color dominance of both stimuli. Therefore, assuming the two-step model skips the first step and uses this explicit information in the second step, the difference and two-step model are identical for modeling Experiment 2. We explain this now on line 277.

      (4) The inclusion of the optimal model is great. It would be beneficial to provide some more connections to the rest of the paper here. Would this model produce similar predictions for Experiment 2, for instance?

      We now include the optimal model for the known color dominance RT experiment (line 420). We have also added a new paragraph in the Discussion on the optimal model at line 503 comparing it to the Difference model.

      (5) In the Methods, it is quite striking that out of 51 original participants, most were excluded and only 20 were studied. It is not easy to trace through this section why and how and who was excluded, so it would be great if this information was organized and presented more clearly.

      We have clarified this in the Methods at line 651 as a new subsection in the Methods. We also explain that exclusion was not made on RT data which is our main focus in the models.

      Reviewer #2 (Recommendations For The Authors):

      • As detailed in the ’public review’, a more cautious discussion, notably delineating the limitations of the study would be appreciated.

      • In their models, the authors assume that participants sequentially allocate attention between the two stimuli, alternating between them. Did the authors test this assumption and did they consider the possibility that participants could sample from both stimuli in parallel? In particular, does the conclusion of the model comparison also holds under this parallel processing assumption?

      Our results are not affected by whether participants sample the stimulus sequentially through alternation or in a parallel manner (Kang et al., 2021). What does change is the parameters of the model (but not their predictions/fits). In the parallel model, information is acquired at twice the rate of the serial model. We can, therefore, obtain the parameters of parallel models (that has serial and parallel models): 𝜅𝑝 = 𝜅𝑠/√2, 𝑢𝑝 = 𝑢𝑠√2, 𝑎𝑝 = 𝑎𝑠/2 and 𝑑𝑝 = 2𝑑𝑠 (Eq. 2). We now explain𝑠 𝑝 identical predictions to the serial model) directly from the parameters of the current sequential models simply by adjusting the parameters that depend on the time scale (subscripts and for this on line 518.

      • I found the small paragraph corresponding to lines 193-196 particularly difficult to understand. If the authors could think of a better way to phrase their claim, it would probably help.

      We have rewritten this paragraph at line 211

      • I found a type on line 122: ”wheres” instead of ”whereas”.

      Corrected

      • I found a type on line 181: ”or” instead of ”of”.

      Yes corrected

      • Figure #2 is extremely useful in understanding the models and their differences, make sure it remains after addressing the reviews!

      Thank you, this figure is retained.

      Reviewer #3 (Recommendations For The Authors):

      All comments are detailed in the public review, with some clarifications here:

      1) The confusing instructions to the participants are detailed here: under ”overview of experimental tasks” in the methods it says: ”They were instructed... to indicate whether the left or right stimulus was the easier one” (line 520), and below it ”they were required to indicate which patch had the stronger color dominance...” (line 524).

      We have clarified the instructions by providing the actual text displayed to participants in the methods and have ensured consistency in the method to talk about judging the easier stimulus (line 604).

      The instructions were “Your task is to judge which patch has a stronger majority of yellow or blue dots. In other words: For which patch do you find it easier to decide what the dominant color is? It does not matter what the dominant color of the easier patch is (i.e., whether it is yellow or blue). All that matters is whether the left or right patch is easier to decide”.

      2) Minor comments: Line 76: ”that” should be ”than”.

      Thanks, corrected

      Line 574: ”variable duration task” means ”controlled duration task”?

      Yes, corrected

      Line 151: ”or” should be ”of”.

      Corrected

    1. Author Response

      We appreciate the opportunity to publish our research in eLife. Both reviewers highlight our state-of-the-art oxygen isotope sampling approach, which has allowed us to establish that early-formed primate enamel does not show a large or consistent isotopic offset due to intensive nursing. This means we can be more confident in employing early-forming teeth to probe environmental conditions—an issue that has handicapped past paleoenvironmental studies—documenting seasonal rainfall variation in the tropics at an extremely fine-scale.

      Reviewer 1 requests that we elaborate on the ecology and behavior of orangutans, particularly in reference to the issue of isotopic enrichment within forest canopies—a topic we devote a paragraph to in the discussion. We appreciate the opportunity to add additional context during revision, noting here that our previous comparisons of terrestrial baboons and semi-terrestrial tantalus monkeys in the Bushenyi District (Uganda) do show modest isotopic differences between species, consistent with a canopy effect (Green et al. 2022). However, this is less of an issue for comparisons of Sumatran and Bornean orangutans given their ecological and behavioral similarities. We agree that variation in the canopy heights/positions of orangutan food sources may contribute to enamel oxygen isotope variation, in addition to the seasonal rainfall trends we observe in our datasets. Importantly, our published and on-going work on western chimpanzees has revealed strong annual oxygen isotope trends concordant with local rainfall patterns. The consistency and amplitude of seasonal oxygen isotope oscillations in such datasets suggest that arboreal primates are not less useful than terrestrial primates for reconstruction of rainfall seasonality.

      We clarify that while Reviewer 1 states that we measured 6 teeth, Tables 1 and 2 and the first sentence of the results make it clear that we measured 18 teeth in this study.

      Reviewer 2 asks for further detail about comparisons between modern and fossil orangutan teeth that support inferences of climate variation, which we will endeavour to add in the revised manuscript.

    1. Author Response

      We thank Editors and Reviewers for their positive evaluation of our work and appreciation of new findings and applied interdisciplinary approaches. We also thank for pointing out manuscript weaknesses as well as for all suggestions and advices that can strengthen this manuscript. We apologise for mistakes, overstatements or discrepancies in citing figures as well as omitted references.

      The first part of the manuscript focuses on the Tetrahymena RSP3 genes mutants.  Tetrahymena genome encodes three RSP3 paralogs that are the components of different radial spokes and likely form homo- and heterodimers. Thus, the proteomic analyses of Tetrahymena radial spokes are more complicated compared to the similar analyses in organisms having a single RSP3 protein.

      Next, we attempted to identify proteins specific for each RS type. Conducting this research, we took advantage of six different radial spoke knockout mutants (RSP3A-KO, RSP3B-KO, RSP3C-KO, CFAP206-KO, CFAP61-KO, and CFAP91-KO) and compared wild-type and mutants’ ciliomes using two methods, LFQ and TMT (for each mutant the experiment was repeated three times). Comparative analyses of the wild-type and mutants ciliomes allowed us to identify Tetrahymena radial spoke proteins, in the case of RS1 (WT versus RSP3A-KO), RS2 (WT versus RSP3B-KO, RSP3C-KO, and CFAP206-KO), and RS3 (wild-type versus  CFAP61-KO and CFAP91-KO). The extensive proteomic analyses were combined with detailed bioinformatics studies and co-immunoprecipitation and BioID assays to verify the presence of identified proteins in RS complexes. 

      Importantly, in the case of RS1 and RS2 spokes, our findings are in agreement with data obtained for Chlamydomonas and mammalian radial spokes. Thus, it is very likely, that newly discovered RS1 and RS2 proteins as well as identified Tetrahymena RS3 proteins are also true RS subunits.

      As an outcome of this part, we propose a model of the RS protein composition in a ciliate Tetrahymena. We agree that this model requires further experimental verification (for example by pull-down experiments).  However, considering the number of identified proteins, this is a considerable amount of additional work that we would like to publish as separate papers. We would like to add that our current analyses of additional RS3 mutant (that will be published separately) support findings regarding RS3 proteomic composition.

      Reviewer 2:

      The control for the bio-ID experiment was WT cells. Since there are many hits in the experiment, a better control would have been a strain with free BirA, or BirA fused to a protein that is distant from the radial spokes, such as one of the outer-dynein arm proteins, or a ciliary membrane protein.

      The BirA* tag is approximately 30 kDa protein and thus it can be transported to cilia by diffusion. BirA* ligase present throughout the cilia could randomly biotinylate proteins including radial spoke proteins. Thus, expression of the BirA* alone is not the best control. We have performed numerous BioID experiments in which BirA* tag was fused with T/TH subunits (CFAP43, CFAP44, Urbanska et al., 2018), subunits of the small complex positioned parallel to N-DRC (CCDC113, CCDC96, Bazan et al., 2021), CFAP69, SPEF2A (C1b central apparatus complex, Joachimiak et al., 2021), N-DRC proteins (Ghanaeian et al., Biorxiv, 2023) and subunits of other ciliary complexes (our unpublished data). The comparison of the earlier obtained BioID data with RSP BioID data, prove that identified proteins are specifically associated with radial spokes. Therefore, in our model, wild-type cells are a good control for BioID experiments.

    1. Author Response

      Reviewer 1 Public Review

      The authors aim to theoretically explain the wide range of time scales observed in cortical circuits in the brain – a fundamental problem in theoretical neuroscience. They propose that the variety of time scales arises in recurrent neural networks with heterogeneous units that represent neuronal assemblies of different sizes that transition through sequences of high- and low-activity metastable states. When transitions are driven by intrinsically generated noise, the heterogeneity leads to a wide range of escape times (and hence time scales) across units. As a mathematically tractable model, they consider a recurrent network of heterogeneous bistable rate units in the chaotic regime. The model is an extension of the previous model by Stern et al (Phys. Rev. E, 2014) to the case of heterogeneous self-coupling parameters. Biologically, this heterogeneous parameter is interpreted as different assembly sizes. The chaoticity acts as intrinsically generated noise-driving transitions between bistable states with escape times that are indeed widely distributed because of the heterogeneity. The distribution is successfully fitted to experimental data. Using previous dynamic mean-field theory, the self-consistent auto-correlation function of the driving noise in the mean-field model is computed (I guess numerically). This leaves the theoretical problem of calculating escape times in the presence of colored noise, which is solved using the unified colored-noise approximation (UCNA). They find that the log of the correlation time of a given unit increases quadratically with the self-coupling strength of that unit, which nicely explains the distribution of time scales over several orders of magnitude. As a biologically plausible implementationof the theory, they consider a spiking neural network with clustered connectivity and heterogeneous cluster sizes (extension of the previous model by Mazzucato et al. J Neurosci 2015). Simulations of this model also exhibit a quadratic increase in the log dwell time with cluster size. Finally, the authors demonstrate that heterogeneous assemblies might be useful to differentially transmit different frequency components of a broadband stimulus through different assemblies because the assembly size modulates the gain.

      I found the paper conceptually interesting and original, especially the analytical part on estimating the mean escape times in the rate network using the idea of probe units and the UCNA. It is a nice demonstration of how chaotic activity serves as noise-driving metastable activity. Calculating the typical time scales of such metastable activity is a hard theoretical problem, for which the authors made considerable advancement. The conclusions of this paper are mostly well supportedby simulations and mathematical analysis, but some aspects need to be clarified and extended, especially concerning the biological plausibility of the rate network model and its relation to the spiking neural network model as well as the analytical calculation of the mean dwell time.

      Question 1a. The theory is based on a somewhat unbiological network of bistable rate units. It seems to only loosely apply to the implementation with a spiking neural network with clustered architecture, which is used as a biological justification of the rate model. In the spiking model, a wide distribution of time scales also emerges as a consequence of noise-induced escapes in combination with heterogeneity. Apart from this analogy, however, the mechanisms for metastability seem to be quite different: firstly, the functional units in the spiking neural network are presumably not bistable themselves but multistability only emerges as a network effect, i.e. from the interaction with other assemblies and inhibitory neurons. (This difference yields anti-correlations between assemblies in the spiking model, in marked contrast to the independence of bistable rate units (if N is large).) Secondly, transitions between metastable states are presumably not driven by chaotic dynamics but by finite-size fluctuations (e.g. Litwin-Kumar and Doiron 2012). The latter is also strongly dependent on assembly size. More precisely, the mechanism of how assembly size shapes escape times T seems to be different: in the rate model the self-coupling ("assembly size") predominantly affects the effective potential, whereas in the spiking network, the assembly size predominantly affects the noise. Therefore, the correspondence between the rate model and the spiking model should probably be regarded in a looser sense than presented in the paper.

      Answer 1a. We thank the Reviewer for suggesting to clarify the relationship between the rate and spiking model. In this answer, we first show that the dynamicalmodes in the spiking network are E/I cluster pairs, then we show that assemblies are bistable due to the large self-couplings, and third we discuss whether transitions between high and low activity states are driven by chaos or finite size effects, including correlations between assemblies.

      We first elucidated the dynamical modes in the spiking network and how those can be related to the rate network. Using an approach from (1, 2), we considered the mean-field theory for the spiking network, reducing the degrees of freedom from N neurons to 2p+2 E/I assemblies (plus E/I background populations), then we identified the approximate dynamical modes as E/I cluster pairs emerging as the Schur eigenvectors of the mean field-reduced coupling matrix. Comparing the eigenvalue distribution of the full vs. the mean field-reduced coupling matrix, we found that the slow timescales capturing the assemblies metastable dynamics correspond to the p−1 large positive eigenvalues corresponding to the Schur modes. The heterogeneity in timescales of the spiking model arises from the heterogeneous distribution of these gapped eigenvalues, reflecting the hierarchy in assembly sizes and assembly self-couplings in the mean field approach. We then analyzed the eigenvalues in the rate network with a lognormal self-coupling distribution and found a similar picture, where the slow units are related to the large eigenvalues in the coupling matrix (Appendix 2). We also note that in the rate network, there is no gap in the eigenvaluedistributionas there are many units with small values of the self-couplings. On the other hand in the spiking network the large eigenvalues are p − 1, where p is the number of assemblies, and they are gapped. These new analyses clarify the correspondence between rate network units and spiking network E/I cluster pairs, arising from the Schur picture.

      We now discuss previous studies to examine whether bistability in the spiking network arises from assembly self-couplings or from other effects. Previous mean-field analyses of spiking networks with clustered connectivity showed that the bistability of assembly dynamics is due to the presence of a large self-coupling, rather than from the interactions with other assemblies. We briefly summarize the published evidence for this. The seminal work of (3) showed that in a network with assemblies, a bifurcation in network dynamics emerges when the assembly self-coupling JEE+ > Jc exceeds a critical value Jc; beyond this value, a low and a high activity stable state coexist. Although in this network these two states are stable, more recent work from (4, 5) showed that finite size effects (small assembly size) can destabilize the states, leading to the metastable regime. When the inhibitory population is homogeneous, as in these last two articles, metastability arises from finite size effects and it is sensitive to network parameters (5) and (6). Specifically, when one scales both the network size and the E assembly size, metastability disappears (5). Moreover, when the I population is homogeneous, then E clusters are anti-correlated, as correctly suggested by the Reviewer. However, our model differs from the ones just discussed in that the inhibitory population is also arranged in assemblies, which are reciprocally paired with E assemblies. In this class of E/I clustered models, metastability is robust to changes in network parameters (see (6)). More specifically, in our revised version, we show that metastable dynamics persists when scaling up the network size to N = 10,000 neurons (and scaling up network size with N). A crucial difference between the model with homogeneous I population vs the model with I assemblies (i.e., our model), is that in the former the assemblies are anti-correlated, while in the latter case the assemblies are uncorrelated (see Fig. 1), the same as in the rate network. These results suggest that transitions between metastable states in the spiking network may be driven by a coexistence of two effects: on the one hand, finite size effects due to the small assembly size, and on the other hand, by the heterogeneity in the inter-assembly couplings. Although the former effect is absent in the rate network, the latter is the driver of the chaotic activity observed in the rate network. Thus it is plausible that rate-based chaotic dynamics might also contribute to the metastable activity in the spiking network, although more targeted work should be performed to answer this question. In the revised version of the manuscript, we overhauled the subsection ’A reservoir of timescales in E-I spiking networks’, Fig. 5, and Appendix 2, by adding an extensive explanation of the emergence of slow timescales from the large eigenvalues in the Schur basis, and its comparison between spiking and rate network. In particular, we highlighted the differences between rate and spiking networks and the fact that finite size effects might be at play in the latter case.

      Furthermore, the prediction of the rate model is a quadratic increase of log(T), however, the data shown in Fig.5b do not seem to strongly support this prediction. More details and evidence that the data "was best fit with a quadratic polynomial" would be necessary to test the theoretical prediction.

      We increased the clarity and strengthened the support for the data in Fig 5b as "best fit with a quadratic polynomial" by addinga plot, inset in Fig 5b, alongsidea detailed explanation of the fitting procedure in Methods section (e). Figure 5b inset displays a cross-validatedmodel selection’s training and test errors for polynomial fit. The test error shows a minimal error at a polynomial degree 2, supporting the claim that the best fit was achieved with a quadratic polynomial. In Methods section (e), under "Model selection for timescale fit," we added a detailed description of the cross-validation procedure by which the fit was obtained. A quote from that section in the revised manuscript can also be found in this document under answer 11.

      Question 2. The time scale of a bistable probe unit driven by network-generated "noise" is taken to be the mean dwell time T (mean escape time) in a metastable state. It seems that the expressions Eq.4 and Eq.21 for this time are incorrect. The mean dwell time is given by the mean first-passage time (MFPT) from one potential minimum to the opposite one includingthe full passage across the barrier. At least, the final point for the MFPT should be significantly beyond the barrier to complete the escape. However, the authors only compute the MFPT to a location −xc slightly before the barrier is reached, at which point the probe unit has not managed to escape yet (e.g. it could go back to −x2 after reaching −xc instead of further going to +x2). It is not clear whether the UCNA can be applied to such escape problems because it is valid only in regions, where the potential is convex, and thus the UCNA may break down near the potential barrier. Indeed, the effective potential is not defined near the barrier (see forbidden zone in Fig.4b), and hence it is not clear how to calculate the mean escape time. Nonetheless, the incomplete MFPT computedby the authors seems to qualitatively predict the dependence on the self-coupling parameter s, at least in the example of Fig.4c. However, if the incomplete MFPT is taken as a basis, then the incomplete MFPT should also be used for the white-noise case for a fair comparison. It seems that the corresponding white-noise case is given by Eq.4 with τ1 = 0, which still has the same dependence on the self-coupling s2, contrary to what is claimed in the paper (it is unclear how the curve for the white-noise case in Fig.4 was obtained). Note that the UCNA has been designed such that it is valid for both small and large τ1 (thus, it is also unclear why the assumption of large τ1 is needed).

      Answer 2. We are deeply grateful to the Reviewer for this critical evaluation of our UCNA calculation of the escape times. We will first clarify our rationale and then discuss comparison with the white noise case. The idea behind our calculation is indeed that when starting from the left minimum −x2, the probe effectively escapes to +x2 before reaching the limit of the UCNA support region at −xc. First, our simulations show (Fig 4b light blue colored area) that the probe almost exclusively visits the valid areas |x| > xc: our new analysis shows that the fraction of activity spent in the forbidden region is (1.8+/ −0.4)×10−3 (mean±SD over 10 probe units run with parameters as in Fig. 4a-b), confirming the fact that the histogram of x values from simulations has almost null support in the forbidden region |x| < xc. This is also supported by the representative simulation time course in Fig. 4a which exhibits abrupt jumps between the two bistable states. We then estimated the ’escape point’ from simulations as follows: for a transition from the x = −s2 well towards the x = +x2 well, the escape point is defined as the point where x on the side of the source well, i.e. x < 0, but the trajectory starts accelerating towards the target well (positive second derivative). We found that the distribution of escape points was predominantly in the allowed region (93.8%). This analysis supports our method to calculate the MFPT and confirms that our calculation is performed in the valid UCNA region. In the revised version of the manuscript, we added a clarification of this point with text and a new supplementary figure in Fig. 4 Suppl. 1. Regarding the comparison with white noise, we compared white-noise-driven probe dynamics with a probe driven by a network (effectively represented by the colored noise). To adequately make this comparison, we replaced the input coming from the network into the probe unit (Eq 1. rhs last term) with white noise. The rest of the terms in this equation were left untouched to maintain the exact probe’s self-response properties. This procedure aims to understand the unique contribution of the colored noise generated by the network to each unit dynamics by removing its "colored" correlated input contribution but otherwise leaving all dynamical properties the same. For clarity of the manuscript on this subject, we added a paragraph about it under "A comparison with white noise" in Methods section (d).

      We can estimate the mean first passage time (MFPT) of a probe unit driven by white noise with Eq. 4. The procedure described above for switching the network drive with white noise also dictates the parameter values to use in Eq. 4 for the case of white noise. First, with no correlation in white noise τ1 = 0. Second, D, the magnitude of the drive inherits its value from the network (see also Eq. 22) as the strength of the white noise (its integral around zero as a δ function). The results are presented in Fig 4. To strengthen the results and improve the clarity of the text, we expanded the content of Fig 4c. The plot now includes both the results of simulations (Fig. 4c green line) and estimation by mean first passage time (Fig. 4c green dashed line) for white noise, as explained above. We note that the potential in the white noise case (Fig. 4b green dashed line) does include a concave part. Indeed,the agreementbetweenthe distributionretrieved from simulations (Fig. 4b light green area) and its locations’ visit probability approximated by theory (Eq. 19 with τ1 = 0, Fig. 4b green line) are not in full agreement. However, this probability is still a good approximation. As a result, the mean first passage time (Eq. 4, Fig. 4c green dashed line) is a good approximation. The great advantage of having Eq. 4 as an approximation for the mean first passage time is that it clearly explainsthe contributionof each part of the dynamical equation (Eq. 1) towards achieving long timescales. Mainly, since log<T> depends on τ1 linearly, its exponent, the mean first passage time depends on tau1 exponentially. Hence the importance of the color in the input and the vast differences between the network drive and the white noise.

      Question 3. The given argument that the time-scale separation arises as network effect is not very clear. Apart from the issue of a fair comparison of colored and white noise raised in point 1 above, an external colored noise with matched statistics that drives a single bistable unit would yield the same MFPT and thus would be an alternative explanation independent of the network dynamics.

      Answer 3. The goal of our investigation was to uncover a neural mechanism that induces heterogeneous timescales in a self-consistent way. The idea of self-consistencyis the central tenet of our approach, namely, that a timescale distribution must arise due to the internal dynamics of a recurrent circuit without the need to invoke an external auxiliary force driving it. If we had an external colored noise with matched statistics driving the probe unit, then we would still have to explain which mechanism would give rise to that particular statistics of the colored noise - with the most natural explanation being a recurrent network with time-varying activity.

      The second ingredient in our argument demonstrating that it is a network effect is the following. If the time-scale separation was not a network effect, but rather a property of a single probe unit, then it would persist regardless of the specific features of the noise driving the unit. To test this hypothesis, we compared the scenarios of the same probe unit driven by the self-consistent noise generated by the rest of the network, as opposed to white noise, and found that the time-scale separation is not present in the second case. Thus, the time-scale separation is not an intrinsic property of the probe unit, but, rather, it relies on the unit being part of a recurrent network generating a specific kind of noise. This argument is explained in the last paragraph of the section ’Separation of timescales in the bistable chaotic regime’.

      Question 4. The UCNA has assumptions and regimes of validity that are not stated in the paper. In particular, it assumes an Ornstein-Uhlenbeck noise, which has an exponential auto-correlation function, and local stability (region where potential is convex). Because the self-consistent auto-correlation function is generally not exponential and the probe unit also visits regions where the potential is concave, the validity of the UCNA is not clear. On the other hand, the assumption of large correlation time might be dropped as the UCNA’s main feature is that it works for both large and small correlation times.

      Answer 4. We thanks the Reviewer again for this critical evaluation of our assumptions, however, we believe that our approach is justified because of the following two arguments. First, although the UCNA was derived in case of an OU process, it has since then been successfully applied to different classes of noise, including multiplicative noise, harmonic noise, and others (see e.g. (7–9). To the best of our knowledge, the UCNA has never been applied before to noise whose autocorrelation arises from chaotic dynamics, whose hallmark is a vanishing slope at zero lag, markedly different from the OU process. To address the concern about concavity, we performed the additional analyses discussed in our answer to Question 2, showing that the probe unit never visits regions where the potential is concave, which would lie outside of the support of the potential. Because of these two considerations, we believe that the UCNA is valid in our scenario, as suggested by the good agreement between theory and simulation at large values of the self-couplingsin Fig. 4c. Finally, we thank the Reviewer for bringing up the fact that UCNA works for both large and small correlation times, we fixed that in the revised manuscript.

    1. Author Response

      Reviewer #2 (Public Review):

      The work is very clearly designed, executed, and written. The transcription output data is rigorous and well quantified, and the fit of the TF binding model clearly shows agreement with experiments in the case of cooperativity, but not in its absence, making a strong case for the authors' conclusion.

      How the Hidden Markov Model fit results (promoter kon and koff values) lead to the observed effects on transcription output is less clear. For instance, Dl1 deletion results in a small increase in kon and a moderate increase in koff, which seems at odds with the other variants. Yet all variants exhibit similar transcription output profiles. One other intriguing observation is that the promoter states in Fig. 4C&D do not look dramatically different in their kinetics, yet the input transcription traces exhibit a 3-fold amplitude difference. Maybe the authors can clarify these apparent discrepancies.

      We thank the reviewer for insightful comments. The reduction in transcription output is mainly due to the decrease in transcription amplitude. We have done further analysis to demonstrate that the loading rate of Pol II, correlated to the initial slope of transcription, is significantly reduced in the mutants. We measured the initiation rate by calculating the slope of the MS2 traces and correlated it to the Pol II loading rate. As expected, the initiation rate in wildtype is higher than in mutant embryos. This additional analysis suggests that the drastic reduction in transcriptional amplitude is due to the reduced Pol II loading rate, not kon, and corroborates the previously shown results and conclusions (Bothma et al., PNAS 2014, PMID: 24994903; Garcia et al., Curr. Biol. 2013, PMID: 24139738). We have added this plot in Figure 4H in the revised manuscript, which shows the initiation rates of the wildtype and mutant embryos, and revised the manuscript as follows.

      We have added this in the Introduction (Page 4):

      We find that mutating a single TF (Dl or Twi) binding site in the enhancer significantly reduces mRNA production of the target gene, mainly through lowering transcriptional amplitude by reducing RNA polymerase (Pol) II loading rate, without significantly delaying the timing of initiation or affecting the probability of activation.

      We have added this in the Results (Page 15):

      Previously, we demonstrated that the mutations affect mRNA production through transcriptional amplitude (Figure 2E). This could be because either the mutations hinder the Pol II loading rate or reduce the time the promoter is in the ON state….

      In addition, we find that the Pol II loading rate is significantly reduced in the mutant embryos compared to the wildtype (Figure 4H). This confirms that the lower transcriptional amplitude mainly results from the promoter’s inability to effectively load Pol II, along with an additional contribution from the reduced time the promoter spends in the ON state.

      We have added this in the Discussion (Page 16):

      This reduction is mainly due to the decreased transcriptional amplitude, driven by a lower rate of Pol II loading… and, Since the amount of time the promoter spends in the ON state is not affected by the mutations, the lower transcriptional amplitude can be mainly attributed to the promoter’s inability to effectively load Pol II (Figure 2E, Figure 4D-F).

      The HMM is utilized to tease apart the changes in transcriptional kinetics. Our analysis revealed that the HMM provides some explanation for the reduction in transcriptional output in TF binding site mutants. For this reason, we must examine the results in a broader context. As pointed out, Dl1 site deletion has a slightly different effect on kon and koff. However, its transcription output is similar to the other mutants (Figure 4D and E). This is due to the fact that the changes in kon and koff are significantly less drastic than the changes in the transcription amplitude and Pol II loading rates, contributing less to the mRNA production. In our analysis, the amplitude is a separate parameter than the kon and koff rates, which are calculated from the HMM.

      We have added the following in the Discussion to address this concern (Page 17):

      However, we note that the HMM only provides some explanation for the reduction in transcriptional activity since the changes in kon and koff are less drastic than the changes in transcriptional output. Since the amount of time the promoter spends in the ON state is not affected by the mutations, the lower transcriptional amplitude can be mainly attributed to the promoter’s inability to effectively load Pol II (Figure 2E, Figure 4D, H).

      The authors observe cooperativity between TF binding sites and transcription output, which their model suggests is driven by TF binding cooperativity ("We propose that the cooperativity allows TF binding sites with moderate or weak affinities to recruit more TFs to the enhancer"). This is plausible and likely, but not rigorously demonstrated; another possibility could be cooperativity at the step of transcription activation. One could verify that the binding step is the cooperative one via ChIP-qPCR in the different variants, but given the cautious wording of the paper, this is not absolutely necessary.

      We thank the reviewer for suggesting this experiment. Unfortunately, due to the experimental design, performing ChIP-qPCR was not feasible. There are two copies of snaSEmin enhancer region, one within the endogenous genome and the one within the transgene. For this reason, proper amplification in qPCR was challenging as the primers would recognize two distinct portions of the genome. We designed primers such that the forward primer would recognize both the endogenous and transgene enhancer region (inevitable) and the reverse primer would recognize only the transgene. Yet, we did not observe the expected fold change in amplification as the concentration of DNA was modulated. Hence, we did not proceed to perform ChIPqPCR.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the authors investigated plausible circuit mechanisms for their recently reported effect of NMDAR antagonists on the synchrony of prefrontal neurons in a cognitive task. On the basis of previously proposed computational network models of spiking excitatory and inhibitory neurons and their mean-field and linear stability analysis descriptions, they show that a specific network configuration set close to the onset of instability of the asynchronous state can replicate qualitatively key empirical observations. For such a network, a small increase in external drive causes a large increase in neuronal synchrony, and this is not happening if NMDAR-dependent transmission is reduced. This shows parallelism with the empirical data thus representing its first neural network explanation.

      The paper provides valuable insights into possible mechanisms related to cortical dysfunction under NMDAR hypofunction, a topic of importance for several neuropsychiatric disorders. However, the fact that the manuscript remains at a rather abstract level and does not attempt a closer match to the experimental data is a limitation of the study.

      1) The manuscript is strongly based on state diagrams and parametric descriptions of neural dynamics in a computational model that has been extensively studied before (Brunel, Wang 2003). Many of the parametric dependencies of this model shown here were already reported before, although not specifically altering concurrently external inputs and NMDAR-dependent transmission as done now. The main novelty of the study is the application of this framework to a specific empirical dataset of great scientific relevance. However, the manuscript emphasizes the model exploration in relation to a limited set of effects in the data (changes in synchrony immediately before motor response) and not so much the comparison to the neural recordings more generally (for instance, firing rates, other time periods in the task, etc.)

      We are grateful to the Reviewer for thoroughly reviewing the manuscript and the constructive critique. Our work is built on the computational framework that has been developed earlier in several seminal computational and theoretical studies, including Compte et al. (2000) and Brunel and Wang (2003), that we acknowledge throughout our paper. However, we would like to emphasize, without diminishing the importance of these earlier studies, that our work provides new theoretical and computational insights on the impact of NMDAR synaptic transmission modulation on spiking dynamics by further developing the theoretical framework of Brunel and Wang (2003). For example, in Brunel and Wang (2003) it is stated that “NMDA conductances could be removed from all simulations without affecting any of the results” (p. 416). In fact, equations provided in Brunel and Wang (2003) are only for the special case of the oscillatory instability growth rate λ=0 and they do not include the NMDAR synaptic conductances. Thus, the consideration presented in Brunel and Wang (2003) cannot explain the NMDAR-dependent modulation of synchrony effect observed in Zick et al. (2018). In our study, we extended the theoretical framework of Brunel and Wang (2003) and provided equations that explicitly include both λ and NMDAR conductance. It is this extension of the framework that allowed us to provide an NMDAR dependent mechanism to explain the Zick et al. (2018) effect.

      In the revised manuscript, by suggestion of Reviewer 2, we have further extended theoretical consideration and obtained an analytic approximation in closed form for the oscillatory instability growth rate λ describing the dependence on the AMAPR, NMDAR, GABAR synaptic conductances and external rate. We believe that this is the first paper in which such approximation for the instability growth rate λ accounting for the effects of more realistic synaptic currents is obtained. Based on this consideration, we have now provided in a new Results section “Dependence of oscillatory instability growth rate on synaptic parameters” a substantially more detailed theoretical account of the precise mechanism implemented in our model for the transition between the steady and oscillatory states and the lack thereof when the NMDAR conductance is blocked.

      We agree with the reviewer that it would be beneficial for the paper to extend the model exploration in relation to other measurable variables provided by neural data such us firing rates. At the reviewers’ suggestions we have now carried out new series of simulations with transient external inputs and compared the simulation results with the dynamics of both synchrony and firing rates that were estimated from neural data. We address these questions in more detail in the corresponding points in the Recommendations for the authors section below.

      2) As discussed in the introduction, empirical data available suggests that 0-lag synchrony in prefrontal networks is affected by manipulations that reduce NMDAR function (Zick et al. 2018) and by manipulations that enhance NMDAR function (Zick et al. 2021). The computational model presented in this manuscript does not show this U-shaped behavior and the discussion does not mention this. It should be discussed whether the model can accommodate this or not.

      This is a very good point which we now explicitly address in a new section in the revised Discussion (‘Potential U-shaped relation between NMDAR function and spike synchrony’, see new text in blue starting at line 953). The reviewer provides an excellent insight by noting that that our prior neural recording data (specifically convergent reduction in 0-lag synchrony in monkey drug and mouse genetic models) could be explained by an inverted U-shaped relationship between NMDAR function and 0-lag synchrony. In the new section we also note the precedent for such a relationship by drawing a parallel to the work of Vijayraghavan, Arnsten and colleagues (2007) showing an inverted U-shaped relationship between D1R synaptic actions and the strength of persistent activity in monkey prefrontal neurons during working memory tasks.

      However, in the new section we note also that we cannot yet conclude that the relationship between 0-lag spike synchrony and NMDAR activation is indeed an inverted U-shaped function based on our neural data. Reaching this conclusion would require completing a dose-response function between the concentration of NMDAR agonist (or antagonist) administered and the strength of 0-lag synchrony (which we have not done). In addition, we note in the new section that we can’t conclude the reduction of 0-lag synchrony in mouse prefrontal cortex is indeed due to increased expression of NMDAR, since deletion of Dgcr8, given its role in miRNA synthesis, would be expected to upregulate the expression of many different mRNA corresponding to many different genes. However, the possibility of a U-shaped relation is an important and interesting one, which we now fully discuss.

      Reviewer #2 (Public Review):

      In this paper, the authors carry out neural circuit modeling to theoretically elucidate the mechanism underlying the empirically observed (in a previous study by some of the current authors) reduction in neural synchrony in the monkey prefrontal cortex (PFC), as a result of NMDAR blockade. Empirically it was previously found that in monkeys performing a cognitive control task, PFC neurons exhibit precisely timed synchronous firing, especially in the short period before the monkey's response, leading to "0-lag" (zero in the 1-2 millisecond timescale) spiking correlations. This signature of synchrony was then found to be extinguished or diminished with the systemic administration of an NMDAR antagonist.

      In the current study, the authors simulate and analyze a network of excitatory and inhibitory spiking neurons as a model of a local PFC circuit, to elucidate the mechanism underlying this effect. The model network is composed of leaky integrate-and-fire neurons with conductance-based synaptic inputs and is sparsely and randomly connected as in the classic studies of balanced networks in which neurons fire irregularly as observed in the cortex. Using mean-field theory, the authors start by mapping out the phase boundary between the asynchronous irregular and synchronous irregular states in the network as a function of network parameters controlling synaptic connectivity and external background inputs (which they parametrize as ratios of recurrent or external currents mediated by AMPAR, NMDAR or GABAA). The transition between the two phases corresponds to a Hopf-like bifurcation above which synchronous oscillations with frequency in the gamma-band (or above) emerge. It is found that with an increase in external inputs, a network in the asynchronous state (but close to criticality) can switch to the synchronous state. Based on this, the authors hypothesize that an increase in the external drive is the mechanism underlying the empirically observed increase in synchrony before the behavioral response. It is then shown that a reduction in NMDAR conductance (keeping AMPAR or GABAR conductances fixed) has the opposite effect, and pushes the network towards the asynchronous state, and can counteract or weaken the effect of increased external input. In both cases increase or decrease in synchrony is quantified by an increase or decrease in 0-lag pairwise correlations; transition to synchrony is shown to also lead to the development of nonzero-lag peaks in the average spiking correlation reflecting gamma-band oscillations. The authors then show that (with the appropriate choice of primary network parameters) their proposed mechanisms for the (natural) increase in synchrony via an increase in external inputs and the weakening of this effect with the weakening of NMDA conductances do semi-quantitatively match the observed changes in 0-lag synchrony and nonzero lag peaks in spiking correlations. Finally, they discuss the effect of the balance between average NMDA and GABA currents in the primary (baseline) network on the above effects.

      Strengths:

      • The modeling and analysis are solid and overall this work succeeds in providing a convincing mechanistic explanation for the specific empirically observed effects in monkey PFC: the natural task-dependent modulation of 0-lag synchrony and its extinction with NMDA blockage.

      • The manuscript is very readable and the figures and plots are clearly described.

      • The mathematical mean-field analysis in the Methods section is also sound and well written and does/can (see below) provide a sufficient mathematical explanation of the simulation results.

      We appreciate the positive comments.

      Weaknesses:

      1) I found the intuitive explanation of the effects of external input or NMDAR conductance on synchrony incomplete. While simulations and mean-field analysis both predict this effect, the mean-field theory and the linearization analysis and stability analysis can be used to further shed light on the precise mechanism by which external input and NMDAR conductance promote synchrony (or destabilization of the asynchronous state).

      2) An important natural question (which is relevant to the connection with schizophrenia) is what are the distinct roles of AMPAR-based and NMDAR-based excitation on the transition to synchrony, and this is not addressed in this study. It would be important to clarify what is special/distinct about NMDAR in the current findings.

      3) In the Introduction and Discussion, the authors speculate on the possible connection between their empirical and theoretical findings (on the effect of NMDAR hypofunction on synchronous spiking) and the pathogenesis of schizophrenia. While this is not central to the findings of the paper, because it is relevant to the broader significance and impact of this work I will note the following. Their proposed specific link to pathogenesis is as follows: the reduction in precisely timed synchrony resulting from NMDAR hypofunction can disrupt spike-timing dependent plasticity (STDP) and lead to "disconnection" of cortical circuits as observed in schizophrenia. Letting aside the fact that observations in schizophrenia relate to functional connectivity and not synaptic connectivity, previous theoretical studies of STDP in spiking networks do not support the claim that lack of synchronous activity would lead to disconnection of the circuit.

      Thank you for the thorough review and critique, bringing up these important issues. We address them in detail in the corresponding points in the Recommendations for the authors section below.

      Reviewer #3 (Public Review):

      The starting point of the paper is the observation by the group of Matthew Chafee that zero-lag correlations in pairs of prefrontal cortex neurons transiently increase close to the motor response in a dot-pattern expectancy task', and that this increase in synchrony is abolished by NMDA blockers. The goal of this paper is to understand the mechanisms of this NMDA-dependent increase in synchrony using computational modeling. They simulate and analyze a network of sparsely connected spiking neurons in which synaptic interactions are mediated by AMPA, NMDA, and GABA conductances with realistic time constants. In this network, it had been shown previously that when parameters are such that the network is close to a bifurcation separating asynchronous from synchronous oscillatory states, an increase in external inputs can push the network towards synchrony. They show that when the NMDA component of synaptic inputs is removed, the network moves away from the bifurcation, and thus the same increase in external inputs no longer leads to a significant increase in synchronization.

      Thus, this study provides a potential explanation for the NMDA-dependent increase of synchrony observed in their data. The authors further argue that this effect might be responsible for symptoms observed in schizophrenia, through spike-timing-dependent mechanisms. Overall, this is an interesting study, but there are several weaknesses that dampened my initial enthusiasm: In particular, the model predicts a tight link between synchrony and mean firing rate that should hold during the whole task, not only at the time of the motor response but this is not explored by the authors.

      Thank you for critically reviewing the manuscript and valuable comments. We address them in the corresponding points in the Recommendations for the authors section below.

      Also, the relationship between changes in synchrony due to NMDAR dysfunction and schizophrenia is not very convincing. Many forms of synaptic plasticity, including STDP are dependent on NMDA receptors, and thus synaptic plasticity in schizophrenic patients is likely to be impacted independently of any synchrony. Thus, the link between the results of this paper and schizophrenia seems tenuous.

      These are good points. To address them we have limited the link between the current study and schizophrenia in the Introduction to the motivation for the original neurophysiological experiments (as this link dictated the pharmacological and genetic manipulations we employed in the animal models). We have also added a new section to the Discussion with the heading ‘Spike timing disruptions and rewiring of prefrontal local circuits via STDP’ where we discuss the complexity of the interaction between STDP, synchrony, and connectivity in prior modeling studies. Namely, it is difficult to predict whether loss of synchronous spiking would cause disconnection via STDP without additional data. We acknowledge this constraint on our original hypothesis that asynchrony would cause disconnection considering these prior theoretical studies in this new section. In this section, we also note that altered NMDAR function that has been implicated in schizophrenia could impact STDP directly independently of any change in spike synchrony (see new blue text, starting at line 950) as suggested.

    1. Author Response

      Joint Public Review

      This manuscript utilizes Drosophila melanogaster as a model system to functionally characterize the role of genes previously associated with obstructive pulmonary disease (COPD) in epithelial barrier function. Using genetic and imaging approaches, the authors characterised a previously unrecognised role of intestinal Acetylcholine receptor (AchR) signalling, in the regulation of epithelial barrier function. The working model proposes that Acetylcholine (Ach) produced by enteroendocrine cells (EEs) and enteric neurons signals to AchR in enterocytes (ECs). This signalling activates the secretion of the Peritrophic membrane (PM) through the regulation of the exocytic protein Syt4. In this way, Ach/AchR signalling works to protect epithelial barrier function and organismal tolerance to ingested damaging agents, such as those causing oxidative stress.

      Overall, the data presented support the main model of the paper: EC AchR activation is necessary to maintain epithelial barrier function. The evidence, however, on the mechanisms downstream of AchR, namely, the involvement of this signalling pathway in the regulation of Syt4 is weak.

      The work in this manuscript represents an important proof of concept for the use of the Drosophila midgut as a model to functionally interrogate genes from human genetic association studies in pathologies affecting epithelial homeostasis.

      We would like to thank the reviewers for their positive assessment of the significance of the study. The reviewers point out that the reported data support the conclusions of the manuscript and request additional studies to elucidate the downstream mechanism in more detail. We have now edited our manuscript according to the specific requests, including additional data and further clarifications of our model. We believe these new data and edits significantly improve the manuscript and hope that it is now acceptable for publication in eLife

    1. Author Response

      Reviewer #1 (Public Review):

      Mano et. al. use a combination of behavioral, genetic silencing, and functional imaging experiments to explore the temporal properties of the optomotor response in Drosophila. They find a previously unreported inversion of the behavior under high contrast and luminance conditions and identify potential pathways mediating the effect.

      Strengths:

      Quantifications of optomotor behavior have been performed for many decades. Despite a large number of previous studies, the authors still find something fundamentally novel: under high contrast conditions and extended stimulation periods, the behavior becomes dynamic over time. The turning response shows an initial transient positive following response. The amplitude of the behavior then decreases and even inverts such that animals show an anti-directional rotation response. The authors systematically explore the stimulation feature space, including large ranges of spatial and temporal frequencies and conditions with high and low contrast. They also test two wild-type fly species and even compare experiments across two different labs and setups. From these data, it seems clear that the behavior is robust and largely depends on the brightness of the stimulation, rearing conditions, and genetic background. The authors discuss that these effects have not clearly been reported elsewhere beforehand, and convincingly argue why this may be the case.

      In general, the presented behavioral quantifications illustrate the importance of further experimental studies of the temporal dynamics of behavior in response to dynamically varying stimulus features, across different stimulus types, genetic backgrounds, and model animal systems. It also illustrates the importance of relating the conditions that animals experience in the laboratory to the ones they would experience in the wild. As the authors mention, the brightness during a sunny day can reach values as high as 4000 cd/m2, while experimental stimulation in the lab has so far often been orders of magnitude below that.

      The study then systematically explores potential neural elements involved in the behavior. Through a set of silencing experiments, they find that T4 and T5 neurons, as expected, are required for motion behaviors. On the other hand, silencing HS cells largely abolishes the 'classical' syn-directional response but leaves anti-directional turning intact. On the other hand, silencing CH cells abolishes the anti-directional response but leaves the syn-directional behavior intact. Through functional imaging in T4, T5, HS, and CH neurons, the authors could show that none of these neurons shows a response inversion depending on contrast level. Together, these experiments nicely illustrate that the dynamics do not seem to be computed within the early parts of visual processing, but they must happen on the level of the lobula plate or further downstream.

      Weaknesses:

      While the authors have already explored various parameters of the experiment, it would have been nice to see additional experiments regarding the initial adaptation phase. The experiments in Figure 2e, where the authors show front-to-back or back-to-front gratings before the rotation phase, are a good start. What would the behavioral dynamics look like if they had exposed animals to long periods of static high or low contrast gratings, whole field brightness, or darkness? Such experiments would surely help to better understand the stimulus features on which the adaptation elements operate. It would be interesting to explore to what degree such static stimuli impact the subsequent behavioral dynamics.

      To address this question, we have added a new adaption condition, in which a high contrast, stationary sinusoidal grating is presented for 5 seconds before the high contrast rotational stimulus is presented (new Figure 2 – Supp. Fig. 1). We find that the turning looks identical to the case of a gray adapter. These results drive home the point that the direction of motion of the adapter is what matters most.

      Given the dynamics of the behavior, it would probably also be worth looking at the turning dynamics after the stimulus has stopped. If direction-selective adaptation mechanisms are regulating the turning response, one may find long-lasting biases even in the absence of stimulation. If the authors have more data after the stimulus end, it would be good to further expand the time range by a few seconds to show if this is the case or not (for example, in Figure 1b).

      We now show these dynamics in Figure 1. See Essential Revision #1.

      Another important experiment could be to initially perform experiments in a closed-loop configuration, and then quickly switch to open-loop. The closed-loop configuration should allow the motion computing circuitry to adapt to the chosen environmental conditions. Explorations of the changes in turning response dynamics after such treatments should then enable further dissections of the mechanisms of adaptation. Closed-loop experiments under different contrast conditions have already been performed (for example, Leonhardt et al. 2016), which also showed complex response dynamics after stimulus on- and offset. It would be great to discuss the current open-loop experiments, and maybe some new closed-loop results, in relation to the previous work.

      We have performed these suggested experiments; please see Essential Revision #2.

      The authors mention the different rearing conditions, and there is one experiment in Figure S2 which mentions running experiments at 25 deg C. But it is not clear from the Methods at which temperature all other experiments have been performed. It is also not clear at which temperature the shibire block experiments were performed. As such experiments require elevated temperatures, I assume that all behavioral experiments have been performed at such levels? How high were those?

      Our apologies for leaving out this important information. In DAC’s lab, behavioral experiments are run at 34-36ºC in a room maintaining ~50% relative humidity (this yields ~25% RH in the box with the experiment, as we now note in the methods). These conditions yield high quality, reproducible behavior, especially since this temperature elicits strong walking behavior. In TRC’s lab, behavioral experiments are similarly run at 34ºC in a room maintaining ~50% relative humidity (similarly with ~25% RH in the experimental box), for similar reasons. We have now added these details to the methods sections for each lab’s behavioral experiments.

      What does the fly see before and after the stimulus (i.e. the gray boxes in all figures)? Are these periods of homogenous gray levels or are these non-moving gratings with the luminance and contrast of the subsequent stimulus? It would be important to add this information to the methods and to the figure illustrations or legends.

      In the figures, gray is a uniform luminance screen that appears before and after the stimuli, with luminance matched to the mean stimulus luminance. We have now included this in the methods section where we describe how stimuli were generated in each lab.

      It would be nice to discuss the potential location where the motion adaptation may be implemented in the brain. A small model scheme as an additional figure could further help to discuss how such computations may be mechanistically implemented, helping readers to think about future experimental dissections of the behavior.

      Following this suggestion, we have created a diagram that shows a potential mechanistic implementation of the behavior observed, and summarizes our results (new Figure 6 – Supp. Fig. 2). There are many other possible alternatives that we do not show, including exactly how an opposing signal could ramp up under the conditions of these experiments. In the figure caption, we remind readers what locations have been excluded for this sort of computation. We reference this diagram where we discuss subtraction in the Discussion.

      For setting up similar experiments in other labs, the authors need to better describe how they measured the luminance of the arena. Do they simply report the brightness delivered by the Lightcrafter system, or did they measure this with a lux-meter? If so, at which distance was the measurement performed and with which device? Given that the behavior is sensitive to the specific properties of the stimulus, it will be important to report these numbers carefully to enable other groups to reproduce effects.

      In brief, since these are rear projection screens, we can easily measure light intensity by placing a power meter in front of the screen. This gives us the photon flux in watts, which can be converted to lumens by a standard conversion and then into candelas by making the approximation that our screen scatters into 2π steradians. Dividing by the sensor area gives us our desired candelas per square-meter. We have now added this methodology to the methods section.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The study assesses the impact of testing contacts of cases in school classes when identified, rather than at the end of quarantine, on various outcomes such as secondary infections, tracing delay, and identification of the possible source of infection. The authors find that the intervention likely reduced tracing delay and increased the number of possible infection sources. However, due to unmeasured confounding, it remains unclear if secondary transmission actually decreased. The analysis requires clarification and further explanation in parts.

      Major strengths and weaknesses:

      The study benefits from the assessment of various outcomes in contact tracing in addition to changes in transmission, such as tracing delay, and the identification of putative infectors; however the assumption that other cases found in households are infectors of the index case rather than putative infectees, may introduce significant bias, but this is not mentioned in the Discussion despite being significant. It is difficult to understand the intervention in Figure 1 due to unclear labelling and incomplete descriptions in the caption. The authors mention that the same school class could be included multiple times for multiple outbreaks - was there a time cutoff for inclusion? I had a lot of trouble interpreting or reproducing the values given in Table 1. Firstly, the methods used to produce the RRs given are not described in the methods section of the paper. What are the outcomes - "classes" and "indexes" are poroly defined. Is this output from univariate or multivariate regression model, and what is the link function? I was also unable to reproduce the RRs listed in the table despite attempting several methods. The closest numbers I achieved were by crudely dividing the risks (e.g. for the RR for known infection source I took the ratio of indexes for which a school contact was suspected pre and post-intervention (644/1175)/(146/429) = 1.61), but if this is the case then the unknown class is by definition not the reference category. This is the same for the other RRs stated in the table. The methods used should be clarified and results updated if erroneous. The mediation analysis components and their relevance to the study could be better explained in the methods and results.

      Achievement of aims and support for conclusions:

      The authors partially achieved their aims by demonstrating a likely decrease in tracing delay and an increase in possible infection sources. However, the study's inability to determine if secondary transmission decreased due to unmeasured confounding limits the conclusiveness of the findings. The authors should reiterate the main numerical results in the first few paragraphs of the discussion.

      Impact on the field and utility of methods and data:

      This study has the potential to impact the field by highlighting the benefits of testing contacts earlier in school classes. The findings on reduced tracing delay and increased identification of infection sources can inform future strategies and interventions. However, clarity on the analysis methods, as well as the results, are necessary to ensure the utility and reliability of the findings.

      We thank the reviewer for his encouraging comments, we completely agree with the interpretation of our findings. Nevertheless, the intervention under evaluation is not exactly as descried by the reviewer. In fact, the change of contact tracing targeted mostly the tracing in household cases. Investigation in schools used the immediate testing of all contacts already before the intervention, even if after the intervention the timeliness increased. It was in the household where we had a clear change with immediate testing of all asymptomatic family contacts.

      The assumption of direction of infection: We understand the reviewer’s point and we agree that such an assumption would introduce an important bias. Nevertheless, we do not assume any direction of the infection. We only report the conclusions of the field investigation conducted during the school outbreak about a known source of infection for the index case.

      On the contrary, in our conceptual framework, we make the hypothesis that introducing backward contact tracing for all cases in the community (mostly household infections) asymptomatic cases in school age were more promptly identified and this improved the surveillance of school outbreaks and possibly reduced transmission in school outbreaks. This increase in timeliness could occur whatever the direction of infection within the household was, i.e. from the symptomatic adult to the asymptomatic child or the other way round.

      Figure 1: we completely changed figure 1 according to reviewer’s suggestions.

      Table 1: it has been split in two tables, the first describe the characteristics of the classes and index cases and the outcomes of the outbreaks, and the second is a table showing the association between possible confounders and the main outcome. We are sorry; trying to make the paper shorter, we made the table very unclear.

      Repeated outbreaks in the same class: we thank the reviewer for this point. We did not define a time limit to distinguish two episodes. The outbreaks were defined by the field investigations. If the class was involved in two investigations, public health operators firstly tried to assess if there was a direct link between the two. Actually, it was impossible that two outbreaks were considered independent if there was less than 21 days between the two index cases notifications. We added a sentence in the methods.

      Mediation analysis rationale: we added a DAG to explain the mediation analysis, we also changed the results reporting following step by step the preliminary results to introduce the mediation analysis to justify the selection of the mediators and the confounders.

      Discussion: we added the main findings in a quantitative way at the beginning of the discussion.

      Reviewer #2 (Public Review):

      This is a review of "Effect of an enhanced public health contact tracing intervention on the secondary transmission of SARS-CoV-2 in educational settings: the four-way decomposition analysis", by Djuric et al.

      In late 2020, a province in northern Italy implemented a new testing regimen for all contacts of people known to have COVID-19, offering them SARS-CoV-2 testing immediately after the detection of the index case instead of at the end of a quarantine period. The authors of this study investigated whether this policy change reduced secondary transmission of SARS-CoV-2 in schools. In addition to studying this primary outcome, they examined two "process" outcomes; whether this policy of testing earlier enabled public health officials to more successfully identify the source of infection of the index case, and if the time interval from detection of the index case to testing of contacts in the educational setting reduced.

      They concluded that the time between detection of the index case and testing of contacts did reduce before and after the policy change. Similarly, the proportion of cases for which the source of infection was identified also increased after the policy change. Both of these "process" indicators correlated with reduced secondary transmission, though only identifying the source of infection was associated with a statistically significant (at the 5% level) reduction in secondary transmission.

      Strengths of this paper

      Educational settings experienced significant disruption during the COVID-19 pandemic, and efforts to better understand the spread of SARS-CoV-2 in schools - and how to mitigate this spread - are of significant public health importance. This paper, therefore, addresses an important topic.

      Additionally, the authors describe a detailed dataset comprising case and contact tracing data from over 1,600 index cases with in-school contacts. The richness of the data described in Table 1 provides a good opportunity to conduct a natural experiment on the potential impact of testing contacts immediately after exposure on secondary transmission. The authors also appropriately acknowledge that this interrupted time series study would be insufficient to provide causal information, given the potential for confounders.

      Finally, the primary statistical method (a four-way decomposition analysis) was new to me, but - from the references cited - seems appropriate. Given the relative novelty of this method, more space could be dedicated to explaining it in the methods.

      Weakness of this paper

      Although the paper tackles an important topic with an appropriate dataset, the analyses feel insufficient to fully support the authors' conclusions.

      First and most critically, it is difficult to understand exactly what the primary outcome of the study is. Both the median number of secondary cases per class and the proportion of classes that experienced any secondary transmission are presented in Table 1, but - at least in the unadjusted analyses - point in different directions regarding the impact of the effect of the intervention (albeit neither strongly). For example, before the policy change, the median number of secondary cases per index case is 2, while after the policy change, it has reduced to 1. In contrast, before the policy change 37% of classes experienced any secondary transmission, but after the policy change, this had increased to 39% of classes. In some of the adjusted analyses, "number of secondary cases" is stated as the outcome variable, but that is not fully defined. The "attack rate", which is well defined in the methods, could be one option for use as a consistent primary outcome, however, it is only provided for the total study population and the attack rates pre- or post-policy change are not presented or compared.

      Additionally, although using a "process measure" as a secondary outcome could be valuable - especially in a natural experiment like this, where identifying a causal relationship with a complex outcome like secondary transmission will be difficult - it was somewhat unclear how the process measures described in this study were measured, or their validity. For example, the reduced time between detection of the index case and testing of contacts seems unsurprising, since the intervention itself is to test contacts immediately after the index case is identified. Additionally, the results describe reductions in median testing delay and median tracing delay, but only testing delay is defined in the methods.

      Finally, there is existing published literature that provides additional context on the impact of testing on secondary transmission within schools that arguably provides a higher level of evidence than the current study, but is not cited by the authors. A key limitation of this study - which the authors acknowledge - is the interrupted time series nature of their study, which is open to confounding by other important factors that happened at the same time, including but not limited to: changes in overall incidence of COVID-19; viral evolution (e.g. the emergence of the Alpha variant (B.1.1.7) which occurred during this study and which significantly altered the risk of secondary transmission); the efficiency of the contact tracing system (including skill and size of the contact tracing workforce); and the availability of non-molecular diagnostic tests (e.g. lateral flow devices) that might allow individuals to change their behaviors even without enrolling in this study. Examples of alternative studies which might reduce some of this potential confounding include around 400 schools in Los Angeles County, California, USA, that implemented "test to stay" in 2021 and were compared to 1,600 schools that did not implement "test to stay" [https://www.cdc.gov/mmwr/volumes/70/wr/mm705152e1.htm] and a cluster-randomized trial of daily testing of exposed contacts to study in-school transmission in England, UK, also in 2021 [https://www.sciencedirect.com/science/article/pii/S0140673621019085]. Although these examples describe slightly different interventions involving enhanced testing of exposed contacts, they both compared educational settings with and without the intervention across the same time periods; and the UK study in particular has methodological advantages over this current paper, including randomization. While the findings in the current paper did not contradict these earlier, stronger papers, the example from this province should be placed in context with the totality of evidence around testing in schools.

      We thank the reviewer for his encouraging and useful comments.

      We have completely reframed Table 1 and split it in two separate tables. We have added suggested references.

      According to the reviewer’s suggestions, we tried to better describe the main outcome and to justify our choice. We also added a definition of testing delay that was missing. We added a box explaining in plain language all the outputs of the mediation analysis. We improved reporting of the descriptive data in table 1, including attack rate.

      Furthermore, we better explained the choice of process outcomes and how they were related to the main outcome a priori and what changes were expected under the hypothesis that the intervention worked correctly. In particular, we agree that a reduction in the time to testing was unsurprising, in fact, this was just to check that the intervention was actually and correctly implemented; increasing the proportion of index cases with a known source of infection (and the proportion of asymptomatic index cases, that was not identified in the initial protocol but we identified later as an important process indicator) is a process indicator suggesting that more index cases have been identified as a consequence of a household investigation, i.e. the change in tracing helped in early detection of school exposure.

      Regarding the proportion of classes with secondary transmission, we added a sentence in the discussion explaining why we did not expect that this would change after the intervention. In fact, as described in the new figure 1, household contacts were immediately quarantined before as well as after the intervention, what changed is that they are timely identified as contacts and therefore school contacts are identified and isolated. Only if a secondary transmission in the class already occurred we could reduce transmission in the class, i.e. we are preventing tertiary cases not secondary. Nevertheless, the number of classes investigated is also expected to change, so it was difficult to predict if the proportion of investigated classes with transmission should increase or decrease.

      In the discussion, we reported examples of studies that applied an experimental or semi-experimental design and thus overcame the main limits of our observational study. Nevertheless, we also highlighted that the intervention we are evaluating in this study was particularly difficult to be conducted in a trial or a semi-experimental setting, in fact, we are trying to evaluate a change in the contact tracing in the community that occurred during the peak of the second wave.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This article is interested in how butterfly, or more precisely, butterfly wing scale precursor cells, each make precisely patterned ultrastructures made of chitin.

      To do this, the authors sought to use the butterfly Parides eurimedes, a papilionid swallowtail, that carries interesting, unusual structures made of 1) vertical ridges, that lack a typical layered stacking arrangement; and 2) deep honeycomb-like pores. These two features make the organism chosen a good point of comparison with previous studies, including classic papers that relied on electronic microscopy (SEM/TEM), and more recent confocal microscopy studies.

      The article shows good microscopy data, including detailed, dense developmental series of staining in the Parides eurimedes model. The mix of cell membrane staining, chitin precursor, and F-actin staining is well utilized and appropriately documented with the help of 3D-SIM, a microscopy technique considered to provide super-resolution (here needed to visualize sub-cellular processes).

      The key message from this article is that F-actin filaments are later repurposed, in papilionid butterflies, to finish the patterning of the inter-ridge space, elaborating new structures (this was not observed so far in other studies and organisms). The model proposed in Figure 6 summarized these findings well, with F-actin reshaping it itself into a tulip that likely pulls down a chitin disk to form honeycombs. These interpretations of the microscopy data are interesting and novel.

      There are two other points of interest, that deserve future investigation:

      1) The authors performed immunolocalizations of Arp2 and pharmacological inhibitions of Arp2/3, and found some possible effect on honeycomb lattice development. The inter-ridge region of the butterfly Papilio polytes, which lacks these structures, did not seem to be affected by drug treatments. Effects where time- dependent, which makes sense. These data provide circumstantial evidence that Arp2/3 is involved in the late role of F-actin formation or re-organisation.

      2) The authors perform a comparative study in additional papilionids (Fig. 6 in particular). I find these data to be quite limited without a dense sampling, but they are nonetheless interesting and support a second-phase role of F-actin re- organisation.

      The article is dense, well produced and succinctly written. I believe this is an interesting and insightful study on a complex process of cell biology, that inspires us to look at basic phenomena in a broader set of organisms.

      We thank the reviewer for the positive appraisal.

      Reviewer #2 (Public Review):

      The manuscript by Seah and Saranathan investigates the cell-based growth mechanism of so called honeycomb-structures in the upper lamina of papilionid wing scales by investigating a number of different species. The authors chose Parides eurimedes as a focus species with the developmental pathway of five other papilionid as a comparative backup. Through state-of-the-art microscopy images of different developmental steps, the author find that the intricate f-actin filaments reorganise, support cuticular discs that template the air holes that form the honeycomb lattice. The manuscript is well written and easy to follow, yet based on a somewhat limited sample size for their focus species, limiting attempts to suppress expression and alter structure shape.

      The fact that the authors find a novel reorganisation mechanism is exciting and warrants further research, e.g. into the formation of other microscale features or smaller scale structures (e.g. the mentioned gyroid networks).

      We thank the reviewer for the positive appraisal.

      The authors place their results in the discussion in the light of current literature (although the references could be expanded further to include the breadth of the field). However, the mechanistic explanation completely ignores the mechanical properties of the membranes as an origin of some of the observed phenomena (see McDougal's work for example) and places the occurence of some features into Turing patterns and Ostwald ripening, which I find somewhat unlikely and I suggest that the authors discover this aspects further in the discussion.

      We thank the reviewer for these suggestions. We have added more references from the current literature to more accurately reflecting the breadth of the field. McDougal et al. 2021. discuss the nature of biomechanical forces (differential growth and buckling) on the membrane and deposited cuticle shaping the formation of longitudinal ridges. However, here it is the invagination of the plasma membrane bearing the deposited cuticle that is our main concern. Nevertheless, we agree future studies should indeed consider the mechanical properties of the membranes, in addition, to explain some of the observed features. We have clarified this in our discussion.

      I have little concerns regarding the experimental approach beyond the somewhat limited sample size. One thing the authors should more clearly mention are the pupation periods for all investigated species as only the periods for two species are named.

      Yes, unfortunately, we were only able to obtain pupae with pupation dates for two species. We have clarified this point in the methods.

      Reviewer #1 (Recommendations For The Authors):

      Suggestion for improvement.

      I recommend adopting a magenta/green (or orange/azure) color scheme to make the figures accessible to most color vision types. This does not require re-doing the figure and could be processed on the rendered JPG/TIF figures with the following procedure :

      1) open the rendered figures in Photoshop in RGB mode

      2) go to Channel Mixer

      3) Select Output Channel : Blue

      4) set Blue 100%-->0% and Red 0-->100%

      This will change Red to Magenta without affecting luminosity.

      Similar solutions should be available in other software including GIMP.

      Of note this is a late fix and ideally, color encoding could be done upstream in the microscopy file extraction software (e.g. Fiji), but I do not think this heavier solution is needed here.

      We thank the reviewer for this suggestion. In order to be more inclusive, we have redone the figures and videos in a yellow+magenta color scheme.

      Reviewer #2 (Recommendations For The Authors):

      References: Some literature is missing that could be considered by the authors e.g.

      https://doi.org/10.1098/rstb.2020.0505 https://doi.org/10.1101/2023.06.01.542791

      https://doi.org/10.1098/rsfs.2011.0082 https://doi.org/10.1557/mrs.2019.21

      https://iopscience.iop.org/article/10.1088/2040- 8986/aaff39/meta https://doi.org/10.1364/OE.20.008877

      We have added more references as suggested.

      Placing the captions next to the figures, particularly in the SI will help accessibility.

      We agree. We believe this would be done during article production.

      113: chiefly?

      We have replaced ‘chiefly’ with ‘focusing mainly on’.

      160: how do you know the scales are more scletorized already? Just because it's later in development?

      Yes, that is what we are alluding to here. We have made edits to clarify this sentence.

      186: Specify sample size.

      We have specified the sample size ‘(N = 15)’ here.

      309: Multilayered cover scales would be more accurate.

      Thanks for the suggestion. We have changed ‘structurally-colored cover scales’ to ‘multilayered cover scales’ as suggested.

      Please check the literature list again for accurate references.

      Thanks for the suggestion. We have gone through the references and fixed any missing information.

    1. Author Response:

      Thank you very much for selecting our paper for peer review and for the thorough evaluation of our manuscript. We appreciate your assessment and the reviewers’ comments that value our work and identify important points that will enable us to improve the paper. We are now working on key experiments to further test the hypothesis that ROCK is essential for the formation, growth, and morphology of the sea urchin larval skeleton. We will address the reviewers’ comments in detail in the revised version of the paper that we will submit after completing the experiments, but for now, there are two points we would like to clarify.

      We thank the first reviewer for the appreciation of this paper and of our previous work where we studied calcium vesicle dynamics in whole embryos (Winter et al, Plos Com Biol 2021). In Winter et al 2021, we found that the skeleton (spicules) doesn’t grow when the embryos are immobilized in either control or treated embryos. As a consequence, we cannot determine the role of ROCK in vesicle trafficking and exocytosis based on experiments conducted in whole embryos. We are developing an alternative assay for vesicle tracking using cell cultures, but that is beyond the scope of this current work.

      As for the second reviewer’s criticism of the usage of Y-27632 to block ROCK activity: The ROCK inhibitor concentrations we used (30-80µM) are similar the those commonly used in mammalian systems and in Drosophila to block ROCK activity, for example: (Becker et al., 2022; Canellas-Socias et al., 2022; Fischer et al., 2009; Kagawa et al., 2022; Segal et al., 2018; Su et al., 2022). The manufactory datasheet indicates that: “Y-27632 dihydrochloride is a selective ROCK inhibitor (Ki values are 0.14-0.22, 0.3, 25, 26 and > 250 μM for ROCK1 (p160 ROCK), ROCK2, PKA, PKC and MLCK respectively)”. That is, the affinities of Y-27632 for ROCK kinases are at least 100 times higher than those for PKC, PKA, and MLCK. Furthermore, these Ki values are based on biochemistry assays where the activity of the inhibitor is tested in-vitro with the purified protein. Therefore, these concentrations are not relevant to cell or embryo cultures where the inhibitor has to penetrate the cells and affect ROCK activity in-vivo. Y-27632 activity was studied both in-vitro and in-vivo in Narumiya, Ishizaki and Ufhata, Methods in Enzymology 2000 (Narumiya et al., 2000). This paper reports similar concentrations to the ones indicated in the manufactory data sheet for the in-vitro experiments, but shows that 10µM concentration or higher are effective in cell cultures. As stated above, we will add additional experimental verifications to the revised version, but even at this stage, the concentrations we used and the agreement between our pharmacological and genetic perturbations suggests that the affected protein is indeed ROCK.

      We share the reviewers and editors wish to identify the molecular targets of ROCK and the specific cellular processes that ROCK is involved in, and we are actively working on achieving this goal. However, we believe that this paper is an important step towards illuminating the cellular components that participate in biomineral construction and the feedback between the cellular machinery and gene expression.

      Best,

      Smadar, in the name of all co-authors.

      References:

      • Becker, K.N., Pettee, K.M., Sugrue, A., Reinard, K.A., Schroeder, J.L., Eisenmann, K.M., 2022. The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian Diaphanous-Related (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells. Cells 11.
      • Canellas-Socias, A., Cortina, C., Hernando-Momblona, X., Palomo-Ponce, S., Mulholland, E.J., Turon, G., Mateo, L., Conti, S., Roman, O., Sevillano, M., Slebe, F., Stork, D., Caballe-Mestres, A., Berenguer-Llergo, A., Alvarez-Varela, A., Fenderico, N., Novellasdemunt, L., Jimenez-Gracia, L., Sipka, T., Bardia, L., Lorden, P., Colombelli, J., Heyn, H., Trepat, X., Tejpar, S., Sancho, E., Tauriello, D.V.F., Leedham, S., Attolini, C.S., Batlle, E., 2022. Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature 611, 603-613.
      • Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S., Waterman, C.M., 2009. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol 19, 260-265.
      • Kagawa, H., Javali, A., Khoei, H.H., Sommer, T.M., Sestini, G., Novatchkova, M., Scholte Op Reimer, Y., Castel, G., Bruneau, A., Maenhoudt, N., Lammers, J., Loubersac, S., Freour, T., Vankelecom, H., David, L., Rivron, N., 2022. Human blastoids model blastocyst development and implantation. Nature 601, 600-605.
      • Narumiya, S., Ishizaki, T., Uehata, M., 2000. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325, 273-284.
      • Segal, D., Zaritsky, A., Schejter, E.D., Shilo, B.Z., 2018. Feedback inhibition of actin on Rho mediates content release from large secretory vesicles. J Cell Biol 217, 1815-1826.
      • Su, Y., Huang, H., Luo, T., Zheng, Y., Fan, J., Ren, H., Tang, M., Niu, Z., Wang, C., Wang, Y., Zhang, Z., Liang, J., Ruan, B., Gao, L., Chen, Z., Melino, G., Wang, X., Sun, Q., 2022. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 8, 35.
    1. Author Response

      Reviewer #1 (Public Review):

      In this genetic and imaging based analysis of stem-cell maintenance and organ initiation, two phases important for continued production of shoot organs in plants, the authors tested whether SHR and targets/partners (SCR, SCL23, JKD) provide the circuitry to maintain stem cell pool and contribute to the production of lateral organs. Finding that these factors are indeed expressed in and required for SAM activities, and furthermore, behaviors of SHR and SCR in the root are recapitulated in the meristem, including mobility of SHR (here to epidermis from internal layers), activation of SCR by SHR, and "trapping" of SHR movement by complexing with SCR. Strengths include high quality imaging of reporters and FRET-FLIM measurement to assess in vivo complex formation. The analysis is then extended to link SHR and SCR to shoot-specific factors and auxin, again by testing expression, genetic dependencies and physical interaction. This is repeated for a number of factors and individually, each is well done experiment. Conclusions about causal relationships are somewhat overstated (for example, the idea that SHR-SCR act through CYCD6 to alter cell division is based on expression patterns, not a functional analysis of cycd6).

      We concluded that SHR and cofactors drive cell proliferation through CYCD6;1, substantiated by the significant reduction in pCYCD6;1-GFP expression within the lateral organ primordia of the shr-2 mutant. This decrease in expression corresponds with the reduction in the number of cell layers within the L3 of the lateral organ primordia in shr-2 mutants, compared to wild-type. To further support this conclusion, we have added new data by analyzing the meristem of the cycd6;1 mutant. Our findings reveal a small, but significant reduction in both meristem size and the number of cell layers in the L3, relative to the wild type, as depicted in Fig4-FigSuppl2I-N. Collectively, these findings underscore our assertion that the SHR regulatory network plays a role in activating CYCD6;1 expression, thereby promoting cell division within the lateral organ primordia.

      In general, there are many high-quality studies included in this paper, and the presentation of imaging data (both the images themselves and quantification of data) is excellent. There is also a lot of data, and while each section was presented in a logical way, connections between sections, and the overarching developmental questions were sparse. Because the authors found that many of the relationships defined in the root were recapitulated in the shoot, the present organization leaves one with somewhat of a sense that little new was learned, and yet, the shoot meristem IS different and there are shoot specific inputs into the core regulatory factors. Rewriting to highlight the different activities (and thus expectation about regulation) could make the finding of the same network more interesting and creating a summary figure that highlights the input of shoot specific signals would bring the unique analysis to the forefront.

      We greatly appreciate your positive feedback on the imaging data presentation and the quality of the included studies! We tried to address your and the other reviewer´s comments and strengthened the connections between the different sections of the manuscripts. We made substantial revisions to the organization and presentation of the paper. Our focus has been on highlighting the distinct activities and regulatory aspects of the SHR network within the shoot meristem, underscoring the novel insights gained from this analysis. We also created a summary figure that features the input of shoot-specific signals, thereby emphasizing the unique analysis conducted. These changes have allowed us to better convey the significance of our findings and showcase the novel aspects of shoot meristem regulation. We believe these revisions align more closely with the paper's objectives and will make the study's contributions more engaging and apparent.

      Reviewer #2 (Public Review):

      This study contains a huge amount of data and the images are of high quality. However, the conclusions are not really well supported. The authors may have reached too far from their results. The roles of SHR, SCR and SCL23 in the shoot apex are not really clarified. The manuscript by Bahafid et al., reports a study of the functions of SHORTROOT (SHR), a well-established root development regulator in the shoot apical meristem (SAM) development with focus on lateral organ initiation. A large amount of data is included in this paper. This study highly depends on imaging, and the images are in general of very good quality. The authors show reciprocal interactions between SHR and SCR with auxin/MP. There are also a large amount of genetic interactions among several genes, including WUS and CLV3. Although the study provides a vast amount of data, the conclusions are not so well supported. There seem to be many interactions, at the protein level, and at the transcriptional regulation level, but the conclusion is nevertheless ambiguous.

      We have refined our manuscript.

    1. Author Response

      Evaluation Summary:

      The manuscript shows that retinal ganglion cell light responses in awake mice differ substantially from those under two forms for anesthesia and previously attained ex vivo recordings. This difference is central to our understanding of how ganglion cell responses relate to behavior. There are a few technical issues and issues about how the work is presented that could be strengthened.

      We thank the reviewers for their constructive comments. We have addressed all the issues, and added substantially more data and analysis results in the revised manuscript, further supporting our findings that awake responses are larger, faster, and more linearly decodable in the mouse retina than those responses under anesthesia or ex vivo.

      Reviewer #1 (Public Review):

      This paper compares output signals from the mouse retina in three conditions: awake mice, anaesthetized mice, and isolated retinas. The paper reports substantial differences, particularly between awake and either of the other conditions. Retinal signaling has been well studied using ex vivo preparations, with an assumption that the findings from those studies can be carried over to how the retina operates in vivo. The results from this paper at a minimum indicate a need to be cautious about that assumption. There are several technical issues that need testing or further explanation, and several issues about the presentation that could be clarified.

      Spike sorting

      The paper does not describe any control analyses that test for contamination in spike sorting. These are needed to evaluate the work.

      We have reported the details of our spike sorting procedure in the revised manuscript (Data Analysis section in Methods and Figure 1). In short, single-units were identified by clustering in principal component space, followed by manual inspection of spike waveform (triphasic as expected from axonal signals; e.g., revised Figure 1F-H; Barry, 2015) as well as auto- and cross-correlograms (minimal inter-spike interval above 1 ms for a refractory period; e.g., revised Figure 1I-K). A small fraction of visually responsive cells (20/282, awake; 21/325, isoflurane; 1/103, FMM) had a small fraction of interspike intervals below 2 ms; but, whether or not including them in the analysis did not affect our main conclusions.

      Light levels

      The paper argues that differences in light level cannot account for the results. According to the methods, light levels were about two-fold higher at the retina in array recordings as compared to the front of the eye for in vivo recordings. The main text indicates that they differ less, it's not clear why the numbers in the main text and methods are different. Aside from this issue, this comparison does not consider the loss of light between the front of the eye and the retina. It is crucial that the paper provide a more detailed description of light levels. This should include converting those light levels to units that include the spectral output of the light source used (e.g. to isomerizations per rod or cone per second).

      The maximum light intensity of our in vivo setup was 31.3 mW/m2 (with 15.9 mW for UV LED and 15.4 mW/m2 for blue LED). Following the suggestion by the reviewer, we calculated the photon flux on the mouse retina in vivo by taking into account the loss of light by the eye optics. In short, assuming 50% and 68% transmittance at 365 nm and 454 nm, respectively (Jacobs & Williams 2007), the pupil size of 1 mm and the retinal diameter of 4 mm with the stimulus covering 73° in azimuth and 44° in elevation, we obtained the photon flux on the mouse retina in vivo as 3.81×103 and 6.64×103 photons/s/μm2 for UV and blue light, respectively. Assuming a total photon collecting area of 0.2 μm² for cones and 0.5 μm² for rods (Nikonov et al. 2006), and a relative sensitivity of rods, S- and M-cones to be [UV, Blue]=[25, 60], [90, 0], [25, 60]%, respectively (Jacobs & Williams 2007), we then estimated the photoisomerization (R) rate as: 2.5×103 R/rod/s, 0.7×103 R/S-cone/s, and 1.0×103 R/M-cone/s.

      In contrast, the maximum light intensity of the in vitro set up was 36 mW/m2 as reported in Vlasiuk and Asari (2021). The photon flux on the isolated retina was then estimated to be around 9×104 photons/s/μm2 (under the assumption that the white light from a CRT monitor is centered around 500 nm). Assuming the sensitivity of rods, S- and M-cones to be 40, 2 and 40%, respectively, we then obtained 4×104 R/rod/s, 2×103 R/S-cone/s, and 4×104 R*/Scone/s.

      Thus, the light intensity level was about ten times larger for the in vitro recordings than for the in vivo recordings. The amount of light reaching the retina in the awake condition should also be somewhat smaller than that under anesthesia due to pupillary reflexes. Past studies suggest that the darker the stimulus is, the slower the kinetics is and the smaller the response is for RGCs in an isolated retina (Wang et al 2011). Thus, the light intensity difference cannot simply account for the higher firing and faster kinetics in the awake condition than ex vivo or in the anesthestized condition.

      We have revised the manuscript accordingly.

      Comparison with other work

      The authors accurately point out that there is not much prior work on retinal outputs in awake animals. The paper, however, minimally describes the work that does exist. The Hong et al. (2018) paper, in particular, should be discussed. There are several differences between the results of that paper and the present paper. These include the fraction of recorded cells that are DS cells, and the maintained firing rates (though this does not appear to be studied systematically in Hong et al.).

      In the discussion section of the revised manuscript, we clarified connections to the existing studies on the retinal activity in vivo. To our knowledge, none of the past studies provided descriptive statistics on the awake RGC response properties (Hong et al., 2018; Schroeder et al., 2020; Sibille et al., 2022). Nevertheless, consistent with our study, we can see high baseline activity in the reported examples from C57BL6 mice (Figure 3C, Schroeder et al. 2020; Figure S7h, Sibille et al. 2022).

      Hong et al (2018), in contrast, reported somewhat different as pointed out by the reviewer. Firstly, they found a relatively low baseline activity in RGCs of albino CD1 mice. We think that this is likely due to general impairments of the vision/retina associated with albinism. While equipped with normal electroretinogram signals, CD1 mice showed no optomotor response and a reduced number of rods (Abdeljalil et al 2005; Brown et al 2007). This suggests a certain level of retinal dysfunction in these mice. Secondly, Hong et al (2018) reported a higher fraction of direction-selective RGCs in their recordings (>50% at a DS index threshold of 0.3). This is even higher than one would expect from anatomical and physiological studies ex vivo on BL6 mice (about a third; Sanes and Masland, 2015; Baden et al., 2016; Jouty et al 2013). Besides the effect of albinism, we think that this overrepresentation of DS cells in Hong et al (2018) arose as a consequence of the low baseline activity. As discussed above, the higher the baseline activity, the lower the DS/OS index by definition (Eq.(3) in Methods). Indeed we found much more cells with high DS/OS index values in our anesthetized data than in awake ones (42-54% vs 17% at an index value threshold of 0.15; Figure 2), even though these recordings were done in the same experimental set up.

      A related issue is that there are a few comparisons of ex vivo RGC responses with behavioral sensitivity. Smeds et al. (2019) is one example. More generally, the long-standing observation that dark-adapted sensitivity approaches limits set by Poisson fluctuations in photon absorption, and that prior RGC measurements are consistent with this result, is hard to explain if the RGCs are firing at high spontaneous rates under these conditions. RGC responses will certainly change with light level, but this merits discussion in the paper.

      As the reviewer pointed out, the retina may employ different coding principles under different light levels. In a scotopic condition, ex vivo studies reported a high tonic firing rate for OFF RGC types (~50 Hz, OFF sustained alpha cells in mice; Smeds et al 2019; ~20 Hz, OFF parasol cells in primates; Ala-Laurila and Rieke, 2014), while a low tonic firing for ON cell types (<1Hz for both ON sustained alpha in mice and ON parasol in primates). These ON cells were shown to be responsible for light detection by firing in the silent background, hence compatible with the sparse feature detection strategy. In contrast, our recordings were done in a high mesopic / low photopic range where both rods and cones are supposedly active. Unlike the scotopic condition with rod vision, we then found high firing in awake recordings in general, indicating that no visual feature can be readily detectable as brief firing events in the silent background. To explore the implications of such firing patterns on visual coding, we took a modelling approach in the revised manuscript. We found that a latency-based temporal code was not preferable in the awake condition (Figure 7); and that a linear decoder worked significantly better with the population responses in the awake condition to capture the presented random fluctuation of the light intensity (Figure 8). While we have not tested any behavioural relevance in our study besides correlation to locomotion/pupil size, it is then possible that the retina may work in different modes under different light intensity regimes (Tikidji-Hamburyan et al 2015).

      We clarified these points in the revised discussion section.

      Sampling bias

      The paper argues that sampling bias is not likely to contribute substantially to the results because of the wide variety of cell types recorded (line 431). This does not seem like a particularly strong argument, especially given the large degree of overlap in the distributions of most quantities across preparations. The argument about many cell types could be made more strongly if the distributions were completely separated, but that is not the case.

      We cannot deny the presence of a sampling bias in our datasets, and as the reviewer pointed out, we made comparisons only at a population level, but not at the level of individual cells or cell-types. However, the anesthetized and awake recordings were done with the same recording setup and techniques, and thus subject to the same sampling bias. Hence, the difference in the RGC response properties between these conditions cannot be explained by the sampling bias per se.

      Sensitivity

      The firing rates in response to 10% contrast sinusoids are quite low, as are the maximal firing rates for high contrast sinusoids. Relatedly, the modulation produced by the noise stimuli, particularly for the array recordings, is weak. This raises concerns about the health of some of the preparations.

      To our knowledge, in vivo contrast responses reported here were comparable to ex vivo data in previous reports (mouse, Jouty et al 2018, Pearson and Kerschensteiner 2015; rat, Jensen 2017, 2019). Likewise, the static nonlinearity and its upper bound for ex vivo responses were comparable between this study and previous reports (Santina et al. 2013; Kerschensteiner et al 2008; Cantrell et al 2010; Trapani et al 2022).

      We also examined batch effects in the response to the noise stimuli. We found certain variabilities across preparations in each recording condition, but not to the extent to discard any particular data as an obvious outlier (Figure 6 – figure supplement 1). While it is difficult to tell the health status of preparations retrospectively, we thus believe that the effects were negligible.

      Efficient coding

      Sparse firing is not a universal property of retinal ganglion cell responses. Primate midget RGCs, for example, have pretty high maintained firing rates as shown in many past studies. Mouse RGCs have also been reported to operate in a mode similar to the high firing rate On cells reported here (Ke et al. 2014). A more balanced discussion of this past work is needed.

      As the reviewer pointed out, some retinal ganglion cells show high firing under certain conditions. In a scotopic condition, for example, OFF cells have high firing rates, while ON cells fire virtually nothing unless a light stimulus is presented (Ke et al 2014; Smeds et al 2019). At the behavoural level, a single-photon detection above chance level nevertheless relies on the information from the ON but not the OFF pathway (Smeds et al 2019). Thus, the sparse coding framework still works as a valid strategy here, if not universal.

      This is, however, very different from what we report here. In a high-mesopic/low-photopic light level, we found a general increase of firing across all cell categories in the awake condition, compared to the anesthetized or ex vivo recordings (Figures 3 and 6). While this lowers information transfer rate (bits/spike; Figure 7), we found that the awake responses were more linearly decodable than the responses in the other conditions (Figure 8). We also ran a simulation and showed that a latency-based temporal code is not preferable for the awake responses (Figure 7 – figure supplement 1). These results suggest that the retina in awake condition is in favor of a rate code, though we have not tested all light levels or any behavioural relevance here.

      We clarified these points in the revised manuscript.

      Role of eye movements

      Could eye movements be at least partially responsible for the differences in response properties? Specifically, small fixational eye movements might produce a constantly varying input that could modulate firing.

      As described above (Essential Review item #2), eye movements were rarely observed during the head-fixed awake recordings. Eliminating those events from the analysis did not change our overall conclusions, and thus their contributions should be minimal in this study. It should also be noted that we mainly used full-field stimulation, and thus microsaccades should not substantially affect the amount of light impinging on the retina. We clarified these points in the revised manuscript.

      Reviewer #2 (Public Review):

      The technical achievements presented in the manuscript represent a tour de force, as optical tract recordings in awake mice have only rarely been done before. The substantial number of neurons recorded in both awake and anaesthetized conditions form a precious and worldwide unique dataset. However, since the recordings represent a non-standard approach, it would be, in my view, highly beneficial to show more details about the success of the method. How did the authors post-hoc identify electrode contacts located in the optical tract, how did the spike waveforms look like, what were the metrics of spike sorting quality, etc.

      We added more details about our recording and analysis methods in the revised manuscript. Below are answers to the reviewer’s specific questions:

      • The probe was coated with a fluorescent dye (DiI stain) and its location was verified histologically after the recordings (Figure 1E).

      • Spike waveforms typically had a triphasic shape (e.g., Figure 1F-H) as expected from axonal signals (Barry, 2015).

      • Single-units were identified by clustering in principal component space, followed by manual inspection of spike shape as well as auto- and cross-correlograms. Most units had a minimum interspike interval above 2 ms (93%, awake; 94%, isoflurane; 99%, FMM); and no units had the interspike intervals below 1 ms for a refractory period (e.g., Figure 1I-K), except for 1 (out of 103) for FMM-anesthetized recordings.

      We then selected visually responsive cells (SNR>0.15; see Eq.(1) in Methods) for the analyses.

      The authors go a long way in characterising the functional response properties of the recorded neurons and relating them to previous ex-vivo recordings. Based on the responses they find, the authors claim that they identified "... a new response type [which] likely emerged due to high baseline firing in awake mice". Regarding this claim, how do the authors rule out that it corresponds to any of the previously described cell types? For instance, the very sharp transient or brief modulations by the contrast part of the stimulus might have been missed in previous classifications based on calcium responses (e.g. Baden et al. 2016), where a number of cell types seem to respond equally strong to grey and white and have an elevated response throughout the sinusoidal modulation of contrast. I acknowledge that the authors touch upon the possibility that the newly described OFFsuppressive ON cells correspond to a known cell type in the discussion, but I would recommend changing the phrasing of the results to avoid potential misunderstandings.

      We agreed with the reviewer and revised the manuscript accordingly. Here we have two possibilities. Firstly, as the reviewer pointed out, this kind of response dynamics could be overlooked previously because of a difference in the recording modality (Ca imaging; Baden et al 2016) or clustering methods (Jouty et al 2019). Secondly, these cells may belong to one of the cell-types described in the past ex vivo studies, but exhibited distinct response dynamics in vivo as an emerging property of the awake condition. This is an interesting topic to pursue in future studies.

      The manuscript makes the interesting suggestion that "the retinal output characteristics [...] observed in vivo, [...] provide a completely different view on the retinal code". Given that this conclusion would change the way we should think about and do retinal neuroscience, in my view, the authors should take a few more steps to quantitatively demonstrate the implications of their findings on retinal coding, e.g. how much lower is the information transmitted per spike, how much does a temporal code based on spike timing suffer with the latencies observed in vivo. If the authors could quantify through computational modelling approaches the consequences of the observed differences, they might also be able to revise their title / main message, i.e. that "Awake responses SUGGEST inefficient dense coding in the mouse retina".

      To explore functional implications of our findings, we performed three more analyses as suggested by the reviewer. Specifically,

      1) We showed that the information transmitted per spike was significantly lower in awake condition, while the total information rate was comparable (Figure 7).

      2) We tested the performance of a linear decoder applied on the firing rate in response to full-field noise, and showed that it worked significantly better for the awake population responses (Figure 8).

      3) We simulated RGC responses to a full-field contrast change at different intensities in different conditions, and showed that a latency coding did not work well with awake responses, compared to ex vivo or anesthetized responses (Figure 7 – figure supplement 1).

      These results strengthened our conclusion that awake response dynamics were different from anesthetized or ex vivo responses, all arguing against the sparse efficient coding principles at least at a light level we examined. We nevertheless kept the title as is because we have not explored the retinal coding properties per se. Our main claim stays on the visual response characteristics of retinal outputs in awake mice.

      Reviewer #3 (Public Review):

      The manuscript by Boissonnet, Tripodi, and Asari compares retinal ganglion cell (RGC) light responses in awake mice (recorded in the optic nerve) with those under two forms for anaesthesia and previously attained ex vivo recordings. This is a well motivated study looking at a question that is really critical to the field.

      The presentation is generally clear and compelling. My suggestions are relatively minor and aimed at improving an already very strong article.

      1) More cells in the awake condition would help strenghten the conclusions. Only 51 cells are reported, and mouse RGCs comprise more than 40 different types. The authors are well aware of the possible confound of sampling bias, and the best way to mitigate this issue in this experimental paradigm is simply to record more cells. The anesthsia conditions each have about 100 cells, which is better.

      We made substantially more recordings in the awake condition, reaching 282 cells (in 15 animals) in total in the revised manuscript. This does not yet allow for a full cell-type classification as in the past ex vivo studies. Nevertheless, we did our best to broadly classify visual responses, and showed that the overall conclusions remained the same: awake RGCs had higher baseline firing and faster response kinetics in general. For details, see above our response to the Essential Revision item #1.

      2) It took me longer than it should have (had to look up the previous paper cited) to figure out that the ex vivo comparison data were recorded at 37{degree sign}C. This is an important detail since most ex vivo recordings are at 32{degree sign}C. The authors should make this clear in the text and perhaps say something in the Discussion about comparisons to the larger body of literature of ex vivo studies at 32{degree sign}.

      We are aware that most ex vivo studies on the retina were performed at 32 °C, which is lower than physiological body temperature (37 °C). However, the temperature of the ocular surface is around 37 °C (Vogel et al 2016), suggesting that the retina should operate at 37 °C in vivo. This is why we decided to perform ex vivo experiments at 37 °C in our previous study (Vlasiuk and Asari, 2021), allowing us to make a fair comparison between the ex vivo and in vivo recordings.

      We clarified the point in the revised manuscript.

      3) Direction and orientation selectivity should be separated in Fig. 2 and not combined into the confusing term "motion sensitive." Motion sensitivity has another meaning in the literature for RGCs that respond preferentially to moving over static stimuli without direction or orientation preference (Kuo et al., 2016; Manookin et al., 2018)

      We agree with the reviewer. In the revised manuscript, we separated the direction and orientation selective cells (Figure 2), and avoided the term “motion sensitive.”

      4) While I am certainly sympathetic to the argument that the RGC spike code is "inefficient" in the sense that it does not conform to efficient coding theory (ETC), I think it's oversimplified to claim that the present data is a key argument against ETC. Plenty of ex vivo data has already shown ETC to be incomplete at best, and misguided at worst, since it includes the implicit assumption that image reconstruction is the retina's objective function (or even that the experimenter has any idea what that objective function is). For example, OFF sustained alpha (OFF delta in guinea pig) RGCs are not quite sparse feature detectors even ex vivo, and they seem to be optimized to transmit contrast with high SNR (Homann and Freed, 2017). In general, the enormous coverage factor of the RGC population seems to make ETC untenable to begin with, as discussed in (Schwartz, 2021) and elsewhere. I realize that there are still people attached to simplistic forms of ETC as a key principle of retinal computatiion, so I am not asking for the authors to completely remove this angle. Rather, a more nuanced treatment of the issue both in the introduction and the discussion is warranted.

      We totally agree that we are not the first to argue against the efficient coding principles in the retina (Schwartz, 2021). The main argument in this study is that certain aspects of the RGC activity are distinct in an awake condition, such as the baseline firing and response kinetics, and thus we cannot simply translate our knowledge obtained from ex vivo studies into awake animals. To explore the implications on retinal computations, we showed in the revised manuscript that 1) awake responses have a comparable total information transfer rate (in bits per second; Figure 7A) but are less efficient (i.e., lower bits per spikes; Figure 7B); 2) awake responses are not in favor of a latency-based temporal code (Figure 7 – figure supplement 1); and 3) a linear decoder worked significantly better with awake responses (Figure 8), even though an image reconstruction is not necessarily the objective function of the retina. These results point out a need to rethink about retinal function in vivo, including the efficient coding theory.

      We thank the reviewer for the suggestion, and revised the manuscript accordingly.

      References

      Homann, J., and Freed, M.A. (2017). A mammalian retinal ganglion cell implements a neuronal computation that maximizes the SNR of its postsynaptic currents. Journal of Neuroscience 37, 1468-1478.

      Kuo, S.P., Schwartz, G.W., and Rieke, F. (2016). Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina. Neuron 90, 320-332.

      Manookin, M.B., Patterson, S.S., and Linehan, C.M. (2018). Neural Mechanisms Mediating Motion Sensitivity in Parasol Ganglion Cells of the Primate Retina. Neuron 97, 13271340.e4. Schwartz, G.W. (2021). Retinal Computation (Academic Press).

    1. Author Response

      Reviewer #1 Public Review:

      In this manuscript, Berne et al apply state-of-the-art methodology for quantifying animal behavior to identify distinct behavioral components associated with the repeated application of mechanical stimuli. A central strength of this manuscript is the development of a sophisticated system for precisely applying mechanical stimuli and measuring behavior. This is a significant advance over commonly used approaches and has the potential to broadly impact the field. I have some concerns about the methods used to define discrete behaviors and the interpretations drawn from them (see point 2), the opposing phenotypes of memory mutants, and the circuit modeling. However, the overall results provide strong evidence that a small set of behaviors reflect the intensity of response to stimuli, and these combine to reflect an overall complex behavioral response to mechanical stimuli. Overall the manuscript is well written, and clearly communicates results. The level of analysis has the potential to broadly impact many fields examining innate and learned responses to sensory stimuli.

      1) A central strength of this manuscript is the resolution of behavioral analysis. Implicit in this is the potential to use a wealth of genetic analysis and sophisticated genetic tools to dissect the neural basis of these behaviors. These implications would be clearer if the introduction provided more description of this literature.

      This is certainly true, where the findings from behavior experiments should lead to interesting investigations at the neural circuit level. This is especially true for Drosophila, which has a wealth of genetic tools readily available. We have added a new paragraph at the end of the Introduction section to discuss this, and provide citations to a number of commonly used tools that could be used to identify and characterize the circuit side of mechano-sensation and adaptation in flies.

      2) It is unclear how the 4 discrete behaviors were decided upon, and whether there are rarer behaviors, or subcategories within them (for example, sideways crawl).

      We do list a number of behaviors in the third paragraph of the Introduction, and describe some of these in more detail in the next paragraph, but agree that a clearer justification needs to be given for focusing on the four specific behaviors in the paper. The answer is that these are the only behaviors that larvae perform given the constraints we place on their movement (hard, flat agar gel), and because we avoid overly strong stimuli that would cause more drastic pain responses. This is now noted directly near the end of the 5th paragraph of the Introduction.

      3) From figure 1A it looks like the mechanical transducer remains in the center independently of where the larvae is. Could it be possible that subtle differences in mechanical force are detected across the arena and this impacts the response? Does the degree of turning matter?

      While the first paragraph of the Results section notes we use a “customized platform,” and the details and purpose of this are listed later in the second paragraph of Materials and Methods, I think it is warranted to include more details up front, as many readers will likely have the same question. We now clearly state what is customized about the platform and that its purpose is to achieve a spatially uniform vibration stimulus, and point the reader to Materials and Methods for further details.

      4) I am not clear about the application of statistics. For example, 2D states that as a general trend, increasing vibration also increases reversals. I can see this, clearly but is there reason not to run statistics on these data?

      We agree, it is not sufficient to simply state there is a general trend, when statistics can be readily applied (especially to binary/fractional data like this!). We have performed statistical comparison tests for reverse crawling response probabilities in the data in Figure 2C, which shows fractional behavior usage for a wide range of vibration frequency and acceleration. We show the statistics in two ways. (1) Adjacent graphs are connected with bridging lines that are black (p>0.05) or yellow (p<0.05) (Fisher’s exact test for both), which shows the onset of significant reverse crawling behavior when looking along gamma or f axes. (2) Each of the 29 graphs was tested against the baseline (zero vibration) reverse crawl fraction, and red dots indicate significant reverse crawl use. The graphs and captions for Figure 2C have been updated accordingly.

      We also did more serious statistics with the data in Figure 5 (habituation model compared to data) and Figure 7 (simple circuit model compared to data), and those are described below with their associated comments.

      5) The importance of vibration behavior in research is discussed but the ecological relevance of these behaviors is not described.

      A very good idea for setting the context better. We have added a new paragraph to the Introduction with 56 references for readers interested in learning more about this side of things. Vibration response is important in real larvae in nature too, it helps them communicate and avoid predators.

      6) The results of habituation times in mutants are not clear to me. One might predict dnc and rut would have the same phenotype but they have opposing phenotypes with rut being a super-habituate.

      The dnc and rut mutants both desensitize faster than the CS control larvae (comparing the traces in Fig6A to the gray wild type version), which would agree with this prediction, but the details are still finer details to sort out. For example that rut is faster than dnc, or that rut is faster at both desensitizing and re-sensitizing than wild type, but dnc is slow to re-sensitize. This would be interesting to piece together, but for now the mutant results highlight the importance of extracting the finer details (and multiple time constants) involved in vibration response, and explaining why the mutants (or other future strains tested) have the specific values is a bit beyond the scope of this paper.

      We have noted the comparisons with dnc and rut more directly in the text now, accompanying the descriptions of Fig. 6A and 6B in the Results section.

      7) I appreciate the application of circuit modeling, but it would seem that this would be strengthened by including what is already known about the biological circuit.

      We were not very clear about describing the purpose of the circuit model – we did not intend the circuit components of the model to directly match the actual neural circuit elements. It is primarily a visualization tool for what appears to be happening based on the empirical results (although the math behind the circuit might suggest some possible real mechanisms, noted in Discussion). In earlier drafts the visualization tool was a water bucket pouring into a second bucket with a hole in the bottom, with water volume analogous to habituation (the math was identical to the capacitor circuit). We have added a sentence at the beginning of the circuit model section to clarify its purpose better.

      That said, we agree it is important to discuss the context of the real neural circuit. This was in the Introduction already, but not emphasized or introduced very well. This section now has its own paragraph, which we have expanded and added additional references (paragraph starting with “Some aspects of the neural circuitry…”).

      We have also substantially edited the Results section about the circuit model in response to other comments below, and it should be more focused and clearer now.

      Reviewer #2 (Public Review):

      Berne et al. establish the responses of Drosophila larvae to mechanical vibrations as a novel paradigm to study habituation. The authors first comprehensively quantify the different types of locomotor responses to vibrations and find that larvae respond to faster and stronger vibrations with more avoidance-type behaviors, like pauses, turns, and reversals. The authors then combine genetic and computational methods to characterize the strong de-sensitization of avoidance responses to vibrations. De-sensitization of reversals follows a simple, exponential decay with a single time constant. By contrast, re-sensitization dynamics are more complex and strongly accelerate after repeated exposure to a vibration stimulus. The authors then test mutants for genes involved in learning and memory (rut, dnc, cam) and find altered desensitization and re-sensitization dynamics, suggesting that these genes mediate this behavior. Finally, a simple and intuitive electrical circuit model is used to explain these complex dynamics results. Overall, the results are interesting and they successfully combine behavioral characterization, genetic manipulations, and computational modeling to explain the behavior.

      The analyses are all sound and support most of the conclusions but additional control experiments and analyses are required.

      1) To convincingly show that the computational models capture the key aspects of the behavior and therefore provide insight into the underlying phenomenon, model predictions and behavioral data need to be compared systematically and quantitatively. This is not sufficiently done for the electrical circuit model, and the analyses shown in Fig. 7C need to be extended. The model should be fitted to the data and the match between model and data should be A) quantified using a suitable measure of goodness-of-fit and B) illustrated by overlaying behavioral data and model predictions.

      We agree, and thank the referee for pointing this out. The circuit model was intended as primarily a visualization tool, but it was not fair of us to say that it correctly predicts anything real without being more precise and quantitative, including using significance metrics. We also feel that Fig. 7C was not a very compelling demonstration and not very interesting. We have replaced 7C with a new panel that shows empirical reverse crawl probability overlayed with the circuit model’s prediction of reverse crawl behavior (where FREV ~ exp(-Q2). The peak values match very closely, although the overall shape does not, due to the simplicity of the model. This is discussed fully in the Results text and in a redone Fig. 7 caption.

      Moreover, the contribution of individual circuit elements should be quantified, for instance by removing key elements from the model like the second capacitor. If a good quantitative fit is for some reason hard to obtain, then more effort should be spent to demonstrate a good qualitative agreement between model and data.

      We have shown what we think is the bare minimum circuit model that can include the accumulation and decay of a substance (the charge Q2 standing in for “habituation”). We could have built a more complicated circuit and essentially forced it to have the same time constants as we extracted from data, but felt that would lose sight of its appeal as a visualization tool and qualitative idea. We could not remove C2, for example, because the “output” of the circuit model itself is the charge on that capacitor.

      In response to further comments below we have overhauled and simplified the section about the circuit model, and hope this also helps alleviate any concerns.

      The same goes for the phenomenological model in Fig. 5. Predictions of model variants with a constant re-sensitization time constant and a time constant that changes with pulse number should be shown and their fit to the data should be quantified.

      Absolutely. We have added two other versions of the model to Fig. 5E (one with only desensitization and the other that doesn’t have the time constant changing with pulse number) and performed significance tests on the peak values for each pulse response. The model with all three aspects of habituation performs the best. Fig. 5E has been made larger to better see the traces, we have added visual cues and a legend for the significance tests, and the caption has been expanded accordingly.

      2) The Markov model in Fig. 3 is used to state that habituation is a one-way process from reversals to other behaviors, with only rare transitions back to reversals. However, the low transition rates to reversals (Fig. 3) seem at odds with the fast re-sensitization after repeated stimulation (Fig. 5). This should be explained and both results should be linked.

      This is a really good observation, and fortunately does have an explanation. The assigned behaviors in Fig. 3 are what we observe during the first 3 seconds after vibration onset. Habituation sets in as the stimulus stays on, then re-sensitization (even if not complete) occurs while the stimulus is off. Then when the stimulus turns on again, we assign the next behavior. An individual with a strong (reversal) response will most often (85% of the time) reverse again the next time the stimulus turns on. We would not classify that as a transition back to reversal, but as a repeat of the reversal behavior following de-sensitization and resensitization. For the 15% of individuals that did not reverse the second time, they will only very rarely (< 2%) reverse the third time. The re-sensitization process in fact explains why strong response behaviors so often repeat for the next vibration pulse response.

      We have expanded a paragraph in the Results section to add text similar to what we have written here to clear up this point. It’s the last paragraph in the “Re-sensitization rates increase…” subsection.

      3) Based on altered de-sensitization and re-sensitization dynamics in mutants, the authors claim that three different genes - rut, dnc, cam - are involved in the molecular pathway that mediates habituation of larval locomotor responses to vibrations. This is interesting and deserves further study. However, it is unclear whether the observed effects are specific to the genes that were altered or whether the effects stem from differences in the genetic background across the mutants. This could be resolved in two ways: Ideally, with rescue experiments; if this is not feasible, then data from different wild-type strains could be used to show that the de-sensitization and re-sensitization dynamics are similar across wild types and somewhat robust to genetic background.

      Additional control data with other wild type strains was not doable due to personnel issues noted in our resubmission letter, and also time constraints (for example, each trace like the one in Fig. 5A requires 1000 animals to construct – we suspect that the required number of larva-hours to determine habituation parameters is a large part of why other researchers have not observed these habituation characteristics in larvae before). We do acknowledge this limitation directly in the manuscript now, and highlight why it would be important for further experiments like these to be carried out in the future. A new paragraph in the “Conclusions” subsection of Discussion discusses this. We now state directly that the mutant results are there to highlight the importance of characterizing multiple time constants and other dependencies when determining anything about habituation. The fact that habituation parameters are not the same as this particular CS wild type is suggestive, but given the lack of additional controls it would not be fair to make specific statements about any of the mutants at this stage.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary of the major findings -

      1) The authors used saturation mutagenesis and directed evolution to mutate the highly conserved fusion loop (98 DRGWGNGCGLFGK 110) of the Envelope (E) glycoprotein of Dengue virus (DENV). They created 2 libraries with parallel mutations at amino acids 101, 103, 105-107, and 101-105 respectively. The in vitro transcribed RNA from the two plasmid libraries was electroporated separately into Vero and C6/36 cells and passaged thrice in each of these cells. They successfully recovered a variant N103S/G106L from Library 1 in C6/36 cells, which represented 95% of the sequence population and contained another mutation in E outside the fusion loop (T171A). Library 2 was unsuccessful in either cell type.

      2) The fusion loop mutant virus called D2-FL (N103S/G106L) was created through reverse genetics. Another variant called D2-FLM was also created, which in addition to the fusion loop mutations, also contains a previously published, evolved, and optimized prM-furin cleavage sequence that results in a mature version of the virus (with lower prM content). Both D2-FL and D2-FLM viruses grew comparably to wild type virus in mosquito (C6/36) cells but their infectious titers were 2-2.5 log lower than wild type virus when grown in mammalian (Vero) cells. These viruses were not compromised in thermostability, and the mechanism for attenuation in Vero cells remains unknown.

      4) Next, the authors probed the neutralization of these viruses using a panel of monoclonal antibodies (mAbs) against fusion loop and domain I, II and III of E protein, and against prM protein. As intended, neutralization by fusion loop mAbs was reduced or impaired for both D2-FL and D2-FLM, compared to wild type DENV2. D2-FLM virus was equivalent to wild type with respect to neutralization by domain I, II, and III antibodies tested (except domain II-C10 mAb) suggesting an intact global antigenic landscape of the mutant virion. As expected, D2-FLM was also resistant to neutralization by prM mAbs (D2-FL was not tested in this batch of experiments).

      5) Finally, the authors evaluated neutralization in the context of polyclonal serum from convalescent humans (n=6) and experimentally infected non-human primates (n=9) at different time points (27 total samples). Homotypic sera (DENV2) neutralized D2-FL, D2-FLM, and wild type DENV similarly, suggesting that the contribution of fusion loop and prM epitopes is insignificant in a serotype-specific neutralization response. However, heterotypic sera (DENV4) neutralized D2-FL and D2-FLM less potently than wild type DENV2, especially at later time points, demonstrating the contribution of fusion loop- and prM-specific antibodies to heterotypic neutralization.

      Impact of the study-

      1) The engineered D2-FL and D2-FLM viruses are valuable reagents to probe antibodies targeting the fusion loop and prM in the overall polyclonal response to DENV.

      2) Though more work is needed, these viruses can facilitate the design of a new generation of DENV vaccine that does not elicit fusion loop- and prM-specific antibodies, which are often poorly neutralizing and lead to antibody-dependent enhancement effect (ADE).

      3) This work can be extended to other members of the flavivirus family.

      4) A broader impact of their work is a reminder that conserved amino acids may not always be critical for function and therefore should not be immediately dismissed in substitution/mutagenesis/protein design efforts.

      Evaluating this study in the context of prior literature -

      The authors write "Although the extreme conservation and critical role in entry have led to it being traditionally considered impossible to change the fusion loop, we successfully tested the hypothesis that massively parallel directed evolution could produce viable DENV fusion-loop mutants that were still capable of fusion and entry, while altering the antigenic footprint."

      ".....Previously, a single study on WNV successfully generated a viable virus with a single mutation at the fusion loop, although it severely attenuated neurovirulence. Otherwise, it has not been generated in DENV or other mosquito-borne flaviviruses"

      The above claims are a bit overstated. In the context of other flaviviruses:

      • A previous study applied a similar saturation mutagenesis approach to the full length E protein of Zika virus and found that while the conserved fusion loop was mutationally constrained, some mutations, including at amino acid residue 106 were tolerated (PMID 31511387).

      • The Japanese encephalitis virus (JEV) SA14-14-2 live vaccine strain contains a L107F mutation in the fusion loop (in addition to other changes elsewhere in the genome) relative to the parental JEV SA14 strain (PMID: 25855730).

      • For tickborne encephalitis virus (TBEV-DENV4 chimera), H104G/L107F double mutant has been described (PMID: 8331735)

      There have also been previous examples of functionally tolerated mutations within the DENV fusion loop:

      • Goncalvez et al., isolated an escape variant of DENV 2 using chimpanzee Fab 1A5, with a mutation in the fusion loop G106V (PMID: 15542644). G106 is also mutated in D2-FL clone (N103S/G106L) described in the current study.

      • In the context of single-round infectious DENV, mutation at site 102 within the fusion loop has been shown to retain infectivity (PMID 31820734).

      We thank the reviewer for these comments. We have adjusted the text above to better reflect and credit the prior literature. Text is modified as follows in the discussion session.

      “Previous reported mutations in the fusion loop are mainly derived from experimental evolution using FL-Ab to select for escape mutant or by deep mutational scanning (DMS) of the Env protein for Ab epitope mapping. Mutations in the FL epitope were observed in a DENV2-NGC-V2 (G106V)39, attenuated JEV vaccine strain SA14-14-2 (L107F)40, attenuated WNV-NY99 (L107F)41. While most of the mutations, including the double mutations reported here lead to attenuation of the virus. A recent DMS study showed that Zika-G106A has no observable impact on viral fitness42. Interestingly, we also recovered a mutation G106L, suggesting position 106 and 107 might be the most tolerable position for mutation in mosquito borne flavivirus FL. On the other hand, tick borne flavivirus as well as vector only flavivirus show a more diverse FL composition. The inflexibility of mosquito borne flavivirus might be due to the evolution constraint of the virus to switch between mosquito and vertebrate hosts.”

      Appraisal of the results -

      The data largely support the conclusions, but some improvements and extensions can benefit the work.

      1) Line 92-93: "This major variant comprised ~95% of the population, while the next most populous variant comprised only 0.25% (Figure 1C)".

      What is the sequence of the next most abundant variant?

      The sequence of the next most abundant variant has been added to the text.

      2) Lines 94-95: "Residues W101, C105, and L107 were preserved in our final sequence, supporting the structural importance of these residues." L107F is viable in other flaviviruses.

      We acknowledge that the L107F mutation has been described in other flaviviruses, including the tick-borne flaviviruses DTV and POWV. This mutation in JEV is associated with viral attenuation. This sentence is referring to the fact that, in our libraries, we did not recover variants with mutations at these positions, in contrast to D2-FL with variants at N103 and G106, indicating less mutational tolerance. However, we want to re-direct the focus of this manuscript to engineer a viable DENV that is antigenically different in the FL epitope, but not which residue is more tolerance for mutation.

      3) Figure 2c: The FLM sample in the western blot shows hardly any E protein, making E/prM quantitation unreliable.

      The samples used in Figure 2C derive from the growth curve endpoint (Figure 2A), in which there is a 1-log difference in viral titer between D2 and D2-FLM. Equivalent volumes of viral supernatant were loaded in the gel, explaining the reduced intensity of the E band in D2-FLM. The higher exposure on the right shows the E band more clearly for D2-FLM. The Western blot assay comparing prM/E ratio as a measure of maturation state was described and validated in our previous study (Tse et al. 2022, mbio). The methods and figure legend have been updated to include greater detail. The polyclonal E antibody was specifically chosen for this study as our previously used monoclonal antibody targeted the fusion loop. The polyclonal antibody was raised against a fragment of E (AA 1-495) and should have minimal effect by the fusion loop mutations.

      4) Lines 149 -151: "Importantly, D2-FL and D2-FLM were resistant to antibodies targeting the fusion loop. While neutralization by 1M7 is reduced by ~2-logs, no neutralization was observed for 1N5, 1L6, and 4G2 for either variant (Figure 3 A)".

      a) Partial neutralization was observed for 1N5, for D2-FL.

      The text has been updated to more accurately describe the 1N5 neutralization data.

      b) Do these mAbs cover the full spectrum of fusion loop antibodies identified thus far in the field?

      We did not test every known fusion loop antibody that has been described, instead focusing on 1M7, 1N5, 1L6, and 4G2, which were previously described by Smith et al and Crill et al. We also modified the text in discussion to reflect the possibility of other FL-Ab that are not affected by out mutations.

      “We have tested a panel of FL-Ab; however, we cannot exclude the possibility that other FL-Abs may not be affected by N103S and G106L. However, we have shown that saturation mutagenesis could generate mutants with multiple amino acid changes, and we are currently using D2-FLM as backbone to iteratively evolve additional mutations in FL to further deviate the FL antigenic epitope.”

      c) Are the epitopes known for these mAbs? It would be useful to discuss how the epitope of 1M7 differs from the other mAbs? What are the critical residues?

      Critical residues for these antibodies have been described. They are as follows: 1M7: W101R, W101C, G111R; 1N5: W101R, L107P, L107R, G111R; 1L6: G100A, W101A, F108A; 4G2: G104H, G106Q, L107K. The critical residues for 1M7 are slightly different than the others, perhaps explaining the residual binding to D2-FL. Note that the critical residue identified previously for 1M7 and 1N5 do not overlap with D2-FLM mutations, suggesting the FL mutations has extending effect on the antigenic FL epitope.

      d) Maybe the D2-FL mutant can be further evolved with selection pressure with fusion loop mAbs 1M7 +/-1N5 and/or other fusion loop mAbs.

      We agree that it may be possible to further evolve D2-FL using antibody selection, although we have not yet performed these experiments, we are currently performing iterative saturation mutagenesis and directed evolution to further evolve away from the natural FL.

      5) It would have been useful to include D2-M for comparison (with evolved furin cleavage sequence but no fusion loop mutations).

      Neutralization data for some of the mAbs against D2-M can be found in our previous study (Tse et al. 2022 mBio), in which no difference in neutralization was observed compared to DV2 wildtype. Given the limited resources of the anti-DENV NHP and human serum, we did not add D2-M for comparison. Although some insight can be deduced from the D2-FL vs D2-FLM comparison, we agree future studies that are designed to delineate CR-Ab population between prM, FL and other CR-epitopes should include D2-M for comparison.

      6) Data for polyclonal serum can be better discussed. Table 1 is not discussed much in the text. For the R1160-90dpi-DENV4 sample, D2-FL and D2-FLM are neutralized better than wild type DENV2? The authors' interpretation in lines 181-182 is inconsistent with the data presented in Figure 3C, which suggests that over time, there is INCREASED (not waning) dependence on FL- and prM-specific antibodies for heterotypic neutralization.

      We remade Table 1 to show dilution factors instead of dilution factor-1 of FRNT50.

      In general, our human convalescent sera from heterotypic infection (DENV1, 3 and 4) showed none to low neutralization against our DENV2. FRNT50s were between 1: 40 – 1:200. Given the weak potency of the antiserum, it is difficult to compare the FRNT50s between DV2-WT and D2-FLM.

      Similarly, in a different NHP cohort (2nd NHP cohort shown in Table 1), only one DENV4 infected NHP (R1160) showed a low heterotypic titer against DENV2. The detectable FRNT50s were between 1: 50 – 1:90. The value was extrapolated based on a single data point (1:40) which has above 50% neutralization. Given the Hill slope of all the neutralization curves were below 0.5, the FRNT50 values is should not be

      In conclusion, we do not think serum from Table 1 is potent enough to shows difference between the viruses. The intension to show the negative data in Table 1 is to highlight the difference in serum heterogeneity in DENV infected patients and experimental infected NHPs.

      As the reviewer pointed out, the dependence of FL-Ab in later time points increased (the difference between DV2 and D2-FL at 20dpi vs 60dpi vs 90dpi), suggesting non-FL CR-Ab is waning but not prM- and FL-Abs. We rewrote the sentence as follow:

      “These data suggest that after a single infection, many of the CR Ab responses target prM and the FL and the reliance on these Abs for heterotypic neutralization increase overtime (Figure 3C).”

      Suggestions for further experiments-

      1) It would be interesting to see the phenotype of single mutants N103S and G106L, relative to double mutant N103S/G106L (D2-FL).

      2) The fusion capability of these viruses can be gauged using liposome fusion assay under different pH conditions and different lipids.

      3) Correlative antibody binding vs neutralization data would be useful.

      We thank the reviewer for the suggestions; we agree these would be of interest and, indeed, these studies are currently underway. In regard to single mutants, these were present in the initial plasmid library but did not enrich after viral production and passage. Two possible explanations can be drawn, 1) The stochastic of directed evolution prevents a single mutant with similar fitness to enriched. 2) The two mutations are compensatory to each other to make a functional mutant. The 2nd hypothesis highlights the difference between saturation mutagenesis (this study) and DMS (in previous studies).

      Fusion capability is indeed very interesting, however, the mechanistic difference or not between wildtype FL and the mutated FL in supporting fusion is not the focus of this study. Instead, we are currently working on adapting the D2-FLM in mammalian cells. If successful, the difference in fusion mechanism between the Vero adapted and D2-FLM in different lipid, insect vs mammalian would be of interest.

      We are currently developing whole virus ELISA; we avoid using rE monomer for the study as it might neglect the conformation Ab.

      Reviewer #2 (Public Review):

      Antibody-dependent enhancement (ADE) of Dengue is largely driven by cross-reactive antibodies that target the DENV fusion loop or pre-membrane protein. Screening polyclonal sera for antibodies that bind to these cross-reactive epitopes could increase the successful implementation of a safe DENV vaccine that does not lead to ADE. However, there are few reliable tools to rapidly assess the polyclonal sera for epitope targets and ADE potential. Here the authors develop a live viral tool to rapidly screen polyclonal sera for binding to fusion loop and pre-membrane epitopes. The authors performed a deep mutational scan for viable viruses with mutations in the fusion loop (FL). The authors identified two mutations functionally tolerable in insect C6/36 cells, but lead to defective replication in mammalian Vero cells. These mutant viruses, D2-FL and D2-FLM, were tested for epitope presentation with a panel of monoclonal antibodies and polyclonal sera. The D2-FL and D2-FLM viruses were not neutralized by FL-specific monoclonal antibodies demonstrating that the FL epitope has been ablated. However, neutralization data with polyclonal sera is contradictory to the claim that cross-reactive antibody responses targeting the pre-membrane and the FL epitopes wane over time.

      Overall, the central conclusion that the engineered viruses can predict epitopes targeted by antibodies is supported by the data and the D2-FL and D2-FLM viruses represent a valuable tool to the DENV research community.

      Reviewer #1 (Recommendations For The Authors):

      1) Line 51-52: "Currently, there is a single approved DENV vaccine, Dengvaxia." Line 56-57: "Other DENV vaccines have been tested or are currently undergoing clinical trial, but thus far none have been approved for use."

      It should be specified for the global audience that this applies to the United States. Takeda's DENV vaccine, QDENGA is approved in Indonesia, European Union, and Brazil.

      The text has been modified to include this information.

      2) Line 62-63: - "The core fusion loop-motif DRGWGNGCGLFGK is highly conserved..." Lines 78-80: - We generated two different saturation mutagenesis libraries, each with 5 randomized amino acids: DRGXGXGXXXFGK (Library 1) and 79 DRGXXXXXGLFGK (Library 2).

      It may be useful for the readers if the amino acid numbers are stated. The core fusion loop motif DRGWGNGCGLFGK (Eaa98-110) is highly conserved. We generated two different saturation mutagenesis libraries, each with 5 randomized amino acids: DRGXGXGXXXFGK (Library 1; Xaa 101,103, 105-7) and DRGXXXXXGLFGK (Library 2; Xaa 101-105).

      This information has been added to the text.

      3) Line 91-92: "Bulk Sanger sequencing revealed an additional Env-91 T171A mutation outside of the fusion-loop region."

      It looks like the mutation T171A is in domain I of the E protein and does not seem to interface with the fusion loop. Is that why it wasn't pursued further?

      The E171A mutation was included in the infectious clone for D2-FL and D2-FLM. The text has been modified to clarify this inclusion.

      4) Lines 82-85: "Saturation mutagenesis plasmid libraries were used to produce viral libraries in either C6/36 (Aedes albopictus mosquito) or Vero 81 (African green monkey) cells and passaged three times in their respective cell types."

      a) What was the size of the libraries? How does one make sure that the experimental library actually has all the amino acid combinations that were intended?

      Each library has 5 randomized amino acids, so there are 205 = 3.2 million combinations. In these experiments, sequencing of the plasmid libraries revealed about 2 million unique amino acid sequences, or approximately 62.5% library coverage. The actual plasmid diversity is expected to be higher than 2 million as our deep sequencing has limited coverage.

      b) The wild type sequence was excluded from the libraries, correct?

      The wild-type sequence was not specifically excluded from the libraries, as there is no easy method to do so. Wild-type sequence was detected in the plasmid libraries but was not selected in the C6/36 library. However, in the Vero library, we recovered WT virus.

      5) Table 1: - Please include in the table description, what the colors indicate.

      We remade Table 1 to show dilution factors instead of dilution factor-1 of FRNT50 and removed the unnecessary color code. We also added all relevant information in the table legend.

      6) Lines 246-248: "Previously, a single study on WNV successfully generated a viable virus with a single mutation at the fusion loop, although it severely attenuated neurovirulence."

      It may be worthwhile to mention the WNV mutation (L107F) as some readers may be curious about where this mutation is relative to the ones described in this study.

      This information has been added to the text. We also included the previously described FL mutations in flaviviruses in the text.

      Reviewer #2 (Recommendations For The Authors):

      Major Critique:

      • There is a disconnect between Fig 2A and 2C. FL and FLM viruses have much lower levels of prM-E expression in the viral supernatants based on the western blot in 2C. Why isn't E being detected in the Western? Is the particle-to-pfu ratio skewed in the mutant viruses? Is it possible that the polyclonal is targeting the cross-reactive prM and FL epitopes, and if so would using a monoclonal antibody targeting a known DIII-epitope (2D22) yield a different western result? Also, the legend and methods for Fig 2C are not clear. What is actually being tested in the Western blot? Were equivalent volumes of the different viral preps used?

      The samples used in Figure 2C derive from the growth curve endpoint (Figure 2A), in which there is a 1-log difference in viral titer between D2 and D2-FLM. Equivalent volumes of viral supernatant were loaded in the gel, explaining the reduced intensity of the E band in D2-FLM. The higher exposure on the right shows the E band more clearly for D2-FLM. The Western blot assay comparing prM/E ratio as a measure of maturation state was described and validated in our previous study (Tse et al. 2022, mBio) and the methods have been updated to include greater detail. The polyclonal E antibody was specifically chosen for this study as our previously used monoclonal antibody targeted the fusion loop. The polyclonal antibody was raised against a fragment of E (AA 1-495) and should not be affected by the fusion loop mutations. 2D22 is a conformational antibody and does not work in western blot.

      • Table 1: The data within Table 1 is ignored in the text, and some of this data contradicts the central conclusions of the manuscript.

      o A.) Some of the convalescent data contradicts the hypothesis. DS0275 had an equivalent neut between DV2 and D2-FLM, DS1660, and R1160 (90) had better neut against the D2-FLM than DV2. Discussion of these samples is warranted.

      o C.) The description in the legend does not adequately describe the table. What do the colors represent? What are the numerical values being displayed? What is in parentheses, (I assume the challenge strain)? The limit of detection is reported as 1:40; 0.25. 1:40 is 0.025 which matches most of the data? There is inadequate description of these experiments in the materials and methods.

      We remade Table 1 to show dilution factors instead of dilution factor-1 of FRNT50 and removed the unnecessary color code. We also added discussion for Table 1 and clarify the difference between the three cohorts of serum in the text with the corresponding references.

      In general, our human convalescent sera from heterotypic infection (DENV1, 3 and 4) showed none to low neutralization against our DENV2. FRNT50s were between 1: 40 – 1:200. Given the weak potency of the antiserum, it is difficult to compare the FRNT50s between DV2-WT and D2-FLM.

      Similarly, in a different NHP cohort (2nd NHP cohort shown in Table 1), only one DENV4 infected NHP (R1160) showed a low heterotypic titer against DENV2. The detectable FRNT50s were between 1: 50 – 1:90. The value was extrapolated based on a single data point (1:40) which was above 50% neutralization. Given the Hill slope of all the neutralization curves were below 0.5, the FRNT50 values are not reliable.

      In conclusion, we do not think sera from Table 1 is potent enough to show difference between the viruses. The intension to show the negative data in Table 1 is to highlight the difference in serum heterogeneity in DENV infected patients and experimental infected NHPs.

      Minor critique:

      Figure 1C: Legend is not clear for this panel. What is on the x-axis of the bubble plots? Are these mutations across the entire viral genome or is this just the prM-E sequence?

      The X-axis is a scatter of all of the sequences contained in the library, similar to graphs used for plotting CRISPR screen results. These represent individual sequences from the saturation mutagenesis libraries in the fusion loop of E as described in Figure 1B.

      The wording in Lines 92-94 is not clear. It looks like the T171A mutation was present in 95% of the sequences (Line 92). Yet this sequence was not incorporated into the variant virus. What is the rationale for omitting this mutation in downstream variant virus generation?

      The 95% in Line 92 refers to the variant containing N103S/G106L mutations as seen in Figure 1C. The high-throughput sequencing approach did not include residue 171, so the presence of the T171A mutation in combination with fusion loop mutations cannot be determined. However, the E171A mutation was included in the infectious clone for D2-FL and D2-FLM. The text has been modified to clarify this inclusion.

      The authors discuss the potential of the D2-FL or D2-FLM virus as a potential vaccine platform in the abstract, introduction, and conclusion. This is a good idea, but the authors provide no evidence of feasibility in this manuscript.

      The ultimate goal to engineer a viable DENV with distinct FL antigenic epitope is for it use as live attenuated vaccine. As this is the rationale for the study, we introduce the concept throughout the manuscript. The current study demonstrated the possibility to mutate a novel fusion loop motif in DENV and provided evidence to show the favorable antigenic properties of D2-FLM. We agree with the reviewer that definitive work in animal to show vaccine efficacy need to be done and are currently undergoing. To avoid misleading our audience, we tone down the emphasis of vaccine use in the text.

      Line 150-153: Figure 3A demonstrates that the FL-specific antibodies broadly do not neutralize the mutant viruses. However, the conclusions are overstated in the text. 1N5 neutralizes the D2-FL variant.

      The text has been updated to more accurately describe the 1N5 neutralization data.

      Lines 175-182: The authors make a lot of assumptions about the target of the polyclonal target without any evidence.

      These lines reference studies that showed greater enhancement by antibodies targeting the fusion loop and prM as compared to other cross-reacting antibodies. The assumption that both our manuscript and others have drawn was that Abs that are cross-reactive and weakly neutralizing are more prone for ADE. As discussed, other groups have attempted to mutate the FL from recombinant E protein to achieve similar goal to remove the fusion loop epitope to reduce ADE. We have re-written the sentence in the followings:

      “As FL and prM targeting Abs are the major species demonstrated to cause ADE in vitro, we and others hypothesized these Abs are responsible for ADE-driven negative outcomes after primary infection and vaccination,10–12,32 we propose that genetic ablation of the FL and prM epitopes in vaccine strains will minimize the production of these subclasses of Abs responsible for undesirable vaccine responses. Indeed, covalently locked E-dimers and E-dimers with FL mutations have been engineered as potential subunit vaccines that reduce the availability of the FL, thereby reducing the production of FL Abs.33–36”

    1. Author Response

      We thank all three reviewers for their detailed reviews, and generally agree with their feedback. To accompany the reviewed preprint of this manuscript, we wished to respond to comments from the reviewers so that they (and the public) will know what we are planning to incorporate in the revised manuscript we are currently preparing. If there are any comments on our plans in the meantime, please let us know.

      • Reviewer 1, on concerns regarding identification of ontogenetic stage and comparison of taxa from different ontogenetic stages: It is fair to say that enantiornithine ontogeny is still poorly understood, though we believe all current evidence points to each specimen used in this study to being adequately mature for comparison to the extant birds used in the study. Stages of skeletal fusion are the standard method of assessing enantiornithine ontogeny (Hu and O'Connor 2017), and our comparison of histological work (Atterholt, Poust et al. 2021) to skeletal stages in Table S4 suggests a transition from juvenile to subadult in stage 0 or 1 and from subadult to adult within stage 3. Thus, the specimens we quantitatively examine in this study, all at stages 2 or 3 (Figure S10), are advanced subadults or adults. It is well-known that many living animals considered “adults” would be considered subadults or even juveniles to a palaeontologist (Hone, Farke et al. 2016). So, even if some individuals in this study are not fully skeletally mature, they should have obtained the morphology which they would possess for most of their lives and thus the morphology which undergoes selective pressure. We will add this context to the “Bohaiornithid Ontogeny” section and thank the reviewer for seeking more detail for this point.

      • Reviewer 2, on need of a context figure: We have an artistic life reconstruction of a bohaiornithid in preparation, and can include that in the revised manuscript as a figure.

      • Reviewer 2, on raptor claw categories: We explain these categories in-depth in a previous work (Miller, Pittman et al. 2023). However, we will now add a short summary of that explanation to this work so that this manuscript will become self-contained in this regard. In short, the “large raptor” category includes extant birds with records of regularly taking prey which cannot be encircled with the pes, while birds in the “small raptor” have no such records. As Reviewer 2 points out this does often follow phylogenetic lines, but not always. E.g. most owls specialise in taking small prey, but the great horned owl Bubo virginianus regularly takes mammals and birds larger than its pes (Artuso, Houston et al. 2020); and conversely we can only find reports of the common black hawk Buteogallus anthracinus taking prey samll enough for the pes to encircle (Schnell 2020) despite other accipiters frequently taking large prey. In both cases these taxa plot in PCA nearer to other large or small raptors (respectively) than to their phylogenetic relatives.

      • Reviewer 3, on teeth vs beaks: We are not aware of any foods which are exclusive to toothed or beaked animals. There are some aspects of extant bird biology that may affect the way a certain diet may need to be adapted to which we do comment on, e.g. discussion of alternatives to the crop and ventriculus for processing plant matter in the Bohaiornithid Ecology and Evolution section. For functional studies, e.g. FEA, we have included the rhamphotheca in toothless models which serves the same role as teeth, to be a feeding surface. It should not matter, in theory, if the feeding surface is hard or soft as mechanical failure occurs in high stress/strain states regardless of the medium. If having teeth necessarily increases or decreses overall stress/strain relative to a beak (and from our work this does not appear to be the case), this would in turn necessarily limit dietary options. So, all models in our work should be directly comparable.

      As an additional note on this topic, we address tooth shape in bohaiornithids at the end of the Bohaiornithid Ecology and Evolution section. We specifically note that their tooth shape is likley controlled by phylogeny in the current version, though we will add a note in the upcoming version that the morphospace of bohaiorntihid teeth overlaps that of many other clades with purportedly diverse diets, which is consistent with a hypothesis of diverse diets within the clade.

      • Reviewer 3, on cranial kinesis: Our FE models should be unaffected by cranial kinesis, as these are two-dimensional and model the akinetic lower jaw only. Some mediolateral kinesis may be relevant in the mandible in the form of “wishboning” in different taxa, but its prevalence in extant birds is currently unknown. The preservation of enantiornithines (two-dimensionally and typically in lateral view) limits the ability to capture any mediolateral function regardless.

      Our models of mechanical advantage do not account for any cranial kinesis. This is a necessary simplifcation. The nature of cranial kinesis in extant birds, and the role that it plays in feeding, is poorly understood. Cranial kinesis will increase gape, but we don’t yet know how/if it affects jaw closing force and speed (moreover, given the variation in quadrate and hinge morphology present in extant birds, this is also something that is likely to be highly diverse). We have therefore modelled the extant birds’ jaw closing systems as having one, akinetic out lever (the jaw joint to the bite point), to match the situation in our fossil taxa. This is a common simplification that has been used previously with success (Corbin, Lowenberger et al. 2015, Olsen 2017). However, we acknowledge that this simplification may introduce some error. Unfortunately, until the mechanics of cranial kinesis – and the variation in the anatomy and performance of kinetic structures in extant birds – are better understood, we cannot determine exactly what that error looks like. We therefore have greater confidence in the inter-species comparability this conservative, akinetic approach (in other words, we may not be making assumptions that are 100% accurate, but we are at least making the same assumption across all taxa, so it should be comparable in its error). We will add a section in the Mechanical Advantage and Functional Indices discussion calling for further research into the mechanics of cranial kinesis so future mechanical advantage work in birds can take this matter into account.

      • Reviewer 3, on skull reconstruction: This issue is partly addressed in the Bohaiornithid Skull Reconstruction section, though we agree that adding more mentions of it in the MA and FEA Discussion sections and the Bohaiornithid Ecology and Evolution sections will benefit the manuscript. Most notably Shenqiornis and Sulcavis have similar ecological interpretations, but much of the Shenqiornis skull reconstruction uses Sulcavis bones. Longusunguis is the only other taxon which takes more than two bones from a different taxon, and in this case all but the quadrate are not used in any quanitative measurements. We have ensured that the skull reconstructions presented in Figure 2 show what portions of the skull come from what specimen so that as new material is discovered and phylogenetic relationships are updated it will be clear to future readers which parts of reconstructions will need to be updated.

      • Reviewer 3, on data availability: All data including FEA models and raw measurement data are included in the same repository as the scripts, which we will make clear in the manuscript. Good catch on the data link being dead, we will publish it now.

      As a final note, it was brought to our attention by another colleague that the original manuscript’s ancestral state reconstrction lacked an outgroup. An updated reconstruction using Sapeornis as an outgroup will be included in the revised manuscript. The addition of the outgroup does not change any conclusions of the manuscript.

      We once again thank our reviewers for their valuable feedback and will submit a revised version of this manuscript for publication shortly. Please let us know if you have any additional comments after reading our response that we can take onboard in our revision.

      References

      Artuso, C., C. S. Houston, D. G. Smith and C. Rohner (2020). Great Horned Owl (Bubo virginianus), version 1.0. Birds of the World. A. F. Poole. Ithaca, NY, USA, Cornell Lab of Ornithology.

      Atterholt, J., A. W. Poust, G. M. Erickson and J. K. O'Connor (2021). "Intraskeletal osteohistovariability reveals complex growth strategies in a Late Cretaceous enantiornithine." Frontiers in Earth Science 9: 640220.

      Corbin, C. E., L. K. Lowenberger and B. L. Gray (2015). "Linkage and trade‐off in trophic morphology and behavioural performance of birds." Functional ecology 29(6): 808-815.

      Hone, D. W. E., A. A. Farke and M. J. Wedel (2016). "Ontogeny and the fossil record: what, if anything, is an adult dinosaur?" Biology letters 12(2): 20150947.

      Hu, H. and J. K. O'Connor (2017). "First species of Enantiornithes from Sihedang elucidates skeletal development in Early Cretaceous enantiornithines." Journal of Systematic Palaeontology 15(11): 909-926.

      Miller, C. V., M. Pittman, X. Wang, X. Zheng and J. A. Bright (2023). "Quantitative investigation of Mesozoic toothed birds (Pengornithidae) diet reveals earliest evidence of macrocarnivory in birds." iScience 26(3): 106211.

      Olsen, A. M. (2017). "Feeding ecology is the primary driver of beak shape diversification in waterfowl." Functional Ecology 31(10): 1985-1995.

      Schnell, J. H. (2020). Common Black Hawk (Buteogallus anthracinus), version 1.0. Birds of the World. A. F. Poole and F. B. Gill. Ithaca, NY, USA, Cornell Lab of Ornithology.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper addresses the question of Prdm9-dependent hotspots and Prdm9 alleles evolution. Two properties underlie this question: the erosion of hotspots by biased gene conversion and the high mutation rate of the Prdm9 zinc finger domain. Here the authors include an additional recently observed property of Prdm9: its role in DSB repair, by enhancing DSB repair efficiency when binding on both homologs (symmetric sites). The status of symmetric binding depends on Prdm9 level and affinity, possibly other factors. The authors present a model for simulating Prdm9 and hotspots co-evolution based on several assumptions (Number of DSB independent of Prdm9, two types of hotspots, strong or weak; hotspots compete; at least one symmetric DSB is required on the smallest autosome). Although the in vivo context is obviously more complex, these assumptions are reasonable (except for the number of Prdm9 bound sites) as they qualitatively recapitulate or get close to what is known about the requirement for fertility. The model leads to several important conclusions and predictions that Prdm9 limits the number of sites used since such conditions are predicted to allow for a weaker contribution of asymmetric sites.

      The presentation of the model is clear, but the results are difficult to follow and require many readings to follow the text and the associated figures.

      We edited the results section to make the progression of the argument clearer (as detailed below).

      A few specific points also require clarification:

      Competition: It seems that in the context defined Prdm9 is limiting (since most Prdm9 can be bound to all weak sites); in addition, it is not clear how the competition for DSB activity between Prdm9 sites is taken into account.

      We now clarify throughout the text that we have assumed conditions under which PRDM9 is limiting (as detailed below). We state in the Model that we assume “all PRDM9 bound sites are equally likely to experience a DSB”.

      The number of Prdm9-bound sites in vivo is not known, thus several values must be tested.

      We have run additional simulations (when considering strong and weak hotspots, k_1=5 or 50, and when considering large and small population sizes, N= 10^3 or 10^6), using P_T = 500, 1000 and 2500. The results of these simulations are included and discussed in Appendix 4.

      It would be interesting to discuss the model prediction in the context of several observations published on hybrids with variable Prdm9 gene dosage.

      We now include a section in the Discussion, entitled “PRDM9-mediated hybrid sterility”, which discusses the reported gene dosage effects in mice.

      Reviewer #2 (Public Review):

      In mammalian genomes (with some exceptions), the location of recombination hotspots is driven by the PRDM9 zinc-finger protein that recognizes some specific DNA motifs and recruits the machinery inducing double-strand breaks (DSBs) initiating recombination. As DSBs are repaired with the homologous chromosome, "hot motifs" can be rapidly eroded through gene conversion occurring during the repair. This led to the "hotspot paradox" question and to the development of red queen models of hotspot evolution where the lack of enough DSB motifs can select for new PRDM9 alleles recognizing new sets of motifs, which in turn are eroded. However, this model fails to explain some observations, in particular, that the number of DSB seems not limited by PRDM9 sites. Recent findings also showed that PRDM9 played a central role in the symmetrical binding of homologous chromosomes.

      In this study, the author incorporated this new finding (and more realistic assumptions compared to previous models) in a model of hotspot evolution. Their main result is that it affects the evolution dynamics and in particular the causes of selection on new PRDM9 alleles. Instead of selection pressure to increase the number of DSB targets, they showed that selection likely occurred instead to limit the number of hotspots to the hottest and symmetrical ones. These results are important as they changed our view and understanding of the evolution of mammalian hotspots and should have general implications for the study of recombination. The article focuses on complex mechanisms and can appear rather specific and technical. However, it nicely exemplifies the importance of taking molecular mechanisms into account to model genome evolution.

      Overall, the model is sound with no apparent flaw and should be an important contribution to the field. The model is rather complex but the authors focused on a few key parameters while fixing others based on empirical knowledge. This allows for highlighting the novelty of the results without being lost within too many scenarios and hypotheses. However, two main issues should be addressed but they mostly concern the way the model and the results are presented and do not. First, partly due to the complexity of the mechanisms, the core of the manuscript is rather difficult to follow and would deserve a more careful and explicit presentation to guide the reader, as detailed below. Second, the implications of the model and the practical and testable predictions it makes could be developed more, in particular, to compare with previous models. The main comments are listed below.

      1) The introduction reads very well and clearly explains complex mechanisms. It is a bit long and could be reduced a bit.

      Following this suggestion, we have reduced the length of the Introduction.

      2) It is quite helpful to analyze the model step by step. However, the objective of each step is not clearly explained, and it is left to the reader to understand where the authors want to go. At first read, it is not clear whether the authors present an analysis of the model or simulation results and why they do that. So, the results part deserves rewriting and re-organization to guide the reader.

      • In the two first parts (Fitness with one heat and two heats) it should be stated more explicitly that it corresponds to an analysis of the fitness landscapes generated by the molecular mechanisms than results on the evolutionary dynamics

      • The part "Dynamics of the two-heat model" corresponds to simulations and it is only at this point that mutation on PRDM9 is introduced.

      • In the present form, the presentation of the results describes many mechanisms (which is fine). However, as the model is complex, stressing the main conclusion for each part could be useful as then making a clear link between the different steps of the reasoning.

      We have rewritten the results sections to include more signposting and to make clearer the intentions behind each step taken.

      3) The choice of key parameters is well justified with a detailed review of the literature and it is well justified to fix most of them to focus on the key unknown (or not well-known) ones. However, in a few cases, additional simulations or at least better justification would be welcome, in particular on the mutation dynamics of PRDM9.

      Thank you for your suggestion. We have now added an additional appendix (Appendix 5), which investigates the dynamics of our model when newly arising PRDM9 alleles are initiated with hotspot numbers set near values that would be reasonable for perfect matches to motifs with 10 or 11 non-degenerate bases. We show that this sometimes affects the dynamics (compared to the case in the main text), but when it does, the differences can be readily understood using the same kind of reasoning developed in the main text.

      4) The model clearly gives new insights into the evolution of recombination hotspots and appears better to explain some results. However, it is not clear what are the predictions of the model that could be properly tested with data, in particular against previous models. Some predictions are proposed but remain mainly qualitative. For example, can one quantify that this model predicts a skewer distribution of hotspots compared to previous red-queen models? How good is the model at predicting the number of PRDM9 alleles in human and mouse for example? Only the diversity at PRDM9 is given, it may be interesting to also give the number of alleles to compare to observations. The discussion on this remains a bit vague. Finally, are there additional predictions of the model that could be used to test it?

      In previous Red Queen models, the specific distribution of heats was not important: fitness was determined by the sum of the heats of all available binding sites. Accordingly, these models do not predict a specific distribution, only that PRDM9 alleles that bind more overall would be favored. Our model thus provides the first theoretical framework under which there is an explicit benefit to localizing PRDM9 to smaller numbers of loci, a premise consistent with the use of hotspots, i.e., the use of only a small proportion of the genome for recombination.

      We chose the two-heat model as a reasonable first approximation to the true distribution. If we were to consider a more realistic binding distribution (or similarly, if we relaxed our assumption about most PRDM9 molecules being bound), the quantitative conclusions would likely be affected. Accordingly, while our simplified model provides robust insights into the dynamics of PRDM9 evolution, quantities such as the predicted levels of diversity in our model may be off and cannot be readily compared to what is observed in human and mice populations. We now better clarify the scope of our results and what may be done to extend it, in the Discussion.

      5) The Penrose stair metaphor is appealing but it seems to be dependent on the definition of hotspot, so not to represent a real biological process. Related to metaphors, it is also not very clear whether the authors suggest abandoning the red-queen metaphor for the benefit of the Penrose stair one. Actually, we can still consider that it is a red-queen dynamics but with a different underlying driver.

      We have expanded our discussion of the difference between these two analogies in the discussion section “Does the decay of hotspots by GC lead to more or fewer hotspots?” to clarify that the Penrose stairs model is a specific kind of Red Queen model. However, precisely because a hotspot has a somewhat arbitrary definition, we can imagine her running in either direction–towards fewer or more hotspots– depending on our perspective on the Penrose stairs.

    1. Author Response

      Reviewer #2 (Public Review):

      Please note that I am not a structural biologist and cannot critically evaluate the details of figures 1 to 3; my review focuses on the cell biology experiments in figures 4 and 5.

      Paine and colleagues investigated structural requirements for the interaction between the ESCRT-III subunit IST1 and the protease CAPN7. This is a continuation of previous work by the same group (Wenzel et al., eLife 2022), which showed that Capn7 is recruited to the midbody by Ist1 and that Capn7 promotes both normal abscission and NoCut abscission checkpoint function. In this article, the structural determinants of the Ist1-Capn7 interaction are characterised in more detail, focusing on the structure of Capn7 MIT domains and their binding to Ist1. Notably, point mutations in Capn7 MIT domains known to mediate binding to Ist1 and midbody recruitment are shown here to be required for abscission functions, as expected from the authors' previous paper. Furthermore, the report shows that a Capn7 point mutant lacking proteolytic activity behaves as a loss-of-function in abscission assays, despite showing normal midbody localisation. These are important results that will help in future studies to understand how the Capn7 protease regulates abscission mechanistically.

      The report is clearly written and the results support the main conclusions. Some technical limitations and alternative interpretations of the data should be discussed in the text, as outlined below.

      1) It is not always clearly stated how the results presented in this report relate to those in the Wenzel paper. For example, the finding that Ist1 recruits Capn7 to midbodies (p. 6 and figure 4) was first shown in the Wenzel paper. The novelty here is not that Capn7 MIT mutants fail to localise to midbodies, but that they phenocopy the previously described knockdown of Capn7, failing to support normal abscission and NoCut function (fig. 5). This supports and extends the findings of Wenzel et al. It is important to make this explicit and explain the conceptual advances shown here more clearly.

      We take the reviewer’s point and we have now clarified this issue in the text (e.g., page 7, lines 4-5).

      2) The NoCut checkpoint can be triggered by chromatin bridges, DNA replication stress, and nuclear basket defects, but only basket defects are tested here. Therefore, it is not clear if NoCut is still functional in Capn7-defective cells after replication stress and/or with chromatin bridges. Ideally, this should be tested experimentally, or alternatively discussed in the text, especially since the molecular details of how NoCut is engaged under different conditions remain unclear. For example, "abscission checkpoint bodies" proposed to control abscission timing form in response to nuclear basket defects and aphidicolin treatment, but not in the presence of chromatin bridges (Strohacker et al., eLife 2021).

      We appreciate the reviewer’s excellent suggestion. We have now performed the requested experiments and added a new figure showing that CAPN7 is also required to maintain the NoCut checkpoint when it is triggered by DNA bridges (new Figure 6A) or by replication stress (new Figure 6B).

      3) The current data suggest that Capn7 is a regulator of abscission timing, but in my opinion do not quite establish this, for two main reasons. First, abscission timing is not directly measured in this study. Time-lapse imaging would be required to rule out alternative interpretations of the data in figure 5. For example, a delay in an earlier cell cycle stage could in principle lead to a decrease in the overall fraction of midbody-stage cells. Second, the absence of the midbody is not necessarily a marker of complete abscission. Indeed, midbody disassembly is associated with the completion of abscission in unchallenged HeLa cells, but not in cells with chromatin bridges (Steigemann et al, Cell 2009). Midbodies remain a useful marker for pre-abscission cells, but the absence of midbodies should not be immediately interpreted as completion of abscission without further assays. Formally, a direct measurement of abscission timing would require imaging of the plasma membrane, for example using time-lapse phase-contrast microscopy (Fremont et al., 2016 Nat Comm). These limitations should be mentioned in the text.

      We note that midbody numbers are not our only measure of abscission delay/failure - we also measure the numbers of multinucleate cells and sum the two. Nevertheless, we understand the reviewer’s point and have therefore noted that we are using increased frequencies of cells with midbody connections and multiple nuclei as surrogate markers for abscission defects and NoCut-induced abscission delays (page 7, lines 13-14 and line 17).

      4) IST1 plays a role in nuclear envelope sealing by recruiting the co-factor Spastin (Vietri et al., Nature 2015), a known IST1 co-factor also confirmed in the previous interactome screen (Wenzel et al. 2022). CAPN7 could have a role in maintaining nuclear integrity upon the KD of Nup153 and Nup50 (Mackay et al. 2010) instead of/in addition to its proposed role in delaying abscission as part of the NoCut checkpoint at the midbody. I don't think the authors can differentiate between these two possibilities, and it would be interesting to consider their possible implications on how the "NoCut" checkpoint is triggered.

      The reviewer again makes good points, and we agree that in addition to participating in abscission, CAPN7 may be involved in closure of the nuclear envelope and that nuclear envelope closure may, in turn, be linked to satisfaction of the NoCut checkpoint. This involvement would nicely explain our observations that both SPAST and CAPN7 participate in both NoCut and abscission. We are in an unusual situation, however, because other colleagues in our field have told us in private communications that they observe that CAPN7 does, in fact, participate in nuclear envelope closure. We find that observation interesting and exciting but it is their discovery, not ours, and we have therefore refrained from doing analogous experiments ourselves. As a compromise, we have added the following text to the penultimate section of our paper (page 8, lines 34-35 through page 9, lines 1-11):

      “Our discovery that both CAPN7 and SPAST participate in the competing processes of cytokinetic abscission and NoCut delay of abscission may appear counterintuitive, but we envision that the MIT proteins could participate in both processes if they change substrate specificities or activities when participating in NoCut vs. abscission; for example, via different sites of action, post-translational modifications, and/or binding partners. We note that, in addition to its well documented function in clearing spindle microtubules to allow efficient abscission (Yang et al., 2008), SPAST is also required for ESCRT-dependent closure of the nuclear envelope (NE) (Vietri et al., 2015). The relationship between NE closure and NoCut signaling is not yet well understood, and it is therefore conceivable that nuclear membrane integrity is required to allow mitotic errors to sustain NoCut signaling. It will therefore be of interest to determine whether or not CAPN7, in addition to its midbody abscission functions, also participates in nuclear envelope closure and, if so, whether that activity is connected to its NoCut functions.”

      We think that this additional text explains what we (and the reviewer) consider to be an attractive model, but leaves open the question of CAPN7 involvement in nuclear envelope closure to be resolved by our colleagues.

      5) Figure 5 should include images of representative cells, highlighting midbody-positive and multinucleated cells. Without images, it is not possible to evaluate the quality of these data.

      We appreciate this suggestion and have now added images showing midbody-positive and multinucleated cells from the quantified datasets to allow assessment of our data quality (new Figures 5B and 5D).

    1. Author Response

      Reviewer #1 (Public Review):

      Iskusnykh et al. present an elegant and thorough analysis of the role of transcription factor Lmx1a as a master regulator of the cortical hem, which is a secondary organizer in the brain. The authors report that loss of Lmx1a in the hem alters expression levels of Wnts, that Lmx1a is critical for hem progenitors to exit the cell cycle properly, and that Lmx1a loss leads to defects in CR cell differentiation and migration. Furthermore, the authors show that hem-like fate can be induced by overexpressing Lmx1a. This is a fundamental role for a transcription factor that was long used as a hem marker but was never examined for its function in the hem. This study has broader implications for how secondary organizers are created in the embryo and would be of great interest to a wide readership. The conclusions are broadly well supported by the data, though there are a few points of interpretation that need to be addressed.

      We appreciate the positive comments and insightful suggestions of Reviewer 1. Please see our response to specific comments below. New text in the revised paper is blue (see our marked up copy of the paper, submitted as related manuscript file). Please note that since we reformatted the paper (re-submitted figures separately rather than embedded them into the text), line numbers changed relative to the original submission.

      (1) Figure 3A shows staining intensity in WT and Lmx1a-/- whereas the quantification has Lmx1a+/-. Both genotypes are relevant, -/- and +/-, to test whether the loss of 1 copy of Lmx1a results in a partial diminution of Wnt3a levels. Likewise, it is necessary to examine Wnt3a expression levels in the Wnt3a+/- embryo. Together, these could explain why the Lmx1a+/-; Wnt3a+/- double heterozygote has a DG phenotype, otherwise, it remains an unexplained though interesting observation.

      In the original paper, the label in the Wnt3a quantification panel (Fig. 3C) contained a typographical error. The label should read “Lmx1a-/-“, not Lmx1a+/-. (Originally, we did not analyze Lmx1a expression in Lmx1a+/- embryos; we analyzed only wt and Lmx1a-/- embryos.) We apologize for this error and corrected the label typo in the revised manuscript (Fig. 3C).

      Based on the above comment, in the revised manuscript, we analyzed the expression of Wnt3a in Lmx1a and Wnt3a single and double heterozygotes, in addition to wt and Lmx1a-/- embryos. To address a comment of Reviewer 2 about a “limited robustness of quantification of in situ hybridization signal”, we isolated CH by LCM and analyzed Lmx1a expression by qRT-PCR (Fig. 3D, E). Interestingly, we found that loss of one copy of either Wnt3a or Lmx1a does not significantly downregulate Wnt3a expression, but loss of one copy of Lmx1a on the Wnt3a+/- background (Lmx1a+/-;Wnt3a+/- mice) reduces Wnt3a expression, providing additional evidence that Lmx1a regulates expression of Wnt3a and explaining the appearance of the DG phenotype only in the double (but not single-gene) heterozygotes. These data are now described in the Results section (page 12, lines 255-260 and Fig. 3D, E). All of our Wnt3a expression data are now properly presented.

      (2) Line 309: "to test Wnt3a as a downstream mediator of Lmx1a function in CH/DG development, we performed an analysis of Lmx1a/Wnt3a double heterozygotes rather than Wnt3a overexpression rescue experiments in Lmx1a -/- mice." The authors' reasoning is unclear. The double het experiments do not go on to show that one gene acts via the other. It's entirely possible the two act via parallel pathways. However, since Lmx1a does indeed regulate Wnt3a levels, this is a good argument for suggesting it acts via Wnt3a, even without the overexpression rescue. The authors could reorganize the data and rephrase the definitive "acts via" statement (also in the heading of this section, line 289, and discussion, line 553) to better fit the data.

      Thank you for this comment. We reorganized/improved our reasoning as requested. Now we state that we performed an analysis of Lmx1a/Wnt3a double heterozygotes to test “whether Lmx1a and Wnt3a co-regulate hippocampal development” (rather than to test Wnt3a as a downstream mediator of Lmx1a function, as it was stated before) (page 12, lines 271-272). As correctly suggested by the Reviewer, we now conclude that “Although these double heterozygote experiments alone do not necessarily show that one gene acts via the other, as two genes may act via parallel pathways, reduced expression of Wnt3a in Lmx1a-/- embryos and downregulation of Wnt3a expression in Lmx1a+/-;Wnt3a+/- embryos relative to Wnt3a+/- embryos show that Lmx1a acts upstream of Wnt3a, thus, suggesting that Lmx1a promotes DG development, at least partially, by modulating expression of Wnt3a.” (page 13, lines 277-282).

      We rephrased the definitive "acts via" statement throughout the text and in the heading of this section. Now we use more balanced phrases. The heading now reads: “Lmx1a regulates expression of Wnt3a to promote DG development.” (Page 11, line 241), while in the Discussion we state that Lmx1a regulates Wnt signaling to promote hippocampal development (page 21, lines 467-468).

      (3) In the discussion section, the authors should include that trans-hilar and supragranular scaffold is disrupted in Lrp6 and Lef1 single as well as double mutants, which indicates Wnt signaling has a role to play in the morphogenesis of this scaffold. In this context, the author may discuss how Lmx1a could regulate this process via modulating Wnt signaling.

      Now in the Discussion we state: “It has also been previously shown that single and double mutants for Lrp6 and Lef1 genes, which encode components of the Wnt signaling transduction pathway, exhibit disrupted transhilar and supragranular scaffolds (Zhou et al., 2004; Li and Pleasure, 2005), indicating that Wnt signaling has a role in the development of the hippocampal glial scaffold” (Page 20, lines 445-449). Then, we conclude “Our gene expression studies and phenotypic analysis of Lmx1a-/- mutant and Lmx1a+/-;Wnt3a+/- double heterozygous mice identified Lmx1a as a novel regulator of proliferation of DG progenitors, hippocampal glial scaffold formation and electrophysiological properties (input resistance) of DG neurons, which likely, at least partially, promotes hippocampal development by modulating Wnt signaling, particularly expression of its secreted ligand Wnt3a. ” (Page 20, lines 449-454).

      (4) Reduction in Tbr2 levels (Fig4B): E13.5, not all Tbr2+ cells in the hem show a visible decrease in Tbr2 levels. The CR cells in the marginal zone show faint Tbr2. It would be useful if the staining intensity within the hem was quantified by dividing the section into three bins along the radial axis: Ventricular Zone, "Intermediate" zone, and Marginal zone to get a sense of the intensity profile. Co-labeling with p73 would identify CR cells and distinguish them from hem progenitors.

      We co-labeled wt cortical hem with Tbr2 and p73 immunohistochemistry and found that virtually all Tbr2+ cells in the marginal layer (where CR cells accumulate before initiating their tangential migration toward the hippocampal fissure) are p73-positive, while most Tbr2+ cells in the ventricular and intermediate bins are p73-negative (presumably not fully differentiated progenitors) (Figure 4 – figure supplement 2). These data provide further rationale for quantifying Tbr2+ progenitors separately in three different bins, as recommended by the Reviewer, which we now report in Figure 4B, C. This analysis revealed that loss of Lmx1a reduces Tbr2 expression across the three bins in the CH, but most significantly (p<0.001) in the Marginal zone.

      These data are now described in the Results section, page 14, lines 308-317.

      (5) Are the total number of Prox1+ cells at E14.5 similar between control and Lmx1a-/- ? Might the decrease in Prox1+ cells in the DG of P21 Lmx1a-/- animals occur due to granule cell death or because fewer cells were specified due to lower Wnts from the compromised Lmx1a-/- hem? The authors should examine cell death, labeling with CC3 and Prox1 together to test the cell death angle and discuss if the specification angle applies.

      Our new cell counts revealed a reduced number of Prox1+ cells in the DNe of e14.5 Lmx1a-/- mutants (Fig. 1K-M). We also show that proliferation in e14.5 DNe is reduced in Lmx1a mutants (Fig. 1N-Q), which is expected to contribute to the reduced number of Prox1 cells. Since proliferation is diminished in Lmx1a mutants, it is very hard to definitively demonstrate whether (in addition to proliferation) a reduced specification of DG progenitors contributes to the lower number of Prox1+ cells found in the DNe (and later in DG) of Lmx1a mutant mice. However, since Wnt3a is known to both induce DG progenitors and promote their proliferation, it is likely that a reduced specification also contributes to the reduced number of Prox1 cells in Lmx1a -/- mutants. Now we discuss this possibility in the Discussion by stating: “Wnt3a, which is downregulated in the Lmx1a-/- CH, is known to promote not only proliferation but also the specification of DG progenitors (Lee et al., 2000; Mangale et al., 2008; Subramanian and Tole, 2009b). Thus, although not directly tested in the current study, it is likely that the reduced number of Prox1+ DG progenitors in Lmx1a-/- embryos results not only from their reduced proliferation but also because of their decreased specification.” (page 22, lines 497-501).

      To study whether increased apoptosis contributes to the reduced number of Lmx1a-/- DG cells, we performed a very detailed analysis of apoptosis with an activated Caspase 3 immunohistochemistry at multiple stages (at e14.5 in the DNe, before DG cells exit the DNe; at e16 and e18.5 in the hippocampal primordium, and at e18.5, P3 and P21 in the DG (when the DG is formed), using Prox1/activated Caspase 3 co-immunostaining). No difference in apoptosis was found at any stage between wt and Lmx1a-/- embryos, indicating that misregulated apoptosis is not a major contributor to the DG phenotype of Lmx1a-/- mutants (Fig. 1R-T; Fig. 1- figure supplement 3).

      (6) In figure 6, the authors show that Lmx1a OE is sufficient to induce hem-like features, and identify p73+ cells (CR cell lineage). Is the choroid lineage not induced or was it not examined? A line to this effect would be useful. Also, the validation that it is indeed ectopic hem could be stronger with a few additional markers, since this is a striking finding.

      In the original paper, induction of the choroid plexus lineage was not investigated. Now we add two additional markers: Ccdc3 (a marker of CH) and Ttr (a marker of choroid plexus). Lmx1a in utero electroporation into medial telencephalic neuroepithelium induced ectopic expression of Ccdc3 (Fig. 6 – figure supplement 1A-D’) but did not induce expression of Ttr (Fig. 6 – figure supplement 1E-F’), strengthening the conclusion that Lmx1a specifically induces CH features in the medial telencephalon. These data are now described in the Results section, page 17, lines 372-373, 377-379, and 387-389.

      Reviewer #2 (Public Review):

      The cortical hem is one of the main signaling centers in the vertebrate forebrain, regulating neurogenesis of the medial pallium and the generation of Cajal-Retzius neurons. The authors examine how this signaling center is formed and functions. Previously, transcription factors playing instructive roles in the development of the cortical hem have been identified, but a master regulator had not been found so far. The authors build on their previous work studying the transcription factor Lmx1a which is one of the earliest and most specific cortical hem markers.

      By combining loss- and gain-of-function studies, RNA sequencing, histology, and analysis of downstream factors, the authors rigorously show Lmx1a is required for the expression of signaling molecules in the hem, the proliferation and functionality of dentate gyrus neurons, the cell cycle exit and differentiation (and also migration) of cajal-retzius cells and this by activating different downstream regulators.

      They use golden standard experiments in the field such as BrdU-Ki67 cell-cycle exit measurements, RNA sequencing, and patch clamping; combined with state-of-the-art techniques such as RNAscope and laser capture microdissection. These convincingly show that Lmx1a regulates the proliferation of dentate gyrus progenitor cells and a malformation of the transhilar scaffold.

      We appreciate the positive comments and insightful suggestions of Reviewer 2. Please see our response to specific comments below (see our marked up copy of the paper, submitted as related manuscript file). New text in the revised paper is blue. Please note that since we reformatted the paper (re-submitted figures separately rather than embedded them into the text), line numbers changed relative to the original submission. The authors also claim a migration deficit for dentate gyrus progenitors, but they do not consider apoptosis or show direct evidence for migration abnormalities.

      Now we provide additional in vivo data to support migration abnormalities from the DNe (Fig. 1 – supplement 2) and modified the Discussion related to migratory defects from the DNe as recommended by the Editors. Also, by performing a very detailed analysis of apoptosis, we provide strong evidence that apoptosis is not altered in Lmx1a-/- mutants at multiple stages (Fig. 1 – supplement 3). These results are described in detail below, in our response to the first specific comment of Reviewer 2.

      In the hem, the authors report normal proliferation and apoptosis in the Lmx1a mutants, but aberrant cell-cycle-exit, from which the authors conclude a problem in differentiation. However, this could be a cell cycle progression problem too (stuck in a certain cell cycle phase?), as the RNAseq data suggest. The authors should acknowledge this possibility.

      The possibility of a cell cycle progression problem in Lmx1a -/- CH is now acknowledged in the Discussion. Specifically, we state: “Finally, in Lmx1a mutants, we linked a decreased number of CR cells with a reduced exit of CH progenitors from the cell cycle. However, our data do not exclude a possibility that loss of Lmx1a also causes a cell cycle progression defect (resulting in CH progenitors being delayed in a certain phase of the cell cycle). This hypothesis remains to be tested.” (page 22, lines 501-505).

      The RNAseq dataset provides candidate downstream regulators of the observed phenotypes and the authors test the functionality of Wnt3a, Tbr2, and Cdkn1a, showing they are involved in distinct processes.

      Strikingly, Wnt3a is not significantly downregulated in the RNAseq data in the Lmx1a mutant, but quantification of in situ hybridization signal (which is less robust) did reveal a significant difference. Is this a splice variant issue? A timing issue or specificity of the RNAscope probe? The authors should look into this more carefully.

      Our Wnt3a RNAscope in situ hybridization recapitulates known Wnt3a expression pattern (specific expression in the CH), indicating that this probe is specific. A splice variant issue is also unlikely because, according to the Genome Browser and the NCBI Gene Bank, only one Wnt3a splice variant exists in the mouse. It can be a timing issue (e13.5 for RNAseq versus e14 for RNascope analysis). But, please, note that in our RNAseq experiment, the FDR for Wnt3a downregulation was 0.13, which is close to significance.

      To further address the downregulation of Wnt3a expression in Lmx1a-/- CH, we performed additional experiments using a complementary technical approach. We isolated the CH from e14 wt and Lmx1a-/- mutants by laser capture microdissection (LCM) and analyzed Wnt3a expression by qRT-PCR with already published/validated primers for Wnt3a (Watanabe et al., 2016, Biol Open 5, 1834-1843). We focused on e14 because it is closer to e14.5 when we observed a reduced proliferation in the DNe in Lmx1a-/- embryos. Our new LCM/qRT-PCR analysis confirmed Wnt3a downregulation (Fig. 3D, E) that we initially observed in our in situ hybridization experiments (Fig. 3A-C), increasing our confidence that Lmx1a regulates Wnt3a expression in the CH.

      To study the role of Cdkn1a, the authors performed rescue experiments using in utero electroporation, which is a standard in the field. However, they argued before that "CR cell migration and DG morphogenesis are complex processes that require precise expression levels of key genes" when studying downstream factors Wnt3a and Tbr2. Why is this no longer an issue studying Cdkn1a?

      This is because, in Cdkn1a rescue experiments, we test a much simpler (binary) output: whether electroporated (GFP+ cells) are Ki67 positive (cycling progenitors) or Ki67 negative (exited the cell cycle). In contrast, Wnt3a or Tbr2-related experiments require the evaluation of either DG formation (the number of Prox1+ cells in the DG) or the location of CR cells in the HF, both of which are very complex outputs. (DG formation relies on the correct proliferation, glial scaffold formation, migration and differentiated events, while CR location involves long-range migration). Both DG morphogenesis and CR migration are highly sensitive to the expression level of their essential developmental genes (Zhou et al., 2004; Arredondo et al., 2020; Gil et al., 2014; Ha et al., 2020; Hevner, 2016 in the paper reference list). As in utero electroporation does not easily allow precise control of gene expression level, such an approach would likely produce higher levels of Wnt3a and Tbr2 in at least some cells of Lmx1a-/- embryos relative to endogenous levels of Wnt3a/Tbr2 in wild type mice. Higher than physiological levels of expression of these proteins may cause additional abnormalities, complicating the interpretation of results of Wnt3a and Tbr2 electroporation experiments aimed to rescue Lmx1a-/- hippocampal phenotypes.

      As mentioned above, because in the case of Cdkn1a, we test a much simpler output (the presence or absence of Ki67 expression), we do not expect Cdkn1a overexpression to complicate the interpretation of the results: some electroporated Lmx1a-/- cells could exit the cell cycle “too fast”, but it still does not complicate the interpretation of the Ki67 expression readout.

      We provide additional explanations for the Cdkn1a rescue experiment in the paper. We state: “To study whether decreased Cdkn1a expression mediates a reduced cell cycle exit of CH progenitors in Lmx1a-/- embryos (Fig. 2A-C), we used immunohistochemistry with antibodies specific for Ki67, which labels cycling progenitors. As the presence/absence of Ki67 expression is a simpler output than complex DG morphogenesis and long-range migration of CR cells, we performed Cdkn1a overexpression rescue studies using in utero electroporation of the CH at e11.” (Pages 15-16, lines 344-347).

      To study cell-cycle exit in this model, the authors quantified GFP and Ki67. Since electroporation not only targets the progenitor cells (see e.g. Govindan et al. 2018, Nature protocols), the authors should confirm these results with a BrdU/Ki67 quantification as in previous experiments, or confirm electroporation only targeted progenitor cells in their model.

      Now we experimentally demonstrated that electroporation targets progenitor cells in our model. Thus, we confirmed that our approach is appropriate for the analysis of progenitor differentiation in the CH.

      Specifically, we in utero electroporated a GFP expressing plasmid into the CH of e11 embryos and imaged the GFP signal 15 hrs later (to identify electroporated cells) together with Ki67 immunolabeling (to identify progenitors). We reasoned that 15 hrs would be sufficient to produce GFP protein from the plasmid but also short enough to avoid differentiation of progenitors that received the plasmid. We found that in both wt and Lmx1a-/- embryos, almost all GFP+ cells in the CH were Ki67+ (e.g., progenitors). There was no difference between wt and Lmx1a-/- embryos at this early time point (Fig 5 – supplement 1). (GFP+/Ki67- cells were extremely rare in both genotypes. These cells may be either differentiated cells that took the plasmid during electroporation or electroporated progenitors that exited the cell cycle during the 15-hr interval after electroporation.)

      In the Results section, we now state: “The ventricular layer of the CH that borders the lateral ventricles consists of progenitor cells, so it is expected that plasmids injected into the lateral ventricles and electroporated into the CH will target such progenitors. However, since electroporation can also target differentiated cells (Govindan et al. 2018), we first injected a GFP-encoding plasmid into the lateral ventricles, electroporated it in utero into the CH of e11 embryos and analyzed GFP+ cells after a short (15 hrs) time period. This analysis revealed that virtually all (~95%) GFP+ cells were Ki67+ (progenitors) in both wild type and Lmx1a-/-embryos (Fig. 5 – figure supplement 1), confirming that this system is appropriate to target progenitors.” (Page 16, lines 348-355).

      Lastly, the authors ectopically expressed Lmx1a and convincingly show its ability to generate a hem-like structure. Could the authors elaborate on the necessity for a medial signature? Can the hem be ectopically induced in the lateral pallium?

      To address this question, we electroporated Lmx1a into the lateral cortex and found that laterally, it could not induce a major cortical hem marker Wnt3a (Fig. 6 – supplement 2). Thus, a medial identity is required for Lmx1a to induce the cortical hem, the finding which is now presented in the Results section (page 17, lines 388-389).

      Also, in the Discussion, we elaborate on the necessity for a medial signature: “Interestingly, while Lmx1a induced CH features in the medial telencephalon, Lmx1a overexpression in the lateral cortex failed to induce ectopic expression of Wnt3a, indicating that medially expressed competence factors (permissive genes) are needed to maintain the CH-inducing activity of Lmx1a. Such factors are likely to include Gli3 and Dmrt3/4/5, loss of which compromises the development of the endogenous CH (Grove et al., 1998; Kikkawa and Osumi, 2021; Quinn et al., 2009; Subramanian et al., 2009a; Subramanian and Tole, 2009b) (page 19, lines 424-430).

    1. Author Response

      eLife assessment

      This important study deepens our understanding of macrophage phenotypes in pathological contexts and identifies a new macrophage state associated with tissue fibrosis, as well as putative drivers of this cellular state. The authors provide convincing evidence and performed a well-thought-out and thoroughly described computational analysis of single-cell RNA-sequencing data. This work will be of broad interest to the fields of tissue inflammation, fibrosis, macrophage biology, and immunology.

      We thank eLife reviewing editors as well as the two Reviewers for their supportive, constructive and insightful assessment of the manuscript. We apologize for the time that has taken us to submit the revisions. The main reason for this delay was the integration of newly published scRNA-seq datasets that were relevant for gaining further power and reproducibility for our analyses, especially for refining the transcriptomics resolution of SPP1+MAM- and SPP1+MAM+ cells and their respective correlation with ageing. Specifically, we have added new datasets from NASH [1] and endometrium [2] patients so that each human tissue comprises scRNA-seq data derived from at least 2 independent studies (revised Table 1). Crucially, as the human lung cell atlas got published recently (after receipt of our decision letter) [3], we investigated in greater detail (increased N numbers and co-variates), the association of SPP1+ macrophages and homeostatic ones with lung ageing.

      This new undertaking was not directly asked by reviewers/editors, but instead, was suggested as informal feedback received after posting our manuscript into biorxiv repository. Importantly, these revisions together with the corrections asked by the two reviewers made the conclusions of the manuscript stronger (and more robust as we increased the number of samples) by refining (i) the regulons that associate with SPP1+MAM+ differentiation and (ii) subset-specific association with human and mice lung ageing, a finding that suggests MAM polarization state is acquired when there is prominent tissue fibrosis. Lung aging is significantly associated with SPP1+MAM- state, which represents the inflammatory/secretory phenotype that yet to be polarized to the fibrotic one seen in the disease state.

      Reviewer #1 (Public Review):

      Huang, Kevin Y. et al. perform a meta-analysis of single-cell RNA-seq (scRNA-seq) data derived from 11 studies and across six tissues (liver, lung, heart, skin, kidney, endometrium) to address a focused hypothesis: pro-fibrotic SPP1+ macrophages that have been found in liver and lung tissue of idiopathic pulmonary fibrosis patients exist in other human tissues which can result in broader fibrotic disease states. The authors use existing, state-of-the-art single-cell analysis tools to perform the meta-analysis. They convincingly show that the SPP1+ macrophage population can be identified in lung, liver, heart, skin, uterus (endometrium), and kidney clusters derived from each tissues' scRNA-seq data. They further identify three subpopulations of the SPP1+ macrophages: a matrisome-associated macrophages (MAMs) defined as SPP1+MAM+ and two others enriched for inflammatory and ribosomal processes which they group together and define as SPP1+MAM-. Pathway analysis of genes unregulated in SPP1+MAM+ vs SPP1+MAM- cells yields significant enrichment of extracellular matrix remodeling and metabolism-related pathways and genes. This allows them to arrive at SPP1+MAM+ and SPP1+MAM- gene expression signature scores to further highlight the upregulation of these pathways in SPP1+MAM+ macrophages and their role in fibrosis. They explicitly show enrichment for SPP1+MAM+ macrophages in disease compared to healthy control subjects in a variety of tissues and their associated fibrosis-related diseases. Cell differentiation trajectory analysis identified 2 main trajectories: both starting from FCN1+ infiltrating monocytes/macrophages with one moving toward a homeostatic state and another toward SPP1+MAM+. They verified this using an alternative trajectory analysis approach. Importantly, for all tissues and fibrotic diseases, they found SPP1+MAM+ were at the end of the trajectory preceded by the SPP1+MAM- state, suggesting SPP1+MAM+ represents a common polarization state of SPP1+ macrophages. They develop a probability-based score that estimates the propensity of SPP1+MAM- macrophages to differentiate into SPP1+MAM+ and show that this was significantly higher in fibrotic disease subjects compared to healthy controls. They go on to identify the transcription factor networks (regulons) associated with SPP1+MAM+ differentiation and activation. They find a number of enriched regulons/transcription factors and through a linear-modeling trajectory analysis highlight the regulons that are associated specifically with the SPP1+MAM- to SPP1+MAM+ transition. In this way, they prioritize the NFATC1 and HIVEP3 regulations as driving the differentiation of SPP1+MAM- macrophages toward the SPP1+MAM+ polarization state. Finally, given that age is a risk factor for fibrotic disease, they assessed the association of SPP1+MAM+ and SPP1+MAM- gene signatures in healthy control old and young human subjects as well as old and young mice and found SPP1+MAM+ was either exclusively (human) or more significantly (mice) elevated in old versus young compared to SPP1+MAM-.

      The strengths of this paper are the authors gathered a number of relevant single-cell RNA-seq data sets from fibrosis-focused studies to address a highly focused hypothesis (stated above). They gained the power to detect the population of SPP1+MAM+ cells by integrating these datasets. The analysis is carried out well using existing state-of-the-art tools. With whatever metric or single cell analysis-based discovery they make about the SPP1+MAM+ subpopulations (e.g., gene signatures, endpoint of trajectory analysis, associated regulons, etc), they compare the relevant scoring metrics in fibrosis and control subjects at every stage of the meta-analysis and find the SPP11+MAM+ is consistently higher across tissues and fibrosis-related diseases.

      There are only minor weaknesses in this paper. One is that some of the most highly significant or simply significant results are not shown in main figures but are summarized in supplementary tables (e.g., MYC TARGETS V1 would have appeared as the most significant, highest enriched, and among the largest in terms of set size). Another is analysis criteria that may not yield the most biologically relevant or impactful conclusion (e.g., while the regulon THRA does not display a shift in slopes it shows the strongest, progressive increase going toward the SPP1+MAM+ state).

      We thank the Reviewer for his very accurate summary of our findings. We agree with the Reviewer regarding all points and provide the answers to the suggested minor points as per below.

      Reviewer #2 (Public Review):

      In the past few years, single-cell transcriptomics analysis has uncovered cellular states associated with disease in experimental models and humans, revealing previously unrecognized disease-associated macrophage states. In particular, a macrophage state characterized by high expression of SPP1 (encoding osteopontin), and by a specific gene expression signature including the expression of TREM2, has been observed in various pathologies and given various names depending on the context e.g. TREM2hi macrophages, lipid-associated macrophages (LAM), disease-associated microglia (DAM), Scar-associated macrophages (SAM), etc... However, a focused investigation and comparison of SPP1+ macrophages across disease contexts were lacking. Here, the authors aimed to systematically analyze SPP1+ macrophages in the context of tissue fibrosis, and integrated single-cell RNA-seq data of >200,000 human macrophages in 6 organs in health and tissue fibrosis.

      Beyond confirming the presence of SPP1+ macrophages with a conserved gene expression module (TREM2, CD9, GPNMB, etc...) across tissues and their association with fibrosis, the authors identified a previously unknown cell subset within SPP1+ macrophages, that was enriched for the expression of genes involved in remodeling of the extracellular matrix, which they termed SPP1+ matrisome-associated macrophages (SPP1+MAM+). The authors further used computational tools to compare these SPP1+MAM+ macrophages to previously described SPP1+ macrophage states (LAM, DAM, SAM), investigate the differentiation and activation trajectory of SPP1+MAM+ macrophages, and identify potential transcriptional regulators involved in their differentiation. Finally, the authors show that SPP1+MAM+ macrophages are associated with ageing in both humans and mice.

      Overall, the conclusions of the authors are well supported by the data. The authors made excellent use of available computational tools, and the figures are clear and informative. The methods are well-described and appropriately used. In particular, the authors made a nice effort in explaining and justifying some key decisions in their scRNA-seq data analysis workflow, including a data-driven approach to decisions in the clustering analysis.

      The author's findings are of broad interest to the fields of tissue inflammation, fibrosis, macrophage biology, and immunology, and their report constitutes a valuable resource, and a basis for further investigations of macrophage differentiation mechanisms in tissue fibrosis, and how macrophages could be targeted to alleviate pathological tissue fibrosis.

      We thank the reviewer for finding our work valuable and for carefully assessing the manuscript. We agree with the Reviewer regarding all points.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript by Salloum and colleagues examines the role of statin-mediated regulation of mitochondrial cholesterol as a determinant of epigenetic programming via JMJD3 in macrophages.

      Key strengths of the work include:

      1) Mechanistic analysis of how statin treatments can remodel the mitochondrial membrane content via cholesterol depletion which in turn affects JMJD3 levels is a novel concept.

      2) Use of RNA-seq and ATAC-seq data provides an avenue for unbiased analysis of the statin effects.

      3) Use of methyl-cyclodextrin (MCD) alongside statins increases the robustness of the findings and the use of NFKB inhibitors suggests a mechanistic role for NFKB.

      The conclusions are only partially supported by the presented data:

      1) There is a lack of any in vivo studies that are required to demonstrate that the concentrations of statins used to induce epigenetic programming of macrophages are physiologically relevant. There have been numerous studies that have examined the anti-inflammatory effects of statins but there is significant debate and controversy regarding the in vivo relevance. Much of the in vivo effects of statins are achieved via changes in systemic cholesterol levels but the direct effects on macrophages are not clear.

      More discussion on this issue has been added (P9, line 9-33)

      2) "Statins" is used globally and it is unclear which statins were used, which doses of statins, and the treatment durations.

      Names of the statins have been added for the individual experiments in the figure legends.

      3) The RNA-seq, ATAC-seq, and selected H3K27 ChIP only show a snapshot of the results without leveraging the power of unbiased analysis. Such an unbiased analysis could show whether the examined genes are indeed the most relevant targets of statins.

      (a). Data are now analyzed with unsupervised GSEA, i.e. on all differentially expressed genes, both up and down, to identify the most significantly altered pathways. TNFa signalling via NF-aB came out on top (Fig. 1 A), similar to our conclusion from previous analyses.

      4) CCCP depletion can have broad toxic effects and it is difficult to interpret specific roles of ATP synthase from potentially toxic mitochondrial uncoupling.

      CCCP within the dosages used in this study has no detectable toxicity. An MTT test was performed and added (Supplementary Fig. 5).

      Reviewer #3 (Public Review):

      The manuscript by Salloum et al., titled "Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating JMJD3" reports an extensive characterization of the mechanisms underlying the anti-inflammatory role of statins using different in vitro studies. Based on these approaches, the authors observed that cholesterol reduction in response to statin treatment alters mitochondrial function and they identify JMJD3 as a potential critical driver of macrophage anti-inflammatory phenotype. Overall, the study is interesting and provides new findings that could shed light on the molecular effects of statins in these cells, but a number of issues remain confusing, and the experimental design is, on some occasions, not rigorous enough to support the drawn conclusions.

      Major issues:

      1) Focus on JMJD3 is justified by the authors as it was among the 40 genes commonly up-regulated in macrophages exposed to statin or methyl--cyclodextrin (MCD) by RNA-Seq analysis. However, this analysis has not been presented in the manuscript and it is unclear what genes (apart from JMJD3) might play an important role in the response of these cells. A detailed characterization of both up- and down-regulated genes in these experimental conditions and a better justification for JMJD3 are required to fully support further analysis.

      a. RNA-seq data from statin- and MCD-treated macrophages was re-analyzed by unsupervised Gene Set Enrichment Analysis (GSEA) (Fig. 1 A & B), which includes all differentially expressed genes, up and down, by cholesterol reduction. The conclusion is identical to the previous analysis, i.e. NF-kB is the top pathway activated by cholesterol reduction. The analysis in last version, which used a different program, is now moved to Supplementary Fig. 1.

      b. ATAC-seq data was similarly re-analyzed with GSEA (Fig. 6 A). Again, NF-kB is the top pathway activated by cholesterol reduction (Fig. 6 A, b). Examples of the lineups between ATAC-Seq peaks and RNA-seq peaks have been added (Fig. 6 B).

      c. RNA-seq data from LPS-stimulated macrophages with or without statins is also re-analyzed. Gene Ontology (GO) analysis of genes showing decreased expression upon statin treatment revealed that statins primarily suppress inflammatory processes (Fig. 7 A, b), while genes involved in cellular homeostatic functions were upregulated (Fig. 7 A, c).

      2) In the same line, Figures 6A and B fail to fully describe the changes found by ATAC-seq and RNA-seq. A more comprehensive analysis of these three datasets (together with previous RNA-seq studies) would help to obtain a better understanding of overlapping dysregulated genes (not only those found up-regulated) and what other epigenetic modifying factors might be involved.

      See response to reviewer #1, 3. Also response to reviewer #2, 3.

      3) In Figure 6C and Supplementary Figure 7, it would be noteworthy to also measure the gene expression of Kdm6a/UTX homolog Kdm6c/UTY, as it has been shown to lack demethylate H3K27me3 demethylase activity due to mutations in the catalytic site of the Jumomji-C-domain.

      Kdm6c/UTY in human is a male specific histone demethylase (PMID: 24798337). As statins are not known for sex-biases, this demethylase is not likely to play a role here.

      4) The use of rather unspecific treatments such as MG-132 (proteasome inhibitor) and GSKj4 (inhibitor of both JMJD3 and UTX) may distort the results observed and might elude their correct interpretation. To avoid this limitation, additional silencing and/or overexpression experiments are currently needed.

      Jmjd3 knockdown experiments have been added to complement the glutamine-free and GDKj4 experiments (Fig. 8, C).

      5) Figure 3 and Supplementary Figure 3 seem to be duplicated, please correct them. Moreover, for a better representation of these data, please include representative Seahorse profile figures of each experimental condition in these figures.

      Sorry for the error. It is corrected (Fig. 3, BMDMs).

      6) As stated by the authors, macrophage phenotype is much more complex than M1/M2 polarization. In this view, assessing a very limited set of genes (i.e, Il-1, IL-10, TNF, IL-6, IL-12, Arg1, Ym1, Mrc1) appears to be inappropriate. A meaningful number of markers must be added.

      Yes, this is complex, and it would good if we could assess more genes for this purpose. M1/M2 polarization is relatively poorly defined, in terms of genes expressed. We used a list of genes that most tested in literature. For example, Nat Immunol. 2017 Sep;18(9):985-994.

      7) For accurate quantification of H3K27me3 global levels, please add immunoblotting against histone H3 in Supplementary Figure 1. Will look for it. H3 and H327me3 could not do in the same plots. It would involve stripping, which we do not trust.

      No-stripping was the exact reason we didn’t use H3 as loading control. Comparison between separate plots could be another source of error. In addition, we would like to control for the effective cholesterol reduction in these cells by p-Creb. Whole cell lysates were used for western blotting, with actin as control for cell numbers.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, Drs. Miura, Mori, and colleagues, first present lineage tracing data using PDGFRa-CreERT2 and Foxa2-Cre drivers to show that PDGFRa+ cells, when lineage-labeled early in development go on to form the lung mesenchyme (but little to none of the epithelium), whereas FOXA2 expressing cells go on to contribute to both the lung epithelium and lung mesenchyme. However, it is already well known that FOXA2 is expressed in the mesendoderm around the time of gastrulation, and that this population generates both endoderm and mesodermal derivatives. As a result, it is not surprising that lineage labeling this population would contribute to both the lung epithelium and lung mesenchyme. The authors use the term bona fide lung (BFL) generative lineage. However, since the mesendoderm contributes to both the endoderm and mesoderm, but is by no means specific to the lung, and as shown in this paper (Figure 2G) the FOXA2 population only generates 30-40% of the mesenchyme, the term BFL is both confusing and misleading.

      We deleted the BFL concept and the sentences from the entire manuscript.

      In the second portion of the manuscript, the authors conditionally delete Fgfr2 using a Foxa2-Cre driver. Although loss of Fgf10 or Fgfr2 is known to result in lung agenesis, deletion of Fgfr2 within the FOXA2+ expressing cells is novel. However, since FOXA2 is broadly expressed within the nascent lung epithelium and Fgfr2 is known to be expressed within the lung epithelium, it isn't entirely clear how much information this adds beyond what already known from other Fgfr2 knockout studies. Perhaps the most interesting aspect of the reported phenotype is that the other organs (e.g. intestine) in these knockout animals appears to be relatively spared. This should be better characterized by the authors, as currently only a few H&E images are shown.

      As the reviewer described, Foxa2 is broadly expressed in the epithelium of several organs. We analyzed the other organs of Foxa2Cre/+; Fgfr2cnull mice shown in new Figures 4 - figure supplement 1C and 2A outlined in the manuscript, lines 267-275. We found that the intestine and other major organs were tdTomato-labelled but intact. Significantly, we discovered that thymus agenesis phenotype in Foxa2Cre/+; Fgfr2cnull mice because of the Fgfr2 requirement for their development (Dooley et al., 2007).

      The authors then used conditional blastocyst complementation with nGFP+iPSCs from wild-type mice to rescue the phenotype of the Fgfr2 conditional knockout mice, showing that an embryonic lung is formed. However, blastocyst complementation has previously been performed with other knockout mouse models with severe lung hypoplasia/aplasia, including Dr. Mori's previous Nature Medicine paper. Although most of the previous mouse models target the endoderm/early epithelial cells (e.g. conditional deletion of Ctnnb1, Fgfr2, or global knockout of Nkx2.1; see Li E, et al. Dev Dyn 2021 Jul;250(7):1001-1020; Wen B, Am J Resp Crit Care Med. 2020; in addition to Mori M, Nature Medicine, 2019), Kitahara A, et al (Cell Rep. May 12 2020;31(6):107626) previously reported blastocyst complementation in in Fgf10 null mouse model, so it is not clear what the current study significantly adds contributes to this existing body of literature. The lungs of the mice undergoing blastocyst complementation are also incompletely characterized in the current version of this study. For example, it is unclear how functional these lungs are and whether they are capable of gas exchange after birth.

      Our new Foxa2-lineage-based CBC model mice showed novel evidence of the co-generation of lung and thymus. We also added evidence that those rescued mice of the Foxa2-lineage-based CBC model survived until adulthood with normal lung function. These new findings were included in Figure 5, and described in the manuscript, lines 318-344.

      Reviewer #2 (Public Review):

      For most organs including lung produced by blastocyst complementation, certain cells including the blood vessels are still derived from host tissues, making them unfit for transplantation. To address this issue, Miura et al. explored the origin and the program of whole lung epithelium and mesenchyme, and identified the crucial Foxa2 lineage for lung organogenesis by using lineage tracing mice and human iPSC derived lung differentiation. They found that Foxa2 lineage cells contribute to both lung epithelium and mesenchyme formation, which suggest targeting Fox2 lineage cells could create an empty developmental niche for blastocyst complementation in mice. They further deplete Fgfr2 gene in Foxa2 lineage cells to induce the lung agenesis phenotype in mice, and donor mouse iPSCs injected into Fgfr2 mutant blastocysts occupied the empty niche and formed the missing lung.

      Strengths:

      To fill our knowledge gap of the origin of all lung cell types, especially pulmonary mesenchyme and endothelium, the authors investigated the lineage hierarchy of specified lung precursors in gastrulating mesendoderm. Using mouse lineage trancing and human iPSC derived lung differentiation, they clarified the msendoderm gene Expression pattern and progression, and compared the contributions of Pdgfra and Foxa2 lineage cells during lung development. They further demonstrate that the defective Foxa2 lineage in critically important for efficient lung complementation, which provide insight for next generation lung transplant therapies.

      Weakness:

      1) Several lineage tracing experiment lack rigorous quantification, the authors using "partially labels" or "labels a part of" in the text to describe their finding and conclusion, which make the evidence less solid.

      As described above, we quantified the lineage tracing mice and added results in new Figures 1C and 1G.

      We quantified the lineage-tracing results by morphometric analyses described in Figures 1C and 1F. We provided the quantification of Foxa2 lineage tracing studies in early embryogenesis and removed the unqualified results from Figure 1, and the manuscript was corrected in lines 136-144 and 155-161.

      Regarding Figure 1C, we have tried to have more numbers of embryos for these analyses using PdgfraCreERT2; Rosa tdTomato/+ mice. However, we often encountered embryo miscarriage due to the effect of Tamoxifen, even with the titration of tamoxifen or using the co-injection of progesterone (Nikita et al., 2019). Through more than twenty times experimental trials of Tm injection, we finally obtained a total of four embryos, three at E12.5 and one at E14.5. Those results were added in the new Figures 1A and B. This data was outlined in the manuscript, lines 134-141.

      2) The ideal lung for transplant should be functional for gas exchange, the lung complementation was only analyzed at E17.5 and E14.5, these two stages were too early to determine the function of the lungs generated via CBC.

      We showed additional evidence of the rescued mice in adulthood. We confirmed that Foxa2Cre; Fgfr2cnull injected with donor PSCs survived until adulthood, and there are no differences in the respiratory function compared to Foxa2Cre; Fgfr2hetero injected with donor PSCs. We added this result in new Figure 5 and described it in the manuscript lines 318-344.

      3) Immune cells contribute large proportion in the lung, and are critical for lung transplant, the chimerism analysis of immune cells is missing in this study.

      We analyzed the chimerism of hematopoietic cells in the E17.5 experiment, but there were no differences among all chimeric mice (see Table 1 and Figure 4 - figure supplement 3D). We thought this was because the origin of hematopoietic cells is the Liver and Yolk Sac (Yokomizo et al., 2022), which are off-target for our CBC model. However, we found that the thymus was also complemented in this model, as we described above. Since the thymus is a specialized primary lymphoid organ responsible for the education of T cells, essential for the maturation of T cells, this complementation may help for future successful transplantation, which can avoid post-transplantation graft versus host disease (GvHD). This data and discussion were added in Figure 4 - figure supplement 3D and Table 1, and the manuscript lines 293-295, and 417-427.

    1. Author Response

      Reviewer #2 (Public Review):

      The work reports a minor modification in the protocol for Prp formation in vitro. Using this the authors evaluate the role of Syntaxin 6 in modulating prion formation in vitro and the toxicity of the amyloid fibrils in cell culture models. The authors show that while prions/amyloids formed by PrP are non-toxic, mixed aggregates formed by Stx6/PrP are toxic; they claim that this is due to the toxic aggregation intermediates that accumulate more in the presence of Stx6. However, the basis of enhanced toxicity of Stx6/PrP mixed aggregates is not clear and doesn't seem to be physiologically relevant; there is no evidence that Stx6 and PrP forms mixed aggregates in vivo. Which is the toxic component of the Stx6/Prp co-aggregate? Is it the Stx6 component or the Prp component? Additionally, the authors do not have mechanistic explanation for the effect of Stx6 on PrP prion formation

      We thank the reviewer for his assessment and we agree that more in vivo data was needed to support the physiological relevance of the effect of syntaxin-6 on PrP. We now provide two new key experiments demonstrating interaction of STX6 with PrP in a cell model of prion disease and testing the effect of Stx6 knockout on the replication of infectious RML prions in PMCA assays (Figures 4, 4S1, 4S2). Please refer to our response to reviewer 1, point 1 for more details. We respectfully disagree that the native aggregation assay represents a minor modification of PrP fibril formation protocols. While this statement may be true in the narrow technical sense, it is striking that in more than 25 years of prion research, no aggregation assay under near-native assay conditions had been developed. The conditions of previous assays, which relied on thermal or chemical denaturation to facilitate PrP misfolding, were inherently incapable of assessing the effect of protein modifiers of PrP fibril formation. Therefore, the NAA opens a wide field of new experiments to mechanistically probe modulators of PrP aggregation and toxicity under physiologically relevant conditions. The protein syntaxin-6 proves a test case for this new capability.

      The reviewer may have misunderstood the mechanistic hypothesis for neurotoxicicty that is supported by our data. We are not claiming that the co-aggregates between PrP and syntaxin-6 are toxic. As our data demonstrate, aggregation endpoints in the presence of STX6 have little neurotoxicity, as do fibrillar aggregation endpoints without the presence of STX6 (Figures 5 and 5S1). Rather, based on the well-established oligomer toxicity hypothesis, we are concluding that STX6, by delaying or preventing formation of mature amyloid fibrils, caused toxic aggregation intermediates to persist. Our new data from secondary seeding assays (Figure 5S2) demonstrate that at the aggregation time points when the maximum amounts of neurotoxic species are present (20 h), no seeding competent fibrils have yet been formed. The presence of STX6 prolongs this period and therefore increases toxicity (Figures 5 and 5S1). These data directly support the established theories for the basis of amyloid toxicity and, additionally, caution that an intervention to delay amyloid formation can have deleterious effects on toxicity. We have now made this point more clearly in our discussion. Of course, we, like many other protein misfolding laboratories in the world, are also working hard on isolating and characterizing the toxic species in prion and other protein misfolding diseases, which, as the reviewer suggests, will be a very important milestone in understanding these diseases.

      Reviewer #3 (Public Review):

      The autocatalytic replication mechanism of misfolded Prion-like proteins (PrP) into amyloid aggregates is associated with a plethora of deleterious neurodegenerative diseases. Despite of the huge amount of research, the underlying molecular events of self-replication and identification of the toxic species are not fully understood. Many recent studies have indicated that non-fibrillar oligomeric intermediates could be more neurotoxic compared to the Prion fibrils. Various cellular factors, like the participation of other proteins and chaperone activity, also play an important role in PrP misfolding, aggregation, and neurotoxicity. The present work focuses on understanding the PrP aggregation mechanism with the identification of the associated toxic species and cellular factors. One of the significant strengths of the work is performing the aggregation assay in near-native conditions. In contrast, most in vitro studies use harsh conditions (such as high temperature, denaturant, detergent, low pH, etc.) to promote protein aggregation. The authors successfully observed the well-known seeding property of the PrP in this aggregation assay that bypasses the primary nucleation during aggregation. Moreover, the authors have shown that syntaxin 6 (Stx6), a known risk factor in prion-mediated Creutzfeldt-Jakob disease, delays fibril formation and prolongs the persistence of toxic intermediates, thus playing an anti-chaperone activity. This study will contribute to understanding the molecular mechanism of PrP aggregation and neurotoxicity. However, further studies are required to identify and characterize the toxic intermediate in the near future precisely.

      We thank the reviewer for his thoughtful and accurate summary. We fully agree that the nature of the toxic species in protein misfolding diseases is a key challenge of the field and we hope that our study contributes to solving this puzzle.

    1. Author Response:

      We would like to express our gratitude to the reviewers for the time and effort dedicated to evaluating our manuscript. We are committed to addressing each of the comments and recommendations they have presented.

      It appears that a majority of the feedback emphasizes the need for clarity and expanded explanations. We acknowledge these points and are confident that offering a clearer exposition and delving into further details will notably enhance the manuscript. In our initial draft, our intention was to ensure accessibility to non-mathematical readers by minimizing technical jargon. However, the feedback underscores the importance of certain details, particularly for those well- versed in ODE modelling, and the need to provide complete information.

      While we find the reviewers' feedback invaluable, it is worth noting that none of the critiques suggest a fundamental change in our presented analyses. Below, we offer brief responses to the primary critiques mentioned in the public review:

      1) The first notable comment pertains to the selection criteria for parameter and initial condition values. This critique is indeed valid. In brief, parameter values were chosen from a range of 10^- 5 to 10^4, representing rates from 10 femtomolar/minute to 10 micromolar/minute, spanning a biologically plausible spectrum. It is conceivable that values outside this range exist but are exceedingly rare. Similarly, initial conditions were chosen within the range 10^0 to 10^4, typically represented in nM.

      2) The second comment highlights the challenges in systematically determining a full spectrum of parameter sets with 94 free parameters. In our observations, as we expanded the number of model instances, the distribution of protein dynamics exhibited minimal variation. A doubling of model instances from 100,000 to 200,000 led to less than a 1% error change. This error was calculated based on the differences across every protein species and dynamic category. These findings suggest that examining more than 100,000 model instances neither shifts the dynamic distributions significantly nor unveils new resistance mechanisms. We are committed to presenting these analyses more comprehensively in the revised manuscript.

      3) The query about the appropriateness of filtering our models based on computational feasibility is pertinent. Our contention is that this filter does not exclude a significant number of model instances. Furthermore, stiff ODEs generally arise from extremely high reaction rates, which are exceedingly rare in a biological context. Thus, their exclusion only filters out exceedingly rare biological contexts, and only a small proportion of the time.

      4 & 5) Clarifications sought about the simulations will be addressed. Though we feel the details were implicitly incorporated, we will make them explicit in the subsequent version.

      6) The final major comment underscores the qualitative nature of our validation, which we agree. Currently, we are exploring experimental techniques or datasets for a more robust validation. In our next revision, we will ensure a more in-depth discussion of the validation in the manuscript's discussion section.

      Once again, thank you for your valuable feedback. We look forward to submitting a revised version that addresses all concerns and enhances the manuscript's overall quality.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their thoughtful and positive evaluation of our work. Below, we have addressed all of the essential revisions and provide point-by-point responses to all of the reviewer comments. Additionally, we include with this resubmission quantification microneme localization, determined by expansion microscopy, which further validates the central role of HOOK in microneme trafficking.

      Suggested revisions:

      1. Please confirm the interaction between CDPK1 and ROM4 by reciprocal IP.

      Prompted by the reviewers suggestions we examined more closely the pulldowns of WT and myristoylation-deficient CDPK1 (cMut). ROM4 had been identified as differentially enriched in the cMut pulldown; however, upon closer examination we realized that the abundance of ROM4 is actually even greater in the untagged control and therefore likely a variable contaminant in the pulldowns. We have re-analyzed the results of those pulldowns to focus on proteins significantly enriched in association with either WT or cMut CDPK1, relative to untagged controls. Among this set of 16 enriched proteins, only three proteins appeared differentially enriched between WT and cMut. None of the proteins associated with CDPK1 inform pathways related to parasite motility and were therefore not pursued further in this study.

      2. Please compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      We compared expression levels of CDPK1 using immunoblot with an anti-CDPK1 antibody comparing TIR1, CDPK1-AID, cWT and cMut parasites, which we have included in panel G of Figure 2–figure supplement 1. Endogenous AID tagging of CDPK1 resulted in a decrease in the abundance of CDPK1. cWT and cMut complementation result in similar expression levels to the AID-tagged iKD CDPK1, albeit the cMut complement has marginally higher expression. Since CDPK1 is essential for the lytic cycle, insufficient levels of the cWT expression would have displayed defects in our plaque assays. We have updated our results to reflect this new data:

      “Additionally, we compared endogenous CDPK1 expression to mAID-tagged, cWT, and cMut strain (Figure 2–figure supplement 1). Introduction of a mAID tag to CDPK1 led to a reduction in CDPK1 levels, but these levels were equivalent to complementation products in cWT and cMut parasites.”

      3. Please attempt to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1.

      The kinase activity in aerolysin-treated parasites was unaffected by the 1B7 inhibitory nanobody, demonstrating that parasites remain impermeable to proteins as small as 15 kDa.  Furthermore, we localize CDPK1 by immunofluorescence in aerolysin-treated parasites to show that the localization of CDPK1 is indistinguishable from that of vehicle-treated parasites, suggesting that overall CDPK1 localization is unaffected by aerolysin treatment. We include this data in panel B in Figure 3–figure supplement 1. Nevertheless, in the manuscript we discuss the limitations of the thiophosphorylation experiment:

      “While our approach largely maintains kinases in their subcellular context, aerolysin treatment disrupts native ion concentrations and detaches the plasma membrane from the inner membrane complex (IMC) (Wichroski et al., 2002).”

      Because of these limitations we rely on the overlap of CDPK1-dependent targets between our thiophosphorylation and time course experiments.

      4. Please confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins.

      In response to this suggestion, we tagged the C termini of TGGT1_306920 and TGGT1_316650 with 3xHA epitopes. Although immunoprecipitation of TGGT1_316650 was unsuccessful, immunoprecipitation of TGGT1_306920 identified HOOK and FTS as significantly enriched proteins. We include this new data in panel C of Figure 5 and have updated our results:

      “To further confirm the interaction, we fused a 3xHA tag to the C terminus of TGGT1_306920, performed IP-MS and compared protein enrichment to the HOOK-3xHA IP (Figure 5C). HOOK, FTS, and TGGT1_306920 were significantly enriched across both IP-MS experiments, whereas TGGT1_316650 is only significantly enriched in HOOK and FTS pulldowns. This suggests the presence of multiple HOOK complexes composed of the core HOOK and FTS proteins that bind with either TGGT1_316650 or TGGT1_306920.”

      While further interactions with other members of the complex still need to be validated it is not the standard of the field to validate every member of a protein complex by reciprocal IP. Our HOOK and FTS IP-MS results each identified HOOK, FTS, TGGT1_306920, and TGGT1_316650 and our TGGT1_306920 IP-MS identified all members except TGGT1_316650. These interaction partners were found significantly enriched compared to parental controls, which make the observation of the complex robust.

      Reviewer #1 (Recommendations For The Authors):

      I have only a few minor comments:

      1. In the supplemental data section I would include a document of code ( R script) used for the analysis. If this is too cumbersome then I would instead suggest that like done with proteomic data, the code should be deposited in a database that provides a DOI for access, instead of only being provided on request. This can be done by use of an electronic laboratory notebook or via Github.com or a similar service.

      Zip files containing R code and CSVs have been included for the sub-minute resolution phosphoproteomics (Supplementary File 11) and thiophosphorylation (Supplementary File 12).

      2. It would be useful to expand the discussion of the other 2 proteins identified in the HOOK complex TGGT1_316650 and 306920. Do these have homologs to proteins in other organisms? Based on HOOK in other eukaryotes can you provide a model of the 4 proteins in the complex that you identified? Was any work done on 316650 and 306920 with regards to genetic KO or auxin regulation to see if they also provided a similar phenotype to what was described with HOOK and FTS?

      We have included the following information in our discussion:

      “It also remains unknown how the HOOK complex binds to micronemes. In H. sapiens and D. melanogaster, RAB5 on vesicles interacts with FHIP in the HOOK complex(Bielska et al., 2014; Gillingham et al., 2014; Guo et al., 2016; Xu et al., 2008; Yao et al., 2014). We speculate that TGGT1_306920 may serve the role of FHIP within the HOOK complex as it is fitness conferring whereas TGGT1_316650 appears dispensable but the complex's binding partner on micronemes remains unknown. RAB5A and RAB5C have been implicated in the biogenesis of micronemes, but their roles during exocytosis have not been explored(Kremer et al., 2013). Understanding how micronemes are recognized may elucidate how cargo specificity is achieved and regulated.”

      TGGT1_306920 is conserved amongst coccidians and shares similar localization to HOOK and FTS. TGGT1_316650 is conserved amongst apicomplexans and more broadly in subsets of other eukaryotic phyla. Given our IP-MS data, HOOK and FTS form a core complex that is either bound to TGGT1_316650 or TGGT1_306920. Given that TGGT1_306920 appears to be important for parasite fitness, based on genome-wide screening data (Sidik, Huet, et al. 2016), we speculate this could function to mediate the linkage to microneme organelles. At this time, we have no additional data to present on 316650 and 306920. Additional biochemical studies will be needed to characterize the stoichiometry of complexes and their function; however, we propose that HOOK and FTS are interacting as previously described in opisthokonts (Bielska et al., 2014, Guo et al., 2016 and Zhang et al., 2014). 

      3. The myristoylation data section ended with "additional studies will be required to understand how myristoylation influences CDPK1 activity". What studies are required to further this understanding? I assume these studies are difficult and that is why they were not part of this outstanding paper.

      The effect of myristoylation is modest during acute phenotypes like egress (see Figure 2H). Moreover there were no significant differences between cWT and cMut that could explain the impact of CDPK1 on microneme secretion, which was the purpose of this study. Further studies would require a phosphoproteomic workup of the cWT and cMut, which is beyond the scope of the present study.

      4. In the key resource table, in the first column reagent type I suggest you indicate this as T. gondii RH strain to make it clear the background strain (I know it is encoded in additional information but the first column should also be clear).

      We have updated the key resources table to indicate the T. gondii strains used are of RH background.

      Reviewer #2 (Recommendations For The Authors):

      I have a few minor comments that could be addressed by modification of the current version of the manuscript.

      Line 290, where authors classify proteins phosphorylated in CDPK1 dependent manner into five groups, it would be helpful to list at least class 1 (five proteins) and class 2 (four proteins) in the text of the results section. Further since in the same paragraph, the authors are also describing figure 3G, it would be helpful if the groups are identified with roman numerals or as class A, B, C, D, and E. Currently, in fig 3G, the three columns (CDPK1 dependent, CDPK1 independent and fitness scores) are also identified as 1, 2 and 3 and these nomenclatures could be confused with the five different classes of putative substrates.

      We thank the reviewer for their helpful suggestion. We have renamed the classes of CDPK1 targets using roman numerals I, II, III, IV, and V. We have also listed out the proteins in Class I and Class II in the results section as follows:

      “Class I contains five proteins for which the same phosphorylated site was identified in both the time course and thiophosphorylation experiments and include: TGGT1_227610, TGGT1_221470, TGGT1_235160, TGGT1_273560 (KinesinB), and TGGT1_310060. Class II contains four proteins for which phosphorylated sites identified across both approaches were within 50 amino acid residues of one another and include: TGGT1_289100 (MIC18), TGGT1_309190 (AIP), TGGT1_254870, and TGGT1_259630.”

      Line 398, the expansions of the abbreviations FTS and FHIP should be included.

      We have included the expansions of the abbreviations for FTS and FHIP:

      “In D. melanogaster and mammals, HOOK proteins have been shown to form dimers and bind Fused Toes (FTS) and FTS and HOOK-interacting protein (FHIP) via a C-terminal region that interacts with vesicular cargo (Christensen et al., 2021; Krämer and Phistry, 1996; Lee et al., 2018; Xu et al., 2008).”

      The HOOK protein shows CDPK1-dependent phosphorylation at multiple sites S167, S177, and S189-191. In the discussion section, it would be helpful if the authors can speculate about the importance of these phosphorylated residues on the functioning of HOOK.

      Prior to engaging parasite motility, micronemes are positioned at the apical third of the parasite, but after an increase in intracellular Ca_2+_, micronemes rapidly traffic to the apical tip of the parasite. Our results indicate that both CDPK1 kinase activity and HOOK are required for microneme trafficking. Given the association of micronemes with tubulin-based structures such as the cortical microtubules and conoid, activation of trafficking along such structures must be rapid, on the time scale of seconds. Cell-free reconstitution assays generated from opisthokonts indicate that activating adaptors like HOOK are necessary to activate processive dynein trafficking along microtubules in addition to conferring cargo selectivity. In intracellular non-motile parasites, HOOK is expressed and localized to the apical end and cytosol prior to the activation of rapid microneme trafficking, consistent with regulation of HOOK activity. We have included reference to this type of regulation and our expectation that CDPK1 activates the HOOK complex as part of the Discussion:

      “Phosphorylation has been reported to regulate the function of activating adaptors. In HeLa cells, phosphorylation of BICD2 facilitates recruitment of dynein and dynactin (Gallisà-Suñé et al. 2023). Analogously, phosphorylation of JIP1 mediates the switch between kinesin and dynein motility of autophagosomes in murine neurons (Fu et al. 2014). We therefore speculate that phosphorylation of HOOK by CDPK1 may activate the adaptor by promoting its interaction with dynein and dynactin to initiate trafficking of micronemes.”

      Reviewer #3 (Recommendations For The Authors):

      1. CDPK1 myristoylation. The loss of myristoylation of CDPK1 appears to increase its interaction with ROM4 which also becomes cytosolic instead of localizing to the plasma membrane. As ROM4 is necessary for microneme discharge after proteolysis it would be interesting to investigate the specific relation between CDPK1 and ROM4 and to confirm the interaction by reciprocal IP.

      Please see our response to Suggested Revision #1.

      2. CDPK1 myristoylation, Figure 2D. It would be useful to compare the expression of the tagged and complemented (cWT and cMut) CDPK1 with the endogenous expression of the non-tagged and non-complemented gene.

      Please see our response to Suggested Revision #2.

      3. Thiophosphorylation. The authors used the bacterial toxin aerolysin to semi-permeabilize parasite membranes by forming 3-nm pores. Aerolysin affects the membrane integrity, however, the authors demonstrated that CDPK1 is possibly associated with membrane structures (Figure 2E/F). Could it be possible to transiently destabilize the membrane before to treat with KTPγS or ATP? If not, it would be necessary to confirm that aerolysin treatment does not impact myristoylation-dependent subcellular partitioning of CDPK1 before identifying proteins specifically labelled by CDPK1G and not by CDPK1M (Figure 3C).

      Please see our response to Essential Revision #3.

      4. IP-MS on HOOK-3xHA parasites. The authors' results suggest that HOOK and FTS form a functional complex implicated in microneme exocytosis. It would be interesting to know if HOOK knockdown can have an effect on FTS expression or localization and reciprocally.

      While we agree with the reviewer that this is an interesting question, we focused this paper on the discovery of the complex in relation to CDPK1. Understanding the regulation and interaction of the complex components is the focus of ongoing work and will require generation of new strains and additional mass spectrometry. For those reasons we find these experiments fall beyond the scope of the present study.

      5. FTS-Turbo-ID. (Line 443-444) Authors should confirm the interaction of TGGT1_306920 and TGGT1_316650 with the HOOK and FTS proteins, it will give strength to their conclusion. In fact, without confirmation, everything is based on suggestions that were also formulated but not confirmed in humans. The physical existence of this putative complex should be demonstrated by co-IP experiments. In addition, the missing player is a dynein candidate itself, which leaves the model vulnerable. Short of pursuing this experimentally, it should at least be commented on in the Discussion.

      Please see our response to Sugegsted Revision #4. Our IP-MS experiments of HOOK-3xHA and FTS-3xHA indicate interactions with HOOK, FTS, TGGT1_316650, and TGGT1_306920. Our FTS-TurboID experiments also suggest an interaction between FTS, HOOK, TGGT1_316650 and TGGT1_306920. Furthermore, our TGGT1_306920 IP-MS data identifies HOOK and FTS, but not TGGT1_316650, suggesting distinct complexes with HOOK and FTS as core components.

      6. MIC2 secretion (Fig 5J). The rep represented by the grey dot with a white outline seems like an outlier result compared to the other 2 reps. Basically, without this rep there at least is a strong trend that there is a difference in secretion without EtOH stimulation. That is what actually would be expected, for constitutive secretion! Please carefully reconsider these data - e.g. check for outlier statistics and/or add reps.

      We present three independent biological replicates, showing a significant difference in microneme secretion following depletion of CDPK1, HOOK, or FTS. It is expected, based on our prior experience, that microneme secretion will vary day to day. However, the expected trend can be observed in all replicates. We are unclear what the reviewer means by constitutive secretion since some low-level of calcium-dependent microneme discharge is expected even in the absence of stimulation, barring BAPTA-AM treatment. Even in the absence of EtOH stimulation (left graph in Fig. 5J), the trend of diminished basal MIC2 release holds when CDPK1, HOOK, or FTS is knocked down.

      7. Apical accumulation of micronemes. A similar observation was made upon manipulation of Ferlin1, which is a manuscript on BioRXivs. Since other BioRXiv manuscripts are cited in the presented work, this is an omission.

      We apologize for this omission and have updated the manuscript accordingly:

      “It therefore appears that the initial round of microneme discharge during egress depends on CDPK1, and only subsequent rounds require the HOOK complex. Indeed, a fraction of micronemes are already found docked at the apical complex prior to the transition from the replicative to the motile stages, and may constitute the first round of microneme exocytosis (Mageswaran et al., 2021; Sun et al., 2022). Ferlin 1 (FER1) was recently shown to be involved in microneme positioning and overexpression of FER1 was sufficient to initiate an initial round of microneme exocytosis and induce egress (Tagoe et al. 2020).”

      Minor comments:

      1. Concerning the expression of the HOOK protein in Figures 4B, and C, could the author indicate why they performed the IFA after 24h of auxin treatment and the WB after 40h of treatment?

      The difference in timing was for technical reasons. Our immunoblots and additional assays such as microneme secretion require more parasites, such that we harvest at the end of the lytic cycle to increase yields. For the IFAs, we perform these at 24 hrs, which allows for depletion and replication, but captures parasites in small vacuoles that show clear localization patterns. Furthermore, our microneme relocalization studies in Figure 6 were also performed after 24 hrs of auxin treatment, yet exhibit a trafficking defect following  24 hr HOOK depletion.

      2. Fig 4H. The color of CDPK1-AID on the left and the HA on the top (HOOK) do correspond but indicate different proteins. Please label HOOK text in teal, not CDPK1.

      We have changed the text color of the strain names on 4H to black to avoid confusion with the IFA channel labels.

      3. I would like to suggest adding the "Key resources tables" in the supplementary data because it makes the materials & methods harder to read.

      The key resources table was included at the beginning of the Materials and Methods section as indicated in eLife’s instructions to the authors.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This study presents a useful inventory of the joint effects of genetic and environmental factors on psychotic-like experiences, and identifies cognitive ability as a potential underlying mediating pathway. The data were analyzed using solid and validated methodology based on a large, multi-center dataset. However, the claim that these findings are of relevance to psychosis risk and have implications for policy changes are only partially supported by the results.

      We appreciate the feedback and insightful suggestions from the editor and reviewers, which aided us to improve the manuscript. We believe the concerns initially raised were mostly due to areas that needed further clarification, which we have now clarified in this revised version. Our primary contribution lies in our meticulous analytical approach aimed at minimizing confounding effects and providing more precise estimates of the genetic and environmental impact on children's cognition and psychology. This method differs from the widely used general linear modeling in the field, which, in our opinion, may not be the optimal strategy for large-scale data analysis. Our comprehensive, tutorial-style description of the methods might serve as a valuable resource for the community.

      Regarding the critique that our findings 'partially support the relevance to psychosis risk,' we have updated our manuscript to more accurately reflect this feedback. We have altered the narrative to indicate that psychotic-like experiences (PLE) are associated with the risk for psychosis, a connection substantiated by prior studies cited in our manuscript.

      Similarly, in response to the comment that our findings 'partially support implications for policy changes,' we have nuanced our conclusion. However, we would like to emphasize our discovery that a negative genetic predisposition impacting cognitive development (i.e., low polygenic scores for cognitive phenotypes) can be counteracted by a positive school and familial environment. We believe that this finding could have meaningful implication for policy making and is robustly supported by our analyses.

      We hope this revised manuscript more accurately reflects our research findings and its significances. Lastly, we would like to express our gratitude for your fair and detailed review process. Our experience working with eLife has been incredibly rewarding, and we commend your dedication to an encouraging and progressive publishing culture.  

      Public Reviews:

      Reviewer #1

      This study by Park et al. describes an interesting approach to disentangle gene-environment pathways to cognitive development and psychotic-like experiences in children. They have used data from the ABCD study and have included PGS of EA and cognition, environmental exposure data, cognitive performance data and self-reported PLEs. Although the study has several strengths, including its large sample size, interesting approach and comprehensive statistical model, I have several concerns:

      • The authors have included follow-up data from the ABCD Study. However, it is not very clear from the beginning that longitudinal paths are being explored. It would be very helpful if the authors would make their (analysis) approach clearer from the introduction. Now, they describe many different things, which makes the paper more difficult to read. It would be of great help to see the proposed path model in a Figure and refer to that in the Method.

      We clarified the longitudinal paths tested in this study in Intro [line 149~159]. We also added a figure of the proposed path model (Figure 1) [Methods: line 231~238].

      • There is quite a lot of causal language in the paper, particularly in the Discussion. My advice would be to tone this down.

      We adjusted and moderated the use of causal languages throughout the manuscript.

      • I feel that the limitation section is a bit brief, and can be developed further.

      We clearly specified the limitations of our study. These included concerns about the representativeness of the ABCD samples, of the limited scope of longitudinal data, and the use of non-randomized, observational data [line 524~544].

      • I like that the assessment of CP and self-reports PEs is of good quality. However, I was wondering which 4 items from the parent-reported CBCL were used and how did they correlate with the child-reported PEs? And how was distress taken into account in the child self-reported PEs measurement? Which PEs measures were used?

      Thanks for the clarification question. We report the Pearson’s correlation coefficients between the PLEs [line 198~200]. (The Reviewer #1 may have referred to the prior version of our manuscript submitted elsewhere, for this point has been already addressed in our initial submission to eLife).

      • What was the correlation between CP and EA PGSs?

      The Pearson’s correlation between CP and EA PGS was 0.4331 (p<0.0001). We added the statistics to the manuscript. [line 214]

      • Regarding the PGS: why focus on cognitive performance and EA? It should be made clearer from the introduction that EA is not only measuring cognitive ability, but is also a (genetic) marker of social factors/inequalities. I'm guessing this is one of the reasons why the EA PGS was so much more strongly correlated with PEs than the CP PGS. See the work bij Abdellaoui and the work by Nivard.

      We appreciate the reviewer’s insightful feedback. Acknowledging the role of both CP and EA PGSs in our study, we agree with the observation that EA PGS goes beyond gauging cognitive aptitude—it also serves as an indicator of societal influences and inequalities. The multifaceted nature of EA PGS could be the reason underlying the stronger correlation with PLEs compared to CP PGS. In response to this feedback, we revised our introduction to articulate the multifaceted role of EA PGS in more precise terms. For supporting our assertions, we have included references to prior studies (Abdellaoui et al., 2022) [line 131~142].

      Abdellaoui, A., Dolan, C. V., Verweij, K. J. H., & Nivard, M. G. (2022). Gene–environment correlations across geographic regions affect genome-wide association studies. Nature Genetics. doi:10.1038/s41588-022-01158-0

      • Considering previous work on this topic, including analyses in the ABCD Study, I'm not surprised that the correlation was not very high. Therefore, I don't think it makes a whole of sense to adjust for the schizophrenia PGS in the sensitivity analyses, in other words, it's not really 'a more direct genetic predictor of PLEs'.

      We thank the reviewer for the thoughtful comments. We acknowledge that the correlation between schizophrenia PGS and PLE may not be exceedingly high, as evidenced by previous work, including analyses from the ABCD study. However, we would like to emphasize our rationale for adjusting schizophrenia PGS in the sensitivity analyses. Our study design stemmed from the established associations between PLEs and increased risk for schizophrenia. Existing studies have reported significant associations between schizophrenia PGS and cognitive deficits in both psychosis patients (Shafee et al., 2018) and people at risk for psychosis (He et al., 2021). Notable, the PGS for schizophrenia has shown significant associations with PLEs, arguably more so than PGS for PLEs itself (Karcher et al., 2018). Our updated manuscript has incorporated these references to improve clarity. [line 307~309]. By adding this layer of adjustment, we believe that our mixed linear model more precisely examines the relationship between the cognitive phenotype PGS and PLEs, in terms of both sensitivity and specificity.

      He, Q., Jantac Mam-Lam-Fook, C., Chaignaud, J., Danset-Alexandre, C., Iftimovici, A., Gradels Hauguel, J., . . . Chaumette, B. (2021). Influence of polygenic risk scores for schizophrenia and resilience on the cognition of individuals at-risk for psychosis. Translational Psychiatry, 11(1). doi:10.1038/s41398-021-01624-z

      Karcher, N. R., Paul, S. E., Johnson, E. C., Hatoum, A. S., Baranger, D. A. A., Agrawal, A., . . . Bogdan, R. (2021). Psychotic-like Experiences and Polygenic Liability in the Adolescent Brain Cognitive Development Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. doi:https://doi.org/10.1016/j.bpsc.2021.06.012

      Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., . . . Robinson, E. B. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0124-8

      • How did the FDR correction for multiple testing affect the results?

      Please note that we have clarified our FDR correction in the methods

      As detailed in the method section [line 254~255], we applied False Discovery Rate (FDR) correction for multiple testing across nine key variables in the study: PGS (CP or EA), family income, parental education, family’s financial adversity, Area Deprivation Index, years of residence, proportion of population below -125% of the poverty line, positive parenting behavior, and positive school environment. An exception was made in our additional sensitivity analysis, where we included schizophrenia PGS in the linear mixed model for adjustment, thus the FDR correction was applied across ten key variables instead. Overall, the application of FDR correction had minimal impact on our findings. Most associations between the key variables and the outcomes that were originally marked as highly significant sustained their significance after the FDR correction.

      Overall, I feel that this paper has the potential to present some very interesting findings. However, at the moment the paper misses direction and a clear focus. It would be a great improvement if the readers would be guided through the steps and approach, as I think the authors have undertaken important work and conducted relevant analyses.

      We express our appreciation to the reviewer for the positive feedback and constructive suggestions, which only serve to improve and strengthen our manuscript. We have incorporated the suggested corrections and clarifications in response to the reviewer's suggestions. We believe that these changes will not only enhance the overall readability but also more effectively emphasize the significance and implication of our work.

      Reviewer #2 (Public Review):

      This paper tried to assess the link between genetic and environmental factors on psychotic-like experiences, and the potential mediation through cognitive ability. This study was based on data from the ABCD cohort, including 6,602 children aged 9-10y. The authors report a mediating effect, suggesting that cognitive ability is a key mediating pathway in the link between several genetic and environmental (risk and protective) factors on psychotic-like experiences.

      While these findings could be potentially significant, a range of methodological unclarities and ambiguities make it difficult to assess the strength of evidence provided.

      Strengths of the methods:

      The authors use a wide range of validated (genetic, self- and parent-reported, as well as cognitive) measures in a large dataset with a 2-year follow-up period. The statistical methods have the potential to address key limitations of previous research.

      Weaknesses of the methods:

      The rationale for the study is not completely clear. Cognitive ability is probably a more likely mediator of traits related to negative symptoms in schizophrenia, rather than positive symptoms (e.g., psychosis, psychotic-like symptom). The suggestion that cognitive ability might lead to psychotic-like symptoms in the general population needs further justification.

      We appreciate the reviewer’s concern regarding the role of cognitive ability in relation to schizophrenia symptoms. We are aware that cognitive ability often serves as a mediator of psychotic-like experiences. However, to our best knowledge, a growing body of research has proposed that cognitive ability can mediate positive symptoms in schizophrenia including psychotic-like experiences. The studies by Howes & Murray (2014) and Garety et al. (2001) suggested that deficits in cognitive ability can potentially contribute to the manifestation of positive symptoms such as psychotic-like experiences. We have elaborated on this aspect in the Introduction section [line 104-115].

      Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. The Lancet, 383(9929), 1677-1687. doi:https://doi.org/10.1016/S0140-6736(13)62036-X

      Garety, P. A., Kuipers, E., Fowler, D., Freeman, D., & Bebbington, P. E. (2001). A cognitive model of the positive symptoms of psychosis. Psychological Medicine, 31(2), 189-195. doi:10.1017/S0033291701003312

      Terms are used inconsistently throughout (e.g., cognitive development, cognitive capacity, cognitive intelligence, intelligence, educational attainment...). It is overall not clear what construct exactly the authors investigated.

      We thank the reviewer’s feedback regarding the consistency of terminology in our manuscript. Per the suggestion, we standardized the use of ‘cognitive capacity’ and now consistently refer to it as ‘cognitive phenotypes’ throughout our manuscript. Furthermore, we explicitly stated in the Introduction section that our two PGSs of focus will be termed ‘cognitive phenotypes PGSs’, aligning with terminology used in prior studies (Joo et al., 2022; Okbay et al., 2022; Selzam et al., 2019) [line 140~142].

      Joo, Y. Y., Cha, J., Freese, J., & Hayes, M. G. (2022). Cognitive Capacity Genome-Wide Polygenic Scores Identify Individuals with Slower Cognitive Decline in Aging. Genes, 13(8), 1320. doi:10.3390/genes13081320

      Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., . . . Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54(4), 437-449. doi:10.1038/s41588-022-01016-z

      Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O’Reilly, P. F., & Plomin, R. (2019). Comparing Within- and Between-Family Polygenic Score Prediction. The American Journal of Human Genetics, 105(2), 351-363. doi:https://doi.org/10.1016/j.ajhg.2019.06.006

      Not the largest or most recent GWASes were used to generate PGSes.

      We appreciate the reviewer’s observation. Indeed, we were unable to utilize the most recent or the largest GWAS for cognitive performance, educational attainment, and schizophrenia due to the timeline of our study. Regrettably, the commencement of our study preceded the publication of the ‘currently’ the largest or most recent GWAS studies by Okbay et al. (2022) and Trubetskoy et al. (2022). Our research was conducted with the best available data at that time, which was the GWAS of European-descent individuals for educational attainment and cognitive performance (Lee et al, 2018). To eliminate any potential confusion, we adjusted the text to specify that our study used 'a GWAS of European-descent individuals for educational attainment and cognitive performance' rather than the largest GWAS [line 206~208].

      It is not fully clear how neighbourhood SES was coded (higher or lower values = risk?). The rationale, strengths, and assumptions of the applied methods are not fully clear. It is also not clear how/if variables were combined into latent factors or summed (weighted by what). It is not always clear when genetic and when self-reported ethnicity was used. Some statements might be overly optimistic (e.g., providing unbiased estimates, free even of unmeasured confounding; use of representative data).

      Thank you for pointing this out. Consistent with the illustration of neighborhood SES in the Methods, higher values of neighborhood SES indicate risk [line 217~228]. In the original Figure 2, higher value of neighborhood SES links to lower intelligence (direct effects: β=-0.1121) and higher PLEs (indirect effects: β=-0.0126~ -0.0162). We think such confusion might have been caused by the difference between family SES (higher values = lower risk) neighborhood SES (higher values = higher risk). Thus, we changed the terms to ‘High Family SES’ and ‘Low Neighborhood SES’ in the corrected figure (Figure 3) for clarification.

      Considering that shorter duration of residence may be associated with instability of residency, it may indicate neighborhood adversity (i.e., higher risk). This definition of the ‘years of residence’ variable is in line with the previous study by Karcher et al. (2021).

      During estimation, the IGSCA determines weights of each observed variable in such a way as to maximize the variances of all endogenous indicators and components. We added this explanation in the description about the IGSCA method [line 266~268].

      We deleted overly optimistic statements like ‘unbiased estimates’ and used expressions such as ‘adjustment for observed/unobserved confounding’ instead, throughout our manuscript.

      Karcher, N. R., Schiffman, J., & Barch, D. M. (2021). Environmental Risk Factors and Psychotic-like Experiences in Children Aged 9–10. Journal of the American Academy of Child & Adolescent Psychiatry, 60(4), 490-500. doi:10.1016/j.jaac.2020.07.003

      It appears that citations and references are not always used correctly.

      We thoroughly checked all citations and specified the references for each statement: We deleted Plomin & von Stumm (2018) and Harden & Koellinger (2020) and cited relevant primary studies (e.g., Lee et al., 2018; Okbay et al., 2022; Abdellaoui et al., 2022) instead. We also specified the references supporting the statement that educational attainment PGS links to brain morphometry (Judd et al., 2020; Karcher et al., 2021). As Okbay et al. (2022) use PGS of cognitive intelligence (which mentions the analyses results in their supplementary materials) as well as educational attainment, we decided to continue citing this reference [line 131~141].

      Strengths of the results:

      The authors included a comprehensive array of analyses.

      We thank the reviewer for the positive comment.

      Weaknesses of the results:

      Many results, which are presented in the supplemental materials, are not referenced in the main text and are so comprehensive that it can be difficult to match tables to results. Some of the methodological questions make it challenging to assess the strength of the evidence provided in the results.

      As you rightly identified, we inadvertently failed to reference Table S2 in the main text. We have since corrected this omission in the Results section for the IGSCA (SEM) analysis [line 376]. The remainder of the supplementary tables (Table S1, S3~S7) have been appropriately cited in the main manuscript. We recognize that the quantity of tables provided in the supplementary materials is substantial. However, given the comprehensiveness and complexity of our analyses, which encompass a wide array of study variables, these tables offer intricate results from each analysis. We deem these results, which include valuable findings from sensitivity analyses and confound testing, too significant to exclude from the supplementary materials. That said, we are open to, and would greatly welcome, any further suggestions on how to present our supplementary results in a more clear and digestible format. Your guidance in this matter is highly valued.

      Appraisal:

      The authors suggest that their findings provide evidence for policy reforms (e.g., targeting residential environment, family SES, parenting, and schooling). While this is probably correct, a range of methodological unclarities and ambiguities make it difficult to assess whether the current study provides evidence for that claim.

      We believe that with the improvement we made in this revised manuscript, this concern may have been successfully mitigated.

      Impact:

      The immediate impact is limited given the short follow-up period (2y), possibly concerns for selection bias and attrition in the data, and some methodological concerns.

      We appreciate the feedback provided in the reviewer's impact statement. We added as study limitations [line 524~544] that the impact of our findings may be limited due to the relatively short follow-up period, the possibility of sample selection bias, and the problems of interpreting results from an observational study as causality (despite the novel causal inference methods, designed for non-randomized, observational data, that we used).

      As responded above (and also in more detail in the Reviewer #2’s Recommendations For The Authors section below), we made necessary corrections and clarifications for the points suggested by the reviewer. As we are willing to make additional revisions, please feel free to give comments if you feel that our corrections are insufficient or inappropriate.

      Nevertheless, we would like to discuss some points. We sincerely hope this following response does not come across as argumentative to the reviewer and the editor. We fully understand the reviewer's perspective on this matter, and we agree that the issues raised about the ABCD study are absolutely valid. However, when evaluating the overall impact of a study, other factors, such as how the field has been assessing the impact of similar studies, should also be considered.

      Firstly, the potential selection bias and attrition in the ABCD data may not necessarily limit the conclusions of this study. While recognizing the potential issues with the ABCD data is important, we feel that judging the impact of our findings as "limited" based on these issues may not be entirely fair. This is because no study, particularly those of a nationwide scale such as the UK Biobank, IMAGEN, HEAL, HBCD, etc., is completely free of limitations. Typically, the potential limitations of the data don't undermine the impact of individual studies' findings. Numerous studies using ABCD data have been published in top-tier journals—despite the limitations of the ABCD study—underscoring the scientific merit of the findings. For example, the study by Tomasi, D., & Volkow, N. D. (2021), entitled "Associations of family income with cognition and brain structure in USA children: prevention implications," published in Molecular Psychiatry, might be highly relevant to the limitations of the ABCD study raised by the reviewer. The scientific community, including editors, reviewers, and readers, may have appreciated the impact of this study despite the acknowledged limitations of the ABCD data.

      Secondly, the two-year time window of our longitudinal analysis might not impact the aim of this study—an iterative assessment of the associations between genetic and environmental variables with cognitive intelligence and mental health, with a focus on PLE, in preadolescents. Had we aimed to test the developmental trajectory from childhood to adolescence, perhaps a longer timeframe would have made more sense. So, we do not agree with the reviewer’s assessment that the short time window limits the impact of our study.

      Suggested revisions based on the combined reviewer feedback:

      1) The terminology used should be carefully reviewed and revised

      • Please use the correct terminology for the key concepts assessed in this study. For example, authors sometimes conflate PLEs and psychosis, two related but separate constructs. Furthermore, the terms 'good parenting' and 'good schooling' are vague and subjective.

      • The authors use multiple terms to refer to cognitive ability (cognitive capacity, intelligence, cognitive intelligence, etc). The term 'cognitive development' in the title and manuscript does not seem to be justified given the focus on different measures of cognitive ability at a single time point (i.e. baseline).

      • Please avoid causal language and using statements that cannot be entirely substantiated (e.g. unbiased estimates, free from unmeasured confounding)

      Thank you for suggesting this point. We revised all key terminologies used throughout our manuscript.

      Per your suggestion, we specified that PLEs indicate the risk of psychosis and often precede schizophrenia. We checked all misused cases of the term ‘psychosis’ and corrected them as ‘PLEs’. We also changed the terms 'good parenting' and 'good schooling' to ‘positive parenting behavior’ and ‘positive school environment’.

      We changed the term ‘cognitive development’ to ‘cognitive ability’ throughout our manuscript. We also changed the title to ‘Gene-Environment Pathways to Cognitive Intelligence and Psychotic-Like Experiences in Children’ because we used ‘cognitive intelligence’ for NIH toolbox variable in the text.

      We corrected and tone-downed all causal languages used in our manuscript. As mentioned by the reviewers, we deleted statements like ‘unbiased estimates’ and used expressions such as ‘adjustment for observed/unobserved confounding’ instead.

      2) A stronger rationale for the focus on PLEs, and the potential mediating role of cognitive ability in genetic and environmental effects on PLES, should be provided

      We appreciate the raised concerns that cognitive ability may serve as a mediator of psychotic-like experiences. To our best knowledge, it has been proposed that cognitive ability can be a mediator of positive symptoms in schizophrenia (including psychotic-like experiences), as well as negative symptoms. This mediating role of cognitive ability was proposed in several prior studies on cognitive model of schizophrenia/psychosis. Per your suggestion, we included an additional justification in Intro [line 104~115] where we highlighted that cognitive ability has been proposed as a potential mediator of genetic and environmental influence on positive symptoms of schizophrenia such as psychotic-like experiences. We refer to studies conducted by Howes & Murray (2014) and Garety et al. (2001).

      Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integrated sociodevelopmental-cognitive model. The Lancet, 383(9929), 1677-1687. doi:https://doi.org/10.1016/S0140-6736(13)62036-X

      Garety, P. A., Kuipers, E., Fowler, D., Freeman, D., & Bebbington, P. E. (2001). A cognitive model of the positive symptoms of psychosis. Psychological Medicine, 31(2), 189-195. doi:10.1017/S0033291701003312

      3) As described in more detail by the reviewers, more information should be provided about the measures used in the study and how they relate to one another (e.g. correlations between PQ-BC and CBCL; PGS-CA and PGS-EA).

      Thank you for your suggestion. Although this information was already provided in our initial submission, it appears that the Reviewer #1’s might have referred to the prior version of our manuscript submitted elsewhere before eLife.

      To clarify, our findings reveal significant Pearson’s correlation coefficients between PLEs across all time-points (baseline year: r=0.095~0.0989, p<0.0001; 1-year follow-up: r=0.1322~0.1327, p<0.0001; 2-year follow-up: r= 0.1569~0.1632, p<0.0001) and we added this information in the Method section [line 198~200]. We also added the Pearson’s correlation between the two PGSs (r=0.4331, p<0.0001) in the Methods for PGS [line 214].

      4) More details are needed regarding the analytical strategies used (e.g. how imputation was performed, why PGS were not based on the largest and most recent GWASes, whether latent or observed variables were examined, what exactly the supplementary materials show and how they relate to information provided in the main text).

      We appreciate your feedback. We acknowledge the concerns about the GWAS sources utilized for the study. Unfortunately, our study commenced prior to the publication of the ‘currently’ most recent or largest GWAS by Okbay et al. (2022) and Trubetskoy et al. (2022). Our research was conducted with the best available data at that time, which was the largest GWAS of European-descent individuals for educational attainment and cognitive performance (Lee et al, 2018). We have now clarified this point in the manuscript. [line 206~208]

      Also, we specified the use of composite indicators for the PGS, family SES, neighborhood SES, positive family and school environment, and PLEs, while latent factors were used for cognitive intelligence [line 269~285].

      We highly appreciate the reviewer’s comments regarding the supplementary materials. We regret overlooking the citation of Table S2 in the main manuscript, and this has now been rectified in the Results section for the IGSCA (SEM) analysis [line 376]. The remaining supplementary tables (Table S1, S3~S7) have been correctly referenced within the manuscript. We acknowledge that the supplementary materials are extensive due to the comprehensive array of study variables and intricate results from each analysis. However, given that our analyses encompass a wide array of study variables, these tables offer intricate results from each analysis. We deem these results, which include valuable findings from sensitivity analyses and confound testing, too crucial to exclude from the supplementary materials. That said, we are open to any further suggestions to make our supplementary results more accessible and digestible. In order to improve the accessibility and clarity of our presentation, we are fully committed to making any necessary changes and look forward to any further recommendations.

      5) The limitation section should be expanded and statements regarding the implications of the study findings should be qualified accordingly (e.g. short follow-up period, potential for attrition and selection bias, reverse causation, etc)

      We specified additional potential constraints of our study, including limited representativeness, limited periods of follow-up data (baseline year, 1-year, and 2-year follow-up), possible sample selection bias, and the use of non-randomized, observational data [line 524~544].

      6) Please ensure that the references provided support the statements in the text to which they are linked to.

      Thank you for pointing this out. We thoroughly went over all citations and corrected the inaccurately or vaguely cited references for each statement.

      Reviewer #2 (Recommendations For The Authors):

      1) Please use terms consistently and correctly. E.g., 'cognitive capacity' is not the same as 'educational attainment'.

      We thank the reviewer’s feedback regarding the consistency of terminology in our manuscript. Per the suggestion, we standardized the use of ‘cognitive capacity’ and now consistently refer to it as ‘cognitive phenotypes’ throughout our manuscript. Furthermore, we explicitly stated in the Introduction section that our two PGSs of focus will be termed ‘cognitive phenotypes PGSs’, aligning with terminology used in prior studies (Joo et al., 2022; Okbay et al., 2022; Selzam et al., 2019) [line 140~142].

      Joo, Y. Y., Cha, J., Freese, J., & Hayes, M. G. (2022). Cognitive Capacity Genome-Wide Polygenic Scores Identify Individuals with Slower Cognitive Decline in Aging. Genes, 13(8), 1320. doi:10.3390/genes13081320

      Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., . . . Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54(4), 437-449. doi:10.1038/s41588-022-01016-z

      Selzam, S., Ritchie, S. J., Pingault, J.-B., Reynolds, C. A., O’Reilly, P. F., & Plomin, R. (2019). Comparing Within- and Between-Family Polygenic Score Prediction. The American Journal of Human Genetics, 105(2), 351-363. doi:https://doi.org/10.1016/j.ajhg.2019.06.006

      2) The authors study 'cognitive performance using seven instruments', but it is not clear how fluid and crystalline intelligence was defined/operationalized.

      Thank you for pointing this out. We specified the NIH Toolbox tests used for composite scores of fluid and crystallized intelligence, respectively. “We utilized baseline observations of uncorrected composite scores of fluid intelligence (Dimensional Change Card Sort Task, Flanker Test, Picture Sequence Memory Test, List Sorting Working Memory Test), crystallized intelligence (Picture Vocabulary Task and Oral Reading Recognition Test), and total intelligence (all seven instruments) provided in the ABCD Study dataset” [line 180~187].

      3) I don't think Lee 2018 is the largest GWAS for educational attainment. That would be Okbay 2022. It needs to be described how cognitive performance was defined in Lee 2018. Why did the authors not use the Trubetskoy 2022 schizophrenia GWAS?

      Thank you for mentioning this point. The reason why we were not able to use the largest GWAS for CP, EA and schizophrenia is because (unfortunately) our study started earlier than the point when the GWAS studies by Okbay et al. (2022) and Trubetskoy et al. (2022) were published. We corrected that our study used ‘a GWAS of European-descent individuals for educational attainment and cognitive performance’ instead of the largest GWAS [line 206~208].

      4) It is unclear how neighbourhood SES was coded. The authors seem to suggest that higher values indicate risk, but Figure 2 suggests that higher values links to higher intelligence and lower PLE.

      Thank you very much for pointing this out. Consistent with the illustration of neighborhood SES in the Methods section, higher values of neighborhood SES indicate risk. In the original Figure 2, higher values of neighborhood SES links to lower intelligence (direct effects: β=-0.1121) and higher PLEs (indirect effects: β=-0.0126~-0.0162). We think such confusion might have been caused by the difference between family SES (higher values = lower risk) neighborhood SES (higher values = higher risk). Thus, we changed the terms to ‘High Family SES’ and ‘Low Neighborhood SES’ in the corrected figure (Figure 3) for clarification.

      5) Also, the 'year of residence' variable is unclearly defined. Does this mean that a shorter duration of residency (even in a good neighbourhood) indicate risk?

      Thank you for mentioning this point. Considering that shorter duration of residence may be associated with instability of residency, it may indicate neighborhood adversity (i.e., higher risk). This definition of the ‘years of residence’ variable is in line with the previous study by Karcher et al. (2021).

      Karcher, N. R., Schiffman, J., & Barch, D. M. (2021). Environmental Risk Factors and Psychotic-like Experiences in Children Aged 9–10. Journal of the American Academy of Child & Adolescent Psychiatry, 60(4), 490-500. doi:10.1016/j.jaac.2020.07.003

      6) Please provide information on how correlated the two PGSes were.

      Thank you for your suggestion. We added the Pearson’s correlation between the two PGSs (r=0.4331, p<0.0001) in the Methods section for PGS [line 214].

      7) Information on the outcome variable in the 'linear mixed models' section is missing. I assumed it was PLE.

      Thank you for notifying us of this point. We added the information on the outcome variables in the section for linear mixed models [line 242~244].

      8) In the 'Path Modeling' section, please explain what 'factors and components' concretely refer to. How is this different from a standard SEM with latent factors?

      Thank you for your comment on the need to elaborate the IGSCA method. We added that different from standard SEM methods which only uses latent factors, the IGSCA method can use components as well as latent factors as constructs in model estimation. This allows the IGSCA method to control bias more effectively in estimation compared to the standard SEM [line 261~268].

      9) The sentence starting line 229 is unclear. Does this mean variables were not used to generate latent factors. And if not, what weights were used to create a 'weighted sum'?

      Thank you for mentioning this point. The sentence means that we treated PGSs, family SES, neighborhood SES, positive family and school environment, and PLEs as composite indicators (derived from a weighted sum of relevant observed variables), while general intelligence was represented as a latent factor.

      It has been suggested from prior studies that these variables (PGSs, family SES, neighborhood SES, positive family and school environment, and PLEs) are less likely to share a common factor and were assessed as a composite index during analyses. For instance, Judd et al. (2020) and Martin et al. (2015) analyze genetic influence of educational attainment and ADHD as composite indicators. Also, as mentioned in Judd et al. (2020), socioenvironmental influences are often analyzed as composite indicators. Studies on psychosis continuum (e.g., van Os et al., 2009) suggest that psychotic disorders are likely to have multiple background factors instead of having a common factor, and notes that numerous prior research uses composite indices to measure psychotic symptoms. Based on this literature, we used components for these variables.

      The IGSCA determines weights of each observed variable to maximize the variances of the endogenous indicators and components [added in line 265~268].

      On the other hand, we treated general intelligence as a latent factor/variable underlying fluid and crystallized intelligence. This is based on the extensive literature of classical g theory of intelligence [added in line 269~284].

      Judd, N., Sauce, B., Wiedenhoeft, J., Tromp, J., Chaarani, B., Schliep, A., ... & Klingberg, T. (2020). Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proceedings of the National Academy of Sciences, 117(22), 12411-12418.

      Martin, J., Hamshere, M. L., Stergiakouli, E., O'Donovan, M. C., & Thapar, A. (2015). Neurocognitive abilities in the general population and composite genetic risk scores for attention‐deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry, 56(6), 648-656.

      van Os, J., Linscott, R., Myin-Germeys, I., Delespaul, P., & Krabbendam, L. (2009). A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness–persistence–impairment model of psychotic disorder. Psychological Medicine, 39(2), 179-195. doi:10.1017/S0033291708003814

      10) It is overall not clear when genetically and when self-reported information of ethnicity was used. This needs to be clearer throughout.

      Thank you for mentioning this point. We only used genetically defined ethnicity, and we have not mentioned that we used self-reported ethnicity. Per your suggestion, we clarified that we used ‘genetic ethnicity’ throughout the paper.

      11) The sentence starting line 253 is also unclear. How is schizophrenia PGS a 'more direct genetic predictor of PLE' and compared to what other measure?

      Thank you for pointing this out. Please note that our adjustment (or sensitivity analyses) was based on the reported associations between PLEs and the risk for schizophrenia: schizophrenia PGS is associated with a cognitive deficit in psychosis patients (Shafee et al., 2018) and individuals at-risk of psychosis (He et al., 2021), and psychotic-like experiences (more so than PGS for psychotic-like experiences) (Karcher et al., 2018). We added these references for clarification [line 307~309]. We believe that because of the adjustment our results from the mixed linear model show the sensitivity and specificity of the association between cognitive phenotype PGS and PLEs.

      He, Q., Jantac Mam-Lam-Fook, C., Chaignaud, J., Danset-Alexandre, C., Iftimovici, A., Gradels Hauguel, J., . . . Chaumette, B. (2021). Influence of polygenic risk scores for schizophrenia and resilience on the cognition of individuals at-risk for psychosis. Translational Psychiatry, 11(1). doi:10.1038/s41398-021-01624-z

      Karcher, N. R., Paul, S. E., Johnson, E. C., Hatoum, A. S., Baranger, D. A. A., Agrawal, A., . . . Bogdan, R. (2021). Psychotic-like Experiences and Polygenic Liability in the Adolescent Brain Cognitive Development Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. doi:https://doi.org/10.1016/j.bpsc.2021.06.012

      Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., . . . Robinson, E. B. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0124-8

      12) Please include a statement on the assumptions made when using the method used in this study and developed by Miao 2022, explain what evidence you have to support these assumptions and how this method, which I believe was developed for RCTs, can be applied to observational data.

      We specified the assumptions for the causal inference method proposed by Miao et al. (2022) and why it is applicable to our study. Also, we noted that this novel method was developed to identify the causal effects of multiple treatment variables within non-randomized, observational data [line 309~319].

      13) Some of the statements are potentially misleading. E.g., I would be very cautious to claim that the methods applied allowed the authors to estimate 'unbiased associations again potential (even unobserved) confounding variables'. There are many concerns such as selection bias, attrition, reverse causation, genetic confounding, etc that cannot be addressed satisfactorily using these data and methods.

      Thank you for pointing this out. We deleted statements like ‘unbiased estimates’ and used expressions such as ‘adjustment for observed/unobserved confounding’ instead.

      Nevertheless, please note that due to some limitations in the data (e.g., confounders), an analytic approach should be robust enough to handle potential violations of assumptions. This was the point we wanted to emphasize--In contrast to the majority of studies using the ABCD study, which employ simplistic GLM or conventional SEM with only latent variable modeling, our study provides less biased, thus more accurate, estimates through the use of sophisticated modeling for confounding effects (instead of simplistic GLM) and IGSCA (instead of conventional simplistic SEM). We hope our study may help improve our analytical approach in this field.

      14) I would be equally cautious to claim that the ABCD study is representative. Please add information on the whole ABCD cohort to Table 1 and describe any relevance with respect to attrition effects or representativeness.

      Thank you for highlighting this issue. We previously characterized the ABCD Study as representative of the US population, given its aim to ensure representativeness by recruiting from a broad range of school systems located near each of its 21 research sites, chosen for their geographic, demographic, and socioeconomic diversity. Using epidemiological strategies, a stratified probability sample of schools was selected for each site. This procedure took into account sex, race/ethnicity, socioeconomic status, and urbanicity to reduce potential sampling biases at the school level. Based on these strategies, previous research (e.g., Thompson et al., 2019; Zucker et al., 2018) has referred to the ABCD Study as ‘representative.’ However, we overlooked the fact that “not all 9-year-old and 10-year-old children in the United States had an equal chance of being invited to participate in the study,” and therefore, it should not be deemed fully representative of the US population (Compton et al., 2019). Heeding your suggestion, we have removed all descriptions of the ABCD Study being representative.

      Compton, W. M., Dowling, G. J., & Garavan, H. (2019). Ensuring the Best Use of Data: The Adolescent Brain Cognitive Development Study. JAMA Pediatrics, 173(9), 809-810. doi:10.1001/jamapediatrics.2019.2081

      Thompson, W. K., Barch, D. M., Bjork, J. M., Gonzalez, R., Nagel, B. J., Nixon, S. J., & Luciana, M. (2019). The structure of cognition in 9 and 10 year-old children and associations with problem behaviors: Findings from the ABCD study’s baseline neurocognitive battery. Developmental Cognitive Neuroscience, 36, 100606. doi:10.1016/j.dcn.2018.12.004

      Zucker, R. A., Gonzalez, R., Feldstein Ewing, S. W., Paulus, M. P., Arroyo, J., Fuligni, A., . . . Wills, T. (2018). Assessment of culture and environment in the Adolescent Brain and Cognitive Development Study: Rationale, description of measures, and early data. Developmental Cognitive Neuroscience, 32, 107-120. doi:https://doi.org/10.1016/j.dcn.2018.03.004

      15) The imputation methods need to be explained in more detail / more clearly. What concrete variables were included? Why was 50% of the sample excluded despite imputation? How similar is the study sample to the overall ABCD cohort - and to the US population in general (i.e., is this a representative dataset)?

      Thank you for mentioning this point. We clarified the method and detailed processes of the imputation (e.g., R package VIM, number of missing observations for each study variables such as genotypes, follow-up observations, and positive environment) [Methods; line 167~176].

      The final samples had significantly higher cognitive intelligence, parental education, family income, and family history of psychiatric disorders, lower Area Deprivation Index, percentage of individuals below -125% of the poverty level, and family’s financial adversity (p<0.05). As you have noted above, these results also show the limited representativeness of the data used in our study. We fully acknowledge that our study sample, as well as the overall ABCD cohort, is not representative of the US population in general.

      16) There are a range of unclear statements (e.g., 'Supportive parenting and a positive school environment had the largest total impact on PLEs than genetic or environmental factors' - isn't parenting an environmental factor?).

      Thank you for mentioning this point. We clarified seemingly vague expressions and unclear statements. We corrected the sentence you noted as ‘Supportive parenting and a positive school environment had the largest total impact on PLEs than any other genetic or environmental factors’ [line 57~58].

      17) The authors' conclusion (that these findings have policy implications for improving school and family environmental) are not fully supported by the evidence. E.g., genetic effects were equally large.

      Thank you for pointing this out. Our description should be clearer. Our models consistently show that the combined environmental effects of positive family/school environment, and family/neighborhood SES exceeds the genetic effects. We suggest that these findings may have policy implications for “improving the school and family environment and promoting local economic development” [line 62~64].

      To clarify, we newly added “Despite the undeniable genetic influence on PLEs, when we combine the total effect sizes of neighborhood and family SES, as well as positive school environment and parenting behavior (∑▒〖|β|〗=0.2718~0.3242), they considerably surpass the total effect sizes of cognitive phenotypes PGSs (|β|=0.0359~0.0502)” [line 510~513]. Based on these results, we suggest that our findings hold potential policy implications for “preventative strategies that target residential environment, family SES, parenting, and schooling—a comprehensive approach that considers the entire ecosystem of children's lives—to enhance children's cognitive ability and mental health” in the Discussion [line 507~510].

      Admittedly, our results do not directly demonstrate a causal effect wherein an intervention in the school or family environmental variables would necessarily lead to a significantly meaningful positive impact on a child's cognitive intelligence and mental health. We do not make such a claim in this paper. However, we anticipate that further integrative analyses akin to ours might help identify potential causal or prescriptive effects. We hope this perspective will be recognized as one of the contributions of our study. We leave the final decision to the discerning judgment of the editors and reviewers.

      18) Many citations do not support the statements made and are sometimes used rather vaguely. For example, I believe Judd 2020 and Okbay 2022 did not use a PGS of cognitive capacity, but of educational attainment. Plomin 2018 and Harden 2020 are reviews, but the primary studies should be cited instead. Which reference exactly is supporting the statement that cognitive capacity PGS links to brain morphometry?

      Thank you very much for your precise observations. We thoroughly checked all citations and updated the references for each statement.

      We deleted Plomin & von Stumm (2018) and Harden & Koellinger (2020) and cited relevant original research articles (e.g., Lee et al., 2018; Okbay et al., 2022; Abdellaoui et al., 2022) instead. We also specified the references supporting the statement that educational attainment PGS links to brain morphometry (Judd et al., 2020; Karcher et al., 2021). As Okbay et al. (2022) used the PGS of cognitive intelligence (which presented the analyses results in their supplementary materials) as well as educational attainment, we decided to continue citing this reference [line 131~141].

      19) Citations are formatted inconsistently.

      We apologize for the inconsistency of the citation formatting. We formatted all citations in APA 7th style, using EndNote v20. We checked that all citations maintain consistency according to the reference style.

      20) Re line 281, I believe effect sizes are 'up to twice as large', but not consistently twice as large as suggested in the text.

      Thank you for mentioning this point. We corrected the sentence as ‘The effect sizes of EA PGS on children's PLEs were larger than those of CP PGS’ [line 342~343].

      21) Please add to the results a short statement on what covariates these analyses were controlled for.

      Thank you for giving us this comment. We added that we used sex, age, marital status, BMI, family history of psychiatric disorders, and ABCD research sites as covariates in the Results section [line 329~331].

      22) Cho 2020 does not provide recommendations on FIT values (line 315). Please provide another reference and explain how these FIT values should be interpreted.

      Thank you for mentioning this point. We added the correct reference for FIT values (Hwang, Cho, & Choo, 2021). We also added that the FIT values range from 0 to 1, and a larger FIT value indicates more variance of all variables is explained by the specified model (e.g., FIT=0.50 denotes that the model explains 50% of the total variance of all variables) [line 291~293].

      23) Regarding Figure 2, please add factor loadings to this figure and explain what the difference between the hexagon and circular shapes are. Please also add the autocorrelations between the 3 PLE measures. I assume these were also modelled statistically, given the strong correlations between time points?

      Figure 2B needs reworking.

      It is unclear what the x-axis of Figure 2C represents. Proportion of R2 or effect size? SM table 2 provides key information, which should be added to Figure 2.

      Thank you for pointing this out. We added factor loadings to the corrected figure (Figure 3A and 3B). We also added that the X-axis of Figure 3C represents standardized effect sizes.

      24) I suggest adding units directly to Table 1, not in the legend. Was genetic or self-reported ethnicity used in this table? List age in years, not months?

      Thank you for your suggestion. We added the units of age and family history of psychiatric disorders directly inside Table 1. We used genetic ethnicity in Table 1, as we only used genetic ethnicity (but not self-reported ethnicity) throughout our study. This is noted on the last row of Table 1. We listed age in chronological months, which is how each child’s age at each point of data collection is coded in the ABCD Study.

      25) Please include exact p-values in Table 2.

      Thank you for your suggestion. We highly appreciate the reviewer’s comment on the importance of showing exact p-values in the analysis results. Unfortunately, we cannot estimate the standard errors based on normal-theory approximations to obtain the exact p-values of our IGSCA model results. This is described in detail in the original paper of the IGSCA method (Hwang et al., 2021): “Like GSCA and GSCAM, IGSCA is also a nonparametric or distribution-free approach in the sense that it estimates parameters without recourse to distributional assumptions such as multivariate normality of indicators. As a trade-off of no reliance on distributional assumptions, it cannot estimate the standard errors of parameter estimates based on asymptotic (normal-theory) approximations. Instead, it utilizes the bootstrap method (Efron, 1979, 1982) to obtain the standard errors or confidence intervals of parameter estimates nonparametrically.”

      Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1–26. http://dx.doi.org/10.1214/aos/1176344552

      Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia, PA: SIAM. http://dx.doi.org/10.1137/1.9781611970319

      Hwang, H., Cho, G., Jung, K., Falk, C. F., Flake, J. K., Jin, M. J., & Lee, S. H. (2021). An approach to structural equation modeling with both factors and components: Integrated generalized structured component analysis. Psychological Methods, 26(3), 273-294. doi:10.1037/met0000336

      26) There are way too many indigestible tables presented in the supplementary materials, which are also not referenced in the main manuscript.

      We appreciate your insightful observation. As you rightly identified, we inadvertently failed to reference Table S2 in the main text. We have since corrected this omission in the Results section for the IGSCA (SEM) analysis [line 376]. The remainder of the supplementary tables (Table S1, S3~S7) have been appropriately cited in the main manuscript. We recognize that the quantity of tables provided in the supplementary materials is substantial. However, given the comprehensiveness and complexity of our analyses, these tables offer intricate results from each analysis. We deem these results, which include valuable findings from sensitivity analyses and confound testing, too significant to exclude from the supplementary materials. That said, we are open to, and would greatly welcome, any further suggestions to ensure clarity and ease of comprehension. Your guidance in this matter is highly valued.

      27) Figure S1 is unclear, possibly due to the journal formatting. Is this one figure presented on two pages? Clarify which PGS is listed in Figure S1 and in any case, please add both PGSs.

      Thank you for mentioning this point. Figure S1 presents two correlation matrices: the first one is the correlation matrix of component / factor variables in the IGSCA model and the second one is the that of observed variables used to construct the relevant component / factor variables in the IGSCA model. We noted each matrix as Figure S1-A and Figure S1-B. We also corrected the figure legend as “A. Correlation between all component / factor variables of the IGSCA model. B. Correlation between all observed variables used to construct the relevant component / factor variables in the IGSCA model.” Since Figure S1-A presents correlations between the components and latent factors, it lists a single PGS variable constructed from the CP PGS and EA PGS. On the other hand, Figure S1-B presents correlations between the observed variables. Thus, both CP PGS and EA PGS are listed in this correlation matrix.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study expands on current knowledge of allosteric diversity in the human kinome by C-terminal splicing variants using as a paradigm DCLK1. The authors provide solid evolutionary and some mechanistic evidence how C-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as protein-protein interactions. The data will be of interest to researchers in the kinase and signal transduction field.

      We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on bioRxiv and have included the link: We thank the editor for coordinating the review of our manuscript and the reviewers for their valuable feedback. We have significantly revised the manuscript in response to the reviewer’s comments. Our point-by-point response to each comment is present below. We have uploaded both a clean draft of our revised manuscript as well as a version with the revisions highlighted in yellow. We hope the revised manuscript is now acceptable for publication in eLife. We have additionally updated the preprint on biorxiv and have included the link here: https://www.biorxiv.org/content/10.1101/2023.03.29.534689v2.

      Reviewer #1

      Summary

      In the study by Venkat et al. the authors expand the current knowledge of allosteric diversity in the human kinome by c-terminal splicing variants using as a paradigm DCLK1. In this work, the authors provide evolutionary and some mechanistic evidence about how c-terminal isoform specific variants generated by alternative splicing can regulate catalytic activity by means of coupling specific phosphorylation sites to dynamical and conformational changes controlling active site and substrate pocket occupancy, as well as interfering with protein-protein interacting interfaces that altogether provides evidence of c-terminal isoform specific regulation of the catalytic activity in protein kinases.

      The paper is overall well written, the rationale and the fundamental questions are clear and well explained, the evolutionary and MD analyses are very detailed and well explained. The methodology applied in terms of the biochemical and biophysical tools falls a bit short in some places and some comments and suggestions are given in this respect. If the authors could monitor somehow protein auto-phosphorylation as a functional readout would be very useful by means of using phospho-specific antibodies to monitor activity. Overall I think this is a study that brings some new aspects and concepts that are important for the protein kinase field, in particular the allosteric regulation of the catalytic core by c-terminal segments, and how evolutionary cues generate more sophisticated mechanisms of allosteric control in protein kinases. However a revision would be recommended.

      Major Comments

      The authors explain in the introduction the role of T688 autophosphorylation site in the function of DCLK1.2. This site when phosphorylated have a detrimental impact on catalytic activity and inhibits phosphorylation of the DCX domain. allowing the interaction with microtubules. In the paper they show how this site is generated by alternative splicing and intron skipping in DCLK1.2. However there is no further functional evidence along the functional experiments presented in this study.

      1) What is the effect of a non-phosphorylable T688 mutant in terms of stability and enzymatic activity? What would be the impact of this mutant in the overall auto-phosphorylation reaction?

      The role of T688 phosphorylation on DCLK1 functions has been explored in previous studies (Agulto et al, 2020: PMID: 34310279), although only relevant to DCLK1.2 splice variants, since this site is lacking in DCLK1.1. These studies showed that mutation of T688 to an alanine increases total kinase autophosphorylation (ie autoactivity) and the subsequent phosphorylation of DCX domains, which in turn decreases microtubule binding. Given this information, our goal was to use an evolutionary perspective to investigate this, alongside less-well characterized aspects of DCLK autoregulation, including co-conserved residues in the catalytic domain and C-terminal tail. However, to address the reviewers question of a non-phosphorylatable T688 mutant, we performed MD simulations of T688A and T688E (a phosphomimic) mutant and include a new supplementary figure (Figure 5-supplement 3) which show the two mutants slightly destabilize the C-tail relative to wt (1 and 2 angstrom increase in RMSF for T688E and T688A respectively), but by themselves cannot dislodge the C-tail from the ATP binding pocket. Thus, other co-conserved interactions as revealed by our analysis, are likely to contribute to the autoregulation of the kinase domain by the C-terminal tail. We have incorporated these observations into the revised results section.

      Furthermore, to address the reviewer’s question in terms of site-specific autophosphorylation as a marker of DCLK1.2 activity, we have now performed a much-more detailed phosphoproteomic analysis of a panel of purified DCLK1.2 proteins after purification from E.coli (Figure 8-figure supplement 2). This showed that we are only able to detect Thr 688 phosphorylated in our ‘activated’ DCLK1.2 mutants, and not in the autoinhibited WT DCLK1.2 version of the protein. This apparent contradiction does not necessary discount Thr 688 as an important regulatory hotspot, but, together with the MD simulations, may imply a decreased contribution of pThr 688 in facilitating/maintaining DCLK1.2 auto-inhibition than previously anticipated, especially in the context of the numerous other stabilizing amino acid contacts that we describe between the C-tail and the ATP-binding pocket. We do, however, propose a mechanism for pThr688 as a potential ATP mimic based on MD analysis. However, we only found MS-based evidence for phosphorylation at this (and other sites in the same peptide) in highly active DCLK1.2 mutants, in which the C-tail remains uncoupled from the ATP-binding site, even in the presence of this regulatory PTM. We acknowledge that better understanding of DCLK biology will require a detailed appraisal of how the DCLK auto-inhibited states are subsequently physiologically regulated (PTMs, protein-protein interaction etc.), but this is beyond the scope of our current evolutionary investigation, and the absence of phosphospecific antibodies makes this challenging currently. We intend to expand upon our current work by assessing the relative contribution of multiple DCLK phosphorylation sites (including, but not limited to, Thr 688) with regard to cellular DCLK auto-regulation in future studies, in part by generating such site-specific phospho-antibodies.

      2) Have the authors made an equivalent T687/688 tanden in DCLK1.1 instead of the two prolines?

      This is a good point. We have not considered introducing a T687/688 tandem mutation into DCLK1.1 (at the equivalent position to that of DCLK1.2), primarily because the amino acid composition of their respective C-tail domains are so highly divergent across the tail (due to alternative splicing, as discussed in our paper). As discussed in our present study, there are numerous contacts made between specific amino acids in the regulatory C-tail and the kinase domain of DCLK1.2, which functionally occlude ATP binding, and thus change catalytic output. It is these contacts, which are determined by the specific amino acid sequence identity, and not the extended length of the DCLK1.2 C-tail per se, that drives autoinhibition. The alternate amino acid sequence identity of the C-tail of DCLK1.1 does not enable such contacts to form, which we believe explains the different activities of the two isoforms.

      Furthermore, our mutational analysis reveals clearly that Thr688 and several other sites are more highly autophosphorylated in the artificially activated DCLK1.2 constructs than WT DCLK1.2, and as such it remains our hypothesis that introduction of the tandem phosphorylation sites into DCLK1.1 is unlikely to be sufficient to impose an auto-inhibitory conformation of the enzyme.

      3) Could T688 autophosphorylation be used as a functional readout to evaluate DCLK1.2 activity?

      We agree with the reviewer’s suggestion about using autophosphorylation (including potentially Thr688 for DCLK1.2) as a functional read out for DCLK1 activity. In our present study, we identify phosphorylated peptides containing pThr688 only in the mutationally activated DCLK1.2 variants. We have now taken this analytical approach further and performed a detailed comparative phosphoproteomic characterisation of all of our DCLK1 constructs, where we observe marked differences in the overall phosphorylation profiles of the mutant DCLK1.2 (and DCLK1.1) proteins relative to the less phosphorylated WT DCLK1.2 kinase. This manifests as a depletion in the total number of confidently assigned phosphorylation sites within the kinase domain and C-tail of WT DCLK1.2, and also as a depletion in the abundance of phosphorylated peptides for a given site. To help visualise this, individual phosphorylation sites have been schematically mapped onto DCLK1, which has been included as a new extended supplementary figure (Figure 8-figure supplement 2). For comparative analysis of phosphosite abundance, we could only select peptides that could be directly compared between all mutants (identical amino acid sequences) and those found to be phosphorylated in all proteins (these are Ser660 and Thr438); these are now shown in figure supplement 2 as a table. These site occupancies follow what we see with respect to the increased catalytic activity between DCLK1.1 and DCLK1.2 mutants versus DCLK1.2. We also detect increased phosphorylation of DCLK1.1 and activated DCLK1.2 mutants in comparison to (autoinhibited) DCLK1.2, supporting the hypothesis that these mutants are relieving the autoinhibited conformation.

      4) What are the evidences of the here described c-terminal specific interactions to be intra-molecular rather than inter-molecular? Have the authors looked at the monodispersion and molecular mass in solution of the different protein evaluated in this study? Basically, are the proteins in solutions monomers or dimers/oligomers?

      Analysis of symmetry mates in the crystal structure of DCLK1.2 (PDB ID: 6KYQ) provide no evidence for inter-molecular interactions. Furthermore, to evaluate oligomerization status in solution, we conducted an analytical size exclusion chromatography (SEC) and our analysis reveals that both DCLK1.1 and DCLK1.2 predominantly exist as monomers in solution (Figure 3-Supplements 1-3). These results suggest that the C-terminal tail interactions are primarily intra-molecular.

      5) (Figure 3) Did the authors look at the mono-dispersion of the protein preparation? The sec profile did result in one single peak or multiple peaks? Could the authors show the chromatogram? how many species do you have in solution? Was the tag removed from the recombinant proteins or not?

      Yes, as mentioned above, the SEC profile resulted in a single peak for both DCLK1.1 and DCLK1.2, which was confirmed as DCLK1 by subsequent SDS-PAGE. We have included the chromatogram and gels in supporting data (Figure 3-supplements 1-3) in the revised manuscript and updated the Methods section. ‘The short N-terminal 6-His affinity tag present on all other DCLK1 proteins described in this paper was left in situ on recombinant proteins, since it does not appear to interfere with DSF, biochemical interactions or catalysis.’

      6) Authors should do Michaelis-Menten saturation kinetics as shown in Figure 3C with the WT when comparing all the functional variant analysed in the study. So we can compared the catalytic rates and enzymatic constants (depicted in a table also) kcat, Km and catalytic efficiency constants (kcat/Km)

      Thank you for your suggestion. We have performed the requested comparative kinetics analyses for selected functional DCLK1 variants at the same concentration as suggested, using our real-time assay to determine Vmax for peptide phosphorylation as a function of ATP, but at a fixed substrate concentration (we are unable to assess Vmax above 5 µM peptide for technical reasons). The results of these analyses have been included in the revised version of Figure 8-Supplement 1, where they support differences in both Vmax and Km[ATP]; the ratio of these values very clearly points to differences in activities falling into ‘low’ or ‘high’. This kinetic analysis fully supports our initial activity assays, where mutations predicted to uncouple the auto-inhibitory C-tail rescue DCLK1.2 activity to levels similar to DCLK1.1 towards a common substrate.

      Minor Comments

      It is very interesting how the IBS together with the pT688 mimics ATP in the case of DCLK1.2 to reach full occupancy of the active site. On Figure 8 you evaluate residues of the GRL and IBS interface to probe such interactions.

      1) Did the authors look at the T688 non-phosphorylable mutant?

      See our response to Major Comment 1 above. In addition, due to the absence of T688 in DCLK1.1, we did not look at the T688A mutant of DCLK1.2 biochemically, partially because it has been characterized in previous studies, but partially because this site is preceeded by another Thr residue. The lack of a selective antibody towards this site makes it difficult to evaluate the role of T688 phosphorylation specifically with respect to DCLK cellular functions and interactions. Therefore, we focused our in vitro efforts to understand how mutations in the IBS impact the catalytic activity of DCLK1.2 by comparing different variants to DCLK1.1.

      2) Classification of DCLK C-terminal regulatory elements.

      It would be useful to connect the different regulatory elements described in this study to a specific functional and biological setting where these different switches play a role e.g. microtubule interactions and dynamics, cell cycle, cancer, etc..

      While the primary focus of our paper is on the mechanism of allosteric regulation of DCLK1, we have indeed touched upon the potential implications of the various regulatory elements of the tail on functions such as microtubule binding and phenotypic effects like cancer progression. However, we acknowledge that a comprehensive understanding of these effects would necessitate a more detailed investigation. This could potentially involve the integration of RNA-seq data with extensive cell assays to evaluate phenotypic effects. We believe that such a future study would be a valuable extension of our current work and could provide further insights into the functional roles of DCLK1.

      3) (Figure 3) Could the authors explain the differences in yield between the WT and the D531A mutant. Apparently, it [the yield] does not appear to be caused by a lower stability as indicated by the Tm. Could the authors comment on this? It is important to compare different samples in parallel, in the same experiment and side by side. This applies to the thermal shift data comparing WT and a D531A mutant on panel D and also on panel C a comparison between WT and D531A as negative control should be shown.

      WT and D533A (kinase-dead) were indeed analysed in parallel, but have been split in two panels to make the data easier to interpret. The modest differences in yield is likely explained by experimental prep-to-prep variations. Our experience shows that many protein kinase yields vary between kinase and kinase-dead variants, likely due to bacterial toxicity related to enzyme activity. In regards to thermal stability, we would like to emphasize that Differential Scanning Fluorimetry (DSF) is to our mind a more informative and quantitative measure of protein stability than yield from bacteria, because both assess purified proteins at the same concentration. We believe that the DSF data provide a more accurate representation of the real stability differences between the WT and D533A mutant.  

  3. Aug 2023
    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank both reviewers and the editor for their time and effort in carefully reviewing and comprehending our manuscript. We are grateful for their thorough assessment, as well as the insightful questions and suggestions they have provided. We have taken into account the questions and comments raised by the reviewers, and we have incorporated the necessary revisions accordingly. In the following pages the reviewers’ comments are italicized. Our replies are in normal script.

      In addition to revisions suggested by reviewers we also added a new summary schematic (Fig 8) and minor changes to acknowledgments.

      Reviewer 1

      This is a very strong study with few concerns. Regarding DN1+ T cell function, the authors assessed IFN-γ and activation markers, but it is unclear if the cells are polyfunctional (produced high levels of other cytokines at 6 weeks) or if there were changes in the humoral response (serum Ab titers or size/ number of germinal centers.)

      Thank you for your thorough assessment of our work and your kind comments.

      a. We observed a decreased IFN-γ and TNF-α production in antigen experienced DN1 T cells compared to naïve DN1 T cells, which is consistent with findings in Tfh cells.

      b. We tested for anti-MA IgM and IgG production but did not observe an increase in these antibodies in the vaccinated setting. It is possible that additional inflammatory stimulation, such as from an adjuvant or infection, may be necessary to trigger sufficient antibody level for detection using ELISA.

      c. We did not measure the number or size of germinal centers in this study, but future investigations could explore this aspect.

      Reviewer 2

      1. Authors elaborate the introduction solely highlighting the relevance of antigen persistence in the context of vaccination. However, it is well known that several mycobacterial antigens (Lipids and proteins) can cause detrimental responses when overexposed to the immune system. In this regard, it would be appropriate to introduce the possibility of the occurrence of exhaustion when prolonged exposure to antigens is happening, which is the main theme of this paper.

      Thank you for bringing these points to our attention. We have added a paragraph in the discussion section (page 15-16, line 372-386), addressing the implications of our findings in relation to exhaustion in the context of antigen persistence during chronic viral infections. We have also provided an example involving the lipid trehalose 6,6’-dibehenateled (TDM), a known virulence factor for Mtb, which has been utilized in several subunit vaccines without demonstrating significant toxicity.

      1. Authors need to provide more information about the source of MA. It is briefly mentioned in the materials and methods section that it was obtained from Sigma. If that is the case, it would be ideal to show the integrity of the polysaccharide in term of balance and abundance between different MA species.

      We obtained M. tuberculosis MA from Sigma, which comprises α-, keto-, and methoxy MA forms with an average combined lipid tail length of 80 carbons. MA-specific T cells preferentially recognize these three forms of MA have been identified in humans. We have provided more detailed information regarding the MA in the Materials and Methods section (page 17, line 429-431).

      1. Building up on the previous comment, MA is a complex mixture of polysaccharides including multiple lengths of fatty acids and modifications. Could the authors comments on the potential variability of MA structure and potential impact on immune responses?

      The binding capacities of Group 1 CD1-restricted T cells can be influenced by various factors, including specific head groups, lipid tail length, and structure of the lipid tail. Notably, DN1 T cells have been shown to have higher binding affinities towards keto and methoxy MA, while displaying weaker binding to α-MA (Van Rhijn et al., 2017, Eur. J. Immunol. 47:1525). In our study, we successfully utilized a mixture of MA to activate DN1 T cells, indicating that the required subtypes of MA were present in sufficient quantities to elicit this activation. In future investigations focusing on the polyclonal immune response, incorporating a mixture of MA and possibly other Mtb lipid antigens will enable a broader spectrum of T cell activation. This, in turn, is expected to enhance the overall effectiveness and robustness of protection in challenge experiments.

      1. How do the authors explain the lack of stimulation of cell proliferation induced by MA-PLGA formulation? Does this result contradict previous findings?

      This study represents the first instance of utilizing PLGA as a delivery system for a lipid antigen via a pulmonary vaccine route, despite its previous applications in numerous other vaccine formulations. Therefore, we do not think our findings contradicts any existing research in the field. It is worth noting that the immunogenicity of PLGA can be influenced by the specific polymer chemistry and formulation, which may account for potential variations in the observed effects. We have added additional text to the discussion (page 13, line 310 – 313) to address this point.

      1. Fig 3. Authors switch to IT administration simply arguing against the limitation of IN delivery regarding its low volume. However, administration via IN could be done in an iterative manner. According to this change, this reviewer asks whether the performance of MA-PLGA could now be comparable to BCN-MA using IT instead.

      PLGA possesses an inherent background adjuvant effect, which may not be ideal for precisely stimulating group 1 CD1-restricted T cells, as a considerable proportion of these T cells exhibit some level of autoreactivity (Li, et al, 2011, Blood 118:3870, De Lalla et al., 2011, Eur. J. Immunol. 41:602; de Jong et al, 2010, Nat. Immunol. 11:1102). Notably, our observations revealed that blank PLGA-NP exerted a significant stimulatory effect on both mouse (DN1) and human (M11) MA-specific T cells (Fig. 2A-D). This underscores the advantage of the BCN system, which lacks detectable adjuvant effects and enables a more controlled, dose-dependent augmentation of T cell responses with increasing concentrations of loaded MA. Therefore, we did not further evaluate the impact of PLGA-MA using the IT route of vaccination.

      1. What would be the reasons of the no role of encapsulating NP in the persistence of MA?

      In this study, we have provided evidence to support the notion that encapsulation plays a role in antigen persistence, as demonstrated in Fig. 5A-C. Specifically, we directly compared the persistence of MA when delivered encapsulated in BCNs versus without encapsulation in BCNs, using DC pulsing and IT vaccination as the delivery methods. Our results indicate that at 6 weeks post-vaccination, MA encapsulated in BCNs can activate DN1 T cells, while free MA does not. These findings may initially appear to be contradictory to those depicted in Fig. 5D-F, where antigen persistence is observed following vaccination with attenuated Mtb. However, we propose that the attenuated Mtb bacteria may function similarly to nanoparticles by encapsulating and containing MA, thereby facilitating its persistence within the host. We appreciate the opportunity to clarify these points (page 15, line 364-367). Encapsulation within PEG-PPS NP may also contribute to two additional mechanisms. First, we have demonstrated that PEG-PPS NPs target myeloid cell populations (Burke et al., 2022, Nat. Nano. 17:319), such as alveolar macrophages, that can serve as antigen persistence depots as well as present CD1b/MA complexes on their surfaces. NPs allow more efficient delivery to these cells, whereas otherwise the lipid would bind to albumin, HDL, LDL, and other lipid carriers in blood for a broader, non-specific biodistribution, which would include cells less efficient at antigen persistence or presentation. Second, we previously demonstrated that the BCN nanostructure is highly stable within cells, supporting a slow intracellular release (Bobbala et al., 2020, Nanoscale 12:5332). This could assist with a more sustained presentation of lipid antigen by targeted cells in contrast to free form lipid or NPs (like PLGA) that rapidly degrade within cells. Indeed, low levels of fluorescently tagged BCNs were still detectable 6 weeks post-vaccination (Fig. 6B). Our future studies will further investigate this hypothesis.

      1. Authors need to discuss to what extent the MA location into AM is route dependent.

      The localization of MA within alveolar macrophages (AMs) in the lung is likely specific to intratracheal (IT) vaccination. Therefore, mice vaccinated subcutaneously (SC) or intravenously (IV) may possess distinct antigen persistence depots. We have made modifications to the discussion section to further emphasize this point (page 15, line 359-364).

      1. Also, AM are programmed to sustain low immune responses because of their unique location in the lung. In fact, Mtb uses this to replicate while immune response is mounted. In this regard, accumulation of MA into this compartment may not be relevant for the overall immune response. In other words, what would be the contribution of this population to the T cell activation?

      It is likely that AMs primarily function as antigen depots and do not directly contribute to the activation of DN1 T cells. This assertion is supported by our findings, as co-culturing AMs with DN1 T cells alone did not result in T cell activation (Fig. 6E). However, we observed that the presence of hCD1Tg-expressing bone marrow-derived dendritic cells was necessary for DN1 T cell activation in vitro, which likely reflects a similar phenomenon occurring in vivo.

      1. Could the T cells responses measured be due to the reduced fraction of DC loaded with BCN-MA at initial time points?

      Regarding the T cell response observed in Fig. 5A-C, where we used DCs to deliver either free MA or MA-BCN, we took steps to address potential differences in loading capacity between the two at initial time points. Specifically, DCs were pulsed with a concentration of 10 𝜇g/mL for free MA and 5 𝜇g/mL of MA-BCN (the figure legend has been modified to clarify this point, page 37, line 962 - 963). To ensure approximate equivalence in loading, we examined the immune response one week after vaccination and found no statistically significant difference between the two methods.

    1. Author response

      We appreciate the responses from the editors and reviewers and will submit a revised manuscript addressing all of the main points raised. We are glad to see broad agreement that we took a careful approach and addressed a clear question.

      There were questions raised about the framing of the study vis-à-vis prior literature. One question was whether low frequency signals always have larger point spread functions, thereby making our result unsurprising. A second question was whether the notion of alpha oscillations as having wide-spread coherence and relating to system-general states was out-of-date. We appreciate these comments and agree that they could use further discussion. Our view is that neither of these points weakens the study, but our framing could be clearer regarding these two important issues. We will improve discussion of these topics in the revision.

      A second criticism mentioned by two reviewers is the lack of null-hypothesis testing. The value of null hypothesis statistical testing (NHST) in biomedicine is hotly debated, with many statisticians and scientists arguing that NHSTs add little to no value (Gigerenzer & Marewski, 2015; McShane et al., 2019; Meehl, 1978). Others of course disagree (Mogie, 2004). Our goal was not to try to rule out null hypotheses, but rather to make systematic measurements and to report the reliable patterns. We generally focused on observations where the results were well above the noise, obviating the need to test the null. Nonetheless, we can (and will) improve the clarity of our arguments in terms of how we rely on specific statistical analyses to support particular conclusions, as well as how to deal with the issue of multiple electrodes coming from small numbers of subjects, an important point raised by R3. We will clarify these issues in the revision.

      Reviewer 1 also made an interesting point about visual maps having an oculomotor component. We will do our best to incorporate this interesting issue into our revision.

      In addition to the public review, the reviewers made a number of useful recommendations for the revision. We appreciate these recommendations and will carefully consider each of them.

      Gigerenzer, G., & Marewski, J. N. (2015). Surrogate science: The idol of a universal method for scientific inference. Journal of management, 41(2), 421-440.

      McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). Abandon statistical significance. The American Statistician, 73(sup1), 235-245.

      Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46(4), 806-834. https://doi.org/10.1037/0022006X.46.4.806

      Mogie, M. (2004). In support of null hypothesis significance testing. Proc Biol Sci, 271 Suppl 3(Suppl 3), S82-84. https://doi.org/10.1098/rsbl.2003.0105

    1. Author Response:

      The following is the authors’ response to the previous reviews.

      Reviewer #3 (Recommendations For The Authors):

      In response to my comment about Col10a1 expression in the dermal SFCs (Fig 3B, I), the authors provide additional text to clarify but also state that "Col2 genes were not detected robustly". I think this comment on the absence of Col2 transcripts should be explicitly included in that paragraph as it is a reasonable and expected question given the cartilage angle the authors begin the paragraph with. Including this in no way weakens their point, rather adds clarity.

      This version includes some modifications to fix typos and add a sentence in response to the concern above.

    2. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In their study, Aman et al. utilized single cell transcriptome analysis to investigate wild-type and mutant zebrafish skin tissues during the post-embryonic growth period. They identified new epidermal cell types, such as ameloblasts, and shed light on the effects of TH on skin morphogenesis. Additionally, they revealed the important role of the hypodermis in supporting pigment cells and adult stripe formation. Overall, I find their figures to be of high quality, their analyses to be appropriate and compelling, and their major claims to be wellsupported by additional experiments. Therefore, this study will be an important contribution to the field of vertebrate skin research. Although I have no major concerns, I would like to offer a few minor comments for the authors to consider.

      1) The discovery of ameloblasts in the zebrafish skin is a fascinating finding that could potentially provide a new research model for understanding the development and regeneration of vertebrate teeth. It would be beneficial if the authors could provide further elaboration on this aspect and discuss how the zebrafish scale model could be utilized by researchers to better understand the morphogenesis of vertebrate teeth and/or hair.

      We have provided additional discussion points regarding epidermal EMP+ cells with ameloblast-like transcriptional profiles. We believe that further studies of scale matrix composition and the material properties endowed by various collagenous and non-collagen matrix proteins will be useful for understanding fundamental mechanisms of biomineralization. This section of the discussion now reads:

      “We systematically assessed the expression of genes encoding non-collagen calcified matrix proteins throughout the skin during squamation, leading to the discovery of a transcriptionally distinct population of basal epidermal cells that express EMP transcripts, likely corresponding to epidermal secretory cells proposed to participate in scale matrix formation based on ultrastructure (Sire et al., 1997). These cells also express dlx3a, dlx4a, runx2b and msx2a but not sp7, a transcription factor suite that is shared with ameloblasts that form tooth enamel. While these transcription factors are not exclusive to ameloblasts and have been reported in osteoblasts and odontoblasts, in addition to cell types that do not produce calcified matrix, such as neurons, their co-expression along with EMP-encoding transcripts in basal epidermal cells is consistent with a common origin of ameloblasts and the EMP+ epidermal cells reported here. One alternative hypothesis is that co-expression of these gene products arose convergently and can be explained by mechanistic linkages among them. Future work aimed at functionally dissecting the regulatory mechanisms that govern EMP gene expression in a variety of organisms may clarify these issues either by providing evidence of additional commonalities, supporting a shared ancestor, or by revealing diverse, lineage-specific regulatory architectures, supporting convergent evolution of superficial enamel deposition in teeth and fish skin appendages.”

      2) While the overexpression-rescue experiments (i.e., fgf20a and pdafaa) provide crucial evidence to support the author's conclusions, it is important to note that overexpression driven by the heat-shock promoter is not spatially regulated. Therefore, it should be acknowledged that the rescue effects may not be cell-autonomous, as suggested in the current version.

      The reviewer is correct that hsp70l promotor is not spatially regulated and F0 transgenics have random mosaic expression. Importantly, since we were testing specific hypotheses regarding signaling interactions between basal epidermal cells and dermal cells, we applied stringent selection and only analyzed individuals with transgene expression in basal epidermal cells. This approach enabled us to assay the results of basal cell expression of signaling ligands in eda mutant and hypo-thyroid backgrounds. The original manuscript omitted this crucial aspect of our experimental design, and we thank the reviewer for noticing this omission. We have revised the following parts of the results section.

      “Indeed, heatshock-driven expression in F0 mosaics stringently selected for basal epidermal expression of Fgf20a in the skin of Eda mutants led to localized rescue of scales where transgene expression was detectable (Figure 5D).”

      “When we forced expression of Pdgfaa in basal cells of epidermis by heatshock induction and stringent selection of basal epidermal expression in F0 mosaics, we found, as predicted, a recruitment of dermal cells in hypoTH skin, leading to a locally stratified dermis (Figure 6E) similar to that of the wild-type (Figure 4C).”

      We additionally revised the legends for Figure 5 and Figure 6 to mention stringent selection of basal epidermal expression of fgf20a and pdgfaa, respectively.

      3) Figure 7D. The authors used the ET37:EGFP lines to visualize hypodermis. Based on the absence of EGFP signal in the deep dermis of bnc2 mutants, the authors concluded that the hypodermis may be missing, suggesting the importance of the hypodermis in pigment cell formation. However, since the EGFP evidence is indirect, it is crucial to confirm the absence of the hypodermis structure with histology.

      It is indeed conceivable that hypodermal cells physically persist in bnc2 mutants yet have sufficiently altered gene expression that they neither cluster with wild-type hypodermal cells in single cell RNA-seq analyses nor initiate or maintain the broadly expressed dermal reporter ET37:GFP that we used to assess the presence or absence of such cells in a defined anatomical position. Though we believe this to be somewhat unlikely (hence our original interpretation), we have added a caveat referencing this formal possibility in the revised manuscript:

      “It is possible that hypodermal cells physically persist in bnc2 mutants but have sufficiently altered transcriptional profiles such that they no longer cluster together with wild-type hypodermal cells or express the ET37:EGFP transgene. Nevertheless, these analyses suggest that ET37:EGFP+ hypodermal cells likely play a role in pigment pattern development.”

      We believe this issue raises interesting philosophical questions about the definition of a “cell-type.” If cells constituting the deep surface of the dermis physically persist, but have a profoundly altered transcriptional profile and no longer perform the biological functions of their wild-type counterparts, are they still the original cell type, or was the wild-type cell type lost? As researchers continue to discover new cell types and deepen our understanding of cell-state plasticity in normal and pathological conditions, the community will need to articulate new rubrics of categorization to ensure that “cell-type” remains a rigorous and useful concept (if, indeed, it has been one).

      4) As the dataset is expected to be a valuable asset to the field, please provide Excel tables summarizing the key genes and their corresponding expression levels for each major cluster that has been identified.

      This table has been provided in the revised manuscript (Supplementary file 2 – Table 5.)

      Reviewer #2 (Public Review):

      The authors used single cell transcriptome analysis of zebrafish skin cells and characterized various types of cells that are involved in scale formation and stripe patterning. The methods employed in this study is highly powerful to provide mechanistic explanation of these fundamental biological issues and will be a good example for many researchers studying other biological issues. Furthermore, the results characterizing differences in gene expression patterns among various types of cells will be informative for other researchers in the field.

      For scale formation, it is known that mineralized tissues may significantly differ in rayfins and lobefins since sox9, col2a1, and col10a1 are all expressed in osteoblasts, in addition to chondrocytes, in zebrafish and gar (Eames et al., 2012, BMC Evol. Biol.). Furthermore, in mammals, Col10 is expressed in chondrocytes in mature cartilage that undergoes ossification. Thus, unlike the authors argue, col10a1 expression is not apparently relevant to the elasticity of scales.

      The authors also state that the expression of dlx4a, msx2a, and runx2b characterize cells homologous to mammalian ameloblasts. However, dlx4, runx2, and msx2 are all duplicated in zebrafish, and the function of duplicated genes in teleost fishes may differ from that of single ancestral gene. Moreover, none of Dlx4, Msx2, and Runx2 is expressed specifically by ameloblasts in mammals. Indeed, both Msx2 and Runx2 are expressed in osteoblasts, while the expression of Dlx4 in ameloblasts is not reported. These results, together with the expression of an enamel gene, enam, in dermal cells (SFC), do not appear to support the homology of the surface tissue of mammalian teeth and zebrafish scales.

      We appreciate the reviewers’ comments and have provided caveats to our interpretation in the revised manuscript (see our response to Reviewer #1, item 1, above). In the revised manuscript, we also display results for an additional Dlx gene, dlx3b, that is coexpressed in EMP+ basal epidermal cells (Figure 3C), although dlx4 has been reported in mammalian tooth germs and elasmobranch tooth and odontode epithelia (Pemberton et al., 2007; Debiais-Thibaud et al., 2011 ; Woodruff et al., 2022).

      More generally, expression of specific genes can be useful characters for testing hypotheses of homology. The operant inference depends on a parsimony assumption: if a transcriptional profile is shared between celltypes in disparate organisms, one explanation is that this transcriptional profile was inherited from a common ancestor. This inference is not impacted by the teleost whole genome duplication. If the common ancestor had one ortholog and a subset of modern animals have two, the homology hypothesis predicts that at least one ortholog will be expressed in common in the tissue that descended from the common ancestor. This interpretation is entirely compatible with our understanding of the mechanisms that underlie retention of duplicated genes in animal genomes. Additionally, exclusivity is not necessarily predicted by homology hypotheses. Indeed, all the transcription factors used here as characters for evaluating homology have pleiotropic roles in many cell types.

      In this specific case, we found two EMP genes, ambn and enam, co-expressed with a complement of transcription factors that is also co-expressed in ameloblasts. These findings are consistent with a model in which both ameloblasts and EMP+ epidermal cells associated with zebrafish scales inherited this transcriptional profile from a common ancestral cell type. Given the temporal and phylogenetic continuity of superficial enameling in the fossil record of skin appendages, and the dual origin of mineralized matrices in extant skin appendages and teeth, we continue to favor the model where these traits are shared and conserved among vertebrates. Nevertheless, we have acknowledged in the revised manuscript the limitations of homology testing by analyses of gene expression and the possibility that these traits might have evolved convergently; we suggest additional research avenues for testing this hypothesis further (response to Reviewer #1, item 1, above).

      Reviewer #3 (Public Review):

      This work describes transcriptome profiling of dissected skin of zebrafish at post-embryonic stages, at a time when adult structures and patterns are forming. The authors have used the state-of-the-art combinatorial indexing RNA-seq approach to generate single cell (nucleus) resolution. The data appears robust and is coherent across the four different genotypes used by the authors.

      The authors present the data in a logical and accessible manner, with appropriate reference to the anatomy. They include helpful images of the biology and schematics to illustrate their interpretations.

      The datasets are then interrogated to define cell and signalling relationships between skin compartments in six diverse contexts. The hypotheses generated from the datasets are then tested experimentally. Overall, the experiments are appropriate and rigorously performed. They ask very interesting questions of interactions in the skin and identify novel and specific mechanisms. They validate these well.

      The authors use their datasets to define lineage relationships in the dermal scales and also in the epidermis. They show that circumferential pre-scale forming cells are precursors of focal scale forming cells while there appeared a more discontinuous relationship between lineages in the epidermis.

      The authors present transcriptome evidence for enamel deposition function in epidermal subdomains. This is convincingly confirmed with an ameloblastin in situ. They further demonstrate distinct expression of SCPP and collagen genes in the SFC regions.

      The authors then demonstrate that Eda and TH signalling to the basal epidermal cells generates FGF and PDGF ligands to signal to surrounding mesenchyme, regulating SFC differentiation and dermal stratification respectively.

      Finally they exploit RNA-seq data performed in parallel in the bnc2 mutants to identify the hypodermal cells as critical regulators of pigment patterning and define the signalling systems used.

      Whilst these six interactions in the skin are disparate, the stories are unified by use of the sci-RNA-seq data to define interactions. Overall, it's an assembly of work which identifies novel and interesting cell interactions and cross-talk mechanisms. There are some aspects that require clarification:

      With respect to the discontinuous relationship noted in Figure 2I in the epidermis, the authors did not make mention of the fact that there are in fact two independent sources of periderm in the zebrafish. The first periderm derives from the EVL, is segregated a gastrulation, and gradually replaced from the basal epidermis during post-embryonic stages. Could this residual EVL-derived periderm have reduced sensitivity of the trajectory mapping from basal to periderm? The authors should comment whether their transcriptome dataset likely had residual EVL-derived periderm and if this might have impacted their trajectory continuity interpretation.

      While dual origin of periderm may impact the single cell analysis, this should not be an issue for suprabasal cells, which also show no continuity with their basal cell progenitors in UMAP space. We thank the reviewer for bringing this issue up and comment on the dual origin of periderm in the revised manuscript.

      “During this stage of development, basal epidermal cells are the stem cell population that differentiate into both suprabasal and periderm cells, and each of the three major epidermal cell types are well represented in our dataset (Figure 2H,I; Figure 1—figure supplement 3)(Guzman et al., 2013; Lee et al., 2014). While periderm cells at the sampled stage are likely of dual origin, representing a mixture of early embryonic and stem cell derived cells, suprabasal cells are entirely derived from basal cells (Kimmel et al., 1990; Guzman et al., 2013; Lee et al., 2014).”

      During this stage of development, basal epidermal cells are the stem cell population that differentiate into both suprabasal and periderm cells, and each of the three major epidermal cell types are well represented in our dataset (Figure 2H,I; Figure 1—figure supplement 3)(Guzman et al., 2013; Lee et al., 2014). While periderm cells at the sampled stage are likely of dual origin, representing a mixture of early embryonic and stem cell derived cells, suprabasal cells are entirely derived from basal cells (Kimmel et al., 1990; Guzman et al., 2013; Lee et al., 2014).

      The authors ask if dermal SFCs express proteins associated with cartilage formation and use Col10a1 orthologues as markers (Fig 3B, I). I wonder if these are the best transcripts to answer this question as this has also been described to label osteoblasts in certain contexts in the fish and the authors might want to refer to Li et al 2009 or Avaron et al 2005. Were other markers of cartilage formation present such as collagen2 genes? These may be more definitive. The authors might want to reinterrogate their datasets for true cartilage markers or reframe their question.

      In the revised manuscript, we have clarified and moderated inferences from col10a1 ortholog expression. Col2 genes were not detected robustly in our dataset. This section now reads:

      “Scale elasmoidin is a flexible, collagenous ECM, material properties that are similar to cartilage (Quan et al., 2020). We therefore wondered whether dermal SFCs express matrix proteins associated with cartilage formation. Col10a1 is a major structural molecule in collagen, although its expression has also been documented in osteoblasts (Gu et al., 2014; Yang et al., 2014; Kawasaki et al., 2021). The zebrafish genome harbors genes encoding two Col10a1 orthologs (col10a1a and col10a1b) and we found both transcripts in SFCs representing distinct steps of maturation (Figure 3B,I; Figure 2—figure supplement 1F,I).”

      Finally, of interest, were there any clear clusters on the UMAP plots (Fig 1 Supp3A) of unassigned identity? Even comment on these and how they were dealt with would be of significant interest to the field, as it is highly unlikely all cell types in the skin have been defined. This dataset promises to be a critical reference for defining these in the future.

      Thanks for raising this issue. We provide a new figure (Figure 1 – supplement 4) displaying the unsupervised clustering of the wild-type dataset and a new table (Supplementary file 2 – table 5) with gene expression information for these clusters.

      Minor clarification:

      Fig 2E top. The authors interpret that fate-mapped SFCs at the posterior margin are progressively displaced towards the scale focus. This is confusing as the margin SFC in Fig 2E seems to show them staying largely at the margin. Please clarify if this is what you meant.

      In Figure 2E, a new row of newly differentiated, non-photoconverted SFC were added, displacing the existing row of cells towards the scale focus. Since these cells are all very thin, the net displacement was not as dramatic as the displacement found for sub-marginal SFCs. This point has been clarified in the figure legend in the revised manuscript. This figure legend now reads:

      “Figure 2. Postembryonic skin cell lineage relationships are not reflected in UMAP space. (A) UMAP visualization showing distribution of differentiated SFC expressing sp7 and pre-SFC progenitors expressing runx2b. (B) In-situ hybridization of sp7 and runx2b shows that a halo of pre-SFC progenitors surround the growing scale (arrows). (C) sp7:nEOS expressing differentiated SFC (magenta), were labelled by photoconversion on Day 1. Over the following two days, newly differentiated, un-photoconverted SFC appeared at the scale margin (arrows; n = 5 fish). (D) Schematic representation of differentiated SFC (purple) and the associated halo of pre-SFC (blue). (E) Photoconversion of small groups of SFC in the scale margin and sub-margin; and single-cell photoconversion of focus SFCs (arrows) showed that SFC are progressively displaced toward the scale focus and that SFC in all these regions are capable of cell division (arrows, n ≥ 4 fish for each region tested). Margin SFCs were displaced towards the posterior by newly differentiated, un-photoconverted SFCs (arrowheads). (F) SFCs in UMAP space colored by “pseudotime” rooted in the SFCs. (G) SFCs in UMAP space colored by the ratio of a mesenchymal (migratory) signature to an epithelial signature (Supplementary file 2—Table 3). (H) Schematic representation of epidermis with major substrata. (I) UMAP visualization of wild-type epidermis, subclustered independently of other cell types and displaying expression of the epidermal basal cell marker tp63 (blue) and the periderm marker krt4 (red). Scale bars, 50 μm (B,C,E); 25 μm, (C, lower). (J) The fraction of cells from panel H that pass a minimum threshold for expression of tp63, krt4 or both genes. .”

      References

      Debiais-Thibaud M, Oulion S, Bourrat F, Laurenti P, Casane D, Borday-Birraux V. 2011. The homology of odontodes in gnathostomes: insights from Dlx gene expression in the dogfish, Scyliorhinus canicula. BMC Evolutionary Biology 11:307. doi: 10.1186/1471-2148-11-307,

      Pemberton TJ, Li FY, Oka S, Mendoza-Fandino GA, Hsu YH, Bringas P, Jr., Chai Y, Snead ML, Mehrian-Shai R, Patel PI. 2007. Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis. Dev Dyn 236:2245-57. doi: 10.1002/dvdy.21226, PMID: 17626284

      Woodruff ED, Kircher BK, Armfield BA, Levy JK, Bloch JI, Cohn MJ. 2022. Domestic cat embryos reveal unique transcriptomes of developing incisor, canine, and premolar teeth. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 338:516-31. doi: https://doi.org/10.1002/jez.b.23168

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study used a battery of cutting-edge technologies including whole exosome sequencing, knockout/knockdown animal models and comparative proteomics to define the physiological roles of ZMYND21 in the regulation of sperm flagellar development and male fertility. The data supporting the conclusion are solid, although inclusion of more patients and ultrastructural studies would have further strengthened the study. This work will be of interest to clinicians and researchers who work on male fertility, but also those working on organs/systems containing motile cilia (e.g., trachea, oviduct, ventricular ependymal cells).

      We thank the eLife editorial board for these very positive comments.

      The MMAF sperm phenotype is rare and, as for all rare diseases, the number of affected patients remains low. Moreover, the most prevalent genes have already been identified. In such case, the identification of four unrelated patients with pathogenic mutations in the same new gene is thus significant, especially as compared to most studies on the same phenotype. We agree that ultrastructural studies could provide valuable information. However, the amount of sperm cells available did not allow us to consider such experiments at this time. The production and study of the Trypanosoma enabled us to overcome these limitations.

      Reviewer #1 (Public Review):

      The goal of the authors is to use whole-exome sequencing to identify genomic factors contributing to asthenoteratozoospermia and male infertility. Using whole-exome sequencing, they discovered homozygous ZMYND12 variants in four unrelated patients. They examined the localization of key sperm tail components in sperm from the patients. To validate the findings, they knocked down the ortholog in Trypanosoma brucei. They further dissected the complex using coimmunoprecipitation and comparative proteomics with samples from Trypanosoma and Ttc29 KO mice. They concluded that ZMYND12 is a new asthenoteratozoospermia-associated gene, biallelic variants of which cause severe flagellum malformations and primary male infertility.

      The major strengths are that the authors used the cutting-edge technique, whole-exome sequencing, to identify genes associated with male infertility, and used a new model organism, Trypanosoma brucei to validate the findings; together with other high-throughput tools, including comparative proteomics to dissect the protein complex essential for normal sperm formation/function. The major weakness is that limited samples could be collected from the patients for further characterization by other approaches, including western blotting and TEM. In general, the authors achieved their goal and the conclusion is supported by their results. The findings not only provide another genetic marker for the diagnosis of asthenoteratozoospermia but also enrich the knowledge in cilia/flagella.

      We thank the reviewer for these positive comments that are helpful for improving our paper. Concerning the remark about the low amount of sperm cells available, most patients allowed us to use excess sperm samples not used for ART treatment but are generally reluctant to perform a new sperm collection. Therefore, we often have to prioritize the most relevant and suitable experiments with the amount of sperm cells available.

      Reviewer #2 (Public Review):

      The manuscript "Novel axonemal protein ZMYND12 interacts with TTC29 and DNAH1, and is required for male fertility and flagellum function" by Dacheux et al. interestingly reported homozygous deleterious variants of ZMYND12 in four unrelated men with asthenoteratozoospermia. Based on the immunofluorescence assays in human sperm cells, it was shown that ZMYND12 deficiency altered the localization of DNAH1, DNALI1, WDR66 and TTC29 (four of the known key proteins involved in sperm flagellar formation). Trypanosoma brucei and mouse models were further employed for mechanistic studies, which revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1. Their findings are solid, and this manuscript will be very informative for clinicians and basic researchers in the field of human infertility.

      We thank the reviewer for these positive comments that are helpful for improving our paper.

      Reviewer #3 (Public Review):

      In this study, the authors identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to ZMYND12-variant-bearing human sperm. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. The manuscript is informative for the clinical and basic research in the field of spermatogenesis and male infertility.

      We thank the reviewer for these positive comments that are helpful for improving our paper.

      Reviewer #1 (Recommendations For The Authors):

      The manuscript was very well written, and very easy to follow. Most data were presented in high quality. I only have a few minor issues with some figures.

      1. The signals in some IF images (Fig 1E, Fig. 2B are too weak;

      The figures were improved and modified accordingly.

      1. In some IF images, strong dot-like signals are observed (Fig. 1B, Fig. 2D, Fig. 2F). Are they specific signals or non-specific? Please specify. If they are non-specific, please replace these images.

      These figures were improved and modified accordingly. Indeed, the dot-like signals were non-specific.

      Reviewer #2 (Recommendations For The Authors):

      Here further revisions are suggested.

      1) Description of ZMYND12 genotypes of the patients and the sperm cell samples:<br /> In the title of Table 1, it is suggested to mention "homozygous" for ZMYND12 variants in the patients, since the heterozygous carriers should be unaffected.

      It was done as suggested

      In the Abstract ("with a phenotype similar to ZMYND12-variant-bearing human sperm"), it is suggested to use "with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants", since the sperm phenotypes are dependent on the biallelic genotypes of human individuals (not the monoallelic genotype of the sperm cells). Please check the whole manuscript and revise the similar points.

      It was done as suggested

      2) The database accession number for ZMYND12:<br /> There are three different numbers (NM_032257.5 vs NM_032257 vs ENSTxxxx) on Page 5 and Figure 1B. Please use NM_032257.5 for consistency.

      It was done as suggested

      3) For the exonic deletion variant, is it possible to predict the coding consequence of ZMYND12 protein?

      No serious and reliable in silico prediction could be perform due to the absence of the exact breakpoints of the exon deletion. mRNA (or WB) studies could precise this point, however no additional sperm samples from this patient was available.

      4) Please italicize the gene symbols. For example, TTC29 on Page 8 and Figure S4, Ttc29-/- KO on Page 13.

      It was done as suggested

      5) In Figure 2, there are too many panels that cannot be merged into one page. Some of the data can be shown as supplemental data.

      We modified the figure 2 as suggested. The new figure 2 now includes only four panels (A, B, C and D) and we added a new figure S4 with the two remaining panels. We modified the text, figure legends and numeration accordingly.

      6) Some of the references are duplicated. Please delete one of them.<br /> For example, there are two Broadhead et al., two Coutton et al. (Nat Commun), and two Dacheux et al.

      Sorry for the duplicates. It was corrected

      7) The information on some references is incomplete (missing volume and/or page numbers). For example, Touré et al and Wang et al. (2010).

      It was corrected

      Reviewer #3 (Recommendations For The Authors):

      However, I have several points as the following:

      1. The sperm concentrations of ZMYND12_3 in patient 3 and patient 4 are significantly different from the other two patients. Do you think it is just due to phenotype heterogeneity?

      We have no formal explanations about these observations but we think that such difference in sperm concentration are more likely due to patient heterogeneity.

      1. There is no record for detailed semen parameters of ZMYND12_ 4, and readers cannot see that the proportion of short flagella in Table 1 is 70%. Please provide complete semen routine information for this case.

      Unfortunately, no additional information about the semen parameters of this patient are available at this time.

      1. In this study, no immunostaining for DNAH1, DNALI1, or WDR66 was detected in sperm from individual ZMYND12_3, and subsequent validation found that TTC29 interacted with ZMYND12 in Trypanosoma brucei. DNAH1 and DNALI1 both interact with TTC29 in mice. The author concluded that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1 and plays a critical role in flagellum function and assembly. If it is possible, the author can add an experiment on the interaction between ZMYND12 and DNAH1 to make this theory more complete.

      Our study focuses on characterizing protein-protein interactions using IPs (Immunoprecipitations). We were able to demonstrate that the protein ZYMIND12, along with TTC29, DNAH1, and DNALI1, belongs to the same complex, IAD-4. However, this technique does not allow us to draw conclusions about direct interactions for any of the identified proteins.

      Our Co-IP results in T.brucei indicate that the orthologue of DNAH1 (Tb927.11.8160 orthologs) and TTC29 co-immunoprecipitate with TAX-1 (ZYMIND12), thereby complementing the study conducted in Chlamydomonas by Yamamoto et al., 2008. As suggested by reviewer 3, direct interactions between each protein could provide valuable insights into the organization of the intracomplex protein interactome. This aspect will be addressed in a separate study, as it requires the use of direct interaction techniques such as Y2H (Yeast Two-Hybrid) or DuoLink.

      1. Please check the reference section. Some references have duplication, and the content of the literature also needs to be standardized. For example,

      Broadhead R., Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224-7.

      Broadhead Richard, Dawe HR, Farr H, Griffiths S, Hart SR, Portman N, Shaw MK, Ginger ML, Gaskell SJ, McKean PG, Gull K. 2006. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440:224-227. doi:10.1038/nature04541

      Ersfeld K, Gull K. 2001a. Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 114:141-148.

      Ersfeld K, Gull K. 2001b. Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 114:141-148. doi:10.1242/jcs.114.1.141

      Sorry for the duplicates, it was corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Combined Public Review:

      It has been shown previously that maternal aging in mice is associated with an increase in accumulation of damaged mitochondria and activation of parkin-mediated autophagy (see DOI: 10.1080/15548627.2021.1946739). It has also been shown that C-natriuretic peptide (CNP) regulates oocyte meiotic arrest and that its use during in vitro oocyte maturation can improve parameters associated with decreased oocyte quality. Here the authors tested whether use of CNP treatment in vivo could improve oocyte quality and fertility of aged mice, for which they provided convincing evidence. They also attempted to determine how CNP improves oocyte developmental competence. They showed a correlation between CNP use in vivo and the appearance (and some functional qualities) of cytoplasmic organelles more closely approximating those of oocytes from young mice. However, this correlation could not be interpreted to imply causation. Additional experiments performed using CNP during in vitro maturation were not properly controlled and so are not possible to interpret.

      A strength of the manuscript is that the authors use an in vivo treatment to improve oocyte quality rather than just using CNP during oocyte maturation in vitro as has been done previously. This strategy provides more potential for improving oocyte quality - over the course of oocyte growth and maturation - rather than just the final few hours of maturation alone. This strategy also has the potential to be translated into a more generally useful clinical therapeutic method that using CNP during in vitro maturation. However, it is difficult to glean information regarding how CNP might have its effects in vivo. A range of models are used in the manuscript with a mix of in vivo studies with in vitro experiments, which results in some disconnect between systemic CNP and its reported intrafollicular action as well as in the short-term versus longer-term actions of CNP on oocyte quality. Specifically, CNP was shown to be reduced in the plasma of aged mice, but this was not shown in the granulosa cells, which are the reported source of CNP that acts on oocytes. Whether the ovarian source of CNP is reduced in aged females was not demonstrated, and CNP is not known to act on oocytes through an endocrine effect. In vivo treatments with CNP by i.p. injection were performed, but the dose (120 ug/kg) and time (14 days) of treatment were not validated by any prior experiments to give them physiological relevance.

      Thank you for the summary and for highlighting our manuscript’s strengths and weaknesses.

      Weaknesses:

      1. There are errors in the manuscript writing that make the Results difficult to follow. Reference to the Figures in the Results section does not match what is shown in the Figure panels. For example, the Results text reports differences in CNP levels in aged and young mice shown in Figure 1C, but the relevant panel is actually shown in Figure 1F. Other Figures have the same problem.

      Thanks for the valuable suggestion. All the mistakes have been corrected in the revised manuscript.

      1. The Results section is not always clear regarding what CNP treatment was done - in vivo injections or in vitro maturation. For example, what is the difference, if any, between Figures 2C-D and Figures S2A-B?

      Thank you for pointing out the potential confusion regarding the experimental procedures in Figures 2C-D and Figures S2A-B. In the revised manuscript, we have included additional explanations to clarify that Figures 2C-D represent in vivo injections, while Figures S2A-B depict in vitro maturation. In brief, the results presented in the Supplementary Material (Figures S1-S7) are derived from in vitro CNP treatment.

      1. Immature oocytes from aged females (~1 year) were treated with a two-step culture system with a pre-IVM step with CNP. Controls included oocytes from young (6-8 weeks) females or oocytes from aged females treated by conventional IVM. The description of these methods suggests that control oocytes did not receive an equivalent pre-IVM culture, hence the relevance of comparisons of CNP-treated versus control oocyte is questionable. It was observed that aged oocytes pre-cultured in CNP improved polar body extrusion rates and meiotic spindle morphology compared to oocytes in conventional IVM, as has been well established. The description of statistical methods does not make clear whether the PBE rate in CNP-treated old oocytes remained significantly lower than young controls.

      Statistical analyses were performed using GraphPad Prism 8.00 software (GraphPad, CA, United States). Differences between two groups were assessed using the t-test. Indeed, CNP is unlikely to fully restore the PB1 rate in aged mice to the same level as in the young group. PB1 rate in CNP-treated aged oocytes remained significantly lower than young controls (P<0.05).

      1. The main effect of the CNP 2-week treatment appears to be increasing the number of follicles that grow into secondary and antral stages, but there is no attempt made to discover the mechanism by which this occurs and therefore to understand why there might be an increase in the number of ovulated eggs, quality of the eggs, and litter size. It is also not clear how an intraperitoneal injection can guarantee its effectiveness because the half-life of CNP is very short, only a few minutes.

      The 2-week treatment of CNP had a significant impact, leading to an increase in the number of follicles progressing to secondary and antral stages, as well as an increase in the number of ovulated eggs, improved egg quality, and enhanced litter size. Previous studies (references: 10.1530/REP-18-0470; 10.1210/me.2012-1027) have demonstrated the crucial role of CNP as an upstream regulator in stimulating preantral follicle growth and promoting the ovulation rate. These studies have also identified the influence of CNP on the expression of key ovarian genes involved in cell growth and steroidogenic enzymes. Consistent with these findings, our study provides further evidence supporting CNP as a critical regulator of preantral follicle growth and oocyte quality. Furthermore, it is important to note that oocyte-derived paracrine factors play essential roles in follicular development. CNP may regulate the communication between oocytes and somatic cells, contributing to folliculogenesis and follicular development. We are considering this aspect for further investigation in another ongoing study.

      To ensure the effectiveness of CNP, given its short half-life (a few minutes), aged mice (58 weeks old) received daily intraperitoneal injections of CNP (120 μg/kg body weight; Cat#B5441, ApexBio) for a duration of 14 days.

      1. Meiotic spindle morphology, as well as a number of putative markers of cytoplasmic maturation are also suggested to be improved after pre-culture with CNP. In each case a subjective interpretation of "normal" morphology of these markers is derived from observations of the young controls and the proportions of oocytes with normal or abnormal appearance is evaluated. However, parameters that define abnormal patterns of these markers appear to be subjective judgements, and whether these morphological patterns can be mechanistically attributed to the differences in developmental potential cannot be concluded.

      Oocyte cytoplasmic maturation involves a remarkable reorganization of the oocyte cytoplasm, encompassing the movement of vesicles, mitochondria, Golgi apparatus, and endoplasmic reticulum. This dynamic process occurs during the transitions from the germinal vesicle breakdown (GVBD) stage to the metaphase I (MI), polar body extrusion (PBE), and metaphase II (MII) stages (reference: 10.1093/humupd/dmx040). In our study, we observed that CNP treatment partially rescued cytoplasmic maturation events in aged oocytes by maintaining normal distribution patterns of cortical granules (CG), endoplasmic reticulum (ER), and Golgi apparatus. However, further experiments are needed to investigate the specific action of CNP on the function of CG, ER, and Golgi apparatus. These experiments are beyond the scope of this manuscript, but we acknowledge the importance of this aspect and will consider it for future research. In this study, our main focus was to examine the effects of CNP on mitochondria distribution and function. Therefore, we analyzed the localization patterns of mitochondria, mitochondrial membrane potential, oocyte ATP content, and ROS levels. These experiments were aimed at elucidating the impact of CNP on mitochondrial dynamics and metabolism, which are crucial for oocyte quality and development.

      1. In addition to the localization patterns of mitochondria, the mitochondrial membrane potential, oocyte ATP content and ROS levels were assessed through more objective quantitative methods. These are well known to be defective in oocytes of aged females and CNP treatment improved these measures. Mitochondrial dysfunction is the most obvious link between oocyte apoptosis, autophagy, cytoplasmic organelle miss-localization and aberrant spindle morphology. Among the most intriguing results is the finding that CNP mediated a cAMP-dependent protein kinase (PKA) dependent reduction in mitochondrial autophagy mediators PINK and Parkin and reduced the recruitment of Parkin to mitochondria in oocytes. However, it may not be possible to directly link this observation to the improvements in IVM oocyte quality, since PINK/Parkin assessments were performed in oocytes from cultured follicles treated with CNP for 6 days.

      The beneficial effects of CNP on oocyte quality have been extensively demonstrated through in vivo experiments (Figure 1 and 4) and “two-step” in vitro culture experiments (Figure S1 and S7). In this study, our primary focus is to analyze the signaling pathway and mechanism by which CNP inhibits mitophagy in oocytes. Previous studies have highlighted the significant role of cAMP-PKA activity in reducing mitochondrial recruitment of Parkin and mitophagy (reference: 10.1038/s42003-020-01311-7). Consistent with these findings, our study revealed that aged oocytes exhibited lower concentrations of cAMP compared to young oocytes. However, upon administration of CNP, we observed a substantial increase in intraoocyte cAMP levels. To investigate the involvement of PKA in CNP-mediated oocyte mitophagy, we conducted further experiments. We isolated preantral follicles (80-100 µm diameter) from the ovaries of aged mice and subjected them to in vitro culture with either 100 nM CNP or a combination of 100 nM CNP and 10 µM H89, a PKA inhibitor. Monitoring the growth dynamics of the follicles revealed that treatment with 100 nM CNP significantly increased follicle diameter, while H89 treatment inhibited the promotive effect of CNP on preantral follicle growth (Figure 6 K and L). Western blot analysis demonstrated that CNP supplementation led to a significant decrease in PINK1 and Parkin expression levels, which were abrogated by H89 treatment (Figure 6 M-O). It is well-established that the cAMP-PKA pathway plays a crucial role in inhibiting Parkin recruitment to damaged mitochondria (Akabane et al., 2016). Therefore, we aimed to investigate whether PKA inhibition regulates Parkin recruitment. To assess the effects of CNP on mitochondria, we performed double staining for Parkin and translocase of outer mitochondrial membrane 20 (TOMM20). The results clearly demonstrated that CNP inhibited the mitochondrial localization of Parkin, while PKA inhibition with H89 led to Parkin translocation to mitochondria, as indicated by the overlap of the two staining signals (Figure 6 P and Q). Collectively, our data suggest that the suppression of Parkin recruitment through the cAMP-PKA axis represents an important mechanism underlying the protective effect of CNP against oxidative injury in maternally aged mouse oocytes.

      1. The gold standard assay for oocyte quality is embryo transfer and live birth. The authors assessed the impact of maturing oocytes in vitro in the presence of CNP on oocyte quality by less robust assays (e.g., preimplantation embryo development in vitro), so the impact on oocyte quality is less certain.

      We appreciate the Revierer’s suggestion to assay live birth rates by transfer embryos obtained from IVM oocytes. However, we decided not to pursue this option for this revision because of the current technical challenges that make it difficult to get a precise result of live birth rates from IVM oocyte. Thank you for your very valuable suggestion, we have discovered the shortcomings in my current work, and I will follow your suggestions in my future work to improve the level of scientific research and achieve more results.

      1. The terminology used to describe many of the Results exaggerates the findings. For example, the authors claim that many of their immunofluorescent markers of the various organelles have a pattern that is "restored" by CNP. However, in most cases the pattern is "improved" toward the control condition but is not fully restored.

      We acknowledge the confusion caused by the wording of the mechanism of action of CNP in the original version. In the resubmission, we have made significant improvements by providing critical information that clarifies the action of CNP. We believe that these revisions will enhance the understanding of the mechanism of CNP and its implications. Thank you for pointing out this issue, and we appreciate your feedback in helping us improve the clarity of our work.

      1. The numbers of embryos should have been corrected for the number of eggs fertilized as a starting point so that the percentage that developed to each stage could be expressed as a percentage of successfully fertilized eggs rather than overall percentages. As currently shown in the Figures and described in the Legend, there is no information regarding what the percentage on the y-axis means. For example, does Figure 4B show the number of 2C embryos divided by the number of eggs inseminated? Or is it divided by the number of successfully fertilized eggs, and if so, how was that assessed?

      The embryonic development rates (Figure 4 B-F) were calculated based on the total number of oocytes, and the percentages of oocytes that developed to each stage were expressed as overall percentages.

      1. When fewer eggs are fertilized, the numbers of embryos per group are lower and so the impact of culturing multiple embryos together is lost. As a result, it is possible that culture conditions rather than oocyte quality drove the differences in the numbers of embryos that achieved each stage of development.

      The embryonic development rate was calculated based on the total number of oocytes. Each group included a minimum of 50 oocytes with three replicates (Young: 51, aged: 53, CNP+aged: 50). The embryo culture conditions were consistent across all groups.

      1. Not all claims in the Discussion are supported by the evidence provided. For example, "In addition, the findings demonstrated that CNP improved cytoplasmic maturation events by maintaining normal CG, ER and Golgi apparatus distribution and function in aged oocytes" but it was never demonstrated that the altered distribution had any functional impact.

      Oocyte cytoplasmic maturation involves a remarkable reorganization of the oocyte cytoplasm, including the movement of vesicles, mitochondria, Golgi apparatus, and endoplasmic reticulum. Extensive remodeling and repositioning of intracellular organelles occur during the transitions from GVBD to MI, PBE, and MII stages (10.1093/humupd/dmx040). Our findings indicate that CNP partially rescued cytoplasmic maturation events in aged oocytes by preserving normal distribution of CG, ER, and Golgi apparatus, as well as maintaining mitochondrial function. We acknowledge the importance of considering the impact of CNP on the function of CG, ER, and Golgi apparatus for future research. In summary, these findings demonstrate that CNP improves cytoplasmic maturation events in aged oocytes by facilitating the reorganization of CG, ER, and Golgi apparatus.

      1. Incompleteness and errors in the Methods section reduce confidence in many of the results reported.

      We will enhance the readability of the entire Methods section for the resubmission.

      1. The methods used for Statistical Analysis are never explained in either the Methods or the Figure legends. It is unclear whether appropriate analyses were done, and it is frequently unclear what was the sample size and how many times a particular experiment was repeated. These weaknesses detract from confidence in the data.

      Statistical analyses were performed using GraphPad Prism 8.00 software (GraphPad, CA, United States). Differences between two groups were assessed using the t-test. Data were reported as means ± SEM. Results of statistically significant differences were denoted by asterisk. (P < 0.05 denoted by , P < 0.01 denoted by , P < 0.001 denoted by , and P < 0.0001 denoted by **).

      Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors

      1. The introduction does not provide critical information regarding what is already known about the mechanism of action of CNP, what other tissues are impacted by CNP treatment, and how it might affect oocyte growth. Providing this information would make it much easier to understand what is novel about the current manuscript.

      We acknowledge that the mechanism of action of CNP was unclear in the original version. We have now included essential information to clarify the action of CNP.

      1. Comparison of the RNAseq dataset to robust datasets from young vs aged mice would strengthen the analysis (e.g., the dataset in DOI: 10.1111/acel.13482).

      Thank you for your professional suggestion. According to the suggestion from you, we will make comparison of the RNAseq dataset to robust datasets from young vs aged mice in my future work .

      1. Please explain what is "Dr. Tom" that was used for RNA sequencing analysis, in the Methods.

      Dr. Tom is a web-based solution that offers convenient analysis, visualization, and interpretation of various types of RNA data, including mRNA, miRNA, and lncRNA. It also supports the interpretation of single-cell RNA-seq data and WGBS data. Developed by a team of expert scientists and bioinformaticians at BGI, who have extensive experience in numerous research projects, Dr. Tom provides a wide range of intuitive and interactive data visualization tools tailored to save time in conducting differential expression or pathway analysis research. Moreover, its powerful analysis tools and advanced algorithms enable users to extract new insights and derive additional value from their data beyond what is available through standard RNA analysis services. The integration of data from leading databases worldwide allows users to reference and cross-check their results and findings. Dr. Tom is already trusted by tens of thousands of scientists and researchers, serving as a valuable and essential tool alongside their own internal data curation and analysis efforts. To learn more, please visit: Dr. Tom website https://www.bgi.com/global/service/dr-tom.

      1. The Results state that single-cell transcriptomics was performed, but the Methods state that 5 oocytes were collected from each mouse. The actual Method used should be clarified.

      Single-cell RNA-seq is a powerful technique that enables digital transcriptome analysis at the single-cell level using deep-sequencing methods. With this approach, even a single cell can be isolated and processed through various steps to generate sequencing libraries. Given the limited availability of oocyte samples, we employed a single-cell RNA-seq library construction protocol, allowing us to analyze the transcriptomes of individual oocytes. As a result, we collected and analyzed five oocytes from each mouse in our study.

      1. The raw RNAseq data should be deposited into a publicly accessible database and reported by an accession number. It is not sufficient to state that the data is included in the manuscript and supporting information.

      The RNA-seq data has been submitted as supporting information and is now accessible to all readers.

      1. The image in Figure 1G is not very clear.

      Thank you for bringing this to our attention. We will enhance the readability of all our figures for the resubmission.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors report a study, where they have sequenced whole genomes of four individuals of an extinct species of butterfly from western North America (Glaucopsyche xerces), along with seven genomes of a closely related species (Glaucopsyche lygdamus), mainly from museum specimens, several to many decades old. They then compare these fragmented genomes to a high-quality, chromosome-level assembly of a genome of a European species in the same genus (Glaucopsyche alexis). They find that the extinct species shows clear signs of declining population sizes since the last glacial period and an increase in inbreeding, perhaps exacerbating the low viability of the populations and contributing to the extinction of the species.

      The study really highlights how museum specimens can be used to understand the genetic variability of populations and species in the past, up to a century or more ago. This is an incredibly valuable tool, and can potentially help us to quickly identify whether current populations of rare and declining species are in danger due to inbreeding, or whether at least their genetic integrity is in good condition and other factors need to be prioritised in their conservation. In the case of extinct species, sequencing museum specimens is really our only window into the dynamics of genomic variability prior to extinction, and such information can help us understand how genetic variation is related to extinction.

      I think the authors have achieved their goal admirably, they have used a careful approach to mapping their genomic reads to a related species with a high-quality genome assembly. They might miss out on some interesting genetic information in the unmapped reads, but by and large, they have captured the essential information on genetic variability within their mapped reads. Their conclusions on the lower genetic variability in the extinct species are sound, and they convincingly show that Glaucopyche xerces is a separate species to Glaucopsyche lygdamus (this has been debated in the past).

      We thank the reviewer for his/her positive assessment and we hope to have contributed to both the knowledge of this iconic extinct species and also the possibility of applying our observations to other, endangered insects.

      Reviewer #2 (Public Review):

      The Xerces Blue is an iconic species, now extinct, that is a symbol for invertebrate conservation. Using genomic sequencing of century-old specimens of the Xerces Blue and its closest living relatives, the authors hypothesize about possible genetic indicators of the species' demise. Although the limited range and habitat destruction are the most likely culprits, it is possible that some natural reasons have been brewing to bring this species closer to extinction.

      The importance of this study is in its generality and applicability to any other invertebrate species. The authors find that low effective population size, high inbreeding (for tens of thousands of years), and higher fraction of deleterious alleles characterize the Xerces colonies prior to extinction. These signatures can be captured from comparative genomic analysis of any target species to evaluate its population health.

      It should be noted that it remains unclear if these genomic signatures are indeed predictive of extinction, or populations can bounce back given certain conditions and increase their genetic diversity somehow.

      Methods are detailed and explained well, and the study could be replicated. I think this is a solid piece of work. Interested researchers can apply these methods to their chosen species and eventually, we will assemble datasets to study extinction process in many species to learn some general rules.

      We thank the reviewer for his/her observations and suggestions for improvement and we agree that endangered species show conflicting signals sometimes associated to decreasing genetic diversity (some species are very low in numbers and yet they keep reasonably high diversity levels as compare to others); however, this aspect remains to be explored in detail in insects that have demographic dynamics to a large extent impossible to compare to those observed in vertebrates. We agree there is a full range of cases and circumstances in declining insects to be explored in the future.

      Several small questions/suggestions:

      1) The authors reference a study concluding that Shijimiaeoides is Glaucopsyche. Their tree shows the same, confirming previous publications. And yet they still use Shijimiaeoides, which is confusing. Why not use Glaucopsyche for all these blues?

      We have decided, for the sake of clarity, to change it to Glaucopsyche divina in Figure 1, as suggested by the reviewer.

      2) Plebejus argus is a species much more distant from P. melissa than Plebejus anna (anna and melissa are really very close to each other), and yet their tree shows the opposite. What is the problem? Misidentification? Errors in phylogenetic analyses?

      The reviewer is right and we think there is a mixture of potential problems here that deserve a more in depth analysis of this genus. We used MN974526 as a proxy for P. argus and we suspect now this is probably a case of misidentification (but we cannot verify it without a morphological examination of the original specimen and likely additional genomic data). MN974526 shows a 99.33% identity to the sequence by Vila et al. (2011) code NGK02C411, defined as P. melissa; as the true status of this mitogenome cannot be totally clarified (it is likely that it is in fact P. idas), we have decided to attribute it to “Plebejus sp” in the Figure 1 and explained this in the text.

      3) Wouldn't it be nicer to show the underside of butterfly pictures that reveals the differences between xerces and others? Now, they all look blue and like one species, no real difference.

      This is a good suggestion, and we have now included the underside of different species, including Xerces Blue.

      4) The authors stated that one of five xerces specimens failed to sequence, and yet they show 5 specimens in the tree. Was the extra specimen taken from GenBank?

      Yes, the extra specimen is the one reported in Grewe et al. 2021; we have marked in Figure 1 with an * this specific mitogenome (and mentioned in the legend), which clusters nicely within the set of Xerces Blue mtDNA diversity we have generated.

      Reviewer #1 (Recommendations For The Authors):

      I am curious why the authors did not attempt to do a de novo assembly of the extinct species' genomes. In our work on museum specimen genomes, we have successfully used a de novo approach to extract protein coding genes from such highly fragmented genomes. We used SPAdes to assemble the museum genomes and then assessed BUSCO completeness, finding anything from 50% to 90% BUSCO completeness. The genome assemblies themselves are pretty poor with N50s around a few thousand bp at best, but the information we can extract from such highly fragmented genomes is very useful, especially with regard to protein coding gene exons. Perhaps worth trying?

      Thanks for the comment. In our approach, and considering the expected low quality from some museum specimens in the lower part of the conservation spectrum, we used the standard approach based on the variant calling of short read data mapped to a close assembly. This method has been shown to be precise enough in cross species mapping (Kuderna et al. Science 2023). Local assemblies of exons and genes, while potentially informative, particularly for structural preservation, was not the priority in our objectives where only the base pair mutations were explored. Nevertheless, we are planning to generate in the near future an assembly for the closest living relative of Xerces, Glaucopsyche lygdamus, and once we get it, we will consider the possibility of undertaking the suggested approach with this new reference to explore the genomic architecture of Xerces Blue in more detail.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 Public Review

      “First, I agree with the authors of this manuscript that conformational changes in the XFEL structures with 2.8 A resolution are not reliable enough for demonstrating the subtle changes in the electron transfer events in this bacterial photosynthesis system. Actually, the data statistics in the paper by Dods et al. showed that the high-resolution range of some of the XFEL datasets may include pretty high noise (low CC1/2 and high Rsplit) so the comparison of the subtle conformational changes of the structures is problematic.

      The manuscript by Gai Nishikawa investigated time-dependent changes in the energetics of the electron transfer pathway based on the structures by Dods et al. by calculating redox potential of the active and inactive branches in the structures and found no clear link between the time-dependent structural changes and the electron transfer events in the XFEL structures published by Dods, R.et al. (2021). This study provided validation for the interpretation of the structures of those electrontransferring proteins.

      The paper was well prepared.”

      Thank you very much for your positive and insightful comment. We greatly appreciate your suggestion regarding the high noise levels of the XFEL structures. Including this information in the Introduction section will draw readers’ attention to the concerns about the reliability of these XFEL structures. We have incorporated it into the Introduction section.

      Reviewer #2 Public Review

      “The manuscript by Nishikawa et al. addresses time-dependent changes in the electron transfer energetics in the photosynthetic reaction center from Blastochloris viridis, whose time-dependent structural changes upon light illumination were recently demonstrated by time-resolved serial femtosecond crystallography (SFX) using X-ray free-electron laser (XFEL) (Dods et al., Nature, 2021). Based on the redox potential Em values of bacteriopheophytin in the electron transfer active branch (BL) by solving the linear Poisson-Boltzmann equation, the authors found that Em(HL) values in the charge-separated 5-ps structure obtained by XFEL are not clearly changed, suggesting that the P+HL- state is not stabilized owing to protein reorganization. Furthermore, chlorin ring deformation upon HL- formation, which was expected from their QM/MM calculation, is not recognized in the 5ps XFEL structure. Then the authors concluded that the structural changes in the XFEL structures are not related to the actual time course of charge separation. They argued that their calculated changes in Em and chlorin ring deformations using the XEFL structures may reflect the experimental errors rather than the real structural changes; they mentioned this problem is due to the fact that the XFEL structures were obtained at not high resolutions (mostly at 2.8 Å). I consider that their systematic calculations may suggest a useful theoretical interpretation of the XFEL study. However, the present manuscript insists as a whole negatively that the experimental errors may hamper to provide the actual structural changes relevant to the electron transfer events.”

      Thank you for your feedback on our manuscript. We appreciate your positive assessment of our systematic calculations and theoretical interpretation of the XFEL study. We have carefully considered your comments and made the necessary revisions to address your concerns.

      Reviewer #2 Recommendations for the authors

      “The authors have satisfied my concerns mostly, in particular by providing the Em(QA) changes, which seem to be more attractive in the present form. However, the Em(QA) value(s), at least in the dark structure, should be provided, and the procedure of the calculation for the Em(QA) value(s) should be described in METHODS "Calculation of Em".

      The calculated Em(QA) values for dataset a and dataset b in the dark structure are –223 mV and – 209 mV, respectively, using the reference Em value of –256 mV versus NHE for menaquinone-2 in water [Photosynth. Res. 134 (2017) 193]. These calculated values are comparable to experimentally measured values of –150 mV for PbRC from Blastochloris viridis (naphtoquinone) [Biochim. Biophys. Acta 440 (1976) 622] and –180 mV for PbRC from Rhodobacter sphaeroides (ubiquinone) [Arch. Biochem. Biophys 172 (1976) 329].

      We have now provided this information in the Method (“Calculation of Em”) and Results and Discussion (“Relevance of structural changes observed in XFEL structures”) sections.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The cerebral cortex, or surface of the brain, is where humans do most of their conscious thinking. In humans, the grooves (sulci) and bumps (convolutions) have a particular pattern in a region of the frontal lobe called Broca's area, which is important for language. Specialists study features imprinted on the internal surfaces of braincases in early hominins by casting their interiors, which produces so-called endocasts. A major question about hominin brain evolution concerns when, where, and in which fossils a humanlike Broca's area first emerged, the answer to which may have implications for the emergence of language. The researchers used advanced imaging technology to study the endocast of a hominin (KNM-ER 3732) that lived about 1.9 million years ago (Ma) in Kenya to test a recently published hypothesis that Broca's remained primitive (apelike) prior to around 1.5 Ma. The results are consistent with the hypothesis and raise new questions about whether endocasts can be used to identify the genus and/or species of fossils.

      We would like to thank Rev. 1 for their comments on our paper.

      Reviewer #2 (Public Review):

      The authors tried to support the hypothesis that early Homo still had a primitive condition of Broca's cap (the region in fossil endocasts corresponding to Broca's area in the brain), being more similar to the condition in chimpanzees than in humans. The evidence from the described individual points to this direction but there are some flaws in the argumentation.

      We are grateful to Rev. 2 for their comments, although we partially agree with some of them.

      First, we would like to rectify the statement of Rev. 2 that we “tried to support the hypothesis that early Homo still had a primitive condition of Broca's cap”, indeed, our aim was to test this hypothesis and not to try to validate it.

      First, only one human and one chimpanzee were used for comparison, although we know that patterns of brain convolutions (and in addition how they leave imprints in the endocranial bones) are very variable.

      We understand the point raised by Rev. 2 about the variation of brain convolutions in humans and chimpanzees. We used atlases published by Connolly (1950), Falk et al. (2018) and de Jager et al. (2019, 2022) to analyse the endocast of KNM-ER 3732 and compare it to the extant human and chimpanzee cerebral conditions. However, in Figure 2, for the sake of clarity only two Homo and Pan specimens were used to illustrate the comparison (as it has been done in other published papers, e.g., Carlson et al., 2011; Science, Gunz et al., 2020 Sci Adv). In the revised version, we modified the manuscript to explain further our approach (line 156) “We used brain and endocast atlases published in Connolly (1950), Falk et al. (2018) and de Jager et al. (2019, 2022; see also www.endomap.org) for comparing the pattern identified in KNM-ER 3732 to those described in extant humans and chimpanzees. To the best of our knowledge, these atlases are the most extensive atlases of extant human and chimpanzee brains/endocasts available to date and are widely used in the literature to explore variability in sulcal patterns. In Figure 2, the extant human and chimpanzee conditions are illustrated by one extant human (adult female) and one extant chimpanzee (adult female) specimens from the Pretoria Bone Collection at the University of Pretoria (South Africa) and in the Royal Museum for Central Africa in Tervuren (Belgium), respectively (Beaudet et al., 2018).”.

      Second, the evidence from this fossil specimen adds to the evidence of previously describe individuals but still not yet fully prove the hypothesis.

      We tempered our discussion by concluding that (line 116) “Overall, the present study not only demonstrates that Ponce de León et al.’s (2021) hypothesis of a primitive brain of early Homo cannot be rejected, but also adds information […]”.

      Third, there is a vicious circle in using primitive and derived features to define a fossil species and then using (the same or different) features to argue that one feature is primitive or derived in a given species. In this case, we expect members of early Homo to be derived compared to their predecessors of the genus Australopithecus and that's why it seems intriguing and/or surprising to argue that early Homo has primitive features. However, we should expect that there is some kind of continuum or mosaic in a time in which a genus "evolves into" another genus. This discussion requires far more discussions about the concepts we use, maybe less discussion about what is different between the two groups but more discussion about the evolutionary processes behind them.

      We fully agree with Rev. 2 on this aspect. We believe that identifying these differences/similarities between fossil and extant hominids constitute the first step of a better understanding of the evolutionary mechanisms. Our work suggests indeed a certain continuity between genera and raises questions on the genus concept and how to interpret the specimens currently attributed to early Homo. In the revised version of the manuscript we included a reference to this possible scenario (line 134): “[…] or to the absence of a definite threshold between the two genera based on the morphoarchitecture of their endocasts (Wood and Collard, 1999).”.

      Fourth, the data of convolutional imprints presented are rather subjective when identifying which impressions represent which brain convolutions. Not seeing an impression does not necessarily mean that the corresponding brain feature did not exist. Interestingly, the manuscript does not mention and discuss at all the frontoorbital sulcus. This is a sulcus that usually runs from the orbital surface of the frontal lobe up to divide the inferior frontal gyrus in chimpanzees, a condition totally different than in humans who do not have a frontoorbital sulcus. Could such a sulcus be identified, this would provide a far more convincing argument for a primitive condition in this specimen. In Australopithecus sediba, e.g., the condition in this region seems to be a mosaic in which some aspects of the morphology seem to be more modern while one of the sulcual impressions can well be interpreted as a short frontoorbital sulcus. For this specimen, by the way, I would come back to my third point above: some experts in the field might argue that this specimen could belong to Homo rather than Australopithecus...

      We agree that the presence of a fronto-orbital sulcus would be more conclusive. However, this sulcus has not been identified in KNM-ER3732 and the region in which we would expect to find it is not preserved. As demonstrated by Ponce de León et al. (2021), because of the topographic relationships between sulci (and cranial structures), it is possible to interpret imprints on endocasts and the evolutionary polarity of some traits even in the absence of landmarks such as the fronto-orbital sulcus. In Australopithecus sediba the main derived feature of the endocast corresponds to the ventrolateral bulge in the left inferior frontal gyrus, and not to the sulcal pattern itself (Carlson et al., 2011 Science). However, the discussion around the taxonomic status of this taxon confirms the urgent need for reconsidering specimens from that time period and clarifying the mosaic-like or concerted evolution of the derived Homo-like traits within our lineage. Regarding the subjective nature of this approach, we invite readers to examine the specimen on MorphoSource (https://www.morphosource.org/concern/media/000497752?locale=en) and to request access to the National Museums of Kenya to the physical or virtual specimen to falsify our hypothesis.

      According to my arguments above, I think that this manuscript might revive interesting discussions about this topic but it is not likely to settle them because the data presented are not strong enough to fully support the hypothesis.

      We would be more than happy to consider new/other specimens with similar chronological and geographical contexts and investigate further this hypothesis in the future.

      Reviewer #3 (Public Review):

      The authors provide a detailed analysis of the sulcal and sutural imprints preserved on the natural endocast and associated cranial vault fragments of the KNM-ER3732 early Homo specimen. The analyses indicate a primitive ape-like organization of this specimen's frontal cortex. Given the geological age of around 1.9 million years, this is the earliest well-documented evidence of a primitive brain organization in African Homo.

      In the discussion, the authors re-assess one of the central questions regarding the evolution of early Homo: was there species diversity, and if yes, how can we ascertain it? The specimen KNM-ER1470 has assumed a central role in this debate because it purportedly shows a more advanced organization of the frontal cortex compared to other largely coeval specimens (Falk, 1983). However, as outlined in Ponce de León et al. 2021 (Supplementary Materials), the imprints on the ER1470 endocranium are unlikely to represent sulcal structures and are more likely to reflect taphonomic fracturing and distortion. Dean Falk, the author of the 1983 study, basically shares this view (personal communication). Overall, I agree with the authors that the hypothesis to be tested is the following: did early Homo populations with primitive versus derived frontal lobe organizations coexist in Africa, and did they represent distinct species?

      I greatly appreciate that the authors make available the 3D surface data of this interesting endocast.

      We are grateful to Rev. 3 for their comments and for contextualizing our finding. We would also like to point out that, although the 3D surface can be viewed on MorphoSource, permission from the National Museums of Kenya has to be requested for studying the specimen and getting access to the physical specimen and/or the 3D model.

      Reviewer #1 (Recommendations For The Authors):

      Holloway, Broadfield & Yuan (2004) estimate ER 3732 as having a cranial capacity of 750 cc, which is larger than chimps and australopiths and similar to ER 1470 (752 cc, same reference). (That for Dmanisi 2282 is somewhat smaller at around 650 cc.) Cranial capacities should be mentioned along with added discussion about possible allometric scaling of (increased) numbers of sulci with increasing brain size as well as possible shifts in locations of sulci relative to cranial sutures in larger-brained (including due to ontogenetic maturation) in individuals/species. Could these variables (especially brain size) be relevant for your discussion/conclusions?

      We thank Rev. 1 for their suggestion. We included the estimate by Holloway et al. (2004) (line 95): “Holloway et al. (2004) estimated the endocranial volume as about 750-800 cc but insisted on the low reliability of their estimate.”. Additionally, we raised the possibility of potential allometric effect (line 149): “In parallel, the possibility of allometric scaling and influence of brain size on sulcal patterns in early Homo has to be further explored.” for future discussion.

      From the two figures, it appears that the authors produced a virtual endocast from the cranial remains of ER 3732 and compared its features with those seen on a virtual reproduction of the corresponding natural endocast. If so, this needs to be clarified in the text, not just the figures.

      We thank Rev. 1 for their suggestions that were integrated.

      Reviewer #3 (Recommendations For The Authors):

      While the sulcal imprints on the left hemisphere can be interpreted unambiguously, the anatomical assignment of those on the right side may need to be reconsidered, as they are more ambiguous. For example, the postcentral sulcus (pt) almost touches the middle frontal sulcus, which is an unlikely natural configuration.

      We agree that the configuration on the right hemisphere is intriguing, especially when compared to the extant human and chimpanzee atlases. As such, we decided to change the label for what we think could be the inferior frontal sulcus and leave a question mark instead.

      I encourage the authors to include:

      • a posterior view in Figure 1, and mark the lambdoid suture, parts of which seem to be preserved especially on the left side. This will help the readership to better understand which parts of the endocranial morphology are preserved.

      • a scale bar would be of great utility to appreciate the small size of this specimen. The distance from bregma to the Broca cap seems to be short, indicating an endocranial volume much smaller than the published estimate of 750 ccm. Perhaps the authors can provide a new estimate, which would provide further support for the arguments proposed in the discussion section, especially the question of any presence of Australopithecus at Koobi Fora.

      We included a posterior view of the specimen in Figure 1 and scale bar and modified the legend accordingly. Unfortunately, we were not able to identify with certainty the feature that could correspond to the lambdoid suture. We might see the impression where the parietal bone meets the occipital bone, but there is a risk of misidentification (which is an issue frequently raised in the literature, see for example Gunz et al. 2020 Sci Adv). Concerning the endocranial volume, in the revised version of the manuscript we included the estimate by Holloway et al. (2004). Because the specimen only preserves the superior part, we are reluctant in providing an estimate of the total volume. However, we agree that this would be an interesting feature to integrate in the interpretation of this specimen.

      Minor points

      • This sentence needs to be clarified: «The superior temporal sulcus nearly intersects the lateral fissure on the right hemisphere».

      • The terms «Broca's region» and «orbital cap» need some more context. Do the authors mean «Broca's cap» in either instance?

      We clarified/modified when needed, thank you very much.

      We included minor corrections in addition to those recommended by the reviewers:

      -Lines 50, 74, 142, 149: “Broca’s area” instead of “Broca’s cap”

      -Line 73: “in the pre-1.5 Ma Homo specimen” instead of “in pre-1.5 Ma Homo specimen”

      -Line 100: we specified “in human brains and endocasts”

      -Line 120: “sulcal pattern” instead of “sulcal patterns”

      -Line 144: “behaviors” (plural)

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Strengths:

      The manuscript is well written and the experimental work well executed. It shows that major features of the classical two-component HipAB TA system have somehow been rerouted in the case of the tripartite HipBST. This includes the N-terminal domain of the HipA toxin, which now functions as bona fide antitoxin, and the partly relegated HipB antitoxin, which could only function as a transcription regulator. In addition, this work shows a new mode of inhibition of a kinase toxin and highlights the impact of the phosphorylation state of key toxin residues in controlling the activity of the antitoxin.

      Weaknesses:

      A major weakness of this work is the lack of data concerning the role of HipB, which likely does not act as an antitoxin. Does it act as a transcriptional regulator of the hipBST operon and to what extent both HipS and HipT contribute to such regulation? These are still open questions.

      We thank the reviewer for their feedback and will include a supplementary figure (Figure 1 supplement 2) and accompanying text that shows the transcriptional role of HipB, and how HipS and HipT influence this regulatory effect.

      In addition, there is no in-depth structural comparison between the structure of the HipBST solved in the work and the two recent structures of HipBST from Legionella. This is also a major weakness of this work.

      A structural comparison to the recent structures from Legionella will be included in the discussion, including Figure 6 supplement 1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for the constrictive and detailed feedback provided. We have adopted the proposed changes to improve the manuscript clarity and accessibility. The following revisions are included in the revised manuscript:

      Reviewer #1 (Public Review):

      The analytical framework is not sufficiently explained in the main text.

      We think the reviewer is referring to the conceptual framework mentioned in introduction. In the previously submitted manuscript, we did not provide details because the framework is published elsewhere. However, we agree with the reviewer that a short explanation may be helpful, which we have included in the resubmitted manuscript.

      The significance of findings in relation to functional changes is not clear. What are the consequences of enrichment of RNA transport or ribosome biogenesis pathways between pesticides and recovery stages, for example?

      We thank the reviewer for this suggestion. In the previously submitted manuscript, we included an explanation of the central functions these pathways can alter (e.g. metabolism and infection response). These functions are self-explanatory. However, we have elaborated on the consequence that the disruption of these pathways can cause in the resubmitted manuscript.

      The impact of individual biocides and climate variables, and their additive effects, are assessed but there is no information offered on non-additive interactions (e.g., synergistic, antagonistic).

      This was a misunderstanding based on our use of the term synergistic in this context. The approach by which we define a synergistic or joint effect of two environmental variables on a taxonomic group is explained in the methods section. This analysis is based on climate variables and biocide types contributing the largest covariances in the correlation analysis explained in Supplementary Fig. 5; Step 4. The combined effect of two environmental variables on a taxon was considered to be significant if the biocide type and the climate variable were each significantly correlated with the taxon over the same time window, and their average Pearson correlation was > 0.5 with padj < 0.05 (SWC analysis with 10,000 permutations). The biocide type and the climate variable were interpreted to have a joint effect on a given taxon if the linear combination of the biocide type and the climate variable had a larger Pearson correlation coefficient than each of the correlations between the family and the biocide type and the family and the climate variable individually, in the same time interval with padj < 0.05 (with 10,000 permutations in the SWC analysis). We realise that the use of synergistic or additive was not correct in this context and have replaced the term synergistic with joint effect throughout the manuscript.

      The level of confidence associated with results is not made explicit. The reader is given no information on the amount of variability involved in the observations, or the level of uncertainty associated with model estimates.

      As we didn’t use traditional statistical approaches, confidence level estimation in the traditional sense is not possible. Instead, we used permutation tests and adjusted P-values to identify significant correlations in the data. These approaches are more robust than traditional statistics for integrating and discovering complex, group-wise patterns among high-dimensional datasets. While most forms of machine learning require large sample sizes, sCCA uses fewer observations to identify the most correlated components among data matrices and captures the multivariate variability of the most important features.

      The major implications of the findings for regulatory ecological assessment are missed. Regulators may not be primarily interested in identifying past "ecosystem shifts". What they need are approaches which give greater confidence in monitoring outcomes by better reflecting the ecological impact of contemporary environmental change and ecosystem management. The real value of the work in this regard is that: (1) it shows that current approaches are inappropriate due to the relatively stable nature of the indicators used by regulators, despite large changes in pollutant inputs; (2) it presents some better alternatives, including both taxonomic and functional indicators; and (3) it provides a new reference (or baseline) for regulators by characterizing "semi-pristine" conditions.

      We thank the reviewer for this suggestion, which we have included in the main text (L451461)

      Reviewer #2 (Public Review):

      Results - They are brief and should expand some more. Particularly, there are no results regarding metabarcoding data (number of reads, filtering etc.). These details are important to know the quality of the data which represents the bulk of the analyses. Even the supplementary material gives little information on the metabarcoding results (e.g. number of ASVs - whether every ASV of each family were pooled etc.).

      We thank the reviewer for this suggestion. We have included a paragraph in results reporting read numbers and other statistics. The filtering criteria and handling of samples can be found in methods (L658-661; L670-675). As explained in methods the taxonomy was assigned using qiime feature-classifier classify-sklearn and used at family level where possible. When classification was not possible at family level because of incomplete/missing information in the online database or a poor match to reference database, the lowest classification possible was used.

      The drivers of biodiversity change section could be restructured and include main text tables showing the families positively or negatively correlated with the different variables (akin to table S2 but simplified).

      As there are over 180 unique families/taxonomic units correlated with at least one biocide or environmental variable, a simplified version of this table would be too large to include in the main text. Therefore, we prefer to keep this information in supplementary table 2 complete with correlation statistics.

      We thank the reviewers for providing detailed feedback on the manuscript and respond to their suggestions as follows:

      Reviewer #1 (Recommendations For The Authors):

      Thank you for the opportunity to review your manuscript, which I found interesting and enjoyable to read. Here are some suggestions for improving it.

      Remove spaces before citations in text.

      Lines 51-53: "Community-level biodiversity reliably explained freshwater ecosystem shifts whereas traditional quality indices (e.g. Trophic Diatom Index) and physicochemical parameters proved to be poor metrics for these shifts." Seems to be the wrong way around / not clear???

      Rephrased to clarify.

      Line 54: Should be "...advocates the use of..." or "...demonstrates the advantages of..."

      Done, thanks for the suggestion.

      Line 62: Spell out numbers <10, i.e. "sixth mass extinction"

      Done, thank you.

      Lines 66-72: These sentences lack clarity. It's not clear that "experimental manipulation of biodiversity" hasn't involved investigation of "multi-trophic changes". By the third of these four sentences it is not clear what "they" is referring to. And in the fourth sentence, "these holistic studies" are not defined. Perhaps it would suffice to say that experiments have so far focused primarily on a single trophic level and largely neglected freshwater systems.

      We have rephrased to improve clarity.

      Line 81: Delete unnecessary bracket

      Done, thank you.

      Line 82: "a minority of freshwater ecosystems" sounds as if you're saying that few freshwater ecosystems are represented in BioTIME, which seems obvious and would also apply to terrestrial and marine systems. Do you mean that freshwater ecosystems re not well represented in the data?

      We have clarified the sentence, thanks.

      Line 106: Resolve issue with citation in text at the end of the sentence (repeated at line 109 and possibly other lines).

      Done, thank you.

      Line 116: By ">1999s" do you mean 1990s?

      This was a typo. it was supposed to be >1999

      Line 120: The reader would benefit greatly from a brief explanation of explainable network models and multimodal learning in the introduction. Why are these the right tools to use? How do they work in this context? Figure 1 helps to some extent but needs more commentary in the text.

      We have included an explanation of the explainable network models and multimodal learning and how their use can be beneficial to the study of diverse data types.

      Line 144: Here and throughout the text the language could be much more efficient and readable. "Alpha diversity" does not require a definite article. Furthermore, when referring to significance it is convention to state the p-value, test statistic and test used.

      As there are different p-values for each barcode, we have included them in legend to Supplementary Fig. 1 to avoid crowding the main text. We prefer to leave the text unchanged for this reason.

      Line 155: "The primary producer's composition" is grammatically awkward and less suitable than "the composition of primary producers". This kind of awkwardness occurs again at line 285 ("diatom's") and possibly in other parts of the manuscript.

      Thanks, corrected.

      Line 169: The statement that this family was "relatively more abundant" needs a little more explanation. What is it relative to - other groups or to previous stages?

      More abundant than in the other phases – the sentence has been modified.

      Line 179: Nested brackets are unnecessary and affect readability. This could simply be a new sentence, i.e. "For example, Nitrospiraceae (nitrite oxidizers)..."

      Done, thanks.

      Line 215: "Functional biodiversity", which implies that some biodiversity is functional and some not, does not seem an appropriate term to describe the results you present in this section. Simply "functioning of the prokaryotic community" would suffice.

      Thanks, done.

      Line 214-233: This section may be inaccessible for many readers. For example, what are Kegg Orthologs and what role do they play in the functioning of a lake ecosystem? The explanation comes later in the paragraph but there needs to be a gentler introduction before diving into specific technical concepts.

      We appreciate this comment and have included a short explanation of what KEGG and KO terms mean.

      Supplementary Figure 3: It would be helpful to superimpose the lake stages here, as done in Figure 2.

      The figure has been updated with coloured data points corresponding to each phase, as in supplementary figure 1.

      Line 265: Should be "19 of which were identified..."

      Done, thanks.

      Line 284: "Predominantly" rather than "prominently"?

      Done

      Line 242-316: This section is good in that it identifies and ranks individual biocides and climate variables but there is no information on non-additive interactions (e.g., synergistic, antagonistic). Could the authors at least comment on why this was not done or not necessary, and what uncertainties this omission could introduce into the results?

      This was a misunderstanding based on our use of the term synergistic in this context. the approach by which we define a synergistic or joint effect of two environmental variables on a taxonomic group is explained in the methods section. This analysis is based on climate variables and biocide types contributing the largest covariances in the correlation analysis explained in Supplementary Fig. 5; Step 4. The combined effect of two environmental variables on a taxon was considered to be significant if the biocide type and the climate variable were each significantly correlated with the taxon over the same time window, and their average Pearson correlation was > 0.5 with padj < 0.05 (SWC analysis with 10,000 permutations) – this is shown in Supplementary Fig. 5; Step 6. The biocide type and the climate variable were interpreted to have an additive effect on a given taxon if the linear combination of the biocide type and the climate variable had a larger Pearson correlation coefficient than each of the correlations between the family and the biocide type and the family and the climate variable individually, in the same time interval with padj < 0.05 (with 10,000 permutations in the SWC analysis). we have replace synergistic with joint effect to avoid confusion.

      Figure 4: These 3-D plots are very hard to read. Without additional features (e.g. shadows on each plane, or lines connecting points to planes) it is impossible for the viewer to tell where the points are located on each axis.

      We have created interactive 3D plots here: https://environmental-omicsgroup.github.io/Biodiversity_Monitoring/.

      Figure 5: Legend entry should be "summer precipitation" not "precipitations". "Additive effect" rather than "joint effect" would be more consistent with the main text.

      “Precipitations” has been updated to “precipitation” where relevant throughout. We left ‘joint effect’ and unified the main text, responding to a previous comment of this reviewer on the meaning of synergistic effects in our study.

      Line 348: Doesn't your approach also require specialist skills? I often feel that the "traditional" versus "molecular" monitoring debate misses this point. Some comment on the training and development needs for those interested in applying the sedaDNA approach would be welcome. Otherwise it is an unfair comparison.

      Whereas the application of high throughput sequencing technologies requires training, these technologies are well established with publicly available standard operating procedures. As compared to direct observations, high throughput sequencing provides replicable results regardless of the operator. Moreover, the application of metabarcoding to sedaDNA or more generally eDNA can be outsourced to established environmental services, removing the need for training if it is a limiting factor. The above has been included in discussion.

      Line 391: "Significantly did" what? "Did significantly change over time" would be better.

      Done, thanks.

      Line 407: Should be "an indicator of..." and "did not significantly change over time..."

      Done, thanks.

      Line 408-410: Regulators are not necessarily interested in identifying past "ecosystem shifts", so this does not seem to be the best way to contrast the capabilities of the sedaDNA approach with those of LTDI2. The real value of this work, in my opinion, is threefold. First, it shows that the reliance on diatoms as indicators of ecological status is inappropriate due to the relatively stable nature of diatom communities in the face of large environmental changes. Second, it presents some better alternatives, including both taxonomic and functional indicators. And third, it provides a new reference point for regulators by characterising "semi-pristine" conditions.

      Thanks for the insightful suggestion. We agree with the reviewer on the advantages and have spelled them out in the resubmitted manuscript.

      Line 445: What are "housekeeping functions"? I checked the Cuenca-Cambronero paper cited but did not find the term there.

      Housekeeping functions are essential basic cellular functions that are evolutionary conserved. They are more commonly present in public databases because they have been characterised in a number of model species (e.g. Drosophila, C. elegans and Mus musculus). Our reference it not to the Cuenca-Cambronero paper, but to Mi et al, describing the reference database PANTHER. We included the definition of housekeeping functions in the main text.

      Line 449: Briefly state the main functional changes found here.

      Examples have been included.

      Lines 451-452: Whilst this statement may be found in the cited source, most readers I suspect would not identify with it. Indeed, one could argue that most of freshwater ecology has been dedicated to this very task (documenting chemical impacts on biodiversity)! A more balanced view is needed here.

      The sentence the reviewer refers to includes also reference to climate change. Climate change and chemical pollution are the two most common causes of biodiversity loss, and not only in freshwater ecosystems.

      Lines 463-466: These examples both point to non-additive (synergistic) effects, which were not assessed in the current study.

      Please refer to our explanation above about the inappropriate use of synergistic and, here, additive. We have altered the text throughout to use joint effects as we do not investigate synergistic, antagonistic and additive effects as traditionally described in ecology.

      Lines 472-474: This sentence is unclear. Do you mean that this approach surpasses others in terms of reliability? If so, I don't believe this has been demonstrated in the paper.

      We apologise. The word ‘reliability’ should have not been in the text. We have improved the clarity of this sentence.

      Lines 474-482: In these sentences it is unclear whether or not you are talking about your method or contrasting it with another method(s). If the latter, which method or methods are you referring to?

      We have fixed this sentence to better reflect that our algorithm provides a high degree of confidence that surpasses state-of-the-art analysis, which predominantly identify patterns of co-occurrence of taxa within communities (e.g. Correlation-Centric Network).

      Line 631: Should be "Physico-chemical variables". I have not extensively checked the rest of the methods for such errors.

      Thank you, the text has been changed where present.

      Reviewer #2 (Recommendations For The Authors):

      Introduction Line 80 remove extra ')'

      Done, thank you.

      Line 81 rephrase e.g includes few freshwater ecosystems

      We modified this sentence also following Reviewer #1

      Line 83 although, instead of whereas?

      Done, thanks.

      Line 106 formatting reference issue

      Line 109 same as above

      Thank you, noted.

      Results

      Line 141 - 144 how was the sampling of the sediment performed over the 100 year core? Every year? Every 5 years? Or were they pooled to represent the (as of yet unlisted) phases?

      The reviewer is correct that details are not provided here. They are in methods. We have added some text to explain the basic concepts of how the core was obtained and sliced and refer the reader to the method section for more details.

      Line 154 the authors have not yet explicitly listed the lake phases, so it is difficult to refer to them now.

      Noted, the addition of a short explanation at the beginning of the results section should take care of this issue.

      Line 216 - may be worth briefly explaining KEGG orthologs and how these relate to functional biodiversity.

      We thank the reviewer. Also responding to a similar comment from Reviewer #1, we included a description of KO terms and their links to functional biodiversity.

      Lines 249 - 260 instead of a supplementary table, it could remain in the main text

      Supplementary table 2 is a multi-tab table including information for each region amplified here. It is not possible to include this table in the main text.

      Materials and Methods Due to the formatting of the manuscript (results & discussion before materials and methods), many of the results are not clearly understood without having to visit the M&M section. Particularly, how the biocide types were obtained (Historic records plus persistence of DDT in sediments). This could be resolved y including a few sentences on how the data was gathered in the results section. Overall, materials and methods are sufficient, however, it is not clear how many of the 37 metabarcoding samples correspond to which of the lake phases. Finally, I suggest a better organization of M&Ms by having subheadings for each section. For example, under Biodiversity fingerprinting across 100 years, one subheading could de DNA extraction and sequencing, another subheading could be bioinformatics.

      We thank the reviewer for the suggestion. To alleviate the issues linked to the methods section coming after the results section, we have introduced a short explanation of the sediments core and the lake phases at the beginning of the results section. A description of the climate and chemical data has been included at the beginning of the section ‘Drivers of biodiversity change’ in results. Subheadings were introduced in methods as suggested.

    1. Author Response

      Reviewer #1 (Public Review):

      .In the best genetically and biochemically understood model of eukaryotic DNA replication, the budding yeast, Saccharomyces cerevisiae, the genomic locations at which DNA replication initiates are determined by a specific sequence motif. These motifs, or ARS elements, are bound by the origin recognition complex (ORC). ORC is required for loading of the initially inactive MCM helicase during origin licensing in G1. In human cells, ORC does not have a specific sequence binding domain and origin specification is not specified by a defined motif. There have thus been great efforts over many years to try to understand the determinants of DNA replication initiation in human cells using a variety of approaches, which have gradually become more refined over time.

      In this manuscript Tian et al. combine data from multiple previous studies using a range of techniques for identifying sites of replication initiation to identify conserved features of replication origins and to examine the relationship between origins and sites of ORC binding in the human genome. The authors identify a) conserved features of replication origins e.g. association with GC-rich sequences, open chromatin, promoters and CTCF binding sites. These associations have already been described in multiple earlier studies. They also examine the relationship of their determined origins and ORC binding sites and conclude that there is no relationship between sites of ORC binding and DNA replication initiation. While the conclusions concerning genomic features of origins are not novel, if true, a clear lack of colocalization of ORC and origins would be a striking finding.

      Thank you. That is where the novelty of the paper lies.

      However, the majority of the datasets used do not report replication origins, but rather broad zones in which replication origins fire. Rather than refining the localisation of origins, the approach of combining diverse methods that monitor different objects related to DNA replication leads to a base dataset that is highly flawed and cannot support the conclusions that are drawn, as explained in more detail below.

      We are using the narrowly defined SNS-seq peaks as the gold standard origins and making sure to focus in on those that fall within the initiation zones defined by other methods. The objective is to make a list of the most reproducible origins. Unlike what the reviewer states, this actually refines the dataset to focus on the SNS origins that have also been reproduced by the other methods in multiple cell lines. We will change the last box of Fig. 1A to say: Identify reproducible SNS-seq origins that are contained in IZs defined by Repli-seq, OK-seq and Bubble-seq. These are the “shared origins”. This and the Fig. 2B (as it is) will make our strategy clearer.

      Methods to determine sites at which DNA replication is initiated can be divided into two groups based on the genomic resolution at which they operate. Techniques such as bubble-seq, ok-seq can localise zones of replication initiation in the range ~50kb. Such zones may contain many replication origins. Conversely, techniques such as SNS-seq and ini-seq can localise replication origins down to less than 1kb. Indeed, the application of these different approaches has led to a degree of controversy in the field about whether human replication does indeed initiate at discrete sites (origins), or whether it initiates randomly in large zones with no recurrent sites being used. However, more recent work has shown that elements of both models are correct i.e. there are recurrent and efficient sites of replication initiation in the human genome, but these tend to be clustered and correspond to the demonstrated initiation zones (Guilbaud et al., 2022).

      These different scales and methodologies are important when considering the approach of Tian et al. The premise that combining all available data from five techniques will increase accuracy and confidence in identifying the most important origins is flawed for two principal reasons. First, as noted above, of the different techniques combined in this manuscript, only SNS-seq can actually identify origins rather than initiation zones. It is the former that matters when comparing sites of ORC binding with replication origin sites if a conclusion is to be drawn that the two do not co-localise.

      Exactly. So the reviewer should agree that our method of finding SNS-seq peaks that fall within initiation zones actually refines the origins to find the most reproducible origins. We are not losing the spatial precision of the SNS-seq peaks.

      Second, the authors give equal weight to all datasets. Certainly, in the case of SNS-seq, this is not appropriate. The technique has evolved over the years and some earlier versions have significantly different technical designs that may impact the reliability and/or resolution of the results e.g. in Foulk et al. (Foulk et al., 2015), lambda exonuclease was added to single stranded DNA from a total genomic preparation rather than purified nascent strands), which may lead to significantly different digestion patterns (ie underdigestion). Curiously, the authors do not make the best use of the largest SNS-seq dataset (Akerman et al., 2020) by ignoring these authors separation of core and stochastic origins. By blending all data together any separation of signal and noise is lost. Further, I am surprised that the authors have chosen not to use data and analysis from a recent study that provides subsets of the most highly used and efficient origins in the human genome, at high resolution (Guilbaud et al., 2022).

      1) We are using the data from Akerman et al., 2020: Dataset GSE128477 in Supplemental Table 1. We can examine the core origins defined by the authors to check its overlap with ORC binding.

      2) To take into account the refinement of the SNS-seq methods through the years, we actually included in our study only those SNS-seq studies after 2018, well after the lambda exonuclease method was introduced. Indeed, all 66 of SNS-seq datasets we used were obtained after the lambda exonuclease digestion step. To reiterate, we recognize that there may be many false positives in the individual origin mapping datasets. Our focus is on the True positives, the SNS-seq peaks that have some support from multiple SNS-seq studies AND fall within the initiation zones defined by the independent means of origin mapping (described in Fig. 1A and 2B). These True positives are most likely to be real and reproducible origins and should be expected to be near ORC binding sites.

      We will change the last box of Fig. 1A to say: Identify reproducible SNS-seq origins that are contained in IZs defined by Repli-seq, OK-seq and Bubble-seq. These are the “Shared origins”.

      Ini-seq by Torsten Krude and co-workers (Guillbaud, 2022) does NOT use Lambda exonuclease digestion. So using Ini-seq defined origins is at odds with the suggestion above that we focus only on SNS-seq datasets that use Lambda exonuclease. However, Ini-seq identifies a much smaller subset of SNS-seq origins, so we will do the analysis with just that smaller set in the revision of the paper.

      References:

      Akerman I, Kasaai B, Bazarova A, Sang PB, Peiffer I, Artufel M, Derelle R, Smith G, Rodriguez-Martinez M, Romano M, Kinet S, Tino P, Theillet C, Taylor N, Ballester B, Méchali M (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun, 11: 4826

      Foulk MS, Urban JM, Casella C, Gerbi SA (2015) Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res, 25: 725-735

      Guilbaud G, Murat P, Wilkes HS, Lerner LK, Sale JE, Krude T (2022) Determination of human DNA replication origin position and efficiency reveals principles of initiation zone organisation. Nucleic Acids Res, 50: 7436-7450

      Reviewer #2 (Public Review):

      Tian et al. perform a meta-analysis of 113 genome-wide origin profile datasets in humans to assess the reproducibility of experimental techniques and shared genomics features of origins. Techniques to map DNA replication sites have quickly evolved over the last decade, yet little is known about how these methods fare against each other (pros and cons), nor how consistent their maps are. The authors show that high-confidence origins recapitulate several known features of origins (e.g., correspondence with open chromatin, overlap with transcriptional promoters, CTCF binding sites). However, surprisingly, they find little overlap between ORC/MCM binding sites and origin locations.

      Overall, this meta-analysis provides the field with a good assessment of the current state of experimental techniques and their reproducibility, but I am worried about: (a) whether we've learned any new biology from this analysis; (b) how binding sites and origin locations can be so mismatched, in light of numerous studies that suggest otherwise; and (c) some methodological details described below.

      Major comments:

      Line 26: "0.27% were reproducibly detected by four techniques" -- what does this mean? Does the fragment need to be detected by ALL FOUR techniques to be deemed reproducible?

      If the reproducible SNS-seq peaks are included in the reproducible initiation zones found by the other methods, then we consider it reproducible across datasets. The strategy is to focus our analysis on the most reproducible SNS-seq peaks that happen to be in reproducible initiation zones. It is the best way to confidently identify a very small set of true positive origins.

      And what if the technique detected the fragment is only 1 of N experiments conducted; does that count as "detected"?

      A reproducible SNS-seq origin has been reproduced above a statistical threshold of 20 reproductions. A threshold of reproduction in 20 datasets out of 66 SNS-seq datasets gives an FDR of <0.1. This is explained in Fig. 2a and Supplementary Fig. S2. For the initiation zones, we considered a Zone even if it appears in only 1 of N experiments, because N is usually small. This relaxed method for selecting the initiation zones gives the best chance of finding SNS-seq peaks that are reproduced by the other methods.

      Later in Methods, the authors (line 512) say, "shared origins ... occur in sufficient number of samples" but what does sufficient mean?

      Sufficient means that SNS-seq origin was reproducibly detected in ≥ 20 datasets and was included in any initiation zone defined by three other techniques.

      Then on line 522, they use a threshold of "20" samples, which seems arbitrary to me. How are these parameters set, and how robust are the conclusions to these settings? An alternative to setting these (arbitrary) thresholds and discretizing the data is to analyze the data continuously; i.e., associate with each fragment a continuous confidence score.

      We explained Fig. 2a and Supplementary Fig. S2 in the text as follows: The occupancy score of each origin defined by SNS-seq (Supplementary Fig. 2a) counts the frequency at which a given origin is detected in the datasets under consideration. For the random background, we assumed that the number of origins confirmed by increasing occupancy scores decreases exponentially (see Methods and Supplementary Table 2). Plotting the number of origins with various occupancy scores when all SNS-seq datasets published after 2018 are considered together (the union origins) shows that the experimental curve deviates from the random background at a given occupancy score (Fig. 2a). The threshold occupancy score of 20 is the point where the observed number of origins deviates from the expected background number (with an FDR < 0.1) (Fig. 2a). In the Methods: In other words, the number of observed origins with occupancy score greater than 20 is 10 times more than expected in the background model. This approach is statistically sound and described by us in (Fang et al. 2020).

      Line 20: "50,000 origins" vs "7.5M 300bp chromosomal fragments" -- how do these two numbers relate? How many 300bp fragments would be expected given that there are ~50,000 origins? (i.e., how many fragments are there per origin, on average)? This is an important number to report because it gives some sense of how many of these fragments are likely nonsense/noise. The authors might consider eliminating those fragments significantly above the expected number, since their inclusion may muddle biological interpretation.

      I think we confused the reviewer by the way we wrote the abstract. The 50,000 origins that are mentioned in the abstract is the hypothetical expected number of origins that have to fire to replicate the whole 6x10^9 base diploid genome based on the average inter-origin distance of 10^5 bases (as determined by molecular combing). The 7.5M 300 bp fragments are the genomic regions where the 7.5M union SNS-seq-defined origins are located. Clearly, that is a lot of noise, some because of technical noise and some due to the fact that origins fire stochastically. Which is why our paper focuses on a smaller number of reproducible origins, the 20,250 shared origins. Our analysis is on the 20,250 shared origins, and not on all 7.5M union origins. Thus, we are not including the excess of non-reproducible (stochastic?) origins in our analysis.

      The revised abstract in the revised paper will say: “Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell-cycle. The origins are believed to be specified by binding of factors like the Origin Recognition Complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and 5 ORC-binding site datasets to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by 66 SNS-seq datasets, only 0.27% were reproducibly contained in initiation zones identified by three other techniques (20,250 shared origins), suggesting extensive variability in origin usage and identification in different circumstances.”

      Line 143: I'm not terribly convinced by the PCA clustering analysis, since the variance explained by the first 2 PCs is only ~25%. A more robust analysis of whether origins cluster by cell type, year etc is to simply compute the distribution of pairwise correlations of origin profiles within the same group (cell type, year) vs the correlation distribution between groups. Relatedly, the authors should explain what an "origin profile" is (line 141). Is the matrix (to which PCA is applied) of size 7.5M x 113, with a "1" in the (i,j) position if the ith fragment was detected in the jth dataset?

      The reviewer is correct about how we did the PCA and have now included the description in the Methods. We will also do the pairwise correlations the way the reviewer suggests (a) by techniques, (b) by cell types (SNS-seq), (c) by year of publication (SNS-seq).

      It's not clear to me what new biology (genomic features) has been learned from this meta-analysis. All the major genomic features analyzed have already been found to be associated with origin sites. For example, the correspondence with TSS has been reported before:

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320713/

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547456/

      So what new biology has been discovered from this meta-analysis?

      The new biology can be summarized as: (a) We can identify a set of reproducible (in multiple datasets and in multiple cell lines) SNS-seq origins that also fall within initiation zones identified by completely independent methods. These may be the best origins to study in the midst of the noise created by stochastic origin firing. (b) The overlap of these True Positive origins with known ORC binding sites is tenuous. So either all the origin mapping data, or all the ORC binding data has to be discarded, or this is the new biological reality in mammalian cancer cells: on a genome-wide scale the most reproduced origins are not in close proximity to ORC binding sites, in contrast to the situation in yeast. (c) All the features that have been reported to define origins (CTCF binding sites, G quadruplexes etc.) could simply be from the fact that those features also define transcription start sites (TSS), and origins prefer to be near TSS because of the favorable chromatin state.

      Line 250: The most surprising finding is that there is little overlap between ORC/MCM binding sites and origin locations. The authors speculate that the overlap between ORC1 and ORC2 could be low because they come from different cell types. Equally concerning is the lack of overlap with MCM. If true, these are potentially major discoveries that butts heads with numerous other studies that have suggested otherwise. More needs to be done to convince the reader that such a mis-match is true. Some ideas are below:

      Idea 1) One explanation given is that the ORC1 and ORC2 data come from different cell types. But there must be a dataset where both are mapped in the same cell type. Can the authors check the overlap here? In Fig S4A, I would expect the circles to not only strongly overlap but to also be of roughly the same size, since both ORC's are required in the complex. So something seems off here.

      We agree with the reviewer that there is something “off here”. Either the techniques that report these sites are all wrong, or the biology does not fit into the prevailing hypothesis. One secret in the ORC ChIP field that our lab has struggled with for quite some time is that the various ORC subunits do not necessarily ChiP-seq to the same sites. The poor overlap between the binding sites of subunits of the same complex either suggests that the subunits do not always bind to the chromatin as a six-subunit complex or that all the ChIP-seq data in the Literature is suspect. We provide in the supplementary figure S4A examples of true positive complexes (SMARCA4/ARID1A, SMC1A/SMC3, EZH2/SUZ12), whose subunits ChIP-seq to a large fraction of common sites. As shown in Supplementary Fig. S4C, we do not have ORC1 and ORC2 ChIP-seq data from the same cell-type. We have ORC1 ChIP-seq and SNS-seq data from HeLa cells and ORC2 ChIP seq and origins from K562 cells, and so will add the proximity/overlap of the binding sites to the origins in the same cell-type in the revision.

      Idea 2) Another explanation given is that origins fire stochastically. One way to quantify the role of stochasticity is to quantify the overlap of origin locations performed by the same lab, in the same year, in the same experiment, in the same cell type -- i.e., across replicates -- and then compute the overlap of mapped origins. This would quantify how much mis-match is truly due to stochasticity, and how much may be due to other factors.

      A given lab may have superior reproducibility compared to the entire field. But the notion of stochasticity is well accepted in the field because of this observation: the average inter-origin distance measured by single molecule techniques like molecular combing is ~100 kb, but the average inter-origin distance measure on a population of cells (same cell line) is ~30 kb. The only explanation is that in a population of cells many origins can fire, but in a given cell on a given allele, only one-third of those possible origins fire. This is why we did not worry about the lack of reproducibility between cell-lines, labs etc, but instead focused on those SNS-seq origins that are reproducible over multiple techniques and cell lines.

      Idea 3) A third explanation is that MCMs are loaded further from origin sites in human than in yeast. Is there any evidence of this? How far away does the evidence suggest, and what if this distance is used to define proximity?

      MCMs, of course, have to be loaded at an origin at the time the origin fires because MCMs provide the core of the helicase that starts unwinding the DNA at the origin. Thus, the lack of proximity of MCM binding sites with origins can be because the most detected MCM sites (where MCM spends the most time in a cell-population) does not correspond to where it is first active to initiate origin firing. This has been discussed. MCMs may be loaded far from origin site, but because of their ability to move along the chromatin, they have to move to the origin-site at some point to fire the origin.

      Idea 4) How many individual datasets (i.e., those collected and published together) also demonstrate the feature that ORC/MCM binding locations do not correlate with origins? If there are few, then indeed, the integrative analysis performed here is consistent. But if there are many, then why would individual datasets reveal one thing, but integrative analysis reveal something else?

      We apologize for this oversight. In the revised manuscript we will discuss PMC3530669, PMC7993996, PMC5389698, PMC10366126. None of them have addressed what we are addressing, which is whether the small subset of the most reproducible origins proximal to ORC or MCM binding sites, but the discussion is essential.

      Idea 5) What if you were much more restrictive when defining "high-confidence" origins / binding sites. Does the overlap between origins and binding sites go up with increasing restriction?

      We will make origins more restrictive by selecting those reproduced by 30-60 datasets. The number of origins will of course fall, but we will measure whether the proximity to ORC or MCM-binding sites increases/decreases in a statistically rigorous way.

      Overall, I have the sense that these experimental techniques may be producing a lot of junk. If true, this would be useful for the field to know! But if not, and there are indeed "unexplored mechanisms of origin specification" that would be exciting. But I'm not convinced yet.

      It would be nice in the Discussion for the authors to comment about the trade-offs of different techniques; what are their pros and cons, which should be used when, which should be avoided altogether, and why? This would be a valuable prescription for the field.

      Thanks for the suggestion. We will do what the reviewer suggests: use cell type-specific data wherever origins have been defined by at least two methods in the same cell type, specifically reporting the percent of shared origins amongst the datasets to compare whether some methods correlate better with each other. ORC ChIP-seq and MCM ChIP-seq data do not define origins: they define the binding sites of these proteins. Thus we will discuss why the ChIP-seq sites of these protein complexes should not be used to define origins.

      Reviewer #3 (Public Review):

      Summary: The authors present a thought-provoking and comprehensive re-analysis of previously published human cell genomics data that seeks to understand the relationship between the sites where the Origin Recognition Complex (ORC) binds chromatin, where the replicative helicase (Mcm2-7) is situated on chromatin, and where DNA replication actually beings (origins). The view that these should coincide is influenced by studies in yeast where ORC binds site-specifically to dedicated nucleosome-free origins where Mcm2-7 can be loaded and remains stably positioned for subsequent replication initiation. However, this is most certainly not the case in metazoans where it has already been reported that chromatin bindings sites of ORC, Mcm2-7, and origins do not necessarily overlap, likely because ORC loads the helicase in transcriptionally active regions of the genome and, since Mcm2-7 retains linear mobility (i.e., it can slide), it is displaced from its original position by other chromatin-contextualized processes (for example, see Gros et al., 2015 Mol Cell, Powell et al., 2015 EMBO J, Miotto et al., 2016 PNAS, and Prioleau et al., 2016 G&D amongst others). This study reaches a very similar conclusion: in short, they find a high degree of discordance between ORC, Mcm2-7, and origin positions in human cells.

      Strengths: The strength of this work is its comprehensive and unbiased analysis of all relevant genomics datasets. To my knowledge, this is the first attempt to integrate these observations and the analyses employed were suited for the questions under consideration.

      Thank you for recognizing the comprehensive and unbiased nature of our analysis. The fact that the major weakness is that the comprehensive view fails to move the field forward, is actually a strength. It should be viewed in the light that we cannot even find evidence to support the primary hypothesis: that the most reproducible origins must be near ORC and MCM binding sites. This finding will prevent the unwise adoption of ORC or MCM binding sites as surrogate markers of origins and may perhaps stimulate the field to try and improve methods of identifying ORC or MCM binding until the binding sites are found to be proximal to the most reproducible origins. The last possibility is that there are ORC- or MCM-independent modes of defining origins, but we have no evidence of that.

      Weaknesses: The major weakness of this paper is that this comprehensive view failed to move the field forward from what was already known. Further, a substantial body of relevant prior genomics literature on the subject was neither cited nor discussed. This omission is important given that this group reaches very similar conclusions as studies published a number of years ago. Further, their study seems to present a unique opportunity to evaluate and shape our confidence in the different genomics techniques compared in this study. This, however, was also not discussed.

      We will do what the reviewer suggests: use cell type-specific data wherever origins have been defined by at least two methods in the same cell type, specifically reporting the percent of shared origins amongst the datasets to compare whether some methods correlate better with each other. Thanks for the suggestion. ORC ChIP-seq and MCM ChIP-seq data do not define origins: they define the binding sites of these proteins. Thus, we will discuss why the ChIP-seq sites of these protein complexes should not be used to define origins.

      We do not cite the SNS-seq data before 2018 because of the concerns discussed above about the earlier techniques needing improvement. We will discuss other genomics data that we failed to discuss.

      We will cite the papers the reviewer names:

      Gros, Mol Cell 2015 and Powell, EMBO J. 2015 discuss the movement of MCM2-7 away from ORC in yeast and fliesand will be cited. MCM2-7 binding to sites away from ORC and being loaded in vast excess of ORC was reported earlier on Xenopus chromatin in PMC193934, and will also be cited.

      Miotto, PNAS, 2016: publishes ORC2 ChIP-seq sites in HeLa (data we have used in our analysis), but do not measure ORC1 ChIP-seq sites. They say: “ORC1 and ORC2 recognize similar chromatin states and hence are likely to have similar binding profiles.” This is a conclusion based on the fact that the ChIP seq sites in the two studies are in areas with open chromatin, it is not a direct comparison of binding sites of the two proteins.

      Prioleau, G&D, 2016: This is a review that compared different techniques of origin identification but has no primary data to say that ORC and MCM binding sites overlap with the most reproducible origins.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This study investigates the context-specificity of facial expressions in three species of macaques to test predictions for the 'social complexity hypothesis for communicative complexity'. This hypothesis has garnered much attention in recent years. A proper test of this hypothesis requires clear definitions of 'communicative complexity' and 'social complexity'. Importantly, these two facets of a society must not be derived from the same data because otherwise, any link between the two would be trivial. For instance, if social complexity is derived from the types of interactions individuals have, and different types of signals accompany these interactions, we would not learn anything from a correlation between social and communicative complexity, as both stem from the same data.

      The authors of the present paper make a big step forward in operationalising communicative complexity. They used the Facial Action Coding System to code a large number of facial expressions in macaques. This system allows decomposing facial expressions into different action units, such as 'upper lid raiser', 'upper lip raiser' etc.; these units are closely linked to activating specific muscles or muscle groups. Based on these data, the authors calculated three measures derived from information theory: entropy, specificity and prediction error. These parts of the analysis will be useful for future studies.

      The three species of macaque varied in these three dimensions. In terms of entropy, there were differences with regard to context (and if there are these context-specific differences, then why pool the data?). Barbary and Tonkean macaques showed lower specificity than rhesus macaques. Regarding predicting context from the facial signals, a random forest classifier yielded the highest prediction values for rhesus monkeys. These results align with an earlier study by Preuschoft and van Schaik (2000), who found that less despotic species have greater variability in facial expressions and usage.

      Crucially, the three species under study are also known to vary in terms of their social tolerance. According to the highly influential framework proposed by Bernard Thierry, the members of the genus Macaca fall along a graded continuum from despotic (grade 1) to highly tolerant (grade 4). The three species chosen for the present study represent grade 1 (rhesus monkeys), grade 3 (Barbary macaques), and grade 4 (Tonkean macaques).

      The authors of the present paper define social complexity as equivalent to social tolerance - but how is social tolerance defined? Thierry used aggression and conflict resolution patterns to classify the different macaque species, with the steepness of the rank hierarchy and the degree of nepotism (kin bias) being essential. However, aggression and conflict resolution are accompanied by facial gestures. Thus, the authors are looking at two sides of the same coin when investigating the link between social complexity (as defined by the authors) and communicative complexity. Therefore, I am not convinced that this study makes a significant advance in testing the social complexity for communicative complexity hypothesis. A further weakness is that - despite the careful analysis - only three species were considered; thus, the effective sample size is very small.

      Social tolerance in macaques is defined by various covarying traits, among which rates of counter-aggression and conflict resolution are only two of many included (see Thierry 2021 for a recent discussion and review). We do not deviate from Thierry’s definition of social tolerance. We simply highlight that the constellation of behavioral traits in the most tolerant macaque species results in a social environment where the outcome of social interactions is more uncertain (see introduction lines 102-114). As we argue throughout the paper, higher uncertainty can be used as a proxy for higher complexity and thus we conclude that the most tolerant macaque species have the highest social complexity. While most social behavior in macaques is accompanied by some facial behavior, we were careful to define social contexts only from the body language/behavior (e.g., lunge for aggression, grooming for affiliation) of the individuals involved and ignored the facial behavior used (see method lines 371-381). Therefore, the facial behavior of macaques (communication signals) was not used in defining either social tolerance (and by extension complexity) or the social context in which it was used. We feel like this appropriately minimizes any elements of circularity in the analysis of social and communicative complexity.

      Regarding the effective sample size of three species, we agree that it is small, and it is a limitation of this study. However, the methodology we used is applicable to any species for which FACS is available (including other non-human primates, dogs, and horses), and therefore, we hope that other datasets will complement ours in the future. Nevertheless, we now acknowledge this limitation in the discussion (lines 314317).

      Reviewer #2 (Public Review):

      This is a well-written manuscript about a strong comparative study of diversity of facial movements in three macaque species to test arguments about social complexity influencing communicative complexity. My major criticism has to do with the lack of any reporting of inter-observer reliability statistics - see comment below. Reporting high levels of inter-observer reliability is crucial for making clear the authors have minimized chances of possible observer biases in a study like this, where it is not possible to code the data blind with regard to comparison group. My other comments and questions follow by line number:

      We agree that inter-observer coding reliability is an important piece of information. We now report in more detail the inter-observer reliability tests that we conducted on lines 384-392.

      38-40. Whereas I am an advocate of this hypothesis and have tested it myself, the authors should probably comment here, or later in the discussion, about the reverse argument - greater communicative complexity (driven by other selection pressures) could make more complicated social structures possible. This latter view was the one advocated by McComb & Semple in their foundational 2005 Biology Letters comparative study of relationships between vocal repertoire size and typical group size in non-human primate species.

      It is true that an increase in communicative complexity could allow/drive an increase in social complexity. Unfortunately our data is correlational in nature and we cannot determine the direction of causality. We added such a statement to the discussion (lines 311-314).

      72-84 and 95-96. In the paragraph here, the authors outline an argument about increasing uncertainty / entropy mapping on to increasing complexity in a system (social or communicative). In lines 95-96, though, they fall back on the standard argument about complex systems having intermediate levels of uncertainty (complete uncertainty roughly = random and complete certainty roughly = simple). Various authors have put forward what I think are useful ways of thinking about complexity in groups - from the perspective of an insider (i.e., a group member, where greater randomness is, in fact, greater complexity) vs from the perspective of an outside (i.e., a researcher trying to quantify the complexity of the system where is it relatively easy to explain a completely predictable or completely random system but harder to do so for an intermediately ordered or random system). This sort of argument (Andrew Whiten had an early paper that made this argument) might be worth raising here or later in the discussion? (I'm also curious where the authors sentiments lie for this question - they seem to touch on it in lines 285-287, but I think it's worth unpacking a little more here!)

      In this study we used three measures of uncertainty (entropy, context specificity, and prediction error) to approximate complexity. However, maximum entropy or uncertainty would be achieved in a system that is completely random (and thus be considered simple). Therefore, the species with the highest entropy values, or unpredictability, could be interpreted as having a simpler communication system than a species with a moderately high entropy/unpredictability value. Our argument is that animal communication systems cannot possibly be random, otherwise they would not have evolved as signals. In systems where we know the highest entropy (or unpredictability) will not be due to randomness, as is the case with animal social interactions and communication, we can conclude that the system with the highest uncertainty is the most complex. We have now expanded upon this point in the discussion (lines 286-294). See also response to reviewer 1 below.

      115-129. See also:

      Maestripieri, D. (2005). "Gestural communication in three species of macaques (Macaca mulatta, M. nemestrina, M. arctoides): use of signals in relation to dominance and social context." Gesture 5: 57-73.

      Maestripieri, D. and K. Wallen (1997). "Affiliative and submissive communication in rhesus macaques." Primates 38(2): 127-138.

      On that note, it is probably worth discussing in this paragraph and probably later in the discussion exactly how this study differs from these earlier studies of Maestripieri. I think the fact that machine learning approaches had the most difficulty assigning crested data to context is an important methodological advance for addressing these sorts of questions - there are probably other important differences between the authors' study here and these older publications that are worth bringing up.

      Our study differs from these two studies in that the studies above classified facial behavior into discrete categories (e.g., bared-teeth, lip-smack), whereas we adopted a bottom-up approach and made no a priori assumptions about which movements are relevant. We broke down facial behavior down to their individual muscle movements (i.e., Action Units). Measuring facial behavior at the level of individual muscle movements allows for a more detailed and objective description of the complexity of facial behavior. This is a general point in advancing the study of facial behavior that is discussed in the introduction (lines 60-71) and discussion (lines 206-208). The reason we don’t draw a direct comparison with the studies above is because they had a slightly different focus. Our study was more focused on complexity of the (facial) communication system in general rather than comparing whether the different species use the same facial behavior in the same/different social contexts.

      220-222. What is known about visual perception in these species? Recent arguments suggest that more socially complex species should have more sensitive perceptual processing abilities for other individuals' signals and cues (see Freeberg et al. 2019 Animal Behaviour). Are there any published empirical data to this effect, ideally from the visual domain but perhaps from any domain?

      This is an interesting point. We are not aware of any studies showing differences in visual perceptions within the macaque genus. Both crested macaques and rhesus macaques are able to discriminate between individuals and facial expressions in match-to-sample tasks with comparable performances (Micheletta et al., 2015a, 2015b; Parr et al. 2008; Parr & Heinz, 2009). Similarly, several macaque species are sensitive to gaze shifts from conspecifics (Tomasello et al. 1998; Teufel et al. 2010; Micheletta & Waller, 2012).

      274-277. I am not sure I follow this - could not different social and non-social contexts produce variation in different affective states such that "emotion"-based signals could be as flexible / uncertain as seemingly volitional / information-based / referential-like signals? This issue is probably too far away from the main points of this paper, but I suspect the authors' argument in this sentence is too simplified or overstated with regard to more affect-based signals.

      Emotion-based signals could, in theory, also produce flexible signals and it is possible that some facial expressions reflect an emotional state. However, some previous studies have suggested that facial expressions are only used as a display of emotion, rather than such signals having evolved for a different function such as announcing future intentions. In our study we found that macaques used, in some cases, the same facial expressions (i.e. combination of Action Units) in at least two different social contexts that, presumably, differed in their emotional valence. Thus, it is unlikely that particular facial expressions are bound to a single emotion. We think that this is an important point to make even though it is slightly beyond the scope of our paper.

      288 on. Given there are only three species in this study, the chances of one of the species being the 'most complex' in any measure is 0.33. Although I do not believe this argument I am making here, can the authors rule out the possibility that their findings related to crested macaques are all related to chance, statistically speaking?

      We are not aware of a way to rule out this possibility. However, we believe that we are appropriately cautious throughout the paper and acknowledge that having only investigated three species is a limitation of this study in the discussion (lines 314-317, see also our response to reviewer 1 above).

      329-330. The fact that only one male rhesus macaque was assessed here seems problematic, given the balance of sexes in the other two species. Can the authors comment more on this - are the gestures they are studying here identical across the sexes?

      We agree it would have been preferable to collect data on more than one male rhesus macaque, but that was unfortunately not possible. We are not aware of any studies showing differences in the use of facial behavior between male and female rhesus macaques. If differences exist, most likely these would occur in a sexual/mating context. However, in our study we only considered affiliative (non-sexual), submissive, and aggressive contexts, where we have no a priori reason to believe that there are sex differences.

      354-371. Inter-observer reliability statistics are required here - one of the authors who did not code the original data set, or a trained observer who is not an author, could easily code a subset of the video files to obtain inter-observer reliability data. This is important for ruling out potential unconscious observer biases in coding the data.

      We agree this is an important piece of information. We now report in more detail the inter-observer reliability tests that we conducted on lines 384-392:

      “An agreement rating of >0.7 was considered good [Ekman et al 2002] and was necessary for obtaining certification. To obtain a MaqFACS coding certification, AVR, CP, and PRC coded 23 video clips of rhesus macaques and the MaqFACS codes were compared to the data of other certified coders (https://animalfacs.com).

      The mean agreement ratings obtained were 0.85, 0.73, 0.83 for AVR, CP, and PRC, respectively. In addition, AVR and CP coded 7 videos of Barbary macaques with a mean agreement rating of 0.79. AVR and PRC coded 10 videos of crested macaques with a mean agreement rating of 0.74.”

      Reviewer #1 (Recommendations For The Authors):

      Given the long debate on the concept of information exchange in animal communication, I would also recommend being more careful with the term 'exchanges of information' (line 271). Perhaps it's better to be agnostic in the context of this paper.

      As suggested, we now changed the phrasing to focus on the behavior of the animals, rather than suggesting that information is being exchanged (lines 270-273),

      Line 281: "This result confirms the assumption that facial behaviour in macaques is not used randomly": the authors are knocking down a straw man. Nobody who has ever studied animal communication would consider that signals occur randomly. Otherwise, they would not have evolved as signals.

      Indeed, nobody claims that animal communication signals are used randomly. Although it may be taken for granted, we feel it is worthwhile to reiterate this point, given that we used relative entropy and prediction error as measures of complexity. For instance, maximum entropy or unpredictability would be achieved in a system that is completely random (and thus be considered simple). Therefore, the species with the highest entropy values, or lowest predictability, could be interpreted as having a simpler communication system than a species with a moderately high entropy value. But if we are working under the assumption that animal communication systems cannot possibly be random, then we can conclude that the species whose communication system has the highest entropy is in fact the most complex. We tried to make this justification clearer in the discussion (lines 285-294).

      I did not follow why there is a higher reliance on facial signals when predation pressure is higher. Apart from the fact that the authors cannot address this question, they may want to reconsider this idea altogether.

      We now expand on the logic of why predation pressure might affect the use of facial signals (see lines 308-309): “When predation pressure is higher, reliance on facial signals could be higher than, for example vocal signals, such as to not draw attention of predators to the signaller.”

      Technical comments:

      One methodological issue that requires clarification is what the units of analysis are. The authors write that each row in their analysis denoted an observation time of 500 ms. How many rows did the authors assemble? The authors mention a sample size of > 3000 social interactions in the abstract. How did they define social interactions? And how many 'time windows' of 500 ms were obtained? Did they take one window per interaction or several? If several, then how was this move accounted for in the analysis? The reporting needs to be more accurate here. Most likely, the bootstrapping took care of biases in the data, but still, this information needs to be provided.

      We have now added some additional information to the method section. Social interactions for each context had the following definitions: “Social context was labeled from the point of view of the signaler based on their general behavior and body language (but not the facial behavior itself), during or immediately following the facial behavior. An aggressive context was considered when the signaler lunged or leaned forward with the body or head, charged, chased, or physically hit the interaction partner. A submissive context was considered when the signaler leaned back with the body or head, moved away, or fled from the interaction partner. An affiliative context was considered when the signaler approached another individual without aggression (as defined previously) and remained in proximity, in relaxed body contact, or groomed either during or immediately after the facial behavior. In cases where the behavior of the signaler did not match our context definitions, or displayed behaviors belonging to multiple contexts, we labeled the social context as unclear. Social context was determined from the video itself and/or from the matching focal behavioral data, if available.” (lines 371-382). The total duration of all social interactions per social context, and thus the number of 500ms windows/rows, have been added to Table 1 (lines 395-397). There were several 500ms windows per social interaction. All 500ms time blocks per interaction were used in the statistical analyses in order to retain all the variation and complexity of the facial behavior (Action Unit combinations) used by the macaques (lines 403-405). Indeed the bootstrapping procedure was used to account for any biases in the data.

      Overall, I would recommend providing more information on the actual behaviour of the animals. The paper is strong in handling highly derived indices representing the behaviour, but the reader learns little about the animals' behaviour. Thus, it would be great if statements about the entropy ratio were translated into what these measures represent in real life. For context specificity, this is clear, but for entropy, not so much.

      A high entropy ratio essentially suggests that a species uses a high variety of unique facial behavior/signals and all signals in the repertoire are used roughly equally often (rather than one facial behavior being used 90% of the time and others rarely used). We have tried our best to better explain this point in the introduction (lines 75-81) and discussion (lines 215-222). Discussing exactly what these signals are and what they mean was beyond the scope of this paper.

      Line 106: nepotism, not kinship

      Changed as suggested (line 106).

      Line 113: I would avoid statements about how a monkey society is perceived by its members.

      We think that noting how individuals may perceive their social environment is worthwhile when defining social complexity, so have retained this point but changed the phrasing to be more speculative (lines 112-113).

      Line 329: I was very surprised that only one male was represented in the data for rhesus monkeys. The authors try to wriggle their way out of this issue in the supplementary material ("Therefore, we have no a priori reason to expect an overall difference in the diversity and complexity of facial behaviour between the sexes"), but I think this is a major shortcoming of the analysis. They should ascertain whether there are no sex differences in the other two species regarding their variables of interest. They could then make a very cautious case for there being no sex differences in rhesus either. But of course, they would not know for sure.

      As with our response to reviewer 2 above, we agree that it would have been preferable to collect data on more than one male rhesus macaque, but that was unfortunately not possible. We are not aware of any studies showing differences in the use of facial behavior between male and female rhesus macaques. If differences exist, most likely these would occur in a sexual/mating context. However, in our study we only considered affiliative (non-sexual), submissive, and aggressive contexts, where we have no a priori reason to believe that there are sex differences. Looking at sex differences in the use of facial behavior would be a worthwhile study on its own, but it is outside the scope of this paper.

      This paper would make a stronger contribution if it focussed on the comparative analysis of facial expressions and removed the attempt of testing the social complexity for communicative complexity hypothesis.

      A comparative analysis of the contextual use of specific facial movements is important. But this paper is focused on making a more general comparison of the communication style and complexity across species. The social complexity hypothesis for communicative complexity is one of the key theoretical frameworks for such an investigation and allows us to frame our study in a broader context. We contribute important data on 3 species with methods that can be replicated and extended to others species. Therefore, we believe that it is a worthy contribution to investigations of the evolution of complex communication.

      REFERENCES

      Micheletta, J., J. Whitehouse, L.A. Parr, and B.M. Waller. ‘Facial Expression Recognition in Crested Macaques (Macaca nigra)’. Animal Cognition 18 (2015): 985–90. https://doi.org/10/f7fvnh.

      Micheletta, Jérôme, Jamie Whitehouse, Lisa A. Parr, Paul Marshman, Antje Engelhardt, and Bridget M. Waller. ‘Familiar and Unfamiliar Face Recognition in Crested Macaques (Macaca nigra)’. Royal Society Open Science 2 (2015): 150109. https://doi.org/10/ggx9k9.

      Parr, L. A., and M. Heintz. ‘Facial Expression Recognition in Rhesus Monkeys, Macaca mulatta’. Animal Behaviour 77 (2009): 1507–13. https://doi.org/10/bbsp5n.

      Parr, L.A., M. Heintz, and G. Pradhan. ‘Rhesus Monkeys (Macaca mulatta) Lack Expertise in Face Processing’. Journal of Comparative Psychology 122 (2008): 390–402. https://doi.org/10/d7w6bv.

      Micheletta, J., and B.M. Waller. ‘Friendship Affects Gaze Following in a Tolerant Species of Macaque, Macaca nigra’. Animal Behaviour 83 (2012): 459–67. https://doi.org/10/c4f8n2.

      Thierry B. Where do we stand with the covariation framework in primate societies? Am. J. Biol. Anthropol. 128 (2021): 5–25. https://doi.org/10.1002/ajpa.24441

      Tomasello, M., J. Call, and B. Hare. ‘Five Primate Species Follow the Visual Gaze of Conspecifics’. Animal Behaviour 55 (1998): 1063–69. https://doi.org/10/bmq7xh.

      Teufel, C., A. Gutmann, R. Pirow, and J. Fischer. ‘Facial Expressions Modulate the Ontogenetic Trajectory of Gaze-Following among Monkeys’. Developmental Science 13 (2010): 913–22. https://doi.org/10/b6j5r7.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful for the helpful comments of both reviewers and have revised our manuscript with them in mind.

      One of the main issues raised was that readers may by default assume that our models are correct. We in fact made it very clear in our discussion that the models are merely hypotheses that will need testing by “wet” experiments and we do not therefore agree that even readers unfamiliar with AF would assume that the models must be correct. It was also suggested that readers could be reassured by including extensive confidence estimates such as PAE plots. As it happens, every single model described in the manuscript had reasonably high PAE scores and more crucially the entire collection of output files, including PAE data, are readily accessible on Figshare at https://doi.org/10.6084/m9.figshare.22567318.v2, a fact that the reviewers appear to have overlooked. The Figshare link is mentioned three times in the manuscript. Embedding these data within the manuscript itself would in our view add even more details and we have therefore not included them in our revised manuscript. Likewise, it is rather simple for any reader to work out which part of a PAE matrix corresponds to an interaction observed in the corresponding pdb prediction. Besides which, it is our view that the biological plausibility and explanatory power of models is just as important as AF metrics in judging whether they may be correct, as is indeed also the case for most experimental work.

      Another important point was that the manuscript was too long and not readable. Yes, it is long and it could well be argued that we could have written a different type of manuscript, focusing entirely on what is possibly the simplest and most important finding, namely that our AF models suggest that in animal cells Wapl appears to form a quarternary complex with SA, Pds5, and Scc1 in a manner suggesting that a key function of Wapl’s conserved CTD is to sequester Scc1’s Nterminal domain after it has dissociated from Smc3. For right or for wrong, we decided that this story could not be presented on its own but also required 1) an explanation for how Scc1 is induced to dissociate from Smc3 in the first place and 2) how to explain that the quarternary complex predicted for animal cells was not initially predicted for fungi such as yeast. The yeast situation was an exception that clearly needed explaining if the theory was to have any generality and it turned out that delving into the intricate details of the genetics of releasing activity in yeast was eventually required and yielded valuable new insights. We also believe that our work on the recruitment of Eco/Esco acetyl transferases to cohesin and the finding that sororin binds to the Smc3/Scc1 interface also provided important insight into how releasing activity is regulated. We acknowledge that the paper is indeed long but do not think that it is badly written. It is above all a long and complex story that in our view reveals numerous novel insights into how cohesin’s association with chromosomes is regulated and have endeavoured to eliminate any excessive speculation. We feel it is not our fault that cohesin uses complex mechanisms.

      Notwithstanding these considerations, we have in fact simplified a few sections and removed one or two others but acknowledge that we have not made substantial cuts.

      It was pointed out that a key feature of our modelling, namely the predicted association of Wapl’s C-terminal domain with SA/Scc3’s CES is inconsistent with published biochemical data. The AF predictions for this interface are universally robust in all eukaryotic lineages and crucially fully consistent with published and unimpeachable genetic data. We note that any model that explains all findings is bound to be wrong for the very simple reason that some of these findings will prove to be incorrect. There is therefore an art in Science of judging which data must be explained and accommodated and which should be ignored. In this particular case, we chose to ignore the biochemistry. Time will tell whether our judgement proves correct.

      Last but not least, it was suggested that we might provide some experimental support for our proposed SA/Scc3-Pds5-Scc1-WaplC quaternary complex. We are in fact working on this by introducing cysteine pairs (that can be crosslinked in cells) into the proposed interfaces but decided that such studies should be the topic of a subsequent publication. It would be impossible with the resources available to our labs to follow up all of the potential interactions and we therefore decided to exclude all such experiments.

      We are grateful for the detailed comments provided by both reviewers, many of which were very helpful, and in many but not all cases have amended the manuscript accordingly.

      With regard to the more specific comments:

      Reviewer #1 (Recommendations For The Authors):

      1) One concern is that observed interfaces/complexes arise because AF-multimer will aim to pack exposed, conserved and hydrophobic surfaces or regions that contain charge complementarity. The risk is that pairwise interaction screens can result in false positive & non-physiological interactions. It is therefore important to report the level of model confidence obtained for such AF calculations:

      A) The authors should color the key models according to pLDDT scores obtained as reported by AF. This would allow the reader to judge the estimated accuracy of the backbone and side chain rotamers obtained. At least for the key models and interactions it would be important to know if the pLDDT score is >90 (Correct backbone and most rotamers) or >70 (only backbone is correct).

      B) It would also be important to report the PAE plots to allow estimation of the expected position error for most of the important interactions. pLDDT coloring and PEA plots can be shown side-by-side as shown in other published data (e.g. https://pubmed.ncbi.nlm.nih.gov/35679397/ (Supplementary data)

      C) The authors should include a Table showing the confidence of template modeling scores for the predicted protein interfaces as ipTM, ipTM+pTM as reported by AlphaFold-multimer. Ideally, they would also include DockQ scores but this may not be essential. Addition of such scores would help classification into Incorrect, Acceptable or of high quality. For example, line 1073 et seq the authors show a model of a SCC1SA and ESCO1 complex (Fig. 37). Are the modeling scores for these interfaces high? It does not help that the authors show cartoons without side chains? Can the authors provide a close-up view of the two interfaces? Are the amino acids are indeed packed in a manner expected for a protein interface? Can we exclude the possibility that the prediction is obtained merely because the sequence segments (e.g. in ESCO1 & ESCO2) are hydrophobic and conserved?

      We do not agree that including this level of detail to the text/figures of the manuscript would be suitable. All the relevant data for those who may be sceptical about the models are readily available at https://doi.org/10.6084/m9.figshare.22567318.v2. In our view, the cartoon versions of the models are easier for a reader to navigate. Anyone interested in the molecular details can look at the models directly.

      Importantly, no amount of statistical analysis can completely validate these models. What is required are further experiments, which will be the topic of further work from our and I dare from other laboratories.

      D) When they predict an interaction between the SA2:SCC1 complex and Sororin's FGF motif, they find that only 1/5 models show an interaction and that the interaction is dissimilar to that seen of CTCF. Again, it would be helpful to know about modeling scores. Can they show a close-up view of the SORORIN FGF binding interface to see if a realistic binding mode is obtained? Can they indicate the relevant region on the PAE plot?

      Given that AF greatly favours other interactions of Sororin’s FGF motif over its interaction with SA2-Scc1, we do not agree that dwelling on the latter would serve any purpose.

      2) Line 996: AF predicts with high confidence an interaction between Eco1 & SMC3hd. What are the ipTM (& DockQ if available) scores. Would the interface score High, Medium or Acceptable?

      As mentioned, see https://doi.org/10.6084/m9.figshare.22567318.v2.

      3) Line 1034 et seq: Eco1/ESCO1/ESCO2 interaction with PDS5. Interface scores need to be shown to determine that the models shown are indeed likely to occur. If these interactions have low model confidence, Fig. 36 and discussion around potential relevance to PDS5-Eco1 orientation relative to the SMC3 head remains highly speculative and could be expunged.

      See https://doi.org/10.6084/m9.figshare.22567318.v2. It should be clear that the predictions are very similar in fungi and animals. Crucially, we know that Pds5 is essential for acetylation in vivo, so the models appear plausible from a biological point of view.

      4) Considering the relatively large interface between ECO1 and SMC3, would the author consider the possibility that in addition to acetylating SMC3's ATPase domain, ECO1 remains bound to cohesin-DNA complex, as proposed for ESCO1 by Rahman et al (10.1073/pnas.1505323112)?

      This is certainly possible but we would not want to indulge in such speculation.

      5) E.g. Line 875 but also throughout the text: As there is no labeling of the N- and C-termini in the Figures, is frequently unclear what the authors are referring to when they mention that AF models orient chains in a certain manner.

      Good point. This has been amended. However, the positions of N- and C- is all available at https://doi.org/10.6084/m9.figshare.22567318.v2.

      6) Fig19B: PAE plots: authors should indicate which chains correspond to A, B, C. Which segment corresponds to the TYxxxR[T/S]L motif? Can they highlight this section on the PAE plot?

      Good point and amended in the revised manuscript.

      Minor comments:

      1) Line 440: the WAPL YSR motif is not shown in Fig. 14A

      2) Line 691: Scc3 spelling error.

      3) Line 931: Sentence ending '... SCC3 (SCC3N).' requires citation.

      4) Line 1008: Figure reference seems wrong. It should read: Fig. 34A left and right. Fig. 34B does not contain SCC1.

      Many thanks for spotting these. Hopefully, all corrected.

      5) Fig. 41 can be removed as it shows the absence of the interaction of Sororin with SMC1:SCC1. Sufficient to mention in the text that Sororin does not appear to interact with SMC1:SCC1.

      This is possible but we decided to leave this as is.

      Reviewer #2 (Recommendations For The Authors):

      Minor points

      (1) Are there any predicted models in which one of the two dimer interfaces of the hinge is open when the coiled coils are folded back, as seen in the cryo-EM structure of human cohesin-NIPBL complex in the clamped state?

      No AF runs ever predicted half opened hinges. It is possible that the introduction of mutations in one of the two interfaces might reveal a half-opened state and we ought to try this. However, it would not be appropriate for this manuscript, we believe.

      (2) Structures of the SA-Scc1 CES bound to [Y/F]xF motifs from Sgo1 and CTCF have been reported, suggesting that a similar motif could interact with SA/Scc3. Surprisingly, AF did not predict an interaction between Scc3/SA and Wapl FGF motifs, which only bind to the Pds5 WEST region. On the other hand, AF predicted interactions of the Sororin FGF motif with both Pds5 WEST and SA CES. Can the authors comment on this Wapl FGF binding specificity? What will happen if a Wapl fragment lacking the CTD is used in the prediction?

      This seems to be an academic point as the CTD is always present.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      1) The authors need to validate that RAP1-HA still retains its essential function. As indicated above, if RAP1-HA still retains its essential functions, cells carrying one RAP1-HA allele and one deleted allele are expected to grow the same as WT cells. These cells should also have the WT VSG expression pattern, and RAP1-HA should still interact with TRF.

      We demonstrated that C-terminally HA-tagged RAP1 co-localizes with telomeres by a combination of immunofluorescence and fluorescence in situ hybridization (Cestari and Stuart, 2015, PNAS), and co-immunoprecipitate telomeric and 70 bp repeats (Cestari et al. 2019 Mol Cell Biol). We also showed by immunoprecipitation and mass spectrometry that HA-tagged RAP1 interacts with nuclear and telomeric proteins, including PIP5Pase (Cestari et al. 2019). Others have also tagged T. brucei RAP1 with HA without disrupting its nuclear localization (Yang et al. 2009, Cell), all of which indicate that the HA-tag does not affect protein function. As for the suggested experiment, there is no guarantee that cells lacking one allele of RAP1 will behave as wildtype, i.e., normal growth and repression of VSGs genes. Also, less than 90% of T. brucei TRF was reported to interact with RAP1 (Yang et al. 2009, Cell), which might be indirect via their binding to telomeric repeats rather than direct protein-protein interactions.

      2) The authors need to remove the His6 tag from the recombinant RAP1 fragments before the EMSA analysis. This is essential to avoid any artifacts generated by the His6-tagged proteins.

      Our controls show that the His-tag is not interfering with RAP1-DNA binding. We show in Fig 3CG by EMSA and in Fig S5 by EMSA and microscale thermophoresis that His-tagged full-length rRAP1 does not bind to scrambled telomeric dsDNA sequences, which demonstrates that His-tagged rRAP1 does not bind unspecifically to DNA. Moreover, in Fig 3G and Fig S5, we show that His-tagged rRAP11-300 also does not bind to 70 bp or telomeric repeats. In contrast, the full-length His-tagged rRAP1, rRAP1301-560, or rRAP1561-855 bind to 70 bp or telomeric repeats (Fig 3C-G). Since all proteins were His-tagged, the His tag cannot be responsible for the DNA binding. We have worked with many different His-tagged proteins for nucleic acid binding and enzymatic assays without any interference from the tag (Cestari and Stuart, 2013; JBC; Cestari et al; 2013, Mol Cell Biol; Cestari and Stuart, 2015, PNAS; Cestari et al. 2016; Cell Chem Biol; Cestari et al. 2019 Mol Biol Cell).

      3) More details need to be provided for ChIPseq and RNAseq analysis regarding the read numbers per sample, mapping quality, etc.

      Table S3 includes information on sequencing throughput and read length. Mapping quality was included in the Methods section “Computational analysis of RNA-seq and ChIP-seq”, starting at line 499. In summary, we filtered reads to keep primary alignment (eliminate supplementary and secondary alignments). We also analyzed ChIP-seq with MAPQ ≥20 (99% probability of correct alignment) to distinguish RAP1 binding to specific ESs, including silent vs active ES (ChIP-seq). We included Fig S4 to show the effect of filtering alignments on the active vs silent ESs. We used MAPQ ≥30 to analyze RNA-seq mapping to VSG genes, including those in subtelomeric regions. Our scripts are available at https://github.com/cestari-lab/lab_scripts. We also included in the Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”

      4) The authors should revise the Discussion section to clearly state the authors' speculations and their working models (the latter of which need solid supporting evidence). Specifically, statements in lines 218 - 219 and lines 224-226 need to be revised.

      The statement “likely due to RAP1 conformational changes” in line 228 discusses how binding of PI(3,4,5)3 could affect RAP1 Myb and MybL domains binding to DNA. We did not make a strong statement but discussed a possibility. We believe that it is beneficial to the reader to have the data discussed, and we do not feel this point is overly speculative. For lines 224-226 (now 234-235), the statement refers to the finding of RAP1 binding to centromeric regions by ChIP-seq, which is a new finding but not the focus of this work. To make it clear that it does not refer to telomeric ESs, we edited: “The finding of RAP1 binding to subtelomeric regions other than ESs, including centromeres, requires further validation.” Since RAP1 binding to centromeres is not the focus of the work, future studies are necessary to follow up, and we believe it is appropriate in the Discussion to be upfront and highlight this point to the readers.

      Our model is based on the data presented here but also on scientific literature. We have reviewed the Discussion to prevent broad speculations. When discussing a model, we stated (line 245): “The scenario suggests a model in which …”, to state that this is a working model. Similarly, in Results (line 201) we included: “Our data suggest a model in which…”.

      5) The authors should revise the title to reflect a more reasonable conclusion of the study.

      We agree that the title should be changed to imply a direct role of PI(3,4,5)P3 regulation of RAP1, which is not captured in the original title. This will provide more specific information to the readers, especially those broadly interested in telomeric gene regulation and RAP1. The new title is: PI(3,4,5)P3 allosteric regulation of repressor activator protein 1 controls antigenic variation in trypanosomes

      6) The authors are recommended to provide an estimation of the expression level of the V5-tagged PIP5pase from the tubulin array in reference to the endogenous protein level.

      The relative mRNA levels of the exclusive expression of PIP5Pase mutant compared to the wildtype is available in the Data S1, RNA-seq. The Mut PIP5Pase allele’s relative expression level is 0.85fold to the WT allele (both from tubulin loci). We also showed by Western blot the WT and Mut PIP5Pase protein expression (Cestari et al. 2019, Mol Cell Biol). Concerning PIP5Pase endogenous alleles, we compared normalized RNA-seq counts per million from the conditional null PIP5Pase cells exclusively expressing WT or the Mut PIP5Pase alleles (Data S1, this work) to our previous RNA-seq of single-marker 427 strain (Cestari et al. 2019, Mol Cell Biol). We used the single-maker 427 because the conditional null cells were generated in this strain background. The PIP5Pase WT and Mut mRNAs expressed from tubulin loci are 1.6 and 1.3-fold the endogenous PIP5Pase levels in single-marker 427, respectively. We included a statement in the Methods, lines 275-278: “The WT or Mut PIP5Pase mRNAs exclusively expressed from tubulin loci are 1.6 and 1.3-fold the WT PIP5Pase mRNA levels expressed from endogenous alleles in the single marker 427 strain. The fold-changes were calculated from RNA-seq counts per million from this work (WT and Mut PIP5Pase, Data S1) and our previous RNA-seq from single marker 427 strain (24).”

      7) The authors are recommended to provide more detailed EMSA conditions such as protein and substrate concentrations. Better quality EMSA gels are preferred.

      All concentrations were already provided in the Methods section. See line 356, in topic Electrophoretic mobility shift assays: “100 nM of annealed DNA were mixed with 1 μg of recombinant protein…”. For microscale thermophoresis, also see lines 375-376 in topic Microscale thermophoresis binding kinetics: “1 μM rRAP1 was diluted in 16 two-fold serial dilutions in 250 mM HEPES pH 7.4, 25 mM MgCl2, 500 mM NaCl, and 0.25% (v/v) N P-40 and incubated with 20 nM telomeric or 70 bp repeats…”. Note that two different biochemical approaches, EMSA and microscale thermophoresis, were used to assess rRAP1-His binding to DNA. Both show agreeable results (Fig 3 and 5, and Fig S5. Microscale thermophoresis shows the binding kinetics, data available in Table 1). The EMSA images clearly show the binding of RAP1 to 70 bp or telomeric repeats but not to scramble telomeric repeat DNA.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      Figures

      All figures should have their axes properly labeled and units should be indicated. For many of the ChIPseq datasets it is not clear whether the authors show a fold enrichment or RPM and whether they used all reads or only uniquely mapping reads. Especially the latter is a very important piece of information when analyzing expression sites and should always be reported. The authors write, that all RNA-seq and ChIP-seq experiments were performed in triplicate. What is shown in the figures, one of the replicates? Or the average?

      ChIP-seq is shown as fold enrichment; we clarified this in the figures by including in the y-axis RAP1-HA ChIP/Input (log 2). We included in figure legends, see line 710: “Data show fold-change comparing ChIP vs Input.”. For quantitative graphs (Fig 2B, D, and E, and Fig 5F and G), data are shown as the mean of biological replicates. Graphs generated in the integrated genome viewer (IGV, qualitative graphs) is a representative data (Fig 2A, C, and F, and Fig 5D-E). All statistical analyses were calculated from the three biological replicates. Uniquely mapped reads were used. We also included ChIP-seq analysis with MAPQ ≥10 and 20 (90% and 99% probability of correct alignment, respectively) to distinguish RAP1 binding to ESs. Fig S4 shows the various mapping stringency and demonstrates the enrichment of RAP1-HA to silent vs active ES.

      Figure 1 is very important for the main argument of the manuscript, but very difficult (impossible for me) to fully understand. It would be great if the author could make an effort to clarify the figure and improve the labels. Panel Fig 1E. Here it is impossible to read the names of the genes that are activated and therefore it is impossible to verify the statements made about the activation of VSGs and the switching.

      We have edited Fig 1E to include the most abundant VSGs, which decreased the amount of information in the graph and increased the label font. We also re-labeled each VSG with chromosome or ES name and common VSG name when known (e.g., VSG2). We included Table S1 in the supplementary information with the data used to generate Fig 1E. In Table S1, the reader will be able to check the VSG gene IDs and evaluate the data in detail. We included in the legend, line 700: “See Table S1 for data and gene IDs of VSGs.”

      Figure 1F: This panel is important and should be shown in more detail as it distinguishes VSG switching from a general VSG de-repression phenotype. VSG-seq is performed in a clonal manner here after PIP5Pase KD and re-expression. To show that proper switching has occurred place in the different clones, instead of a persistent VSG de-repression, the expression level of more VSGs should be shown (e.g. as in panel E) to show that there is really only one VSG detected per clone. For example, it is not clear what the authors 'called' the dominant VSG gene.

      We showed in supplementary information Fig S1 B-C examples of reads mapping to the VSGs. Now we included a graph (Fig S1 D) that quantifies reads mapped to the VSG selected as expressed compared to other VSG genes considered not expressed). The data show an average of several clones analyzed. Other VSGs (not selected) are at the noise level (about 4 normalized counts) compared to >250 normalized counts to the selected as expressed VSGs.

      As mentioned in the public comments, I don't see how the data from Fig 1E and 1F fit together. Based on Fig 1E VSG2 is the dominant VSG, based on Fig 1F VSG2 is almost never the dominant VSG, but the VSG from BES 12.

      In Fig 1E, the VSG2 predominates in cells expressing WT PIP5Pase, however, in cells expressing Mut PIP5Pase, this is not the case anymore. Many other VSGs are detected, and other VSG mRNAs are more abundant than VSG2 (see color intensity in the heat map). The Mut cells may also have remaining VSG2 mRNAs (from before switching) rather than continuous VSG2 expression. This is the reason we performed the clonal analysis shown in Fig 1F, to be certain about the switching. While Fig 1F shows potential switchers in the population, Fig 1E confirms VSG switching in clones.

      Many potential switchers were detected in the VSG-seq (Fig 1F, the whole cell population is over 107 parasites), but not all potential switchers were detected in the clonal analysis because we analyzed 212 clones total, a fraction of the over 107 cells analyzed by VSG-seq (Fig 1E). Also, it is possible that not all potential switchers are viable. A preference for switching to specific ESs has been observed in T. brucei (Morrison et al. 2005, Int J Parasitol; Cestari and Stuart, 2015, PNAS), which may explain several clones switching to BES12.

      Note that in Fig 1F, tet + cells did not switch VSGs at all; all 118 clones expressed VSG2. We relabeled Fig 1F for clarity and included the VSG names. We added gene IDs in the Figure legends, see line 702 “ BES1_VSG2 (Tb427_000016000), BES12_VSG (Tb427_000008000)…”

      Statements in Introduction / Discussion

      The statement in lines 82/83 is very strong and gives the impression that the PIP5Pase-Rap1 circuit has been proven to regulate antigenic variation in the host. However, I don't think this is the case. The paper shows that the pathway can indeed turn expression sites on and off, but there is no evidence (yet) that this is what happens in the host and regulates antigenic variation during infection. The same goes for lines 214/215 in the discussion.

      We agree with the reviewer, and we edited these statements. The statement lines 82-83: “The data provide a molecular mechanism…” to “The data indicates a molecular mechanism…” For lines 224225: “and provides a mechanism to control…” to “and indicates a mechanism to control…”. We also included in lines 261-262: “It is unknown if a signaling system regulates antigenic variation in vivo.” Also edited lines 262-263: “…the data indicate that trypanosomes may have evolved a sophisticated mechanism to regulate antigenic variation...”.

      New vs old data

      In general, for Figures 1 - 4, it was a bit difficult to understand which panels showed new findings, and which panels confirmed previous findings (see below for specific examples). In the text and in the figure design, the new results should be clearly highlighted. Authors: All data presented is new, detailed below.

      Figure 1: A similar RNA-seq after PIP5Pase deletion was performed in citation 24. Perhaps the focus of this figure should be more on the (clone-specific) VSG-seq experiment after PIP5Pase re-introduction.

      This is the first time we show RNA-seq of T. brucei expressing catalytic inactive PIP5Pase, which establishes that the regulation of VSG expression and switching, and repression of subtelomeric regions, is dependent on PIP5Pase enzyme catalysis, i.e., PI(3,4,5)P3 dephosphorylation. Hence, the relevance and difference of the RNA-seq here vs the previous RNA-seq of PIP5Pase knockdown.

      Figure 2: A similar ChIP-seq of RAP1 was performed in citation 24, with and without PIP5Pase deletion. Could new findings be highlighted more clearly?

      Our and others’ previous work showed ChIP-qPCR, which analyses specific loci. Here we performed ChIP-seq, which shows genome-wide binding sites of RAP1, and new findings are shown here, including binding sites in the BES, MESs, and other genome loci such as centromeres. We also identified DNA sequence bias defining RAP1 binding sites (Fig 2A). We also show by ChIP-seq how RAP1-binding to these loci changes upon expression of catalytic inactive PIP5Pase. To improve clarity in the manuscript, we edited lines 129-130: “We showed that RAP1 binds telomeric or 70 bp repeats (24), but it is unknown if it binds to other ES sequences or genomic loci.”

      Figure 4: Binding of Rap1 to PI(3,4,5)P3, but not to other similar molecules, was previously shown in citation 24. Could new findings be highlighted more clearly?

      We published in reference 24 (Cestari et al. Mol Cell Biol) that RAP1-HA can bind agarose beadsconjugated synthetic PI(3,4,5)P3. Here, we were able to measure T. brucei endogenous PI(3,4,5)P3 associated with RAP1-HA (Fig 4F). Moreover, we showed that the endogenous RAP1-HA and PI(3,4,5)P3 binding is about 100-fold higher when PIP5Pase is catalytic inactive than WT PIP5Pase. The data establish that in vivo endogenous PI(3,4,5)P3 binds to RAP1-HA and how the binding changes in cells expressing mutant PIP5Pase; this data is new and relevant to our conclusions. To clarify, we edited the manuscript in lines 180-182: “To determine if RAP1 binds to PI(3,4,5)P3 in vivo, we in-situ HA-tagged RAP1 in cells that express the WT or Mut PIP5Pase and analyzed endogenous PI(3,4,5)P3 levels associated with immunoprecipitated RAP1-HA”.

      Sequencing.<br /> I really appreciate the amount of detail the authors provide in the methods section. The authors do an excellent job of describing how different experiments were performed. However, it would be important that the authors also provide the basic statistics on the sequencing data. How many sequencing reads were generated per run (each replicate of the ChIP-seq and RNA-seq assays)? How long were the reads? How many reads could be aligned?

      The sequencing metrics for RNA-seq and ChIP-seq for all biological replicates were included in Table S3 (supplementary information). The details of the analysis and sequencing quality were described in the Methods section “Computational analysis of RNA-seq and ChIP-seq”. To be clearer about the analysis, we also included in Methods, lines 522-524: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestari-lab/VSG-Bar-seq.”.

      Minor comments:

      Figure 1B: I would recommend highlighting the non-ES VSGs and housekeeping genes with two more colors in the volcano plot, to show that it is mostly the antigen repertoire that is deregulated, and not the Pol ll transcribed housekeeping genes. This is not entirely clear from the panel as it is right now.

      The suggestion was incorporated in Fig 1B. We color-coded the figure to include BES VSGs, MES VSGs, ESAGs, subtelomeric genes, core genes (typically Pol II and Pol III transcribed genes), and Unitig genes, those genes not assembled in the 427-2018 reference genome.

      Were the reads in Figure 2a filtered in the same way as those in Figure 2C? To support the statements, only unique reads should be used.

      Yes, we also added Fig S4 to make more clear the comparison between read mapping to silent vs active ES.

      It would be good if the authors could add a supplementary figure showing the RAP1 ChIP-seq (WT and cells lacking a functional PIP5Pase) for all silent expression sites.

      We had RAP1 ChIP-seq from cells expressing WT PIP5Pase already. We have it modified to include data from the Mutant PIP5Pase. See Fig S3 and S5.

      In Figure 5D, after depletion of PIP5Pase, RAP1 binding appears to decrease across ESAGs, but ESAG expression appears to increase. How can this be explained with the model of RAP1 repressing transcription?

      We included in the Results, lines 208-212: “The increased level of VSG and ESAG mRNAs detected in cells expressing Mut PIP5Pase (Fig 5D) may reflect increased Pol I transcription. It is possible that the low levels of RAP1-HA at the 50 bp repeats affect Pol I accessibility to the BES promoter; alternatively, RAP1 association to telomeric or 70 bp repeats may affect chromatin compaction or folding impairing VSG and ESAG genes transcription.”.

      Reviewer #3 (Recommendations For The Authors):

      Line 114 - typo? Procyclic instead of procyclics:

      Fixed, thanks.

      Line 233 - the phrasing here is confusing, may want to replace "whose" with "which" (if I am interpreting correctly):

      Thanks, no changes were needed. I have had the sentence reviewed by a Ph.D.-level scientific writer.

      Methods - there is no description of VSG-seq analysis in the methods. Is it done the same way as the RNA-seq analysis? Is the code for analysis/generating figures available online?

      The procedure is similar. We included an explanation in Methods, lines 503-504: “RNA-seq and VSG-seq (including clonal VSG-seq) mapped reads were quantified…”. Also, in lines 522-54: “Scripts used for ChIP-seq, RNA-seq, and VSG-seq analysis are available at https://github.com/cestari-lab/lab_scripts. A specific pipeline was developed for clonal VSG-seq analysis, available at https://github.com/cestarilab/VSG-Bar-seq.”.

      Fig 1H - Is this from RNA-seq or VSG-seq analysis of procyclics?

      The procyclic forms VSG expression analysis was done by real-time PCR. To clarify it, we included it in the legend “Expression analysis of ES VSG genes after knockdown of PIP5Pase in procyclic forms by real-time PCR”. We also amended the Methods, under the topic RNA-seq and real-time PCR, line 402-407: “For procyclic forms, total RNAs were extracted from 5.0x108 T. brucei CN PIP5Pase growing in Tet + (0.5 µg/mL, no knockdown) or Tet – (knockdown) at 5h, 11h, 24h, 48h, and 72h using TRIzol (Thermo Fisher Scientific) according to manufacturer's instructions. The isolated mRNA samples were used to synthesize cDNA using ProtoScript II Reverse Transcriptase (New England Biolabs) according to the manufacturer's instructions. Real-time PCRs were performed using VSG primers as previously described (23).”

      Fig 2 A - Where it says "downstream VSG genes" I assume "downstream of VSG genes" is meant? the regions described in this figure might be more clearly laid out in the text or the legend

      Fixed, thanks. We included in the text in Results, line 140: “… and Ts and G/Ts rich sequences downstream of VSG genes”.

      Fig 2E - what does "Flanking VSGs" mean in this context?

      We added to line 705, figure legends: “Flanking VSGs, DNA sequences upstream or downstream of VSG genes in MESs. “

      Fig 2H - Why is the PIP5Pase Mutant excluded from the Chr_1 core visualization?

      We did not notice it. We included it now; thanks.

    1. Author Response

      We thank the reviewers for their rigorous and insightful comments, as well as their positive feedback on the manuscript. We agree with reviewer #1 that substantial additional work is needed for a complete mechanistic understanding of how NI circuitry works and we expect that the transgenic tools we generated will be valuable for such experiments. It is noteworthy that specific driver lines do not currently exist for IPN neurons, which limited our ability to perform optogenetic experiments activating the IPN to NI pathway. Reviewer 2 asks for additional clarification and analysis on various experiments, which we intend to address in a revised manuscript. We concur with reviewer #3 that, with the existing data, it is not possible to conclude with certainty that the IPN projections from gsc2 and rln3 NI neurons are solely axonal in nature. Additional experiments with axon- and dendrite- specific markers will be used to resolve this point in future work.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study was designed to examine the bypass of Ras/Erk signaling defects that enable limited regeneration in a mouse model of hepatic regeneration. This hepatocyte proliferation is associated with the expression by groups of cells of mRNA-loaded CD133+ intracellular vesicles that mediate an intercellular signaling pathway that supports proliferation. These are new observations, supported by convincing data, that have broad significance to the fields of regeneration and cancer.

      First of all, we greatly appreciate the very positive take of this work by eLife editors and also thank the two reviewers for their constructive comments. We have provided point-by-point responses as follows.

      Reviewer #1 (Public Review):

      This study was designed to examine the bypass of Ras/Erk signaling defects that enable limited regeneration in a mouse model of hepatic regeneration. The authors show that this hepatocyte proliferation is marked by expression of CD133 by groups of cells. The CD133 appears to be located on intracellular vesicles associated with microtubules. These vesicles are loaded with mRNA. The authors conclude that the CD133 vesicles mediate an intercellular signaling pathway that supports cell proliferation. These are new observations that have broad significance to the fields of regeneration and cancer.

      The primary observation is that the limited regeneration observed in livers with Ras/Erk signaling defects is associated with CD133 expression by groups of cells. The functional significance of CD133 was tested using Prom1 KO mice - the data presented are convincing.

      The major weakness of the study is that some molecular mechanistic details are unclear - this is, in part, due to the extensive new biology that is described. Nevertheless, the data used to support some key points in this study are unclear:

      We fully agree that some details of the molecular mechanisms are yet to be elucidated for the CD133+ vesicles (intercellsomes, as we named). This is the first report of a new direct cell-cell communication mechanism provoked in stress response to proliferative signal deficit.

      Remarkably, many questions remain open for the molecular mechanisms for formation and functions of relatively well-characterized structures such as exosomes/EVs, despite a huge body of literature since their discoveries.

      a) What is the evidence that the observed CD133 groups of cells are not due to clonal growth. Is this conclusion based on the time course (the groups appear more rapidly than proliferation) or is this based on the GFP clonal analysis?

      This is indeed a very critical point for this study. Our initial thought and efforts were indeed on finding evidence that supports clonal expansion of progenitor cells. However, the experiments showed that the CD133+ cells were negative for all other stem/progenitor cell markers and that they are mature hepatocytes. CD133 expression was upregulated dramatically in regenerating livers and disappeared upon completion of liver regeneration. Furthermore, suppression of Ras-Erk signaling by Shp2 and Mek inhibitors robustly induced CD133 expression in a variety of cancer cell lines in culture in vitro.

      At 2 days after PHx, we already observed big colonies, which were unlikely derived from a single initiating cell (Figure 1). The GFP clonal analysis unambiguously demonstrated the heterogenous origin of the clustered cells (Figure 3). We detected mixed GFP-positive and -negative cells within each colony, without a single colony consisting entirely of GFP-positive cells. The original colony sizes were estimated to be 10 cells or more (Figures 3G and Figure 3–figure supplement 1B). Thus, both the sizes and compositions in the GFP clonal analyses support the assertion that CD133+ cell clusters originated from multiple mature hepatocytes.

      b) What is the evidence that the CD133 vesicles mediate intercellular communication. This is an exciting hypothesis, but what is the evidence that this happens? Is this inferred from IEG mRNA diversity? or some other data. Is there direct evidence of transfer - for example, the does the GFP clonal analysis show transfer of GFP that is not mediated by clonal proliferation? Moreover, since the hepatocytes are isogenic, what distinguishes the donor and recipient cells? Increased clarity concerning what is hypothesis and what is directly supported by data - would improve the presentation of this study.

      Per the reviewer’s advice, we have clarified these points in the revised version. Our proposal that CD133 vesicles mediate intercellular communication was supported by these experimental results.

      A). Data in Fig. 5 suggest direct trafficking of the vesicles, as CD133 existed on the filaments that bridge the tightly contacting cells. This was confirmed by two different CD133 antibodies in mouse and human. Of note, CD133+ vesicles are negative for CD9, CD63 or CD81, markers for exosomes/EVs. We could only isolate CD133+ vesicles from cell lysates in vitro and mouse tissue lysates, but not from cell supernatants from which exosomes/EVs are isolated.

      B). More direct evidence of the transfer was presented in Fig. 6H, showing Myc-tagged CD133 molecules transferred from one cell to another. In response to reviewers’ comments, we now conducted correlative light and electron microscopy to characterize the exchange event around the cell-cell border at EM level (new Figure6-figure supplement 2).

      C). Further experimental evidence was provided in the single and double gene KO experiments in Fig. 8E-G, suggesting the functional significance of CD133 in intercellular communication.

      D). In addition to the data above, the IEG mRNA diversity analyses based on scRNA-seq support the mRNA exchange model. The isogenic CD133+ SKO hepatocytes were found to lack different IEG transcripts randomly. This is why we propose a mutually sharing model, rather than a donor and recipient model. Importantly, the mRNA diversity (entropy) model also illustrates the association of CD133 and “stemness", as described in the discussion.

      In sum, we believe that a most reasonable interpretation of the current data set is a model of direct cell-cell communication via CD133+ vesicles. We take the reviewer’s point and have made changes to the text to better distinguish conclusion and hypothesis, which will be validated in future studies.

      Reviewer #2 (Public Review):

      The manuscript by Kaneko set out to understand the mechanisms underlying cell proliferation in hepatocytes lacking Shp2 signals. To do this, the authors focused on CD133 as the proliferating clusters of cells in the Shp2 knockout (SKO) livers are CD133 expressing. After excluding the contribution of progenitors that are CD133 to this cell population, the authors focused on the intrinsic regulation of CD133 by Met/Shp2 regulated Ras/Erk pathway and showed upregulation of CD133 to be a compensatory signal to overcome loss of Ras/Erk signal and suggested Wnt10a in the regulation of CD133 signal. The study then focused on the observed filament localization of CD133 in the CD133+ cluster of cells. The study went on to identify the CD133+ vesicles that contain primarily mRNA vs. microRNA like other EVs. Specifically, the authors identified several mRNA species that encode IEGs, indicating a potential role for these CD133+ vesicles in cell proliferation signal transmission to neighboring cells via delivery of the IEG mRNAs as cargos. Finally, they showed that the induction of CD133 (and by derivative, the CD133+ vesicles) are necessary for maintaining cell proliferation in the cell cluster with high proliferation capacities in the SKO livers; and in intestinal crypt organoids treated with Met inhibitors to block Ras/ERk signal.

      1) The identification of CD133+ vesicles is largely based on staining and costainings. Though the experiments are very well done with many controls and approaches, the authors may want to perform one or two key experiments with EM to definitively demonstrate the colocalization. For example, the mCherry experiment in Fig6H and the colocalization experiments for CD133 and HuR in Fig 7.

      Many thanks for the suggestion. We now completed the two suggested key experiments with new results added to the revised manuscript. For the mCherry experiment, we conducted correlative light and electron microscopy to characterize the exchange event between cells that stably express CD133-GFP fusion protein and mCherry+ cells (new Figure 6-figure supplement 2). The CD133-GFP was clearly found in the mCherry+ cells around the border, demonstrating the intercellular traffic. For the colocalization of CD133 and HuR, we performed double immunogold staining on the isolated vesicles, with the new results presented in the revised Figure7-figure supplement 1D.

      2) Since CD133+ marks the 50nM intracellsome defined by the authors, it is unclear what the CD133- vesicles used as controls are. Are they regular EVs that are larger in size? This needs better clarification as they are used as a control for many experiments such as Fig 7A.

      Per the advice, we added more explanation to the revised text. We used regular EVs as the control, since they are the well-studied intercellular communication vesicles. Since the EVs are highly heterogenous, we did not choose to select a specific subpopulation of EVs. We used the well-established polymer-based precipitation method to isolate the EV fraction from cell culture supernatant for RNA-seq analysis. We did detect the enrichment of micro-RNAs in the isolated EVs, consistent with reports in the literature. Strikingly, the CD133 vesicles isolated from cell lysates showed a completely distinct RNA profile, relative to the EVs.

    1. Author Response:

      We thank the reviewers for their constructive comments. Below we include a point by point response.

      Reviewer #1 (Public Review):

      [...] Elaborate on the Methodology: Provide an in-depth explanation of the two active learning batch selection methods, including algorithmic details, implementation considerations, and any specific assumptions made. This will enable readers to better comprehend and evaluate the proposed techniques.

      We thank the reviewer for this suggestion. Following this comments we will extend the text in Methods (in Section: Batch selection via determinant maxi- mization and Section: Approximation of the posterior distribution) and in Supporting Methods (Section: Toy example). We will also include the pseudo code for the Batch optimization method.

      Clarify Evaluation Metrics: Clearly specify the evaluation metrics employed in the study to measure the performance of the active learning methods. Additionally, conduct statistical tests to establish the significance of the improvements observed over existing batch selection methods.

      Following this comment we will add to Table 1 details about the way we computed the cutoff times for the different methods. We will also provide more details on the statistics we performed to determine the significance of these differences.

      Enhance Reproducibility: To facilitate the reproducibility of the study, consider sharing the code, data, and resources necessary for readers to replicate the experiments. This will allow researchers in the field to validate and build upon your work more effectively.

      This is something we already included with the original submission. The code is publicly available. In fact, we provide a phyton library, ALIEN (Active Learning in data Exploration) which is published on the Sanofi Github (https://github.com/Sanofi-Public/Alien). We also provide details on the public data used and expect to provide the internal data as well. We included a small paragraph on code and data availability.

      Reviewer #2 (Public Review):

      [...] I would expect to see a comparison regarding other regression metrics and considering the applicability domain of models which are two essential topics for the drug design modelers community.

      We want to thank the reviewer for these comments. We will provide a detailed response to their specific comments when we resubmit.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      We don't see the case for 1,5-IP8 as settled in plants, and none of the papers mentioned above draws this strong conclusion. This may be due to several limitations in the available data. The mentioned studies do not allow to differentiate the effects of 1-IP7 and 1,5-IP8 and, where binding or competition experiments have been performed, e.g. on the transcription factors, the differences in the Kd values for IP7 and IP8 were minor. Furthermore,1,5-IP8 levels and Pi starvation response do not always correlate. IPTK1 mutants, for example, show Pi overaccumulation, and low 5-IP7, but normal 1,5-IP8 (Riemer et al., 2021). Finally, plants are complex organisms with multiple tissue types that serve for accumulating, exporting, transporting or finally consuming Pi. Therefore, correlating inositol pyrophosphate levels from whole-plant extracts with a Pi starvation response is problematic, except if these data could both be obtained from the same cell types or at least tissues.

      The comment of the reviewer made us recognize that the complex situation in plants deserves a more detailed coverage and we have therefore adjusted the introduction accordingly.

      Results: "We determined the corresponding lysines in Pho81 (Fig. S3), created a point mutation in the genomic PHO81 locus that substitutes one of them, K154, by alanine, and investigated the impact on the PHO pathway."

      In my opinion, it would be important to test here in a quantitative in vitro binding assay if (i) the SPX domain of Pho81 can bind PP-InsPs including 1,5-InsP8, (ii) if the dissociation constant is in agreement with the cellular levels of 1,5-InsP8 in yeast (compare Fig. 2) and (iii) if the K154A mutation blocks or reduces the binding of 1,5-InsP8. Without such experimentation, I find the statement "this result underlines the efficiency of the K154A substitution in preventing PP-IP binding to the Pho81 SPX domain." to be overly speculative, as no binding experiment has been conducted.

      We agree with the comment of the reviewer concerning the overstatement in the phrase. It has been deleted.

      As mentioned already in our previous work (Wild et al., 2016), Pho81SPX counts among the SPX domains that we could not express recombinantly. Likewise, full-length Pho81, which would be the relevant object for correlating in vitro binding studies with the cellular concentrations, has not been accessible. Expression in yeast did not provide sufficient material for ITC or other quantitative techniques. Therefore, we refrained from pursuing binding studies. Nevertheless, given the high conservation of the positively charged patch on SPX domains and the fact that, in every case where it has been tested so far, SPX domains showed inositol polyphosphate binding activity, we find it a conservative assumption that the Pho81SPX binds them as well. This is supported by the effects of the binding site mutant, which mimics the effect of ablating IP8 synthesis.

      Results: "Inositol pyrophosphate binding to the SPX domain labilizes the Pho81-Pho80 interaction." Again, in the absence of any protein - protein interaction assay I find this statement not to be supported by the experiments outlined in the manuscript. The best way to address this point would be to perform either co-IP or in vitro pull-down experiments between Pho81-SPX and Pho81-85, in the pre- and absence of 1,5-InsP8 and/or using the Pho81 point-mutants described in the text.

      Since Pho81 could not be produced recombinantly, neither by us nor by others who worked on this protein previously, quantitative in vitro binding assays are not accessible for now. A simple IP suffers from the problem that Pho81 interacts with Pho85-Pho80 not only through the SPX domain but also through the minimum domain. The latter interaction may be constitutive. Since the main point of the manuscript is not to dissect the exact mechanisms of Pho85-Pho80 regulations, but only to address the point why the postulated inactivation of this kinase by an 1-IP7/minimum domain complex makes no sense, we prefer not to show a profound (and more complex) analysis of how the different Pho81 domains contribute to binding.

      To test the potential of the SPX domain for binding Pho85/Pho80 in vivo, we have created a GFP-fusion of the SPX domain of Pho81. This fusion protein localizes mainly to the cytosol when cells are on high-Pi. Upon Pi starvation, it concentrates in the nucleus. This concentration is not observed in pho80 mutant background (New Fig. S7).

      In line with this, I would suggest to move the molecular modelling/docking studies from the discussion into the results section and to use these models to design some interface mutations that could be tested in coIP and/or pull-down assays. Alternatively, the authors may choose to omit the discussion section starting with: "Even though the minimum domain is unlikely to function as a receptor for PP-IPs this does not ... and ending with . In sum, multiple lines of evidence support the view that the SPX domain exerts dominant, 1,5-IP8 mediated control over Pho81 activity in response to Pi availability."

      We have now moved the modelling data to the Results section. The structure prediction of the interface is experimentally validated. Data on the effect of interface substitutions are already published, although these substitutions had not been recognized as affecting a common interface at the time. Substituting the interface residues either on the side of Pho80 or of Pho81 constitutively activates Pho85-Pho80 kinase and destabilizes its interaction with Pho81. This was shown by Co-IP experiments from cell extracts by Huang et al. We mention the respective substitutions in the manuscript and cite the paper in which their effect on PHO pathway activation had been described.

      Reviewer #2 (Recommendations For The Authors):

      Some points need additional attention by the authors:

      • In general, it would be helpful to introduce abbreviations more thoroughly (certain enzyme names, PA, MD, ...)

      We paid more attention to this.

      • Also in general, the authors may want to think about the nomenclature of inositol pyrophosphates. Given the expansion of PP-IPs that are being detected in different organisms these days it may be a good time to convert to a more precise nomenclature, i.e. 5PP-IP5 instead of 5-IP7; and 1,5(PP)2-IP4, instead of 1,5-IP8. The latter could just be stated once, and then be abbreviated as IP8.

      To our understanding the field has not yet come up with a unified nomenclature. Therefore, we prefer to stick with the more practical nomenclature that we have chosen, which also corresponds to what is commonly used in presentations and discussions among colleagues. We have now introduced a sentence making the link to the nomenclature that the reviewer has proposed.

      • p. 1, Abstract: "negative bioenergetic impacts" - the phrasing seems really vague

      Agreed, but we find it difficult to be more explicit and precise in the abstract while remaining concise and not distracting from the main message. This aspect is better explained in the introduction.

      • p. 3, Significance statement: "... unified model across all eukaryotic kingdoms" While the intended meaning of this wording is better explained in the text later, the phrasing here suggests a more all-encompassing study at hand, instead of a conclusion that fits more closely with established reports from other organisms. Please rephrase.

      We have adapted the phrase to avoid this impression.

      • p. 4: "IPTKs" - are the ITPKs meant here?

      Yes, that was a typo.

      • p. 7, the introduction ends abruptly and could use a concluding sentence.

      Done

      • p.7, "enzymes diphosphorylation either the..."; I understand what the authors are trying to say with diphosphorylating, but the enzymes are phosphorylating a phosphorylated substrate.

      Yes. We changed the phrase to "....adding phosphate groups at the 1- or 5-positions....".

      • p. 7, subtitle "...concentrations and kinetics of..."; kinetics of what? Synthesis/turnover?

      We corrected this subtitle

      • p. 8, with regards to the recovery experiment: Was this recovery determined elsewhere (please cite)? Otherwise it would be beneficial to include an extra figure to illustrate these recoveries in the supplementary information. And do the authors suspect some hydrolysis of IP8 given the lower recovery?

      We have now added the experiment testing recovery of IPPs as the new Fig. S1.

      • p. 9: It is appreciated that the authors point out the concentration of IP6 in S. cerevisiae. I found that concentration rather low, and the authors could highlight this a bit more, given their ability to carry our absolute quantification.

      This was a leftover from a previous version of the paper. Since the paper does not treat IP6 or lower inositol polyphosphates, we have deleted this phrase.

      • p. 9, Fig 2: The exponential decay of 5-IP7 is very nicely shown in Figure 2c. But one of the most important discussion points is IP8 being the key controller of the PHO pathway - it would therefore be beneficial for the argument to also show the same kind of graph for IP8 and if possible, fit a function to the data points to better quantify and compare the decay processes (e.g. via "half-life time" of PP-IPs during starvation, in addition to the suggested "critical concentration" which was only discussed for 5-IP7 thus far).

      Kinetic resolution is an issue here. The approach shown in Figs. 2 and 5 is not apt to determine a critical concentration of IP8 because the decline upon transfer to starvation conditions is too fast and difficult to relate to the equally rapid induction of the PHO pathway. We shall address this point in a more appropriate setup in a future study.

      • p.9, Fig 2a: Where does the 5-IP7 come from in the kcs1Δ strain? In the text the authors state that 5-IP7 in kcs1Δ was not detected, but the figure suggests otherwise. Please explain.

      Currently, we do not know where these residual signals stem from. One possibility is that they represent other isomers that exist in minor concentrations and that are not resolved from 5-IP7 in CE. We added a sentence to the figure legend to indicate this.

      • p. 10: "IP8 was undetectable in kcs1Δ and decreased by 75% in vip1Δ. kcs1Δ mutants also showed a 2 to 3-fold decrease in 1-IP7, suggesting that the synthesisof 1-IP7 depends on 5-IP7. This might be explained by assuming that a significant source of 1-IP7 is synthesis of 1,5-IP8 through successive action of Kcs1 and Vip1, followed by dephosphorylation to 1-IP7." - Please specify this statement. Do the authors mean that 1,5-IP8 is only produced transiently below the detection capabilities of the method but that there still is a (reduced) flux from 5-IP7 to 1,5-IP8 to 1-IP7? Otherwise it would seem paradoxical to have a dependency on a non-existing metabolite in that cell line.

      This was not clearly expressed. The revised version now says: " ... a 2 to 3-fold decrease in 1-IP7, suggesting that the synthesis of 1-IP7 depends on 5-IP7. This might be explained by assuming that, in the wildtype, most 1-IP7 stems from the conversion of 5-IP7 to 1,5-IP8, followed by dephosphorylation of 1,5-IP8 to 1-IP7.". We hope that this clarifies the matter.

      • p. 10: "pulse-labeling approaches are not available for PP-IPs." While this statement is correct, a recent paper co-authored by Qui and Jessen showed nice pulse-labeling data for the lower Ips and could be cited here (PMID: 36589890)

      Yes, indeed, we should have been more precise here. What we wanted to express was that rapid pulse-labeling methods for following phosphate group turnover were lacking, with a temporal resolution of minutes rather than hours. Existing pulse labeling approaches, including the study mentioned by the reviewer, do not provide that. We have changed the phrase accordingly.

      • p. 10: continuation of caption of Fig 2: "were extracted [and] analyzed"

      Corrected. Thank you.

      • p. 12: How is 1-IP7 made in the vip1 kcs1 double mutant?

      As explained above, we suspect that these may be side products of IPMKs, which accumulate in the absence of vip1 phosphatase.

      • p. 13, caption to Figure 3: "XXX cells were analyzed" please replace the place holder XXX.

      Done. Thank you.

      • p. 13, Fig 3B, C, D and p. 50, Fig. S4: On screen the contrast between the different shades of grey of the bars are just visible enough, but not on paper, I suggest using a higher contrast/ different colouring scheme.

      We enhanced the contrast.

      • p. 24, 25, Fig 7.: I could not really appreciate the AlphaFold part, and found it unnecessary. No docking or molecular dynamics simulations were carried out here, and it was not clear to me what information should be gleaned from this part.

      Following this comment, we have modified the respective part of the text. This part refers to a publication from the O'Shea lab (Nat. Chem Biol. 4,25) proposing the model that 1-IP7 and the Pho81 minimum domain bind competitively to the active site of Pho85 to inhibit its kinase activity. Modeling of complexes between Pho81, Pho80 and Pho85, which we present in the manuscript, rather suggests binding of the minimum domain to a groove in Pho80. This is important because it provides a viable alternative model for the action of the minimum domain. It suggests the minimum domain as a constitutive linker that attaches Pho80 to Pho85. Importantly, this model accounts perfectly for the results of previous random mutagenesis studies on Pho80 and on the minimum domain, which had independently identified both the Pho80 groove and the minimum domain residues that bind it in the prediction as critical residues for inhibition of Pho85, and for integrity of the Pho85/Pho80/Pho81 complex. We find this alternative explanation for Pho85-Pho80 regulation by Pho81, which we can derive by combining the predictions with already published experimental data, an important element to re-evaluate the relevance of 1-IP7 in PHO pathway regulation and resolve one of the existing discrepancies.

      • p. 28: No experiments were carried out with plants or mammals. The relevance for plants or mammalian systems therefore seems to be overstated at this point in time.

      We are not quite sure how to interpret this remark. We do not claim that our data support a role for IP8 in mammals and plants. But we refer to and cite studies providing the strongest evidence in favor of it in these systems. The relevance of our current study relies in refuting seemingly strong evidence from yeast, which had been diametrically opposed to the data obtained in plants and mammals. The revision of the situation in yeast now paves the way to drawing a coherent concept for fungi, plants and mammals. We feel that this is important and should be underlined.

      • p. 31: "300 mL of 3% ammonium" - 300 µL?

      Yes. Thank you.

      • p. 45, CE-ESI-MS parameters: "1IP8"

      Corrected.

      • p. 47: Figure S1: Please include more experimental details in the caption and/or methods section. Was a similar analysis software used as e.g. Figure S2 (NIS Elements Software)? Please also include all the analysis software in the Methods section under "fluorescence microscopy". Unless these additional experimental details already clarify the following point: Can the authors briefly comment on why the morphological determination in S1 requires trypan blue staining while in later experiments the yeast cells are readily recognized by the software in "simple" brightfield images?

      Trypan blue staining is not strictly required for this. It is just a simple method to fluorescently stain the cell wall. There are many other ways of delineating the cells. It could also have been done in a brightfield image.

      We updated the figure legend to better describe how these measurements were done and deposited the script and training file on figshare.

      • p. 48: "can be downloaded from **" please insert the link once the script is available online.

      It has been deposited at Figshare under DOI 10.6084/m9.figshare.c.6700281

      Reviewer #3 (Recommendations For The Authors):

      1) Italicize the scientific names of the organisms; this was inconsistent throughout the manuscript. Also, gene names should be italicized; this was also inconsistent (e.g., p.12 "... did not induce the PHO84 and PHO5 [sic] promoters...).

      Done

      2) Summary of the Figure 2A data in the text (p.9) probably has swapped the determined concentrations for 1-IP7 and IP8 (0.3 µM or 0.5 µM) as compared with the data figure.

      Yes, indeed. We have corrected this.

      3) Figure 2A: which of the mutant PP-IP levels are significantly different from the WT control?

      We have now added asterisks to indicate the significance for every mutant.

      4) In the discussion on the data (Fig. 2A), I was tripped up by the verb tense in this phrase "5-IP7 has not been detected in the kcs1Δ mutant and 1-IP7 has been strongly reduced..."; I think you want to use the past tense "was" in both cases [as is used in the next sentence]. It made me wonder if there was a difference in the detection of 5-IP7 and IP8 in the kcs1Δ mutant, you could detect 5-IP7 but not IP8; if so, where did the 5-IP7 come from?

      We have corrected the tense. Thank you for highlighting this. For the residual inositol pyrophosphate signal in kcs1Δ. We do not know its origin. One possibility, which we now mention in the text, is that it stems from IPMK side activity. It should be underlined that all signals disappear upon PI starvation.

      Figure 2C, include the data points that the lines are built from (suggestion).

      We refrained from that for the line graphs. For reasons of consistency, we should do this for every line graph. If we did that, Fig. 4B would become quite hard to read.

      6) Figure 3B-D, please check that the stipples or hatches are in the figure - the printed copy lacked them although I could see them in the electronic version; this was also true for Figures 5 and 6 (I do not know if it is a printer issue, but other hatches were visible: e.g., not seen in S4 but seen in S5).

      They are visible in our copies, also after printing. They may have been lost during file conversion at the journal.

      7) The text description of the Pho4-yEGFP, Pho5-yEGFP and Pho84-yEGFP says that the kcs1Δ mutant "showed Pho4-yEGFP constitutively in the nucleus already ... and PHO5 and PHO84 were activated". However, the data is more complex than that: whereas the localization of Pho4-yEGFP is constitutively nuclear, there is a higher basal (repressed) expression of both Pho5 and Pho84 as well as increased expression of both proteins under -Pi conditions. What accounts for the increased expression when Pho4 is already nuclear? This is also seen in the vip1Δ kcs1Δ mutant.

      We agree with the reviewer, but we cannot explain this effect with certainty. One possibility could be a wider dysregulation of Pi metabolism in kcs1 mutants. To name a few possibilities: Wildtype cells have polyphosphate reserves that are gradually mobilized during the first hours of P-starvation. kcs1 mutants don't have those and might fall into a "deeper" state of starvation faster. It should be kept in mind that the starvation response is also regulated at the level of chromatin structure, and by antisense transcripts. The influence of kcs1 on these processes is unclear.

      8) Figure 9 legend: please add a definition of the MP region (in red) and include it more explicitly in the described model.

      We now mention the relevant region also in the legend and have labeled the relevant regions in the images (Huang et al., 2001).

      9) Figure S2 legend: information is missing (downloading link).

      It has been deposited at Figshare under DOI 10.6084/m9.figshare.c.6700281

      10) Figure S4 and S5, missing statistics.

      They have been added to the new Fig. S6, which interprets differences between strains and conditions. Fig. S4 (now S3) shows timecourses of IPPs down to zero. Adding statistics for all pairwise differences between the timepoints would be almost an overkill.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      It is very important to find practical and efficient means in order to increase agricultural productivity. Drawing on data from variable field environments, this study provides a useful theoretical framework to identify new factors that could increase agricultural production. There is solid evidence to support the authors' claims, though following the fate of candidate species after introduction into rice fields would have strengthened the study. Plant biologists and ecologists working in nature and fields will find the work interesting.

      Thank you so much for your careful evaluation of our manuscript. We are very pleased to hear that you found our framework useful. We have revised our manuscript according to the "Recommendations for the Authors" to improve our manuscript.

      Public Review

      Reviewer #1 (Public Review):

      This manuscript describes the identification of influential organisms on rice growth and an attempt of validation. The analysis of eDNA on rice pot and mimic field provides rice growth promoting organisms. This approach is novel for plant ecology field. However current results did not fully support whether eDNA analysis-based detection of influencing organism.

      Thank you so much for evaluating our manuscript. We have carefully read and responded to your comments. We hope our responses resolve your concerns on our study.

      The strength of this manuscript is to attempt application of eDNA analysis-based plant growth differentiation. The weakness is too preliminary data and experimental set-up to make any conclusion. The trials of authors experiments are ideal. However, the process of data analysis did not meet certain levels. For example, eDNA analysis of different time points on rice growth stages resulted in two influential organisms for rice growth. Then they cultivate two species and applied rice seedlings. Without understanding of fitness and robustness, how we can know the effect of the two species on rice growth.

      We agree with your comments that we did not have the fitness data of the two species and/or rice seedlings. Thus, it is still difficult to obtain deep understanding of the mechanisms of our findings that the species introduced in the system would influence rice growth. Nonetheless, our study demonstrated the effectiveness of our research framework as we found evidence that the species that were discovered by the eDNA monitoring and time series analysis indeed cause changes in the system. We believe that the first step is to show that the framework is workable and that detailed understanding of the mechanisms or genetic pathway was not a focus of our study. To avoid misunderstanding, we have added several explanations regarding this point in L426–431 and L447. For example, in L426, we have added the following statement: "... the detailed dynamics of the two introduced species was unclear (i.e., the fate of the introduced species). This is particularly important for understanding how the introduced organisms affected rice performance...".

      The authors did not check the fate of two species after introducing into rice. If this is true, it is difficult to link between the rice gene expression after treatments and the effectiveness of two species. I think the validation experiment in 2019 needs to be re-conducted.

      We did not check the fate of the two species (except measuring the eDNA concentrations of the species), and it is true that we cannot show evidence of "how" these two species influence the rice gene expression. Understanding molecular mechanisms of the phenomenon that we found is important (especially from the viewpoint of molecular biology), but our primary objective was to demonstrate that our "eDNA x time series analysis" framework is feasible for detecting previously overlooked but influential organisms. To this end, we believe that we achieved our objective and repeating the validation experiment should be for a different purpose (i.e., for understanding molecular mechanisms). We have clarified these points in L426–431 and L447 as explained above.

      Reviewer #2 (Public Review):

      The manuscript "Detecting and validating influential organisms for rice growth: An ecological network approach" explores the influence of biotic and abiotic entities that are often neglected on rice growth. The study has a straightforward experimental design, and well thought hypothesis for explorations. Monitoring data is collected to infer relationships between species and the environment empirically. It is analyzed with an up-to-date statistical method. This allowed the manuscript to hypothesize and test the effects most influential entities in a controlled experiment.

      Thank you so much for your careful evaluations. We are pleased to see that you evaluated our manuscript positively. We have further revised our manuscript according to your comments and hope the revision has resolved your concerns.

      The manuscript is interesting and sets up a nice framework for future studies. In general, the manuscript can be improved significantly, when this workflow is smoothly connected and communicated how they follow each other more than the sequence and dates provided. It is valuable philosophical thinking, and the research community can benefit from this framework.

      Thank you for your suggestions. In order to improve the logic flow and readability of our manuscript, we have revised the descriptions of workflow and clarified how the experimental and statistical steps were connected to each other. To do so, we have added brief explanations about what/how we did at the first sentence of Results subsections (some of these explanations were only in Materials and Methods in the original manuscript). Also, we have moved all of the Supplementary Materials and Methods to the main text. We have thoroughly revised the manuscript, and we hope that all the parts of our manuscript have been connected more smoothly than in the original manuscript.

      I understand the length and format of the manuscript make it difficult to add more details, but I am sure it can refer to/clear some concepts/methods that might be new for the audience. How/why variables are selected as important parts of the system, a tiny bit of information about the nonlinear time series analysis in the early manuscript, and the biological reasoning behind these statistically driven decisions are some examples.

      We have explained how/why variables are selected (in L125), added more information about the nonlinear time series analysis (in L129 and L175) , and added the biological reasoning behind the statistical decisions (L195).

      Reviewer #3 (Public Review):

      Most farming is done by subtracting or adding what people want based in nature. However, in nature, crops interact with various objects, and mostly we are unaware of their effects. In order to increase agricultural productivity, finding useful objects is very important. However, in an uncontrolled environment, it coexists with so many biological objects that it is very inefficient to verify them all experimentally. It is therefore necessary to develop an effective screening method to identify external environmental factors that can increase crop productivity. This study identified factors presumed to be important to crop growth based on metabarcoding analysis, field sampling, and non-linear analysis/information theory, and conducted a mesocosm experiment to verify them experimentally. In conclusion, the object proposed by the author did not increase rice yield, but rather rice growth rate.

      Thank you so much for your evaluation of our manuscript. We have revised our manuscript based on your comments, and hope it has been improved compared with the original version.

      Strength

      In actual field data, since many variables are involved in a specific phenomenon, it is necessary to effectively eliminate false positives. Based on the metabarcoding technique, various variables that may affect rice growth were quantitatively measured, although not perfectly, and the causal relationship between these variables and rice growth was analyzed by using information transfer analysis. Using this method, two new players capable of manipulating rice growth were verified, despite their unknown functions until now. I found this process to be very logical, and I think it will be valuable in subsequent ecological studies.

      We are very pleased to see that you found our framework is very logical and potentially beneficial for future ecological studies.

      Weaknesses

      CK treatment's effectiveness remains questionable. Rice's growth was clearly altered by CK treatment. The validation of the CK treatment itself is not clear compared to the GN treatment, and the transcriptome data analysis results do not show that DEG is not present. The possibility of a side effect caused by a variable that the author cannot control remains a possibility in this case. Even though this part is mentioned in Discussion, it is necessary to discuss various possibilities in more detail.

      We agree that the effectiveness of the CK treatment was questionable. We have added some more discussion about this point in L376: "The unclear effects of the CK treatment relative to those of the GN treatment could be due to the relatively unstable removal method (i.e., C. kiiensis larvae were manually removed by a hand net) or incomplete removal of the larvae (some larvae might have remained after the removal treatment)."

      Reviewer #1 (Recommendations For The Authors):

      Comment #1-1 This manuscript describes identification of influential organisms on rice growth and an attempt of validation. The analysis of eDNA on rice pot and mimic field provides rice growth promoting organisms. This approach is novel for plant ecology field. However current results did not fully support whether eDNA analysis-based detection of influencing organism.

      Thank you for your careful evaluations of our manuscript. We are pleased to see you found that our approach is novel. We have revised our manuscript in accordance with your comments, and we hope that the revision and responses resolved your concerns.

      Comment #1-2 1. Experimental setting: Authors made up small scale pot system in 2017 and then expanded manipulative experiment. I do not understand how two influencing organism sequences were identified from the single treatment depending on different time points. How they can be convince the two organisms affect the rice growth rather than other biological and environmental factors.

      In 2017, we performed an intensive monitoring of the experimental rice plots and obtained large time series data (122-day consecutive monitoring x 5 plots = 610 data points). The time series data were analyzed using the information-theoretic causal analysis. The analysis is critically different from correlational analyses and designed to identify causal relationships among variables. Although we understand that field manipulation experiments are a common and straightforward approach to identify causal relationships among organisms, we chose the "fieldmonitoring + time-series-based causal analysis" approach. This is because, as explained in the main text, there are numerous factors that could influence rice performance, and it is practically impossible to perform manipulative experiments for all the potential factors that could influence rice growth. On the other hand, our "field-monitoring + timeseries-based causal analysis" approach has a potential to identify multiple factors under field conditions, even by the single experimental treatment.

      Nonetheless, we must admit that our time-series-based approach still has a chance to misidentify causal factors. Our framework relies on statistics, so the chance of false-positive detection of causality cannot be zero. This was exactly the reason why we performed the "validation" experiment in 2019. To complement the statistical results of the 2017 experiments, we performed another experiment in 2019.

      Comment #1-3 2. eDNA technology: The eDNA analysis based on four universal primers 16s rRNA, 18s rRNA, ITS, and COI regions must not be enough to identify specific species. The resolution of species classification may not meet to confirm exact species. Thus, the accuracy of two species that they selected for further experiment is difficult to be confirmed. Authors also referred to "putative Globisporangium".

      Your point is correct. The DNA barcoding regions we selected are short and it is often difficult to identify species. However, this limitation could not have been overcome even if we had chosen a different genetic marker. The long-read sequencing technology could partially solve the issue, but the number of sequence reads generated by the long-read technique is less than that by the short-read sequencing technology, and comprehensive detection of all species in an ecological community was still challenging. Our approach struck a balance among the identification resolution, comprehensiveness of the analysis, and sequencing costs. In addition, even though we could not identify most ASVs at the species level, some ASVs could be identified at the species level (52 ASVs among the 718 ASVs which had causal influences on rice growth), and we selected the two species (G. nunn and C. kiiensis) from the 52 species.

      Further, the taxa assign algorithm we used here (i.e., Claident; Tanabe & Toju 2012 PLoS ONE 10.1371/journal.pone.0076910) adopted conservative criteria for species identification and has a low falsepositive probability.

      More importantly, this is also the reason why we performed the "validation" experiment in 2019. The species identified in the 2017 experiment are still "potential" organisms that influence rice growth (i.e., the hypothesis-generating phase), and we tested the hypothesis in 2019.

      Nonetheless, we must admit that clear description of potential limitations is important. Thus, we have discussed this in L418: "As for the second issue, short-read sequencing has dominated current eDNA studies, but it is often not sufficient for lower-level taxonomic identification. Using long-read sequencing techniques (e.g., Oxford Nanopore MinION) for eDNA studies is a promising approach to overcome the second issue".

      Comment #1-4 3. Biological relevance 1: Authors identify two organisms as influencing organism for rice growth. As conducting the first experiment in 2017, the 2019 experiment was different from natural condition. The two experiments in 2017 and 2019 were conducted under different conditions. How do they compare the experiments? At least, the eDNA analyses in 2017 and 2019 should be very similar. I cannot find such data.

      The experimental conditions were different between 2017 and 2019 because they were conducted in different years. Theoretically, it is ideal if the experimental conditions in 2019 are covered by the range of experimental conditions in 2017 (e.g,. rice variety, air temperature, rainfall, and solar radiation). If this condition were satisfied, the attractor (i.e., rice growth trajectory delineated in the state space) in 2019 would be within that in 2017, and our model prediction in 2017 would be used to predict dynamics in 2019 accurately. To fulfill the conditions, we made as much effort as possible: we used the same rice variety and soils in 2019 as those used in 2017, and started our experiment at the same timing in 2019 as that in 2017.

      Although natural ecological dynamics cannot be precisely controlled, our monitoring revealed that the ecological dynamics in 2019 was qualitatively similar to that in 2017. To demonstrate that the experimental conditions and eDNA community data were similar between the two experiments, we have presented the climate and eDNA data in an inset figure in Figure 3a, Figure 1–figure supplement 2, Figure 3–figure supplement 2. We must admit that these dynamics are not identical, but we hope that this resolves your concern.

      Comment #1-5 4. Lack of detail description: In the Materials and Methods, there are many parts which lack on detail description. For instance, authors must described the two species cultivation, application concentrations, and application methods.

      We have moved Supplementary Materials and Methods to the main text and added more detailed descriptions in Materials and Methods. Also, to improve the logical flow and readability of our manuscript, we have added brief explanations about what/how we did at the first sentence of Results subsections (some of these explanations were only in Materials and Methods in the original manuscript). We have added the reference for how to cultivate G. nunn in L608 (Kobayashi et al., 2010; Tojo et al., 1993) (C. kiiensis was not cultivated but removed from the system as in Materials and Methods), and application concentrations. Application methods were described in Materials and Methods, the section Field manipulation experiments in 2019 in L596.

      Comment #1-6 5. Validation: Application of one species clearly resulted to promote rice growth. They must include appropriate control treatment. If they pick same genus but different species that identified no specific effect on rice growth through eDNA analysis, no effect on growth can be provided. Generally application of large population of certain non-harmful organism confer plant growth promotion. It is not surprising result. Authors need to prove effectiveness of eDNA analysis. In addition, the field experiments required at least two years of consistent data for publication because environmental factors are so dynamic.

      Thank you for pointing this out. We agree with your comment that species that were predicted to have no effect should not promote rice growth in a validation experiment. It was also one of our inititial experimental plans to include such species in our manipulation experiment in 2019, but we could not include them because of the limitation of time, labor, and money. More extensive validation of the statistical results of the 2017 data, including multi-year experiments, would further validate the effectiveness of our approach, which should be done as future studies. To clarify this point, we have added statements in the paragraph starting at L396.

      Comment #1-7 In conclusion, I suggest that authors need more large data analysis and validate with more accurate and meaningful protocol.

      As we explained in the revised manuscript and the Response to Comments #1-2 to #1-7, our study demonstrated a novel research framework to detect previously overlooked influential organisms under field conditions. We agree that larger data analysis would be ideal to further validate our approach, but whether and how to collect larger data is constrained by time, money, and labor. We believe that our study was designed carefully and could provide meaningful avenues for developing an ecological-network based, novel, and environment-friendly agriculture solutions.

      Reviewer #2 (Recommendations For The Authors):

      Comment #2-1 Lines 97-110: This is so cool. Modeling with empirical data is very powerful. But a rice field is an open system consisting of metacommunity dynamics. Maybe a tiny bit of biological and biogeochemical background here would be good.

      Thank you for your comments. We have added a few examples of how and in which systems these methods were used to evaluate community dynamics and detect biological interactions in L109-L118.

      Comment #2-2 Lines 111-126: I like the summary of the study here. I think the influential species concept can be a little more elevated. Paine's famous keystone species work has been cited but a couple more pieces of literature can help to enhance the ecological importance of this work.

      We have explained the work by Paine (1966) a bit more and added one more paper that showed the effect of multiple predator species on the system dynamics at L88. We have also added a relevant sentence at L137 to emphasize the ecological/agricultural significance of our work.

      Comment #2-3 Experimental design/Figure 1:

      Is there any rationale behind choosing red individuals to measure the growth?

      Is there any competition between the individuals in the pots?

      Figure 1e: It is nice to show the ASVs in time. I wonder how the plot would look like when normalized by biomass/DNA content/coverage/rarefaction because of the seasonality.

      As for the first question, we chose the four individuals to minimize the edge effects (i.e., effects of microclimates and neighboring rice would be different between the four rice individuals and those planted in the edge regions). We have mentioned this in the legend of Figure 1.

      As for the second question, there might be competition among the individuals in the pot. However, we did not measure the effect of competition (e.g., by comparing the growth with/without other rice individuals).

      As for the third question, we published detailed dynamics of ecological community in the Supplementary Figures in Ushio (2022) Proceedings B https://doi.org/10.6084/m9.figshare.c.5842766.v1. In addition, we have uploaded a video showing the temporal dynamics of some top (= most abundant) ASVs in https://doi.org/10.6084/m9.figshare.23514150.v2.

      We have mentioned the supporting information in L153.

      Comment #2-4 Line 146-147: Is this damage influence the inferences? Maybe it is better to justify.

      While we occasionally observed physical damages, it is unlikely that they affected our causal inference because the changes in the rice heights due to the damages were smaller and less frequent than those due to growth. We have noted this at L151.

      Comment #2-5 Line 161-162: Maybe refer readers to the methods section where you explain UIC analysis. It'd be easier to interpret the figures.

      Mentioned.

      Comment #2-6 Line 175-176: I believe very brief information in the intro about the organisms might help explain the hypothesis and interpret the results better.

      We have included brief information of the two species at L197.

      Comment #2-7 Figure 2: Species interaction strength: Are these proxies to the Jacobians? Is there a threshold for the influence we can consider strong/weak? For example, influential species compared to diagonal elements of the Jacobians (intraspecies interactions) could be shown as a mean vertical line in Figure 2b.

      "Influences to rice growth" in Figure 2b is transfer entropy (TE) from a target ASV to rice growth. They are not proxies of the Jacobians, but they might positively correlate with the absolute value of the Jacobians. We have clarified this point in the legend (L953). More direct estimations of the Jacobian can be done using the MDR S-map method (Chang et al. 2021 DOI:10.1111/ele.13897), but we did not perform the MDR S-map in the present manuscript (see Ushio et al. 2023 https://doi.org/10.7554/eLife.85795 for the application of the MDR S-map). As for TE, there is no clear threshold to distinguish strong/weak interactions.

      Comment #2-8 Figure 2: Looking at panels c and d, it looks like there is a negative frequency selection between two influential species. Is it a reasonable observation?

      This is an interesting point. In this manuscript, we have not carefully examined the interspecific relationship between these two particular species. However, the interspecific interactions were examined in detail and reported in Ushio (2022) Proceedings of the Royal Society B DOI:10.1098/rspb.2021.2690). We re-checked the result in Ushio (2022); although there is a negative correlation between them, we did not find any (statistical) causal relationship between them.

      Comment #2-9 Line 209: What is t-SNE analysis? Because of the manuscript's format, maybe methods should be shortly referred to in the relevant section or explained in brackets.

      We have spelled out t-SNE.

      Comment #2-10 Line 212-214: Maybe briefly explain what the hypotheses are for the alternative analysis, and what is the contribution of the results to the study.

      We have added a brief explanation at L241: "Alternative statistical modeling that included the treatments (the control versus GN or CK treatments) and manipulation timing (i.e., before or after the manipulation), which simultaneously took the temporal changes of all the treatments into account, also showed qualitatively similar results (Supplementary file 4), further supporting the results."

      Comment #2-11 Figure 3b/c: Maybe species names as panel titles could be helpful. d: Treatment names with initials in the legend could be also helpful to read the plots.

      We have added species name as panel titles of Figure 3b,c. Treatment names were included in the legend of Figure 3.

      Comment #2-12 Line 233: Maybe mention why the manuscript uses the word "clear".

      We have mentioned this in L185.

      Comment #2-13 Line 234-236: I think that these alternative tests should be explained somewhere.

      We have revised the sentence so that it includes some explanations (L241). Also, we have referred to Materials and Methods.

      Comment #2-14 Figure 4: The title says ecological community compositions, and panels show the growth rates and cumulative growth.

      Thank you for pointing this out. This was a typo and we have corrected it.

      Comment #2-15 Lines 246-269: Can these expression patterns be transient and relevant to the time point that the sample is taken?

      Yes, these expression patterns were transient. We collected rice leaf samples for RNA-seq 1 day before the first manipulation and 1, 14, and 38 days after the third manipulation (see Supplementary file 3 for the sampling design). When we merged the pot locations, we observed no difference in the gene expression for samples 1 day before the first manipulation and 14 and 38 days after the third manipulation (except for two genes in samples 38 days after the manipulation), and thus, we consider the DEGs that appeared only in the short period after the manipulation. We have mentioned this in L278 and L383: "We found almost no DEGs for leaf samples taken one day before and 14 and 38 days after the third manipulation (the leaf sampling event 1, 3, and 4), suggesting that the influences of the treatments on the gene expression patterns were transient." (L278) and "These changes were observed relatively quickly and transient." (L383)

      Comment #2-16 I wonder if a conceptual framework figure would help to generalize the workflow that can be used for other studies.

      Thank you for your suggestion. Although we agree with your comment that such a figure would be helpful to generalize the workflow, we believe that our framework is clear and decided not to include it in the present manuscript. We might consider including such a figure (like Figure 1a in Ushio 2022) if we have an opportunity to write a review paper regarding this topic.

      Comment #2-17 Lines 329-335: I feel this information is unclear in the early manuscript. Maybe it's necessary to clearly communicate in the beginning.

      We have explained that we could not find any relevant information at least at the time we detected the ASVs in L189.

      Comment #2-18 Lines 336-337: Can these species be identified in the previous data set from the ASV sequences?

      Yes, these species were identified in the DNA data set obtained in 2017.

      Comment #2-19 Lines 387-397: Are there any measurements such as total biomass, and statistical methods to help with the eDNA bias and data compositionality?

      We have confirmed that our quantitative eDNA metabarcoding generates comparable results with the fluorescence-based method and quantitative PCR (e.g., see Supplementary Figures in Ushio 2022) (mentioned in L310 in the revised manuscript). However, at least in this study, we could not perform a direct comparison of the eDNA data with species abundance and/or biomass. This is partly because the number of our target species was too large (> 1,000 species). The accurate estimation of species abundance and/or biomass is one of our next goals.

      Comment #2-20 Line 472: Maybe mention transfer entropy somewhere in the early manuscript.

      We have mentioned this in L175.

      Comment #2-21 Lines 494-503: Maybe a summary of this reasoning should be mentioned somewhere in the early manuscript too.

      We have described a brief summary of the reasoning in L195.

      Comment #2-22 Lines 29-33 If this sentence is simplified it might be easier to follow.

      The sentence has been divided into two sentences in L28. Also, each sentence has been simplified.

      Comment #2-23 Line 38 Maybe "macrobes" can be explicitly mentioned. Fungi, protozoa, etc.

      Mentioned.

      Comment #2-24 Line 139: I am not sure if the date should be in the title.

      Similar monitoring was done in 2017 and 2019. Thus, we think the date is necessary in the section title.

      Comment #2-25 Figure 1: There are 4 red individuals in the design but 5 measurements in the plots.

      Heights and SPAD of the four individuals were measured for each plot and the averaged values were used as representative values for each plot. Therefore, 20 measurements (= 4 rice individuals 5 plots) were done every day, but each plot has one rice height for each day. We have clarified this in the legend of Figure 1: "the average values of the four individuals were regarded as representative values for each plot."

      Comment #2-26 Figure 1b: Maybe use the same axis length for the temperature as the other plots?

      Corrected.

      Comment #2-27 Lines 259-261: Are there the names of the genes in databases?

      Yes, these are gene names used in the rice databases (e.g., The Rice Annotation Project Database; https://rapdb.dna.affrc.go.jp/inde x.html).

      Reviewer #3 (Recommendations For The Authors):

      Comment #3-1 Additionally, RGR is not statistically significant, but statistical significance is observed only in cumulative growth because data presentation does not reflect plant characteristics. RGR changes according to the developmental stage of the plant. Therefore, if RGR data are shown separately according to the rice growing season, the cumulative growth pattern and the pattern will appear similar.

      RGRs were calculated daily (i.e., cm/day) and they changed depending on the developmental stage of the rice (Figure 1 and Figure 4–figure supplement 1). Therefore, we might find similar RGR patterns if we focus on a specific period of the growing season. However, unfortunately, we performed the intensive (i.e., daily) monitoring in 2019 only during the field manipulation period (middle June to middle July 2019), and we cannot investigate the changes in cumulative growth throughout the growing season (this depends on how many days we add up RGR to calculate the cumulative growth, though). We agree that, if we had investigated the detailed pattern of RGR throughout the growing season in 2019, we could have found similar pattens between RGR and cumulative growth rate at a certain period in the growing season. In Figure 4, the cumulative growths were calculated based on the RGRs before the third manipulation or during 10 days after the third manipulation. We clarified this in the legend of Figure 4.

    1. Author Response

      The following is the authors’ response to the previous reviews

      Reviewer # 1 (Public Review)

      Specific comments

      1) For all cell-based assays using shRNA to knock down CRB3, it would be desirable to perform rescue experiments to ensure that the observed phenotype of CRB3 depleted cells is specific and not due to off-target effects of the shRNA.

      Thank you for your comments. Based on your suggestions, we performed the rescue experiments to observe any alterations in the primary cilia of CRB3-depleted MCF10A cells with overexpressed CRB3. The revised parts can be found in lines 186-188 and the new Supplementary Figure 3A-C has been added.

      2) Figure 3G: it is very difficult to see that the red stained structures are primary cilia.

      Yes, the staining structure of primary cilia in mammary ductal lumen are less clear than that of individual cells and in renal tubule in Figure 3G. We used recognized acetylated tubulin and γ-tubulin to stain the primary cilia, which were clearly labeled in individual cells. However, the labeled primary cilia in renal tubule were longer length and demonstrated a more pronounced structure than those in the mammary ductal lumen. In the mammary ductal lumen of the 10 mice we analyzed, the primary cilia showed shorter length and staining structure than the others shown in Figure 3G. This difference may be due to the distinct characteristics of primary cilia in different tissues.

      3) Figure 5A: it is unfortunate the authors chose not to show the original dataset (Excel file) used for generating this figure; this makes it difficult to interpret the data. It is general policy of the journal to make source data accessible to the scientific community.

      In accordance with the journal policy, we have provided the original dataset (Excel file) for Figure 5A, as detailed in “Figure 5–Source Data 1”.

      4) The authors have a tendency to overinterpret their data, and not all claims put forth by the authors are fully supported by the data provided.

      We have carefully read through the whole text and have revised the overinterpretation parts. These parts can be found in lines 48-50, lines 93-95, and lines 260-261.

      Reviewer # 2 (Public Review)

      Thank you for recognizing and supporting our research for this manuscript.  

      Reviewer # 1 (Recommendations For The Authors)

      1) Abstract line 48-51: data overinterpretation. The authors cannot claim this based on the data they are presenting. Please modify the statement/temper the claims.

      Thanks for your comments. We have revised this sentence in the abstract, as well as lines 48-50 for details.

      2) There are several grammatical errors throughout the manuscript. In particular, the following sentences/statements are either wrong, confusing or non-sensical: lines 55-56; lines 87-90; lines 93-95; lines 385-387; lines 409-410.

      Thanks for your positive comments. We have modified lines 55-56 to become new lines 54-55. These sentences in lines 87-90 and lines 93-95 are difficult to understand and logically problematic, so we have carefully revised this paragraph (new lines 85-90). Lines 385-387 have been deleted as they are non-sensical. Lines 409-410 contain misrepresentations. We have revised them in new lines 408-409.

      3) Lines 257-259: this is data over-interpretation. It is not correct to state CRB3 is highly dynamic without having done any live cell imaging.

      Thank you for your comments. We have revised this sentence, see revised lines 260-261 for details.

      4) Figure 8E: if cells do not make cilia when CRB3 is lost (Figure 3), how is it possible to analyze SMO localization to cilia in these cells?

      Thank you for your comments. We used immunofluorescence techniques, with acetylated tubulin and SMO co-staining, to analyze the localization of SMO to cilia. The results of immunofluorescent staining of primary cilium and statistical analysis in Figure 3 showed that the proportion of cells with primary cilium was significantly lower in the CRB3 knockdown group, but cells with primary cilium were still present. We used laser confocal microscopy micrographs to identify cells with primary cilium by staining acetylated tubulin, then analyzed the co-localization under the SMO channel, and finally analyzed the proportion of SMO-positive cilia. Several publications (J Cell Biol. 2020;219(6):e201904107; Science. 2008;320(5884):1777-81; Proc Natl Acad Sci U S A. 2012;109(34):13644-9.) have demonstrated that knocking down genes can affect primary cilium formation, and this method has also been used to examine the localization of SMO-related signaling pathway molecules on primary cilium.

      5) Lines 366-366: based on the relative low magnification of the images in Figure 8H it is difficult to assess the subcellular localization of GLI1 and whether there is a difference between wild type and the Crb3 mutant cells. For example, it is not clear if GLI1 is localizing to the centrosome-cilium axis. Please modify the text accordingly.

      Thank you for your good suggestions. As you mentioned, IHC cannot observe the subcellular localization of GLI1 on the centrosome-cilium axis. However, since GLI1 is a transcriptional effector at the terminal end of the Hh signaling pathway, we may not have made it clear that what we observed in the IHC results was the localization of GLI1 in the nucleus. Therefore, we have revised the description accordingly, as described in line 368 and lines 520-521.

      6) Figure 7D, E: the zoomed-in images look pixelated.

      Thank you for your positive comments. We have replaced these images in the new Figure 7D and E.

      7) Figure 8B: Acetylacte-tub is misspelled.

      Thank you for your comments. We have revised and standardized the acetylated tubulin stain to "Ace-tubulin" in all immunofluorescent images throughout the manuscript.

      Reviewer # 2 (Recommendations For The Authors)

      1) 1) CRB3 is present in mammals as 2 isoforms, A and B, originating from an alternative splicing. In this study, the authors never mention this fact and when using approaches to KO or KD CRB3A/B they are likely to deplete both isoforms which have been shown to have different C-terminal domains and functions (Fan et al., 2007). This is also important for the CRB3 antibodies used in the study since according to the material and methods section they are either against the extracellular domain common to both isoforms or the intracellular domain which is only similar in the domain close to transmembrane between the 2 isoforms. Since the antibodies used in each figure are not detailed it is impossible to know if the authors are detecting CRB3A or B or both. Please provide the information and correct for the actual isoform detected in the data and conclusions.

      From the revised version we know now that CRB3B is used for exogenous expression. It has been shown that each isoform has a different role and localization in cells so why focus only on CRB3B for this study?

      Thank you for your positive comments. First, previous literature has reported that CRB3b localizes in the primary cilium of MDCK cells. We have corrected the Introduction to specify CRB3b (line 81). Secondly, in the methodology section, we show that the CDs sequence of CRB3b was PCR-amplified from RNA extracted from MCF10A cells. We also designed primers specific to CRB3a but were unable to amplify them, indicating that CRB3b is significantly more expressed in epithelial cells than CRB3a. Finally, according to the company recommended by Genecards website for purchasing CRB3 cloning products, the only CRB3 sequence available in the CRB3 cDNA ORF Clone in Cloning Vector, Human (Cat: HG14324-G) from Sino Biological is CRB3b.

      2) 3) The authors use GFP-CRB3A/B, it is not stated which isoform, over-expression to localize CRB3A/B in MCF10A cells (figure 4A). The levels of expression appear to be very high in the GFP panel and it is likely that the secretory pathway of the cells is clogged with GFP-CRB3A/B in transit from the ER to the plasma membrane. Thus, the colocalization with pericentrin might be due to the accumulation of ER and Golgi around the centrosome. This colocalization should be done with the endogenous CRB3A/B and with a better resolution.

      The authors do not answer about the potential mislocalization of overexpressed exogenous protein.

      We acknowledge the reviewer's perspective. The large amount of exogenous protein overexpression in the cell could potentially obstruct the protein secretion pathway, resulting in the accumulation of the exogenous protein at the ER and Golgi. Such accumulation could create the false impression of co-localization between CRB3b and the centrosome. To provide additional details (lines 215-217 and lines 426-433), we re-expressed the results exogenously and subsequently used staining of endogenous CRB3 and γ-tubulin in Fig. 4C to confirm the co-localization of CRB3 and the centrosome.

      3) 4) The staining for CRB3A/B in Figure 4C (red) is striking with a very strong accumulation in an undefined intracellular structure and the authors do not provide any explanation for such a difference with the GFP-CRB3A/B just above.

      The authors explain that two different photonic techniques are used (classical versus confocal) but in a cell biology manuscript confocal microscopy is now the standard technique.

      Thank you for your comments. We have included a discussion on the partial concordance between CRB3's endogenous staining and exogenous expression results in the "Discussion" section, specifically in lines 420-435.

      4) 7) In addition, the authors claim (Line 251/252) that Rab11 is necessary for the transport of CRB3A/B but they should KD Rab11 to show this.

      The author's answer is that blocking endocytosis with dynasore is as good as knocking down Rab11 to show its interaction and role in CRB3A/B transport which is not the case.

      Thank you for your comments. As requested by the reviewers, we have conducted experiments to knockdown Rab11 and detect CRB3 intracellular trafficking, as shown in the new Supplementary Figure 5B and added lines 258-260. These results provide additional support for our conclusions.

      5) 8) The domain of CRB3A/B that is necessary for the interaction with Rab11 is the N-terminal part of the extracellular domain. This domain is thus inside the transport vesicles and not accessible from the cytoplasm. Given that Rab11 is a cytoplasmic protein, how the 2 proteins could interact across the membrane? The authors do not even discuss this essential point for their hypothesis. Comment on the revised version: the authors still do not understand the basic of cell biology since they claim that the extracellular domain of CRB3 can be in contact with Rab11 after endocytosis. Even after endocytosis the extracellular domain of CRB3A/B is inside the lumen of the endosome and not in contact with the cytosol where Rab11 is located. Lines 420-421 of the revised manuscript still claim this interaction between the two proteins without providing the link between the cytosol where Rab11 is and the endosome lumen where the extracellular domain of CRB3A/B is. Please correct.

      Thank you for your positive comments. After carefully studying the relevant knowledge, we strongly agree with the reviewer's point of view. We have toned down our claim and removed the description regarding the binding of Rab11 endosomes to specific structural domains of intracellular CRB3 that we were unable to confirm (see lines 443-444 and lines 465-466).

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the authors explored the benefits of intermittent fasting on the cardiac physiology through a multi-omics approach and compared different fasting times (IF12; IF 16 and EOD) for a duration of 6 months. Combining the RNA-sequencing, proteomics and phosphor-proteomics analysis, the authors have made an interesting observation that different fasting times would lead to different changes that could be important for the cardiac physiology. Moreover, the changes observed at transcriptional level are different from protein level, suggesting a post-transcriptional regulation mechanism. Using western blot, the authors have confirmed the key signaling pathways, including AMPK, IRS pathway to be significantly altered upon intermittent fasting for 16hrs. Lastly, as a proof of concept for better cardiac function, the animals were challenged with dobutamine and echocardiography was performed to show the mice subjected to intermittent fasting have better cardiac systolic function.

      The impact of intermittent fasting on cardiovascular health has been well characterized in several studies. This report appears to be the first one utilizing a multi-omics approach and provided an interesting dataset at transcriptome, proteome and phosphor-proteome levels, and would serve as a valuable data resource for the field. I have the following concerns:

      Major concerns:

      1) The rationale for choosing the intermittent fasting pattern and timing While the 16:8 intermittent fasting is relatively standard, what is the rationale to test IF 12 hours? As a 4-hour fasting difference might not cause dramatic changes in transcriptome and proteome. Also, what is the rationale to perform 6 months study? The dobutamine stress test is not a terminal procedure, have the authors examined the cardiac function prior to 6 months to see whether there is a difference?

      We sincerely thank the reviewer for providing insightful comments and feedback on our study. The aim of our research is to gain a comprehensive understanding of molecular reprogramming in the heart during intermittent fasting using multi-omics techniques. We acknowledge the reviewer's concern regarding the selection of three different time points for intermittent fasting. Our rationale for choosing these time points was to align with the practices commonly used by researchers in the field. By doing so, we intended to explore and compare the effects of different intermittent fasting regimens on the heart. Through our study, we found that a longer fasting period resulted in the most significant changes in the proteome abundance. Though we agree that 4-hour fasting difference may not significantly alter transcriptome and proteome in terms of expressions, remarkable changes of post-translational modifications such as phosphorylation can occur during shorter time periods and this is evident based on the analyses of the modulated phosphoproteins. Hence, we included 12 hours time point also to our analysis. In fact, we would like to emphasize that all three fasting regimens had notable effects on pathways regulating cellular carbohydrates, lipid and protein metabolism, cell-cell interactions, and myocardial cell contractility. Regarding the duration of our study, we opted for a 6-month duration of intermittent fasting to investigate the impact of chronic intermittent fasting on heart transcriptome and proteome changes. While shorter-term (2-3 months) intermittent fasting studies in animals also have shown beneficial effects, we wanted to delve deeper into the molecular alterations induced by long-term intermittent fasting. We acknowledge the reviewer's observation about the dobutamine stress test not being a terminal procedure. In our manuscript, we aimed to present extensive resource data offering molecular insights into intermittent fasting-induced structural and signaling changes in the heart, focusing on various intermittent fasting time intervals. Additionally, we included the effect of cardiac function in response to intermittent fasting, specifically examining the intermittent fasting 16 hours (IF16) group, and highlighted key pathway modulations at this time point as supporting evidence. We appreciate the reviewer’s concern about examining cardiac function prior to 6-month. Although we did not perform this analysis in the current study, we fully agree that such comparison is required for a better understating of the temporal effects of molecular pathways in relation to heart functions during the course of intermittent fasting.

      2) Lack of validation study. One interesting observation from this study is the changes of transcriptome does not reflect all the changes at protein level and there is a differential gene expression pattern in IF12, IF16 and EOD. If this is the case, the authors should select a few important targets and provide both mRNA and protein level analysis, as a proof of concept for the bioinformatics analysis accuracy.

      We appreciate the reviewer's attention to the comparison of proteome and transcriptome data across different intermittent fasting regimens, as well as their interest in understanding any specific deviations in dietary regimens or sets of proteins. Indeed, it is well-established that post-transcriptional regulation can lead to discrepancies between mRNA and protein levels, primarily due to translational control or protein degradation mechanisms. Posttranscriptional buffering of proteins, particularly enzymes and kinases, is a plausible explanation, given their regulation through post-translational modifications, such as phosphorylations or allosteric regulations. Despite observing a modest correlation between the proteome and transcriptome data, which is generally common, we did identify certain enzymes, such as HMGC2, PDK4ACOT, CLPX, and RNASE4, with a high level of concordance between protein and mRNA abundances. These instances of agreement between the two data types suggest a coordinated regulation of these enzymes at the transcriptional and translational levels during intermittent fasting. To facilitate a clearer understanding of the correlation between proteome and transcriptome data, we have included correlation levels next to the scatter plots in our manuscript. These annotations aim to provide additional insights and aid readers in assessing the relationship between the two datasets.

      3) Poor western blot image quality. The quality of the western blot has several issues: a. the change of pAMPK/AMPK appears to be a decrease of total AMPK instead of change at p-AMPK level. Same with GSK3a/b. There appears to be an increase of total GSK3a/b. The AKT should also be blotted and quantified at phosphorylation level. The western blot should be clearly labeled, for the ones with double bands, including GSK3a/b, the author should clearly label which is GSK3a and which is GSK3b. For the IRS with non-specific band, the author should point out IRS-1 band itself.

      We appreciate the reviewer's careful evaluation of our study and acknowledge the concerns raised regarding the quality of the western blot images. Despite revising these experiments multiple times, we acknowledge that the immunoblot images may not meet the highest quality standards. We have included the original immunoblots in the supplementary section to ensure transparency and provide additional data for reference.

      Reviewer #2 (Public Review):

      This study provides an unbiased characterization of the cardiac proteome in the setting of intermittent fasting. The findings constitute a resource of quantitative proteomic data that sheds light on changes in cardiac function due to diet and that may be used in the future by other investigators. There are a number of key missing details that limit interpretation or present opportunities to strengthen the study.

      1) For example, the authors find that apolipoproteins are altered with fasting but it is not clear whether this is a contribution of myocardial tissue changes or systemic effects spilling into blood in cardiac tissues.

      We appreciate the reviewer's consideration of the potential effect of spilling blood on our study results. While we agree that such an effect is possible, we would like to emphasize that the observed overall changes in the proteome profile, particularly in pathways regulating metabolism and other cardiac remodeling-associated processes, suggest that the alterations we observed are more likely attributed to changes within the myocardial tissues themselves. We would like to highlight that blood microparticles or extracellular proteins were not enriched in our proteome data and hence the impact of blood spilling is not a concern. In fact, the biological processes we observed were majorly associated with ECM receptor interaction, focal adhesion and signaling pathways, which are not typical for secreted or extracellular proteome encompassing blood leakage.

      2) Some statements in the text like "Approximately one-third of the differentially expressed proteins in IF groups compared to AL were enzymes with catalytic activity involved in energy homeostasis pathways" do not appear to be supported by data.

      The enzymes among all the differentially expressed proteins in the intermittent fasting (IF) groups compared to the ad libitum (AL) control group are indicated in Supplementary Table S2. This constitutes one-third of the total number of differentially expressed proteins and several of these are involved in metabolic and energy homeostasis pathways.

      3) It is not clear how the list of Kinases were generated for Figure 1B.

      For the kinases indicated in Figure 1B, all the kinases from the proteins that were differentially expressed among the different dietary regimens compared to the control ad libitum (AL) group were first identified (listed in Supplementary Table S2), followed by enrichment analysis ((FDR ≤ 0.05) of the identified kinases across different pathways identified from KEGG pathways derived from DAVID bioinformatics resources.

      4) Changes in chromatin or gene expression are not measured so the conclusion that EOD led to 'epigenetic changes' relative to IF16 is not well supported.

      We appreciate the reviewer's feedback. Our statement in the manuscript referred specifically to the changes observed in Figure 2, where we presented increased proteomic abundance in pathways related to chromatin remodeling, chromatin organization, gene expression regulation, and histone modification in the EOD (Every Other Day Fasting) group compared to the IF 16 (Intermittent Fasting for 16 hours) group based on functional process and pathway enrichment analysis. Our comprehensive bioinformatics analysis, depicted in Figure 2, provides intriguing insights into these pathways. We acknowledge that further validation and in-depth studies through additional experiments and functional assays are essential to strengthen the conclusion from such observations, which is beyond the scope of the current study. We thank the reviewer for such valuable suggestions that are very useful for our ongoing studies, where we aim to obtain a more robust and thorough understanding of the impact of intermittent fasting on chromatin-related processes.

      5) There are also a number of areas where the text is vague. For example, it is not clear what is meant by 'trend shift' when discussing EOD results and Figure 3 generally could use additional information to better understands the figures.

      We would like to clarify that the term 'trend shift' refers to the change in the direction of protein and transcript level alterations. Based on the 2-D enrichment analyses that revealed correlated and non-correlated functional processes at the proteome and transcriptome levels, it was evident that during the early intermittent fasting 12 hours (IF12) regimen, the abundance changes of the proteins and transcripts involved in these processes were altered in the same direction (Supplementary Fig. 4b). Nevertheless, with increased fasting hours, mainly in the Every Other Day Fasting (EOD) group, we observed that the levels of proteins and transcripts involved in several of the functional processes appeared to be non-correlated as compared to the IF12 group (Fig. 2d). In Figure 3, we summarize the overall altered protein networks associated with the different intermittent fasting regimens, highlighting densely connected clusters of proteins along with their associated biological processes and pathways. Additionally, we unravel the impact of intermittent fasting on transcriptional rewiring and highlight regimen-specific alterations of specific transcriptional factors, several of which were found to have metabolic implications.

      6) An interesting finding is that the IF16 groups showed cardiac hypertrophy (SFig 11b). This is potentially a novel finding and the text should elaborate more on this phenomenon.

      We sincerely thank the reviewer for bringing attention to this intriguing aspect of our study. The data you have highlighted warrants further investigation, and we are committed to delving deeper into this area in our future research.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The manuscript focused on roles of a key fatty-acid synthesis enzyme, acetyl-coA-carboxylase 1 (ACC1), in the metabolism, gene regulation and homeostasis of invariant natural killer T (NKT_ cells and impact on these T cells' roles during asthma pathogenesis. The authors presented data showing that the acetyl-coA-carboxylase 1 enzyme regulates the expression of PPARg then the function of NKT cells including the secretion of Th2-type cytokines to impact on asthma pathogenesis. The results are clearcut and data were logically presented.

      Major concerns:

      1) This study heavily relied on the CD4-CreACC1fl/fl mice. While using of a-GalCer stimulation and Ja18KO mice mitigated the concern, it is still a major concern that at least some of the phenotype were due to the effect on conventional CD4 T cells. For example, the deletion of ACC1 gene seems also decreased the numbers of conventional CD4 T cells (Fig. 2D, Fig. S1D). Previously there were reports showing ACC1 gene in conventional CD4 T cells also plays a role in lung inflammation (Nakajima et al., J. Exp. Med. 218, 2021). If the authors believe the phenotype observed was mainly due to iNKT cells, rather than conventional CD4 T cells, a compare/contrast of the two studies should be discussed to explain or reconcile the results.

      As the reviewer pointed out, although we have experimentally demonstrated the critical role of ACC1 in iNKT cells in the regulation of allergic asthma, use of Cd4-CreAcc1fl/fl mice inevitably brings the role of conventional CD4+ T-cells in question.

      The study conducted by Nakajima et al, which reported that the absence of ACC1 in CD4+ T-cells resulted in reduced numbers and functional impairment of memory CD4+ T-cells, leading to less airway inflammation further suggests possibility of involvement of conventional CD4+ T-cells in regulation of allergic asthma. The direct compare/contrast of two studies seems difficult since Nakajima et al have focused on the role of ACC1 in memory CD4+ T cells while we have focused on iNKT cells.

      However, based on our experimental results, we believe that iNKT cells more contribute to the regulation of allergic asthma for the following reasons - (i) while the number of iNKT cells were significantly reduced in Cd4-CreAcc1fl/fl mice, the number of conventional CD4+ T cells were only slightly reduced, (ii) Cd4-CreAcc1fl/fl mice were dramatically decreased in their AHR in α-GalCer induced iNKT cell dependent allergic asthma model, and (iii) Jα18 KO mice that lack iNKT cells almost completely restore their AHR when adoptively transferred with WT iNKT cells but not ACC1-deficient iNKT cells. These results indicate that ACC1-mediated regulation of AHR is significantly dependent on iNKT cells, which might contribute to AHR in the study conducted by Nakajima et al. as well. From these, we believe that while ACC1 is a critical regulator of both conventional CD4+ T cells and iNKT cells in regulation of allergic asthma, iNKT cells may contribute more to regulation of allergic asthma compared to CD4+ T cells. We have summarized the above-mentioned contents in LINES: 421-441 with the reference you have mentioned:

      "It should be noted that Cd4-CreAcc1fl/fl mice lack ACC1 expression in both conventional CD4+ T cells and iNKT cells. It should be noted that Cd4-CreAcc1fl/fl mice lack ACC1 expression in both conventional CD4+ T cells and iNKT cells. While the use of iNKT cell- specific Cre system would demonstrate critical role of ACC1 in iNKT cells regarding allergic asthma, there is no iNKT cell-specific Cre system available yet. In addition, the study conducted by Nakajima et al, which reported that the absence of ACC1 in CD4+ T cells resulted in reduced numbers and functional impairment of memory CD4+ T cells, leading to less airway inflammation further suggests possibility of involvement of conventional CD4+ T cells in regulation of allergic asthma. However, based on our experimental results, we believe that iNKT cells more contribute to the regulation of allergic asthma for the following reasons - (i) while the number of iNKT cells were significantly reduced in Cd4-CreAcc1fl/fl mice, the number of conventional CD4+ T cells were only slightly reduced, (ii) Cd4-CreAcc1fl/fl mice were dramatically decreased in their AHR in α-GalCer induced allergic asthma model, and (iii) Jα18 KO mice that lack iNKT cells almost completely restore their AHR when adoptively transferred with WT iNKT cells but not ACC1-deficient iNKT cells. These results indicate that ACC1-mediated regulation of AHR is significantly dependent on iNKT cells, which might contribute to AHR in the study conducted by Nakajima et al. as well. From these, we believe that while ACC1 is a critical regulator of both conventional CD4+ T cells and iNKT cells in regulation of allergic asthma, iNKT cells may contribute more to regulation of allergic asthma compared to CD4+ T cells."

      2) The overall significance of the manuscript is related to the potential clinical suppression of ACC1 in human asthma patients. However, the authors only showed the elevated ACC1 genes in these patients, not even in vitro data demonstrating that suppression of ACC1 genes in the iNKT cells from patients could have potential therapeutic effect or suppression of the relevant cytokines.

      We would like to appreciate reviewer’s critical comment here. Due to paucity of iNKT cells in human PBMCs, it is extremely difficult to experimentally manipulate expression level of ACC1 in human iNKT cells. Alternatively, to address reviewer’s comment, we compared the cytokine expression of ACC1high iNKT cells from human allergic asthma patients to ACC1low iNKT cells from healthy individuals or non-allergic asthma patients. Our results show that iNKT cells from allergic asthma patients express higher levels of IL4 and IL13 than those from healthy individuals or non-allergic asthma patients, suggesting that the level of ACC1 is most likely involved in functionality of human iNKT cells as well. The results are newly shown in supplementary Fig. 5C with explanation in LINES 376-378 and 382-384:

      LINES 376-378: Lastly, the expression levels of IL4 and IL13 were significantly higher in iNKT cells from the allergic asthma patients compared to those from healthy controls and nonallergic asthma patients (Fig. S5C).

      LINES 382-384: Thus, iNKT cells from allergic asthma patients express higher ACC1, FASN and PPARG levels and lower levels of a glycolysis which is accompanied with higher levels of IL4 and IL13 than iNKT cells from healthy controls and nonallergic asthma patients.

      3) The authors report that a-GalCer administration can induce the AHR, however, in the cited paper (Hachem et al., Eur J. Immunol. 35, 2793, 2005), iNKT cell activation seems to have the opposite effect to inhibit AHR. Did the authors mean to cite different papers?

      We apologize for the confusion. We have replaced the inaccurate reference with the reference below in LINES 863-865:

      1. Glycolipid activation of invariant T cell receptor+ iNKT cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells, Proc Natl Acad Sci USA, 103 pp, 2782-2787 (2006),

      Reviewer #2 (Public Review):

      In this study the authors sought to investigate how the metabolic state of iNKT cells impacts their potential pathological role in allergic asthma. The authors used two mouse models, OVA and HDM-induced asthma, and assessed genes in glycolysis, TCA, B-oxidation and FAS. They found that acetyl-coA-carboxylase 1 (ACC1) was highly expressed by lung iNKT cells and that ACC1 deficient mice failed to develop OVA-induced and HDM-induced asthma. Importantly, when they performed bone marrow chimera studies, when mice that lacked iNKT cells were given ACC1 deficient iNKT cells, the mice did not develop asthma, in contrast to mice given wildtype NKT cells. In addition, these observed effects were specific to NKT cells, not classic CD4 T cells. Mechanistically, iNKT cell that lack AAC1 had decreased expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity and increased cell death. Moreover, the authors were able to reverse the phenotype with the addition of a PPARg agonist. When the authors examined iNKT cells in patient samples, they observed higher levels of ACC1 and PPARG levels, compared to healthy donors and non-allergic-asthma patients.

      We are very grateful for your kind appreciation of our work.

      Reviewer #1 (Recommendations For The Authors):

      1) Related to major concern I, an iNKT cell-specific knockout of ACC1 in iNKT cells is highly desirable and should be used to directly address the question.

      As the reviewer suggested, iNKT cell-specific deletion of ACC1 will provide invaluable information to our study. Unfortunately, Cre-Loxp system that specifically targets iNKT cells has not be developed. Thus, we opted to use CD4-Cre system, which is the gold standard Cre system for the study of iNKT cells. In addition, to highlight the role of ACC1 in iNKT cells in relation to regulation of allergic asthma, we performed iNKT cell-dependent experiment models and conducted adoptive transfer of iNKT cells into iNKT cell-deficient mice (Jα18 KO). These have been discussed in the section of Discussion in LINES:421-441:

      "It should be noted that Cd4-CreAcc1fl/fl mice lack ACC1 expression in both conventional CD4+ T cells and iNKT cells. While the use of iNKT cell- specific Cre system would demonstrate critical role of ACC1 in iNKT cells regarding allergic asthma, there is no iNKT cell-specific Cre system available yet. In addition, the study conducted by Nakajima et al, which reported that the absence of ACC1 in CD4+ T cells resulted in reduced numbers and functional impairment of memory CD4+ T cells, leading to less airway inflammation further suggests possibility of involvement of conventional CD4+ T cells in regulation of allergic asthma. However, based on our experimental results, we believe that iNKT cells more contribute to the regulation of allergic asthma for the following reasons - (i) while the number of iNKT cells were significantly reduced in Cd4-CreAcc1fl/fl mice, the number of conventional CD4+ T cells were only slightly reduced, (ii) Cd4-CreAcc1fl/fl mice were dramatically decreased in their AHR in α-GalCer induced allergic asthma model, and (iii) Jα18 KO mice that lack iNKT cells almost completely restore their AHR when adoptively transferred with WT iNKT cells but not ACC1-deficient iNKT cells. These results indicate that ACC1-mediated regulation of AHR is significantly dependent on iNKT cells, which might contribute to AHR in the study conducted by Nakajima et al. as well. From these, we believe that while ACC1 is a critical regulator of both conventional CD4+ T cells and iNKT cells in regulation of allergic asthma, iNKT cells may contribute more to regulation of allergic asthma compared to CD4+ T cells."

      2) For Fig. 5A, RT-PCR verification of PPARg gene expression level change is needed.

      As suggested, we have verified the level of Pparg expression of ACC1-deficient iNKT cells through real time PCR and have added the results to Figure 5A.

      3) Verifying at least the cytokine secretion can be regulated by manipulating ACC1 expression in human asthma patient samples will make the paper much stronger.

      We would like to appreciate reviewer’s critical comment here. Due to paucity of iNKT cells in human PBMCs, it is extremely difficult to experimentally manipulate expression level of ACC1 in human iNKT cells. Alternatively, to address reviewer’s comment, we compared the cytokine expression of ACC1high iNKT cells from human allergic asthma patients to ACC1low iNKT cells from healthy individuals or non-allergic asthma patients. Our results show that iNKT cells from allergic asthma patients express higher levels of IL4 and IL13 than those from healthy individuals or non-allergic asthma patients, suggesting that the level of ACC1 is most likely involved in functionality of human iNKT cells as well. The results are newly shown in supplementary Fig. 5C with explanation in LINES 376-378 and 382-384:

      LINES 376-378: Lastly, the expression levels of IL4 and IL13 were significantly higher in iNKT cells from the allergic asthma patients compared to those from healthy controls and nonallergic asthma patients (Fig. S5C).

      Minor points:

      1) What are the cells being stained in Fig. S2C? Are they iNKT cells? If yes, why there is a tetramer-negative population?

      The density plot on the left panel of Fig. S2C represents magnetically enriched thymic iNKT cells. Due to their scarcity, thymic iNKT cells were enriched using CD1d tetramer via magnetic activated cell sorting (MACS)-based enrichment technique. After enrichment, we re-stained enriched cells with CD1d tetramers and gated out CD3 and CD1d tetramer double positive cells via flow cytometry to specifically identify iNKT cells. Due to the imperfect purity of magnetic cell separation technique, a small proportion of CD1d tetramer-negative population is seen in the left panel of Fig. S2C.

      A brief mention of this methodology has been added to the “Preparation and activation of murine T and iNKT cells” section under Materials and Methods in LINES 560-566:

      "Alternatively, thymic and liver mononuclear cells were labeled with APC-conjugated ɑ-GalCer/CD1d tetramers, bound to anti-APC magnetic beads, and enriched on a MACS separator (Miltenyi Biotec, Auburn, CA, USA; purity 89%). To analyze the development of thymic iNKTs cells, we re-stained enriched cells with CD1d tetramer and gated out CD3 and CD1d tetramer double positive cells via flow cytometry to identify thymic iNKT cells, which were used for further analysis."

      2) Where are the adoptive transferred iNKT cells purified/sorted from? Are they from lungs of Acc1fl/fl or CD4-cre/Acc1fl/fl mice, asthma-induced already? As there are very few iNKT cells in healthy and untreated mice. There is little described or explained in Methods and Materials.

      The adoptively transferred iNKT cells were purified and pooled from the lungs of at least 10 mice per group. Briefly, mouse lungs were finely chopped into small pieces using razor blades and enzymatically digested using type IV collagenase. iNKT cells from the lungs were sorted via FACS using CD1d tetramers. Approximately, 6.0 × 105 of iNKT cells were obtained from the lungs at least of 10 mice. A brief mention of this methodology was added to the “Adoptive transfer of iNKT cells in allergic asthma models” section in Materials and Methods in LINES 568-574: iNKT cells were obtained from the lungs of at least 10 Acc1fl/fl or Cd4-CreAcc1fl/fl mice. Mouse lungs were finely chopped into small pieces using razor blades and were enzymatically digested using type IV collagenase. iNKT cells from the lungs were sorted via FACS using CD1d tetramers. Approximately, 6.0 × 105 of iNKT cells were obtained from at least 10 mice and were adoptively transferred into individual recipient mouse via the intratracheal route.

      3) The use of 2-NBDG was not explained in multiple locations, particularly in Fig.5H. How is its fluorescence used to track iNKT cells? No description in Materials and methods.

      2-NBDG, a fluorescence tagged glucose analog is a indicator for measurement of glucose uptake in cells. The fluorescence intensity in 2-NBDG-treated cells represents the degree of glucose uptake in cells, which can be measured using flow cytometry. Thus, in the experiments where we treated 2-NBDG, we described the results as "glucose uptake". A brief explanation of this methodology was added to the main text in LINES 253-254. In addition, we have provided the detailed use of 2-NBDG in ‘Measurement of glucose uptake capacity’ under the section of Materials and methods in LINES 599-607: Measurement of glucose uptake capacity using 2-NBDG assay. After treating 2-NBDG, the fluorescence intensity of cells were measured using flow cytometry and represented the degree of glucose uptake in cells.

      4) Fig. 3A legends: it should be "Ja18 KO"?

      We would like to appreciate your comment on our mistake here. We have corrected this in the legend of figure 3A.

      5) There are two different mechanisms for explaining the less severe asthma/AHR phenotype in ACC1-KO iNKT cells. One is lower number of iNKT cells due to cell death, the other decreased cytokine secretions. It is not clear to the reviewer, what are the relationship between two mechanisms. Are they both contributing to the asthma phenotype or cooperative?

      As you mentioned, ACC1-deficient iNKT cells showed increase in intrinsic pathway of apoptosis as well as decrease in their cytokine secretion simultaneously. Thus, we believe that increase in cell death and decrease in cytokine expression of ACC1-deficient iNKT cells cooperatively contributed to the asthma phenotype. The above-mentioned point was discussed in LINES 453-458: Furthermore, the apoptotic tendency of the ACC1-deficient iNKT cells was accompanied by their functional impairment. The ACC1-deficient iNKT cells exhibited impaired viability and functionality. Treatment of glycolysis inhibitor in ACC1-deficient iNKT cells not only restored cellular survival but also their functionalities. From these results, we speculate that ACC1-mediated regulation of both cellular homeostasis and cytokine production cooperatively contributed to the asthma phenotype.

      Reviewer #2 (Recommendations For The Authors):

      Overall, this is a very strong study with few concerns.

      1) Are there tissue specific differences in the iNKT cell populations? The authors examined lung iNKT cells in the Figs 1-3, and used liver NKT cells for the mechanistic studies in Fig 4-5. The studies shown in Fig S2 suggest that ACC1 deficient iNKT cells have developmental defects and impaired homeostatic proliferative capacity. Does ACC1 impact lung and liver iNKT cells similarly and is the lack of allergic asthma in ACC1 deficient iNKT cells due to defective iNKT cell trafficking to the lungs or a failure to survive after transfer (Fig 3)?

      In absence of ACC1, the number of iNKT cells from both lungs and livers decreased and showed consistent features (i.e: metabolic parameters), suggesting that there was no tissue specific role of ACC1 in INKT cells.

      In the adoptive transfer experiments, we transferred equal number of WT and ACC1-deficient iNKT cells directly into mouse lungs via intratracheal route. Thus, decreased numbers of adoptively transferred ACC1-deficient iNKT cells is more likely from their intrinsically impaired homeostatic proliferative capacity, not due to defective trafficking to the lungs.

      2) Similarly, are chemokine receptor expression patterns similar between WT and ACC1 deficient iNKTs (Fig 4)?

      We compared chemokine receptor expression of WT and ACC1-deficient iNKT cells using our RNA-seq and verified their expression levels via real time q-PCR. The expression levels of these chemokine receptors were comparable between the two groups of iNKT cells. The results are newly shown in supplementary Fig. 4I with explanation in LINES 351-357:

      Meanwhile, chemokine receptor signaling is also implicated in regulating homeostasis of iNKT cell in the periphery. In particular, Meyer et al. suggested that iNKT cells require CCR4 to localize to the airways and to induce AHR. Thus, we examined the expression of several chemokine receptors, including CCR4. We found that WT and ACC1-deficient iNKT cells did not differ in their chemokine receptor expressions, suggesting that the chemokine signaling may not be critical for ACC1-mediated regulation in AHR.

      3) The authors data suggest that Tregs are not playing a major role in the regulation of asthma induction in their ACC1 deficient mice, based on FoxP3 expression. Did the authors perform suppressor assays to show that the Tregs function similarly in WT and ACC1 deficient mice?

      We would like to appreciate reviewer’s reasonable comment. However, we did not experimentally compare the suppressive capacity of WT and ACC1-deficient Tregs under the asthmatic conditions, due to minimal differences in their Foxp3 expression (Foxp3 expression is a critical determinant of suppressive function of Tregs- (Immunity. 2019 Feb 19;50(2):302-316.; Nat Immunol 2003; 4: 330–336; Cell Mol Immunol. 2015 Sep;12(5):558-65.)). Thus, we speculate that the suppressive capacity between WT and ACC1-deficient Tregs might be similar. Nevertheless, since the suppressive capacity of Tregs can also be regulated by other soluble factors and surface molecules, we cannot completely rule out the possibility that ACC1-deficient Tregs might differ in their suppressive capacity to WT Tregs in asthma. In short, while there are clear limitations to our interpretation here, we believe it is unlikely that Tregs from WT and ACC1 deficient mice show difference in their suppressive capacity during asthma. We have included above-mentioned points in the section of Discussion in LINES 415-419: In this regard, Tregs may also play a major role in asthma. However, the expression level of Foxp3 was comparable between WT and ACC1-deficient Tregs. The level of Foxp3 to some extent, serves as a critical determinant of suppressive function of Tregs. Thus, we speculate that they might not critically contribute to the development of asthma, although we cannot completely rule out the contribution of Tregs to our studies.

    1. Author Response

      We would like to thank the reviewers for their positive and constructive comments on the manuscript.

      We are planning the following revisions to both DGRPool and the corresponding manuscript to address the reviewers’ comments:

      1) We agree with reviewer #1 that normalizing the data could potentially improve the GWAS results. Thus, we plan to explore the implementation of this option and assess its impact on the overall results. We will also investigate replacing the ANOVA test with a KRUSKAL test. Instead of upfront data normalization, we will consider using the PLINK –pheno-quantile-normalize option. Both options will be compared on a set of phenotypes where we can analyze the output (i.e., for phenotypes where we expect to find specific variants), to determine whether these strategies enhance the detection power.

      2) We also agree with both reviewers that gene expression information is of interest. However, we recognize that incorporating such information would entail substantial work (as elaborated in our response to comments below). We feel that this extensive work is beyond the current scope of this paper, which primarily focuses on phenotypes and genotype-phenotype associations. Nonetheless, we are committed to enhancing user experience by including more gene-level outlinks to Flybase. Additionally, we will link variants and gene results to Flybase's online genome browser, JBrowse. By following the reviewers' suggestions, we aim to guide DGRPool users to potentially informative genes.

      3) In agreement with reviewer #2, we acknowledge that additional tools could enhance DGRPool's functionality and facilitate meta-analyses for users. Therefore, we are in the process of developing a gene-centric tool that will allow users to query the database based on gene names. Moreover, we intend to integrate ortholog databases into the GWAS results. This feature will enable users to extend Drosophila gene associations to other species if necessary.

      4) Finally, we also concur with both reviewers about making minor edits to the manuscript to address their feedback.

      Reviewer #1 (Public Review):

      This is a technically sound paper focused on a useful resource around the DRGP phenotypes which the authors have curated, pooled, and provided a user-friendly website. This is aimed to be a crowd-sourced resource for this in the future.

      The authors should make sure they coordinate as well as possible with the NC datasets and community and broader fly community. It looks reasonable to me but I am not from that community.

      We thank the reviewer for the positive comments. We are relatively well-connected to the D. melanogaster community and aim to leverage this connection to render the resource as valuable as possible. DGRPool in fact already reflects the input of many potential users and was also inspired by key tools on the DGRP2 website. Furthermore, it also rationalizes why we are often bridging our results with other resources, such as linking out to Flybase, which is the main resource for the Drosophila community at large.

      I have only one major concern which in a more traditional review setting I would be flagging to the editor to insist the authors did on resubmission. I also have some scene setting and coordination suggestions and some minor textual / analysis considerations.

      The major concern is that the authors do not comment on the distribution of the phenotypes; it is assumed it is a continuous metric and well-behaved - broad gaussian. This is likely to be more true of means and medians per line than individual measurements, but not guaranteed, and there could easily be categorical data in the future. The application of ANOVA tests (of the "covariates") is for example fragile for this.

      The simplest recommendation is in the interface to ensure there is an inverse normalisation (rank and then project on a gaussian) function, and also to comment on this for the existing phenotypes in the analysis (presumably the authors are happy). An alternative is to offer a kruskal test (almost the same thing) on covariates, but note PLINK will also work most robustly on a normalised dataset.

      We thank the reviewer for raising this interesting point. Indeed, we did not comment on the distribution of individual phenotypes due to the underlying variability from one phenotype to another, as suggested by the reviewer. Some distributions appear normal, while others are clearly not normally distributed. This information is 'visible' to users by clicking on any phenotype; DGRPool automatically displays its global distribution if the values are continuous/quantitative. We acknowledge the reviewer's concerns regarding the use of ANOVA tests. However, we consider it acceptable to perform linear regression (including ANOVA tests) on non-normally distributed data, as only the prediction errors need to follow a normal distribution.

      Furthermore, the ANOVA test is solely conducted to assess whether any of the potential covariates (such as well-established inversions and symbiont infection status) are associated with the phenotype of interest. PLINK2 automatically corrects for the effects of these covariates during GWAS by considering them as part of the regression model.

      Nevertheless, we concur with the reviewer that normalizing the data could potentially enhance GWAS results. Consequently, we commit to exploring the impact of data normalization on the overall outcomes. Additionally, we will consider replacing the ANOVA test with a KRUSKAL test, and using the PLINK –pheno-quantile-normalize option. We intend to compare both approaches using a set of phenotypes where we can compare the output (i.e., where specific variants are expected to be identified). This comparison will help us determine if either method enhances the detection power.

      Minor points:

      On the introduction, I think the authors would find the extensive set of human GWAS/PheWAS resources useful; widespread examples include the GWAS Catalog, Open Targets PheWAS, MR-base, and the FinnGen portal. The GWAS Catalog also has summary statistics submission guidelines, and I think where possible meta-data harmonisation should be similar (not a big thing). Of course, DRGP has a very different structure (line and individuals) and of course, raw data can be freely shown, so this is not a one-to-one mapping.

      Thank you for the suggestion. We will cite these resources in the Introduction and check the GWAS catalog submission guidelines to compare to the ones we are proposing in this paper.

      For some authors coming from a human genetics background, they will be interpreting correlations of phenotypes more in the genetic variant space (eg LD score regression), rather than a more straightforward correlation between DRGP lines of different individuals. I would encourage explaining this difference somewhere.

      We appreciate this potential issue and we will make this distinction clearer in the manuscript to avoid any confusion.

      This leads to an interesting point that the inbred nature of the DRGP allows for both traditional genetic approaches and leveraging the inbred replication; there is something about looking at phenotype correlations through both these lenses, but this is for another paper I suspect that this harmonised pool of data can help.

      We agree with the reviewer and hope that more meta-analyses will be made possible by leveraging the harmonized data that are made available through DGRPool.

      I was surprised the authors did not crunch the number of transcript/gene expression phenotypes and have them in. Is this because this was better done in other datasets? Or too big and annoying on normalisation? I'd explain the rationale to leave these out.

      This is a very good point raised by the reviewer, and this is in fact something that we initially wanted to do. However, to render the analysis fair and robust, it would require processing all datasets in the same way. This implies cataloging all existing datasets and processing them through the same pipeline. Then, it also requires adding a “cell type” or “tissue” layer, because gene expression data from whole flies is obviously not directly comparable to gene expression data from specific tissues or even specific conditions. This would be key information as phenotypes are often tissue-dependent. So, as implied by the reviewer, we deemed this too big of a challenge beyond the scope of the current paper. Nevertheless, we plan to continue investigating this avenue, especially given the strong transcriptomics background of our lab, in a potential follow-up paper.

      I think 25% FDR is dangerously close to "random chance of being wrong". I'd just redo this section at a higher FDR, even if it makes the results less 'exciting'. This is not the point of the paper anyway.

      We agree with the reviewer that this threshold implies a higher risk of false positive results. However, this is not an uncommonly used threshold (Li et al., PLoS biology, 2008; Bevers et al., Nature Metabolism, 2019; Hwangbo et al, Elife, 2023), and one that seems robust enough in our analysis since similar phenotypes are significant in different studies. Nevertheless, we will revisit these results and explore how a more stringent threshold may impact the results.

      I didn't buy the extreme line piece as being informative. Something has to be on the top and bottom of the ranks; the phenotypes are an opportunity for collection and probably have known (as you show) and cryptic correlations. I think you don't need this section at all for the paper and worry it gives an idea of "super normals" or "true wild types" which ... I just don't think is helpful.

      This section of the paper was intended to investigate anecdotal evidence suggesting that certain DGRP lines consistently rank at the top or bottom when examining fitness-related traits. If accurate, this observation could imply that inbreeding might have made these lines generally weaker, potentially introducing bias into studies aimed at uncovering the genetic basis of complex traits. However, as per the analyses presented, we did not discover support for this phenomenon. Nevertheless, we consider this message important to convey. In response to the reviewer's feedback, we intend to provide a clearer explanation of the reasoning behind this section of the paper and its main conclusion.

      I'd say "well-established inversion genotypes and symbiot levels" rather than generic covariates. Covariates could mean anything. You have specific "covariates" which might actually be the causal thing.

      Thank you. We will update the manuscript accordingly.

      I wouldn't use the adjective tedious about curation. It's a bit of a value judgement and probably places the role of curation in the wrong way. Time-consuming due to lack of standards and best practice?

      Thank you. We will update the manuscript accordingly.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, Gardeux et al provide a web-based tool for curated association mapping results from DRP studies. The tool lets users view association results for phenotypes and compare mean phenotype ~ phenotype correlations between studies. In the manuscript, the authors provide several example utilities associated with this new resource, including pan-study summary statistics for sex, traits, and loci. They highlight cross-trait correlations by comparing studies focused on longevity with phenotypes such as oxphos and activity.

      Strengths:

      -Considerable efforts were dedicated toward curating the many DRG studies provided.

      -Available tools to query large DRP studies are sparse and so new tools present appeal

      Weaknesses:

      The creation of a tool to query these studies for a more detailed understanding of physiologic outcomes seems underdeveloped. These could be improved by enabling usages such as more comprehensive queries of meta-analyses, molecular information to investigate given genes or pathways, and links to other information such as in mouse rat or human associations.

      We appreciate the reviewer's kind comments.

      Regarding the tools, we concur with the reviewer that incorporating additional tools could enhance DGRPool and facilitate users in conducting meta-analyses. Therefore, we intend to introduce a gene-centric tool that enables users to query the database based on gene names. Additionally, we will establish links to ortholog databases within the GWAS results, thereby allowing users to extend fly gene associations to other species, if required.

      Furthermore, we have plans to link out to a 'genome browser-like' view (Flybase’s JBrowse tool) of the GWAS results centered around the affected variants/genes. We are considering integrating this feature into the new gene-centric tool as well.

      Another potential downstream analysis we are considering is gene-set enrichment. This analysis would involve assessing the enrichment of genes in Gene Ontology or other pathway databases directly from the GWAS results page.

    1. Author Response

      We would like to thank reviewers and editors for their thoughtful and constructive review of our manuscript. Below we have provided responses to specific points in the reviewers’ comments and eLIFE assessment, highlighting areas of the manuscript that will be edited for clarity and where efforts will be made to provide data to address reviewer concerns upon a future resubmission.

      eLife assesment:

      The authors report that Dbp5 functions in parallel with Los1 in tRNA export, in a manner dependent on Gle1 and requiring the ATPase cycle of Dbp5, but independent of Mex67, Dbp5's partner in mRNA export. The evidence for this conclusion is still incomplete, as is the biochemical evidence that Dbp5 interacts directly with tRNA in vitro with Gle1 and co-factor InsP6 triggering Dbp5 ATPase activity in the Dbp5-tRNA complex. The evidence that Dbp5 interacts with tRNA in cells independently of Los1, Msn5 and Mex67 is, however, solid.

      We intend to edit the text to make clear our conclusions and accommodate clarifications on a few details of this assessment.

      (1) We would clarify that our data supports a model in which Dbp5 recruitment to tRNA is independent of Mex67 as an adapter in cells; however, this does not mean that Mex67 and Dbp5 do not still co-function in tRNA export. For example, it is possible Dbp5 and Mex67 could still co-function in the same pathway, but instead of Dbp5 working down stream of Mex67, Dbp5 may in fact work upstream as an adapter for Mex67. Edits to the text will be made to ensure this distinction is clear and highlight the possibility for future investigation to elucidate this relationship.

      (2) We would like to highlight that based on structural and biochemical data detailing synergistic activation of Dbp5 ATPase cycle by Gle1/InsP6 and single stranded RNA, it is difficult to imagine a scenario where the apparent synergistic activation of Dbp5 ATPase cycle by tRNA and Gle1/InsP6 (Figure 5) is achieved independent of direct RNA binding. For this reason, we still support the claim that the observed synergistic activation, in combination with other in-vivo and in-vitro data provided in the manuscript, support a model where Dbp5 directly binds tRNA. However, we intend to edit the text to highlight this nuance and potential alternative conclusions based on reviewer feedback.

      Reviewer #1 (Public Review):

      “At least one result suggests that the idea of these pathways in parallel may be too simplistic as deletion of the LOS1 gene, which is not essential decreases the interaction of tRNA export substrate with Dbp5 (Figure 2A). If the two pathways were working in parallel, one might have expected removing one pathway to lead to an increase in the use of the other pathway and hence the interaction with a receptor in that pathway…. The obvious missing experiment here with respect to genetics is the test of whether deletion of the MSN5 gene in the cells, which combines deletion of LOS1 and the dbp5_R423A allele, shown in Figure 1D would be lethal…. The authors provide evidence of a model where the helicase Dbp5 plays a role in tRNA export from the nucleus. Further evidence is required to determine whether Dbp5 could function in the same pathway as the previously defined tRNA export receptors, Los1 and Msn5. There are genetic tests that could be performed to explore this question. Some of the biochemistry presented would show when Los1 is absent that the interaction of Dbp5 with tRNA decreases, which could support a model where Dbp5 plays a role in coordination with Los1”

      We agree that this is an important point that should be made clear and discussed in the text. We also agree that further experiments would be needed to be to confirm Dbp5 functions broadly in tRNA export in parallel to both Msn5 and Los1. We will aim to address these points in resubmission and discuss possible alternative conclusions of the presented results.

      Reviewer #1 (Public Review):

      “While some of the binding assays show rather modest band shifts (Figure 4B for example), the data in Figure 4A showing that there is no binding detected unless a non-hydrolyzable ATP analogue is employed, argues for specificity in nucleic acid binding. The question that does arise is whether the binding is specific for tRNA.”

      The specificity of the in-vitro interactions of Dbp5 are an important point of discussion. We will work to expand the topic of specificity of the in-vitro experiments during resubmission.

      Reviewer #1 (Public Review):

      “With the exception of the binding studies, which also employ a mixture of yeast tRNAs, this study relies primarily on a single tRNA species to come to the conclusions drawn. Many other studies have used multiple tRNAs to explore whether pathways characterized are generalizable to other tRNAs.“

      It was previously shown that Dbp5 functions to support the export of multiple tRNA species (https://doi.org/10.7554/eLife.48410). As such, we agree that additional tRNAs should be tested to explore whether phenotypes reported here are also generalizable to other tRNAs. We will add data targeting additional tRNAs during resubmission.

      Reviewer #2 (Public Review):

      “there are some pieces of data that are misinterpreted. (Figure 1A and B look the same; in Fig 1E, the DAPI staining is abnormal; in Fig 4 the bands can't be seen.)”

      Figure 1A and B represent separate experiments, showing that deletion of Los1 does not alter Dbp5 localization and conversely loss of Dbp5 does not alter Los1 localization. As such localization patterns under loss-of-function conditions look the same as wild-type localization for each protein respectively as noted. We believe that we have come to the same conclusion as the reviewer on Figure 1A and B (and this data is not misinterpreted), but also understand this panel will need to be adjusted for clarity and readability. We will make efforts to edit this figure and accompanying text make the data and conclusions clearer, including addressing the EMSAs in figure 4 and associated text for clarity.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly appreciate the positive feedback of the reviewers and have modified the manuscript to address their comments, including changes to the text, figures, and methods. We believe that these revisions have strengthened and improved the manuscript. Reviewers’ comments in blue and detailed responses in black are below.

      Reviewer #1 Weaknesses:

      • Is "function" of the ISNs to balance "nutrient need" or osmolarity? Balancing hemolymph osmolarity for physiological homeostasis is conceptually different from balancing thirst and hunger.

      We have added the following text to the introduction to address this: “Thus, the ISNs sense both AKH and hemolymph osmolality, arguing that they balance internal osmolality fluctuations and nutrient need (Jourjine, Mullaney et al., 2016).” (ln 80-82).

      • The final schematic nicely sums up how the different peptidergic pathways might work together, but it is unclear which connections are empirically-validated or speculative. It would be informative to show which parts of the model are speculative versus validated. For example, does FAFB volume synapse = functional connectivity and not just anatomical proximity? A bulk of the current manuscript relies on "synapses of relatively high confidence" (according to Materials and methods: line 522). I recommend distinguishing empirically tested & predicted connections in the final schematic, and maybe reword/clarify throughout the manuscript as "predicted synaptic partners"

      We modified the schematic to clarify EM based connections versus functionally validated connections. We also clarified the EM predicted synaptic partners, using “predicted synaptic partners” throughout the manuscript.

      Reviewer #2 Areas for further development:

      • Does BIT inhibit all of the IPCs or some of them? I think it is critical to indicate the ROIs used for each neuron in the methods. Which part of the neuron is used for imaging experiments? Dendrites, cell bodies, or synaptic terminals?

      ROIs used for quantification are described in the figure legends: “ArcLight response of BiT soma…” (Fig 2, Fig S2), “Calcium responses of CCHa2R-RA neurites in SEZ…” (Fig 4), “Calcium response of CCHa2R-RA SEZ neurites…” (Fig S4), “Calcium response of CCAP neurites…” (Fig 5, Fig S5), “Calcium response of all IPC somas…” (Fig S3). We have added ROIs used for quantification to the ‘In vivo calcium imaging’ and the ‘In vivo voltage imaging’ methods sections (ln 493-494).

      • The discussion section is not giving big picture explanation of how these neurons work together to regulate sugar and water ingestion. Silencing and activation experiments are good, but without showing the innate activity of these neural groups during ingestion, it is not clear what their functions are in terms of regulating fly behavior.

      We agree that how these peptidergic neurons coordinately regulate feeding is unclear. As peptide signals may act at a distance and may cause long-lasting neural activity state changes, studying their integration over space and time is challenging. Acute imaging during feeding would only in part address this challenge, as cumulative changes in nutrient need signals may impart circuit changes that are not apparent by monitoring the acute activity of peptidergic neurons. We modified a paragraph in the discussion to address this (ln 434-443).

      “Overall, our work sheds light on neural circuit mechanisms that translate internal nutrient abundance cues into the coordinated regulation of sugar and water ingestion. We show that the hunger and thirst signals detected by the ISNs influence a network of peptidergic neurons that act in concert to prioritize ingestion of specific nutrients based on internal needs. We hypothesize that multiple internal state signals are integrated in higher brain regions such that combinations of peptides and their actions signify specific needs to drive ingestion of appropriate nutrients. As peptide signals may act at a distance and may cause long-lasting neural activity state changes, studying their integration over space and time is a future challenge to further illuminate homeostatic feeding regulation.”

      Reviewer #1 (Recommendations For The Authors):

      • For the final schematic figure, it may be informative to include nanchung and AKHR in the schematic.

      We now include this (Fig 6).

      • For the ingestion duration with optogenetic activation, I don't think the right way to represent the data is by normalizing them to the no LED control. I think it should show raw ingestion time. I understand that the normalized data make the figure "cleaner" (no need to show +/- LED separately) but I think visualization of the raw data is important.

      We now include this in a new Supplemental Figure (Fig S6).

      • Methods for ingestion with optogenetic activation should be detailed in the Methods section.

      We expanded upon this in the ‘Temporal consumption assay (TCA)’ methods section. (ln 461-466).

      Reviewer #2 (Recommendations For The Authors):

      1) I think the authors are not following the recommendations of the Flywire community which recommends that people who contributed to the tracing of neurons are offered authorship in the published papers. I see the authors are thanking other lab members who have done tracing for the neurons described in this study, but I would like them to clarify whether they are following the guidelines provided by Flywire.

      We followed the Flywire guidelines and contacted all Flywire users contributing more that 10% to neuron edits for permission to publish with acknowledgements. (see Flywire guidelines https://docs.google.com/document/d/1bUkOB5JnT3u__JDvAoVDHJ3zr5NXQtV_63yx2w6Tcc/edit).

      2) The method section for voltage imaging is missing.

      We now include a section on voltage imaging (ln 496-498).

      3) ROIs for imaging are not indicated in the methods or in the figures. It is hard to judge what is the origin of neural activity plotted in the figures; are they imaging cell bodies, dendrites, or axons?

      ROIs used for quantification are described in the figure legends: “ArcLight response of BiT soma…” (Fig 2, Fig S2), “Calcium responses of CCHa2R-RA neurites in SEZ…” (Fig 4), “Calcium response of CCHa2R-RA SEZ neurites…” (Fig S4), “Calcium response of CCAP neurites…” (Fig 5, Fig S5), “Calcium response of all IPC somas…” (Fig S3). We have added ROIs used for quantification to the ‘In vivo calcium imaging’ and the ‘In vivo voltage imaging’ methods sections (ln 493-494).

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would first like to thank the reviewers and the editor for their insightful comments and suggestions. We are particularly glad to read that our so<ware package constitutes a set of “well-written analysis routines” which have “the potential to become very valuable and foundational tools for the analysis of neurophysiological data”. We have updated the manuscript to address their remarks where appropriate.

      Additionally, we would like to stress that this kind of tools is in continual development. As such, the manuscript offered a snapshot of the package at one point during this process, which in this case was several months ago at initial submission. Since then, several improvements were implemented. The manuscript has been further updated to reflect these more recent changes.

      From the Reviewing Editor:

      The reviewers identified a number of fundamental weaknesses in the paper.

      1) For a paper demonstrating a toolbox, it seems that some example analyses showing the value of the approach (and potentially the advantage in simplification, etc over previous or other approaches) are really important to demonstrate.

      As noted by the first reviewer, the online repository (i.e. GitHub page) conveys a better sense of the toolboxes’ contribution to the field than the present manuscript. This is a fair remark but at the same time, it is unclear how to illustrate this in a journal article without dedicating a great deal of page space to presenting raw code, while online tools offer an easier and clearer way to do this. As a work-around, our strategy was to illustrate some examples of data analysis in Figures 4&5 by comparing each illustrated processing step to the corresponding command line used by the Pynapple package. Each step requires a single line of code, meaning that one only needs to write three lines of code to decode a feature from population activity using a Bayesian decoder (Fig. 4a), compute a cross-correlograms of two neurons during specific stimulus presentation (Fig. 4b) or compute the average firing rate of two neurons around a specific time of the experimental task (Fig. 4c). We believe that these visual aides make it unnecessary to add code in the main text of this manuscript. However, to aid reader understanding, we now provide clear references to online Jupyter notebooks which show how each figure was generated in figure legends as well as in the “Code Availability” section.

      https://github.com/pynapple-org/pynapple-paper-2023

      Furthermore, we have opted-in for the “Executable Research Articles” feature at eLife, which will make it possible to include live scripts and figures in the manuscript once it is accepted for publication. We do not know at this stage what it entails exactly, but we hope that Figures 4&5 will become live with this feature. The readers will have the possibility to see and edit the code directly within the online version of the manuscript.

      2) The manuscript's claims about not having dependencies seem confusing.

      We agree that this claim was somewhat unfounded. There are virtually no Python packages that do not have dependencies. Our intention was to say that the package had no dependencies outside the most common ones, which are Numpy, Scipy, and Pandas. Too many packages in the field tend to have long list of dependencies making long-term back-compatibility quite challenging. By keeping depencies minimal, we hope to maximise the package’'s long term back-compatibility. We have rephrased this statement in the manuscript in the following sections:

      Figure 1, legend.

      “These methods depend only on a few, commonly used, external packages.”

      Section Foundational data processing: “they are for the most part built-in and only depend on a few widely-used external packages. This ensures that the package can be used in a near stand-alone fashion, without relying on packages that are at risk of not being maintained or of not being compatible in the near future.”

      3) Given its significant relevance, it seems important to cite the FMATool and describe connections between it (or analyses based on it) and the presented work.

      Indeed, although we had already cited other toolboxes (including a review covering the topic comprehensively), we should have included this one in the original manuscript. Unfortunately, to the best of our knowledge, this toolbox is not citable (there is no companion paper). We have added a reference to it in plain text.

      4) Some discussion of integration between Pynapple and the rest of a full experimental data pipeline should be discussed with regard to reproducibility.

      This is an interesting point, and the third paragraph of the discussion somewhat broached this issue. Pynapple was not originally designed to pre-process data. However, it can, in theory, load any type of data streams a<er the necessary pre-processing steps. Overall, modularity is a key aspect of the Pynapple framework, and this is also the case for the integration with data pre-processing pipelines, for example spike sorting in electrophysiology and detection of region of interest in calcium imaging. We do not think there should be an integrated solution to the problem but, instead, to make it possible that any piece of code can be used for data irrespective of their origin. This is why we focused on making data loading straightforward and easy to adapt to any particular situation. To expand on this point and make it clear that Pynapple is not meant to pre-process data but can, in theory, load any type of data streams a<er the necessary pre-processing steps, we have added the following sentences to the aforementioned paragraph:

      “Data in neuroscience vary widely in their structure, size, and need for pre-processing. Pynapple is built around the idea that raw data have already been pre-processed (for example, spike sorting and detection of ROIs).”

      5) Relatedly, a description of how data are stored a<er processing (i.e., how precisely are processed data stored in NWB format).

      We agree that this is a critical issue. NWB is not necessarily the best option as it is not possible to overwrite in a NWB file. This would require the creation of a new NWB file each time, which is computationally expensive and time consuming. It also further increases the odds of writing error. Theoretically, users who needs to store intermediate results in a flexible way could use any methods they prefer, writing their own data files and wrappers to reload these data into Pynapple objects. Indeed, it is not easy to properly store data in an object-specific manner. This is a long-standing issue and one we are currently working to resolve.

      To do so, we are developing I/O methods for each Pynapple core objects. We aim to provide an output format that is simple to read and backward compatible in future Pynapple releases. This feature will be available in the coming weeks. To note, while NWB may not be the central data format of Pynapple in future releases, it has become a central node in the neuroscience ecosystem of so<ware. Therefore, we aim to facilitate the interaction of users with reading and writing for this format by developing a set of simple standalone functions.

      Reviewer #1 (Public Review):

      A typical path from preprocessed data to findings in systems neuroscience o<en includes a set of analyses that o<en share common components. For example, an investigator might want to generate plots that relate one time series (e.g., a set of spike times) to another (measurements of a behavioral parameter such as pupil diameter or running speed). In most cases, each individual scientist writes their own code to carry out these analyses, and thus the same basic analysis is coded repeatedly. This is problematic for several reasons, including the waste of time, the potential for errors, and the greater difficulty inherent in sharing highly customized code.

      This paper presents Pynapple, a python package that aims to address those problems.

      Strengths:

      The authors have identified a key need in the community - well-written analysis routines that carry out a core set of functions and can import data from multiple formats. In addition, they recognized that there are some common elements of many analyses, particularly those involving timeseries, and their object- oriented architecture takes advantage of those commonalities to simplify the overall analysis process.

      The package is separated into a core set of applications and another with more advanced applications, with the goal of both providing a streamlined base for analyses and allowing for implementations/inclusion of more experimental approaches.

      Weaknesses:

      There are two main weaknesses of the paper in its present form.

      First, the claims relating to the value of the library in everyday use are not demonstrated clearly. There are no comparisons of, for example, the number of lines of code required to carry out a specific analysis with and without Pynapple or Pynacollada. Similarly, the paper does not give the reader a good sense of how analyses are carried out and how the object-oriented architecture provides a simplified user interaction experience. This contrasts with their GitHub page and associated notebooks which do a better job of showing the package in action.

      As noted in the response to the Reviewing Editor and response to the reviewer’s recommendation to the authors below, we have now included links to Jupyter notebooks that highlight how panels of Figures 4 and 5 were generated (https://github.com/pynapple-org/pynapple-paper-2023). However, we believe that including more code in the manuscript than what is currently shown (I.e. abbreviated call to methods on top of panels in Figs 4&5) would decrease the readability of the manuscript.

      Second, the paper makes several claims about the values of object-oriented programming and the overall design strategy that are not entirely accurate. For example, object-oriented programming does not inherently reduce coding errors, although it can be part of good so<ware engineering. Similarly, there is a claim that the design strategy "ensures stability" when it would be much more accurate to say that these strategies make it easier to maintain the stability of the code. And the authors state that the package has no dependencies, which is not true in the codebase. These and other claims are made without a clear definition of the properties that good scientific analysis so<ware should have (e.g., stability, extensibility, testing infrastructure, etc.).

      Following thFMAe reviewer’s comment, we have rephrased and clarified these claims. We provide detailed response to these remarks in the recommendations to authors below.

      There is also a minor issue - these packages address an important need for high-level analysis tools but do not provide associated tools for preprocessing (e.g., spike sorting) or for creating reproducible pipelines for these analyses. This is entirely reasonable, in that no one package can be expected to do everything, but a bit deeper account of the process that takes raw data and produces scientific results would be helpful. In addition, some discussion of how this package could be combined with other tools (e.g., DataJoint, Code Ocean) would help provide context for where Pynapple and Pynacollada could fit into a robust and reliable data analysis ecosystem.

      We agree the better explaining how Pynapple is integrated within data preprocessing pipelines is essential. We have clarified this aspect in the manuscript and provide more details below.

      Reviewer #1 (Recommendations For The Authors):

      Page 1

      • Title

      The authors should note that the application name- "Pynapple" could be confused with something from Apple. Users may search for "Pyapple" as many python applications contain "py" like "Numpy". "Pyapple" indeed is a Python Apple that works with Apple products. They could consider "NeuroFrame", "NeuroSeries" or "NeuroPandas" to help users realize this is not an apple product.

      We thank the referee for this interesting comment. However, we are not willing to make such change at this point. The community of users has been growing in the last year and it seems too late to change the name. To note, it is the first time such comment is made to us and it does not seem that users and collaborators are confused with any Apple products.

      • Abstract

      The authors mentioned that the Pynapple is "fully open source". It may be better to simply say it is "open source".

      We agree, corrected.

      Assuming the authors keep the name, it would be helpful if the full meaning of Pynapple - Python Neural Analysis Package was presented as early as possible.

      Corrected in the abstract.

      • Highlight

      An application being lightweight and standalone does not imply nor ensure backward compatibility. In general, it would be useful if the authors identified a set of desirable code characteristics, defined them clearly in the introduction, and then describe their so<ware in terms of those characteristics.

      Thank you for your comment. We agree that being lightweight and standalone does not necessarily imply backward compatibility. Our intention was to emphasize that Pynapple is designed to be as simple and flexible as possible, with a focus on providing a consistent interface for users across different versions. However, we understand that this may not be enough to ensure long-term stability, which is why we are committed to regular updates and maintenance to ensure that the code remains functional as the underlying code base (Python versions, etc.) changes.

      Regarding your suggestion to identify a set of desirable code characteristics, we believe this is an excellent idea. In the introduction, we briefly touch upon some of the core principles that guided our development of Pynapple: a lightweight, stable, and simple package. However, we acknowledge that providing a more detailed discussion of these characteristics and how they relate to the design of our so<ware would be useful for readers. We have added this paragraph in the discussion:

      “Pynapple was developed to be lightweight, stable, and simple. As simplicity does not necessarily imply backward compatibility (i.e. long-term stability of the code), Pynapple main objects and their properties will remain the same for the foreseeable future, even if the code in the backend may eventually change (e.g. not relying on Pandas in future version). The small number of external dependencies also decrease the need to adapt the code to new versions of external packages. This approach favors long-term backward compatibility.”

      Page 2

      • The authors wrote -

      "Despite this rapid progress, data analysis o<en relies on custom-made, lab-specific code, which is susceptible to error and can be difficult to compare across research groups."

      It would be helpful to add that custom-made, lab-specific code can lead to a violation of FAIR principles (https://en.wikipedia.org/wiki/FAIR_datadata). More generally, any package can have errors, so it would be helpful to explain any testing regiments or other approach the authors have taken to ensure that their code is error-free.

      We understand the importance of the FAIR principles for data sharing. However, Pynapple was not designed to handle data through their pre-processing. The only aspect that is somehow covered by the FAIR principles is the interoperability, but again, it is a requirement for the data to interoperate with different storage and analysis pipelines, not of the analysis framework itself. Unlike custom-made code, Pynapple will make interoperability easier, as, in theory, once the required data loaders are available, any analysis could be run on any dataset. We have added the following sentence to the discussion:

      “Data in neuroscience vary widely in their structure, size, and need for pre-processing. Pynapple is built around the idea that raw data has already been pre-processed (for example, spike sorting and ROI detection). According to the FAIR principles, pre-processed data should interoperate across different analysis pipelines. Pynapple makes this interoperability possible as, once the data are loaded in the Pynapple framework, the same code can be used to analyze different datasets”

      • The authors wrote -

      "While several toolboxes are available to perform neuronal data analysis ti–11,2ti (see ref. 29 for review), most of these programs focus on producing high-level analysis from specified types of data and do not offer the versatility required for rapidly-changing analytical methods and experimental methods."

      Here it would be helpful if the authors could give a more specific example or explain why this is problematic enough to be a concern. Users may not see a problem with high-level analysis or using specific data types.

      Again, we apologize for not fully elaborating upon our goals here. Our intention was to point out that toolboxes o<en focus on one particular case of high-level analysis. In many cases, such packages lack low level analysis features or the flexibility to derive new analysis pipelines quickly and effortlessly. Users can decide to use low-level packages such as Pandas, but in that case, the learning curve can be steep for users with low, if any, computational background. The simplicity of Pynapple, and the set of examples and notebooks, make it possible for individuals who start coding to be quickly able to analyze their data.

      As we do not want to be too specific at this point of the manuscript (second paragraph of the intro) and as we have clarified many of the aspects of the toolbox in the new revised version, we have only added the following sentence to the paragraph:

      “Users can decide to use low-level data manipulation packages such as Pandas, but in that case, the learning curve can be steep for users with low, if any, computational background.”

      • The authors wrote -

      "To meet these needs, a general toolbox for data analysis must be designed with a few principles in mind"

      Toolboxes based on many different principles can solve problems. It is likely more accurate to say that the authors designed their toolbox with a particular set of principles in mind. A clear description of those principles (as mentioned in the comment above) would help the reader understand why the specific choices made are beneficial.

      We agree that these are not “universal” principles and clearly more the principles we had in mind when we designed the package. We have clarified these principles and made clear that these are personal point of views.

      We have rephrased the following paragraph:

      “To meet these needs, we designed Pynapple, a general toolbox for data analysis in systems Neuroscience with a few principles in mind.“

      • The authors wrote -

      "The first property of such a toolbox is that it should be object-oriented, organizing so<ware around data."

      What facts make this true? For example, React is a web development library. A common approach to using this library is to use Hooks (essentially a collection of functions). This is becoming more popular than the previous approach of using Components (a collection of classes). This is an example of how Object-oriented programming is not always the best solution. In some cases, for example, object- oriented coding can cause problems (e.g. it can be hard to find the place where a given function is defined and to figure out which version is being used given complex inheritance structures.)

      In general, key selling points of object-oriented programming are extension, inheritance, and encapsulation. If the authors want to retain this text (which would be entirely reasonable), it would be helpful if they explained clearly how an object-oriented approach enables these functions and why they are critical for this application in particular.

      The referee makes a particularly important point. We are aware of the limits of OOP, especially when these objects become over-complex, and that the inheritance become unclear.

      We have clarified our goal here. We believe that in our case, OOP is powerful and, overall, is less error- prone that a collection of functions. The reasons are the following:

      An object-oriented approach facilitates better interactions between objects. By encapsulating data and behavior within objects, object-oriented programming promotes clear and well-defined interfaces between objects. This results in more structured and manageable code, as objects communicate with each other through these well-defined interfaces. Such improved interactions lead to increased code reliability.

      Inheritance, a key concept in object-oriented programming, allows for the inheritance of properties. One important example of how inheritance is crucial in the Pynapple framework is the time support of Pynapple objects. It determines the valid epoch on which the object is defined. This property needs to be carried over during different manipulations of the object. Without OOP, this property could easily be forgotten, resulting in erroneous conclusions for many types of analysis. The simplest case is the average rate of a TS object: the rate must be computed on the time support ( a property of TS objects), not the beginning to the end of the recording (or of a specific epoch, independent of the TS). Finally, it is easier to access and manipulate the meta information of a Pynapple object than without using objects.

      • The authors wrote -

      "drastically diminishing the odds of a coding error"

      This seems a bit strong here. Perhaps "reducing the odds" would be more accurate.

      We agree. Now changed.

      Page 3

      • The authors wrote -

      ". Another property of an efficient toolbox is that as much data as possible should be captured by only a small number of objects This ensures that the same code can be used for various datasets and eliminates the need of adapting the structure"

      It may be better to write something like - "Objects have a collection of preset variables/values that are well suited for general use and are very flexible." Capturing "as much data as possible" may be confusing, because it's not the amount that this helps with but rather the variety.

      We thank the referee for this remark. We have rephrased this sentence as follows:

      “Another property of an efficient toolbox is that a small number of objects could virtually represents all possible data streams in neuroscience, instead of objects made for specific physiological processes (e.g. spike trains).”

      • The authors wrote -

      "The properties listed above ensure the long-term stability of a toolbox, a crucial aspect for maintaining the code repository. Toolboxes built around these principles will be maximally flexible and will have the most general application"

      There are two issues with this statement. First, ensuring long-term stability is only possible with a long- term commitment of time and resources to ensure that that code remains functional as the underlying code base (python versions, etc.) changes. If that is something you are commisng to, it would be great to make that clear. If not, these statements need to be less firm.

      Second, it is not clear how these properties were arrived at in the first place. There are things like the FAIR Principles which could provide an organizing framework, ideally when combined with good so<ware engineering practices, and if some more systematic discussion of these properties and their justification could be added, it would help the field think about this issue more clearly.

      The referee makes a valid point that ensuring long-term stability requires a long-term commitment of time and resources to maintain the code as the underlying technology evolves. While we cannot make guarantees about the future of Pynapple, we believe that one of the best ways to ensure long-term stability is by fostering a strong community of users and contributors who can provide ongoing support and development. By promoting open-source collaboration and encouraging community involvement, we hope to create a sustainable ecosystem around Pynapple that can adapt to changes in technology and scientific practices over time. Ultimately, the longevity of any scientific tool depends on its adoption and use by the research community, and we hope that Pynapple can provide value to neuroscience researchers and continue to evolve and improve as the field progresses.

      It is noteworthy that the first author, and main developer of the package, has now been hired as a data scientist at the Center for Computational Neuroscience, Flatiron Institute, to explicitly continue the development of the tool and build a community of users and contributors.

      • The authors wrote -

      "each with a limited number of methods..."

      This may give the impression that the functionality is limited, so rephrasing may be helpful.

      Indeed! We have now rephrased this sentence:

      “The core of Pynapple is five versatile timeseries objects, whose methods make it possible to intuitively manipulate and analyze the data.”

      • The authors wrote that object-oriented coding

      "limits the chances of coding error"

      This is not always the case, but if it is the case here, it would be helpful if the authors explain exactly how it helps to use object-oriented approaches for this package.

      We agree with the referee that it is not always the case. As we explained above, we believe it is less error-prone that a collection of functions. Quite o<en, it also makes it easier to debug. We have changed this sentence with the following one:

      “Because objects are designed to be self-contained and interact with each other through well-defined methods, users are less likely to make errors when using them. This is because objects can enforce their own internal consistency, reducing the chances of data inconsistencies or unexpected behavior. Overall, OOP is a powerful tool for managing complexity and reducing errors in scientific programming.”

      • Fig 1

      In object-oriented programming, a class is a blueprint for the classes that inherit it. Instantiating that<br /> class creates an object. An object contains any or all of these - data, methods, and events. The figure could be improved if it maintained these organizational principles as figure properties.

      We agree with the referee’s remark regarding the logic of objects instantiation but how this could be incorporated in Fig. 1 without making it too complex is unclear. Here, objects are instantiated from the first to the second column. We have not provided details about the parent objects, as we believe these details are not important for reader comprehension. In its present form, the objects are inherited from Pandas objects, but it is possible that a future version is based on something else. For the users, this will be transparent as the toolbox is designed in such a way that only the methods that are specific to Pynapple are needed to do most computation, while only expert programmers may be interested in using Pandas functionalities.

      • The authors wrote that Pynapple does -

      "not depend on any external package"

      As mentioned above, this is not true. It depends on Numpy and likely other packages, and this should be explained. It is perfectly reasonable to say that it depends on only a few other packages.

      As said above, we have now clarified this claim.

      Page 5.

      • The authors wrote -

      "represent arrays of Ts and Tsd"

      For a knowledgeable reader's reference, it would be helpful to refer to these either as Numpy arrays (at least at first when they are defined) or as lists if they are native python objects.

      Indeed, using the word “arrays” here could be confusing because of Numpy arrays. We have changed this term with “groups”.

      • The authors wrote -

      "Pynapple is built with objects from the Pandas library ... Pynapple objects inherit the computational stability and flexibility"

      Here a definition of stability would be useful. Is it the case that by stability you mean "does not change o<en"? Or is some other meaning of stability implied?

      Yes, this is exactly what we meant when referring to the stability of Pandas. We have added the following precision:

      “As such, Pynapple objects inherit the long-term consistency of the code and the computational flexibility computational stability and flexibility from this widely used package.”

      Page 6

      • Fig 2

      In Fig 2 A and B, the illustrations are good. It would also be very helpful to use toy code examples to illustrate how Pynapple will be used to carry out on a sample analysis-problem so that potential users can see what would need to be done.

      We appreciate the kind works. Regarding the toy code, this is what we tried to do in Fig. 4. Instead of including the code directly in the paper, which does not seem a modern way of doing this, we now refer to the online notebooks that reproduce all panels of Figure 4.

      • The authors wrote -

      "While these objects and methods are relatively few"

      In object-oriented programming, objects contain methods. If a method is not in an object, it is not technically a method but a function. It would be helpful if the authors made sure their terminology is accurate, perhaps by saying something like "While there are relatively few objects, and while each object has relatively few methods ... "

      We agree with the referee, we have changed the sentence accordingly.

      • The authors wrote -

      "if not implemented correctly, they can be both computationally intensive and highly susceptible to user error"

      Here the authors are using "correctly" to refer to two things - "accuracy" - gesng the right answer, and "efficiency" - gesng to that answer with relatively less computation. It would be clearer if they split out those two concepts in the phrasing.

      Indeed, we used the term to cover both aspects of the problem, leading to the two possible issues cited in the second part of the sentence. We have changed the sentence following the referee’s advice:

      “While there are relatively few objects, and while each object has relatively few methods, they are the foundation of almost any analysis in systems neuroscience. However, if not implemented efficiently, they can be computationally intensive and if not implemented accurately, they are highly susceptible to user error.”

      • In the next sentence the authors wrote -

      "Pynapple addresses this concern."

      This statement would benefit from just additional text explaining how the concern is addressed.

      We thank the referee for the suggestion. We have changed the sentence to this one: “The implementation of core features in Pynapple addresses the concerns of efficiency and accuracy”

      Page 9

      • The authors wrote -

      This is implemented via a set of specialized object subclasses of the BaseLoader class. To avoid code redundancy, these I/O classes inherit the properties of the BaseLoader class. "

      From a programming perspective, the point of a base class is to avoid redundancy, so it might be better to just mention that this avoids the need to redefine I/O operations in each class.

      We have rephrased the sentence as follows:

      “This is implemented via a set of specialized object subclasses of the BaseLoader class, avoiding the need to redefine I/O operations in each subclass"

      • The authors wrote -

      "classes are unique and independent from each other, ensuring stability"

      How do classes being unique and independent ensure stability? Perhaps here again the misunderstanding is due to the lack of a definition of stability.

      We thank the referee for the remark. We first changed “stability” for “long-term backward compatibility”. We further added the following sentence to clarify this claim. “For instance, if the spike sorting tool Phy changes its output in the future, this would not affect the “Neurosuite” IO class as they are independent of each other. This allows each tool to be updated or modified independently, without requiring changes to the other tool or the overall data format.”

      • The authors wrote -

      "Using preexisting code to load data in a specific manner instead of rewriting already existing functions avoids preprocessing errors"

      Here it might be helpful to use the lingo of Object-oriented programming. (e.g. inheritance and polymorphism). Defining these terms for a neuroscience audience would be useful as well.

      We do not think it is necessary to use too much technical term in this manuscript. However, this sentence was indeed confusing. We have now simplified it:

      “[…], users can develop their own custom I/O using available template classes. Pynapple already includes several of such templates and we expect this collection to grow in the future.”

      Page 10

      • The authors wrote -

      "These analyses are powerful because they are able to describe the relationships between time series objects while requiring the fewest number of parameters to be set by the user."

      It is not clear that this makes for a powerful analysis as opposed to an easy-to-use analysis.

      We have changed “powerful” with “easy to use".

      Page 12

      "they are built-in and thus do not have any external dependencies"

      If the authors want to retain this, it would be helpful to explain (perhaps in the introduction) why having fewer external dependencies is useful. And is it true that these functions use only base python classes?

      We have rephrased this sentence as follows:

      “they are for the most part built-in and only depend on a few common external packages, ensuring that they can be used stand-alone without relying on packages that are at risk of not being maintained or of not being compatible in the near future.”

      Other comments:

      • It would be helpful, as mentioned in the public review, to frame this work in the broader context of what is needed to go from data to scientific results so that people understand what this package does and does not provide.

      We have added the following sentence to the discussion to make sure readers understand:

      “The path from data collection to reliable results involves a number of critical steps: exploratory data analysis, development of an analysis pipeline that can involve custom-made developed processing steps, and ideally the use of that pipeline and others to replicate the results. Pynapple provides a platform for these steps.”

      • It would also be helpful to describe the Pynapple so<ware ecosystem as something that readers could contribute to. Note here that GNU may not be a good license. Technically, GNU requires any changes users make to Pynapple for their internal needs to be offered back to the Pynapple team. Some labs may find that burdensome or unacceptable. A workaround would be to have GNU and MIT licenses.

      The main restriction of the GPL license is that if the code is changed by others and released, a similar license should be used, so that it cannot become proprietary. We therefore stick to this choice of license.

      We would be more than happy to receive contributions from the community. To note, several users outside the lab have already contributed. We have added the following sentence in the introduction:

      “As all users are also invited to contribute to the Pynapple ecosystem, this framework also provides a foundation upon which novel analyses can be shared and collectively built by the neuroscience community.”

      • This so<ware shares some similarities with the nelpy package, and some mention of that package would be appropriate.

      While we acknowledge the reviewer's observation that Nelpy is a similar package to Pynapple, there are several important differences between the two.

      First, Nelpy includes predefined objects such as SpikeTrain, BinnedSpikeTrain, and AnalogSignal, whereas Pynapple would use only Ts and Tsd for those. This design choice was made to provide greater flexibility and allow users to define their own data structures as needed.

      Second, Nelpy is primarily focused on electrophysiology data, whereas Pynapple is designed to handle a wider range of data types, including calcium imaging and behavioral data. This reflects our belief that the NWB format should be able to accommodate diverse experimental paradigms and modalities.

      Finally, while Nelpy offers visualization and high-level analysis tools tailored to electrophysiology, Pynapple takes a more general-purpose approach. We believe that users should be free to choose their own visualization and analysis tools based on their specific needs and preferences.

      The package has now been cited.

      Reviewer #2 (Public Review):

      Pynapple and Pynacollada have the potential to become very valuable and foundational tools for the analysis of neurophysiological data. NWB still has a steep learning curve and Pynapple offers a user- friendly toolset that can also serve as a wrapper for NWB.

      The scope of the manuscript is not clear to me, and the authors could help clarify if Pynacollada and other toolsets in the making become a future aspect of this paper (and Pynapple), or are the authors planning on building these as separate publications.

      The author writes that Pynapple can be used without the I/O layer, but the author should clarify how or if Pynapple may work outside NWB.

      Absolutely. Pynapple can be used for generic data analysis, with no requirement of specific inputs nor NWB data. For example, the lab is currently using it for a computational project in which the data are loaded from simple files (and not from full I/O functions as provided in the toolbox) for further analysis and figure generation.

      This was already noted in the manuscript, last paragraph of the section “Importing data from common and custom pipelines”

      “Third, users can still use Pynapple without using the I/O layer of Pynapple.”.

      We have added the following sentence in the discussion

      “To note, Pynapple can be used without the I/O layer and independent of NWB for generic, on-the-fly analysis of data.”

      This brings us to an important fundamental question. What are the advantages of the current approach, where data is imported into the Ts objects, compared to doing the data import into NWB files directly, and then making Pynapple secondary objects loaded from the NWB file? Does NWB natively have the ability to store the 5 object types or are they initialized on every load call?

      NWB and Pynapple are complimentary but not interdependent. NWB is meant to ensure long-term storage of data and as such contains a as much information as possible to describe the experiment. Pynapple does not use NWB to directly store the objects, however it can read from NWB to organize the data in Pynapple objects. Since the original version of this manuscript was submitted, new methods address this. Specifically, in the current beta version, each object now has a “save” method. Obviously, we are developing functions to load these objects as well. This does not depend on NWB but on npz, a Numpy specific file format. However, we believe it is a bit too premature to include these recent developments in the manuscript and prefer not to discuss this for now.

      Many of these functions and objects have a long history in MATLAB - which documents their usefulness, and I believe it would be fisng to put further stress on this aspect - what aspects already existed in MATLAB and what is completely novel. A widely used MATLAB toolset, the FMA toolbox (the Freely moving animal toolbox) has not been cited, which I believe is a mistake.

      We agree that the FMA toolbox should have been cited. This ha now been corrected.

      Pynapple was first developed in Matlab (it was then called TSToolbox). The first advantage is of course that Python is more accessible than Matlab. It has also been adopted by a large community of developers in data analysis and signal processing, which has become without a doubt much larger than the Matlab community, making it possible to find solutions online for virtually any problem one can have. Furthermore, in our experience, trainees are now unwilling to get training in Matlab.

      Yet, Python has drawbacks, which we are fully aware of. Matlab can be very computationally efficient, and old code can usually run without any change, even many years later.

      A limitation in using NWB files is its standardization with limited built-in options for derived data and additional metadata. How are derived data stored in the NWB files?

      NWB has predetermined a certain number of data containers, which are most common in systems neuroscience. It is theoretically possible to store any kind of data and associated metadata in NWB but this is difficult for a non-expert user. In addition, NWB does not allow data replacement, making is necessary to rewrite a whole new NWB file each time derived data are changed and stored. Therefore, we are currently addressing this issue as described above. Derived data and metadata will soon be easy to store and read.

      How is Pynapple handling an existing NWB dataset, where spikes, behavioral traces, and other data types have already been imported?

      This is an interesting point. In theory, Pynapple should be able to open a NWB file automatically, without providing much information. In fact, it is challenging to open a NWB file without knowing what to look for exactly and how the data were preprocessed. This would require adapting a I/O function for a specific NWB file. Unfortunately, we do not believe there is a universal solution to this problem. There are solutions being developed by others, for example NWB Widgets (NWB Widgets). We will keep an eye on this and see whether this could be adapted to create a universal NWB loader for Pynapple.

      Reviewer #2 (Recommendations For The Authors):

      Other tools and solutions are being developed by the NWB community. How will you make sure that these tools can take advantage of Pynapple and vice versa?

      We recognize the importance of collaboration within the NWB community and are committed to making sure that our tools can integrate seamlessly with other tools and solutions developed by the community.

      Regarding Pynapple specifically, we are designing it to be modular and flexible, with clear APIs and documentation, so that other tools can easily interface with it. One important thing is that we want to make sure Pynapple is not too dependent of another package or file format such as NWB. Ideally, Pynapple should be designed so that it is independent of the underlying data storage pipeline.

      Most of the tools that have been developed in the NWB community so far were designed for data visualisation and data conversion, something that Pynapple does not currently address. Multiple packages for behavioral analysis and exploration of electro/optophysiological datasets are compatible with the NWB format but do not provide additional solutions per se. They are complementary to Pynapple.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank you for your thorough review of the manuscript. We have taken all comments into account in the revised version of the manuscript. Please find below our detailed responses to your comments.

      eLife assessment

      This study reports useful information on the limits of the organotypic culture of neonatal mouse testes, which has been regarded as an experimental strategy that can be extended to humans in the clinical setting for the conservation and subsequent re-use of testicular tissue. The evidence that the culture of testicular fragments of 6.5-day-old mouse testes does not allow optimal differentiation of steroidogenic cells is compelling and would be useful to the scientific community in the field for further optimizations.

      Thank you for this assessment. We have carefully considered all comments and made the requested revisions to improve the manuscript.

      Reviewer #1 (Public Review):

      In this manuscript, the authors aimed to compare, from testis tissues at different ages from mice in vivo and after culture, multiple aspects of Leydig cells. These aspects included mRNA levels, proliferation, apoptosis, steroid levels, protein levels, etc. A lot of work was put into this manuscript in terms of experiments, systems, and approaches. However, as written the manuscript is incredibly difficult to follow. The Introduction and Results sections contain rather loosely organized lists of information that were altogether confusing. At the end of reading these sections, it was unclear what advance was provided by this work. The technical aspects of this work may be of interest to labs working on the specific topics of in vitro spermatogenesis for fertility preservation but fail to appeal to a broader readership. This may be best exemplified by the statements at the end of both the Abstract and Discussion which state that more work needs to be done to improve this system.

      As suggested, we have reworked the manuscript to make it clearer, more meaningful and more precise. We believe that this work may be of interest to a broader readership. Indeed, the development of a model of in vitro spermatogenesis could be of interest for labs working on the specific period of puberty initiation, on germ and somatic cell maturation and on steroidogenesis under physiological and pathological conditions, and could also be useful for testing the toxicity of cancer therapies, drugs, chemicals and environmental agents (e.g. endocrine disruptors) on the developing testis.

      There is a crucial unmet need to optimize the culture conditions for in vitro spermatogenesis. It is important to identify the deregulated molecular mechanisms leading to a decreased in vitro spermatogenic yield. Such results will be of great help to improve organotypic culture conditions. In the present study, we not only uncovered for the first time a failure in adult Leydig cell development, but also an alteration in the expression of several steroidogenic and steroid-metabolizing genes, which could explain the accumulation of progesterone and estradiol and the deficiency of androstenedione in cultured tissues. This hyperestrogenic and hypoandrogenic environment could explain, at least in part, the low efficiency of in vitro spermatogenesis. Furthermore, we show that the addition of hCG (LH homolog) is not sufficient to facilitate Leydig cell differentiation, restore steroidogenesis and improve sperm yield. These data provide valuable information for improving culture conditions. More fundamentally, this culture system could be a useful tool for identifying factors that are essential for the differentiation and functionality of adult Leydig cells during puberty initiation.

      Recommendations For The Authors:

      This reviewer appreciates that a lot of work was put into this manuscript in terms of experiments, systems, and approaches. However, the manuscript needs significant revision, and in this reviewer's opinion is not appropriate for a broader readership journal. The results seem rather incremental, and the topic is too specialized in its current format.

      The manuscript was significantly revised taking into account the reviewer’s comments. In addition, as mentioned above, the development of a model of in vitro spermatogenesis could have wider applications and be of interest to a broader audience.

      Comments for improvement, roughly in order of appearance:

      1) Abstract - would recommend condensing to hit the main points of the manuscript.

      The abstract has been condensed as suggested.

      2) Introduction, overall - this is a rather loosely organized list of information that is not synthesized or communicated in a meaningful way. It contains overstatements and lumps together findings from both mice and primates and thus several statements for the actions of these steroid hormones are inaccurate. The authors rely much too heavily upon reviews and need to replace those with a more scholarly approach of carefully reading and citing primary literature.

      The Introduction has been reorganized to make it clearer, more synthetic, more meaningful and more accurate. Only findings from rodents are presented. We carefully read the literature and replaced most of reviews by primary literature.

      3) Results - this section was extremely difficult to read and comprehend, as it's essentially a laundry list of measurements of mRNAs, steroids, cholesterols, and proteins that go up or down or don't change at multiple ages, both in vitro and in vivo. The section would be improved greatly by an organization with rationale and concluding statements to prepare the reader for the factoid-style data that are presented.

      As suggested, the Results section has been improved by an organization with rationale and concluding statements to make it easier to read and comprehend.

      4) 47 - is this approach going to both "preserve and restore"? Sounds more like it will allow for the production of offspring, but the other goals are not going to happen from the approach listed in the latter part of that sentence - so not really "fertility restoration" but more of an insurance program that sperm can be produced for ART

      Freezing of prepubertal testicular tissue, which contains spermatogonia, is a fertility preservation option proposed to prepubertal boys with cancer prior to highly gonadotoxic treatments. Several fertility restoration strategies, which aim to allow the production of spermatozoa from cryopreserved spermatogonia, are being developed, including in vitro spermatogenesis. This sentence has been rewritten.

      5) 62 - specify whether this "decreased expression" is mRNA or protein, and is this because of a loss of Sertoli cells?

      “Decreased expression” was replaced by “decreased mRNA levels”. The results we obtained in the cited study (Rondanino et al., 2017) suggest that the decrease in Rhox5 mRNA levels is not the consequence of a change in the proportion of Sertoli cells but reflects an alteration in Rhox5 gene expression. In Figure 6U of the present study, we show indeed that there is no loss of Sertoli cells in organotypic cultures.

      6) 66 - what is "the first wave of mouse in vitro spermatogenesis"? Are these cultures from the first wave of mouse in vivo spermatogenesis, or is there a second wave of in vitro spermatogenesis? Please specify

      In the mouse, the first entry into meiosis occurs around 8-10 dpp and the first spermatozoa are produced at around 35 dpp: this is the first wave of spermatogenesis which takes place at the onset of puberty. By culturing 6 dpp-old testes for 30 days, our aim is to reproduce in vitro all the stages of this first wave of spermatogenesis, i.e. entry into meiosis, completion of meiosis and spermiogenesis.

      In the cited study (Pence et al., 2019), the authors cultured 5 dpp testes for 35 to 49 days and observed a decline in intratesticular testosterone levels in the cultured tissues, i.e. after the end of the first spermatogenic wave, compared to in vivo controls. Our sentence has been rewritten to make it clearer.

      7) 78 - is there a difference in T production by Fetal vs Adult LCs? It is this reviewer's understanding that the levels of T around birth in mice (and then a few months after birth in humans) are quite high, similar to adults. So, what are the authors suggesting here by providing the list of expressed genes in these two LC populations?

      As mentioned in the Introduction section, 17β-HSD3 – the enzyme responsible for the conversion of androstenedione to T – is not expressed in fetal Leydig cells but is expressed in adult Leydig cells. Therefore, unlike adult Leydig cells, fetal Leydig cells are not capable of synthesizing T.

      In the present study, we investigated steroidogenesis but also wondered which types of Leydig cells could be detected under in vitro conditions. It is therefore important to explain to the reader which steroidogenic proteins are expressed by the different Leydig cell populations.

      As described in O’Shaughnessy et al., 2002, levels of intratesticular T decline after birth, being very low between 10 and 20 dpp. Then, T levels increase. At 25 dpp, T levels are close to those observed at 1 dpp. T levels increase more than 16-fold between 25 and 30 dpp and then double between 30 dpp and adulthood. Therefore, intratesticular T levels around birth in mice are not as high as in adults, but are about 36-fold lower after birth than in adulthood. It has been shown that in the fetal testis, the conversion of androstenedione produced by fetal Leydig cells is achieved by the adjacent fetal Sertoli cells that express 17β-HSD3 (O’Shaughnessy et al., 2000; Shima et al., 2013). During postnatal development however, Sertoli cells lose the expression of 17β-HSD3 (O’Shaughnessy et al., 2000).

      8) 79 -99 - can the authors revise this long list of information to provide a summary of what they are trying to communicate to the reader? What is the intention of this information?

      This paragraph has been modified to make it clearer and more synthetic. As different Leydig cell markers are presented in the Results section, it is important to introduce the reader to the different types of Leydig cells, the proteins expressed by these cells and the factors involved in their proliferation and differentiation.

      9) 101-2 - replace "involved in" with a more meaningful word - and it is this reviewer's understanding that T has not been shown convincingly to have much of a role in spermatogonial development, at least in mice - that statement is likely true in primates, but not mice; provide primary literature citations to be more precise, rather than a broad review that covers multiple species

      “involved in” was replaced by “is essential for many aspects of spermatogenesis, including”. Moreover, we removed “spermatogonial proliferation and differentiation” and provide primary literature citations to be more precise.

      10) 105-7 - similar concern for E as for T, above - KO mouse models for ERalpha and beta did not show defects in spermatogenesis as described - not sure what evidence the authors are specifically referring to here - cite primary literature rather than a review on Vitamin D + estrogen

      We agree that the question of whether estrogens play a direct role in spermatogenesis was unanswered by the ER null mice. However, estrogens have been shown to be important for the long-term maintenance of spermatogenesis in the ArKO mouse (Robertson et al., 1999) and for the progression of normal germ cell development in the ENERKI mouse (Sinkevicius et al., 2009). This sentence has been reworded and primary literature is cited to be more precise.

      11) 113-4 - there is no convincing evidence this reviewer is aware of that the AR is expressed in male germ cells, and therefore T actions on germ cells are indirect, through Sertoli cells and perhaps PTMs; if there is some, this sentence needs a citation showing that

      We agree that there is no evidence that AR is expressed in male germ cells and that T acts indirectly on germ cells. This sentence has been rewritten.

      12) 114-6 - this is untrue - nowhere in that paper was testosterone or androgen even mentioned!

      This reference has been removed. We apologize for this mistake.

      13) 116-7 - again, E actions through the ERs are thought to be indirect in the testis, not acting on germ cells; if this is incorrect, please add supportive citations and explain; replace "involved" with a more meaningful word; Rhox5 has a very minor role in spermatogenesis

      In contrast to androgen receptors, which are localized in somatic cells, estrogen receptors have been found in most testicular cells, including germ cells. The studies reporting the expression of estrogen receptors in germ cells are cited in the Introduction section. The word “involved” was replaced by “promotes”.

      Rhox5 (also known as Pem) has not a very minor role in spermatogenesis. On the contrary, its expression is crucial for normal spermatogenesis and sperm maturation, as loss of Rhox5 in male mice leads to reduced fertility, increased germ cell apoptosis, decreased sperm count and decreased sperm motility (MacLean et al., 2005).

      14) 117 - Ref 29 does not support the statement about Rhox5's role in spermatogenesis

      The reference (MacLean et al., 2005), supporting the statement about Rhox5’s role in spermatogenesis, was added in the manuscript.

      15) 120 - Does FAAH have a protective role in that it is anti-apoptotic? Or just required for some other Sertoli cell function? Should re-word to be more specific.

      FAAH (fatty acid amide hydrolase), whose expression is stimulated by estrogens, has been shown to have a crucial role in promoting survival of Sertoli cells by degrading anandamide (N-arachidonoylethanolamine), an endocannabinoid which has a pro-apoptotic activity (Rossi et al., 2007).

      The sentence has been reworded to be more specific.

      16) 127 - should complete the Introduction with a sentence summarizing what was done and found, for reader clarity

      The Introduction has been completed for reader clarity.

      17) 136 - misspelled the procedure

      Orchidectomy was replaced by orchiectomy.

      18) Mice - why use half-day nomenclature for postpartum mice? This is not standard in the literature.

      Half-day nomenclature was used due to the uncertainty of the time of birth, which mostly takes place during the night. Since this is not standard in the literature, half-day nomenclature was removed in the entire manuscript.

      19) 172-3 - the half-life of RA is very short (<1 hr), and it is light-sensitive. This addition every 8 days means that retinoids are present for a very minimal window of time - are the authors sure retinoids have no requirement elsewhere during spermatogenesis? And in the literature, the measured pulse of RA in the mouse lasts >40 hours (stages VII-IX)...

      RA is mandatory for proper spermatogenesis and is needed many times during spermatogenesis (for review, see Schleif et al., 2022): RA is involved in spermatogonial differentiation, pre-meiotic activation and meiotic completion, establishment of the blood-testis barrier and spermiation. In our study, we did not add RA in the culture medium but retinol, the precursor of RA. Indeed, our previous studies have shown beneficial effects of retinol on in vitro spermatogenesis, including an increased production of spermatids with less nuclear alterations and DNA damage (Arkoun et al., 2015; Dumont et al., 2016).

      The reason we added retinol (and not RA, which has a very short half-life) in this study and in our previous studies is that it can be oxidized into RA but also be stored in Sertoli cells in the form of retinyl esters for later use. As retinol is photosensitive, handling and storage were performed in tubes covered with aluminum foil, which protects from direct light exposure.

      20) 362 - Start the Results section with a broader statement(s) that prepares the readers rather than jumping into specific experiments; it would be helpful for readers to have concluding sentences included as well for readers to navigate the Results section.

      As suggested, the Results section has been improved by an organization with rationale and concluding sentences to facilitate reading.

      21) 364 - KI67 is a marker of.

      Ki67 is widely used as a cell proliferation marker.

      22) 367 - replace "involved".

      “involved” was replaced by “necessary for”.

      23) What intensity thresholds were used to define a cell as positive or negative for a given marker? And there seemed to be no mention of controls - especially no primary antibody controls. This is a significant oversight if these were not done in parallel with every single immunostaining experiment.

      We did not apply intensity thresholds. Cells presenting detectable labeling were defined as positive, while unlabeled cells were defined as negative.

      Negative controls, performed by omitting the primary antibodies, were of course done in parallel to each immunostaining and are presented in Figure 1A, Figure 2J and Figure 5C. The mention of negative controls has been added in the Materials and methods section.

      24) 388 - INSL3 - is this referring to mRNA or protein? Protein nomenclature is used...

      INSL3 is here referring to the protein, whose concentrations were measured by radioimmunoassay.

      25) 402 - typo.

      “expect” was replaced by “except”.

      26) 409 - do mRNA levels really "determine the testicular steroidogenic potential"??

      This sentence has been reworded: “determine the testicular steroidogenic potential” was replaced by “highlight a potential deregulation of their expression”.

      27) 410 - western should not be capitalized.

      Western Blot was replaced by western blot in the entire manuscript.

      28) 405-28 - this reviewer is underwhelmed by qRT-PCR results for a handful of markers - what is the purpose? The results do not prove anything about the function of the system.

      As the differentiation of Leydig cells is not fully completed in organotypic cultures, we wanted to know which actors of the steroidogenic pathway show deregulated expression in vitro in comparison to physiological conditions, and thus which steps of the steroid hormone biosynthesis pathway may be impaired. We found that the expression of several genes encoding steroidogenic enzymes was decreased in vitro, notably that of Cyp17a1, necessary for the conversion of progesterone to androstenedione. Transcript levels of Hsd17b2, encoding an enzyme that converts estradiol to estrone and testosterone to androstenedione, were also decreased at D30.

      Our data therefore show that the expression of several steroidogenic genes and steroid metabolizing genes is deregulated in organotypic cultures but we agree that these results do not prove anything about the function of the system.

      We then found an accumulation of estradiol and progesterone, a decrease in androstenedione and unchanged testosterone levels in cultured tissues. The elevation in progesterone and the reduction in androstenedione in in vitro matured tissues could arise from the reduced expression of Cyp17a1. In addition, reduced Hsd17b2 transcript levels may explain why estradiol levels remain elevated in cultures while testosterone levels are similar to controls and androstenedione levels are low.

      29) How do the authors interpret data gleaned from tissues containing a variably-sized necrotic core?

      In the present study, the central necrotic area was consistent between all samples and variables: it represents on average 16-27% of the explants.

      As in our previous publications and recent RNA-seq analyses (Rondanino et al., 2017; Oblette et al., 2019; Dumont et al., 2023), the central necrotic area was removed so that transcript and protein levels in the healthy part of the samples (i.e. where in vitro spermatogenesis occurs) could be measured and compared with in vivo controls. In order to be able to compare the healthy part of the in vitro matured tissues with in vivo controls, transcript levels were normalized to housekeeping genes (Gapdh and Actb) or to the Leydig cell-specific gene Hsd3b1 while protein levels were normalized to ACTB or to 3β-HSD.

      30) 520 - after reading to this point, this reviewer was left confused and wondering why any of this is important to the reader unless that reader specifically works on this topic. The way the data were presented makes it nearly impossible for the reader to keep any of the data in their mind as they read. It's a seemingly endless list of ups and downs of many things under many conditions. What is the point of all of this? How will it advance our understanding of spermatogenesis? Or improve in vitro culture? Or help prepubertal cancer patients? Presumably, that will be explained in the Discussion, but at this point, this reviewer honestly has no idea what this all means. Why is this important??

      We have modified the Results section by including rationale and concluding statements to make it easier to read and follow for all readers, not necessarily for those working on this topic.

      As mentioned above, the identification of the molecular mechanisms that are deregulated in vitro will give us important insights for the optimization of the culture system. The development of an optimized model of in vitro spermatogenesis could lead to several applications, including improving our knowledge of the regulation of spermatogenesis during pubertal development.

      In this study, our main findings are that the differentiation of the adult Leydig cell lineage, steroid biosynthesis, metabolism and signaling are altered in organotypic cultures, leading to a hyperestrogenic and hypoandrogenic environment. In addition, we show that the presence of an LH homolog, known to be critical to adult Leydig cell differentiation and to stimulate steroidogenesis, does not rescue the expression of adult Leydig cell markers and of several steroidogenic genes, steroid metabolizing genes and steroid target genes. Other factors required for Leydig cell maturation and functionality will have to be tested in the future on cultured testicular tissues. Improvements to this in vitro maturation procedure in animal models may be useful for future cultures of human testicular biopsies, although we are aware that more work needs to be done before prepubertal cancer patients can benefit from this in vitro maturation approach.

      31) 619-20 - this sort of summarizes this reviewer's overall opinion of the manuscript. Not much seems to have been learned here that would justify publication in a broad readership journal like eLife. More work needs to be done to provide that sort of meaningful advance. The current work, with considerable re-writing to improve accuracy and clarity, is much better suited to a specialty journal where others who are working on this specific topic will appreciate its value.

      We have carefully considered the reviewer’s comments and modified the manuscript to improve accuracy and clarity. We understand the reviewer’s point of view, but we believe that this work may be of interest not only to labs working on fertility preservation and restoration, but also to those working on puberty initiation, germ and somatic cell maturation, steroidogenesis under physiological and pathological conditions, and on the effect of cancer therapies, drugs, chemicals and environmental agents (e.g. endocrine disruptors) on the developing testis.

      As mentioned above, we not only uncovered for the first time a failure in adult Leydig cell development, but also an alteration in the expression of several steroidogenic and steroid-metabolizing genes, which could explain the accumulation of progesterone and estradiol and the deficiency of androstenedione in cultured tissues. This hyperestrogenic and hypoandrogenic environment could explain, at least in part, the low efficiency of in vitro spermatogenesis. Furthermore, we show that the addition of hCG (LH homolog) is not sufficient to facilitate Leydig cell differentiation, restore steroidogenesis and improve sperm yield. These data provide valuable information for improving culture conditions. More fundamentally, this culture system could be a useful tool for identifying factors that are essential for the differentiation and functionality of adult Leydig cells during puberty initiation.

      32) Why are the figures repeated at the end of the manuscript?

      During the submission process, our bioRxiv preprint (which contains the figures) was merged with the same but higher quality figures.

      Reviewer #2 (Public Review):

      Preserving and restoring the fertility of prepubertal patients undergoing gonadotoxic treatments involves freezing testicular fragments and waking them up in a culture in the context of medically assisted procreation. This implies that spermatogenesis must be fully reproduced ex vivo. The parameters of this type of culture must be validated using non-human models. In this article, the authors make an extensive study of the quality of the organotypic culture of neonatal mouse testes, paying particular attention to the differentiation and endocrine function of Leydig cells. They show that fetal Leydig cells present at the start of culture fail to complete the differentiation process into adult Leydig cells, which has an impact on the nature of the steroids produced and even on the signaling of these hormones.

      The authors make an extensive study of the different populations of Leydig cells which are supposed to succeed each other during the first month of life of the mouse to end up with a population of adult and fully functional cells. The authors combine quantitative in situ studies with more global analyzes (RT-QtPCR Western blot, hormonal assays), which range from gene to hormone. This study is well written and illustrated, the description of the methods is honest, the analyses systematic, and are accompanied by multiple relevant control conditions.

      Since the aim of the study was to study Leydig cell differentiation in neonatal mouse testis cultures, the study is well conceived, the results answer the initial question and are not over-interpreted.

      My main concern is to understand why the authors have undertaken so much work when they mention RNA extractions and western blot, that the necrotic central part had to be carefully removed. There is no information on how this parameter was considered for immunohistochemistry and steroid measurements. The authors describe the initial material as a quarter testis, but they don't mention the resulting size of the fragment. A brief review of the literature shows that if often the culture medium is crucial for the quality of the culture (and in particular the supplementations as discussed by the authors here), the size of the fragments is also a determining factor, especially for long cultures. The main limitation of the study is therefore that the authors cannot exclude that central necrosis can have harmful effects on the survival and/or the growth and/or the differentiation of the testis in culture. In this sense, the general interpretation that the authors make of their work is correct, the culture conditions are not optimized.

      When using the organotypic culture system at a gas-liquid interphase, the central part of the testicular tissue becomes necrotic. As previously reported (Komeya et al., 2016), the central region receives insufficient nutrients and oxygen. In vitro spermatogenesis therefore only occurs in the seminiferous tubules present in the peripheral region. As in our previous publications and recent RNA-seq analyses (Rondanino et al., 2017; Oblette et al., 2019; Dumont et al., 2023), the central necrotic area was removed so that transcript and protein levels in the healthy part of the samples (i.e. where in vitro spermatogenesis occurs) could be measured and compared with in vivo controls. For histological and immunohistochemical analyses, only seminiferous tubules located at the periphery of the cultured fragments (outside of the necrotic region) were analyzed. Steroid measurements were performed on the entire fragments.

      The initial material was indeed a quarter testis, which represents approximately 0.75 mm3. No growth of the fragments was observed during the organotypic culture period (Figure 8-figure supplement 1). We agree with the reviewer that the composition of the culture medium is not the only parameter to be considered for the quality of the culture and that the size of the fragments is also a determining factor. We previously determined that 0.75 mm3 was the most appropriate size for mouse in vitro spermatogenesis (Dumont et al., 2016). We do not exclude at all that central necrosis can have harmful effects on the survival and/or the growth and/or the differentiation of the testis in culture. Optimization of the culture medium and culture design (so that the tissue center receives sufficient nutrients and oxygen) will be necessary to increase the yield of in vitro spermatogenesis.

      Organotypic culture is currently trying to cross the doors of academic research laboratories to become a clinical tool, but it requires many adjustments and many quality controls. This study shows a perfect example of the pitfall often associated with this approach. The road is still long, but every piece of information is useful.

      Reviewer #3 (Public Review):

      Moutard, Laura, et al. investigated the gene expression and functional aspects of Leydig cells in a cryopreservation/long-term culture system. The authors found that critical genetic markers for Leydig cells were diminished when compared to the in-vivo testis. The testis also showed less androgen production and androgen responsiveness. Although they did not produce normal testosterone concentrations in basal media conditions, the cultured testis still remained highly responsive to gonadotrophin exposure, exhibiting a large increase in androgen production. Even after the hCG-dependent increase in testosterone, genetic markers of Leydig cells remained low, which means there is still a missing factor in the culture media that facilitates proper Leydig cell differentiation. Optimizing this testis culture protocol to help maintain proper Leydig cell differentiation could be useful for future human testis biopsy cultures, which will help preserve fertility and child cancer patients.

      Methods: In line 226, there is mention that the central necrotic area was carefully removed before RNA extraction. This is particularly problematic for the inference of these results, especially for the RT-qPCR data. Was the central necrotic area consistent between all samples and variables (16 and 30FT)? How big was the area? This makes the in-vivo testis not a proper control for all comparisons. Leydig cells are not evenly distributed throughout the testis. A lot of Leydig cells can be found toward the center of the gonad, so the results might be driven by the loss of this region of the testis.

      When using the organotypic culture system at a gas-liquid interphase, the central part of the testicular tissue becomes necrotic. As previously reported (Komeya et al., 2016), the central region receives insufficient nutrients and oxygen. In vitro spermatogenesis therefore only occurs in the seminiferous tubules present in the peripheral region. As in our previous publications and recent RNA-seq analyses (Rondanino et al., 2017; Oblette et al., 2019; Dumont et al., 2023), the central necrotic area was removed so that transcript levels in the healthy part of the samples (i.e. where in vitro spermatogenesis occurs) could be measured and compared with in vivo controls. In order to be able to compare the healthy part of the in vitro matured tissues with in vivo controls, transcript levels of the selected genes were normalized to housekeeping genes (Gapdh and Actb) or to the Leydig cell-specific gene Hsd3b1.

      The central necrotic area was consistent between all samples and variables: it represents on average 16-27% of the explants.

      Moreover, we would like to point out that the gonads were cut into four fragments before in vitro cultures. It is therefore the central part of the cultured explants that was removed and not the central part of the gonads. The central part of the gonads was thus included in our analyses.

      What did the morphology of the testis look like after culturing for 16 and 30 days? These images will help confirm that the culturing method is like the Nature paper Sato et al. 2011 and also give a sense of how big the necrotic region was and how it varied with culturing time.

      Images showing mouse testicular tissues cultured for 16 and 30 days are presented in Figure 8-figure supplement 1. The cultured tissues resemble those shown by Sato et al., 2011. As mentioned above, the central necrotic area represents on average 16-27% of the explants. No significant difference in the area of the necrotic region was found between the two culture time points.

      There are multiple comparisons being made. Bonferroni corrections on p-value should be done.

      Bonferroni corrections are used when multiple comparisons are conducted. As mentioned in the Materials and methods section, multiple comparisons were not made in this study. Indeed, the non-parametric Mann-Whitney test was used to compare two conditions: in vitro vs in vivo (D16 FT vs 22 dpp, D16 CSF vs 22 dpp, D30 FT vs 36 dpp, D30 CSF vs 36 dpp, D30 FT + hCG vs 36 dpp, D30 CSF + hCG vs 36 dpp), cultures of fresh vs frozen tissues (6 dpp vs 6 dpp CSF, D16 FT vs D16 CSF, D30 FT vs D30 CSF, D30 FT + hCG vs D30 CSF + hCG) and cultures with vs without hCG (D30 FT + hCG vs D30 FT, D30 CSF + hCG vs D30 CSF). These comparisons were added in the Materials and methods section.

      Results: In the discussion, it is mentioned that IGF1 may be a missing factor in the media that could help Leydig cell differentiation. Have the authors tried this experiment? Improving this existing culturing method will be highly valuable.

      The decreased Igf1 mRNA levels found in the present study are in line with the RNA-seq data of Yao et al., 2017. As mentioned in the Discussion section, the addition of IGF1 in the culture medium led to a modest increase in the percentages of round and elongated spermatids in cultured mouse testicular fragments (Yao et al., 2017). However, the effect of IGF1 supplementation on Leydig cell differentiation was not investigated. The supplementation of organotypic culture medium with IGF1 is currently being tested in our research team.

      Add p-values and SEM for qPCR data. This was done for hormones, should be the same way for other results.

      p-values and SEM are shown for both qPCR and hormone data.

      Regarding all RT-qPCR data-There is a switch between 3bHSD and Actb/Gapdh as housekeeping genes. There does not seem to be as some have 3bHSD and others do not. Why do Igf1 and Dhh not use 3bHSD for housekeeping? If this is the method to be used, then 3bHSD should be used as housekeeping for the protein data, instead of ACTB. Also, based on Figure 1B and Figure 2A (Hsd3b1) there does not seem to be a strong correlation between Leydig cell # and the gene expression of Hsd3b1. If Hsd3b1 is to be used as a housekeeper and a proxy for Leydig cell number a correlation between these two measurements is necessary. If there is no correlation a housekeeping gene that is stable among all samples should be used. Sorting Leydig cells and then conducting qPCR would be optimal for these experiments.

      Hsd3b1 was used as a housekeeping gene only to normalize the mRNA levels of Leydig cell-specific genes. Therefore, Igf1 and Dhh transcript levels were not normalized with Hsd3b1 since Igf1 is expressed by several cell types in the testis (Leydig cells, Sertoli cells, peritubular myoid cells) and Dhh is expressed by Sertoli cells.

      Regarding western blots, the expression of AR, CYP19 and FAAH could not be normalized with 3-HSD since AR is expressed by Leydig cells, Sertoli cells and peritubular myoid cells, CYP19 is expressed by Leydig cells and germ cells and FAAH is expressed by Sertoli cells. For CYP17A1 however, 3B-HSD was used as housekeeping instead of ACTB (Figure 2G).

      No correlation was found between the number of Leydig cells per cm2 of testicular tissue shown in Figure 1 and Hsd3b1 mRNA levels presented in Figure 2. However, this result was expected since on the one hand the number of Leydig cells per cm2 was determined in the peripheral region of one tissue section whereas on the other hand Hsd3b1 transcript levels were measured in the entire peripheral region of the cultured fragments. The correction factor used for the analysis of genes expressed in Leydig cells present in the healthy part of the cultured tissues was therefore the Leydig cell selective marker Hsd3b1, as previously described (Cacciola et al., 2013).

      Figure 2A (CYP17a1): It is surprising that the CYP17a1 gene and protein expression is very different between D30FT and 36.5dpp, however, the immunostaining looks identical between all groups. Why is this? A lower magnification image of the testis might make it easier to see the differences in Cyp17a1 expression. Leydig cells commonly have autofluorescence and need a background quencher (TrueBlack) to visualize the true signal in Leydig cells. This might reveal the true differences in Cyp17a1.

      RT-qPCR and western blot analyses show that both Cyp17a1 mRNA levels and CYP17A1 protein levels are decreased in organotypic cultures at D30. However, we agree that such a decrease is not visible in immunostaining. No autofluorescence of Leydig cells could be observed in the negative controls (Figure 2J).

      Figure 3D: there are large differences in estradiol concentration in the testis. Could it be that the testis is becoming more female-like? Leydig and Sertoli cells with more granulosa and theca cell features? Were any female markers investigated?

      We show in the present study that the expression levels of the Sertoli cell-specific gene Dhh are not reduced in organotypic cultures. We also previously found that the expression levels of the Sertoli cell-specific gene Amh were not reduced in in vitro matured testicular tissues (Rondanino et al., 2017). Moreover, we have recently shown that Sox9, encoding a testis-specific transcription factor, is expressed in organotypic cultures (Dumont et al., 2023). Our recent transcriptomic analysis also revealed that the transcript levels of the pro-male sexual differentiation marker Sry and of the Sertoli cell-specific gene Dmrt1 remained unchanged in organotypic cultures compared to in vivo controls (Dumont et al., 2023). In addition, no increase in the mRNA levels of the female sex-determining genes Foxl2 and Rspo1 was found in vitro (Dumont et al., 2023). However, we cannot rule out that in vitro cultured testes are becoming more female-like as the expression of Hsd17b3, encoding an androgenic enzyme, is reduced (this study) while the expression of the feminizing gene Wnt4 is upregulated (Dumont et al., 2023).

      Figure 3D and Figure 5A: It is hard to imagine that intratesticular estradiol is maintained for 16-30 days without sufficient CYP19 activity or substrate (testosterone). 6.5 dpp was the last day with abundant CYP19 expression, so is most of the estrogen synthesized on this first day and it sticks around? Are there differences in estradiol metabolizing enzymes? Is there an alternative mechanism for E production?

      In the present study, abundant CYP19 expression was indeed found at 6 dpp. However, the expression of this enzyme was not measured between 6 dpp and D16. Therefore, we cannot be sure that 6 dpp is the last day with abundant CYP19 expression. We assume that the estradiol synthesized before D16 may then accumulate within the cultured tissues. In our study, we quantified the transcript levels of Sult1e1, encoding an estradiol metabolizing enzyme. SULT1E1 is thought to play a physiological role in protecting Leydig cells from estrogen-induced biochemical lesions (Tong et al., 2004). A reduction in Sult1e1 mRNA levels was found at D30 in comparison to in vivo controls, but this may occur earlier during organotypic culture. In addition, decreased transcript levels of Hsd17b2, which encodes an estrogen metabolizing enzyme that converts estradiol to estrone, were found at D30 in this study. We suggest in the Discussion section that elevated estradiol levels in cultured tissues could be a consequence of low Sult1e1 and Hsd17b2 expression. Our recent transcriptomic analyses show that the levels of Cyp1a1, Cyp1b1 and Comt, encoding other estrogen metabolizing enzymes, are unchanged in organotypic cultures (Dumont et al., 2023). To our knowledge, there is no alternative mechanism for estradiol production.

      Recommendations For The Authors:

      1) The acronyms, PLC, SLC, ILC, ALC, and FLC, become hard to follow. It is recommended to spell out the names.

      PLC was replaced by progenitor Leydig cells, SLC by stem Leydig cells, ILC by immature Leydig cells, ALC by adult Leydig cells and FLC by fetal Leydig cells in the entire manuscript.

      2) All Figures: Use letters for each bar graph. Difficult to make a connection from text to figure.

      A letter was added to each bar graph.

      3) Supplemental figure 1: Change "Changement du milieu" to English.

      These words were replaced by “Medium change”.

      4) Catalog numbers for antibodies are necessary.

      The catalog numbers of the antibodies used in this study are presented in Supplementary Table 1.

    1. Author Response

      Reviewer #1 (Public Review)

      The authors present a scRNAseq study describing the transcriptomes of the tendon enthesis during postnatal development. This is an important topic that has major implication for the care of common clinical problems such as rotator cuff repair. The results are a valuable addition to the literature, providing a descriptive data set reinforcing other, more comprehensive studies. There are weaknesses, however, in the scRNAseq analyses.

      1)The authors should provide additional rationale for the PCA analysis shown in Fig 1d. It is uncommon to use PCA for histomorphologic parameters. These results do not convincingly demonstrate that P7 is as a critical developmental timepoint.

      2) According to the methods, it appears that the entire humeral head-supraspinatus tendon was used for cell isolation for scRNAseq. This results in the inclusion of cells from a variety of tissues, including bone, growth plate, enthesis and tendon. As such, only a very small percentage of cells in the analysis came from the enthesis. Inclusion of such a wide range of cells makes interpretation of enthesis cells difficult.

      3) The differentiationpseudotime analysis described in Fig 3 is difficult to follow. This map includes cell transcriptomes from vastly different tissues. Presumably, embedded in these maps are trajectories for osteoblast differentiation, chondrocyte differentiation, tenocyte differentiation, etc. With so many layers of overlapping information, it is difficult to (algorithmically) deduce a differentiation path of a particular cell type.

      4) The authors uses the term function throughout the paper (e.g., functional definition of fibrocartilage subpopulations). However, this is a descriptive scRNAseq study, and function can therefore only theoretically be inferred from the algorithms used to analyze the data. A functional role for any of the identified pathways or processes can only be defined with gain- andor loss-of-function studies.

      5) C2 highly expressed biomineralization-related genes (Clec3a, Tnn, Acan). The three example genes are not related to biomineralization.

      6) The functional characterization of the three enthesis cell clusters is not convincing. For example, activation of metabolism-related processes can mean a lot of things (including changes in differentiation), yet the authors interpret it very specifically as role in postnatal fibrochondrocyte formation and growth.

      7) The pseudotime analysis of the enthesis cell clusters is not convincing. The three clusters are quite close and overlapping on the UMAP. Furthermore, the authors focus on Tnn as a novel and unique gene, yet the expression pattern shown in Fig 5g implies even expression of this gene across all three clusters.

      8) The TC1 markers (Ly6a, Dlk3, Clec3b) imply a non-tendon-specific cell population. Perhaps a tendon progenitor pool or an endothelial cell phenotype is more appropriate.

      9) Pseudotime analyses assume that your data set includes cells from progenitor through mature cell populations. It is unclear that the timepoints studied here included cells from early progenitor states.

      10) The CellChat analysis is difficult to follow, as the authors included 18 cell types. The number of possible interactions among so many cell types is enormous, and deducing valid connections between any two cell types in this case should be justified. Is the algorithm robust to so many possible interactions

      Thank you very much for your comments and suggestions. According to your suggestions, we carefully revised the paper. We integrated our dataset with open source GSE182997 datasets and re-performed the downstream analysis. On the other hand, we added immunofluorescence tests to validate the results came from single-cell datasets. And we hope all the mentioned issues in prior version to be well addressed.

      Reviewer #2 (Public Review)

      To reveals cellular and molecular heterogeneity in enthesis, the authors established a single-cell temporal atlas during development. This study provides a transcriptional resource for further investigation of fibrocartilage development.

      Thank you very much for your kind suggestions. According to your suggestions, we integrated our dataset with open source GSE182997 datasets and re-performed the downstream analysis. On the other hand, we added immunofluorescence tests to validate the results came from sinlge-cell datasets. And we hope the mentioned issues in prior version to be well addressed.

    1. Author Response

      Reviewer #2 (Public Review):

      The authors present findings on a designed peptide, PITCR, and its role in inhibiting TCR activation through an extensive series of experiments. These include the measurement of phosphorylation in the TCR zeta chain and a number of associated signaling proteins such as Zap70, LAT, PLCg1, and SLP76. In addition, the authors measure the impact of PITCR on the TCR intracellular calcium response and examine the peptide-induced inhibition of TCR activation by antigen-presenting cells. They also present data indicating that the fluorescently labeled PITCR co-localizes with TCR in Jurkat cells and with ligand-bound TCR in primary murine cells. Overall the experiments provide useful insights into the mechanism of T cell activation and generally support an allosteric model of activation, while not necessarily excluding alternative models.

      However, some aspects of the study do need clarification.

      1) The authors do not provide a clear structural basis for their peptide design, which makes it difficult to understand the rationale for choosing this particular peptide. The use of a structural model based on the TCR zeta domain, for example, and how it becomes modified to generate PITCR would provide some clarity on what types of putative interactions are being engineered.

      We thank the reviewer for giving us a chance to elaborate. We have expanded the results section to provide more information on the peptide design, where we now point out that the acidic residues in the TCR TM allow peptide design. We have also applied the artificial intelligence program AlphaFold-Multimer (AlFoM) to generate a structural model of the docking site of PITCR in the TCR (Figure 9), which informs on new mechanistic insights, as we describe in the updated results section and discuss below.

      2) The inhibitory effects of PITCR are not large. Measurement of dose dependence might improve confidence in the results.

      As the reviewer points out, we have performed an extensive set of experiments to assess the inhibitory effect of PITCR. We have demonstrated that PITCR inhibits TCR phosphorylation. We have also tested all proximal signaling proteins: Zap70, LAT, SLP76, and PLC gamma. Critically, in all cases a statistically significant inhibition is observed. Furthermore, inhibition was additionally seen when TCR was activated by peptide presentation in antigen-presenting cells. Interaction between PITCR and the receptor is supported by co-localization, co-IP and the new AlphaFold-Multimer prediction. We are therefore confident in the results presented and that the inhibitory effect indeed exists. As we responded to reviewer 1 above, we discuss that inconsistent results were obtained with lower PITCR concentrations, suggesting that the use of a high peptide concentration is required for robust inhibition.

      3) Use of control peptides is not uniform. Control peptides similar to PITCR in Figure 1 and Figure 2 studies, for example, could strengthen the authors' arguments.

      The original version of the manuscript contained two negative control peptides, the G41P mutant of PITCR, and pHLIP, another pH-responsive peptide which behaves as a conditional transmembrane peptide. However, for feasibility reasons we did not use all the negative controls in all different experiments, as we were satisfied when a negative control peptide acted as such in an experiment. However, because we agree that increased use of negative control peptides will strengthen the manuscript, we have expanded the use of negative control peptides. Specifically, the updated version of the manuscript contains a new section where AlFoM is used to predict the binding pose of PITCR and the structural consequences of interaction (see Figure 9 and the four new supplementary figures). AlFoM showed that PITCR binds with a large interaction interface, and peptide binding causes a large rearrangement of the two zeta chains in TCR. Importantly, neither of the two original negative control peptides (PITCRG41P or pHLIP) impacts the zeta chains. When we used a new negative control, the conditional transmembrane peptide TYPE7 developed by us, AlFoM did not predict it to bind to TCR, as expected, strengthening our argument.

      Reviewer #3 (Public Review):

      The use of pH-responsive TM-targeting peptides, which the authors previously developed, is a novel aspect of this study. Those peptides can be quite powerful for understanding molecular mechanisms of receptor signaling, such as the allosteric activation model as tested in this study. The manuscript contains several interesting approaches and observations, but there are concerns about the experimental design and interpretation of the results. More importantly, the authors' primary conclusion that the allosteric changes in the TM bundles determine TCR activation is not fully supported by the data presented. For example:

      1) The authors provided confocal fluorescence images showing the colocalization of fluorescently labeled peptides and TCR subunits. Based on the data, they concluded that "PITCR is able to bind to TCR". This is misleading, because given the spatial resolution of the imaging technique, "colocalization" does not indicate binding or interaction between molecules. Because the peptide binding to the TM region is the pillar of the primary finding of this study, direct evidence supporting the peptide-TM binding or interaction is essential.

      We have to disagree that our statement is misleading: the section of the manuscript that the reviewer referred to, said “suggesting that PITCR is able to bind to TCR before it is activated by OKT3“. Therefore, we were not making a conclusion, just a mere suggestion, that we consider is justified, particularly as it is supported by data presented later. Nevertheless, we certainly agree with the reviewer that co-localization experiments fundamentally cannot indicate binding. We have modified the results (page 11) to follow the suggestion of the reviewer and indicate that co-localization data are not proof of interaction. In addition, we provide new AlphaFold multimer data, which supports that transmembrane binding indeed occurs.

      2) In calcium response experiments, the authors compared calcium influx (indicated by Indo-1 ratio) under different cell activation conditions (Figure 2). There are some concerns about how the authors interpreted the data: (1) The calcium plots from OKT3 activation in A-C panels are inconsistent. The plot in (A) showed a calcium peak after activation, which is not present in the plots shown in (B) and (C). There is no explanation or discussion on this inconsistency. (2) What is more concerning is that this prominent calcium peak in (A) was used to draw the conclusion that the designer peptide inhibitor effectively reduces calcium response. However, inconsistent with that conclusion, the calcium plots are indistinguishable for the three conditions: with PITCR (peptide inhibitor), with PITCRG41P (negative control that should not affect TCR activation), or no peptide. All three plots have similar magnetite and fluctuations. This does not support the authors' conclusion that the PITCR (peptide inhibitor) reduces calcium response in T cells.

      We thank the reviewer for this comment. We have updated figure 3, which now contains a different replicate of the calcium assay, which we think it is more straightforward to analyze, and more clearly shows the calcium inhibition, as quantified in panel D of the figure.

      3) Different types of T cells were used for separate measurements: E6-1 Jurkat T cells were used for calcium influx experiments, J. OT.hCD8+ Jurkat cells were used for CD69 measurements, and primary murine CD4+ T cells were used for colocalization imaging experiments. Rationales for the choices of cells in different measurements are also unclear. This is different from the common practice where different cell types are used in repeated experiments to test the generality of a finding. Here, they were used for different experiments, and findings were lumped together as "T cells", without further evidence/discussion on how translatable the findings from different cell types are.

      As the reviewer suggests, we have updated the manuscript to include discussion on the particularities of the use of the different T cells in pages 18 and 19. We envisioned this work as a proof of principle for the design of a peptide that can eventually be modified to be used for pre-clinical applications, and this paper is a first step. With this idea in mind, we wanted to test if this peptide can work in different types of TCR since: (1) TCR populations are diverse; and (2) our design is based on the transmembrane domain of CD3zeta chain, which is largely conserved among species. Using different types of T cells met this goal since they have different types of TCR, but the transmembrane domain of CD3zeta is conserved. In our paper, we used human Jurkat-TCR, OT1-TCR coupled with hCD8, and murine CD4-TCR. In addition, we not only used one activation marker to test the peptide’s inhibitory effect, we used three: phosphorylation, calcium influx, and CD69 activation. For the co-localization experiment, we not only use murine CD4 T cells, but we also tested it in Jurkat T cells with/without OKT3 stimulation as well.

      We selected these T cells because they were particularly suited for the breath of different measurements that this manuscript contains, based on published reports. In our opinion this approach broadens the relevance of the work.

      4) The authors set out to test the model that TCR activation by pMHC occurs through allosteric changes in the TM region, but in most experiments, they activated Jurkat T cells by anti-CD3 antibody, not by antigen peptides. The anti-CD3 antibody activates TCR signaling through clustering. It is unclear whether TCR activation by anti-CD3 leads to the same allosteric changes in the TM region as activation by pMHC. As such, the main claim of the paper, namely that the designer peptide affects TCR signaling by disrupting the allosteric changes in the TM region, remains insufficiently supported by the data presented.

      Figure 8 shows that the levels of co-IP in the presence of detergent are altered by OKT3 activation of TCR. It has recently been established (PMID: 34260912) that this assay allows the investigation of allosteric changes that contribute to activation of TCR. This evidence is supportive of allosterism in TCR activation. Additionally, the TCR proximal signaling is conserved between the Jurkat T cells activated by OKT3 and TCR activated by pMHC. We can reasonably argue that the peptide acts similarly in both conditions, since the peptide also exerts an inhibitory effect in T cells activated by antigen-presenting cells (Figure 4). The newly presented AlFoM model (Figure 9) predicts that PITCR binding displaces a zeta chain in TCR. This new result provides a plausible molecular rationale for the results in Figure 8, where we observe that PITCR changes transmembrane compactness, which has been linked to allosteric activation (Lanz et al., 2021; Prakaash et al., 2021).

    1. Author Response

      eLife assessment

      This useful paper examines changes (or lack thereof) in birds' fear response to humans as a result of COVID-19 lockdowns. The evidence supporting the primary conclusion is currently inadequate, because the model used does not properly account for many potentially confounding factors that could influence the study's outcomes. If the analytic approach were improved, the findings would be of interest to urban ecologists, behavioral biologists and ecologists, and researchers interested in understanding the effects of COVID-19 lockdowns on animals.

      Many thanks for these supportive words. We did our best to improve our manuscript according to the reviewers and editor comments. Importantly, we regret being unclear in the Methods, as our models already controlled for most of the confounds (see below) discussed by the reviewers.

      For example, given that a single observer collected the data at most sites, site as a random intercept in the models controls also for the observer effects (which is one of the reasons why site is in the model). We added details to Methods (L352-356, see also “Statistical analyses” in the main text).

      The first reviewer asked us to use “some measure of urbanity (e.g. Human Footprint Index) that varies across the cities included here”. Our main results are now based on country-specific models and hence, the use of a single value predictor for each city is not appropriate. Please, see also below.

      The second reviewer is concerned about multicollinearity in our models because of the 0.95 correlation between Period and Stringency Index. However, these are key predictor variables of interest that have never been used within the same model as predictors. We now clearly explain this in the Methods (L458-538, 548-550) and within legend of Figure S2.

      The third reviewer suggested that our models would benefit from controlling for day in the species-specific breeding cycle. Although we don’t have precise city-specific information on the timing of breeding stages in the sampled populations of birds, we partly control for these effects by including a random intercept of day within each year and species. This random factor explained most of the variance (see Table S1-S2) – something that could have been expected. In other words, we do control for what the third reviewer asked for. Similarly, we account for habitat features that may influence escape distance by including site in the models. Site usually refers to a specific park (we assume that within-park heterogeneity is lower than between park variation) and hence partly addresses the reviewer’s concern. Again, we highlight this within the Methods (L466-476).

      Reviewer #1 (Public Review):

      This paper uses a series of flight initiation "challenges" conducted both prior to and during COVID-19-related restrictions on human movement to estimate the degree to which avian escape responses to humans changed during the "anthropause". This technique is suitable for understanding avian behavioral responses with a high degree of repeatability. The study collects an impressive dataset over multiple years across five cities on two continents. Overall the study finds no effect of lockdown on avian escape distance (the distance at which the "target" individual flees the approaching observer). The study considers the variable of interest as both binary (during lockdown or prior to lockdown) and continuous, using the Oxford Stringency Index (with neither apparently affecting escape distance). Overall this paper presents interesting results which may suggest that behavioral responses to humans are rather inflexible over "short" (~2 year) timespans. The anthropause represents a unique opportunity to disentangle the mechanistic drivers of myriad hypothesized impacts humans have on the behavior, distribution, and abundance of animals. Indeed, this finding would provide important context to the larger body of literature aimed at these ends.

      Thank you very much for your positive feedback.

      However, the paper could do more to carefully fit this finding into the broader literature and, in so doing, be a bit more careful about the conclusions they are able to draw given the study design and the measures used. Taking some of these points (in no particular order):

      Thank you. We did our best in addressing your comments (see below and updated Methods, Results and Discussion sections).

      1) Oxford Stringency Index is a useful measure of governmental responses to the pandemic and it's true that in some scenarios (including the (Geng et al. 2021) study cited by this paper) it can correlate with human mobility. However, it is far from a direct measure of human mobility (even in the Geng study, to my reading, the index only explained a minority of the variation). Moreover, particular sub-components of the index are wholly unrelated to human mobility (e.g. would changes to a country's public information campaign lead to concomitant changes in urban human mobility?). Finally, compliance with government restrictions can vary geographically and over time (i.e. we might expect lower compliance in 2021 than in 2020) and the index is calculated at the scale of entire countries and may not be very reflective of local conditions. Overall this paper could do more to address the potential shortcomings of the Oxford Stringency Index as a measure of human mobility including attempting to validate the effect on human mobility using other datasets (e.g. the google dataset and/or those discussed in (Noi et al. 2022). This is of critical importance since the fundamental logic of the experimental design relies on the assumption that stringency ~ mobility.

      Thank you for this comment. First, Oxford Stringency Index seemed to us as the best available index for our purposes, i.e to estimate people's mobility during the shutdown because restrictions surely influenced the possibility that people would be outside, and because the index is a country-specific estimate. However, in addition, we now checked all indices mentioned in Noi et al. 2022 and found useful only the Google Mobility Reports, which we now use, because (a) it is publicly available, (b) it is available also for territories outside US, and (c) provides data for each city included in our dataset as well as for urban parks where most of our data were collected. Note that some platforms are no longer providing their mobility data (e.g. Apple).

      However, Google Mobility provides day-to-day variation in human mobility, whereas we are interested in overall increase/decrease in human mobility. Nevertheless, we correlated the Google mobility index with the Stringency index and found that human mobility generally decreases with the strength of the anti-pandemic measures adopted in sampled countries (albeit the effect for some countries, e.g. Poland, is small; Fig. 5).

      Moreover, we also added analysis using # of humans collected directly in the field during escape trials (e.g. Fig. 6 and S6) and found that the link between # of humans and Stringency index or Google Mobility was weak and noise, 95%CIs widely crossing zero (Fig. 6).

      Importantly, if we use Google Mobility and # of humans, respectively, as predictors of escape distance, the results are qualitatively very similar to results based on Oxford Stringency Index (Fig. S6), or Period, with tiny effect sizes for both (95%CIs for Google Mobility -0.3 – 0.06, Table S5, for # of humans -0.12 – 0.02, Table S6) supporting our previous conclusions.

      Note that Google Mobility and the number of humans have their limitations (see our comment to the editor and the Methods section in the main manuscript, e.g. L418-433). The lack of Google Mobility data for years before the COVID-19 pandemic does not allow us to fully explore whether overall human activity decreased during COVID-19 or not (our test for period prior and during COVID-19). If the year 2022 reflects a return to “normal” (which is to be disputed due to COVID-19-driven rise in home office use) the 2020 and 2021 had on average lower levels of human activity (Fig. 4). Whether such a difference is biologically meaningful to birds is unclear given the immense day-to-day change in human mobility and presence (Fig 4). Moreover, the number of humans capture within- and between-day variation rather than long-term changes in human presence.

      We added details on the new analysis into the method and results sections (e.g. Fig. 4-6; L142-165, 418-438, 495-535) and Supplementary Information (Figs. S5-S9 and associated Tables) and discuss the problematic accordingly. Moreover, to enhance clarity about country specific effect (or their lack), we also add country specific estimates to the Results (Fig. 1 and Fig. S6 and respective Tables). Finally, our statistical design and random structure of the model allowed us to control for spatial and temporal variation in compliance with government restrictions.

      2) The interpretation of the primary finding (that behavioral responses to humans are inflexible) could use a bit more contextualization within the literature. Specifically, the study offers three potential explanations for the observed invariance in escape response: 1) these behaviors are consistent within individuals and this study provides evidence that there was no population turnover as a result of lockdowns; 2) escape response is linked to other urban adaptations such that to be an urban-dwelling species dictates escape response; and/or 3) these populations already exhibit maximum habituation and the reduction in human mobility would only have increased that habituation but that trait is already at a boundary condition. Some comments on each of these respectively:

      Thank for these comments. We incorporated them in the main text (L293-329). Your point 1) corresponds to our point (i): “Most urban bird species in our sample may be relatively inflexible in their escape responses because the species may be already adapted to human presence” (L293-306); your point 2) to our point (ii): “Urban environment might filter for bold individuals (Carrete and Tella, 2013, 2010; Sprau and Dingemanse, 2017). Thus, the lack of consistent change in escape behaviour of urban birds during the COVID-19 shutdowns may indicate an absence (or low influx) of generally shy, less tolerant individuals and species from rural or less disturbed areas into the cities…” (L307-314); your point 3) to our point (iii): “Urban birds might have been already habituated to or tolerant of variation in human presence, irrespective of the potential changes in human activity patterns” (L315-329). To distinguish between (ii) and (iii) or the two from (i), individually-marked birds and comprehensive genetic analyses are needed, which we now note in the Discussion (L330-348). Importantly, we also discuss that the lack of response might be due to relatively small changes in human activity (L253-292), which we unfortunately could not fully quantify.

      a) Even had these populations turned over as a result of a massive rural-to-urban dispersal event, it's not clear that the escape distance in those individuals would be different because this paper does not establish that these hypothetical rural birds have a different behavioral response which would be constant following dispersal. Thus the evidence gathered here is insufficient to tell us about possible relocations of the focal species.

      Thank you for this point. We address this point in the Introduction and Discussion (L92-101, 307-314). Rural bird populations/individuals are on average less tolerant of humans than urban birds (e.g. Díaz et al. 2013, PloS One 8:e64634; Tryjanowski et al. 2020, J Tropic Ecol 36:1-5; Mikula et al. 2023, Nat Commun 14:2146) and at the same time, bird individuals seem consistent in their escape responses (Carrete & Tella 2010, Biol Lett 23:167–170; Carrete & Tella 2013, Sci Rep 3:1–7).

      Additionally, the paper cites several papers that found no changes in abundance or movements of animals in response to lockdowns but ignore others that do. For example: (Wilmers et al. 2021), (Warrington et al. 2022) (though this may have been published after this was submitted...), and (Schrimpf et al. 2021).

      We added the papers (L89-91). Thank you!

      There is a missed opportunity to consider the drivers of some of these results - the findings in this paper are interesting in light of studies that did observe changes in space use or abundance - i.e. changes in space use could arise precisely because responses to humans are non-plastic but the distribution and activities of humans changed.

      Thank you. Indeed, we now address this in the Discussion (L303-306): “However, some studies reported changes in the space use by wildlife (Schrimpf et al., 2021; Warrington et al., 2022; Wilmers et al., 2021). and these could arise, as our results indicate, from fixed and non-plastic animal responses to humans who changed their activities”.

      To wit, the primary finding here would imply that the reaction norm to human presence is apparently fixed over such timescales - however, and critically, the putative reduction in human activity/mobility combined with fixed responses at the individual level might then imply changes in avian abundance/movement/etc.

      Unfortunately, we have not measured changes in avian abundance or movements. But, please, note that the change in human mobility in sampled cities might be not as dramatic as initially thought and we consider this scenario to be most plausible in explaining no significant differences in avian escape responses before and during the COVID-19 shutdowns (see Fig. 4). Nevertheless, we add your point into the Discussion: If our findings imply that in birds the reaction norm to human presence is fixed over the studied temporal scale, the putative changes in human presence might then imply changes in avian abundance or movement (L293 and text below it).

      b) If this were the case, wouldn't this be then measurable as a function of some measure of urbanity (e.g. Human Footprint Index) that varies across the cities included here? Site accounted for ~15% of the total variation in escape distance but was treated as a random effect - perhaps controlling for the nature of the urban environment using some e.g. remotely sensed variable would provide additional context here.

      Urbanity mirrors the long-term level of human presence in cities whereas we were interested mainly in the rather short-term effects of potential changes of human presence on bird behaviour. Thus, we are not sure how adding such variable will help elucidating the current results. Please, also note that we added the country-specific analysis. Site indeed accounted for considerable amount the total variance in escape distance and that is why it was included as random intercept, which controls for non-independents of data points from each city. This could partly help us to control for difference in habitat type (e.g. urbanization level) within cities.

      c) Because it's not clear the extent to which the populations tested had turned over between years, the paper could do with a bit more caution in interpreting these results as behavioral. This study spans several years so any response (or non-response) is not necessarily a measure of behavioral change because the sample at each time point could (likely does) represent different individuals. In fact, there may be an opportunity here to leverage the one site where pre-pandemic measures were taken several years prior to the pandemic. How much variance in the change in escape distance is observed when the gap between time points far exceeds the lifetime of the focal taxa versus measures taken close in time?

      We believe the initial Fig S4, now Figure 2, addresses this point. The between years temporal variation in FIDs exceeds the variation due to lockdowns. This is true both for measures taken in consecutive years, as well as for measures taken far apart.

      d) Finally, I think there are a few other potential explanations not sufficiently accounted for here:

      i) These behaviors might indeed be plastic, but not over the timescales observed here.

      We agree and have added this point (L301-303). Thank you.

      ii) Time of year - this study took place during the breeding season. The focal behavior here varies with the time of year, for example, escape distance for many of these species could be tied up in nest defense behaviors, tradeoffs between self-preservation and e.g. nest provisioning, etc.

      Please, note that we controlled for the date in our analyses. Date was used as a proxy for the progress in the breeding season (L463-464 and Fig. 1 caption). Note that we collected data only from foraging or resting individuals, and data were neither collected near the nest sites nor from individuals showing warning behaviours, which we now note (L400-401).

      iii) Escape behaviors from humans are adaptively evolved, strongly heritable, and not context dependent - thus we would only expect these behaviors to change on evolutionary timescales.

      We discussed this at L307-308 and 381-383. Escape behaviors from humans are highly consistent for individuals, populations, and species (Carrete & Tella 2010, Biol Lett 23:167–170; Díaz et al. 2013, PloS One 8:e64634; Mikula et al. 2023, Nat Commun 14:2146). Whether such behavior is consistent across contexts is less clear (e.g. Diamant et al. 2023, Proc Royal Soc B, in press; but see, e.g. Radkovic et al. 2019, J Ecotourism 18:100-106; Gnanapragasam et al. 2021, Am Nat 198:653-659). Escape distance is often not measured simultaneously, for example, with human presence. In other words, whereas general level of human presence may have no effect on escape distance, the day-to-day or hour-to-hour variations might. We need studies on fine temporal scales (day-to-day or hour-to-hour) using marked individual to elucidate this phenomenon.

      iv) See point one above - it's possible that the lockdown didn't modify human activity sufficiently to trigger a behavioral response or that the reaction norm to human behavior is non-linear (e.g. a threshold effect).

      We agree, now use also Google Mobility Reports and # of humans data to elucidated this phenomenon and have added such interpretations to L253-292 and, e.g. Fig. 4.

      LITERATURE CITED Geng DC, Innes J, Wu W, Wang G. 2021. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J For Res 32:553-567. doi:10.1007/s11676-020-01249-w

      Noi E, Rudolph A, Dodge S. 2022. Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework. Int J Geogr Inf Sci.

      Schrimpf MB, Des Brisay PG, Johnston A, Smith AC, Sánchez-Jasso J, Robinson BG, Warrington MH, Mahony NA, Horn AG, Strimas-Mackey M, Fahrig L, Koper N. 2021. Reduced human activity during COVID-19 alters avian land use across North America. Sci Adv 7:eabf5073. doi:10.1126/sciadv.abf5073

      Warrington MH, Schrimpf MB, Des Brisay P, Taylor ME, Koper N. 2022. Avian behaviour changes in response to human activity during the COVID-19 lockdown in the United Kingdom. Proc Biol Sci 289:20212740. doi:10.1098/rspb.2021.2740

      Wilmers CC, Nisi AC, Ranc N. 2021. COVID-19 suppression of human mobility releases mountain lions from a landscape of fear. Curr Biol 31:3952-3955.e3. doi:10.1016/j.cub.2021.06.050

      Reviewer #2 (Public Review):

      Mikula et al. have a large experience studying the escape distances of birds as a proxy of behavioral adaptation to urban environments. They profited from the exceptional conditions of social distance and reduced mobility during the covid-19 pandemic to continue sampling urban populations of birds under exceptional circumstances of low human disturbance. Their aim was to compare these new data with data from previous "normal" years and check whether bird behavior shifted or not as a consequence of people's lockdown. Therefore, this study would add to the growing body of literature assessing the effect of the covid-19 shutdown on animals. In this sense, this is not a novel study. However, the authors provide an interesting conclusion: birds have not changed their behavior during the pandemic shutdown. This lack of effects disagrees with most of the previously published studies on the topic. I think that the authors cannot claim that urban birds were unaffected by the covid-19 shutdown. I think that the authors should claim that they did not find evidence of covid-19-shutdown effects. This point of view is based on some concerns about data collection and analyses, as well as on evolutionary and ecological rationale used by the authors both in their hypotheses and results interpretation. I will explain my criticisms point by point:

      We are grateful for your positive appraisal of our manuscript, as well as for your helpful critical comments. We toned down the discussion to claim, as suggested by you, that we did not find evidence for effects of covid-19-shutdowns on escape behaviour of birds in urban settings (see Results and Discussion sections). In general, we attempted to provide a more nuanced discussion and reporting of our findings. We also changed the manuscript title to “Urban birds' tolerance towards humans was largely unaffected by the COVID-19 shutdowns” and added validation using Google Mobility Reports (Fig. 5 & S6, Table S3a and S5) and the actual number of humans (Fig. 6 and S6; Table S3b-e and S6). Note however that there is only a single robust study on the topic of shutdown and animal escape distances (Diamant et al. 2023, Proc Royal Soc B, in press), i.e. the topic is largely unexplored (e.g. L99-101), whereas we discuss our finding in light of shutdown influences on other behaviours (L293-329).

      1) The authors used ambivalent, sometimes contradictory, reasoning in their predictions and results interpretation. Some examples:

      We tried to clarify our reasoning and increased consistency in our claims in the Introduction. Please, note that we simplified the Introduction and now provide one main expectation: FIDs of urban birds should increase with decreased human presence. This pattern is robustly empirically documented, regardless of the mechanism involved (e.g. Díaz et al. 2013, PloS One 8:e64634; Tryjanowski et al. 2020, J Tropic Ecol 36:1-5; Mikula et al. 2023, Nat Commun 14:2146). Please, see our revised Discussion for a more comprehensive discussion of mechanisms which could explain the patterns described in our study.

      1.1) The authors claimed that urban birds perceive humans as harmless (L224), but birds actually escape from us, when we approach them... Furthermore, they escape usually 5 to 20 m away. This is more distance that would be necessary just to be not trampled.

      We agree and have deleted mentions that humans are perceived as harmless.

      1.2) If we are harmless, why birds should spend time monitoring us as a potential threat (L102)? Indeed, I disagree with the second prediction of the authors. I could argue that reduced human activity should increase animal vigilance because real bird predators (e.g. raptors) may increase their occurrence or activity in empty cities. If birds should increase their vigilance because the invisible shield of human fear of their predators is no longer available, then I would expect longer escape distances.

      Thank you for this comment. We deleted this prediction and largely rewrote Introduction based on your comments and comments from the other reviewers.

      1.3) To justify the same escape behavior shown by birds in pre- and pandemic conditions from an adaptive point of view, the authors argued a lack of plasticity and a strong genetic determination of such behavior. This contravenes the plasticity proposed in the previous point or the expected effect of the stringency index (L112).

      We now attempted to write this more clearly while incorporating your suggestions. In the Discussion, we now propose various hypothesis that can, but need not be mutually exclusive. Please, note that we simplified the Introduction and now provide one main hypothesis: FIDs of urban birds should increase with decreased human presence.

      In my opinion, some degree of plasticity in the escape behavior would be really favorable for individuals from an adaptive perspective, as they may face quite different fear landscapes during their lives. Looking at the figures, one can see notable differences in the escape distance of the same species between sites in the same city. As I can hardly imagine great genetic differences between birds sampled in a park or a cemetery in Rovaniemi, for instance, I would expect a major role of plasticity to explain the observed variability. Furthermore, if escape behavior would not be plastic, I would not expect date or hour effects. By including them in their models, the authors are accepting implicitly some degree of plasticity.

      We regret being unclear. We do accept some degree of plasticity. Yet, our study design prohibits the assessment of the degree of individual plasticity because sampled birds were not individually marked and approached repeatedly. We tried to soften the statements in our Discussion to not fully dismiss a possibility that urban birds have some degree of plasticity in their antipredator behaviour (L293-329). Note however, that while our data collection was not designed to test how hour-to-hour changes in human numbers influence escape distance, the effect of the number of humans (i.e. hour-to-hour variation in human numbers) in our sample was tiny.

      The date and hour effect simply control for the particularities of the given day and hour (e.g. warm vs cold times or the time until sunset). In other words, the within species differences (even from the same park) may have little to do with individual plasticity, but instead may reflect between individual differences. We now add this issue to Methods (L471-476): “This approach enabled us to control for spatial and temporal heterogeneity and specificity in escape behaviour of birds (e.g. species-specific responses, changes in escape distances with the progress in the breeding season, spatial and temporal variation in compliance with government restrictions or particularities of the given day and hour)....”

      2) Looking at the figures I do not see the immense stochasticity (L156, Fig. S3, S5) claimed by the authors. Instead, I can see that some species showed an obvious behavioral change during the shutdown. For instance, Motacilla alba, Larus ridibundus, or Passer domesticus clearly reduced their escape distances, while others like the Dendrocopos major, Passer montanus, or Turdus merula tended to increase it.

      At L138-141 and 327-329 we discussed the within and between genera and cross-country variation and stochasticity in response to the shutdowns (Fig. 2). The reference to species-specific plots was perhaps a little bit misleading. We think that the essential figure, that we now reference at this point, is Figure 2 that shows the temporal trends and/or stochasticity that seem to have little in common with lockdowns. Please, also look at Figure 3 and S3-S4. These show that in all selected genera/species, the trends did not significantly deviate from central regression line which indicates no change in FID before and during the COVID-19 shutdowns.

      On the other hand, birds in Poland tended to have larger escape distances during the shutdown for most species, while in Rovaniemi there was an apparent reduction of escape distances in most cases. The multispecies and multisite approach is a strength of this study, but it is an Achilles' heel at the same time. The huge heterogeneity in bird responses among species and sites counterbalanced and as a result, there was an apparent lack of shutdown effects overall. Furthermore, as most data comes from a few (European) species (i.e. Columba, Passer, Parus, Pica, Turdus, Motacilla) I would say that the overall results are heavily influenced (or biased) by them. The authors realize that results are often area- or species-specific (L203), therefore, does a whole approach make sense?

      We are grateful for this valuable comment. We believe the general approach makes sense as there is a general expectation about how birds should respond to changes in human presence. That is why we control for non-independence of data points in our sample. Thus, although lots of data come from a few European species, this is corrected for by the model. Note that given the sheer number of sampled species, some site- or species-specific trends may have occurred by chance. Importantly, we believe that Figure 2, with species-site specific temporal trends, reveals that the between year stochasticity in escape distances seems greater that any effects of lockdowns. Nevertheless, we have further dealt with this issue in the revised manuscript by running country-specific models which again clearly showed no significant effect of Period on escape behaviour of birds (including, no effects in Poland and Finland).

      3) The previous point is worsened by the heterogeneity of cities and periods sampled. For instance:

      3.1) I can hardly imagine any common feature between a small city in northern Finland (Rovaniemi) and a megacity in Australia (Melbourne). Thus, I would not be surprised to find different results between them.

      3.2) Prague baseline data was for 2014 and 2018, while for the rest of the study sites were for 2018 and 2019. If study sites used a different starting point, you cannot compare differences at the final point.

      We are slightly confused by these comments.

      3.1) The cities are expected to be different but (i) the difference may be smaller than imagined (e.g. park structures, managed grass cover, few shrubs and deciduous-dominated tree species) and (ii) we expect the effects of lockdowns to be similar across cities. Whether we have no people in Rovaniemi parks (which despite Rovaniemi’s small size are usually extremely well-visited) or no people in Melbourne parks should not make a difference in principle. Note however, that to avoid overconfident conclusions, we allow for different reaction norms within cities. Please, also note that we are now providing country-specific results which should identify whether shutdowns lead to different reaction in sampled countries. We found no strong effect of shutdowns in any of sampled countries/cities.

      3.2) Because of the possible between site differences at the starting point, we use study site as random intercept and control for the between site reaction norms by including the random slope of the period. In other words, such possible differences do not influence outcomes of our models. Regardless, our a priori expectation is that the human activity levels in a given park was similar prior to covid and hence in 2014, 2018, and 2019. Again, we are now providing country-specific results which identify whether shutdowns led to different reactions in sampled countries, which they mostly did not

      3.3) Due to the obvious seasonal differences between the northern and southern hemispheres, data collection in Australia began five months later than in the rest of the sites (Aug vs Mar 2020). There, urban birds faced already too many months of reduced human disturbances, while European birds were sampled just at the beginning of the lockdown.

      We agree that each city or even park within the city has its specific environmental conditions (here including the time point of lockdown). That is why we control for city and park location in the random structure of the model (see Method section). We now add results per country that shows no clear differences (e.g. Fig. 1).

      However, the aim of our study was to test for general, global effects of lockdowns, which are minimal. Note that we now specifically test for country-specific effects in separate models on each country (e.g. Fig. 1, Fig S6) but all country-specific effects are small and still centre around zero.

      3.4) Some cities were sampled by a single observer, while others by many of them. Even if all of them are skilled birders, they represent different observers from a statistical point of view and consequently, observer identity was an extra source of noise in your data that you did not account for.

      We agree. In Finland and Hungary, data were collected by two closely cooperating observers. In Poland, all data were collected by a single observer. In the Czech Republic and Australia, a single observer (P.M. and M.W., respectively) sampled 46 sites out of 56 and 32 sites out of 37, respectively. Each site was sampled by the same observer both before and during the shutdowns. We now clearly state it in the Methods (L352-356). In other words, our models already largely control for the possible observer confound by having site as a random intercept. Moreover, previous study showed that FID estimates do not vary significantly between trained observers (Guay et al. 2013, Wildlife Research, 40, 289-293).

      4) Although I liked the stringency index as a variable, I am not sure if it captured effectively the actual human activity every day. Even if restrictive measures were similar between countries, their actual accomplishment greatly depended on people's commitment and authorities' control and sanctions. I would suggest using a more realistic measure of human activity, such as google mobility reports.

      Thank you for this comment. We now validate the use of the stringency index with the Google Mobility Reports, showing that human mobility generally (albeit in some countries relatively weakly) decreases with the strength of governmental antipandemic measures. Please, note that our main research question is related to the general change in human outdoor activity and not to week-to-week, day-to-day or hour-to-hour changes captured by stringency index, Google Mobility or the number of humans during an escape trial data. Nevertheless, using Google Mobility and the number of humans as predictors led to the similar results as for stringency index and Period (Fig. 1 and S6). Please, see extended discussion on this topic in our manuscript (L270-292).

      5) The authors used escape trials from birds on the ground and perched birds. I think that they are not comparable, as birds on the ground probably perceive a greater risk than those placed some meters above the ground, i.e. I would expect shorter escape distances for perched birds. As this can be strongly dependent on the species preferences or sampling site (i.e, more or less available perches), I wonder how this mixture of observations from birds on the ground and perched birds could be affecting the results.

      We now added information that most birds were sampled when on the ground (79%). Importantly, previous studies have found that perch height has a minimum effect on FIDs (e.g. Bjørvik et al. 2015. J Ornithol 156:239–246; Kalb et al. 2019, Ethology 125:430-438; Ncube & Tarakini 2022, Afr J Ecol 60:533– 543; Sreekar et al. 2015,. Tropic Conserv Sci 8:505-512). We added this information to the Method section (L394-395).

      6) The authors did not sample the same location in the same breeding season to avoid repeated sampling of the same individuals (L331). This precaution may help, but it does not guarantee a lack of pseudoreplication. Birds are highly mobile organisms and the same individuals may be found in different places in the same city. This pseudoreplication seems particularly plausible for Rovaniemi, where sampling points must be necessarily close due to the modest size of this city.

      We appreciate your concern. We cannot fully exclude the possibility of sampling some individuals twice. However, we sampled during the breeding season within which most birds are territorial, active in the areas around the nests and hence an individual switching parks is unlikely. Also, most sampled birds in our study are passerines which have small territories (typically few hundred square meters). Some larger birds may have larger territories and move larger distance to forage (e.g. kestrels which often forage outside cities) but these birds represent a minority of our records and we have not sampled outside the cities.

      7) An intriguing result was that the authors collected data for 135 species during the shutdown, while they collected data only for 68 species before the pandemic. Such a two-fold increase in bird richness would not be expected with a 36% increase in sampling effort during 2020-21. I wonder if this could be reflecting an actual increase in bird richness in urban areas as a positive result of the shutdown and reduced human presence.

      There were 141 unique day-years during before COVID and 161 during COVID. So, the sampling effort as calculated by days does not explain the difference in species numbers. Whether the actual effort, which was 381 vs 463 h of sampling, explains the difference is unclear, which we now note in the Methods (L476-483). If not, your proposition is possible, but we would like to avoid any speculations on this topic in the manuscript as it is difficult to infer species diversity from FID sampling.

      8) The authors dismissed the multicollinearity problem of explanatory variables unjustifiably (L383). However, looking at fig. S1, I can see strong correlations between some of them. For instance, period and stringency index were virtually identical (r=0.95), while temperature and date were also strongly correlated.

      We are confused by this comment and think this reflects a misunderstanding. Period and stringency index are explanatory variables of interest that were never included in the same model and hence their correlation does not contribute to the within a model multicollinearity. To avoid further confusion, we note this within (Fig. S2) legend. However, we must be cautious when interpreting the results from the models on period, Google Mobility, # of humans and stringency index, as the four measure are similar.

      We discuss multicollinearity of explanatory variables within the manuscript (L458-538, 548-550) and noted that, with the exception of temperature and day within the breeding season (r = 0.48), the correlations among explanatory variables were minimal. We thus used only temperature as an explanatory variable (i.e. fixed factor; also because temperature reflects both season and variation in temperature across a season) whereas the day was included as a random intercept to control for pseudoreplication within day. Collinearity between all other predictors was low (|r| <0.36).

      9) The random structure of the models is a key element of the statistical analyses but those random factors are poorly explained and justified. I needed to look up the supplementary tables to fully understand the complex architecture of the random part of the models. To the best of my knowledge, random variables aim to account for undesirable correlations in the covariance matrix, which is expected in hierarchical designs, such as the present one. However, the theoretical violation of data independence may happen or not. As the random structure is usually of little interest, you should keep it as simple as necessary, otherwise random factors may be catching part of data variability that you would like to explain by fixed variables. I think that this is what is happening (at least, in part) here, as the authors included a too-complex random structure. For instance, if you include the year as a random factor, I think that you are leaving little room for the period effect. The authors simplified the random structure of the models (L387), but they did not explain how. Nevertheless, this model selection was not important at all, as the authors showed the results for several models. I assume, consequently, that the authors are considering all these models equally valid. This approach seems quite contradictory.

      The random structure of the model controls for possible pseudoreplication in the data, that is for the cases where we have multiple data points that may not be independent and hence technically represent one. Apart from that, random structure tells us about where the variance in the data lies. This is often of interest and your previous questions about city, site or species specificities can be answered with the random part of the model. To follow up on your example, year is included in the model because data from a single year are not independent (for example because of delayed breeding season in one year vs. in another).

      We regret being unclear about the model specification and have attempted to clarify the methods (L466-476). We first specified a model with an ideal random structure that necessarily was complex (perhaps too complex). We then showed that using models with simpler random structures did not influence the outcomes. We now use a simpler model within the main text, but do keep the alternative models to show that the results are not dependent on the random structure of the model (Fig. S1 and Table S2).

      Reviewer #3 (Public Review):

      This study examined the changes in fear response, as measured by the flight initiation distances (FID), of birds living in urban areas. The authors examined the FIDs of birds during the pandemic (COVID-19 lockdown restrictions) compared to FIDs measured before the pandemic (mostly in 2018 & 2019). The main study justification was that human presence changed drastically during the pandemic lockdowns and the change in human presence might have influenced the fear response of birds as a result of changing the "landscape of fear". Human presence was quantified using a 'stringency' index (government-mandated restrictions). Urban areas were selected from within five different cities, which included four European cities (Czech Republic - Prague, Finland - Rovaniemi, Hungary - Budapest, Poland - Poznan), and one city in the global south (Australia - Melbourne). Using 6369 flight initiation distances across 147 different bird species, the authors found that FIDs were not significantly different before the pandemic versus during the pandemic, nor was the variation in FID explained by the level of 'stringency'.

      Major strengths: There are several strengths to this study that allows for understanding the variety of factors that influence a bird's response to fear (measured as flight initiation distances). This study also demonstrates that FIDs are highly variable between species and regions.

      Specifically,

      1) One of the major strengths of this paper is the focus on birds living in urban areas, a habitat type that is hypothesized to have changed drastically in the 'landscape of fear' experienced by animals during the pandemic lockdown restrictions (due to the presumed decrease in human presence and densities). Maintaining the focus on urban birds allowed for a deeper examination of the effect of human behaviour changes on bird behaviour in urban habitats, which are at the interface of human-wildlife interactions.

      2) This study accounted for several variables that are predicted to influence flight initiation distances in birds including species, genus, region (country), variability between years, pandemic year (pre- versus during), the strictness of government-mandated lockdown measures, and ecological factors such as the human observer starting distance, flock size, species-specific body size, ambient air temperature (also a proxy of the timing during the breeding season), time of day, date of data collection (timing within the regional [Europe or Australia] breeding season), and categorization of urban site type (e.g. park, cemetery, city centre).

      3) This study examined FIDs in two years previous to the pandemic (mostly 2018 and 2019, one site was 2014) which would account for some of the within- and between-year FID variation exhibited prior to the pandemic.

      4) This study uses strong statistical approaches (mixed effect models) which allows for repeat sampling, and a post hoc analysis testing for a phylogenetic signal.

      Thank you for your supportive and positive comments.

      Major weaknesses: The authors used government 'stringency' as a proxy for human presence and densities, however, this may not have been an accurate measure of actual human presence at the study sites and during measurements of FIDs. Furthermore, although the authors accounted for many factors that are predicted to influence fear response and FIDs in birds, there are several other factors that may have contributed to the high level of variation and patterns in FIDS observed during this study, thus resulting in the authors' conclusion that FIDs did not vary between pre- and during pandemic years.

      Thank you for your suggestions. We agree. To capture the general human presence in parks, we now incorporated an analysis using Google Mobility Reports (Fig S6b) that directly measures human mobility in each of sampled cities and specifically in urban parks where most our data were collected, and also address your further concerns that you detail below. Albeit not the main interest of our study, we now also incorporated an analysis using actual # of humans during an escape trial (Fig. S6c).

      Moreover, we think that including further possible confounds should not influence our conclusions. In other words, including further confounds will decrease the variance that can be explained by shutdowns and thus such shutdown effects (if any) would be tiny and hence likely not biologically meaningful.

      Specifically,

      1) The authors used "government stringency" as a measure of change in human activity, which makes the assumption that the higher the level of 'stringency', the fewer humans in urban areas where birds are living. However, the association between "stringency" and actual human presence at the study sites was not measured, nor was 'stringency' compared to other measures of human presence such as human mobility.

      Thank you for this essential comment. Initially, we viewed Oxford Stringency Index as the best available index for our purposes. However, we now further acknowledge its limitations (L) and validate the Oxford Stringency Index with the Google Mobility Reports data, showing that both indices are generally negatively (albeit sometimes weakly) correlated across sampled cities (i.e. human mobility decreases with the increasing stringency index). Although other human presence indices were used in the past, e.g. Cuebiq, Descartes Labs and Maryland Uni index, Apple (see Noi et al. 2022, Int J Geograph Info Sci, 36, 585-616), we used only the Google Mobility index because (a) it is publicly available, (b) is available also for territories outside US, and (c) provides data for urban parks within each city included in our dataset. Note however that Google Mobility data are inappropriate to answer our primary question, i.e. whether changes in human presence outdoors due to the COVID-19 shutdowns had any effect on avian tolerance towards humans. First, Google Mobility was available only for 2020-22, i.e. the baseline pre-COVID-19 data for 2018-2019 were unavailable. Thus, there was no way to check whether the human activity levels really changed during the COVID-19 years. Second, Google Mobility data are calculated as a change from 2020 January–February baseline for each day of the week for each city and its location (here we used parks). In other words, the data are not comparable between days and cities, albeit we attempted to correct for this within the random structure of the mixed model. Also, the data may be influenced by extreme events within the 2020 Jan–Feb baseline period (see here). Third, the Google Mobility varies greatly between days and across season (see Fig 4 & S5 or the first figure in these responses), likely more than the possible change due to shutdowns. Nevertheless, we found that results based on Google Mobility are qualitatively very similar to results based on stringency index. Moreover, we showed that the relationships between # of humans and both Google Mobility or Stringency index (Figure 6) are weak and noise with 95%CIs widely overlapping zero (Table S3b-e). Also, similarly to other predictors of human presence, # of humans only poorly predicted changes in avian escape distances. We added details on the new analysis into the Methods and Results and Supplement (L134-165 and associated figures and tables, L415-535).

      2) There was considerable variation in FID measurements, which can be seen in the figures, indicating that most of the variation in FID was not accounted for in the authors' models.

      We are confused by this statement. The fact that the FIDs varied does not translate directly to that our models did not account for the variation. Nevertheless, we do control for most of the discussed confounds (see further answers below). Importantly, it is unclear how including further possible confounds should influence our conclusions, unless the lockdowns effects are tiny, in which case those might not be biologically meaningful.

      Factors that may have contributed to variation in FIDs that were not accounted for in this study are as follows:

      a. The authors accounted for the date of data collection using the 'day' since the start of the general region's breeding season (Europe: Day 1 = 1 April; Australia: Day 1 = 15 August). Using 'day' since the breeding season started probably was an attempt to quantify the effect of the breeding stage (e.g. territory establishment, nest young, fledgling) on FIDs. However, breeding stages vary both within- and between species, as well as between sub-regions (e.g. Finland vs. Hungary). As different species respond to predation or human presence differently depending on the stage during their breeding cycle, more specificity in the breeding cycle stage may allow for explaining the observed variation and patterns in FID.

      We agree. Although we don’t have a precise city-specific information on the timing of breeding stages in sampled populations of birds, we partly control for these effects by including a random intercept of day within each year and species. This random factor explained relatively high portion of the variance in our data (see Table S1 and S2) - perhaps something you expected.

      b. Variation in species-specific FIDs may also vary with habitat features within urban sites, such as the proximity of trees and other protective structures (e.g. perches and cover), the openness of the area, and the level of stressors present (e.g. noise pollution, distance to roads). Perhaps accounting for this habitat heterogeneity would account for the FID variation measured in this study.

      We agree. We don’t have such fine-scale data, but we included site identity (typically within a particular park or cemetery) which should account for the habitat heterogeneity among localities. Depending on the model, site explained relatively little variance (1-6%), indicating low heterogeneity between localities in these undescribed characteristics. Also note that park structure may be quite similar both within and between cities, i.e. managed green grass areas, with only a few shrubs and deciduous trees. Therefore, the possible minor habitat heterogeneity should not have any great impacts on our results.

      c. The authors accounted for species and genus within their models, however, FIDs may vary with other species-specific (or even specific populations of a species) characteristics such as whether the species/population is neophobic versus neophilic, precocial versus altricial, and the level of behavioural plasticity exhibited. These variables were not accounted for in the analysis.

      We agree that FIDs can be correlated with many possible factors. Here, we were interested in general patterns, while controlling for FID differences between species, as well as for possible species-specific reaction norms to lockdowns. Whether neophobic vs neophilic population or precocial versus altricial species react differently to lockdowns might be of interest, but it is beyond the scope of this study. However, that population and population specific reaction norms explain little variation (Table S2a, 0-6% of variation) so such a confound should not substantially influence our conclusion much. We do not have fine-scale data on the level of neophobia, but the effects of lockdowns seem similar for precocial (see Anas, Larus, Cygnus) and altricial (the remaining, mostly passerine) species in our dataset (see Fig. 3 and S3-S4). Please, note that we sampled mainly adults (L386). Moreover, the effects for clades, which may differ in their cognitive skills, are also similar (e.g. Corvids vs. Anas or Cygnus; Fig. 3).

      d. Three different methods of measuring the distances between flight and the observer location were used, and FIDs were only measured once per bird, such that there were no measures of repeatability for a test subject. Thus, variation surrounding the measurement of FIDs would have contributed to the variation in FIDs seen during this study.

      While all observers were trained, the three methods may add some noise to the FID estimates. However, the FID estimates from a single method may still slightly differ between observers (so do well standardized morphology measurements; Wang, et al. 2019, PLoS Biology, 17, e3000156). Importantly, FID estimates are highly replicable among skilled observers (Guay et al. 2013, Wildlife Research 40:289-293), and we previously validated this approach and showed that distance measured by counting steps did not differ from distance measured by a rangefinder (Mikula 2014, Ardea 102:53-60), which we now explicitly state (L391-394). Importantly, we control for observer bias by specifying locality as a random intercept (see further details in our response to the Editor). Moreover, each site was sampled by the same observer both before and during the shutdowns.

      3) The sample design of this study may have influenced the FID variability associated with specific species, and specific populations of species. A different number of species were sampled across the time periods of interest; 68 species were sampled before the pandemic versus 135 species after the pandemic. However, the authors do not appear to have directly compared the FIDs for the same species before the pandemic compared to during the pandemic (e.g. the FIDs of Eurasian blackbirds before the pandemic versus during the pandemic). Furthermore, within the same country-city, it is unclear whether the species observed before the pandemic were observed at the same location (e.g. same habitat type such as the same park) during the pandemic. As a species' FID response may be influenced by population characteristics and features specific to each site (e.g. habitat openness), these factors may have influenced the variability in FID measurements in this study.

      We regret being unclear in our methods. Our full model uses all data, but alternative models (see e.g. Fig. S1) used data with ≥5 as well as ≥10 observations before and during lockdowns for a given species. Importantly, Figure 2 and 3 depict data for species sampled at specific sites. We now clarify this within the Methods (L460-483) and the Results (L125-133 and associated figures) and in the figure legends (Fig. S1).

      4) The models in this study accounted for many factors predicted to affect FIDs (see the section on major strengths), however, the number of fixed and random factors are large in number compared to the total sample size (N =6369), such that models may have been over-extended.

      The number of predictors and random effects is well within the limits for the given sample size (Korner-Nievergelt et al. 2015. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan). Importantly, simpler models give similar results as the more complex ones (Fig. S1) and the visual (model free) representations of our raw and aggregated data confirm our model results. This, we suggest, makes our findings robust and convincing.

      Overarching main conclusion

      Overall, this study examines factors influencing FIDs in a variety of bird species and concludes that FIDs did not differ during the pandemic lockdowns compared to before the pandemic (2019 and earlier). Furthermore, FIDs were not influenced by the strictness of government-mandated restrictions. Although the authors accounted for many factors influencing the measurement of FIDs in birds, the authors did not achieve their aim of disentangling the effects of pandemic-specific ecological effects from ecological effects unrelated to the pandemic (such as habitat heterogeneity).

      We find this statement confusing. We accounted for most relevant confounding factors and found little evidence for the strong effect of pandemic. Moreover, we now added country-specific analyses that confirm the lack of evidence, highlight the Figure 3 that shows no clear shutdown effect and also explore how levels of human presence changed over and within the years. Adding more possible confounds (albeit note that not many are left to add) might only further reduce the variation that could be explained by pandemic and hence such hypothetical effects of pandemic will be if anything small and thus likely not biologically meaningful.

      Their findings indicate that FIDs are highly variable both within- and between- species, but do not strongly support the conclusion that FIDs did not change in urban species during the pandemic lockdown. Therefore, this study is of limited impact on our understanding of how a drastic change in human behaviour may impact bird behaviour in urban habitats.

      It is unclear why you think our study lacks support for the conclusion that FIDs changed little during pandemic, if all results show no such effects. However, we toned down our Discussion and highlighted also potential issues linked to our approach (e.g. that sampled individuals were not marked and hence we cannot distinguish between various mechanisms that might explain the described pattern (L293-329) or that human presence may not have changed (L253-269). For further details see our previous response.

      Overall, the study demonstrates the challenges in using FIDs as a general fear response in birds, even during a pandemic lockdown when fewer humans are presumably present, and this study illustrates the large degree of variation in FIDs in response to a human observer.

      We appreciate and agree that our study demonstrates the challenges in quantifying human activity to understand bird escape distance and we added a paragraph on this topic to the discussion (L270-292).

      Nevertheless, we hope that our above responses clarify and address most of the issues you had with our manuscript. We tried to show that (a) most of your proposed controls are indeed included in our study design, models, and visualisations, and that (b) multiple evidence (from models and visualisation of raw and aggregated data) support the no overall effect conclusion. We further emphasize the temporal and between- and within-species variability in FIDs in the Results and now specifically indicate that lockdowns did not influenced FIDs above such variability (Fig. 2-3, Fig. S3). In other words, the natural (e.g. temporal) variation in FIDs seems far greater that potential effects of lockdowns (Fig. 2). We believe that even if lockdowns would have tiny effects that could have been detected with more. stringent experimental design (e.g. individually tagged birds) or even more complex models, such effects would be far from being biologically meaningful.

    1. Author Response

      Reviewer #1 (Public Review):

      The authors managed to show the broad botanical landscape and not only the main crops. This unique achievement is based on decades of establishing an excellent collection of a full comparative seed collection of the current flora. This allows the identification of species that usually are not identifiable. The authors were able to compare the crops that were grown there and identify the contribution of the Roman period with that of the Arab one. This excellent study is a landmark in how such studies should be done. The list of identified species will be used for many other studies on this subject.

      We are very grateful to Reviewer #1 for this generous assessment.

      Reviewer #2 (Public Review):

      Fuks et al. provide extensive paleobotanical data from several sites in the Negev desert to address hypotheses regarding the relative importance of the Roman Agricultural Diffusion (RAD) and the Islamic Green Revolution (IGR) in the dispersal of crops across Eurasia.

      While the overall claims from the authors are convincing, I found the presentation of the data somewhat difficult to follow.

      Graphical visualization of the data with respect to the proposed hypotheses would go a long way towards making the argument clearer for a non-specialist audience.

      The authors apply appropriate caveats in the discussion about their ability to assess IGR given their timeline only incorporates the first few hundred years and some IGR plants may not leave macrobotanical remains. Yet I think more could be done to explain how the data they do find provides positive evidence for RAD. Many of their findings are inferred to be RAD introductions not because of the timing in their sites, but because of previous evidence of introductions at other sites. It would thus be helpful to be more explicit about what additional evidence these findings provide beyond previously published data of introductions of many of these crops into the Levant.

      We thank Reviewer #2 for the positive assessment and helpful comments. We have moved several tables out of the main text to the supplementary tables. We also added a new schematic of the main findings regarding 1st millennium CE introductions to the southern Levant and their significance in the Negev Highlands crop assemblage (Figure 4). We have also added explanatory text to clarify the point about taphonomy vs. period of diffusion.

    1. Author Response

      eLife assessment

      This paper is of interest to researchers and policy makers involved in cervical cancer prevention. The paper provides insight into how the Covid19 pandemic accelerated changes in organized cervical cancer screening. The claim that self-sampling led to a major improvement of test coverage seems somewhat exaggerated and alternative hypotheses to those provided by the authors on the population who chose self-sampling are possible. Nonetheless, this is a valuable piece of work given the scope of the intervention(s) and the precedent it sets i.e. a crisis can in fact accelerate positive changes in screening that have been academic possibilities rather than practical realities.

      Thank you for this supportive summary. We have included exact data on exactly how much of the population test coverage that was attributable to self-samples. We have furthermore decided to focus on the population test coverage that is caused by organised testing (either taken by a clinician at a time and place that the woman was invited to by the organised program or taken by the woman herself using a sampling kit mailed to her by the organised program). These 2 improved analyses are intended to facilitate interpretation of how much of the improved test coverage that is attributable to the mailing of self-sampling kits.

      Reviewer #1 (Public Review):

      During the Covid19 pandemic, most cervical cancer screening programs were temporarily put on hold. The authors describe how Swedish health authorities dealt with this situation by implementing primary self-sampling and by launching a campaign with concomitant vaccination and screening. Besides, they show that the coverage of the screening program was one year after the start of the pandemic at pre-pandemic levels.

      Strengths of the paper are the clear presentation of the steps taken by the Swedish health authorities and the high quality of the presented screening coverage data which could be obtained directly from the screening registry. However, the paper would benefit from more in-depth analyses because the presented data raise questions. The number of invitations was >30 percent lower in the first year of the pandemic (Figure 1), but the screening coverage was only 4-5 percent lower. In the second year of the pandemic (year 2021), coverage was back at pre-pandemic levels, but the role of primary self-sampling in restoring screening coverage is a bit unclear. It is obvious that primary self-sampling made it possible to invite women again for screening during the pandemic, but there is no data on acceptance of primary self-sampling. Besides, the increase in coverage in year 2021 was only 4% and it is not clear whether such a modest increase could also have been achieved without primary self-sampling. In addition to self-sampling, the authors describe the launch of a concomitant vaccination and screening campaign. This is an interesting initiative but the authors do not show data on the coverage of this campaign in the target age range.

      We are now explaining that population test coverage is calculated over a whole screening interval. For example, if the screening interval is 3 years and improved attendance would only fully impact the population test coverage after 3 years. Furthermore, we are now presenting the exact data on how much of the test coverage is indeed attributable to the mailing of self-sampling kits.

      Reviewer #2 (Public Review):

      The manuscript by Elfstrom et al describes the impact of implementing self-sampling as the primary screening test in Sweden to address decreases in coverage following the COVID pandemic. The authors have a very rich dataset including all records of invitations to screen and screening results in the Stockholm area. A limitation is that there is no individual record linkage to allow investigation of the profile of the individuals who chose to screen using the self-sample.

      The conclusions are generally well supported by the authors with the following exceptions:

      1) There was not enough evidence presented in the manuscript to conclude that "The most likely explanation for the large increase in population coverage seen is that the sending of self-sampling kits resulted in improved attendance in particular among previously non-attending women."

      2) The authors state there is no evidence that delays in screening have impacted cervical cancer rates however they present no data to this effect in the manuscript.

      Although all screening and invitation data is indeed collected to the national screening registry, linking this data is not allowed without a permission from the Swedish National Ethical Review Board. We did apply for such a permission, which was granted on 2023-02-01, and a full set of registry linkage analyses to investigate the point raised by the reviewer is now included.

      The mention in discussion on stable cervical cancer rates was referring to public data from the national Cancer Registry. The source is now referenced.

      Reviewer #3 (Public Review):

      The authors report on the nature of interventions that were applied to aid and improve engagement in cervical screening, brought about by the SARS CoV Pandemic in Sweden.

      I appreciate that the impact of these interventions, given that they are recent, will take some time to quantify but the description (and reach) of the policy changes that occurred in a short amount of time is of significant interest to the screening community. The piece on HPV Even Faster is particularly novel; I am not aware of another example of where this has been enacted within a routine programme.

      Thank you for this supportive statement.

      The authors make reference to (15) where the reader can find greater details relating to the population who received the offer of self sampling (and the nature of the device). However I was a little confused (in this stand alone piece) as to who the self sampling group constituted exactly. Did this group not include pregnant women, women invited for first screen or women on non routine recall?

      This is correct, self-sampling kits were mailed to all women due for screening in the ages 26-70. Women due for screening aged 23-25 were invited for mid-wife-based sampling. Pregnant women were advised to come in for mid-wife-based screening, to save time. Women under follow-up from previous screens are not due for screening. This is now elaborated more clearly in the paper.

      The authors state that "the most likely explanation for the large increase in population coverage seen is that the sending of self-sampling kits resulted in improved attendance in particular among previously non-attending women" - why is this written as speculation at this stage (?) is it not possible to attribute directly the contribution made by self sampling, or is this in hand?

      See response to reviewer 2 above: Although all the data is indeed collected, we are not allowed to perform registry linkages without ethical permission. This has now been obtained and the requested analyses made.

      While self sampling is certainly an option that can support uptake and enfranchisement in cervical screening - its overall performance is fundamentally contingent on the number of women who then comply with follow up should the HPV test be positive; it is not simply about who returns the sample. It would have been of interest to see the proportion of women who did comply with follow up.

      The paper is not about follow-up strategies. Follow-up strategies are different in different settings and reporting is not standardized. They have also changed during the time of the study (e.g. cytology follow-up abandoned). A more detailed analysis of this would require a whole new paper.

    1. Author Response

      Reviewer #2 (Public Review):

      1) It could benefit from fleshing out concepts instead of using parentheses, particularly in the abstract.

      We agree and have amended the abstract and methods (please refer to responses provided to the editor’s comments 1a-1e)

      2) There is space to expand on the results presented in Table 1, including an explanation of Affected cohorts 2008 vs Affected cohorts 2008-2009. It may also be useful to explain this analysis in the methods section.

      Please refer to response provided to editor on the same question (comment 5).

      3) Given that Australia is a best-case scenario and other countries have not had the same success in HPV vaccination coverage, in the discussion would it be possible to give a comparison of how these three scenarios would look different in a population with school-based vaccination but lower coverage volume, such that readers could understand how much of the success / failures of each of the three catch-up scenarios? It would be particularly helpful for readers who are not familiar with the modelling tool used in this analysis.

      We have added some commentary in the discussion in response to the reviewer’s comment. In future, further similar work in countries with lower base coverage would be informative.

      “Australia is a relatively high HPV vaccination coverage setting. Outcomes may be less favourable in a lower coverage setting, as there would be less protection from herd effects; however, the impact of disruptions might also be smaller in a setting with lower coverage, since a lower coverage program would be less effective. Nevertheless, the finding that if catch-up is performed expeditiously then it mitigates much of the effect from vaccination delays, is likely to hold in other settings. In a previous study (Simms et al, Lancet Public Health. 2020 Apr;5(4):e223-e234) modelling the health impacts of HPV vaccination hesitancy in Japan from 2013 to 2019 and the potential effects of restoring coverage to 70% with catch-up vaccination in 2020 is informative as it demonstrates that multi-age HPV catch-up vaccination, after catastrophic falls in coverage in Japan, would be effective in mitigating the effects. “

    1. Author Response

      Reviewer #1 (Public Review):

      Ghosh and colleagues report on their multidisciplinary effort to improve cervical cancer screening attendance in the East Boston Neighborhood Health Center (March-August 2021). Specifically, the authors 1) identified using electronic medical records overdue follow-up visits, 2) scheduled screening appointments during regular clinic hours and weekends/evenings, and 3) surveyed patients on their experience. These objectives were clearly defined (although not consistently so throughout the manuscript) and data analyses/presentation were simple and straightforward, appropriate to the study design and methodology used.

      Thank you for this comment. We have clarified the objectives in the revised manuscript.

      Overall, it is unclear to what extent the overdue appointments were backlogs created by the COVID-19 pandemic or due to pre-pandemic factors that could have been exacerbated by the pandemic. In order to contextualize the current study and its findings, an elaboration is needed on whether the pandemic created the delays in cervical cancer screening or simply compounded the problem. For example, the authors report on page 8, lines 196-197 that in 30% of encounters (not clear how many of the 118 reviewed charts were overdue appointments) the healthcare provider did note the overdue appointments.

      We have Figure 2 (now Figure 4) and added Figures 2and 5 to address this comment. In 2019, prior to the COVID-19 pandemic, approximately 70% of patients were up-to-date with cervical cancer screening, corresponding to 8467 patients overdue for screening. In 2020, the up-to-date percentage dropped to 63.5% and the overdue number increased to 8812. Figure 2 is a flowchart of the project which clarifies the “30%” mentioned in the reviewer comment

      In addition, a brief description of the cervical cancer screening program in place would be informative.

      We have added this in the “setting” section of the methods on page 4-5, lines 107-128)

      Table 1 provides an effort versus value summary; however, these constructs are ill-defined, with few inconsistencies with what is reported in the text.

      This table is intended to help inform clinics that are considering implementing quality improvement programs about the effort required and value obtained for different aspects of our program. These are based in part on proprietary cost analyses so certain details are not able to be included. We have amended the text/table to eliminate inconsistencies.

      Comments specific to Aim 1:

      The methodology is missing information on key elements, mainly relating to the decision-making process of establishing and defining the "validated" patient chart list (1375 overdue patients out of 6126 reviewed charts). A chart of the 1375 approached study population is also warranted (459 patients were screened, 622 could not be reached, and 203 cancelled/missed their appointments, what about the remaining 91 patients). A description of the characteristics of the study population and a comparison of the different groups (screened, not reached, cancelled/missed appointment) along these characteristics are missing.

      We have added a flowchart with this information to the results section. See Figure 2.

      Comments specific to Aim 2:

      About 63% of the 459 scheduled screenings were done during the evening/weekend clinics, which represents a substantial gain and clearly indicates a window of opportunity to increase screening rates by pinpointing the importance of offering a convenient time to women attend screening visits. In general, and as expected, offering additional screening clinics was effective in addressing the backlog of patients, although with significant investment and resources as mentioned by the authors. How significant is significant?

      We are not able to share these data publicly. We have added the following sentence: “The cost data is proprietary/not shareable but analysis by clinical leadership indicated the program was not cost-effective/sustainable.” Page 22, lines 678-80

      Comments specific to Aim 3:

      A more structured and detailed presentation/description of the survey instrument, its administration, response rate, and significance of results are warranted in the manuscript, albeit the joint reporting of this in the appended material.

      We have added additional detail about the survey method (page 9, lines 225-6, 228-31) and results ( Page 14-5, lines 518-22, 530-3) . We also inserted the survey used in the clinics. (Figure 1).

      Reviewer #2 (Public Review):

      The purpose of this study is unclear from the introduction. Additionally, the methods are incomplete and did not describe how data was collected and analyzed. The results do not describe the sample. Once these are described more clearly, further comments can be made about what the authors were trying to achieve and the impact of the work on the field.

      We have clarified the study purpose in the introduction: “The purpose of the project was to examine the impact of a Quality Improvement intervention on improving cervical cancer screening, as well as to evaluate the effectiveness and sustainability of different methods for addressing overdue screening.” (page 3, lines 87-90)We have also clarified the methods and results to describe data extraction more completely from electronic medical records and statistical analysis using descriptive statistics.

    1. Author Response

      Reviewer #2 (Public Review):

      This work attempts to connect the diet of a mother to the physiology and feeding behaviors of multiple generations of her offspring. Using genetic and molecular biology approaches in the fruit fly model, the authors argue that this Lamarckian inheritance is mediated by germline-inherited chromatin and is regulated by the general activity of a histone methylase. However, many of the measured effects are small and variable, the statistical tests to prove their significance are missing or poorly described, and some experiments are inadequately described and lack important controls.

      1) The authors claim that the diet of a mother can influence the physiology of her progeny for several generations. However, the observed effects of maternal diet on later generations were small and variable for most assays (see Fig1C, S1.1A, B, D). Additionally, the effect size between F0 HSD to ND was often larger than the effect size between the progeny of F0 parents and ND. To put it another way, if the authors were to compare the F1, F2, etc. to the F0 HSD flies, they would conclude that the majority of the response to diet is not maternally transmitted, and is directly controlled by the diet of the individual being measured.

      We agree with the reviewer that the effect size of acute HSD exposure (in HSD-F0 flies) was stronger than that of transgenerational inheritance (in HSD-F1/2/3/4 flies). Similar observations were also made in other studies, see Klosin et al., Science, 2017, Bozler et al., eLife, 2019. We would argue this difference in effect size was as expected and with clear biological relevance.

      For all living organisms, acute environmental changes (diet change included) have direct and profound influences on their survival and reproduction, and therefore need robust and immediate responses. In comparison, ancestral environmental changes may only provide some vague and indirect indications of the current living environment of the offspring. Such information may be beneficial for the survival and reproduction of the offspring, but the effect size is expected to be much smaller, or at least smaller than that of acute environmental changes.

      Studies on Dutch Famine offers a good example. Human individuals who were prenatally exposed to famine were found to be associated with greater risk in metabolic diseases (Ravelli et al., NEJM, 1976). But nevertheless, direct high-fat diet exposure was still the much stronger risk factor for obesity and metabolic disorders (Bray et al., Am J Clin Nutr, 1998, Jéquier et al., Int J Obes Relat Metab Disord, 2002).

      We have added additional discussions in the manuscript for clarification.

      Furthermore, since our current study aimed to investigate the mechanism of behavioral transgenerational inheritance, we focused on the comparison between HSD-F1 flies (and their progeny) vs. ND-fed flies. As the ancestors of HSD-F1/2/3/4 flies were exposed to HSD, whereas HSD-F1/2/3/4 flies themselves were never exposed to HSD, any difference we observed between the two groups could be solely attributed to transgenerational inheritance of ancestral HSD exposure. With that saying, to better distinguish the effects of acute HSD exposure vs. transgenerational inheritance upon ancestral HSD exposure, we re-analysed and presented the comparisons among ND, HSD-F0, and HSD-F1 data in the manuscript (Figure 1. B-E, Figure 1-figure supplement 1. A-E, Figure 1-figure supplement 2. A-D, Figure 3. D-E, Figure 3-figure supplement 1. B-D, Figure 3-figure supplement 2 and 3. A-B).

      2) The authors chose to study PER, which had the largest average effect sizes between conditions. However, PER was highly variable in the averaged data, with some individuals showing large effects and others having no effects. A better characterization of transgenerational PER may increase the robustness of this assay and confidence in its results. For example, the authors could measure PER in lineages derived from individual flies to determine when transgenerational effects on PER decline or disappear. This form of data collection could help to explain the high variation in the averaged data presented in the paper.

      We acknowledged that PER in general was quite a variable behavioural trait (probably as to most if not all behavioural measures). It was not surprising since animal behaviours, as complex traits, could be influenced by numerous intrinsic and extrinsic factors, such as genetic background, developmental environment, diet, population density, environmental conditions, etc. Numerous PER studies have exhibited similar variability (Masek et al., PNAS, 2010, Marella et al., Neuron, 2012, Charlu et al., Nature Communication, 2013, Wang et al., Cell Metabolism, 2016, Wang et al., Cell Reports, 2020).

      Nevertheless, in our current study we were able to identify statistically significant behavioural difference between ND-fed flies and HSD-F1/2/3 flies, demonstrating that ancestral HSD exposure imposed transgenerational inheritance on sweet sensitivity. To further increase the robustness of the study as suggested by the reviewer, we have conducted additional repetitions of many PER experiments and further confirmed the phenotype with less variability and more statistical power (Figure 1. G-I, Figure 3. D-E, Figure 3-figure supplement 1. B-D, Figure 3-figure supplement 2 and 3. A-B). The reviewer also suggested the use of isogenic flies, which might help to minimize the variations of genetic background. However, we think that demonstrating the behavioural difference in genetically diverse fly populations is a more credible way to show that such transgenerational inheritance is a reliable and generalizable phenomenon.

      3) What do the error bars represent on any figure? There are many examples where the data is highly variable and lies completely outside of the error bars. What is the statistical test for significance that is carried out in each figure? The brief comment about statistics in the methods section is inadequate. The authors should also supply the raw data used to generate the figures so that readers can perform their own statistical tests.

      Data in the manuscript were represented as means ± SEM (standard error of the mean) in all of our figures, which is a standard practice in the field (Masek et al., PNAS, 2010, Charlu et al., Nature Comm, 2013, Wang et al., Cell Metabolism, 2016). We have provided detailed explanations of the statistical tests in the manuscript. We have also prepared raw data files as suggested by the reviewer.

      The model that global H3K27me3 is regulated by ancestral diet is unconvincing without further experimental validation and explanation. Points 4-10 address specific issues.

      4) The authors performed ChIP on cycle 11 embryos. This stage is extremely short (11 min) and contains roughly 10 times less chromatin than embryos only 30 minutes older. These features make it very difficult to collect large numbers of precisely staged embryos without significant contamination. It is also debatable whether early cell cycles (including and preceding cycle 11) are slow enough to deposit and propagate histone marks in the presence of new histone incorporation. See the opposing arguments in Zenk et al 2017 and Li et al 2014. The authors could perform ChIP on older embryos to avoid this controversy.

      We thank the reviewer for the clarification. Our embryo collection protocol involved allowing flies to lay eggs freely in a cage for 30 minutes followed by 50 minutes of incubation on a juice plate, and then completing the embryo sorting within 30 minutes. Therefore, to describe it in a more stringent way, our embryos should be in the stage between cycle 10-12. We have corrected this information in the manuscript (Figure 2. A).

      Since all the embryos were sorted using the same morphological criteria within the same time frame, their developmental stages should be comparable (i.e. all from cycle 10-12). In several references we consulted, a broader range (cycle 9-13) was used for ChIP-seq sequencing analysis (for example, see Zenk et al., Science, 2017).

      Surely any maternally inherited information will also be present in cycle 14 or 15 embryos if it is to influence the development or physiology of the brain. The observed differences in global H3K27me3 levels in F1 vs ND flies could be explained by slightly different aged embryo collections or technical variations in the ChIP protocol. The authors could strengthen their conclusion by performing more ChIP replicates. Alternatively, the authors could use orthogonal approaches like antibody staining or western blots to measure global H3K27me3 levels in precisely staged embryos.

      We chose to use cycle 10-12 embryos because we aimed to identify epigenetic modulations directly transmitted through the maternal germline. Embryos in cycle 14-15 might reveal more profound changes, but since embryos in that stage had entered the zygotic phase and started the remodeling of histone modifications, we think it might mask the maternally transmitted changes we sought to identify.

      In addition, we conducted two biological replicates for each group for the ChIP-seq analysis, which was a standard in the field (Zenk et al., Nature, 2021, Ing-Simmon et al., Nature Genetics, 2021). In the current study we further verified the genes identified in the ChIP-seq analysis in RNA-seq and qPCR analysis.

      We further verified the ChIP-seq results by using western blot, which showed a ~2 folds increase in H3K27me3 modification in HSD-F1 early embryos vs. ND-fed embryos, in line with the ChIP-seq data (Figure 2-figure supplement 1. B). We have also provided immunofluorescence results for embryos at cycle 13 and cycle 14, which clearly showed a significant increase in H3K27me3 modifications in HSD-F1 embryos (Figure 2-figure supplement 1. C).

      5) The authors measure PRC2 subunit mRNA levels in adult fly heads to attempt to explain the observed differences in inherited H3K27me3 levels in fly embryos. The authors should examine PRC2 components in germ cells and early embryos to understand how germ cells and early embryos generate H3K27me3 patterns.

      We have now shown that Pcl and E(z) mRNA expression in HSD-F0 flies were not significantly changed vs. ND-fed flies (Figure 2-figure supplement 2. D-G). Meanwhile, H3K27me3 demethylase UTX and H3K27ac acetyltransferase Cbp showed significant decrease (Figure 2-figure supplement 2. H). Therefore, HSD exposure imposed complex epigenetic modifications in HSD-F0 flies, which then led to transmission of epigenetic marks to their progeny. Given the main scope of this study was to understand which epigenetic program mediated the behavioral transgenerational inheritance upon ancestral HSD exposure (but not that mediated acute HSD exposure), we focused our effect on H3K27me3 which was significantly changed between HSD-F1 flies vs. ND-fed flies.

      6) The RNAi experiment targeting PRC2 components in embryos is uninterpretable without appropriate controls and an explanation of the genotypes used in the experimental paradigm. Are the authors crossing nosNGT mothers to UAS-RNAi fathers and assaying the progeny? What is the genotype of the F1 flies and how does it compare to the genotype of the ND flies? The authors should also note that the Gal4 drivers they use are not necessarily restricted to the ovary, and could directly affect other tissues controlling PER like neurons and muscle. Additionally, the authors should supply the appropriate controls to verify that their experimental paradigm has the intended effect. PRC2 proteins are presumably loaded into embryos and would be immune to zygotic-expressed RNAi. The authors could validate when PRC2 RNAi is effective by staining embryos for H3K27me3.

      We have now added schematic diagrams and detailed explanations in our revised manuscript to better explain the RNAi experiments (Figure 3-figure supplement 1. A). As shown in the diagram, we compared each RNAi treatment group to appropriate genetic controls. We have also noted in the manuscript that the GAL4 drivers we used were not restricted to the ovary.

      We have now verified the effect of PRC2 knockdown to reduce H3K27me3 in female germline by both western blot and immunofluorescence staining (Figure 3. B-C).

      7) Although the authors do not note this, nosNGT>RNAi affects the PER of ND flies (compare Gal4>RNAi to just RNAi or just Gal4 in ND columns in Fig3A-D). This could be due to RNAi expression in neurons or muscles or some other indirect effect. Regardless of the mechanism, this result makes it difficult to interpret how RNAi treatments affect the transgenerational inheritance of PER if there is an equivalently strong nontransgenerational effect.

      Although nosNGT>RNAi appeared to slightly affect PER response of ND-fed flies, there was no statistically significant difference (Figure 3-figure supplement 1. B and D, Figure 3-figure supplement 2. A-B). Rather, the effect of E(z) knockdown was evident in HSD-F1 flies (Figure 3-figure supplement 1. B), further confirming the involvement of H3K27me3 in transgenerational inheritance of PER reduction.

      8) The matalpha gal4 experiment is inadequately explained in the text or methods. Are the authors expressing RNAi in the ovaries of the F0 flies that are fed an HSD? Does the ovary influence their PER somehow? Similar to point 8, there appears to be a nontransgenerational component to the RNAi phenotype that clouds the interpretation of the transgenerational effect (compare F0 in S3.1A-C).

      We have now added a schematic diagram and detailed explanations in our revised manuscript to better explain the RNAi experiments (Figure 3. A). As shown in the diagram, we compared each RNAi treatment group to appropriate genetic controls.

      Similar to point 7, although Mat-tub-GAL4>RNAi might seem to affect PER responses of ND-fed flies, there was no statistically significant difference (Figure 3. D-E). Rather, the effect of E(z) knockdown was evident in HSD-F1 flies (Figure 3. D), further confirming the involvement of H3K27me3 in transgenerational inheritance of PER reduction.

      9) For the EED inhibitor experiments (both PER and calcium imaging), it is unclear whether the authors fed the mothers or their adult progeny the EED inhibitor. If adult progeny were fed, what tissues were affected? The authors should stain various tissues with an H3K27me3 antibody to verify the effectiveness of their inhibitor. Finally, the effect of the EED inhibitor on calcium imaging was not convincing because the variation was so large.

      We have added a new schematic diagram and provided more detailed explanations in the manuscript for pharmacological interventions (Figure 4. A-D). To verify the effect of the drug treatment, we showed that compared to the control group fed with DMSO, flies fed with the inhibitor showed a significant decrease in H3K27me3 levels, demonstrating the effectiveness of the inhibitor (Figure 4-figure supplement 1. A).

      We acknowledged the unsatisfactory quality of our calcium imaging experiments in our initial submission. We have now improved our experimental procedures to reach better data quality, while the conclusions remained consistent (Figure 4. E).

      10) In all of the PRC2 RNAi and inhibitor experiments, are there any other phenotypes that would suggest that the treatments are working? There are many published PRC2 loss-offunction phenotypes (molecular and developmental) in different tissues. The authors could assure the reader that their treatments are working as expected by doing these controls.

      As discussed above, we have now used western blot and immunofluorescence staining to validate the efficiency of PRC2 RNAi in female germline (Figure 3. B-C).

      11) The authors propose that a transgenerationally inherited state of the caudal gene is responsible for the transgenerationally inherited PER. However, the experiments investigating the methylation state and expression level of caudal are unconvincing. Cad mRNA abundance varied immensely in the ND RNAseq samples. When the authors compared cad levels across generations, the effect size was small. A single outlier in the ND sample in both the RNAseq and the RTPCR experiments appears to drive up its mean and effect size. The H3K27me3 ChIP on cad is very similar in the F1 and ND samples and the acetylation peak on its promoter appears unchanged. The authors could vastly improve the caudal experiments in this paper by simply using cad antibodies to stain the relevant tissues that contribute to PER. For example, the authors could stain GR5a neurons for cad expression in different generations that inherit (or don't inherit) maternal PER to more accurately determine if cad levels are indeed transgenerationally regulated. The authors could also perform more ChIP experiments at a less variable stage to convincingly correlate epigenetic marks on cad with its expression level.

      As discussed above, we conducted two biological replicates for each condition of the ChIP-seq analysis, which was a standard in the field (Zenk et al., Nature, 2021, IngSimmon et al., Nature Genetics, 2021). We have also performed western blot and immunofluorescence for H3K27me3 in ND vs. HSD-F1 embryos to further validate our ChIP-seq data (Figure 2-figure supplement 1. B-C).

      As for Cad gene, H3K27m3 signals showed a statistically significant difference between ND-fed and HSD-F1 flies (Figure 5. D). We have also conducted additional qPCR experiments to verify the gene expression changes of the Cad gene (Figure 5. F, right), which was in line with the ChIP-seq data and further supported its validity.

      It was worth noting that during the developmental time window of our ChIP-seq analysis, the acetylation signals in the promoter region of cad were very low (Figure 5. D), making it impossible to make a comparison.

      Reviewer #3 (Public Review):

      Jie Yang et al. investigated the transgenerational behavioral modification of a high-sugar diet (HSD) in Drosophila and revealed the underlying molecular and neural mechanisms. It has been reported that HSD exposure decreases sweet sensitivity in gustatory sensory neurons, resulting in reduced sugar response (Proboscis extension reflex, PER) in flies. The current study reports that this effect can be transmitted across generations through the maternal germline. Furthermore, the authors show that H3K27me3 modification is enhanced in the first-generation progenies of HSD-treated flies (F1), and genetical or pharmacological disruption of PCL-PRC2 complex blocks the behavioral change and restores the sweet sensitivity in the Gr5a+ sweet sensory neurons. The authors further analyze the differentially expressed genes in the F1 flies. Among H3K27me3 hypermethylated regions, they focus on homeobox genes and find a transcription factor Caudal (Cad), which shows decreased expression in the F1 flies. Knocking down Cad in Gr5a+ neurons results in decreased PER response to sucrose.

      Transgenerational changes in physiology and metabolism have been broadly studied, while inherited changes at the behavioral level are much less investigated. This work provides convincing evidence for transgenerational modification of feeding behavior and digs out the underlying molecular and neural mechanisms. However, there still are several concerns that need to be clarified.

      1) The epigenetic regulator PCR2 has been found to play an essential role in the 7d-HSDinduced modification of the PER response. In this study, it's important to clarify for the transgenerational change, whether epigenetic modification is required in the flies exposed to HSD (F0), the progenies (F1), or both. It would be very helpful for better interpretation if the procedures of HSD treatment in RNAi experiments and the drug treatments were stated in more detail. In addition, the F0 flies should be examined as the control.

      In this current study our main scope was to understand the transgenerational influence of HSD exposure on the progeny. To this aim, we chose to study the physiological and behavioral differences between ND-fed flies vs. HSD-F1 flies (and their progeny on ND). HSD-F1 flies (and their progeny) were not exposed to HSD in their whole life cycle and therefore the physiological and behavioral changes we observed vs. ND-fed flies could be solely attributed to epigenetic modifications transmitted via germline cells from HSD-F0 flies. Therefore ND-fed flies were used as the main control.

      As for HSD-F0 flies, the acute effects of HSD exposure could be more complex. Epigenetic factor was likely involved, as evident in Figure 3-figure supplement 1. C, Figure 3-figure supplement 3. A-B and Figure 4. C. In addition, HSD exposure might also directly affect gene expression and multiple signaling pathways in HSD-F0 flies (see Chen et al., Science China Life Sciences, 2020). Therefore, we did not aim to investigate how HSD exposure affected HSD-F0 flies in this current study. We have added additional discussions in the manuscript for clarification.

      With that saying, we still added more HSD-F0 flies as controls when needed (Figure 2-figure supplement 2. D-G, Figure 3-figure supplement 1. C, Figure 4. C, Figure 5. F, left).

      We have also modified the schematic diagrams and added more detailed explanations in the manuscript, in order to provide a clearer illustration of the experimental procedures (Figure 3. A, Figure 3-figure supplement 1. A, Figure 4. A, B and D). Specifically, we employed two different RNAi approaches. Firstly, we used genetic methods to obtain homozygous Mat-tub-gal4>UAS-gene X RNAi fly lines on chromosomes Ⅱ and Ⅲ for germline-specific knockdown (Figure 3, Figure 3-figure supplement 3). Secondly, we used heterozygous nosNGT-gal4>UAS-gene X RNAi flies for embryo-specific knockdown (Figure 3-figure supplement 1 and 2). Our drug experiments involved both treating the flies and measuring their PER (Figure 4. A-C) and treating the parental flies and measuring the PER of their progeny (Figure 4. D).

      2) The information on the drug treatment period is also missing for imaging experiments (Fig.4C). Moreover, the response curve is very different from those recorded in the same neurons in previous studies. What’s the reason? Please also provide a representative image showing which part of the Gr5a neurons is recorded.

      The experimental procedures of drug treatments were shown in Figure 4. A now. We fed adult flies with specific compounds for five days after eclosion, then measuring the calcium signals of Gr5a+ neurons when flies were fed with sucrose.

      As suggested by the reviewer, we have now conducted calcium imaging experiments more carefully and thoroughly. We have now added the new data into the revised manuscript and the conclusions remained consistent (Figure 4. E). We recorded the calcium signal in the axons of Gr5a+ neurons in the SEZ.

      3) It's unclear whether the decreased Cad expression upon HSD treatment specifically occurred in Gr5a+ neurons or a lot of cells. If the change in gene expression is significant in the qPCR test, it should occur in a large number of cells, most likely including different types of gustatory sensory neurons. If lower cad expression led to lower neural response and thereby lower behavioral response, how to specifically decrease the PER response to sucrose but not to other tastes? -whether HSD-induced desensitization is specific to sucrose in the offspring?

      We agree that Cad expression might decrease in a lot of cells including Gr5a+ neurons in the proboscis. In order to investigate whether taste perception other than sweet sensing was also affected, we conducted PER experiments with fatty acids, which was another type of appetitive taste cues like sugars. Perception of fatty acids is mediated by ionotropic receptors such as ir25a, ir76b, and ir56b (Ahn, et al., eLife, 2017, Brown., et al, eLife, 2021).

      Our results indicate that PER of fatty acid in HSD-F0 and HSD-F1 was not significantly reduced compared to the ND-fed controls (Figure 1-figure supplement 2. E-F). This suggests that the impact of Cad on gustatory sensory neurons might be specific to sweet sensitivity of Gr5a+ neurons.

      4) In Fig.2D, data are sorted for genomic regions showing an up-regulated modification of H3K27me. It's unclear whether similar sorting was performed in panel C. This needs to be clarified.

      The analysis shown in Figure 2C and 2D were linked. As for 2C, we identified genomic loci with enriched H3K27me3, H3K9me3, and H3K27ac peaks, and found that H3K27me3 peaks showed the most robust changes between ND-fed and HSD-F1 flies. Therefore we concentrated on these loci where H3K27me3 modifications were significantly changed between the two groups, and further analyzed their difference. As shown in Figure 2D, within these loci, H3K27ac modifications, which was functionally antagonizing to H3K27me3, were significantly reduced; whereas H3K9me3 signals within these loci remained unchanged. Such results confirmed that ancestral HSD exposure induced robust H3K27me3 modifications in certain genomic loci.

    1. Author Response

      Reviewer #1 (Public Review):

      The paper proposes a novel approach, named ModCRE, which utilizes structure-based learning to predict the DNA binding preferences of transcription factors (TFs). The authors integrate both experimental knowledge of the structures of TF-DNA complexes and large amounts of high-throughput TF-DNA interaction data. Additionally, the authors have developed a server that automatically produces these characteristics for other TFs and their complexes with co-factors.

      Strengths: The paper's integration of experimental knowledge and highthroughput data to develop statistical knowledge-based potentials to score the binding capability of TFs in cis-regulatory elements is a powerful strategy. The proposed approach can be applied to more than 80% of TF sequences, making it a general method for characterizing binding preferences.

      Weaknesses: The paper is difficult to follow, as it contains many technical details and implementation details. The method applied is not always clear, and the paper focuses on implementation rather than the message. The results indicate that the nearest neighbors approach in Figure 4 outperforms the proposed method in many cases, and the proposed method seems to perform better only when similarity with the target is low. The same applies in Fig. 5 when using normalized ranked scores.

      It appears that the authors have successfully developed a structure-based learning approach for predicting DNA binding preferences of transcription factors. However, the paper's technical language and implementation focus make it challenging to follow at times.

      It seems the authors have successfully achieved most of their aims in improving predictions for TF-DNA interaction, and the results support their conclusions.

      This work has the potential to significantly impact the field of TF-DNA binding and gene regulation, particularly for those interested in predicting PWMs for TFs with limited or unreliable experimental data.

      General comment: We wish to thank the reviewer for his/her comments helping us to facilitate the reading, clarify the ideas and certainly improve the manuscript. We also thank his/her comments on the strengths. In the current revision we have tried to solve the faults and improve the weaknesses. Certainly, the results section contained many explanations of the method and its implementation rather than its use and application. Referred to figures 4 and 5, the reviewer is right too: Our approach can help to predict the binding motif of a transcription factor on difficult cases, when the PWMs of closest homologs are unknown, but the structure of its complex with DNA can be provided. Otherwise, when information of binding is available for close homologs, traditional state-of-the-art approaches are better than our approach and we recommend them.

      Reviewer #2 (Public Review):

      This work describes the development of a new structure-based learning approach to predict transcription binding specificity and its application in the modeling of regulatory complexes in cis-regulatory modules. The development of accurate computer tools to model protein-DNA complexes and to predict DNA binding specificity is a very relevant research topic with significant impact in many areas.

      This article highlights the importance of transcriptional regulatory elements in gene expression regulation and the challenges in understanding their mechanisms. Traditional definitions of activating regulatory elements, such as promoters and enhancers, are becoming unclear, suggesting an updated model based on DNA accessibility and enhancer/promoter potential. Experimental techniques can assess the sequence preferences of transcription factors (TFs) for binding sites. Recent models propose a cooperative model in which regulatory elements work together to increase the local concentrations of TFs, RNA polymerase II, and other co-factors. Co-operative binding can be mediated through protein-protein or DNA interactions. The authors developed a structurebased learning approach to predict TF binding features and model the regulatory complex(es) in cis-regulatory modules, integrating experimental knowledge of structures of TF-DNA complexes and high-throughput TF-DNA interactions. They developed a server to characterize and model the binding specificity of a TF sequence or its structure, which was applied to the examples of interferon-β enhanceosome and the complex of factors SOX11/SOX2 and OCT4 with the nucleosome. The models highlight the co-operativity of TFs and suggest a potential role for nucleosome opening.

      The results presented by the authors have a large variability in performance upon the different TF families tested. Therefore, it would be ideal if the performance/accuracy of the method is tested in some simple predictions and validated with prospective experimental data before applying it to model difficult scenarios such as those described here: SOX11/SOX2/OCT4 and nucleosome or interferon beta and enhanceosome. This will give more support to the models generated and thus the validity of the conclusions and hypothesis derived from them.

      General comment: We wish to thank the reviewer for his/her comments, we really appreciate them and the opportunity to have new tests with our approach. Some of his/her comments coincide with those of reviewer 1. When this is the case, we will refer to our previous answers and modifications in the manuscript. In this revision we have included new tests to validate the approach using available and published experiments different than the ones used in the original submission. We hope the new information is sufficient to support our approach.

    1. Author Response

      Reviewer #1 (Public Review):

      Davies et al. examined the role of the malaria parasite's FIKK4.1 protein kinase in trafficking and host membrane insertion of key proteins that are exported by the intracellular P. falciparum parasite. FIKK4.1 is one of 18 FIKK serine/threonine kinases exported into the host erythrocyte; these kinases phosphorylate both host proteins and exported parasite proteins. FIKK4.1 has previously been implicated in rigidification of the erythrocyte cytoskeleton. It is also known to affect trafficking and insertion of PfEMP1, the parasite's primary cytoadherence ligand, on the host cell surface. In the present studies, the authors perform sophisticated gene-editing experiments that combine conditional knockout of FIKK4.1 with tagging of two kinase targets with the TurboID proximity biotin-labeling enzyme to explore phosphorylation-dependent changes in target protein localization, structure, or protein-protein interactions. Using conditional knockout of each exported FIKK kinase, they determine that FIKK4.1 is the only kinase that regulates PfEMP1 surface exposure and that it does not appear to modulate surface translocation of RIFINs, a family of parasite antigens involved in immune evasion. The combination of gene-editing, proximity labeling and mass spectrometry, and biochemical studies in the paper is to be lauded. These findings identify key targets of exported kinases and will guide future studies of host cell remodeling.

      Key limitations of the study:

      1) TurboID tagging of FIKK4.1 followed by proximity labeling and mass spectrometry of biotinylated proteins revealed parasite-stage dependent labeling of 101 parasite proteins and 39 human proteins that come in contact with FIKK4.1. Although TurboID is a more efficient biotin ligase produced through directed evolution, nonspecific biotinylation of proteins that do not form biologically relevant interactions remains an issue. Biotin addition for 4 hours, as used here and in most studies using this ligase, allows for labeling of proteins that undergo random collisions with the TurboID-tagged protein. While there was clear enrichment of exported proteins in the FIKK4.1-tagged parasite at mature schizont stages when FIKK4.1 is in the host cytosol, only 66% of the proteins labeled were exported, consistent with labeling and recovery of irrelevant proteins. As the authors performed appropriate controls and interpreted their findings cautiously, this limitation results primarily from finite efficiency of TurboID, trace levels of endogenous biotin within cells, and other complexities associated with the technology.

      We agree with the reviewer that there are limitations to TurboID and the mere presence of a protein in a dataset does not imply functional relevance (which is also true for IP data). However, it is highly complementary to data obtained through other methods (in our case previous cytoadhesion data and phosphoproteome data) and as we show here, can give high resolution information on the local protein environment of a protein. This is illustrated by highly significant protein-specific interaction datasets for PTP4 and KAHRP obtained from biological triplicate experiments. The site-specific protocol we use later in the paper allows us to eliminate unbiotinylated proteins non-specifically binding to beads which is a major advantage, evidenced by the much higher ratio of exported proteins observed in the PTP4 and KAHRP-turboID datasets.

      2) The production of dual-edited parasites carrying conditional knockout of FIKK4.1 and TurboID tagging of either KAHRP or PTP4 permitted examination of changes in localization of exported proteins upon their phosphorylation by FIKK4.1. KAHRP and PTP4 are excellent choices for these experiments because they are established targets of the kinase and good candidates for effectors involved in PfEMP1 membrane insertion. Some 30-40 proteins exhibited significant changes in biotinylation by these TurboID-tagged proteins, suggesting altered localization or structure upon loss of FIKK4.1 kinase activity. PfEMP1 trafficking proteins (PTPs), Maurer's cleft proteins, exported heat shock proteins, and components of PSAC, a parasite-associated nutrient uptake channel, all exhibited changes. Although FIKK4.1 is not essential for in vitro parasite propagation, altered localization could result either directly from changes in phosphorylation status of the protein itself or could reflect indirect effects on the cell from loss of FIKK4.1.

      The reviewer is correct in that we cannot exclude that it is not only loss of FIKK4.1 mediated phosphorylation sites that leads to the observed changes, but that the loss of the FIKK4.1 kinase domain affects the localisation of other proteins. Conditional inactivation of the FIKK4.1 kinase domain while retaining the overall protein would have been a more elegant approach. However, we do not predict the kinase domain of FIKK4.1 to be a strong structural component given that kinase domains often evolved to have low affinity interactions with their multiple targets and are less likely to act as scaffolding parts. As the reviewer points out, because we observed no growth defect upon deletion of FIKK4.1. Therefore we can be quite certain that the observed changes are not due to indirect effects caused by differences in growth but are a direct effect by the loss of the kinase domain and FIKK4.1’s enzymatic activity.

      3) As a consequence of these two limitations, these experiments could not conclusively implicate either KAHRP or a specific PTP in PfEMP1 surface translocation. Whether specific Maurer's cleft proteins or the nutrient channel components contribute to PfEMP1 surface translocation could also not be addressed. The authors' Discussion section is appropriately cautious in interpreting changes in biotinylation upon FIKK4.1 disruption. Although a large amount of data has been generated in this sophisticated study, the precise mechanism of PfEPM1 trafficking and membrane insertion remains elusive.

      We agree with the reviewer that we do not definitively explain the mechanism of FIKK4.1 in PfEMP1 surface translocation. But we identify several promising candidates for modulating its effect, some of which (for example PTP4) have previously shown to be relevant for PfEMP1 surface translocation. We also identify unexpected proteins which can now be investigated further. New methods in high resolution Cryo-EM imaging may allow us to image individual protein density in knobs and visualize the observed changes in the future. Further PerTurboID experiments with individual components will likely draw an ever finer picture. Here we focus on emphasising the potential of PerTurboID for identifying connections between proteins, and to observe changes to protein characteristics which would be missed by other techniques.

      Reviewer #2 (Public Review):

      Davies et al combine TurboID with conditional mutagenesis to reveal how a perturbing event alters the accessibility of a sub-cellular proteome to proximity biotinylation. The approach builds on established techniques for antibody-mediated enrichment of biotinylated peptides (rather than purification of whole biotinylated proteins by avidin) to enable mapping of the specific lysines that are biotinylated by TurboID and how access to these sites changes between conditions. The insights gained have a range of potential implications touching on protein trafficking/localization, complex dynamics and membrane topology. The authors apply this strategy to study trafficking of the key P. falciparum adhesin PfEMP1 to the infected erythrocyte surface. This group has previously shown that the exported parasite kinase FIKK4.1 is important for this process but the specific mechanism is unknown. In the first part of the present study, the authors develop PerTurboID and analyze the altered biotinylation patterns upon FIKK4.1 deletion in parasite lines bearing TurboID tags on PTP4 or KAHRP, two proteins required for this pathway and likely direct substrates of FIKK4.1. Numerous changes in site-specific biotinylation are quantitatively assessed on hundreds of proteins and possible implications for these changes are discussed, including topology of parasite integral membrane proteins exported into the RBC compartment as well as how the conformation of the RhopH complex might be altered upon RBC membrane integration. In a final set of experiments, the authors show that among 18 exported FIKK kinases, FIKK4.1 is uniquely important to PfEMP1 surface display but not to the distinct RIFIN class of parasite proteins that are also trafficked to the RBC surface. On the whole, the data are compelling and provide an important new approach that advances the proximity labeling toolkit.

      While the resolution of PerTurboID captures the site-specific changes in biotinylation abundance and position that occur upon loss of FIKK4.1, a limitation of the study is that these observations do not necessarily clarify the model for how FIKK4.1 is controlling the PfEMP1 trafficking pathway. The authors convincingly show that FIKK4.1 uniquely supports PfEMP1 surface presentation and cytoadhesion. However, this is not connected to the PerTurboID data in a way that provides a mechanism for how this is achieved by FIKK4.1 activity and in my opinion doesn't deliver on the title claim to "reveal the impact of kinase deletion on cytoadhesion". Certainly the changes in biotinylation suggest a range of interesting possibilities related to the accessibility and topology of proteins within and beyond the PfEMP1 trafficking pathway; however, it is hard to interpret the relationship of these changes to the process in view. For instance, deletion of FIKK4.1 increases biotinylation of several Maurer's clefts proteins in both the PTP4- and KAHRP-TurboID experiments but why this is or whether it is significant for PfEMP1 transport is unclear.

      We agree with the reviewer that we do not definitively confirm the relationship between the changes observed in protein accessibility and the role of FIKK4.1 in PfEMP1 transport. We discuss a number of likely options based on what is known of the candidate genes, but validation would require extensive further work beyond the scope of this paper. We have focussed on demonstrating the value of PerTurboID as a technique for measuring molecular-level changes which would be missed by other methods, providing a list of proteins which are likely involved in modulating FIKK4.1 activity and PfEMP1 trafficking through an interconnected network. We believe the technique will be very useful for understanding gene function in other scenarios. However, we changed the title to be more specific to proteins in the cytoadhesion complex and associated proteins, and not cytoadhesion per se.

    1. Author Response

      Reviewer #1 (Public Review):

      The finding that taste memory formation follows the same or highly similar logic and mechanisms as olfactory memory is very interesting. In particular, the new approach to use an operant learning assay developed by the authors to address this outstanding question in the field is very impressive. The shown data are of high quality and very convincing.

      While the current version will be of clear interest to fly people dissecting memory formation, it might be less accessible outside this immediate field. Below I list my suggestions, questions and criticisms.

      You have developed an operant assay and stress this in the introduction. This is important because it allows you to gain much better inside into how memory is formed and how it is recalled. Nevertheless, I was somewhat disappointed that you did not exploit that aspect more in your study. First, I suggest showing, at least for the initial figures, the traces (e.g. Fig 1D) not only for the test phase but also for the training phase. As you also mention in your discussion, the extent of memory formation will depend critically on the number of pairings during training. And perhaps not only on their number but also on their evolution/change over time. Second, you only show preference indices. I suggest showing the number of actual interactions with the food source in addition. In my opinion and experience, the preference index can be misleading or at least the interpretation might be questioned if the number of actual choices is very low or very high compared to controls or other groups. Third, regarding the same point, you show traces for test phases, but you do not comment or discuss why they might look the way they look. For instance, it appears that in some cases it takes a while to see an actual difference in the preference index while at other times it seems more instantaneously etc.

      We have now added plots showing the preference indices over time during both training and testing for all the experiments in Figures 1 and 2. We also comment in the text on our view of their interpretation. Although we recognize that interesting features of the learning process could be revealed by examining the process over time, we also caution that earlier timepoints are inherently less robust because of smaller sample size to the measurements (flies tend to not take many sips of the food over the first several minutes). Thus, emergence of a preference after a period of time may not reflect an evolution of the preference as much as a firming up of the data as more sips are recorded. As a notable example, our data in Figure 1E,G show close to a zero preference for activation of sweet sensory neurons during the first 10 minutes of training, despite the innately appetitive nature of this manipulation. This is undoubtedly because it takes some time for flies to sample both choices and build up enough interactions to show a clear preference. This is not to say that the curves are never informative, however. For example, it is reassuring to see that activation of PAM neurons does not produce a positive preference at any time during training (Figure 2F).

      We have also added the raw sip/interaction numbers for the experiments in Figure 1 in order to provide an example of how these data relate to the preference. Your concern about reliability differing depending on choice number is certainly warranted (as we also discuss above). However, the raw data does not suggest a major difference in the overall number of choices being made between groups.

      Along the same lines, I am wondering why you do not observe extinction. Frequently if the CS is re-experienced without the US over several trials, you start to see memory fade. The preference traces as well as the actual interactions might help to explain this.

      This is an interesting question, and one that we have certainly wondered about. Our assumption is that the number of exposures to the CS+ during testing is not sufficient to induce extinction. It would be interesting to run a longer testing period to see whether extinction occurs over a longer time course; however, we have not done so at this point.

      You use salt as a negative US. I suggest showing at least one experiment with bitter taste (e.g. quinine) to show how general your finding is to negative conditioning. Your optogenetic data suggests it is.

      We actually never use natural taste stimuli as the US; we only use salt as the CS+ in our appetitive learning experiments. We have revised the figures and figure legends extensively for clarity and one of the changes is to try to make it clearer what is the CS+ and CS- in each experiment.

      You analyze the role of energy state in memory formation. This is very interesting. In light of the importance of feeding state, it would be very helpful to include starvation/metabolic state information not only in the methods but also in the results section (at least briefly).

      We have now indicated in all the figure legends and in the text that flies were all food deprived for 24 hours prior to training.

      Your data convincingly shows that taste memory is formed in the mushroom body. For instance, you show that inhibition of KCs prevents the change in preference. KC inhibition was done during the entire experiment (training and test). Thus, it's important to show how KC inhibition affects (or does not) training vs. test.

      We appreciate the motivation for this suggestion and how extensively this issue has been explored in olfactory classical conditioning. We also agree that it would be interesting to perform this experiment. However, the practical logistics of doing this experiment were not possible with the constraints we were under. We unfortunately don’t currently have the means to operate the STROBE at a temperature high enough to effectively silence neurons using shibire(ts), and silencing with optogenetics is not possible with our current setup either. Thus, we will need to leave this issue unresolved for the time being.

      Along the same lines, how do you envision this memory formation to happen at the circuit level? KCs and DANs are likely activated by CS and US. It would be important to at least include a paragraph in the discussion to clarify this.

      The bulk of our characterization of this assay (including the demonstration that KCs are required) was done with 75 mM NaCl as the CS+ and optogenetic activation of PAM neurons as the US. Previous studies have shown activation of KCs by tastes (Kirkhart and Scott, 2015), so we believe that KCs are being activated by the CS+ and DANs are being activated by the US (in this case directly through optogenetics). Based on a great deal of beautiful work in olfactory classical conditioning, we believe it is likely that this co-incident activation leads to plasticity as KC-MBON synapses, thereby skewing the behaviour in favor of attraction. We have now tried to clarify this mechanism in the paper.

    1. Author Response

      We express our sincere gratitude to the editors and reviewers for their invaluable input. To further improve our manuscript, we have devised a plan to perform additional histological experiments of Bdnf and TrkB expression. Specifically, we will replace the phospho-TrkB antibody with an anti-TrkB antibody to quantify Bdnf/TrkB co-expression. Moreover, we acknowledge the concern raised by the reviewers regarding the clarity of some explanations and the potential influence of alternative mechanisms influencing the defects observed in Bdnf neurons. We aim to provide a clearer explanation and discussion. We also intend to provide a more comprehensive discussion of the limitations of our LM22A-4 drug treatment experiment. By addressing these points, we wish to ensure that our research is informative to the eLife readership.

    1. Author Response

      Reviewer #1 (Public Review):

      Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder leading to the loss of innervation of skeletal muscles, caused by the dysfunction and eventual death of lower motor neurons. A variety of approaches have been taken to treat this disease. With the exception of three drugs that modestly slow progression, most therapeutics have failed to provide benefit. Replacing lost motor neurons in the spinal cord with healthy cells is plagued by a number of challenges, including the toxic environment, inhibitory cues that prevent axon outgrowth to the periphery, and proper targeting of the axons to the correct muscle groups. These challenges seem to be well beyond our current technological approaches. Avoiding these challenges altogether, Bryson et al. seek to transplant the replacement motor neurons into the peripheral nerves, closer to their targets. The current manuscript addresses some of the challenges that will need to be overcome, such as immune rejection of the allograft and optimizing maturation of the neuromuscular junction.

      Bryson et al. begin by examining the survival of mESC-derived motor neurons allografted into SOD1 mice. The motor neurons, made on a 129S1/SvImJ, were transplanted into the tibial nerve of SOD1 mice on a C57BL/6J background. Without immunosuppression, most cells were lost between 14 and 35 days, suggesting an immune response had eliminated them. Tacrolimus prevented cell loss, but it also inhibited innervation of the muscle. It also uncovered the tumorigenic potential of contaminating pluripotent cells. In contrast, immunosuppression using H57-597, an antibody targeting T-cell receptor beta, prevented graft rejection while permitting some innervation of muscle. Pretreatment of the cells with mitomycin-C eliminated pluripotent cells, preventing tumor formation. The authors noted that this combination only innervated ~10% of endplates, likely due to the fact that the implanted motor neurons are not active.

      The authors then began the process of optimizing the cells themselves, using measurements taken in late-stage SOD1 mice. Fast-firing and slow-firing populations of neurons were first compared. Using optical stimulation, these two cell types appeared to be similar. The authors opted to use slow-firing neurons in the subsequent experiments. Recognizing that neuromuscular junction (NMJ) innervation and maintenance are dependent on motor neuron activity, implantable optical stimulators were also evaluated. 14 days after transplanting the cells, optical stimulation training was initiated for one hour each day. This training led to a nearly 13-fold increase in force generation, although this still remained well below the force generated by electrical stimulation. The enhanced innervation also prevented the atrophy of muscle fibers caused by denervation.

      Overall, the data for the function of the implanted cells are convincing. The dCALMS technique that the authors have developed is quite interesting and will likely be applicable to analyze muscles for other therapeutics. The identification of calcineurin inhibitors as inhibitors of reinnervation will also be important for the development of other cell-based therapeutics for ALS.

      This is an excellent summary of the state of the field of ALS therapy development and provides a clear rationale for our novel therapeutic strategy, in the near-complete vacuum of conventional treatment options for patients suffering from this devastating disorder. We are delighted that the Reviewer clearly appreciated the value of our alternative therapeutic strategy and found our supporting data to be convincing, as well as drawing attention to the dCALMS technique, which we agree could be of significant value in the investigation of other therapeutic strategies aimed at restoring muscle innervation. We are extremely grateful for the Reviewer’s diligence in assessing our manuscript.

      However, there are some issues that should be addressed. These include some common misconceptions about ALS. While ALS is split into familial and sporadic forms based on the presence or absence of a family history of the disease, mutations in the known ALS-associated genes are found in both forms [1]. The authors also state that exercise programs are likely to accelerate degeneration in ALS. This is incorrect. Moderate exercise is part of the current guidelines for treating ALS, and mouse studies have demonstrated a therapeutic effect of moderate exercise [2]. Regarding the experimental design, there are some important details missing. The animals do not appear to have been operated on at the same age, and the criteria for when to perform the operation were not described. A similar problem exists for when the animals were determined to reach endpoint [3]. The authors also do not seem to address a potential pitfall of this approach: acceleration of the disease process. Indeed, some of the data comparing the ipsilateral side to the contralateral side suggest that the implantation of the cells and/or the light source increase the denervation of the muscle [4]. Finally, there is a fairly large difference between the motor output provided by optical stimulation relative to electrical stimulation. It is currently unclear what level needs to be reached to provide an effective response in the intact animal. Thus, it is difficult to determine if the level of reinnervation that this study has achieved will be sufficient to improve a patient's quality of life [5].

      The Reviewer raises some extremely important points and highlights some additional constructive issues where more clarity is required (numbered 1-5 above). We have attempted to address each of these points in order to strengthen the key message of our study and the integrity of our manuscript:

      1) The Reviewer is absolutely correct in highlighting that causative mutations in identified genes occur in both sporadic and familial forms of ALS and that this classification simply reflects whether or not there is a known family history of the disease (which can also encompass a spectrum of disorders including frontotemporal degeneration). We will revise our manuscript in order to be more accurate and provide clarity on this important point.

      2) Regarding the potential acceleration of muscle denervation, we specifically state that the use of electrical nerve stimulation (ENS) to artificially evoke muscle contraction has been shown to accelerate denervation of the diaphragm muscle in clinical trials aimed at maintaining respiratory function in ALS patients, which significantly shortened life-expectancy. It was not our intention to imply that moderate voluntary exercise, as opposed to artificial “ENS-based” muscle stimulation programmes, could accelerate muscle denervation. Indeed, the negative side-effects of ENS that we highlighted provide a clear rationale for developing a safer alternative to artificially control muscle function once innervation by endogenous motor neurons progressively deteriorates in ALS patients; specifically, our selection of optogenetic nerve stimulation (ONS), which is highly selective to the engrafted light-sensitive motor neurons, recruits motor units in correct physiological order and avoids rapid muscle fatigue potentially overcomes the safety concerns associated with ENS.

      Importantly, unchecked disease progression means that complete paralysis of almost all muscles will eventually occur, due to loss of upper or lower motor neurons and accompanying muscle denervation, which would eventually preclude the ability of ALS patients to undertake voluntary exercise programmes, or even activities of daily life. Our approach is aimed at overcoming this inevitable loss of voluntary muscle control and onset of complete paralysis by providing a safe and effective method of artificially maintaining control of targeted muscles that would otherwise become completely paralyzed, as well as preventing their irreversible atrophy.

      To avoid the possibility that readers may infer that we are suggesting voluntary exercise programs accelerate degeneration in ALS and to provide additional clarity, we will revise the manuscript to stress that we specifically refer to “ENS-based” exercise programmes in relation to acceleration of muscle denervation.

      3) Regarding our experimental design, the congenic B6.SOD1G93A mouse model of ALS is an extremely well-characterized model, with a highly consistent timeframe of disease phenotype manifestation and progression. In order to maximize the translational value of our study, we selected an early post-symptom onset timepoint (95d +/- 4.6 days) that mirrors a time at which human ALS patients would be likely to benefit from the therapeutic strategy: in the vast majority of cases, it is not possible to treat humans until a diagnosis of ALS has been confirmed, which can often take up to 12 months from first presentation. Importantly, ALS patients in the final stages of disease progression would be unlikely to be suitable for this therapy, due to irreversible muscle atrophy, which would preclude the ability of the engrafted motor neurons to form functionally useful connections. Indeed, our strategy is to engraft the replacement motor neurons prior to severe muscle atrophy occurs, so that they are in place to compensate and take over the function of endogenous lower motor neurons as they progressively degenerate and paralysis ensues. In so doing, the replacement motor neurons could prevent the irreversible atrophy of targeted muscles through ONS-based exercise programmes and thereby indefinitely extend the ability of targeted muscles to perform functionally useful movements.

      Although the initial graft optimization component of this study, including the tacrolimus trial, was performed across a variety of disease stages (commencing between 57-101 days of age), once we identified the H57-596 monoclonal antibody as an effective means to promote graft survival (without interfering with target muscle innervation), all subsequent grafts were initiated at an early symptom onset timepoint: 95.7 ± 4.6 days for slow-firing motor neuron grafts and 106.8 ± 7.2 days for fast-firing motor neuron grafts. Transgenic SOD1G93A mice were specifically bred for this study and due to complexities of coordinating stem cell differentiation and motor neuron production, optical stimulation device production and access to surgical facilities, with timed matings set up 3-4 months in advance, we feel that this age range was acceptable and doesn’t detract from the findings of our study.

      Similarly, we made every effort to ensure that experimental end-point was consistent, at 133 ±8 days for all grafts involving H57-597 administration, which reflects translationally-relevant late-stage disease progression. Since the physiological experiments performed as part of this study are extremely time-consuming, it was necessary to stagger the experimental end-point over several days. Again, we feel that this range is acceptable and still reflects a consistent, translationally-relevant timepoint. Importantly, since the experimental paradigm tested in this study was aimed at individually targeted muscles, which would have been unlikely to have an effect on disease duration or survival, we did not feel that it was ethically justifiable to allow the B6.SOD1G93A mice to approach end-stage disease (which occurs at an average age of 150 days of age in this model).

      In the interests of full transparency, the age at which treatment commenced and the experimental end-point for every animal used in this study is reported in Supplementary Tables 2 and 3.

      4) The Reviewer raises an extremely pertinent question, regarding whether the engrafted motor neurons themselves, or the implanted stimulation device, may accelerate the progressive loss of innervation of targeted muscles by endogenous motor neurons, in light of our data that shows decreased force evoked by electrical stimulation of ipsilateral (engrafted) versus contralateral (control) muscles. It is worth noting that supramaximal electrical nerve stimulation, used to evoke maximal muscle force, should activate both endogenous and engrafted motor neurons, therefore the combined activation of both populations would be expected to result in a summative (greater) contractile response. The fact that we see the converse is unlikely to be due to an accelerated loss of endogenous motor innervation as a result of the engrafted cells, but is much more likely to be caused by physical nerve damage during the surgical engraftment process: we used a customized Hamilton syringe with a 29G needle to manually inject the cells into the targeted nerve branches, which has an outer diameter of 330μm whilst the diameter of the tibial nerve in an adult mouse is approximately 400μm. This is likely to have led to damage of the endogenous motor (and potentially sensory) axons that may have diminished regenerative capacity due to ongoing disease mechanisms. Fortunately, there is significant scope to refine the engraftment procedure by using smaller gauge needles (potentially made of more flexible materials), bespoke injection systems that can deliver the cells at a controlled rate and micromanipulators that avoid can avoid nerve damage caused by excessive movement of the needle within the nerve. Importantly, the significantly greater scale of human nerves, compared to murine nerves targeted in this study, would also be a significant advantage in terms of physically delivering the cells in ALS patients.

      5) The Reviewer’s final comment is entirely justified given that, even in the best cases following optical stimulation training of engrafted SOD1G93A mice, optical stimulation still evoked less contractile force than supramaximal electrical stimulation. The likely reasons for this are complex: there is almost certainly scope to further optimize the optical stimulation training paradigm, which could result in reinforcement of the de novo neuromuscular junctions formed between the engrafted motor neurons and targeted muscle fibres; it is possible that the expression level of the channelrhodopsin-2 protein at the cell surface may require optimization in order to reliably initiate action potentials in the engrafted motor neurons – development of newer channelrhodopsin variants may resolve this potential issue, whilst providing additional advantages (such as enabling transcutaneous stimulation) at the same time. Finally, the maximum contractile response of the triceps surae muscle elicited by optical stimulation that we observed was approximately 13g, which equates to approximately 50% of the body mass of an adult SOD1G93A mouse. Although this is only approximately 10% of the maximal contractile force of a wild-type triceps surae muscle, this would almost certainly provide the ability to perform functionally useful motor tasks if it could be reproduced in ALS patients, particularly if large numbers of targeted muscles could be controlled in a coordinated manner, something that we are actively working on.

      Reviewer #2 (Public Review):

      The authors provide convincing evidence that optogenetic stimulation of ChR2-expressing motor neurons implanted in muscles effectively restores innervation of severely affected skeletal muscles in the aggressive SOD1 mouse model of ALS, and conclude that this method can be applied to selectively control the function of implicated muscles. This was supported by convincing data presented in the paper.

      This is an interesting paper providing new/improved optogenetic methods to restore or improve muscle strength in ALS. In general, it is of high significance in both the techniques and concept, and the paper was well written. The evidence supporting the conclusions is convincing, with rigorous muscle tension physiological analysis, and nerve and muscle histology and image analysis. The work will be of broad interest to medical biologists on muscle disorders.

      One weak point is that proper control experiments were not clearly presented - these could be shown in the paper. For example, one control experiment with only YFP but no ChR2 expression with optogenetic stimulation should be performed, following similar procedures and analysis applied to the ChR2-transduced animals.

      We are extremely grateful for the Reviewer’s expert appraisal of our manuscript and we are delighted to hear that they found our study to be highly significant, of broad interest and that our supporting evidence for this novel therapeutic approach was convincing and rigorous.

      Regarding the inclusion of suggested control experiments, we have extensive negative results data from physiological recordings of muscles in response to optical stimulation in animals where the engrafted motor neurons were rejected (prior to our identification of a 100% effective immunosuppression regimen). This clearly revealed that, in the absence of ChR2-expressing motor neurons, optical stimulation does not elicit any response from the target muscle. However, we do not feel that inclusion of this negative data, which is entirely predictable, would have strengthened the findings of our study. Similarly, if we had engrafted motor neurons that only express YFP, we would have been unable to elicit any muscle contractile activity in response to optical stimulation. As a control, this may have some value in determining the ability of motor neurons derived from other cell lines that do not express ChR2 to survive and innervate target muscles but we don’t feel that the additional work would get us closer to achieving our ultimate goal of using motor neuron replacement in combination with optogenetic stimulation to restore/maintain muscle function in ALS patients. Moreover, the complex and iterative process of developing the cell line used in this study (reported in detail in our previous study) would make it extremely difficult to produce a suitable control stem cell line expressing only YFP. Having said that, we are actively in the process of developing new, more sophisticated human and mouse stem cell lines, using more translationally-relevant gene targeting methods to stably knock-in a variety of updated channelrhodopsin variants that may have superior properties for our approach. This will be reported in follow up study/studies as we feel that it goes well beyond the scope of the current study.

    1. Author Response

      We appreciate very much your positive assessment and the comments of the two reviewers, all of which will greatly help us to improve our manuscript. In response, therefore, to these constructive comments we will take pleasure in submitting a revised manuscript during the next step of publication.

      We take the opportunity to provide a provisional author response.

      As for Reviewer #1.

      We thank Reviewer 1 very much for her/his very positive and detailed remarks, all of which will be introduced into the revised version of our manuscript.

      We will add the information about the biological control on the development of phosphatic-shelled brachiopod columns in the introduction so that our late narrative can be more understandable. The Cambrian Explosion is the innovation of metazoan body plans and radiation of animals during a relatively short geological time. The expansion of new body plans in different groups of brachiopods in early Cambrian was likely driven by the Cambrian Explosion. The columnar shell structures are not developed in living lingulate brachiopods, and thus it is important to get a better understanding of this extinct shell architecture from the fossil records in order to study the evolutionary trend of shell structures and compositions in brachiopods. Furthermore, the adaptive innovation of biomineralized columns in early brachiopod will be discussed in the revised manuscript.

      As for Reviewer #2.

      We thank Reviewer 2 very much for her/his very constructive and detailed remarks. All the comments have been thoroughly considered, and most of them will be introduced into the revised version of the manuscript.

      We agree that the knowledge is incomplete on the shell structures of early linguliform brachiopods and more research shall be helpful. We also express the idea in the first part of our manuscript that the shell structural complexity and diversity of linguliform brachiopods (especially their fossil representatives) require further studies. As the shell structure and biomineralization process are crucial to unravel the poorly resolved phylogeny and early evolution of Brachiopoda, in this paper, we undertake a primary study of exquisitely well-preserved brachiopods from the Cambrian Series 2. The morphologies, shapes and sizes of cylindrical columns are described in details in this research, and this work will be useful for further comparative studies. We are very sorry to miss the important reference paper on brachiopod shells by Butler et al. (2015), which will be added into the revised manuscript. The structure and language of the manuscript will be revised based on the very helpful suggestions.

      Concerning the families Eoobolidae and Lingulellotretidae, we are aware of the current problematic situation of these families, and we will add more discussion about the detailed characters of Eoobolidae in the Systematic Palaeontology part of the manuscript. However, the revision of the families Eoobolidae and Lingulellotretidae falls outside the scope of this paper. We prefer to leave it now as it will be part of an upcoming publication based on more global materials from China, Australia, Sweden and Estonia that we are currently working on.

    1. Author Response

      We thank the reviewers for thoroughly evaluating our work and for providing constructive and actionable feedback to improve the manuscript. The reviews have left us with a clear direction in which our work can improve, for which we are grateful. We will provide a detailed response to the reviews together with our revised manuscript. At this time, we accept the invitation to provide a provisional reply that addresses the major themes as summarized by the editors.

      The goal of our study was to infer an individual’s control strategy from the details of kinematics. We did this using monkey and human data collected under matching experimental conditions. We quantitatively compared these data to simulations that were generated by adapting a reasonable model of sensorimotor function that is standard in the literature. We are pleased that the reviewers and editors felt “that the overall scientific approach is of interest and has scientific merit” and “the approach has promise in aiding future studies that try to link behavior and neurophysiology (allowing homology between humans and primates).”

      We agree with the reviewers that additional work is needed to corroborate our main claim that we can unambiguously infer control strategies from behavioral data. This is a known hard problem that we are not the first to address, and we do not claim to have solved it here. We appreciate the suggestions about (1) further testing the classification procedure, (2) considering other metrics that may better distinguish between the control strategies, and (3) investigating the control strategy under perturbation scenarios. We plan to undertake additional simulations, analyses and, in the future, experiments, as suggested by the reviewers to enhance the impact of our work.

      In this initial brief response, we wish to focus on one key point noted by the editors, stemming from simulations by one of the reviewers using “a simple fixed controller.” We greatly appreciate that one reviewer went as far as to perform their own simulations. These simulations suggested that subjects do not need to switch between control strategies, but rather could achieve similar behavioral results via “a modest change in gain.” Specifically, the reviewer reports that their simple fixed controller could generate trials that sometimes looked like what we would call position control and sometimes looked like what we would characterize as velocity control. It was noted that “trial-to-trial differences were driven both by motor noise and by the modest variability in gain.”

      While we cannot comment with great certainty on the reviewer’s simulation results, since we do not know the specifics, we first wish to note that our controller and experimental subjects demonstrated this same phenomenon, in that there was overlap in the distribution of the metrics for the two strategies (specifically, in Figs. 5, 7 & 8). Hence, in our findings, even under position control some trials looked more like velocity control, and vice versa. We briefly discussed this in the paper, noting that “a large number of trials fall somewhere between the Position and Velocity Control boundaries”, and that “this could be due to a mixed control strategy” or “subjects switch strategies of their own accord”. This point would have been clearer had we included examples of these hand and cursor traces in Fig. 8. We will update Fig. 8 to more clearly illustrate this point and expand our discussion on different possible interpretations.

      Second, one may interpret the differences we attributed to changes in “control strategy” as changes simply in the gain of our “fixed” controller. Specifically, similar to the controller implemented by the reviewer, our controller is fixed in terms of the plant, the actuator and the sensory feedback loop; the only change we explored was in the relative weights or gains of position vs. velocity in the Q matrix to generate the motor command. While our intent was primarily to focus on the extremes of position control vs. velocity control, we agree that a mixed strategy of minimizing some combined error in position and velocity is likely. This is something we can readily explore with our controller model.

      In summary, we consider it worthwhile to investigate how one can infer the control strategy that a subject is employing to complete the task - either in our CST, or any other task that admits multiple strategies that can lead to success. We regard this as a valuable step towards addressing more realistic behaviors and their neural underpinnings in non-human primate research. The suggestions offered by the reviewers regarding additional analyses, simulations and experiments will provide more definitive answers and clarity for our approach.

      We are truly grateful for the time and effort the reviewers put into our manuscript. We are in the process of undertaking revisions to address all of their feedback and look forward to submitting an improved manuscript with a more detailed reply in the coming weeks.

    1. Author Response

      Reviewer #1 (Public Review):

      This paper falls in a long tradition of studies on the costs of reproduction in birds and its contribution to understanding individual variation in life histories. Unfortunately, the meta-analyses only confirm what we know already, and the simulations based on the outcome of the meta-analysis have shortcomings that prevent the inferences on optimal clutch size, in contrast to the claims made in the paper.

      There was no information that I could find on the effect sizes used in the meta-analyses other than a figure listing the species included. In fact, there is more information on studies that were not included. This made it impossible to evaluate the data-set. This is a serious omission, because it is not uncommon for there to be serious errors in meta-analysis data sets. Moreover, in the long run the main contribution of a meta-analysis is to build a data set that can be included in further studies.

      It is disappointing that two referees comment on data availability, as we supplied a link to our full dataset and the code we used in Dryad with our submitted manuscript. We were also asked to supply our data during the review process and we again supplied a link to our dataset and code, along with a folder containing the data and code itself. We received confirmation that the reviewers had been given our data and code. We support open science and it was our intention that our dataset should be fully available to reviewers and readers. Our data and code are at https://doi.org/10.5061/dryad.q83bk3jnk.

      The main finding of the meta-analysis of the brood size manipulation studies is that the survival costs of enlarging brood size are modest, as previously reported by Santos & Nakagawa on what I suspect to be mostly the same data set.

      We disagree that the main finding of our paper is the small survival cost of manipulated brood size. The major finding of the paper, in our opinion, is that the effect sizes for experimental and observational studies are in opposite directions, therefore providing the first quantitative evidence to support the influential theoretical framework put forward by van Noordwijk and de Jong (1986), that individuals differ in their optimal clutch size and are constrained to reproducing at this level due to a trade-off with survival. We show that while the manipulation experiments have been widely accepted to be informative, they are not in fact an effective test of whether within-species variation in clutch size is the result of a trade-off between reproduction and survival.

      The comment that we are reporting the same finding as Santos & Nakagawa (2012) is a misrepresentation of both that study and our own. Santos & Nakagawa found an effect of parental effort on survival only in males who had their clutch size increased – but no effect for males who had their clutch size reduced and no survival effect on females for either increasing or reducing parental effort. However, we found an overall reduction in survival for birds who had brood sizes manipulated to make them larger (for both sexes and mixed sex studies combined). In our supplementary information, we demonstrate the overall survival effect of a change in reproductive effort to be close to zero for males, negative (though non-significant) for females and significantly negative for mixed sexes (which are not included in the Santos & Nakagawa study).

      The paper does a very poor job of critically discussing whether we should take this at face value or whether instead there may be short-comings in the general experimental approach. A major reason why survival cost estimates are barely significantly different from zero may well be that parents do not fully adjust their parental effort to the manipulated brood size, either because of time/energy constraints, because it is too costly and therefore not optimal, or because parents do not register increased offspring needs. Whatever the reason, as a consequence, there is usually a strong effect of brood size manipulation on offspring growth and thereby presumably their fitness prospects. In the simulations (Fig.4), the consequences of the survival costs of reproduction for optimal clutch size were investigated without considering brood size manipulation effects on the offspring. Effects on offspring are briefly acknowledged in the discussion, but otherwise ignored. Assuming that the survival costs of reproduction are indeed difficult to discern because the offspring bear the brunt of the increase in brood size, a simulation that ignores the latter effect is unlikely to yield any insight in optimal clutch size. It is not clear therefore what we learn from these calculations.

      The reviewer’s comment is somewhat of a paradox. We take the best studied example of the trade-off between reproductive effort and parental survival, a key theme in life-history and the biology of ageing, and subject this to a meta-analysis. The reviewer suggests we should interpret our finding as if there must be something wrong with the method or studies we included, rather than maybe considering the original hypothesis could be false or inflated in importance. The reviewer’s inclination to question the premise of the data in favor of a held hypothesis we consider not necessarily the best scientific approach here. In many places in our manuscript do we question and address issues in the underlying data and interpretation (L101-105, L149-150, 182-185 and L229-233). Moreover, we make it clear that we focus on the trade-off between current reproductive effort and subsequent parental survival and we are aware that other trade-offs could counter-balance or explain our findings, discussed on L189-191 & L246-253. Note that it is also problematic, when you do not find the expected response, to search for an alternative that has not been measured. In the case here, with trade-offs, there are endless possiblilities of where a trade-off might be incurred between traits. We purposfully focus on the one well-studied and theorised trade-off. We clearly acknowledge though that when all possible trade-offs are taken into account a trade-off on the fitness level can occur and cite two famous studies (Daan et al., 1990 and Verhulst & Tinbergen 1991) that have done just that (L250-253).

      So whilst, we agree with the reviewer that the offspring may incur costs themselves, rather than costs being incurred by the parents, the aim of our study was to test for a generalised trend across species in the survival costs of reproductive effort. It is unrealistic to suggest that incorporating offspring growth into our simulations would add insight, as a change in offspring number rarely affects all offspring in the nest equally and there can even be quite stark differences; for example this will be most evident in species that produce sacrificial offspring. This effect will be further confounded by catch-up growth, for example, and so it is likely that increased sibling competition from added chicks alters offspring growth trajectories, rather than absolute growth as the reviewer suggests. There are mixed results in the literature on the effect of altering clutch size on offspring survival, with an increased clutch size through manipulation often increasing the number of recruits from a nest.

      There are other reasons why brood size manipulations may not reveal the costs of reproduction animals would incur when opting for a larger brood size than they produced spontaneously themselves. Firstly, the manipulations do not affect the effort incurred in laying eggs (which also biases your comparison with natural variation in clutch size). Secondly, the studies by Boonekamp et al on Jackdaws found that while there was no effect of brood size manipulation on parental survival after one year of manipulation, there was a strong effect when the same individuals were manipulated in the same direction in multiple years. This could be taken to mean that costs are not immediate but delayed, explaining why single year manipulations generally show little effect on survival. It would also mean that most estimates of the fitness costs of manipulated brood size are not fit for purpose, because typically restricted to survival over a single year.

      First, our results did show a survival cost of reproduction for brood manipulations. We agree that there could be longer-term costs, and so our estimate of the survival cost for manipulated birds is likely to be an underestimate, meaning that our interpretation still holds – the cost to reproduce prevents individuals from laying beyond their optimal level. Note, however, that much theory is build on the immediate costs of reproduction and as such these costs are likely overinterpreted.

      We agree with the reviewer that lifetime manipulations could be even more informative than single-year manipulations. Unfortunately, there are currently too few studies available to be able to draw generalisable conclusions across species for lifetime manipulations. This is, however, the reason we used lifetime change in clutch size in our fitness projections, which the reviewer seems to have missed – please see methods line 360-362, where we explicitly state that this is lifetime enlargement. Of course such interpretations do not include an accumulation of costs that is greater than the annual cost, but currently there is no clear evidence that such an assumption is valid. Such a conclusion can also not be drawn from the study on jackdaws by Boonekamp et al (2014) as the treatments were life-long and, therefore, cannot separate annual from accrued (multiplicative) costs that are more than the sum of annual costs incurred.

      Details of how the analyses were carried out were opaque in places, but as I understood the analysis of the brood size manipulation studies, manipulation was coded as a covariate, with negative values for brood size reductions and positive values for brood size enlargements (and then variably scaled or not to control brood or clutch size). This approach implicitly assumes that the trade-off between current brood size (manipulation) and parental survival is linear, which contrasts with the general expectation that this trade-off is not linear. This assumption reduces the value of the analysis, and contrasts with the approach of Santos & Nakagawa.

      We thank the reviewer for highlighting a lack of clarity in places in our methods. We will add additional detail to this section in our revised manuscript.

      For clarity in our response, each effect size was extracted by performing a logistic regression with survival as a binary response variable and clutch size was the absolute value of offspring in the nest (i.e., for a bird who laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). The clutch size was also standardised and, separately, expressed as a proportion of the species mean.

      We disagree that our approach reduces the value of our analysis. First, our approach allows a direct comparison between experimental and observational studies, which is the novelty of our study. Our approach does differ from Santos & Nakagawa but we disagree that it contrasts. Our approach allows us to take into consideration the severity of the change in clutch size, which Santos & Nakagawa do not. Therefore, we do not agree that our approach is worse at accounting for non-linearity of trade-offs than the approach used by Santos & Nakagawa.

      Our analysis, alongside a plethora of other ecological studies, does assume that the response to our predictor variable is linear. However, it is common knowledge that there are very few (if any) truly linear relationships. We use linear relationships because they serve a good approximation of the trend and provide a more rigorous test for an underlying relationship than would fitting nonlinear models. For many datasets there is not a range of chicks added for which a non-linear relationship could be estimated. The question also remains of what the shape of this non-linear relationship should be and is hard to determine a priori. We will address non-linear effects in our revised manuscript.

      The observational study selection is not complete and apparently no attempt was made to make it complete. This is a missed opportunity - it would be interesting to learn more about interspecific variation in the association between natural variation in clutch size and parental survival.

      We clearly state in our manuscript that we deliberately made a tailored selection of studies that matched the manipulation studies (L279-282). We paired species extracted for observational studies with those extracted in experimental studies to facilitate a direct comparison between observational and experimental studies, and to ensure that the respective datasets were comparable. The reviewer’s focus in this review seems to be solely on the experimental dataset. This comment dismisses the observational component of our analysis and thereby fails to acknowledge the question being addressed in this study.

      Reviewer #2 (Public Review):

      I have read with great interest the manuscript entitled "The optimal clutch size revisited: separating individual quality from the costs of reproduction" by LA Winder and colleagues. The paper consists in a meta-analysis comparing survival rates from studies providing clutch sizes of species that are unmanipulated and from studies where the clutch sizes are manipulated, in order to better understand the effects of differences in individual quality and of the costs of reproduction. I find the idea of the manuscript very interesting. However, I am not sure the methodology used allows to reach the conclusions provided by the authors (mainly that there is no cost of reproduction, and that the entire variation in clutch size among individuals of a population is driven by "individual quality").

      We would like to highlight that we do not conclude that there is no cost of reproduction. Please see lines 258–260, where we state that our lack of evidence for trade-offs driving within-species variation in clutch size does not necessarily mean the costs of reproduction are non-existent. We conclude that individuals are constrained to their optima by the survival cost of reproduction. It is also an over-statement of our conclusion to say that we believe that variation in clutch size is only driven by quality. Our results show that unmanipulated birds who have larger clutch sizes also live longer, and we suggest this is evidence that some individuals are “better” than others, but we do not say, nor imply, that no other factors affect variation in clutch size.

      I write that I am not sure, because in its current form, the manuscript does not contain a single equation, making it impossible to assess. It would need at least a set of mathematical descriptions for the statistical analysis and for the mechanistic model that the authors infer from it.

      We appreciate this comment, but this is the first time we have been asked to put equations in a manuscript rather than explain them in terms that are accessible to a wider audience. Note however that our meta-analysis is standard and based on logistic regression and standard meta-analytic practices. We do not think we need to repeat such equations and we cite the relevant data. For the simulation, we simply simulated the resulting effects and this is not something that we feel is captured more accurately in equations rather than in text and the associated graphs. We of course supplied our code for this along with our manuscript (https://doi.org/10.5061/dryad.q83bk3jnk), though as we mentioned above, we believe this was not shared with the reviewers despite us making this available for the review process. We therefore understand the reviewer feels the simulations were not explained thoroughly. We will revise our text to see if we can add additional explanation where relevant in our revision.

      The texts mixes concepts of individual vs population statistics, of within individual vs among-individuals measures, of allocation trade-offs and fitness trade-offs, etc ....which means it would also require a glossary of the definitions the authors use for these various terms, in order to be evaluated.

      We would like to thank the reviewer for highlighting this lack of clarity in our text. We will simplify the terminology and define terms in our revised manuscript.

      This problem is emphasised by the following sentence to be found in the discussion "The effect of birds having naturally larger clutches was significantly opposite to the result of increasing clutch size through brood manipulation". The "effect" is defined as the survival rate (see Fig 1). While it is relatively easy to intuitively understand what the "effect" is for the unmanipulated studies: the sensitivity of survival to clutch size at the population level, this should be mentioned and detailed in a formula. Moreover, the concept of effect size is not at all obvious for the manipulated ones (effect of the manipulation? or survival rate whatever the manipulation (then how could it measure a trade-off ?)? at the population level? at the individual level ?) despite a whole appendix dedicated to it. This absolutely needs to be described properly in the manuscript.

      We would like to thank the reviewer for bringing to our attention the lack of clarity on the details of our methodology. We will make this more clear in our revised manuscript.

      For clarity, the effect size for both manipulated and unmanipulated nests was survival, given the brood size raised. We performed a logistic regression with survival as a binary response variable (i.e., number of individuals that survived and number of individuals that died after each breeding season), and clutch size was the absolute value of offspring in the nest (i.e., for a bird who laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). This allows for direct comparison of the effect size (survival given clutch size raised) between manipulated and unmanipulated birds.

      Despite the lack of information about the underlying mechanistic model tested and the statistical model used, my impression is still that the interpretation in the introduction and discussion is not granted by the outputs of the figures and tables. Let's use a model similar to that of (van Noordwijk and de Jong, 1986): imagine that the mechanism at the population level is

      a.c_(i,q)+b.s_(i,q)=E_q

      Where c_(i,q) are s_(i,q) are respectively the clutch size for individual i which is of quality q, and E_q is the level of "energy" that an individual of quality q has available during the given time-step (and a and b are constants turning the clutch size and survival rate into energy cost of reproduction and energy cost of survival, and there are both quite "high" so that an extra egg (c_(i,q) is increased by 1) at the current time-step, decreases s_(i,q) markedly (E_q is independent of the number of eggs produced), that is, we have strong individual costs of reproduction). Imagine now that the variance of c_(i,q) (when the population is not manipulated) among individuals of the same quality group, is very small (and therefore the variance of s_(i,q) is very small also) and that the expectation of both are proportional to E_q. Then, in the unmanipulated population, the variance in clutch size is mainly due to the variance in quality. And therefore, the larger the clutch size c_(i,q) the higher E_q, and the higher the survival s_(i,q).

      In the manipulated populations however, because of the large a and b, an artificial increase in clutch size, for a given E_q, will lead to a lower survival s_(i,q). And the "effect size" at the population level may vary according to a,b and the variances mentioned above. In other words, the costs of reproduction may be strong, but be hidden by the data, when there is variance in quality; however there are actually strong costs of reproduction (so strong actually that they are deterministic and that the probability to survive is a direct function of the number of eggs produced)

      We would like to thank the reviewer for these comments. Please note that our simulations only take the experimental effect of brood size on parental survival into account. Our model does not incorporate quality effects. The reviewer is right that the relationship between quality and the effects exposed by manipulating brood size can take many forms and this is a very interesting topic, but not one we aimed to tackle in our manuscript. In terms of quality we make two points: 1) overall quality effects connecting reproduction and parental survival are present 2) these effects are opposite in direction to the effects when reproduction is manipulated and similar in magnitude. We do not go further than that in interpreting our results. The reviewer is right however that we do suggest and repeat suggestions by others that quality can also mask the trade-off in some individuals or circumstances (L63-65, L85-88 & L237-240), but we do not quantify this as this is dependent on the unknown relationships between quality and the response to the manipulation. A focussed set of experiments in that context would be interesting and there is some data that could get at this, i.e. the relationship between produced clutch size and the relative effect of the manipulation. Such information is however not available for all studies and although we explored also analyzing this, currently this is not possible to do with sufficient confidence. We will include this rationale in our revision.

      Moreover, it seems to me that the costs of reproduction are a concept closely related to generation time. Looking beyond the individual allocative (and other individual components of the trade-off) cost of reproduction and towards a populational negative relationship between survival and reproduction, we have to consider the intra-population slow fast continuum (some types of individuals survive more and reproduce less (are slower) than other (which are faster)). This continuum is associated with a metric: the generation time. Some individuals will produce more eggs and survive less in a given time-period because this time-period corresponds to a higher ratio of their generation time (Gaillard and Yoccoz, 2003; Gaillard et al., 2005). It seems therefore important to me, to control for generation time and in general to account for the time-step used for each population studied when analysing costs of reproduction. The data used in this manuscript is not just clutch size and survival rates, but clutch size per year (or another time step) and annual (or other) survival rates.

      The reviewer is right that this is interesting. There has been unexplained difference in temperate (seasonal) and tropical reproduction strategies. Most of our data come from seasonal breeders however. Although there is some variation in second brooding and such often these species only produce one brood. We do agree that a wider consideration here is relevant, but we are not trying to explain all of life-history in our paper. It is clearly the case that other factors will operate and the opportunity for trade-offs will vary among species according to their respective life histories. However, our study focuses on the two most fundamental components of fitness – longevity and reproduction – to test a major hypothesis in the field, and we uncover new relationships that contrast with previous influential studies, and cast doubt on previous conclusions. We question the assumed trade-off between reproduction and annual survival. We show quality is important and that the effect we find in experimental studies, is so small that it can only explain between-species patterns but is unlikely to be the selective force that constrains reproduction within-species. We do agree that there is a lot more work that can be done in this area. We hope we contribute to this, by questioning this central trade-off. We will try and incorporate some of these suggestions in the revision where possible.

      Finally, it is important to relate any study of the costs of reproduction in a context of individual heterogeneity (in quality for instance), to the general problem of the detection of effects of individual differences on survival (see, e.g., Fay et al., 2021). Without an understanding of the very particular statistical behaviour of survival, associated to an event that by definition occurs only once per life history trajectory (by contrast to many other traits, even demographic, where the corresponding event (production of eggs for reproduction, for example) can be measured several times for a given individual during its life history trajectory).

      Thank you for raising this point. The reviewer is right that heterogeneity can dampen or augment selection. Note that by estimating the effect of quality here we give an example of how heterogeneity can possibly do exactly this. We thank the reviewer for raising that we should possibly link this to wider effects of heterogeneity and we aim to do so in the revision.

      References:

      Fay, R. et al. (2021) 'Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables', Methods in Ecology and Evolution, 2021(August), pp. 1-14. doi: 10.1111/2041-210x.13728.

      Gaillard, J.-M. et al. (2005) 'Generation time: a reliable metric to measure life-history variation among mammalian populations.', The American naturalist, 166(1), pp. 119-123; discussion 124-128. doi: 10.1086/430330.

      Gaillard, J.-M. and Yoccoz, N. G. (2003) 'Temporal Variation in Survival of Mammals: a Case of Environmental Canalization?', Ecology, 84(12), pp. 3294-3306. doi: 10.1890/02-0409.

      van Noordwijk, A. J. and de Jong, G. (1986) 'Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics', American Naturalist, p. 137. doi: 10.1086/284547.

      Reviewer #3 (Public Review):

      The authors present here a comparative meta-analysis analysis designed to detect evidence for a reproduction/ survival trade-off, central to expectations from life history theory. They present variation in clutch size within species as an observation in conflict with expectations of optimisation of clutch size and suggest that this may be accounted for from weak selection on clutch size. The results of their analyses support this explanation - they found little evidence of a reproduction - survival trade-off across birds. They extrapolated from this result to show in a mathematical model that the fitness consequences of enlarged clutch sizes would only be expected to have a significant effect on fitness in extreme cases, outside of normal species' clutch size ranges. Given the centrality of the reproduction-survival trade-off, the authors suggest that this result should encourage us to take a more cautious approach to applying concepts the trade-off in life history theory and optimisation in behavioural ecology more generally. While many of the findings are interesting, I don't think the argument for a major re-think of life history theory and the role of trade-offs in fitness maximisation is justified.

      The interest of the paper, for me, comes from highlighting the complexities of the link between clutch size and fitness, and the challenges facing biologists who want to detect evidence for life history trade-offs. Their results highlight apparently contradictory results from observational and experimental studies on the reproduction-survival trade-off and show that species with smaller clutch sizes are under stronger selection to limit clutch size.

      Unfortunately, the authors interpret the failure to detect a life history trade-off as evidence that there isn't one. The construction of a mathematical model based on this interpretation serves to give this possible conclusion perhaps more weight than is merited on the basis of the results, of this necessarily quite simple, meta-analysis. There are several potential complicating factors that could explain the lack of detection of a trade-off in these studies, which are mentioned and dismissed as unimportant (lines 248-250) without any helpful, rigorous discussion. I list below just a selection of complexities which perhaps deserve more careful consideration by the authors to help readers understand the implications of their results:

      We would like to thank the reviewer for their thoughtful response and summary of the findings we also agree are central to our study. The reviewer also highlights areas where our manuscript could benefit from a deeper discussion and we will add detail to our discussion in our revised manuscript.

      We would like to highlight that we do not interpret the failure to detect a trade-off as evidence that there isn’t one. First, and importantly, we do find a trade-off but show this is only incurred when individuals lay beyond their optimal level. Secondly, we also state on lines 258-260 that the lack of evidence to support trade-offs being strong enough to drive variation in clutch size does not necessarily mean there are no costs of reproduction.

      The statement that we have constructed a mathematical model based on the interpretation that we have not found a trade-off is, again, factually incorrect. We ran these simulations because the opposite is true – we did find a trade-off. There is a significant effect of clutch size when manipulated on annual parental survival. To appreciate whether this effect alone can explain why reproduction is constrained, we ran the simulations. From these simulations we find that this effect size is too small to explain the constraint so something else must be going on and we do spend a considerable amount of text discussing the possible explanations (L182-194). Note the possibly most parsimonious conclusion here is that costs of reproduction are not there so we also give that explanation some thought (L201-205 and L247-253).

      We are disappointed by the suggestion that we have dismissed complicating factors which could prevent detection of a trade-off, as this was not our intention. We were aiming to highlight that what we have demonstrated to be an apparent trade-off can be explained through other mechanisms, and that the trade-off between clutch size and survival is not as strong in driving within-species variation in clutch size as previously assumed. We will add further discussion to our revised manuscript to make this clear and give readers a better understanding of the complexity of factors associated with life-history theory. Although we do feel we have addressed this (L248-255).

      • Reproductive output is optimised for lifetime reproductive success and so the consequences of being pushed off the optimum for one breeding attempt are not necessarily detectable in survival but in future reproductive success (and, therefore, lifetime reproductive success).

      We agree this is a valid point, which is mentioned in our manuscript in terms of alternative stages where the costs of reproduction might be manifested (L248-250). We would also like to highlight that in our simulations, the change in clutch size (and subsequent survival cost) was assumed for the lifetime of the individual, for this very reason.

      • The analyses include some species that hatch broods simultaneously and some that hatch sequentially (although this information is not explicitly provided (see below)). This is potentially relevant because species which have been favoured by selection to set up a size asymmetry among their broods often don't even try to raise their whole broods but only feed the biggest chicks until they are sated; any added chicks face a high probability of starvation. The first point this observation raises is that the expectation of more chicks= more cost, doesn't hold for all species. The second more general point is that the very existence of the sequential hatching strategy to produce size asymmetry in a brood is very difficult to explain if you reject the notion of a trade-off.

      We agree with the reviewer that the costs of reproduction can be absorbed by the offspring themselves, and may not be equal across offspring (we also highlight this at L249 in the manuscript). However, we disagree that for some species the addition of more chicks does not equate to an increase in cost, though we do accept this might be less for some species. This is, however, difficult to incorporate into a sensible model as the impacts will vary among species and some species do also exhibit catch-up growth. So without a priori knowledge on this we kept our model simple. To test whether the effect on parental survival (often assumed to be a strong cost) can explain the constraint on reproductive effort, and we conclude it does not.

      We would also like to make clear that we are not rejecting the notion of a trade-off. Our study shows evidence that a trade-off between survival and reproductive effort likely does not drive within-species variation in clutch size. We do explicitly say this throughout our manuscript, and also provide suggestions of other areas where a trade-off may exist (L246-250). The point of our study is not whether trade-offs exist or not, it is whether there is a generalisable across-species trend for a trade-off between reproductive effort and survival – the most fundamental trade-off in our field but for which there is a lack of conclusive evidence within species.

      • For your standard, pair-breeding passerine, there is an expectation that costs of raising chicks will increase linearly with clutch size. Each chick requires X feeding visits to reach the required fledge weight. But this is not the case for species which lay precocious chicks which are relatively independent and able to feed themselves straight after hatching - so again the relationship of care and survival is unlikely to be detectable by looking at the effect of clutch size but again, it doesn't mean there isn't a trade-off between breeding and survival.

      Precocial birds still provide a level of parental care, such as protection from predators. Though we agree that the level of parental care in provisioning food (and in some cases in all parental care given) is lower in precocial than altricial birds, this would only make our reported effect size for manipulated birds to be an underestimate. Again, we would like to draw the reviewer’s attention to the fact we did detect a trade-off in manipulated birds and we do not suggest that trade-offs do not exist. The argument the reviewer suggests here does not hold for unmanipulated birds, as we found that birds that naturally lay larger clutch sizes have higher survival.

      • The costs of raising a brood to adulthood for your standard pair-breeding passerine is bound to be extreme, simply by dint of the energy expenditure required. In fact, it was shown that the basal metabolic rate of breeding passerines was at the very edge of what is physiologically possible, the human equivalent being cycling the Tour de France (Nagy et al. 1990). If birds are at the very edge of what is physiologically possible, is it likely that clutch size is under weak selection?

      If birds are at the very edge of what is physiologically possible, then indeed it would necessarily follow that if they increase the resource allocated in one area then expenditure in another area must be reduced. In many studies however, the overall brood mass is increased when chicks are added and cared for in an experimental setting, suggesting that birds are not operating at their limit all the time. Our simulations show that if individuals increase their clutch size, the survival cost of reproduction counterbalances the fitness gained by increasing clutch size and so there is no overall fitness gain to producing more offspring. Therefore, selection on clutch size is constrained to the within-species level. We do not say in our manuscript that clutch size is under weak selection – we only ask why variation in clutch size is maintained if selection always favours high-producing birds.

      • Variation in clutch size is presented by the authors as inconsistent with the assumption that birds are under selection to lay the Lack clutch. Of course, this is absurd and makes me think that I have misunderstood the authors' intended point here. At any rate, the paper would benefit from more clarity about how variable clutch size has to be before it becomes a problem for optimality in the authors' view (lines 84-85; line 246). See Perrins (1965) for an exquisite example of how beautifully great tits optimise clutch size on average, despite laying between 5-12 eggs.

      We woud like to thank the reviewer for highlighting that our manuscript may be misleading in places, however, we are unsure which part of our conclusions the author is referring to here.The question we pose is “why all birds don’t lay at the population optimum?”, and is central to the decades-long field of life-history theory. Why is variation maintained at such a level? As the reviewer outlines it ranges massively with some birds laying half of what other birds lay.

    1. Author Response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Recommendations For The Authors):

      The revision and rebuttal have addressed all concerns raised in the initial review. Upon review of the revised figures, however, it is unclear why Figure 8C shows many significant DEGs in POMC neurons (which according to Figure 8b is the "GABA_24" cluster), whereas Figure 6A shows few to no DEGs in the GABA_24 cluster. Same for Pmch neurons/Glut_25, which seem to be missing from Figure 6A.

      Answer: In order to capture changes in these smaller cell population we performed an additional DEG analysis with modified and less strict parameters (compared to the first main analysis). We mention the different parameters in the methods part of the revised manuscript (Differential gene expression analysis and case-control based expression shifts (Cacoa)).


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Major issues

      1) A key conclusion of this study is that neurons show longer lasting infection-related changes in gene expression than do non-neuronal cells, suggesting that neurons are more persistently affected, which could potentially underlie persistent effects of infection on behavior or physiology. However, the authors also report that over twice as many transcripts were captured in neurons than in non-neuronal cells, and that neurons and non-neurons were not equal in number. The number of transcripts and cells per cell type can affect the likelihood of detecting a differentially expressed gene when comparing cell types. Thus, the difference in infection related DEGs between non-neuronal cells and neurons may be due in part to differences in the numbers of transcripts and cells in each group. How would the number of infection related DEG's compare if the same number of transcripts were detected in neurons as in non-neuronal cells? In addition, is there any relationship between the number of infection related DEGs detected and the number of cells in the respective groups?

      We performed an additional analysis, down sampling the transcripts per cells to similar numbers (~1600 transcripts/cell), showing a similar pattern as shown in the original calculation of DEGs. High downregulation of genes in GABAergic, Glutamatergic and Nonneuronal cells at 3 and 7 dpi, but long-lasting dis-regulation at 23 dpi only in the neuronal subtypes. The analysis results can be found in Supplementary figure12 and on page 11 in the results section.

      2) The rationale for focusing on the LH and DMH is unclear. While these regions do play important roles in control of body weight and wakefulness, the authors do not report whether the cell types relevant to these functions are among those affected by infection. For instance, the authors mention HCRT and MCH neurons in the introduction but do not comment on whether these neurons show any significant changes after H1N1 infection in their analysis. Also, what about the POMC neurons or the Lepr+ DMH neurons? Knowing whether and how these body weight associated cell types are affected could help to connect the phenotypic (e.g., body weight) and molecular changes observed.

      We have added an additional analysis of some well know hypothalamic subtypes. What is interesting is that the different neuronal subtypes respond to the infection differently. While most neurons show the strongest response at 3dpi, POMC+ neurons show consistent changes across all three time points. This could point to different neuronal subtypes paying different roles in the sickness response to the influenza infection. The new data has been added to Figure 8 together with new text in the result section and discussion (Page 17 & 20).

      3) For discriminating neurons and non-neuronal cells based on their expression of neuronal marker genes, was this performed at the single-cell level or the cluster level? Similarly, was the discrimination of GABAergic and glutamatergic neurons done at the cell or cluster level?

      The discrimination of the cell types was done on single cell level. This information has been added to the revised manuscript on page 25.

      4) The authors mention that body weight did not change in some of the mice. Was there any difference in infection related DEGs between the mice that lost weight and the mice that didn't? Was there any correlation between the molecular and phenotypic (i.e., body weight) changes observed?

      We agree that this could have been an interesting point to investigate, however, we can only say with certainty for 2 animals in the recovery group (23.7 and 23.8) that they didn’t lose weight (Supplement figure 2). In Figure 4A we show that overall the different time points group well together, with exception for animal 23.7 which seems to have a better overlap with 7 dpi, indicating that we possibly captured here a delayed disease response. However, to make any indepth analysis, we have to few animals without weight-loss.

      5)The authors noted that the hypothalamic neurons continue to show infection-related changes in gene expression at 23dpi though body weight has returned to normal. In this H1N1 model, are there any persistent behavioral deficits at 23dpi that could be explained by the persistent changes in gene expression in DMH and LH neurons?

      We did not test for long-lasting behavioural changes in these animals. Another study by Hosseini et al. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6596076/) focus on cognitive long term effects of viral infections. Even though they did not include the here used H1N1 model, they included the PR8 strain, but didn’t report any long lasting behavioural or cognitive changes. So far only cognitive deficits during the acute phase of the infection caused by the PR8 H1N1 model have been shown. This would be a very interesting follow up study to perform, but this, we believe, is out of scope for the current manuscript.

      6) In Figure 1F, the 3dpi sample appears to differ from the other samples in terms of its neuron/non-neuron composition. The authors point this out but offer no discussion or further analysis. Was this difference driven by one or more cell types? Is this difference likely to be technical (e.g., less white matter in sample = fewer oligodendrocytes), or could this be related to the infection (e.g., glial death or neurogenesis at 3dpi)?

      We have added the location of the punching within the hypothalamus for the different groups to the supplements (Supplementary Figure 3). The differences in neuron/non-neuron composition could originate from differences in the punching location, but we do not have data to support this conclusion. The difference could also stem from biological alterations during the infection.

      7) Since influenza viruses replicate in the cell nuclei, did the authors capture any H1N1 RNA in their single-nuclei RNA-seq samples?

      We mapped the single nuclei data against the viral genes, but could not detect any of the viral genes in the data set. We are still optimizing detecting of low amounts of viral genes in snRNA-seq data and have not included this information in the manuscript. We believe, that the virus did not manage to migrate in the hypothalamus and infiltrate the cells in the here captured area.

      Minor Issues

      1) Page 1. The abstract ends with the sentence: This is complemented by increased activity of microglia monitoring their surroundings. Presumably, the authors are basing this statement on the functions of genes altered in microglia by infection. However, saying that microglia behavior has changed is a bit of a stretch here, since the results suggest a change in the molecular phenotype of microglia but do not demonstrate a change in their behavior.

      We agree that the phrasing of the end of the abstract was not accurate and didn’t reflect the outcome of the analysis. We adjusted the sentence to: “The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.” Which should provide a better idea that the findings we present are a suggestion based on the transcriptomic changes in the cell population. (Page 1)

      2) Page 8. The authors refer to Th+, Ddc+ neurons as dopaminergic. However, adrenergic/noradrenergic neurons also express these genes. How do the authors know the neurons are not adrenergic/noradrenergic?

      There are to our knowledge no nor-adrenaline/adrenaline producing neurons in the hypothalamus. In contrast dopaminergic neurons have indeed been identified in this area.

      3) In the Methods section, Slc17a6 and Slc32a1 are not "pan-neuronal markers" since they are only expressed by subsets of neurons.

      We removed the glutamatergic and GABAergic marker genes (Slc17a6 and Slc32a1) from the list of neuronal markers. They are stated further down in the method section as glutamatergic and GABAergic markers. Find the changes on Page 24/25)

      4) Was the hashtagging antibody custom or commercial? If commercial, what was the source, catalog #, lot #? If custom, the authors should describe how it was made and validated.

      We used commercial antibodies for hash-tagging. We added the missing information to the manuscript and can be found on Page 24 of the revised manuscript.

      5) In the data processing section of the Methods, SCTransform is mentioned twice. Was normalization with SCTransform applied twice?

      The data was only normalized once using the SCTransfrom method. We adjusted the part of the method section to make it more clear (Page 24).

      6) In the section on gene set enrichment analysis, the first sentence includes this text: "(is a reference needed?)." The answer is yes - Alexa A, Rahnenfuhrer J (2022). topGO: Enrichment Analysis for Gene Ontology. R package version 2.50.0.

      The missing reference was added (Page 26).

      7) Page 4: "leaved" should be corrected to "left"

      The wrong wording was corrected.

      8) Figure 2D - gene is labeled as Slc31a1 on the figure and Slc32a1 in the figure legend

      We provided a new Figure plate with the right marker genes.

      9) Official gene IDs should be italicized

      We checked the gene IDs again, and italicized wrongly formatted gene IDs.

      10) It is not clear whether the authors are planning to share their code. However, their code would be needed to reproduce their results, since the methods section provides a summary of what was done but lacks key details (e.g., parameters and software packages used during data processing and analysis)

      Code will be shared on request. We added this also to the revised manuscript (Page 26)

      Reviewer #2 (Public Review):

      The new work from Lemcke et al suggests that the infection with Influenza A virus causes such flu symptoms as sleepiness and loss of appetite through the direct action on the responsible brain region, the hypothalamus. To test this idea, the authors performed single-nucleus RNA sequencing of the mouse hypothalamus in controlled experimental conditions (0, 3, 7, and 23 days after intranasal infection) and analyzed changes in the gene expression in the specific cell populations. The key results are promising.

      However, the analysis (cell type annotation, integration, group comparison) is not optimal and incomplete and, therefore should be significantly improved.

      More specifically:

      1) The current annotation of cell types (especially neuronal but also applicable to the group of heterogeneous "Unassigned cells") did not make a good link to existing cell heterogeneity in the hypothalamus identified with scRNA seq in about 20 recently published works. All information about different peptidergic groups can not be extracted from the current version (except for a few). There are also some mistakes or wrong interpretations (eg, authors assigned hypothalamic dopamine cells to the glutamatergic group, which is not true). This state is feasible to improve (and should be improved) with already existing data.

      We repeated the cell label transfer with the newly published HypoMap and added additional information to the supplements about the cell type assignments. Additionally, we agree that the dopaminergic neurons do not belong to the group of glutamatergic neurons, however assigned them into this group based on the clustering. We changed the phrasing in the results, to make a better differentiation between the two groups (Page 8).

      2) I am confused with the results shown in the label transfer (suppl fig 3 and 4; note, they do not have the references in the text) applied to some published datasets (authors used the Seurat functions 'FindTransferAnchors' and 'TransferData'). The final results don't make sense: while the dataset for the arcuate nucleus (Campbel et al) well covered the GABAergic neurons it is not the case for the whole hypothalamus datasets (Chen et al; Zeisel et al). Similarly, for glutamatergic neurons. Additionally, I could not see that the label transfer works well for PMCH cells which should be present in the dataset for the lateral hypothalamus (Mickelsen et al,2019).

      We performed the additional label transfer of the hypothalamus data. Here we accepted a prediction score of 0.5 and transferred a cell type label to our annotated cluster IDs, if at least 10% of cells within a cluster were annotated with the 0.5 prediction score. We found that well defined neuron population types like Hcrt+, Pmch+ and Hdc+ neurons as well as Pomc+ neurons were tagged with a high predictions scores ( >= 0.9, Supplement Figures 6 and 7) and non-neuronal cell types (Supplement Figure 8) were well annotated. Additionally we identified an Agrp+ neuron population with the Gaba_1 neurons. This information has been added to the revised manuscript (Pages 6, 8).

      3) There are newly developed approaches to check the shifts in the cell compositions and specific differential gene expression in the cell groups (e.g. Cacoa from Kharchenko lab, scCoda from Büttner et al; etc). Therefore, I did not fully understand why here the authors used the pseudo-bulk approaches for the data analysis (having such a valuable dataset with multiple hashed samples for each timepoint). Therefore it would be great to use at least one of those approaches, which were developed specifically for the scRNAseq data analysis. Or, if there are some reasons - the authors should argue why their approach is optimal

      We performed an additional analysis comparing case-control studies (Cacoa). We perfomed both modalities, cluster-based and cluster-free expression shifts and cell type compositions We could partly confirm our findings using the pseudo-bulk approach. The clusterspecific density shift (Supplement Figure 15) identified only shifts in non-neuronal cell types between the Control group and 3 dpi. We believe, these composition shifts are caused by the lower number of non-neuronal cells in the 3 dpi time point. Cluster-specific expression shifts show similar results as in the pseudo-bulk approach, with significant expression shift identified at 3 and 7 dpi in neuronal and non-neuronal cell clusters (Supplement Figure 16). However, no significant expression shifts were identified in the recovery group at 23 dpi. Using the cluster-free expression shift approach, however we were able to identify a similar picture as described with the pseudo-bulk approach. In the recovery group at 23 dpi, we found mainly changed gene programs in neuronal cells, and no transcriptional changes in the non-neuronal cells (Supplement Figure 17-20). This new analysis has been added to the revised manuscript (Pages 4-6, 26) including supplementary figure and tables as stated.

      4) When the authors describe the DGE changes upon experimental conditions (Figures 5 and 6), my first comment is again relevant: it is difficult to use the current annotation and cell type description as the reference for testing virus effects and shifts in the DGE in distinct neuronal subtypes.

      The cell type annotations have been checked and additional label transfer has been performed. All figures in the manuscript has been updated.

      I have to note that the experimental design is well done and logical. Therefore I believe that to strengthen the conclusions, the already obtained datasets can be used for improved analysis.

      Reviewer #2 (Recommendations For The Authors):

      I have some minor concerns:

      1) For the quality check it would be good to see how different hashed samples for each timepoint cover the UMAP embeddings.

      We added the UMAP embeddings to the supplement. (Supplement Figure 4)

      2) In Fig 1e colors are not optimal - it is impossible to assess it.

      We separated the UMAPs for the different time points to make it easier to assess. See updated Figure 1E.

      3) In the methods authors started "Single-nucleus RNA-sequencing cell population identification" from the description of using a Gaussian mixture model (GMM). However, I could not clearly understand how this model was used and which kind of result it provided.

      We used an GMM model with known markers for neurons and in a second step for glutamatergic and GABAergic cells to sub-cluster the cells and then selected based on high and low expression of the marker genes in the cluster into their respective classes. This information has been added to the method section (Page 24/25).

      4) Could the authors better clarify why "they calculated normalization factors using the scran function 'computeSumFactors'" when working with pseudobulk analysis?

      This size factor normalization was recommended for single cell data by the authors of the DESeq2 packages.<br /> http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

      5) I didn't find logic in "a cell cluster was only included if it contained more than 2 nuclei in at least 3 individual animals" (page 24). Maybe I misinterpreted it.

      The rationale for the selection methods was based on the findings that not all animals in the recovery group had the same effects in weight loss. The acute time points didn’t show enough weight loss to decide if all animals in these groups lost the same amount and were equally sick. Hence, in order to have biological robustness we decided to only analyse clusters where cells from at least 3 animals at a specific time point contributed to a cell type. In order to have enough cells per cell type for the calculation of DEGs, we decided to only include a cell type at a specific time point if it contained at least 3 cells from one individual. This selection method limits the analysis to cell types with at least 9 cells per time point.

    1. Author Response

      On behalf of the authors of the article "Elevated glycolytic metabolism of monocytes limits the generation of HIF-1α-driven migratory dendritic cells in tuberculosis", I would like to provide interim responses noting some relevant points about eLife assessment and public reviews,

      eLife assessment

      This useful study tests the hypothesis that Mycobacterium tuberculosis infection increases glycolysis in monocytes, which alters their capacity to migrate to lymph nodes as monocyte-derived dendritic cells. The authors conclude that infected monocytes are metabolically pre-conditioned to differentiate, with reduced expression of Hif1a and a glycolytically exhaustive phenotype, resulting in low migratory and immunologic potential. Unfortunately, the evidence for the conclusions is currently incomplete, as the use of dead mycobacteria will affect bioenergetic readouts. The study will be of interest to microbiologists and infectious disease scientists.

      We would like to clarify what may be a misunderstanding. Indeed, the study did not deal with “infected monocytes” per se, but rather with the ability of monocytes purified from TB patients vs. healthy control to differentiate into DCs with different migratory capacities upon Mtb infection or stimulation. Since there is no evidence for the presence of Mtb in the patient’s blood, the metabolic effects we observed are likely a consequence of systemic pulmonary disease rather than of direct interaction of monocytes with Mtb. Although irradiated Mtb was used in most experiments, in particular because Seahorse and other technologies cannot be used in our BSL3 laboratory, we provide evidence (Figure 1) that infecting DCs with live Mtb or stimulating DCs with irradiated Mtb generates comparable glycolytic profiles (release of lactate, glucose consumption, HIF1a expression and LDHA expression). To strengthen the relevance of our data, we will characterize the metabolism of DCs infected with live Mtb using SCENITH.

      Reviewer #1 (Public Review):

      The manuscript by Maio and colleagues looks at the impact of the heightened glycolytic activity induced by Mtb in monocytes, and its impact on Hif1-a dependent migration of DCs.

      Data concerning the biological significance of the impact of enhanced glycolysis on DC migration is strong and convincing. While Hif1-a is obviously a key factor, the evidence that it is a linear component in the cascade falls a little short as the main inhibitor used PX-478 does not have a clear, single mode of action. Additional characterization with the alternative inhibitor (Echinomycin) would make the argument more convincing. 

      We would like to thank the reviewer for their positive assessment of our manuscript. Although Echinomycin has been used for validating some of the representative experiments performed in our study (see supplementary figure 2E-F), we agree with the reviewer’s suggestion. Therefore, additional experiments using echinomycin will be carried out to confirm our results.

      Reviewer #2 (Public Review):

      The manuscript by Maio et al attempts to examine the bioenergetic mechanisms involved in the delayed migration of DC's during Mtb infection. The authors performed a series of in vitro infection experiments including bioenergetic experiments using the Agilent Seahorse XF, and glucose uptake and lactate production experiments. This is a well-written manuscript and addresses an important question in the TB field. A major weakness is the use of dead Mtb in virtually all the experiments. Unfortunately, the authors did not attempt to address this critical confounding factor. As a result, data was interpreted, and conclusions were made as if live Mtb was used. Also, previous studies (PMID: 30444490 and PMID: 31914380) have shown that live Mtb suppresses glycolysis, which contradicts findings in this study, perhaps because dead Mtb was used here. For these reasons, obtaining any pertinent conclusions from the study is not possible, which diminishes the significance of the work.

      We thank the reviewer for their evaluation of our study. We agree that using live Mtb in all experiments would have been ideal. However, we do not have a Seahorse Analyzer in our BSL3 facility. Thus, we will characterize the metabolism of DCs infected with live Mtb using SCENITH during revision of our manuscript.

      With regard to the differences between our results and those of previous studies showing Mtb-induced suppression of glycolysis, they could be explained by the use of different Mtb strains, different multiplicity of infection (MOI), macrophages of different origins, and different measurement timepoints, as discussed in one of these publications (PMID 30444490). For instance, in PMID 30444490, hMDMs infected at an MOI of 1 showed increased extracellular acidification and glycolytic parameters, as opposed to higher MOI or the same MOI but measured in THP1 cells. Importantly, the aforementioned articles studied macrophage and not DC metabolism. These aspects will be discussed in a revised manuscript.

    1. Author Response

      We thank the reviewers for their thoughtful suggestions, which we will address in the revised manuscript.

      Briefly, we purposely fixed the Hill coefficients to h=1 on the grounds that one drug molecule binding to the channel is sufficient to block the channel and there is no strong evidence for co-operative binding in the literature. Doing so also helped to constrain the degrees of freedom in the face of noisy observations in the public datasets. As noted by Reviewer 2, the quality of the drug measurements varies widely across laboratories and this is particularly noticeable in estimates of Hill coefficients which are therefore less reliable.

      The dose-dependent curves of multi-channel block (Figure 6) are plotted for all four dimensions in the Supplementary Dataset. We omitted GKs and GNaL from Figure 6 in an attempt at brevity since they do not add much to the story.

      It is true that pacing frequency was not considered in this study.

      The drugs were assessed across a range of doses (1x to 30x) but dosage only had a minimal impact on accuracy (88.1% to 90.8%) as shown in Figure 8A.

      Finally, we emphasize that the metric’s novelty lies in deriving a simple linear model from biophysical principles of ion-channel blockade rather than blind statistical model fitting.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Both reviewers strongly suggest that you modify the title of your paper to something that better reflects the data presented.

      We have made the title more specific to the findings described in the manuscript and revised the rest of the manuscript in response to the additional reviewer’s comments. We adjusted the abstract accordingly.

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript conducts a classic QTL analysis to identify the molecular basis of natural variation in disease resistance. This identifies a pair of glycosyltransferases that contribute to steroidal glycoalkaloid production. Specifically altering the final hexose structure of the compound. This is somewhat similar to the work in tomatine showing that the specific hexose structure mediates the final potential bioactivity. Using the resulting transgenic complementation lines that show that the gene leads to a strong resistance phenotype to one isolate of Alternaria solani and the Colorado potato beetle. This is solid work showing the identification of a new gene and compound influencing plant biotic interactions. While the experiments are solid, the introduction, discussion and associated claims don't accurately reflect my reading of what is known and said in the current literature.

      The sentence on line 53-54 is misleading. It provides only three citations on specific links between specialized metabolism and disease resistance. However, there are actually at least 40 on specific links of camalexin and indolic phytoalexins to disease resistance. Similarly there are dozens of uncited papers on benzoxazinoids, indolic glucosinolates, aliphatic glucosinolates and tomatine to both non-host and host based resistance mechanisms. This even goes as far as showing how the pathogens resist an array of these compounds. The choices in the introduction make it appear that little is known about specialized metabolism to disease resistance but I would suggest that this is not an allusion supported by the literature. I would agree that given the breadth of specialized metabolism we have a lot of knowledge about a set of them but that there are hundreds to thousands of untested compounds but to indicate that little is known is unfair to the specialized metabolism community. This is especially true as the introduction and discussion give no image of the large body of literature on specialized metabolism to insect interactions even though this is a major component of this manuscript.

      We have rewritten this part of the introduction (lines 50-69). In the original text, we meant to convey our impression that receptor-mediated resistance is studied in a very high degree of detail, and that resistance that is based on secondary metabolites is receiving less recognition in comparison, especially in the plant-microbe interactions field. We agree that our comments might give the (false) impression that there is not much known. There is indeed a lot of data to support the importance of specialised metabolites in resistance, especially against necrotrophic pathogens and insects. The changes that we made should give a better reflection of that knowledge.

      I would also agree that specialized metabolism is not a conscious target of breeding programs but the work on benzoxazinoids in maize and glucosinolates in the Brassica's has shown that these compounds have been influenced by breeding programs. Similarly work on de novo domestication of multiple crops is focused on the adjustment of specialized metabolism in these crops.

      The reviewer is right to point out that specialized metabolism is influenced by breeding. Specialized metabolites may not only be involved in defence, but they can also affect other properties of the plant such as quality aspects. Potato breeders have made efforts to reduce SGA content in tubers to prevent problems with toxicity and to meet safety regulations. We have adjusted the discussion (lines 255-260).

      I would disagree with the hint on line 49-50 and again on lines 236-239 that specialized metabolism may have less pleiotropy. This is not supported by recent work on benzoxazinoids and glucosinolates showing that they have numerous regulatory links to the plant and can be highly pleiotropic. Even the earliest avenicin work in oat showed that the deficient lines had altered root development.

      We agree with the reviewer and we have removed the hints that specialized metabolism may have less pleiotropy from the manuscript. We do believe that the broad-spectrum activity of specialized metabolites can be an advantage, but this non-specificity also comes with risks in case of food crops. We note the potential negative effects of SGAs in the discussion (see previous comment and lines 300-303).

      My main message from the above three paragraphs is to point out that there are a number of places in the manuscript where the current state of the specialized metabolite literature is not accurately portrayed. To properly place the manuscript in the broader context, I would suggest a more even handed introduction and discussion that takes into account the current state of the specialized metabolism literature.

      We rewrote these parts to provide a more balanced view on the role of specialized metabolites in disease resistance.

      Is it accurate to say complete resistance to A. solani if only a single isolate of the pathogen is used? Is there evidence that I am unaware of that there are no isolates of this pathogen with saponin resistance? There are pathogens with natural tomatine resistance and this is a common feature of plant pathogens that they have genetic variation in the resistance to specialized metabolism. For example, it should be noted that Botrytis BO5.10 is a tomatine sensitive isolate and the van Kan and Hahn groups have published on isolates that are resistant to saponins. I would suggest caveating across the manuscript that this is a single isolate and that it is possible that there may be isolates with natural resistance to the steroidal glycoalkaloid?

      While it is true that we only describe the results of testing a single isolate of A. solani in the submitted manuscript, we previously showed that the S. commersonii resistance is effective against additional Alternaria isolates and species from different locations (1). We included this context to the introduction (lines 71-73) and also added the results of testing a more recent Dutch A. solani isolate (altNL21002, isolated from a potato field in the Netherlands in 2021) and an isolate from the US (ConR1H, isolated from a potato field in Idaho in 2015) to the supplementary material of the revised manuscript (lines 102-104). Of course, this still does not prove that the SGAs protect against all A. solani isolates and we have been more specific in referring to the Alternaria isolate that was tested. Similarly, it is impossible to make a general statement on the lack of detoxification capacity of all isolates of A. solani. It may indeed be possible that there are Alternaria isolates that are tolerant to the tetraose SGAs produced by S. commersonii, especially in natural habitats where Solanum species that produce tetraose SGAs and Alternaria co-occur. We have added this point to the discussion (lines 292-294).

      In Figure 4b, is the infection site about 3.5 mm in size such that 3.5 mm means absolutely no infection? If not, that would mean there is some outgrowth by Alternaria and the resistance isn’t complete.

      We often observe dead tissue underneath the inoculation droplet on resistant plants, which is measured as a lesion. Such lesions can usually visually be discriminated from the lesions on susceptible genotypes by their colour (dark black for resistant plants versus a more brownish colour of the lesions on susceptible plants), but this information is lost in the quantitative data presented in the figures. Droplets occasionally flow out over the leaf surface, which may explain why larger ‘lesions’ are sometimes observed on resistant plants. In rare cases, there may also be a little bit of outgrowth of Alternaria beyond the inoculation droplet before the infection is stopped on resistant genotypes. Whether the resistance is ‘complete’ in such cases is debatable. We tuned down our statements regarding ‘complete’ resistance throughout the manuscript.

      Reviewer #2 (Public Review):

      The study focuses on a mechanism of pest/pathogen resistance identified in Solanum commersonii, which appears to offer dominant resistance to Alternaria solani through the activity of specific glycosyltransferases which facilitate the production of tetraose glycoalkaloids in leaf tissue. The authors demonstrated that these glycoalkaloids are suppressive to the growth of multiple pathogenic ascomycetes and furthermore, that transgenic plants expressing these glycosyltransferases in susceptible S. commersonii clones demonstrate improved resistance to a specific strain of A. solani and a genotype of Colorado Potato Beetle. The study design is straightforward, yet thorough, and does a good job demonstrating the importance of these genes in resistance. While the research findings are significant there are statements throughout the manuscript that overstate both the novelty and utility of the findings.

      Title: While the protection is impressive, the title suggests that these glycoalkaloids provide protection against all fungi and insects, which is both unlikely and essentially impossible to prove. This should be changed to something more measured. This is especially true given that only a single fungus and insect were tested against transgenic plants, but would be an overstatement even with more robust evaluation.

      We appreciate the comment of the reviewer and agree that is unlikely that the S. commersonii SGAs protect against all fungi and insects and that it would be impossible to prove this. We intended to highlight the fact that these compounds provide a qualitative (‘complete’) resistance against the tested isolates/genotypes, and that they are effective across a wide range of organisms (‘fungi and insects’). We have made the title more specific to the findings described in the manuscript.

      Throughout the paper: A single isolate of A. solani and a single genotype of CPB were used in this study. While this is in line with the typical limitations of such a study, the authors need to be careful about claiming broad resistance to either of the species. Variability in fungicide tolerance and detoxification activity have been noted in both fungi and CPB, so more specific language should be used throughout (such as L213 and L221).

      Similar points were raised by reviewer 1. We have tuned down our statements regarding ‘complete’ resistance and clarified that we tested only a limited set of A. solani isolates and single CPB genotype throughout the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      L39: Fix grammar.

      Done

      L42: Race is a terminology not used in all pathosystems (others include pathovar, subspecies, etc.).

      We removed the word race and use the general ‘pathogen’.

      L53: The role of pterocarpans, flavonoids, indoles, terpenes, and a number of other compound classes have been linked to plant defense across the entire plant kingdom. Highlighting Avenacin is fine, but it shouldn't be ignored that the role of phytoalexins and phytoanticipins in defense against fungi (and the subsequent detoxification of these compounds by fungi) has been well established in a number of pathosystems.

      We have removed the specific reference to avenacin (we still refer to it in the discussion, as there are interesting similarities with the saponins from tomato and potato) and tried to highlight the diversity of plant defence compounds across the plant kingdom and the importance of tolerance mechanisms in different pathosystems in the revised manuscript (lines 52-60).

      L234-237: This is broadly an overstatement. To my knowledge there is quite a bit of interest in plant defense compounds for breeding (in plants generally) and we know quite a bit about their mode of action (fungal membrane perturbation through binding to ergosterol). There have been active breeding efforts for decades to reduce glycoalkaloid content in potatoes due to the hemolytic activity of these compounds. While this may or may not be the case with these specific SGAs, a more accurate summary of the state of the field is warranted.

      We have rewritten the paragraph to give a more balanced view of breeding for SGAs in potato (lines 63-69 on the mode of action of SGAs and lines 255-260 regarding breeding for specific SGA variants in potato).

      L279: "...introgression breeding could help to move these compounds from wild relatives to crop species..." Yes, but at what cost? If it results in increase GSAs in tubers, then the plants would be inedible. This could be made more clear and support the following statement that alternative deployment techniques including application as biological protectants.

      The reviewer is right to point out the importance of considering negative effects of SGAs in breeding. We paid more attention to this aspect in the discussion and added a sentence to clarify that effects on human health and the environment should be considered before employing these compounds (lines 300-303).

      Discussion:

      L229-230: the authors state that the tetraose SGA from commersonii can protect against other fungi, but this does not appear to have been tested. Rather, they looked at resistance in the CGN18024_1 and CGN18024_3 lines, which could express other factors unrelated to GSAs to impact resistance or susceptibility. Experiments to support this statement would include screening of the transgenic lines for resistance to other fungi, but this does not appear to have been done.

      We believe that the tetraose SGAs have the potential to protect against a range of fungi, but the reviewer correctly points out that these experiments do not provide definitive proof for their role in resistance to other pathogens besides A. solani and CPB. We have adjusted our statement accordingly (lines 247-250 of the discussion, 84-88 of the introduction and the abstract).

      Future questions should likely include characterizing the overall SGA content of resistant potatoes, characterizing the saponin content specifically found within tubers, and purifying the compounds to characterize the hemolytic activity of these specific compounds. Even if these aren't your exact plans, they would be necessary steps in any resistance breeding efforts. In particular, it will be important to know if the SGA content is increased in tubers of the tested lines, especially CGN18024_1, CGN18024_3, and the transgenics. Ideally, for breeding purposes there would be a disconnect between SGA production in foliage and tubers. It is unclear whether this is possible in these lines.

      These are all good questions, and it would be nice to follow up on them in future research. We explore the different routes towards a safe use of SGAs in resistance breeding in the discussion.

      It has been shown that commersonine, one of the tetraose glycoalkaloids is also present in Solanum chacoense. It would be useful to note both this fact and that the Early Blight resistance which has been noted in Solanum chacoense may additionally be from these compounds (examples below).

      o https://www.cabi.org/GARA/FullTextPDF/Pre2000/19871336643.pdf

      o https://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-06-18-0181-R (breeding line 24-24-12 has s. chacoense parentage)

      o https://agris.fao.org/agris-search/search.do?recordID=DJ20220231195

      This is indeed an interesting observation and it is well possible that SGAs are responsible for the resistance of S. chacoense. There are additional wild Solanum species that produce similar SGAs as found in S. commersonii that could confer resistance to early blight (or CPB) and we added this to the discussion (lines 263-265).

      Reference

      1. Wolters PJ, de Vos L, Bijsterbosch G, Woudenberg JH, Visser RG, van der Linden G, et al. A rapid method to screen wild Solanum for resistance to early blight. European Journal of Plant Pathology. 2019;154:109-14.
    1. Author Response

      We thank the reviewers for their work and their thoughtfulness. However, it seems to us that much (but not all) of the critique reflects a misunderstanding of the goals and methods of computational modeling. Details are below. We are grateful for the opportunity to include our views about this in the context of our replies to the Public Critiques of our paper. The comments of the reviewers were very helpful in allowing us to see what might not be clear to our readers.

      eLife assessment

      This useful modeling study explores how the biophysical properties of interneuron subtypes in the basolateral amygdala enable them to produce nested oscillations whose interactions facilitate functions such as spike-timing-dependent plasticity. The strength of evidence is currently viewed as incomplete because the relevance to plasticity induced by fear conditioning is viewed as insufficiently grounded in existing training protocols and prior experimental results, and alternative explanations are not sufficiently considered. This work will be of interest to investigators studying circuit mechanisms of fear conditioning as well as rhythms in the basolateral amygdala.

      Most of our comments below are intended to rebut the sentence: “The strength of evidence is currently viewed as incomplete because the relevance to plasticity induced by fear conditioning is viewed as insufficiently grounded in existing training protocols and prior experimental results, and alternative explanations are not sufficiently considered”. Details are below in the answer to reviewers.

      We believe this work will be interesting to investigators interested in dynamics associated with plasticity, which goes beyond fear learning. It will also be of interest because of its emphasis on the interactions of multiple kinds of interneurons that produce dynamics used in plasticity, in the cortex (which has similar interneurons) as well as BLA.

      We note that the model has sufficiently detailed physiology to make many predictions that can be tested experimentally. In the revision, we will be more explicit about this.

      We thank Reviewer #1 for stressing our work's important contribution to providing concrete hypotheses that can be tested in vivo and highlighting the importance of examining in the future the synergistic role of the interneurons in the BLA in fear learning in the BLA. The weaknesses reported by the Reviewer concern deviations of the model compared to the experimental literature. We describe below why we think those differences are minor in the context of the aims of our model. Specifically,

      1) Some connections among neurons in the BLA reported by (Krabbe et al., 2019) have not been taken into account in the model. Some connections between cell types were excluded without adequate justification (e.g. SOM+ to PV+).

      In order to constrain our model, we focused on what is reported in (Krabbe et al., 2019) in terms of functional connectivity instead of structural connectivity. Thus, we included only those connections for which there was strong functional connectivity. For example, the SOM+ to PV+ connection is shown to be small (Supp. Fig. 4, panel t). We also omitted PV+ to SOM+, PV+ to VIP+, SOM+ to VIP+, VIP+ to excitatory projection neurons; all of these are shown in (Krabbe et al. 2019, Fig. 3 (panel l), and Supp. Fig. 4 (panels m,t)) to have weak functional connectivity, at least in the context of fear conditioning. See below for comments on modeling strategies. We will explain this better in our revision.

      2) The construction of the afferent drive to the network does not reflect the stimulus presentations that are given in fear conditioning tasks. For instance, the authors only used a single training trial, the conditioning stimulus was tonic instead of pulsed, the unconditioned stimulus duration was artificially extended in time, and its delivery overlapped with the neutral stimulus, instead of following its offset. These deviations undercut the applicability of their findings.

      Regarding the use of a single long presentation of US rather than multiple presentations (i.e., multiple trials): in early versions of this paper, we did indeed use multiple presentations. We were told by experimental colleagues that the learning could be achieved in a single trial. We note that, if there are multiple presentations in our modeling, nothing changes; once the association between CS and US is learned, the conductance of the synapse is stable. Also, our model does not need a long period of US if there are multiple presentations. This point will be made clearer in our revision.

      We agree that, in order to implement the fear conditioning paradigm in our in-silico network, we made several assumptions about the nature of the CS and US inputs affecting the neurons in the BLA and the duration of these inputs. A Poisson spike train to the BLA is a signal that contains no structure that could influence the timing of the BLA output; hence, we used this as our CS input signal. We also note that the CS input can be of many forms in general fear conditioning (e.g., tone, light, odor), and we wished to de-emphasize the specific nature of the CS. The reference mentioned in the Recommendations for authors, (Quirk, Armony, and LeDoux 1997), uses pulses 2 seconds long. At the end of fear conditioning, the response to those pulses is brief. However, in the early stages of conditioning, the response goes on for as long as the figure shows. The authors do show the number of cells responding decreases from early to late training, which perhaps reflects increasing specificity over training. This feature is not currently in our model, but we look forward to thinking about how it might be incorporated. Regarding the CS pulsed protocol used in (Krabbe et al., 2019), it has been shown that intense inputs (6kHz and 12 kHz inputs) can lead to metabotropic effects that last much longer than the actual input (200 ms duration) (Whittington et al., Nature, 1995). Thus, the effective input to the BLA may indeed be more like Poisson.

      Our model requires the effect of the CS and US inputs on the BLA neuron activity to overlap in time in order to instantiate fear learning. Despite paradigms involving both overlapping (delay conditioning, where US coterminates with CS (Lindquist et al., 2004), or immediately follows CS (e.g., Krabbe et al., 2019)) and non-overlapping (trace conditioning) CS/US inputs existing in the literature, we hypothesized that concomitant activity in CS- and US-encoding neuron activity should be crucial in both cases. This may be mediated by the memory effect, as suggested in the Discussion of our paper, or by metabotropic effects as suggested above, or by the contribution from other brain regions. We will emphasize in our revision that the overlap in time, however instantiated, is a hypothesis of our model. It is hard to see how plasticity can occur without some memory trace of US. This is a consequence of our larger hypothesis that fear learning uses spike-timing-dependent plasticity; such a hypothesis about plasticity is common in the modeling literature. We will discuss these points in more detail in our revision.

      We thank Reviewer #2 for their comments. Below, we reply to each of them:

      1) Gamma oscillations are generated locally; thus, it is appropriate to model in any cortical structure. However, the generation of theta rhythms is based on the interplay of many brain areas therefore local circuits may not be sufficient to model these oscillations. Moreover, to generate the classical theta, a laminal structure arrangement is needed (where neurons form layers like in the hippocampus and cortex)(Buzsaki, 2002), which is clearly not present in the BLA. To date, I am not aware of any study which has demonstrated that theta is generated in the BLA. All studies that recorded theta in the BLA performed the recordings referenced to a ground electrode far away from the BLA, an approach that can easily pick up volume conducted theta rhythm generated e.g., in the hippocampus or other layered cortical structure. To clarify whether theta rhythm can be generated locally, one should have conducted recordings referenced to a local channel (see Lalla et al., 2017 eNeuro). In summary, at present, there is no evidence that theta can be generated locally within the BLA. Though, there can be BLA neurons, firing of which shows theta rhythmicity, e.g., driven by hippocampal afferents at theta rhythm, this does not mean that theta rhythm per se can be generated within the BLA as the structure of the BLA does not support generation of rhythmic current dipoles. This questions the rationale of using theta as a proxy for BLA network function which does not necessarily reflect the population activity of local principal neurons in contrast to that seen in the hippocampus.

      In both modeling and experiments, a laminar structure does not seem to be needed to produce a theta rhythm. A recent experimental paper, (Antonoudiou et al. 2021), suggests that the BLA can intrinsically generate theta oscillations (3-12 Hz) detectable by LFP recordings under certain conditions, such as reduced inhibitory tone. The authors draw this conclusion by looking at mice ex vivo slices. The currents that generate these rhythms are in the BLA, since the hippocampus was removed to eliminate hippocampal volume conduction and other nearby brain structures did not display any oscillatory activity. Also, in the modeling literature, there are multiple examples of the production of theta rhythms in small networks not involving layers; these papers explain the mechanisms producing theta from non-laminated structures (Dudman et al., 2009, Kispersky et al., 2010, Chartove et al. 2020). We are not aware of any model description of the mechanisms of theta that do require layers.

      2) The authors distinguished low and high theta. This may be misleading, as the low theta they refer to is basically a respiratory-driven rhythm typically present during an attentive state (Karalis and Sirota, 2022; Bagur et al., 2021, etc.). Thus, it would be more appropriate to use breathing-driven oscillations instead of low theta. Again, this rhythm is not generated by the BLA circuits, but by volume conducted into this region. Yet, the firing of BLA neurons can still be entrained by this oscillation. I think it is important to emphasize the difference.

      Many rhythms of the nervous system can be generated in multiple parts of the brain by multiple mechanisms. We do not dispute that low theta appears in the context of respiration; however, this does not mean that other rhythms with the same frequencies are driven by respiration. Indeed, in the above answer we showed that theta can appear in the BLA without inputs from other regions. In our paper, the low theta is generated in the BLA by VIP+ neurons. Using intrinsic currents known to exist in VIP+ neurons (Porter et al., 1998), modeling has shown that such neurons can intrinsically produce a low theta rhythm. This is also shown in the current paper. This example is part of a substantial literature showing that there are multiple mechanisms for any given frequency band. We will emphasize these points in our revision; we note that, for any individual case, such as this one, the mechanism needs to be tested experimentally.

      3) The authors implemented three interneuron types in their model, ignoring a large fraction of GABAergic cells present in the BLA (Vereczki et al., 2021). Recently, the microcircuit organization of the BLA has been more thoroughly uncovered, including connectivity details for PV+ interneurons, firing features of neurochemically identified interneurons (instead of mRNA expression-based identification, Sosulina et al., 2010), synaptic properties between distinct interneuron types as well as principal cells and interneurons using paired recordings. These recent findings would be vital to incorporate into the model instead of using results obtained in the hippocampus and neocortex. I am not sure that a realistic model can be achieved by excluding many interneuron types.

      The interneurons and connectivity that we used were inspired by the functional connectivity reported in (Krabbe et al., 2019) (see above answer to Reviewer #1). As reported in (Vereczki et al., 2021), there are multiple categories and subcategories of interneurons; that paper does not report on which ones are essential for fear conditioning. We did use all the highly represented categories of the interneurons, except NPY-containing neurogliaform cells.

      The Reviewer says “I am not sure that a realistic model can be achieved by excluding many interneuron types”. We agree with the Reviewer that discarding the introduction of other interneurons subtypes and the description of more specific connectivity (soma-, dendrite-, and axon-targeting connections) may limit the ability of our model to describe all the details in the BLA. However, this work represents a first effort towards a biophysically detailed description of the BLA rhythms and their function. As in any modeling approach, assumptions about what to describe and test are determined by the scientific question; details postulated to be less relevant are omitted to obtain clarity. The interneuron subtypes we modeled, especially VIP+ and PV+, have been reported to have a crucial role in fear conditioning (Krabbe et al., 2019). Other interneurons, e.g. cholecystokinin and SOM+, have been suggested as essential in fear extinction. Thus, in the follow-up of this work to explain fear extinction, we will introduce other cell types and connectivity. In the current work, we have achieved our goals of explaining the origin of the experimentally found rhythms and their roles in the production of plasticity underlying fear learning. Of course, a more detailed model may reveal flaws in this explanation, but this is science that has not been yet done.

      4) The authors set the reversal potential of GABA-A receptor-mediated currents to -80 mV. What was the rationale for choosing this value? The reversal potential of IPSCs has been found to be -54 mV in fast-spiking (i.e., parvalbumin) interneurons and around -72 mV in principal cells (Martina et al., 2001, Veres et al., 2017).

      A GABA-A reversal potential around -80 mV is common in the modeling literature (Jensen et al., 2005; Traub et al., 2005; Kumar et al., 2011; Chartove et al., 2020). Other computational works of the amygdala, e.g. (Kim et al., 2016), consider GABA-A reversal potential at -75 mV based on the cortex (Durstewitz et al., 2000). The papers cited by the reviewer have a GABA-A reversal potential of -72 mV for synapses onto pyramidal cells; this is sufficiently close to our model that it is not likely to make a difference. For synapses onto PV+ cells, the papers cited by the reviewer suggest that the GABA-A reversal potential is -54 mV; such a reversal potential would lead these synapses to be excitatory instead of inhibitory. However, it is known (Krabbe et al., 2019; Supp. Fig. 4b) that such synapses are in fact inhibitory. Thus, we wonder if the measurements of Martina and Veres were made in a condition very different from that of Krabbe. For all these reasons, we consider a GABA-A reversal potential around -80 mV in amygdala to be a reasonable assumption. We will discuss these points in our revision.

      5) Proposing neuropeptide VIP as a key factor for learning is interesting. Though, it is not clear why this peptide is more important in fear learning in comparison to SST and CCK, which are also abundant in the BLA and can effectively regulate the circuit operation in cortical areas.

      We do not think that VIP is necessarily more fundamental in fear learning, and certainly not for fear extinction. We will make this clear in the revision.

      We thank Reviewer #3 for their comments and for recognizing that we achieved our modeling aims. We reply to the criticisms below.

      Weaknesses:

      The main weakness of the approach is the lack of experimental data from the BLA to constrain the biophysical models. This forces the authors to use models based on other brain regions and leaves open the question of whether the model really faithfully represents the basolateral amygdala circuitry. Furthermore, the authors chose to use model neurons without a representation of the morphology. However, given that PV+ and SOM+ cells are known to preferentially target different parts of pyramidal cells and given that the model relies on a strong inhibition form SOM to silence pyramidal cells, the question arises whether SOM inhibition at the apical dendrite in a model representing pyramidal cell morphology would still be sufficient to provide enough inhibition to silence pyramidal firing. Lastly, the fear learning relies on the presentation of the unconditioned stimulus over a long period of time (40 seconds). The authors justify this long-lasting input as reflecting not only the stimulus itself but as a memory of the US that is present over this extended time period. However, the experimental evidence for this presented in the paper is only very weak.

      Many of these issues were addressed in the previous responses.

      1) Our neurons were constrained by electrophysiology properties in response to hyperpolarizing currents in the BLA (Sosulina et al., 2010). We choose the specific currents, known to be present in these neurons, to replicate those responses.

      2) Though a much more detailed description of BLA interneurons was given in (Vereczki et al., 2021), it is not clear that this level of detail is relevant to the questions that we were asking, especially since the experiments described were not done in the context of fear learning.

      3) It is true that we did not include the morphology, which undoubtedly makes a difference to some aspects of the circuit dynamics. As we described above, modeling requires the omission of many details to bring out the significance of other details.

      4) As described above, some form of memory or overlap in the activity of the excitatory projection neurons is necessary for spike-timing-dependent plasticity. In modeling, one must be specific about hypotheses, and describe why they are plausible, if not proved; indeed, modeling can explain known phenomena by showing how they are consequences of some (plausible) hypotheses, which themselves are open to experimental verification.

      5) The 40 seconds is not necessary if there are multiple presentations.

      Other critiques:

      1) It is correct that PV+ and SOM+ preferentially target different parts of excitatory projection neurons and that the model relies on a strong inhibition from SOM+ and PV+ to silence the excitatory projection neurons. This choice of parameters comes from using simplified models: it is standard in modeling to adjust parameters to compensate for simplifications.

      2) The SOM+ inhibition of the pyramidal cell firing can be seen as a hypothesis of our model. It is well known that VIP+ cells disinhibit pyramidal cells through inhibition of SOM+ and PV+ cells, which is all we are using in our model; hence this hypothesis is generally believed.

      The authors achieved the aim of constructing a biophysically detailed model of the BLA not only capable of fear learning but also showing spectral signatures seen in vivo. The presented results support the conclusions with the exception of a potential alternative circuit mechanism demonstrating fear learning based on a classical Hebbian (i.e. non-depression-dominated) plasticity rule, which would not require the intricate interplay between the inhibitory interneurons. This alternative circuit is mentioned but a more detailed comparison between it and the proposed circuitry is warranted.

      We agree with the reviewer that it would be good to have a more detailed comparison with the classical Hebbian rule (non-depression-dominated rule). However, we demonstrated in Supplementary Materials that the non-depression-dominated rule is less robust and only operates within a limited window of PV+ excitation. We will have a more robust discussion of plasticity in the revision.

    1. Author Response

      We would like to thank the reviewers for their careful reading of the manuscript and for the positive feedback and constructive criticism that they have provided. We intend to incorporate this feedback into an improved and updated version of the manuscript. We will address the reviewer comments point by point when we submit an updated version but for now we would like to discuss the major points that we intend to address.

      The first concern raised by the reviewers related to the specificity of the BDNF and TrkB staining. We agree that this is an important concern. We tested several antibodies and staining protocols and found that the optimal protocol involved the antibody used in this paper (abcam ab108319), in combination with a heat induced epitope retrieval (HIER) step. Together, this gave robust staining of BDNF in cerebellar tissue and the results of quantification of the staining were in agreement with a BDNF ELISA that we carried out to measure levels of BDNF in the cerebellar vermis of WT and SCA6 mice (Cook et al., 2022). We outline the epitope retrieval method briefly in the methods section of this manuscript but in a revised version we will include further details and data showing the troubleshooting and validation experiments that we have conducted.

      Another concern raised by the reviewers is that 7,8-DHF may not be acting as a TrkB agonist. There has been controversy over the mechanism of action of 7,8-DHF and we welcome the opportunity to discuss the issue further in the present manuscript. We have some evidence that 7,8-DHF is acting via TrkB in this case, as we had previously shown that 7,8-DHF administration to SCA6 mice leads to increased cerebellar TrkB levels and phosphorylation of Akt, an activation event known to be downstream of TrkB (Cook et al., 2022). This implicates TrkB in the mechanism of rescue in this case, but we have not demonstrated this directly. We acknowledge that 7,8-DHF could be acting via a different mechanism, such as anti-oxidant or anti-inflammatory effects. This would be interesting and could be followed up on in the future, potentially providing further insights into the pathophysiology of SCA6. We plan to revise the manuscript and provide additional discussion of the potential mechanism of action of 7,8-DHF. Despite this uncertainty, we believe that the finding that 7,8-DHF rescues early endosome abnormalities is a valuable addition to the paper. Whatever the mechanism of 7,8-DHF, this compound holds promise for potential treatment of SCA6.

      With further staining experiments and addition of information to the text, we feel confident that we can address the concerns of the reviewers and that an updated version will strengthen our manuscript and thereby provide valuable insight into the pathophysiology and potential treatment of SCA6.

    1. Author Response

      We thank reviewers for their evaluation of our work and their thorough critiques, which we will address in an upcoming revised version of the manuscript. We note that work on mouse and fish CIB knockouts in our laboratories started over a decade ago and our discoveries are contemporary to those recently presented by Liang et al., 2021 and Wang et al., 2023, which we acknowledge, cite, and give credit as appropriate. We also note that work on fish knockouts and on fish Cib3 is completely novel.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      The authors report the first use of the bacterial Tus-Ter replication block system in human cells. A single plasmid containing two divergently oriented five-fold TerB repeats was integrated on chromosome 12 of MCF7 cells. ChIP and PLA experiments convincingly demonstrate the occupancy of Tus at the Ter sites in cells. Using an elegant Single Molecule Analysis of Replicated DNA (SMARD) assay, convincing data demonstrate the replication block at Ter sites dependent on the presence of the protein. As an orthogonal method to demonstrate fork stalling, ChIP data show the accumulation of the replicative helicase component MCM3 and the repair protein FANCM around the Ter sites. It is unclear whether the Ter sites integrated by a single copy plasmid have any effect on the replication of this region but the data show that the observed effects are dependent on expression of the Tus protein. The SMARD data do not reveal what proportion of forks are arrested at Tus/Ter, or how long the fork delay is imposed. Fork stalling led to a highly localized gammaH2AX response, as monitored by ChIP using primer pairs spread along the integrated plasmid carrying the Ter sites. This response was shown to be dependent on ATR using the ATR inhibitor VE-822. This contrasts with a single Cas9-induced DSB between the two Ter sites, which causes a more spread gammaH2AX response. While this was monitored only at a single distal site, the difference between the DSB and the Tus-induced stall is very significant. Interestingly, despite evidence for ATR activation through the gammaH2AX response, no evidence for phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33 could be found under fork stalling conditions. The global replication inhibitor hydroxyurea (HU) elicited phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33. In this context, it would have been of interest to examine if a single DSB in the Ter region leads to phosphorylation of ATR-T1989, CHK1-S345, or RPA2-S33 and cell cycle arrest. It is not shown whether the replication inhibitor HU leads to the same widely spread gamma H2AX response. Overall, this is a well written manuscript, and the data provide convincing evidence that the Tus-Ter system poses a site-specific replication fork block in MCF7 cells leading to a localized ATR-dependent DNA damage checkpoint response that is distinct from the more global response to HU or DSBs.

      Author response to public review:

      “It is unclear whether the Ter sites integrated by a single copy plasmid have any effect on the replication of this region but the data show that the observed effects are dependent on expression of the Tus protein.”

      -The lack of perturbation of the TerB sequence on fork progression has extensively been studied previously in both Willis et al, 2014 and Larsen et. al, 2014. Furthermore, as the detection of the SMARD signal at the TerB sites is dependent on the 7.5kb probe that spans the TerB sites (orange probe, Fig 2B & 2D), it would be impossible to study the effect on replication in this region, with and without the integration of the single copy plasmid.

      “The SMARD data do not reveal what proportion of forks are arrested at Tus/Ter, or how long the fork delay is imposed.”

      -The percentage of fork stalling at the TerB sites, with and without Tus expression, has been quantified in Figure 2E & 2F. Essentially, 36% forks stall at the TerB block, i.e. 18% of the forks stall in both the 5’ to 3’ (orange) and 3’ to 5’ (blue) direction when the Tus-TerB block is active.

      “It is not shown whether the replication inhibitor HU leads to the same widely spread gamma H2AX response.”

      -While we have not shown gH2AX accumulation via ChIP after HU treatment, Supplementary Figure 5A & 5B clearly show increased gH2AX foci when the cells are treated with HU, suggesting a global replication stress response that is in stark contrast to the response to Tus-TerB.

      Recommendations for the authors:

      Lines 78, 95: In the experimental set-up there are two divergent 5-TerB sites in the orientation that is non-permissive for the fork progression notwithstanding the direction. This raises an obvious question: How an intervening (~1kb-long) DNA segment in being replicated? Does it stay under-replicated and then break?

      -The reviewers pose an important question about how the intervening sequence flanked by the two TerB sites is replicated, and if this leads to formation of anaphase bridges resulting in breaks. We think this is very plausible and this very question is part of ongoing studies in the lab with the aim to understand how the cell resolves a site-specific block. Unfortunately, this falls outside the scope of the current study.

      Also, it is unclear what is meant with non-permissive orientation. This depends on the predominant replication direction. As the construct has Ter repeats in opposite orientation, any direction is non-permissive. These descriptions could be rephrased to avoid confusion

      -The text has been edited to clarify this.

      Fig 1A: It would be helpful to annotate the map to show the position of each primer relative to the Ter array. Why is there no signal for pp52?

      -Figure 1A has the map of the locus with the annotated primer pairs and their relative positions to the TerB array.

      -pp52 is positioned beyond the TerB array so binding of the Tus-His protein there is unlikely, confirming the specificity of the Tus binding to only the TerB array and not to the adjacent chromatin.

      Figure 1B: Change Tus to Tus-His to make it easier to understand that the anti-His ChIP is targeting Tus. Provide information what normalization method was used in the ChIP experiments.

      -Figure 1B has been edited to reflect this change

      Line 113: Willis et al. 2014 also worked with chromosomal Ter sites, which should be acknowledged here.

      The text has been modified to indicate this. We apologize for the oversight.

      Line 126: Define pWB15 and its significance in text.

      -The text has been edited to clarify this and mentions pWB15.

      Figure 2E, F: Define legend (blue, orange boxes and arrow heads).

      -The figure legend corresponding to Figure 2 has a detailed description of the boxes and the arrows.

      Figure 3E, 4C: Add map of primers like in Figures 1 and 2.

      -The map added to Figures 3 & 4 and text updated.

      Figure 4: Showing that the gammaH2AX response is spread like with the single DSB would bolster the conclusion about the difference between a local and global response. Fig 4A, Lane-3: A loading control for the chromatin fraction is missing.

      -Measuring gH2AX chromatin spread after global replication stress can be challenging. We have tried to address the question of global and local gH2AX response post replication stress by quantifying gH2AX foci in cells treated with and without hydroxyurea, comparing it with cells that have a functional Tus-TerB block (Supplementary Figure 5A& 5B). A single fork block seems to only elicit a local response while a global replication stress leads to gH2AX accumulation globally in the cell.

      -Lamin A/C has been added to Fig 4A as a loading control for the chromatin fraction.

      Figure S4: Analyzing ATR, CHK1 and RPA phosphorylation as well as cell cycle profile under single DSB condition may reveal that different localized responses exist. I mention this because it was reported in yeast that a single DSB in G1 cells leads to a similarly localized Mec1 (ATR) -dependent response that does not elicit phosphorylation of Rad53 (CHK1) and other downstream targets, but leads to H2A phosphorylation as well as phosphorylation of RPA and the Rad51 paralog Rad55 (see PMCID: PMC2853130). It might be of interest to the reader to discuss this publication and the commonalities and differences between both localized checkpoint response

      -The reviewers raise an interesting question about the phosphorylation of ATR/CHK1/RPA and its effect on cell cycle after a single DSB. The aim of using the Cas9 break site in this study was merely to corroborate previously published observations pertaining to the spread of gH2AX after a DSB and to contrast that with the local response seen with Tus-TerB. Thus, while an intriguing question, we do not think this particular experiment will help in the understanding of the localized checkpoint response after a single replication fork block. However, we have included the observations previous published in the yeast system (PMC2853130) in our discussion as it helps compare and contrast fork blocks and DSBs further. It is of worth though that the yeast studies were looking at the cellular response to a DSB in G1.

      Lines 256-260: In the discussion of ATRIP, unpublished data are discussed that show no increase in ssDNA. What is the effect of ATRIP depletion? Maybe delete this mention of unpublished data, if no new data can be provided. The authors are aware that this makes the mechanism of ATR activation at the 5-TerB site elusive.

      -This statement has been deleted and the text has been modified.

      Another possibility discussed by the authors is fork reversal. Since Tus/Ter complex block the CMG progression, fork reversal would result in a chicken foot structure with the long single-stranded 3'-overhang of an Okazaki fragment site. Such a structure should be protected by BRCA2 or RAD52 proteins from degradation. Any role for these proteins in the checkpoint activation at the TerB site?

      -The reviewers suggest an interesting scenario where the Tus-TerB block induced reversed fork structure could be protected by the loading of known DNA repair proteins and this in turn could lead to a signaling mechanism and checkpoint activation. While we have not tested this hypothesis, nor studied the temporal dynamics of the formation if the reversed fork with respect to gH2AX accumulation, we think the localized gH2AX signal observed in the vicinity of the block is what initiates the downstream DDR response, promoting fork stabilization, followed either by fork reversal and restart or fork collapse. If the reversed fork was responsible for the gH2AX signaling, one would envision the spread to be more widespread, perhaps decorating the entire stretch of DNA between the block and the reversed fork. However, further studies are warranted to tease out this mechanism and the spatio-temporal dynamics.

      Lines 292-294: The authors state that "unpublished work from our laboratory has demonstrated that replication forks are cleaved at or near the TerB site..." Unless the data are shown, it might be best to eliminate discussion of unpublished work, also because the occurrence of DNA ends at Ter sites was already described in Willis et al. 2017.

      -The statement has been deleted and Willis et al. 2017 has been referenced.

      Suppl Table 1: It would help to also show representative images of stretched fibers in addition to the summary data shown.

      -Since the data is negative, the fiber images do not show any discernible differences and we do not think it adds useful information.

      Suppl Fig 4. ChIP for gamma H2AX data. It would be helpful to show the distribution of the gamma H2AX signal along the chromosome for both the DSB response and the Tus/Ter response.

      -The gH2AX ChIP signal at PP0-2 and PP10 has been included in Supplementary Fig4D. Though not significant for PP0-2, the data strongly suggests that there is increased spread of gH2AX along the chromosome after a DSB, strongly contrasting with the response after Tus-TerB block. The text has been modified to include both primer pairs.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Thank you for sending our manuscript for review and the positive editorial comments. On behalf of all authors, I would like to thank the reviewers for their critical reading of our manuscript and for providing insightful and valuable suggestions. We have revised the discussion section accordingly, including a new supplemental figure to show the results previously stated as “data not shown”. Please see below for detailed explanations.

      Reviewer #1 (Public Review):

      The manuscript by Zheng et al. examined the disease-causing mechanisms of two missense mutations within the homeodomain (HD) of CRX protein. Both mutations were found in humans and can produce severe dominant retinopathy. The authors investigated the two CRX HD mutants via in vitro DNA-binding assay (Spec-seq), in vivo chromatin-binding assay (ChIP-seq), in vivo expression assay of downstream target genes (RNA-seq), and retinal histological and functional assays. They concluded that p.E80A increased the transactivation activity of CRX and resulted in precocious photoreceptor differentiation, whereas p.K88N significantly changed the binding specificity of CRX and led to defects in photoreceptor differentiation and maintenance. The authors performed a significant amount of analyses. The claims are sufficiently supported by the data. The results not only uncovered the underlying disease-causing mechanisms, but also can significantly improve our understanding of the interaction between HD-TF and DNA during development.

      Thank you for summarizing the key findings and strengths of our manuscript.

      Minor concerns:

      1. The E80A, K88N and R90W (previously reported by the same group) mutations are located very close to each other in the homeodomain (Figure 1A), but had distinct effects on the activity of CRX. Has the structure of the homeodomain (of CRX) been resolved? If so, could the authors discuss this phenomenon (mutations close to each other but have distinct effects) based on the HD-DNA structure?

      In paragraphs 2, 4, 5 of the discussion section, we have added explanations on how each mutation could affect CRX HD-DNA interactions differently based on published structural studies. And we further explain how these biochemical changes relate to the molecular perturbations and cellular phenotypes seen in vivo.

      In addition, has this phenomenon been observed in other homeodomain TFs?

      Disease associated missense mutations at residues HD50 (K88) and HD52 (R90) have also been reported in other HD TFs implicated in CNS development (see discussion paragraph 7). Distinctively, different substitutions at CRX E80 residue have been reported in multiple CoRD cases, suggesting its essential role in HD-DNA-mediated regulation during retinal development. These new points are now included in the discussion section.

      2. The authors should briefly summarize the effects/disease-causing-mechanisms of all the reported CRX mutations in the discussion part. The readers can then have a better overview of the topic.

      We have added a concise summary of previously proposed CRX mutation classification scheme, all characterized Crx mutant mouse models and their pathogenic mechanisms. Please see paragraph 9 in the discussion section.

      3. CRX can also function as a pioneer factor (reported by the same group). Would these HD mutations distinctively affect chromatin accessibility (which then leads to ectopic binding on the genome)?

      Prior evidence has demonstrated that regulatory regions for many photoreceptor genes failed to stay accessible upon loss of CRX in the Crx-/- model (PMID: 30068366). It is unclear with the existing data whether CRX could initiate the chromatin remodeling (true pioneering function) of these regions, or it simply maintains the accessibility once these regions became accessible. Future studies comparing epigenomic landscape changes in mutant Crx KI models at various ages can be informative, particularly for the CRX K88N ectopic binding events. Determining how the CRX K88N mutant protein alters chromatin landscape important for photoreceptor fate and/or differentiation during development would shed light on the nature of these ectopic binding events.

      4. The discussion part can be shortened and simplified.

      We have re-written the discussion section to make it concise and to incorporate discussions on mutant CRX HD structures. Please see the revised manuscript.

      Reviewer #2 (Public Review):

      Zheng et al., investigated the molecular and functional mechanisms of two homeodomain missense mutations causing human retinal photoreceptor degeneration diseases in photoreceptor development regulated by the CRX transcription factor. They analyzed the E80A mutation associated with dominant cone-rod dystrophy (CRD) and the K88N mutation associated with dominant Leber Congenital Amaurosis (LCA). The authors found that E80A CRX binds to the same target DNA sites as WT CRX, but the binding specificity of K88N CRX is altered from that of WT in an in vitro assay. They generated Crx(E80A) and Crx(K88N) KI mice and performed ChIP assay and observed that K88N CRX binds to novel genomic regions from the WT-binding sites, while E80A binds to the WT sites. In addition, using the KI mice, they found that E80A and K88N differently affect the expression of Crx target genes. This study is well executed with proper and solid methodologies, and the manuscript is clearly written. This study gives us the insights how single missense CRX mutations lead to different types of human retinal photoreceptor degeneration diseases.

      We greatly appreciate the reviewer’s summary and positive comments.

      While the study has strengths in principle, it has a couple of weaknesses. One is how well E80A KI mice function as a pathological model of dominant CRD, in which cones are mainly first affected, is not clearly shown in this study. More data investigating how cones are affected by performing histological, molecular, and physiological analyses will be helpful and useful. For example, in the Discussion, the authors describe that E80A associates with S-cone opsin promoter results is "data now shown". This data must be presented for the readers. In addition, more molecular insights as to how E80A affects cones will strengthen this study.

      The mouse retina is rod dominant and contains only a small number of cones (3% of all photoreceptors) that are born prenatally. This poses technical challenges to appropriately assess cone- specific changes during disease initiation/progression. We are in the process of developing cellular/molecular tools to investigate how cones are being affected in Crx E80A KI model, but this is beyond the scope of the current study.

      At the same time, we have added a supplemental panel showing that, based on P0 retinal immunostaining of the early cone marker RXRγ, cones were initially born, and fate specified in CrxE80A retinas (see Figure S7A). Since the E80A protein also hyper-activated S-cone opsin promoter-luciferase (Sop-luc) reporter in HEK293 cells (see Figure S7B), we predict that CRX E80A affects cone photoreceptor differentiation in a similar manner as rod photoreceptors. Furthermore, the cone transcriptional program might be more prone to perturbations by abnormal CRX activities. These possibilities require future investigations. For this manuscript, we have included all these points in the discussion section.

      Another point is that it will be very valuable if the authors could show how E80A and K88N differently affect the 3D structure of the CRX homeodomain. Even a simulation model would be valuable.

      Please see our answer to Point 1 of Reviewer #1. In short, we have added in the discussion section our explanations on how each mutation could affect CRX HD-DNA interactions differently based on structural studies. We further explain how these biochemical changes relate to the molecular perturbations and cellular phenotypes seen in vivo. Additionally, since TF-DNA interactions are diverse and dynamic across binding sites with different sequence features and genomic environments, future studies that systematically and quantitatively evaluate CRX transcriptional activity at different regulatory sequences would be important.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      As a minor comment, in page 8, second section, "Previous studies have demonstrated the CRX is activated shortly after cell cycle exit in retinal progenitor cells fated to be photoreceptor.", the authors cited refs 66 and 67, which were in 2105 and 2016. However, this was demonstrated in the paper of J. Neurosci.31(46), 16792-807, 2011, Figure 1. It would be fair for the authors to cite the JN 2011 paper.

      Thanks to the reviewer for the suggested reference, we have added it to the revised manuscript.

    2. Author Response:

      The following is the authors’ response to the previous reviews

      Thank you for sending our revised manuscript for review and the positive editorial comments. On behalf of all authors, I would like to, again, thank the reviewers for their critical reading of our revised manuscript and for providing further suggestions. We have revised the introduction and discussion sections to specifically address the comments made by Reviewer #2. Please see below for detailed explanations.

      Reviewer #2 (Public Review):

      Overall, the authors have significantly improved the manuscript, but there is still an unclarified point. In response to the inquiry in the initial review on how extent E80A KI mice function as a pathological model of dominant CoRD, the authors add data (Figures S7) and described the sixth section in the discussion. However, the authors mentioned that it is technically too challenging because of a small number of cones. The point is not clear to me, but it is possible to analyze cone differentiation and degeneration by immunostaining at multiple stages even though cone number is small. Cone arrestin and S- and M-opsins become positive at early postnatal stages in the mouse retina. Cone arrestin seems earlier than cone opsins. Cones seem born by detecting RXRg at P0, but are cone arrestin and/or cone opsins expressed in early postnatal E80A/+ retina? If positive, how about an apoptosis marker? If negative, it seems to be a cone development phenotype rather than cone degeneration phenotype. If so, authors should modify the expression to say that the E80A retina underlies CoRD-like phenotype. It seems an overstatement.

      We greatly appreciate Reviewer 2’s suggestions on further investigating cone photoreceptor phenotypes in the CRX E80A KI mouse model. All the points raised deserve a comprehensive and in-depth study. However, the focus of the current manuscript is to establish a general framework for understanding different missense mutations in homeodomain TFs beyond CRX. We believe that a separate and dedicated study is more appropriate to detail the quantitative molecular and cellular mechanisms of CRX E80A dysfunction in cone and rod photoreceptors, as stated in the last sentence of discussion section paragraph 6: “… quantitative characterization of CRX E80A molecular functions in a cone dominant retina warrants further study to understand its selective effect on the cone differentiation program and help elucidate WT CRX regulatory principles in early photoreceptor development.”.

      Clinical diagnosis of cone-rod dystrophy (CoRD) is largely based on functional deficits of cones and rods. 1-month electroretinogram (ERG) (Figures 5K-M) shows no cone-mediated light responses and reduced rod functions in CrxE80A/+ mouse. These ERG deficits in the CRX E80A KI mouse model are in agreement with CoRD characteristics. Thus, it is reasonable to say that CRX E80A KI retina phenotype resembles CoRD phenotype.

      Reviewer #2 (Recommendations For The Authors):

      As a minor comment, in page 8, second section, "Previous studies have demonstrated the CRX is activated shortly after cell cycle exit in retinal progenitor cells fated to be photoreceptor.", the authors cited refs 66 and 67, which were in 2105 and 2016. However, it was demonstrated in the paper of J. Neurosci.31(46), 16792-807, 2011, Figure 1. The authors need to be scientifically fair to cite the JN 2011 paper.

      In response to this comment above, the authors cited the JN 2011 paper in a modified sentence of "Animal studies have demonstrated that Crx is first expressed in post-mitotic photoreceptor precursors and maintained throughout life (Refs.13-15)", moved from the discussion to the introduction. To my knowledge, the JN2011 (new Ref 15) is the first study directly demonstrated that Crx begins to be expressed shortly after cell cycle exit of retinal progenitor cells. Refs. 13 and 14 showed Crx expression in adult stage photoreceptors but did not directly demonstrate the Crx expression in post-mitotic photoreceptor precursors. To be scientifically precise, the references should be cited as "Animal studies have demonstrated that Crx is first expressed in post-mitotic photoreceptor precursors (Ref. 15) and maintained throughout life (Refs.13 and 14)".” Thanks to the reviewer for the precise instruction. We have adjusted the reference order as follows: “Animal studies have demonstrated that Crx is first expressed in post-mitotic photoreceptor precursors13 and maintained throughout life14,15.”, where JN2011 paper is reference 13.

    1. Author Response:

      We thank the reviewers for their thoughtful reviews. We believe that we can address these comments through revisions within the manuscript (writing/analysis) or as matters of clarification. In this preliminary response, we focus on a few aspects of the reviewer comments.

      Experimental design

      We will ensure that the rationale for our use of 10-minute analytic periods is clear. These time periods were dictated by the sampling duration required to perform accurate neurochemical analyses (and to reserve half of the sample in the event of a catastrophic failure of batch-processing samples). Since neurochemical release may display multiple temporal components (e.g., ACh) during playback stimulation, and these could differ across neurochemicals of interest, we decided to collect, analyze, and report in two periods. Our results suggest that this was appropriate, comparing values across the two stimulus periods and the pre-stimulus control. We decided not to include analyses of the post-stimulus period because this is subject to wider individual and neuromodulator-specific effects and because it weakens statistical power in addressing the core question—the change in neuromodulator release DURING vocal playback.

      We called these periods “Stim 1” and “Stim 2”, but each used the same examplar sequences in the same order.

      For behavioral analyses, observation periods were much shorter than 10 mins, but the main purpose of behavioral analyses was to relate to the neurochemical data. As a result, we matched the temporal features of the behavioral and neurochemical analyses. We will ensure that this is clearly described in the revision. We plan a separate report, focused exclusively on a broader set of behavioral responses to playback, that may examine behaviors at a more granular level.

      One reviewer expressed concern that we did not utilize a “control” playback stimulus, suggesting white noise as the control. We gave extensive consideration to this in our design. We concluded, based on our previous work, that white noise is not a neutral stimulus and therefore the results would not clarify the responses to the two vocal stimuli. Instead, we opted to use experience as a type of control. This control shows very clearly that temporal patterns and across-group differences in neurochemical response disappear in the absence of experience.

      One reviewer comments that our p90-p180 mice are “old”. This is not the case. CBA/CaJ mice display normal hearing for at least 1 year (Ohlemiller, Dahl, and Gagnon, JARO 11: 605-623, 2010) and adult sexual and social behavior throughout our observation period. They are sexually mature adults, appropriate for this study.

      Data and statistical analyses

      Two reviewers express concerns about our normalization of neurochemical data, suggesting that it diminishes statistical power or is not transparent. We note that normalization is a very common form of data transformation that does not diminish statistical power. It is particularly useful for data forms in which the absolute value of the measurement across experiments may be uninformative. Normalization is routine in microdialysis studies, because data can be affected by probe placement and factors affecting neurochemical processing. Similar to calcium imaging or many electrophysiological recordings, the information is based on a comparison to baseline values. We will consider supplying concentration values in supplemental material.

      Two reviewers comment on correlations we presented, with different perspectives. We will review our correlation analyses to determine if these are appropriate and what should be reported.

      Although Reviewer 2 raises several valid issues that we will address in our response and revision, we believe that none represent “major flaws” in the study that challenge the validity of our central conclusions. In brief, we will: * provide enhanced description of behaviors * clarify or modify box-plot representations of data * point to our methods that describe corrections for multiple comparisons * clarify sample size concerns * address questions of correlation between neurochemicals and behavior

      Factual Corrections

      Two reviewer comments and an associated editorial comment suggest that statistical power is lacking. The reviewer comments are incorrect. If the editorial suggestion is based on those comments, we challenge that as well.

      Reviewer 1 states that normalization “creates a baseline period with minimal variation…that could inflate statistical power.” We believe that this statement is incorrect. We will justify elsewhere the rationale for using normalized neurochemical data, but the suggestion that this very common transformation alters statistical power is unwarranted.

      Reviewer 2 states, in the 4th Recommendation for the Authors, that sample sizes are too small. The reviewer gives examples of sample sizes of 3, but that is incorrect. In revising figures, we will ensure that sample numbers appear clearly, but the reviewer’s claim that we used sample size of 3 is not correct. The minimum sample size is 5.

      If these reviewer comments are the bases for the editorial recommendation that the manuscript may require additional power, we believe the recommendation is based on incorrect comments.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The study by Fang et al. reports a 3D MERFISH method that enables spatial transcriptomics for tissues up to 200um in thickness. MERFISH, as well as other spatial transcriptomics technologies, have been mainly used for thin (e.g, 10um) tissue slices, which limits the dimension of spatial transcriptomics technique. Therefore, expanding the capacity of MERFISH to thick tissues represents a major technical advance to enable 3D spatial transcriptomics. Here the authors provide detailed technical descriptions of the new method, troubleshooting, optimization, and application examples to demonstrate its technical capacity, accuracy, sensitivity, and utility. The method will likely have a major impact on future spatial transcriptomics studies to benefit diverse biomedical fields.

      Strengths:

      The study was well-designed, executed, and presented. Extensive protocol optimization and quality assessments were carried out and conclusions are well supported by the data. The methods were sufficiently detailed and the results are solid and compelling.

      We thank the reviewer for the positive comments on our manuscript.

      Weaknesses:

      The biological application examples were limited to cell type/subtype classification in two brain regions. Additional examples of how the data could be used to address important biological questions will enhance the impact of the study.

      We appreciate the reviewer's suggestion that demonstrating the applications of our thick-tissue 3D MERFISH method to addressing important biological questions would enhance the impact of our study. In line with this reviewer comment, we had included examples of how our method could be applied to address various biological questions in the summary (last) paragraph of our manuscript. These examples highlight the versatility and utility of our approach in addressing diverse biological questions beyond cell type classification. However, the goal of this work is to develop a new method and establish its validity. While we are interested in applying it to answer important biological questions in the future, we consider these applications beyond the scope of this current work.

      Reviewer #2 (Public Review):

      Summary:

      In their preprint, Fang et al present data on extending a spatial transcriptomics method, MERFISH, to 3D using a spinning disc confocal. MERFISH is a well-established method, first published by Zhuang's lab in 2015 with multiple follow-up papers. In the last few years, MERFISH has been used by multiple groups working on spatial transcriptomics, including approximately 12 million cell maps measured in the mouse brain atlas project. Variants of MERFISH were used to map epigenetic information complementary to gene expression and RNA abundance. However, MERFISH was always limited to thin ~10um sections to this date. The key contribution of this work by Fang et al. was to perform the optimization required to get MERFISH working in thick (100-200um) tissue sections.

      Major strengths and weaknesses:

      Overall the paper presents a technical milestone, the ability to perform highly multiplexed RNA measurements in 3D using MERFISH protocol. This is not the first spatial transcriptomics done in thick sections. Wang et al. 2018 - StarMAP used thick sections (150 um), and recently, Wang 2021 (EASI-FISH, not cited) performed serial HCR FISH on 300um sections. Data so far suggest that MERFISH has better sensitivity than in situ sequencing approaches (StarMAP) and has built-in multiplexing that EASI-FISH lacks. Therefore, while there is an innovation in the current work, i.e., it is a technically challenging task, the novelty, and overall contribution are modest compared to recently published work.

      This summary is elaborated in more details in the following paragraphs, and we will address these detailed comments below.

      The authors could improve the writing and the manuscript text that places their work in the right context of other spatial transcriptomics work. Out of the 25 citations, 12 are for previous MERFISH work by Zhuang's lab, and only one manuscript used a spatial transcriptomics approach that is not MERFISH. Furthermore, even this paper (Wang et al, 2018) is only discussed in the context of neuroanatomy findings. The fact that Wang et al. were the first to measure thick sections is not mentioned in the manuscript. The work by Wang et al. 2021 (EASI-FISH) is not cited at all, as well as the many other multiplexed FISH papers published in recent years that are very relevant. For example, a key difference between seqFISH+ and MERFISH was the fact that only seqFISH+ used a confocal microscope, and MERFISH has always been relying on epi. As this is the first MERFISH publication to use confocal, I expect citations to previous work in seqFISH and better discussions about differences.

      We thank the reviewer for recognizing our work as a technical milestone. Since this work is aimed to build upon the strengths of MERFISH and address some of its limitations, we primarily cited previous MERFISH papers to make it clear what specific improvements have been achieved in this work. Given the rapid growth of the spatial genomics field, it has become impractical to comprehensively cite all method development or improvement papers in this area. Instead, we cited a 2021 review article in the first sentence of the manuscript and limited all discussions afterwards to MERFISH. In the revised manuscript, we will try to find and include more recent review articles to cover method developments since 2021.

      Although we presented our work as an advance in MERFISH specifically, we consider the reviewer’s suggestion of citing the 2018 STARmap paper [Wang et al., Science 361, eaat5961 (2018)] in the introduction part of our manuscript reasonable. This STARmap paper was already cited in the results part of our manuscript, and we will further emphasize this paper in the introduction of our revised manuscript, as this 2018 in situ sequencing paper was the first to demonstrate 3D spatial transcriptomic profiling in thick tissues. In addition, we thank the reviewer for bringing to our attention the EASI-FISH paper [Wang et al, Cell 184, 6361-6377 (2021)], which reported a method for thick-tissue FISH imaging and demonstrated imaging of 24 genes using multiple rounds of multi-color FISH imaging. We also recently became aware of a paper reporting 3D imaging of thick samples using PHYTOMap [Nobori et al, Nature Plants 9, 1026-1033 (2023)]. This paper, published a few days after we submitted our manuscript to eLife, demonstrated imaging of 28 genes in thick plant samples using multiple rounds of multicolor FISH and probe targeting and amplification methods previously developed for in situ sequencing. We will include these three papers in the introduction section of our revised manuscript.

      However, we do not consider our use of confocal imaging in this work an advance in MERFISH because confocal, like epi-fluorescence imaging, is a commonly used approach that could be applied to MERFISH of thin tissues directly without any alteration of the protocol. Confocal imaging has been broadly used for both DNA and RNA FISH long before any genome-scale imaging was reported. Confocal and epi-imaging geometries have their distinct advantages, and which of these imaging geometries to use is the researcher’s choice depending on instrument availability and experimental needs. Thus, we do not find it necessary to cite specific papers just for using confocal imaging in spatial transcriptomic profiling, but we will see whether it is reasonable to cite these papers in the revised manuscript. Our real advance related to confocal imaging is the use of machine-learning to increase the imaging speed. Without this improvement, 3D imaging of thick tissue using confocal would take a long time and likely degrade image quality due to photobleaching of out-of-focus fluorophores before they are imaged. We thus cited several papers that used deep learning to improve imaging quality and/or speed. Our unique contribution is the combination of machine learning with confocal imaging for 3D multiplexed FISH imaging of thick tissue samples, which had not been demonstrated previously.

      To get MERFISH working in 3D, the authors solved a few technical problems. To address reduced signal-to-noise due to thick samples, Fang et al. used non-linear filtering (i.e., deep learning) to enhance the spots before detection. To improve registrations, the authors identified an issue specific to their Z-Piezo that could be improved and replaced with a better model. Finally, the author used water immersion objectives to mitigate optical aberrations. All these optimization steps are reasonable and make sense. In some cases, I can see the general appeal (another demonstration of deep learning to reduce exposure time). Still, in other cases, the issue is not necessarily general enough (i.e., a different model of Piezo Z stage) to be of interest to a broad readership. There were a few additional optimization steps, i.e., testing four concentrations of readout and encoder probes. So while the preprint describes a technical milestone, achieving this milestone was done with overall modest innovation.

      We appreciate the reviewer's recognition of the technical challenges we have overcome in developing this 3D thick-tissue MERFISH method. To achieve high-quality thicktissue MERFISH imaging, we had to overcome multiple different challenges. We agree with the reviewer that the solutions to some of the above challenges are intellectually more impressive than the others that required relatively more mundane efforts. However, all of these are needed to achieve the overall goal, a goal that is considered a milestone by the reviewer. We believe that the impact of a method should be evaluated based on its unique capabilities, potential applications, and its adaptability for broader adoption. In this regard, we anticipate that our reported method will be a valuable and impactful contribution to the field of spatial biology.

      Data and code sharing - the only link in the preprint related to data sharing sends readers to a deleted Dropbox folder. Similarly, the GitHub link is a 404 error. Both are unacceptable. The author should do a better job sharing their raw and processed data. Furthermore, the software shared should not be just the MERlin package used to analyze but the specific code used in that package.

      We apologize for the invalid Dropbox link. The Dropbox folder got accidentally moved and hence the link provided in the manuscript is no longer linked to the folder. The valid link is now: https://www.dropbox.com/scl/fo/ribx45fnx4zw7kv12sl3w/h?rlkey=fo829wbxmb9mwl6gzivg7vqj3 &dl=0. We will also upload the data to a public data repository when submitting the revised manuscript.

      The GitHub link that we provided for the MERlin package is, however, valid and will lead to the correct GitHub site. If, for some reason, clicking the link does not work on your computer, copying the URL address into a web browser should work. Following the suggestion by the reviewer, in addition to the MERlin v2.2.7 package itself, we will also share the specific code to use this package for analyzing the data taken in this work in the revised manuscript.