6,770 Matching Annotations
  1. Apr 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2025-02860

      Corresponding author(s): Duncan, Sproul

      [The "revision plan" should delineate the revisions that authors intend to carry out in response to the points raised by the referees. It also provides the authors with the opportunity to explain their view of the paper and of the referee reports.

      • *

      The document is important for the editors of affiliate journals when they make a first decision on the transferred manuscript. It will also be useful to readers of the reprint and help them to obtain a balanced view of the paper.

      • *

      If you wish to submit a full revision, please use our "Full Revision" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      We thank the reviewers for recognizing that our work contributes 'both conceptually and mechanistically to our understanding of how DNA methylation patterns are regulated during cancer development' and their insightful suggestions to improve the manuscript. We note that the reviewers suggest that the data are 'comprehensive', 'well-controlled', 'rigorously done' and 'diligently analysed'.

      Our planned revisions focus on further elucidating the broader implications of our findings for partially methylated domain formation in cancer, the effects of the methylation changes we observe on gene expression and the potential mechanisms underpinning the formation of the hypermethylated domains we observe.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      We have reproduced the reviewer's comments in their entirety and highlighted them in blue italics.

      February 21, 2025*RE: Review Commons Refereed Preprint #RC-2025-02860 *

      *Kafetzopoulos *

      DNMT1 loss leads to hypermethylation of a subset of late replicating domains by DNMT3A

      ------------------------------------------------------------------------------

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      The DNA methylation landscape is frequently altered in cancers, which may contribute to genome misregulation and cancer cell behavior. One phenomenon is the emergence of "partially methylated domains (PMDs)": intermediately methylated regions of the genome that are generally heterochromatic and late replicating. The prevailing explanation is that the DNA methyltransferase, DNMT1, is not able to maintain DNAme levels at late replicating sites in proliferating cancer cells. This could result in genome instability. In this study, Kafetzopoulos and colleagues interrogated this possibility using a common laboratory colorectal cancer cell line (HCT116). Additionally, they utilized a DNMT1 mutant line that they refer to as a knockout, even though, more accurately, it is a hypomorphic truncation. They performed several genomic assays, such as whole genome bisulfite sequencing, ChIP and repli-seq, in order to assess the effect of reduced DNMT1 activity. While expectedly, global DNAme levels are decreased, they discovered a subset of PMDs gain DNA methylation, which they term hyperPMDs. There seems to be no impact on DNA replication timing, but the authors did go on to show that the de novo DNA methyltransferase, DNMT3Α, is likely responsible for this counterintuitive increase in DNAme levels.

      *Reviewer #1 (Significance (Required)): *

      Overall, I found the data well-presented and diligently analyzed, as we have come to expect from the Sproul group. However, I am somewhat at a loss to understand both the rationale for the experimental set-up and the meaning of the results. The HCT116 cell line is already transformed but was treated as though it was a wild-type control. I was more curious to see how the PMD chromatin state and replication compare to a healthy cell.

      We focused on the comparison between WT and DNMT1 KO cells as we wanted to understand the role of DNMT1 in maintaining the organisation of the cancer methylome. We agree that, strictly, this could differ from its role in normal cells. However, we are unaware of a suitable cell line to test the consequences of DNMT1 KO in normal colon cells and testing this in vivo would be beyond the time-scale of a manuscript revision.

      To further understand the relevance of our findings in the context of carcinogenesis, we propose to analyse data derived from normal and cancerous colon tissue in the revised manuscript. Preliminary analysis shows that HCT116 PMDs are hypomethylated in a colorectal tumour but not in the normal colon (revision plan figure 1). This suggests that HCT116 cells are a model that can be used to understand PMD formation in tumours and we will extend this analysis in the revised manuscript. We will also add discussion of the caveat that DNMT1 may function differently in normal tissues and cancer cells.

      Note, revision plan figure 1 was included with the full submission but cannot be uploaded in this format.

      Revision plan figure 1. HCT116 PMDs are hypomethylated in colorectal tumours. Heatmaps and pileup plots of HCT116, normal colon and colorectal tumour DNA methylation levels for HCT116 PMDs (n=546 domains) and HMDs (n=558 domains). DNA methylation levels are mean % mCpG. PMDs and HMDs are aligned and scaled to the start and end points of each domain and ranked based on their mean methylation levels in HCT116 cells. Colon and tumour data re-analysed from a previous publication (Berman et al 2011, PMID: 22120008).

      Moreover, the link between late replication and PMDs would indicate that a DNMT1 gain-of- function line would potentially be more interesting: could more increased DNMT activity rescue the PMDs, and how would this impact the chromatin and replication states? Perhaps this is not trivial to create; I do not know if simply overexpressing DNMT1 and/or UHRF1 could act as a gain-of-function.

      We agree with the reviewer that a DNMT1 overexpression or a gain-of-function mutation cell line would be interesting to analyse and potentially informative as to the mechanism of PMD formation. However, as the reviewer notes, this is a complex experiment that could require the overexpression of partners such as UHRF1 or generation of an unknown gain-of-function mutation. In addition, the full dissection of the implications of this separate experimental strategy would entail the repetition of the majority of our experiments in DNMT1 KO cells. Instead, in the revised manuscript, we will focus on a related experiment suggested by reviewer 2 and ask whether re-expression of DNMT1 rescues DNA methylation patterns DNMT1 KO cells.

      Nevertheless, the appearance of hyperPMDs was a curious finding worth publishing. However, it is unclear what the biological relevance is. There is no effect on replication timing, and no assessment on cell behavior (eg, proliferation assays).* In other words, is DNMT3A performing some kind of compensatory action, or is it just a curiosity? Below in the significance section, I have highlighted some additional specific points *

      PMDs are important to study because cancer-associated hypomethylation is believed to drive carcinogenesis through genomic instability (Eden et al 2003, PMID: 12702868). However, the mechanisms underpinning their formation remain unclear. At present the predominant hypothesis is that PMDs emerge in heterochromatin because their late replication timing leaves insufficient time for re-methylation following DNA replication (Zhou et al 2018, PMID: 29610480 and Petryk et al 2021, PMID: 33300031). We believe that our observations of hypermethylated PMDs in DNMT1 KO cells provides important evidence contrary to this hypothesis because they disconnect domain-level methylation patterns from the replication timing program. Our work instead suggests that the localization of de novo DNMTs plays a key role in the formation of PMDs by protecting euchromatin from hypomethylation.

      To further explore this hypothesis, we propose to analyze data derived from tumours in our revised manuscript to understand the degree to which our findings are reflected in vivo. As shown above, our preliminary analysis suggests that HCT116 cell PMDs are also hypomethylated in a colorectal tumour but not the normal colon (revision plan figure 1). We will also analyze how the changes in methylome affect gene expression using our RNA-seq data.

      - Why were DNMT3A and 3B transgenes used for ChIP instead of endogenous proteins? I know the authors cited work justifying this strategy, but this still merits explanation. Also, the expression level of transgenes compared to the endogenes was not shown (neither protein nor RNA level).

      DNMT3A and B transgenes were used because antibodies against the endogenous proteins are not suitable for ChIP. Furthermore, performing these experiments using endogenously tagged proteins, required generating 3 knock-in tagged lines (we have already generated HCT116 cells with tagged DNMT3B, Masalmeh et al 2021, PMID: 33514701).

      We have previously shown that our constructs do indeed result in overexpression of DNMT3B compared to endogenous protein in this system (Masalmeh et al 2021, PMID: 33514701). However, our previous results also demonstrate that overexpressed DNMT3B recapitulates the localization of the endogenously tagged protein to the genome (Taglini et al 2024, PMID: 38291337). Others have similarly demonstrated that ectopically expressed DNMT3A and DNMT3B can be used to understand their localization on the genome (Baubec et al 2015, PMID: 25607372 and Weinberg et al 2019, PMID: 31485078).

      To address this point, we propose to add further justification of our approach and discussion of this potential limitation to a revised version of the manuscript.

      - The DNMT3A binding profile appears as though it is on the edges of the PMDs and fairly depleted within (Fig 4A,D). Could the authors comment on this?

      This is an interesting point. We note that although mean DNMT3A signal is indeed higher at the edges of hypermethylated PMDs than inside these domains, its levels are both above background and the levels observed in HCT116 cells. As suggested by reviewer 3, this could be consistent with H3K36me2 and DNMT3A spreading in from the boundaries of hypermethylated PMDs in DNMT1 KO cells. We propose to add discussion of this possibility to the revised version of the manuscript.

      - A more compelling experiment would be to assess the loss of DNMT3A genetically. How would this affect PMD DNA methylation? Maybe in this case there would be an effect on replication timing. Could a KO or KD (eg, siRNA) strategy be employed to assess this on top of either the HCT116 or DNMT1 KO.

      As the reviewer suggests, functional experiments aimed at understanding the role of DNMT3A in our system are likely to be informative. We therefore propose to include such experiments in a revised version of the manuscript.

      - What is the major H3K36me2 methylatransferase in these cells? Could an Nsd1 KO or KD strategy be used, for example, to show that indeed H3K36 methylation is required for HyperPMDs? This would complement the DNMT3A experiment above.

      H3K36 methylation is thought to be deposited in the mammalian genome by at least 8 different methyltransferase enzymes, NSD1, NSD2, NSD3, ASH1L, SETD2, SETMAR, SMYD2 and SETD3 (Wagner and Carpenter 2023, PMID: 22266761). To understand which of these might be responsible for the deposition of H3K36me2 in hypermethylated PMDs, we have examined their expression in HCT116 and DNMT1 KO cells using our RNA-seq data. This suggests that 5 of these enzymes are highly expressed in HCT116 cells and their expression levels are similar in DNMT1 KO cellsrevision plan figure 2). The other 3 putative methyltransferases have lower expression levels and, although SMYD2 is significantly upregulated in DNMT1 KO cells, its expression remains low (revision plan figure 2). It is currently unclear whether SMYD2 is a bona fide H3K36 methyltransferase (Wagner and Carpenter 2023, PMID: 22266761). We also note that in a recent study, cells lacking NSD1, NSD2, NSD3, ASH1L and SETD2 had no detectable H3K36 methylation, although expression levels of SMYD2 were not reported (Shipman et al, 2024. PMID: 39390582). Based on this analysis, it is therefore unclear which enzyme(s) might be responsible for H3K36me2 deposition in hypermethylated PMDs and delineation of this enzyme would require multiple perturbation and sequencing experiments. We therefore suggest that assessing the consequences of knocking out H3K36me2 methyltransferase activity on hypermethylated PMDs is beyond the scope of a manuscript revision. We propose to include discussion of the expression of the different H3K36me2 depositing enzymes in the revised manuscript.

      Note, revision plan figure 2 was included with the full submission but cannot be uploaded in this format.

      Revision plan figure 2. HCT116 cells express multiple H3K36 methyltransferases. Barplot of mean expression levels for putative mammalian H3K36 methyltransferases in HCT116 and DNMT1 KO cells. Expression levels are counts per million (CPM) derived from RNA-seq. Mean expression levels are derived from 9 and 4 independent cultures of HCT116 and DNMT1 KO cells respectively.

      - Based on Figure 2C, it seems that a general predictive pattern of hyperPMDs is H3K9me3-enriched and H3K27me3-depleted. Is this an accurate interpretation? Given the authors' expertise in the relationship between DNMT3A and polycomb, could they perhaps give an explanation for this phenomenon?

      The reviewer is correct. In HCT116 cells, those PMDs that become hypermethylated in DNMT1 KO cells are marked by H3K9me3 and are H3K27me3-depleted (except at their boundaries). DNMT3A is recruited to polycomb-marked regions associated with H3K27me3 through interaction of its N-terminal region with H2AK119ub. However, this mark is depleted from hypermethylated-PMDs in DNMT1 KO cells (current manuscript Figure S5D) meaning that this pathway of recruitment is unlikely to explain DNMT3A's localisation to these regions in DNMT1 KO cells. This is discussed in the current manuscript:

      We and others have reported that DNMT3A is also recruited to the polycomb-associated H2AK119ub mark through its N-terminal region (Chen et al, 2024; Gretarsson et al, 2024; Gu et al, 2022; Wapenaar et al, 2024; Weinberg et al, 2021). However, we do not observe the polycomb-associated H3K27me3 mark, which is generally tightly correlated with H2AK119ub (Ku et al, 2008), at hypermethylated PMDs suggesting that H2AK119ub does not play a role in the recruitment of DNMT3A to these regions.

      Furthermore, DNMT3A's localisation is predominantly driven by its PWWP-dependent H3K36me2 recruitment pathway unless its PWWP domain is mutated (Heyn et al 2019, PMID: 30478443, Sendžikaitė et al 2019, PMID: 31015495, Kibe et al 2021, PMID: 34048432 and Weinberg et al, 2021, PMID: 33986537). Our observations of DNMT3A at hypermethylated PMDs marked by H3K36me2 is therefore consistent with previous findings. We propose to discuss this point in the revised manuscript.

      - This is a minor point, but calling the DNMT1 mutant a "KO" seemed a bit misleading, as it is a truncation mutant. Perhaps there is a more accurate way to describe this line.

      We propose to amend the manuscript to reflect this point as suggested by the reviewer. To ensure our responses are consistent with the reviewer comments we continue to refer to this line as DNMT1 KO cells in our revision plan.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      *In this study, Kafetzopoulos et al. investigated the role of DNMT1-mediated methylation maintenance in cancer partially methylated domains (PMDs) using DNMT1 knockout HCT116 colorectal cancer cells. They used a range of sequencing-based approaches, including whole-genome bisulfite sequencing (WGBS), chromatin immunoprecipitation sequencing (ChIP-seq), and replication timing sequencing (Repli-seq), to define the dynamics of DNA methylation loss and gain in PMDs during DNA synthesis. Interestingly, they demonstrate that specific PMDs marked by H3K9me3 undergo a gain of DNA methylation in DNMT1-deficient HCT116 cells. This increase in methylation is associated with the loss of H3K9me3, an enrichment of H3K36me2, and the recruitment of DNMT3A. These findings suggest that de novo methyltransferase activity plays a critical role in determining which genomic regions become PMDs in cancer. *

      *The authors use a comprehensive and well-controlled set of sequencing-based techniques. While the sequencing depth for DNA methylation is somewhat limited, the inclusion of multiple biological replicates strengthens the reliability of the data. The study effectively integrates multiple layers of epigenomic information, providing a nuanced view of PMD regulation in the context of DNMT1 loss. *

      *Overall, this paper provides valuable insights into the epigenetic regulation of PMDs in cancer, and its conclusions are well supported by the data. It significantly advances our understanding of how DNMT1 loss reshapes the epigenome and highlights the interplay between de novo and maintenance methylation mechanisms in cancers. *

      ------------------------------------------------------------------------------

      *Reviewer #2 (Significance (Required)): *

      General assessment

      -The main strength of the study lies in the clear presentation of the data, which follows a cohesive and well-defined storyline.

      *-The authors demonstrate that both hypomethylated and hypermethylated domains occur at the late replication stage. They further investigate the dynamics of histone modifications and DNA methylation, focusing on the acquisition and loss of these marks, particularly in relation to DNMT3A and DNMT3B. *

      Limitation

      -Although the study is compelling, its primary limitation is the correlative nature of most of the data. While the high-level representations (e.g., tracks, heat maps) are convincing, the study would have been more informative if it had explored the impact of these changes on a specific set of genes or regions critical to cancer initiation and progression. For example, in the DNMT1 knockout model, how does the loss of H3K9me3, the gain of H3K36me2, and the recruitment of DNMT3A in hypermethylated PMDs affect the expression of key genes involved in colorectal cancer?

      To understand how the remodeling of DNA methylation and chromatin structure in DNMT1 KO cells affects gene expression, we propose to include an analysis of our RNA-seq data in the revised manuscript. We will also cross reference these results and our ChIP-seq with lists of colorectal cancer genes.

      Additional experiments that could provide deeper insights

      -Cross-validation in other cancer cell lines would have enable to define if these signatures are observed beyond HCT116.

      As the reviewer suggests, we propose to undertake analyses of additional samples in the revised manuscript to understand how our findings relate to domain-level methylation patterns beyond HCT116 cells. As noted above in response to reviewer 1, our preliminary analysis suggests our findings are relevant for primary colorectal tumours (revision plan figure 1).

      -Are the observed signatures permanent, or could they be reversed by reinstating the full activity of DNMT1? Since DNMT1 might be dysregulated but never completely deleted.

      To address this suggestion, we propose to include the results of a DNMT1 rescue experiment in the revised manuscript.

      -Use knockdown and overexpression experiments to track the dynamics and occurrence of these molecular events over time, providing insight into the progression and reversibility of epigenetic changes.

      This is an interesting suggestion. As the reviewer suggests, we propose to analyse data derived from time-course experiments to understand the dynamics of changes in different genomic compartments following perturbation of DNMT1.

      Advances

      -The study provides new insights into the establishment of PMD types in colorectal cancer cell lines.

      -These findings contribute both conceptually and mechanistically to our understanding of how DNA methylation patterns are regulated during cancer development.

      Audience:

      -This study will appeal to a broad audience, from researchers primarily focused on epigenetics and cancer biology to those interested in the mechanistic underpinnings of DNA methylation and its role in cancer progression. It will also be relevant to those exploring therapeutic strategies targeting epigenetic regulators in cancer.

      We thank the reviewer for their kind comments on our manuscript.

      ------------------------------------------------------------------------------

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      Summary:*Cancer is linked to the acquisition of an atypical DNA methylation landscape, with broad domains of partial DNA methylation (termed PMDs). This study investigates PMDs in a colorectal cancer cell line and evaluates the contribution of DNMT1 in maintaining PMDs, using a DNMT1 KO line. The authors find that PMDs preferentially lose DNA methylation upon loss of DNMT1, but they find a number of domains that paradoxically gain DNA methylation (hyperPMDs). They attribute this gain of methylation to the action of DNMT3A through the accumulation of H3K36me2 and loss of heterochromatin mark H3K9me3. Together this work sheds light on the dynamic mechanisms regulating the atypical DNA methylation landscape in colorectal cancer cells. *

      General comments:The introduction is informative and well written. Additionally, the work is rigorously done and analyses are clear. However, the conclusions and summary figure largely focus on the relationship between PMDs with H3K9me3 and H3K36me2, but I think the role for H3K27me3 should be revisited based on the results presented. H3K9me3 is present at PMDs and hyperPMDs, but H3K27me3 level appears to be a much more defining feature of whether they lose or gain methylation upon loss of DNMT1 (Figure 2, Figure S2C- D). There is a reported interplay between PRC2 and DNMT3A activity at DNA methylation valleys in other cell contexts (e.g., mouse embryogenesis, hematopoietic cells), so couldn't H3K27me3 be performing a 'boundary' function at PMDs and when sufficiently low, permits spread of H3K36me2 in the absence of DNMT1? I think it is worth further exploring the H3K27me3 data.

      The reviewer makes an interesting point about the potential for H3K27me3 to act as a boundary preventing H3K36me2 spread into PMDs. Multiple studies have shown that H3K36me2 restricts H3K27me3 deposition in the genome (Streubel et al 2018, PMID: 29606589, Shirane et al 2020, PMID: 32929285 and Farhangdoost et al 2021, PMID: 3362635). The structural nature of this inhibitory effect has also been resolved, demonstrating that the PRC2 catalytic subunit, EZH2 directly binds H3K36 and this is inhibited when the residue is methylated (Jani et al 2019, PMID: 30967505, Finogenova et al 2020, PMID: 33211010 and Cookis et al 2025, PMID: 39774834). The effect of H3K27me3 on H3K36me2 is less well characterised. However, previous work has suggested that inhibiting EZH2 leads to elevated H3K36me2 being established on newly replicated chromatin (Alabert et al 2020, PMID: 31995760). Expression of the EZH2-inhibiting oncohistone H3.3K27M has also been reported to lead to increased H3K36me2 dependent on NSD1/2 in diffuse intrinsic pontine gliomas (DIPG) (Stafford et al 2018, PMID: 30402543 and Yu et al 2021, PMID: 34261657). However, this increase was not reported by an independent study of H3.3K27M DIPG cells (Harutyunyan et al 2020, PMID: 33207202) and the molecular basis of the effect of H3K27me3 on H3K36me2 remains unclear.

      As the reviewer suggests, we propose to explore the relationship between H3K27me3 and H3K36me2 further in a revised manuscript along with the including further discussion of previous findings in this area.

      Additionally, a key point that is illustrated in the summary figure, is the localization of H3K36me2 at HMDs and its mutual exclusivity with H3K9me3 (a mark typically associated with high DNA methylation). However, because the H3K36me2 is introduced quite late in the analysis, I feel that a rigorous evaluation of its enrichment and anti-correlation with H3K9me3 at highly methylated domains (HMDs) is missing.

      The relationship between H3K36me2 and H3K9me3 is far less explored than that of H3K27me3 and H3K36me2. Interestingly, we note that a recent study reported that depletion of H3K36me2 results in H3K9me3 re-distribution suggesting that H3K9me3 is restricted by H3K36me2 (Padilla et al 2024, DOI: 10.1101/2024.08.10.607446, also cited in the original manuscript).

      To understand this relationship further, we therefore propose to explore the relationship between H3K9me3 and H3K36me2 in our datasets as part of revised manuscript along with including additional discussion of relevant experimental findings.

      In general, I also found that I was jumping between figures a lot and needed to look at the supplements to gain the full picture. It may be beneficial to re-organize the figures.

      In accordance with the reviewer's suggestion, we propose to re-organise the revised manuscript to make it easier to follow.

      Specific Comments/Questions:

      • An expanded explanation of the truncated DNMT1 in the DNMT1 KO cells would be helpful for context**
* As suggested by the reviewer, we will amend the manuscript to include an expanded discussion of the DNMT1 truncation present in the cell line.

      • Does the DNMT expression in HCT116 cells reflect the levels seen in primary colorectal cancers? Hence, do you think these cultured cells reflect aspects of DNA methylation dynamics that would be seen in tumors?**
*

      While differences between cancer cell line and tumour methylation patterns have previously been noted (for example Anne Rogers et al 2018, PMID: 30559935), we have previously demonstrated that HCT116 cells recapitulate CpG island methylation patterns observed in colorectal tumours (Masalmeh et al 2021, PMID: 33514701). As stated above in response to reviewer 1, we have now examined the methylation status of HCT116 PMDs in a colorectal tumour. This analysis shows that HCT116 PMDs have reduced methylation levels in a colorectal tumour but not in the normal colon (revision plan figure 1). We propose to extend this analysis of colorectal tumour samples and add them to the revised manuscript to address this point.

      Regarding the expression of DNMTs in colorectal tumours, DNMT1 is ubiquitously expressed to our knowledge. DNMT3B is reported to be overexpressed in 15-20% of cases of colorectal cancer, often as a result of amplification (Nosho et al 2009, PMID: 19470733, Ibrahim et al 2011, PMID: PMID: 21068132, Zhang et al 2018, PMID: 30468428 and Mackenzie et al 2020, PMID: 32058953). DNMT3A expression in colorectal tumours is less studied but one report suggests upregulation in at least some tumours (Robertson et al 1999, PMID: 10325416 and Zhang et al 2018, PMID: 30468428). We propose to add additional discussion of DNMT expression in colorectal cancer to the revised manuscript to clarify the degree to which our results reflect methylation regulation in primary colorectal tumours.

      • Although DNMT3A/B mRNA levels are similar between DNMT1 KO and HCT116 cells, is the protein abundance altered? I think there would be value in showing a Western blot analysis, as the loss of DNMT1 protein may alter the stability of the de novo DNMTs. Is a similar level of expression of the ectopic T7-DNMT3A and T7-DNMT3B achieved in HCT116 and DNMT1 KO cells? A western blot showing this would also be valuable.**
*

      As part of our work towards revising the manuscript, we have undertaken blots of DNMT3A in our cell lines. This shows that DNMT3A levels in DNMT1 KO cells are similar to those in HCT116 cells which (revision plan figure 3). We propose to include this in the revised manuscript alongside a similar analysis of DNMT3B. We will also include an analysis of T7-DNMT3A and T7-DNMT3B levels to understand whether they are expressed to similar levels in HCT116 and DNMT1 KO cells.

      Note, revision plan figure 3 was included with the full submission but cannot be uploaded in this format.

      Revision plan figure 3. DNMT3A protein levels are similar in HCT116 and DNMT1 KO cells. Left, representative DNMT3A Western blot. Right, bar plot quantifying relative DNMT3A levels. The bar height indicates the mean levels observed in protein extracts from 3 independent cell cultures. Individual points indicate the level of each replicate.

      • Do you think that the increase in DNMT3A over HyperPMD compared to H3K9me3-marked PMDs is related to an increase in protein bound at these domains or an altered residence time?*

      The reviewer makes an interesting point with regard to a potential alteration of DNMT3A residence at hypermethylated PMDs. Given that ChIP-seq signal is affected by residence time (Schmiedeberg et al 2009, PMID: 19247482), it is possible that our findings could reflect this rather than increased DNMT3A localisation. We propose to add discussion of this point as a limitation of the current study to the manuscript.

      It would also be valuable to move the plot showing levels of DNMT3A/3B at HMDs, from the S4C/D to the main Figure 4, for reference. It would also be interesting to see the enrichment of DNMT3A/B at all PMDs (not just H3K9me3-marked PMDs).*
*

      As the reviewer suggests, we will include the data on HMDs to the main Figure 4 and include enrichments at all PMDs in the supplementary figures.

      • It appears that the same genomic locus is used multiple times across figures Fig 1A, Fig 2B, Fig 3A, Fig 4A, Fig 5B to illustrate the trends reported from the global analyses. While this has value in showing the dynamics across datasets at this region, I think it is important to illustrate that these trends can be observed elsewhere. Please add or replace some plots with additional loci. Furthermore, please add the genomic region coordinates to the figure or figure legend.*

      We had shown a single locus for consistency and to not overcomplicate figures which already contain multiple panels. As the reviewer suggests, we will add additional loci in the supplementary figures of our revised manuscript. We had also included the chromosome co-ordinates in the figures. In the revised version we will ensure that the precise co-ordinates are included in the legends.

      • The ChIP-seq data is quantified as IP/input. This quantitation can be prone to introducing artefacts into analyses if the input coverage is substantially uneven over AT-rich regions or CpG islands, or if the sequencing depth is insufficient. I would encourage the authors to check that the trends observed are still present if quantified without correcting against the inputs. If using IP/input, in the supplementary figures, I think it would be valuable to show the uncorrected quantitation of inputs across PMDs, to demonstrate that there is even coverage and this isn't contributing to any of the changes observed.**
*

      We thank the reviewer for this point and we propose to examine the quantification of the ChIP-seq without normalizing to input to ensure that uneven input signal does not substantially contribute to our results.

      • Generally, the n numbers for different groups of probes can be confusing and increased clarity would be helpful.*

      We will clarify the explanation of n numbers in the revised manuscript.

      *Reviewer #3 (Significance (Required)): *

      This study adds to the accumulating body of evidence that DNMT3A recruitment is mediated primarily through H3K36me2 across cell contexts, shedding light on the interplay between histone modifications and de novo DNA methylation. Understanding these mechanisms is important to appreciate the role for DNMT3A in establishing DNA methylation in development and disease contexts. It does remain unclear why, upon loss of DNMT1 in colorectal cancer cells, some PMDs accumulate H3K36me2 and consequently DNA methylation, while others do not. Further study into the chromatin dynamics will be valuable in understanding determinants of the DNA methylation landscape in cancer.

      We thank the reviewer for their insightful comments and believe that our proposed revisions will further clarify the points they raise.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      We have not yet incorporated revisions into the manuscript.

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      As stated in our responses to the reviewer comments above, we plan to address all comments. However, we suggest that two experiments proposed by the reviewers are beyond the scope of a manuscript revision and we will instead address these comments in the following manner:

      Analysis of a DNMT1 gain-of-function line (Reviewer 1). As suggested by the reviewer such a line is non-trivial to generate. It would also require extensive profiling of this new line to fully understand its implications for our findings. We therefore believe it is outwith the scope of a manuscript revision. Instead, we propose to address this comment by undertaking the related experiment suggested by Reviewer 2 and perform a DNMT1 rescue experiment in the DNMT1 KO line. Analysis of H3K36me2 methyltransferase knockout cells (Reviewer 1). Our preliminary analysis suggests that HCT116 cells express multiple H3K36 methyltransferases and that their expression does not vary greatly in DNMT1 KO cels (revision plan figure 2). This means that it is unclear which enzyme(s) might be responsible for depositing H3K36me2 in hypermethylated PMDs. Delineation of this would require the generation and analysis of multiple knockouts and we suggest it is therefore outwith the scope of a manuscript revision. To address this point we will instead include discussion of the spectrum of H3K36 methyltransferases expressed in our cells in the revised manuscript as detailed in the specific response above.

    1. AbstractReef-building corals are integral ecosystem engineers in tropical coral reefs worldwide but are increasingly threatened by climate change and rising ocean temperatures. Consequently, there is an urgency to identify genetic, epigenetic, and environmental factors, and how they interact, for species acclimatization and adaptation. The availability of genomic resources is essential for understanding the biology of these organisms and informing future research needs for management and and conservation. The highly diverse coral genus Acropora boasts the largest number of high-quality coral genomes, but these remain limited to a few geographic regions and highly studied species. Here we present the assembly and annotation of the genome and DNA methylome of Acropora pulchra from Mo’orea, French Polynesia. The genome assembly was created from a combination of long-read PacBio HiFi data, from which DNA methylation data were also called and quantified, and additional Illumina RNASeq data for ab initio gene predictions. The work presented here resulted in the most complete Acropora genome to date, with a BUSCO completeness of 96.7% metazoan genes. The assembly size is 518 Mbp, with 174 scaffolds, and a scaffold N50 of 17 Mbp. Structural and functional annotation resulted in the prediction of a total of 40,518 protein-coding genes, and 16.74% of the genome in repeats. DNA methylation in the CpG context was 14.6% and predominantly found in flanking and gene body regions (61.7%). This reference assembly of the A. pulchra genome and DNA methylome will provide the capacity for further mechanistic studies of a common coastal coral in French Polynesia of great relevance for restoration and improve our capacity for comparative genomics in Acropora and cnidarians more broadly.

      This work has been published in GigaByte Journal under a CC-BY 4.0 license (https://doi.org/10.46471/gigabyte.153). These reviews (including a protocol review) are as follows.

      Reviewer 1. Yanshuo Liang

      The manuscript by Conn et al. detail the high-quality genome assembly of Acropora pulchra, a Acropora of ecological and evolutionary significance, and also analyzes its genome-wide DNA methylation characteristics. These data complement the genetic resources of the Acropora genome. This manuscript is well written and represents a valuable contribution to the field. I have some comments below for the authors to address but look forward to seeing this research published. Q1: In the first sentence of the second paragraph of the Context: This is the first study to utilize PacBio long-read HiFi sequencing to generate a high quality genome with high BUSCO completeness, in tandem with its DNA methylome for scleractinian corals. Language such as "new", "first", "unprecedented", etc, should be avoided because it often leads to unproductive controversy. As far as I know, the genome you assembled is not the first stony coral to be sequenced using PacBio long-read HiFi sequencing. Back in 2024, He et al. assembled Pocillopora verrucosa (Scleractinia) to the chromosome level using PacBio HiFi long-read sequencing and Hi-C technology. Here I would suggest please rephrase. Reference: He CP, Han TY, Huang WL, et al. Deciphering omics atlases to aid stony corals in response to global change, 11 March 2024, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-4037544/v1]. Q2: In this sentence: “On 23 October 2022, sperm samples were collected from the spawning of A.pulchra and preserved in Zymo DNA/RNA shield.” Please “A.pulchra” to “A. pulchra”. Q3: Please change all “k-mer” into “k-mer” in the manuscript. Q4: Please change “Long-Tandem Repeats” to “Long Terminal Repeats” Q5: In this sentence: “Funannotate train uses Trinity [18] and PASA [19] for ab initio predictions. Funannotate predict was then run to assign gene models using AUGUSTUS [20], GeneMark [21], and Evidence Modeler [19] to estimate final gene models.” Please write versions of these software. Q6: [20] Later references do not correspond well in the manuscript, please check!

      Reference 2. Jason Selwyn

      Is the language of sufficient quality? Yes. There are some minor grammatical issues throughout that warrent a closer reading to correct. E.g. Abstract: "...urgency to identify how genetic, epigenetic, and environmental...", "...management and and conservation...". Context: "...we aim to provide..." etc. Are all data available and do they match the descriptions in the paper? Yes. The link to the OSF repository in the PDF did not work. However, the link to the OSF repository from the github did work. Is the data acquisition clear, complete and methodologically sound? No. It isn't mentioned in the manuscript where the RNAseq data used to annotate the genome is from, nor any quality filtering steps that may have been applied to the RNA data prior to its use for annotation. Is there sufficient detail in the methods and data-processing steps to allow reproduction? Yes. Excluding the above comment about the RNA data. Additional Comments: This is a well assembled, and annotated genome that will contribute to the growing database of Acropora genomes. The manuscript could do with a simple pass to identify and correct some relatively minor grammatical issues and inconsistencies (Table 1 includes a thousands comma separator in some instances and not others) and needs to include details about the source of the RNA data used to train the ab initio gene predictors. There also appears to be a problem with the citation numbering after 20.

      **Reviewer 3. Benjamin Young ** Are all data available and do they match the descriptions in the paper? Yes. Raw reads, metadata, and genome assembly are publicly available and have a NCBI project number in which they are all linked. Is the data acquisition clear, complete and methodologically sound? Yes. Collection of sperm samples, HMW DNA extraction, and SMRT Bell Library prep are written clearly. I have asked for a few clarifications on wording in this section in the attached edited pdf document. Is there sufficient detail in the methods and data-processing steps to allow reproduction? Yes. I think the pipeline used for de-novo genome generation (including raw read cleaning and assembly), repeat masking, and gene prediction and annotation is of high quality and best practices. With the inclusion of the GitHub and all analyses scripts, it is possible to reproduce the assembly generated. Is there sufficient data validation and statistical analyses of data quality? Yes. This is not super relevant for a genome assembly paper so I have no additional comments here. Is the validation suitable for this type of data? Yes. The authors use tools such as GenomeScope2 and BUSCO for validation of their data. It would be nice to see the tool they used to identify N50 and L50 (maybe Quast) included in the methods. Additionally, I would like to see a Merqury analysis of the HifiAsm primary and alternate assemblies to show that duplicate purging was successful. Additional Comments: I would first like to commend the authors for a well assembled genome resource for a coral species that will be greatly beneficial to the wider coral and scientific community. I have provided a PDF with comments throughout for the authors to address. The majority of these are easy fixes, including things such as sentence structure, inconsistent capitalisation of subheadings, additional references for methods, clarification of statements, and other suggestions. I do have a few larger requests for this to be published, and these are the reasons for selecting the major revision option as there may need to be figure updates, and quick additional analyses to be run. 1. Can you please correct the verbiage around BUSCO analysis throughout the manuscript. It is often stated "BUSCO completeness of xx%". BUSCO doesn't directly measure completeness, rather completeness of single copy orthologs against a specific database. I have left comments throughout on potential rewording for these instances. Please also specify the exact database you used (i.e. odb10_metazoa). Finally, can you please be more specific when stating BUSCO results, specifically when you use 96.9% this is single copy and duplicated complete BUSCOS. I have left comments in the pdf again for this. 2. In the results for Genome Assembly section can you please include results (i.e. length, N50, L50, number contigs/scaffolds) for the primary assembly and the scaffolded assembly. 3. I think it would be not much work and provide additional information to show successful duplicate purging to run a Merqury analysis on the primary and alternative assemblies from HiFiAsm. 4. Can you include some additional information in the "Structural and Functional Annotation section". Specifically, can you provide information on the results from the funannoatate predict step, and then how funannotate update improved this (if at all). 5. Please double check the methods section for funannotate. From reading the funannoatate documentation I think there may be some confusion on what each step (train, predict, update, annotate) is doing. I have provided comments in the pdf to help clarify, and have also linked the funnannotate documentation. 6. On NCBI I see that an additional Acropora pulchra genome has just been made available (29th Jan 2025), with this to the chromosome level (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_965118205.1/). I think it would be prudent to include this assemblies statistics in your Table 1, and also run a BUSCO analysis on this other assembly to compare with your one. While they got to chromosome level, you do have markedly less contigs. I do not think this is necessary for this manuscript, but future work you could look to use their chromosome assembly to get your scaffolded assembly to chromosome level. Again, I want to say this is a wonderful resource for the coral and wider scientific community, and the pipeline for de-novo assembly and annotation is best practices in my opinion. Annotated additional file: https://gigabyte-review.rivervalleytechnologies.comdownload-api-file?ZmlsZV9wYXRoPXVwbG9hZHMvZ3gvRFIvNTk0L2Nvbm5ldGFsMjAyNV9yZXZpZXdjb21tZW50cy5wZGY=

      Re-review:

      The authors have addressed all my comments and queries, and included nearly all recommendations. Thank you ! A few quick notes to fix before publication -
      

      "The input created Funannotate train uses Trinity v.2.15.2 [22] and PASA v.2.5.3 [23] for transcript assembly prior to ab initio predictions". This sentence reads weird, reword before publishing. I think maybe just remove "created Funannotate train" and then it reads correctly. Or "Funnannotate trains uses .....". - "PFAM v.37.0 [28], CAZyme [29], UniProtKB v[30] and GO [31]." Missing a few version numbers, and UniProt just has a v. - "The mitochondrial genome was successfully assembled and circularized using MitoHifi v3.2.2 The final assembled A. pulchra mitogenome is". Just missing a period i think before "The final assembly". Great job and a very useful resource for the coral community !!

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their feedback on our paper. We have taken all their comments into account in revising the manuscript. We provide a point-by-point response to their comments, below.

      Reviewer #1

      Major comments:

      The manuscript is clearly written with a level of detail that allows others to reproduce the imaging and cell-tracking pipeline. Of the 22 movies recorded one was used for cell tracking. One movie seems sufficient for the second part of the manuscript, as this manuscript presents a proof-of-principle pipeline for an imaging experiment followed by cell tracking and molecular characterisation of the cells by HCR. In addition, cell tracking in a 5-10 day time-lapse movie is an enormous time commitment.

      My only major comment is regarding "Suppl_data_5_spineless_tracking". The image file does not load. It looks like the wrong file is linked to the mastodon dataset. The "Current BDV dataset path" is set to "Beryl_data_files/BLB mosaic cut movie-02.xml", but this file does not exist in the folder. Please link it to the correct file.

      We have corrected the file path in the updated version of Suppl. Data 5.

      Minor comments:

      The authors state that their imaging settings aim to reduce photo damage. Do they see cell death in the regenerating legs? Is the cell death induced by the light exposure or can they tell if the same cells die between the movies? That is, do they observe cell death in the same phases of regeneration and/or in the same regions of the regenerating legs?

      Yes, we observe cell death during Parhyale leg regeneration. We have added the following sentence to explain this in the revised manuscript: "During the course of regeneration some cells undergo apoptosis (reported in Alwes et al., 2016). Using the H2B-mRFPruby marker, apoptotic cells appear as bright pyknotic nuclei that break up and become engulfed by circulating phagocytes (see bright specks in Figure 2F)."

      We now also document apoptosis in regenerated legs that have not been subjected to live imaging in a new supplementary figure (Suppl. Figure 3), and we refer to these observations as follows: "While some cell death might be caused by photodamage, apoptosis can also be observed in similar numbers in regenerating legs that have not been subjected to live imaging (Suppl. Figure 3)."

      Based on 22 movies, the authors divide the regeneration process into three phases and they describe that the timing of leg regeneration varies between individuals. Are the phases proportionally the same length between regenerating legs or do the authors find differences between fast/slow regenerating legs? If there is a difference in the proportions, why might this be?

      Both early and late phases contribute to variation in the speed of regeneration, but there is no clear relationship between the relative duration of each phase and the speed of regeneration. We now present graphs supporting these points in a new supplementary figure (Suppl. Figure 2).

      To clarify this point, we have added the following sentence in the manuscript: "We find that the overall speed of leg regeneration is determined largely by variation in the speed of the early (wound closure) phase of regeneration, and to a lesser extent by variation in later phases when leg morphogenesis takes place (Suppl. Figure 2 A,B). There is no clear relationship between the relative duration of each phase and the speed of regeneration (Suppl. Figure 2 A',B')."

      Based on their initial cell tracing experiment, could the authors elaborate more on what kind of biological information can be extracted from the cell lineages, apart from determining which is the progenitor of a cell? What does it tell us about the cell population in the tissue? Is there indication of multi- or pluripotent stem cells? What does it say about the type of regeneration that is taking place in terms of epimorphosis and morphallaxis, the old concepts of regeneration?

      In the first paragraph of Future Directions we describe briefly the kind of biological information that could be gained by applying our live imaging approach with appropriate cell-type markers (see below). We do not comment further, as we do not currently have this information at hand. Regarding the concepts of epimorphosis and morphallaxis, as we explain in Alwes et al. 2016, these terms describe two extreme conditions that do not capture what we observe during Parhyale leg regeneration. Our current work does not bring new insights on this topic.

      Page 5. The authors mention the possibility of identifying the cell ID based on transcriptomic profiling data. Can they suggest how many and which cell types they expect to find in the last stage based on their transcriptomic data?

      We have added this sentence: "Using single-nucleus transcriptional profiling, we have identified approximately 15 transcriptionally-distinct cell types in adult Parhyale legs (Almazán et al., 2022), including epidermis, muscle, neurons, hemocytes, and a number of still unidentified cell types."

      Page 6. Correction: "..molecular and other makers.." should be "..molecular and other markers.."

      Corrected

      Page 8. The HCR in situ protocol probably has another important advantage over the conventional in situ protocol, which is not mentioned in this study. The hybridisation step in HCR is performed at a lower temperature (37˚C) than in conventional in situ hybridisation (65˚C, Rehm et al., 2009). In other organisms, a high hybridisation temperature affects the overall tissue morphology and cell location (tissue shrinkage). A lower hybridisation temperature has less impact on the tissue and makes manual cell alignment between the live imaging movie and the fixed HCR in situ stained specimen easier and more reliable. If this is also the case in Parhyale, the authors must mention it.

      This may be correct, but all our specimens were treated at 37˚C, so we cannot assess whether hybridisation temperature affects morphological preservation in our specimens.

      Page 9. The authors should include more information on the spineless study. What been is spineless? What do the cell lineages tell about the spineless progenitors, apart from them being spread in the tissue at the time of amputation? Do spineless progenitors proliferate during regeneration? Do any spineless expressing cells share a common progenitor cell?

      We now point out that spineless encodes a transcription factor. We provide a summary of the lineages generating spineless-expressing cells in Suppl. Figure 6, and we explain that "These epidermal progenitors undergo 0, 1 or 2 cell divisions, and generate mostly spineless-expressing cells (Suppl. Figure 5)."

      Page 10. Regarding the imaging temperature, the Materials and Methods state "... a temperature control chamber set to 26 or 27˚C..."; however, in Suppl. Data 1, 26˚C and 29˚C are indicated as imaging temperatures. Which is correct?

      We corrected the Methods by adding "with the exception of dataset li51, imaged at 29{degree sign}C"

      Page 10. Regarding the imaging step size, the Materials and Methods state "...step size of 1-2.46 µm..."; however, Suppl. Data 1 indicate a step size between 1.24 - 2.48 µm. Which is correct?

      We corrected the Methods.

      Page 11. Correct "...as the highest resolution data..." to "...at the highest resolution data..."

      The original text is correct ("standardised to the same dimensions as the highest resolution data").

      Page 11. Indicate which supplementary data set is referred to: "Using Mastodon, we generated ground truth annotations on the original image dataset, consisting of 278 cell tracks, including 13,888 spots and 13,610 links across 55 time points (see Supplementary Data)."

      Corrected

      p. 15. Indicate which supplementary data set is referred to: "In this study we used HCR probes for the Parhyale orthologues of futsch (MSTRG.441), nompA (MSTRG.6903) and spineless (MSTRG.197), ordered from Molecular Instruments (20 oligonucleotides per probe set). The transcript sequences targeted by each probe set are given in the Supplementary Data."

      Corrected

      Figure 3. Suggestion to the overview schematics: The authors might consider adding "molting" as the end point of the red bar (representing differentiation).

      The time of molting is not known in the majority of these datasets, because the specimens were fixed and stained prior to molting. We added the relevant information in the figure legend: "Datasets li-13 and li-16 were recorded until the molt; the other recordings were stopped before molting."

      Figure 4B': Please indicate that the nuclei signal is DAPI.

      Corrected

      Supplementary figure 1A. Word is missing in the figure legend: ...the image also shows weak...

      Corrected

      Supplementary Figure 2: Please indicate the autofluorescence in the granular cells. Does it correspond to the yellow cells?

      Corrected

      Video legend for video 1 and 2. Please correct "H2B-mREFruby" to "H2B-mRFPruby".

      Corrected

      Reviewer #2

      Major comments:

      MC 1. Given that most of the technical advances necessary to achieve the work described in this manuscript have been published previously, it would be helpful for the authors to more clearly identify the primary novelty of this manuscript. The abstract and introduction to the manuscript focus heavily on the technical details of imaging and analysis optimization and some additional summary of the implications of these advances should be included here to aid the reader.

      This paper describes a technical advance. While previous work (Alwes et al. 2016) established some key elements of our live imaging approach, we were not at that time able to record the entire time course of leg regeneration (the longest recordings were 3.5 days long). Here we present a method for imaging the entire course of leg regeneration (up to 10 days of imaging), optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining in cuticularised adult legs (an important technical breakthrough in this experimental system), which we combine with live imaging to determine the fate of tracked cells. We have revised the abstract and introduction of the paper to point out these novelties, in relation to our previous publications.

      In the abstract we explain: "Building on previous work that allowed us to image different parts of the process of leg regeneration in the crustacean Parhyale hawaiensis, we present here a method for live imaging that captures the entire process of leg regeneration, spanning up to 10 days, at cellular resolution. Our method includes (1) mounting and long-term live imaging of regenerating legs under conditions that yield high spatial and temporal resolution but minimise photodamage, (2) fixing and in situ staining of the regenerated legs that were imaged, to identify cell fates, and (3) computer-assisted cell tracking to determine the cell lineages and progenitors of identified cells. The method is optimised to limit light exposure while maximising tracking efficiency."

      The introduction includes the following text: "Our first systematic study using this approach presented continuous live imaging over periods of 2-3 days, capturing key events of leg regeneration such as wound closure, cell proliferation and morphogenesis of regenerating legs with single-cell resolution (Alwes et al., 2016). Here, we extend this work by developing a method for imaging the entire course of leg regeneration, optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining of gene expression in cuticularised adult legs, which we combine with live imaging to determine the fate of tracked cells."

      MC 2. The description of the regeneration time course is nicely detailed but also very qualitative. A major advantage of continuous recording and automated cell tracking in the manner presented in this manuscript would be to enable deeper quantitative characterization of cellular and tissue dynamics during regeneration. Rather than providing movies and manually annotated timelines, some characterization of the dynamics of the regeneration process (the heterogeneity in this is very very interesting, but not analyzed at all) and correlating them against cellular behaviors would dramatically increase the impact of the work and leverage the advances presented here. For example, do migration rates differ between replicates? Division rates? Division synchrony? Migration orientation? This seems to be an incredibly rich dataset that would be fascinating to explore in greater detail, which seems to me to be the primary advance presented in this manuscript. I can appreciate that the authors may want to segregate some biological findings from the method, but I believe some nominal effort highlighting the quantitative nature of what this method enables would strengthen the impact of the paper and be useful for the reader. Selecting a small number of simple metrics (eg. Division frequency, average cell migration speed) and plotting them alongside the qualitative phases of the regeneration timeline that have already been generated would be a fairly modest investment of effort using tools that already exist in the Mastodon interface, I would roughly estimate on the order of an hour or two per dataset. I believe that this effort would be well worth it and better highlight a major strength of the approach.

      The primary goal of this work was to establish a robust method for continuous long-term live imaging of regeneration, but we do appreciate that a more quantitative analysis would add value to the data we are presenting. We tried to address this request in three steps:

      First, we examined whether clear temporal patterns in cell division, cell movements or other cellular features can be observed in an accurately tracked dataset (li13-t4, tracked in Sugawara et al. 2022). To test this we used the feature extraction functions now available on the Mastodon platform (see link). We could discern a meaningful temporal pattern for cell divisions (see below); the other features showed no interpretable pattern of variation.

      Second, we asked whether we could use automated cell tracking to analyse the patterns of cell division in all our datasets. Using an Elephant deep learning model trained on the tracks of the li13-t4 dataset, we performed automated cell tracking in the same dataset, and compared the pattern of cell divisions from the automated cell track predictions with those coming from manually validated cell tracks. We observed that the automated tracks gave very imprecise results, with a high background of false positives obscuring the real temporal pattern (see images below, with validated data on the left, automated tracking on the right). These results show that the automated cell tracking is not accurate enough to provide a meaningful picture on the pattern of cell divisions.

      Third, we tried to improve the accuracy of detection of dividing cells by additional training of Elephant models on each dataset (to lower the rate of false positives), followed by manual proofreading. Given how labour intensive this is, we could only apply this approach to 4 additional datasets. The results of this analysis are presented in Figure 4.

      MC 3. The authors describe the challenges faced by their described approach: Using this mode of semi-automated and manual cell tracking, we find that most cells in the upper slices of our image stacks (top 30 microns) can be tracked with a high degree of confidence. A smaller proportion of cell lineages are trackable in the deeper layers.

      Given that the authors quantify this in Table 1, it would aid the reader to provide metrics in the manuscript text at this point. Furthermore, the metrics provided in Table 1 appear to be for overall performance, but the text describes that performance appears to be heavily depth dependent. Segregating the performance metrics further, for example providing DET, TRA, precision and recall for superficial layers only and for the overall dataset, would help support these arguments and better highlight performance a potential adopter of the method might expect.

      In the revised manuscript we have added data on the tracking performance of Elephant in relation to imaging depth in Suppl. Figure 3. These data confirm our original statement (which was based on manual tracking) that nuclei are more challenging to track in deeper layers.

      We point to these new results in two parts of the paper, as follows: "A smaller proportion of cells are trackable in the deeper layers (see Suppl. Figure 3)", and "Our results, summarised in Table 1A, show that the detection of nuclei can be enhanced by doubling the z resolution at the expense of xy resolution and image quality. This improvement is particularly evident in the deeper layers of the imaging stacks, which are usually the most challenging to track (Suppl. Figure 3)."

      MC 4. Performance characterization in Table 1 appears to derive from a single dataset that is then subsampled and processed in different ways to assess the impact of these changes on cell tracking and detection performance. While this is a suitable strategy for this type of optimization it leaves open the question of performance consistency across datasets. I fully recognize that this type of quantification can be onerous and time consuming, but some attempt to assess performance variability across datasets would be valuable. Manual curation over a short time window over a random sampling of the acquired data would be sufficient to assess this.

      We think that similar trade-offs will apply to all our datasets because tracking performance is constrained by the same features, which are intrinsic to our system; e.g. by the crowding of nuclei in relation to axial resolution, or the speed of mitosis in relation to the temporal resolution of imaging. We therefore do not see a clear rationale for repeating this analysis. On a practical level, our existing image datasets could not be subsampled to generate the various conditions tested in Table 1, so proving this point experimentally would require generating new recordings, and tracking these to generate ground truth data. This would require months of additional work.

      A second, related question is whether Elephant would perform equally well in detecting and tracking nuclei across different datasets. This point has been addressed in the Sugawara et al. 2022 paper, where the performance of Elephant was tested on diverse fluorescence datasets.

      Reviewer #3

      Major comments:

      The authors should clearly specify what are the key technical improvements compared to their previous studies (Alwes et al. 2016, Elife; Konstantinides & Averof 2014, Science). There, the approaches for mounting, imaging, and cell tracking are already introduced, and the imaging is reported to run for up to 7 days in some cases.

      In Konstantinides and Averof (2014) we did not present any live imaging at cellular resolution. In Alwes et al. (2016) we described key elements of our live imaging approach, but we were never able to record the entire time course of leg regeneration. The longest recordings in that work were 3.5 days long.

      We have revised the abstract and introduction to clarify the novelty of this work, in relation to our previous publications. Please see our response to comment MC1 of reviewer 2.

      While the authors mention testing the effect of imaging parameters (such as scanning speed and line averaging) on the imaging/tracking outcome, very little or no information is provided on how this was done beyond the parameters that they finally arrived to.

      Scan speed and averaging parameters were determined by measuring contrast and signal-to-noise ratios in images captured over a range of settings. We have now added these data in Supplementary Figure 1.

      The authors claim that, using the acquired live imaging data across entire regeneration time course, they are now able to confirm and extend their description of leg regeneration. However, many claims about the order and timing of various cellular events during regeneration are supported only by references to individual snapshots in figures or supplementary movies. Presenting a more quantitative description of cellular processes during regeneration from the acquired data would significantly enhance the manuscript and showcase the usefulness of the improved workflow.

      The events we describe can be easily observed in the maximum projections, available in Suppl. Data 2. Regarding the quantitative analysis, please see our response to comment MC2 of reviewer 2.

      Table 1 summarizes the performance of cell tracking using simulated datasets of different quality. However only averages and/or maxima are given for the different metrics, which makes it difficult to evaluate the associated conclusions. In some cases, only 1 or 2 test runs were performed.

      The metrics extracted from each of the three replicates, per dataset, are now included in Suppl. Data 4.

      We consistently used 3 replicates to measure tracking performance with each of the datasets. The "replicates" column label in Table 1 referred to the number of scans that were averaged to generate the image, not to the replicates used for estimating the tracking performance. To avoid confusion, we changed that label to "averaging".

      OPTIONAL: An imaging approach that allows using the current mounting strategy but could help with some of the tradeoffs is using a spinning-disk confocal microscope instead of a laser scanning one. If the authors have such a system available, it could be interesting to compare it with their current scanning confocal setup.

      Preliminary experiments that we carried out several years ago on a spinning disk confocal (with a 20x objective and the CSU-W1 spinning disk) were not very encouraging, and we therefore did not pursue this approach further. The main problem was bad image quality in deeper tissue layers.

      Minor comments:

      The presented imaging protocol was optimized for one laser wavelength only (561 nm) - this should be mentioned when discussing the technical limitations since animals tend to react differently to different wavelengths. Same settings might thus not be applicable for imaging a different fluorescent protein.

      In the second paragraph of the Results section, we explain that we perform the imaging at long wavelengths in order to minimise photodamage. It should be clear to the readers that changing the excitation wavelength will have an impact for long-term live imaging.

      For transferability, it would be useful if the intensity of laser illumination was measured and given in the Methods, instead of just a relative intensity setting from the imaging software. Similarly,more details of the imaging system should be provided where appropriate (e.g., detector specifications).

      We have now measured the intensity of the laser illumination and added this information in the Methods: "Laser power was typically set to 0.3% to 0.8%, which yields 0.51 to 1.37 µW at 561 nm (measured with a ThorLabs Microscope Slide Power Sensor, #S170C)."

      Regarding the imaging system and the detector, we provide all the information that is available to us on the microscope's technical sheets.

      The versions of analysis scripts associated with the manuscript should be uploaded to an online repository that permanently preserves the respective version.

      The scripts are now available on gitbub and online repositories. The relevant links are included in the revised manuscript.

    1. Welcome back, and in this lesson, I want to cover EC2 purchase options. EC2 purchase options are often referred to as launch types, but the official way to refer to them from AWS is purchase options, and so to be consistent, I think it's worth focusing on that name. So, EC2 purchase options. Let's step through all of the main types with a focus on the situations where you would and wouldn't use each of them. So, let's jump in and get started.

      The first purchase option that I want to talk about is the default, which is on demand, and on demand is simple to explain because it's entirely unremarkable in every way. It's the default because it's the average of anything with no specific pros or cons. Now, the way that it works, let's start with two EC2 hosts. Obviously, AWS has more, but it's easy to diagram with just the two. Now, instances of different sizes when launched using on demand will run on these EC2 hosts, and different AWS customers, they're all mixed up on the shared pool of EC2 hosts. So, even though instances are isolated and protected, different AWS customers launch instances which share the same pool of underlying hardware. This means that AWS can efficiently allocate resources, which is why the starting price for on demand in EC2 is so reasonable.

      In terms of the price, on demand uses per second billing, and this happens while instances are running, so you're paying for the resources that you consume. If you shut an instance down logically, you don't pay for those resources. Other associated services such as storage, which do consume resources regardless of if the instance is running or in a shutdown state, do charge constantly while those resources are being consumed. So, remember this: while instances only charge while in the running state, other associated resources may charge regardless. This is how on demand works, but what types of situations should it be used for? Well, it's the default purchase option, and so you should always start your evaluation process by considering on demand as your default. For all projects, assume on demand and move to something else if you can justify that alternative purchase option.

      With on demand, there are no interruptions. You launch an instance, you pay a per second charge, and barring any failures, the instance runs until you decide otherwise. You don't receive any capacity reservations with on demand. If AWS has a major failure and capacity is limited, the reserved purchase option receives highest provisioning priority on whatever capacity remains, and so if something is critical to your business, then you should consider an alternative rather than using on demand. So, on demand does not give you any priority access to remaining capacity if there are any major failures.

      On demand offers predictable pricing, it's defined upfront, you pay a constant price, but there are no specific discounts. This consistent pricing applies to the duration that you use instances. So, on demand is suitable for short term workloads. Anything which you just need to provision, perform a workload and then terminate is ideal for on demand. If you're unsure about the duration or the type of workload, then again, on demand is ideal. And then lastly, if you have short term or unknown workloads, which definitely can't tolerate any interruption, then on demand is the perfect purchase option.

      Next, let's talk about spot pricing, and spot is the cheapest way to get access to EC2 capacity. Let's look at how this works visually. Let's start with the same two EC2 hosts. On the left, we have A and on the right B. Then, on these EC2 hosts, we're currently running four EC2 instances, two per host. And let's assume for this example that all of these four instances are using the on demand purchase option. So, right now, with what you see on screen, the hosts are wasting capacity. Enough capacity for four additional instances on each host is being wasted. Spot pricing is AWS selling that spare capacity at a discounted rate.

      The way that it works is that within each region for each type of instance, there is a given amount of free capacity on EC2 hosts at any time. AWS tracks this and it publishes a price for how much it costs to use that capacity, and this price is the spot price. Now, you can offer to pay more than the spot price, but this is a maximum. You'll only ever pay the current spot price for the type of instance in the specific region where you provision services. So, let's say that there are two different customers who want to provision four instances each. The first customer sets a maximum price of four gold coins, and the other customer sets a maximum price of two gold coins. Now, obviously, AWS doesn't charge in gold coins, and there are more than two EC2 hosts, but it's just easier to represent it in this way.

      Now, because the current spot price set by AWS is only two gold coins, then both customers are only paying two gold coins a second for their instances. Even though customer one has offered to pay more, this is their maximum and they only ever pay the current spot price. So, let's say now that the free capacity is getting a little bit on the low side. AWS are getting nervous, they know that they need to free up capacity for the normal on demand instances, which they know are about to launch, and so they up the spot price to four gold coins. Now, customer one is fine because they've set a maximum price of four coins, and so now they start paying four coins because that's what the current spot price is. Customer two, they've set their maximum price at two coins, and so their instances are terminated.

      If the spot price goes above your maximum price, then any spot instances which you have are terminated. That's the critical part to understand because spot instances should not be viewed as reliable. At this point in our example, maybe another customer decides to launch four on demand instances. AWS sell that capacity at the normal on demand rates, which are higher, and no capacity is wasted. Spot pricing offers up to a 90% reduction versus the price of on demand, and there are some significant trade offs that you need to be aware of.

      You should never use the spot purchase option for workloads which can't tolerate interruptions. No matter how well you manage your maximum spot price, there are going to be periods when instances are terminated. If you run workloads where that's a problem, don't use spot. This means that workloads such as domain controllers, mail servers, traditional websites, or even flight control systems are all bad fits for spot instances. The types of scenarios which are good fits for using spot instances are things which are not time critical. Since the spot price changes throughout each day and throughout days of the week, if you're able to process workloads around this, then you can take advantage of the maximum cost benefits for using spot. Anything which can tolerate interruption and just rerun is ideal for spot instances.

      So, if you have highly parallel workloads which can be broken into hundreds or thousands of pieces, maybe scientific analysis, and if any parts which fail can be rerun, then spot is ideal. Anything which has a bursty capacity need, maybe media processing, image processing, any cost sensitive workloads which wouldn't be economical to do using normal on-demand instances, assuming they can tolerate interruption, these are ideal for spot. Anything which is stateless where the state of the user session is not stored on the instances themselves, meaning they can handle disruption, again, ideal for using spot. Don't use spot for anything that's long-term, anything that requires consistent, reliable compute, any business critical things, or things which cannot tolerate disruption. For those type of workloads, you should not use spot. It's an anti-pattern.

      OK, so this is the end of part one of this lesson. It was getting a little bit on the long side, and I wanted to give you the opportunity to take a small break, maybe stretch your legs or make a coffee. Now, part two will continue immediately from this point, so go ahead, complete this video, and when you're ready, I look forward to you joining me in part two.

    1. Welcome back. In this lesson, now that we've covered virtualization at a high level, I want to focus on the architecture of the EC2 product in more detail. EC2 is one of the services you'll use most often in AWS since one which features on a lot of exam questions, so let's get started.

      First thing, let's cover some key, high level architectural points about EC2. EC2 instances are virtual machines, so this means an operating system plus an allocation of resources such as virtual CPU, memory, potential some local storage, maybe some network storage, and access to other hardware such as networking and graphics processing units. EC2 instances run on EC2 hosts, and these are physical servers hardware which AWS manages. These hosts are either shared hosts or dedicated hosts.

      Shared hosts are hosts which are shared across different AWS customers, so you don't get any ownership of the hardware and you pay for the individual instances based on how long you run them for and what resources they have allocated. It's important to understand, though, that every customer when using shared hosts are isolated from each other, so there's no visibility of it being shared, there's no interaction between different customers, even if you're using the same shared host, and shared hosts are the default.

      With dedicated hosts, you're paying for the entire host, not the instances which run on it. It's yours, it's dedicated to your account, and you don't have to share it with any other customers. So if you pay for a dedicated host, you pay for that entire host, you don't pay for any instances running on it, and you don't share it with other AWS customers.

      EC2 is an availability zone resilient service. The reason for this is that hosts themselves run inside a single availability zone, so if that availability zone fails, the hosts inside that availability zone could fail, and any instances running on any hosts that fail will themselves fail. So as a solutions architect, you have to assume if an AZ fails, then at least some and probably all of the instances that are running inside that availability zone will also fail or be heavily impacted.

      Now let's look at how this looks visually. So this is a simplification of the US East One region, I've only got two AZs represented, AZA and AZB, and in AZA, I've represented that I've got two subnet, subnet A and subnet B. Now inside each of these availability zones is an EC2 host. Now these EC2 hosts, they run within a single AZ, I'm going to keep repeating that because it's critical for the exam and you're thinking about EC2 in the exam.

      Keep thinking about it being an AZ resilient service, if you see EC2 mentioned in an exam, see if you can locate the availability zone details because that might factor into the correct answer. Now EC2 hosts have some local hardware, logically CPU and memory, which you should be aware of, but also they have some local storage called the instance store. The instance store is temporary, if an instance is running on a particular host, depending on the type of the instance, it might be able to utilize this instance store, but if the instance moves off this host to another one, then that storage is lost.

      And they also have two types of networking, storage networking and data networking. When instances are provisioned into a specific subnet within a VPC, what's actually happening is that a primary elastic network interface is provisioned in a subnet, which maps to the physical hardware on the EC2 host. Remember, subnets are also in one specific availability zone. Instances can have multiple network interfaces, even in different subnets, as long as they're in the same availability zone. Everything about EC2 is focused around this architecture, the fact that it runs in one specific availability zone.

      Now EC2 can make use of remote storage so an EC2 host can connect to the elastic block store, which is known as EBS. The elastic block store service also runs inside a specific availability zone, so the service running inside availability zone A is different than the one running inside availability zone B, and you can't access them cross zone. EBS lets you allocate volumes and volumes of portions of persistent storage, and these can be allocated to instances in the same availability zone, so again, it's another area where the availability zone matters.

      What I'm trying to do by keeping repeating availability zone over and over again is to paint a picture of a service which is very reliant on the availability zone that it's running in. The host is in an availability zone, the network is per availability zone, the persistent storage is per availability zone, even availability zone in AWS experiences major issues, it impacts all of those things.

      Now an instance runs on a specific host, and if you restart the instance, it will stay on a host. Instances stay on a host until one of two things happen: firstly, the host fails or is taken down for maintenance for some reason by AWS; or secondly, if an instance is stopped and then started, and that's different than just restarting, so I'm focusing on an instance being stopped and then being started, so not just a restart. If either of those things happen, then an instance will be relocated to another host, but that host will also be in the same availability zone.

      Instances cannot natively move between availability zones. Everything about them, their hardware, networking and storage is locked inside one specific availability zone. Now there are ways you can do a migration, but it essentially means taking a copy of an instance and creating a brand new one in a different availability zone, and I'll be covering that later in this section where I talk about snapshots and AMIs.

      What you can never do is connect network interfaces or EBS storage located in one availability zone to an EC2 instance located in another. EC2 and EBS are both availability zone services, they're isolated, you cannot cross AZs with instances or with EBS volumes. Now instances running on an EC2 host share the resources of that host. And instances of different sizes can share a host, but generally instances of the same type and generation will occupy the same host.

      And I'll be talking in much more detail about instance types and sizes and generations in a lesson that's coming up very soon. But when you think about an EC2 host, think that it's from a certain year and includes a certain class of processor and a certain type of memory and a certain type and configuration of storage. And instances are also created with different generations, different versions that you apply specific types of CPU memory and storage, so it's logical that if you provision two different types of instances, they may well end up on two different types of hosts.

      So a host generally has lots of different instances from different customers of the same type, but different sizes. So before we finish up this lesson, I want to answer a question. That question is what's EC2 good for? So what types of situations might you use EC2 for? And this is equally valuable when you're evaluating a technical architecture while you're answering questions in the exam.

      So first, EC2 is great when you've got a traditional OS and application compute need, so if you've got an application that requires to be running on a certain operating system at a certain runtime with certain configuration, maybe your internal technical staff are used to that configuration, or maybe your vendor has a certain set of support requirements, EC2 is a perfect use case for this type of scenario.

      And it's also great for any long running compute needs. There are lots of other services inside AWS that provide compute services, but many of these have got runtime limits, so you can't leave these things running consistently for one year or two years. With EC2, it's designed for persistent, long running compute requirements. So if you have an application that runs constantly 24/7, 365, and needs to be running on a normal operating system, Linux or Windows, then EC2 is the default and obvious choice for this.

      If you have any applications, which is server style applications, so traditional applications they expect to be running in an operating system, waiting for incoming connections, then again, EC2 is a perfect service for this. And it's perfect for any applications or services that need burst requirements or steady state requirements. There are different types of EC2 instances, which are suitable for low levels of normal loads with occasional bursts, as well as steady state load.

      So again, if your application needs an operating system, and it's not bursty needs or consistent steady state load, then EC2 should be the first thing that you review. EC2 is also great for monolithic application stack, so if your monolithic application requires certain components, a stack, maybe a database, maybe some middleware, maybe other runtime based components, and especially if it needs to be running on a traditional operating system, EC2 should be the first thing that you look at.

      And EC2 is also ideally suited for migrating application workloads, so application workloads, which expect a traditional virtual machine or server style environment, or if you're performing disaster recovery. So if you have existing traditional systems which run on virtual servers, and you want to provision a disaster recovery environment, then EC2 is perfect for that.

      In general, EC2 tends to be the default compute service within AWS. There are lots of niche requirements that you might have, and if you do have those, there are other compute services such as the elastic container service or Lambda. But generally, if you've got traditional style workloads, or you're looking for something that's consistent, or if it requires an operating system, or if it's monolithic, or if you migrated into AWS, then EC2 is a great default first option.

      Now in this section of the course, I'm covering the basic architectural components of EC2, so I'm gonna be introducing the basics and let you get some exposure to it, and I'm gonna be teaching you all the things that you'll need for the exam.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      Examination of (a)periodic brain activity has gained particular interest in the last few years in the neuroscience fields relating to cognition, disorders, and brain states. Using large EEG/MEG datasets from younger and older adults, the current study provides compelling evidence that age-related differences in aperiodic EEG/MEG signals can be driven by cardiac rather than brain activity. Their findings have important implications for all future research that aims to assess aperiodic neural activity, suggesting control for the influence of cardiac signals is essential.

      We want to thank the editors for their assessment of our work and highlighting its importance for the understanding of aperiodic neural activity. Additionally, we want to thank the three present and four former reviewers (at a different journal) whose comments and ideas were critical in shaping this manuscript to its current form. We hope that this paper opens up many more questions that will guide us - as a field - to an improved understanding of how “cortical” and “cardiac” changes in aperiodic activity are linked and want to invite readers to engage with our work through eLife’s comment function.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The present study addresses whether physiological signals influence aperiodic brain activity with a focus on age-related changes. The authors report age effects on aperiodic cardiac activity derived from ECG in low and high-frequency ranges in roughly 2300 participants from four different sites. Slopes of the ECGs were associated with common heart variability measures, which, according to the authors, shows that ECG, even at higher frequencies, conveys meaningful information. Using temporal response functions on concurrent ECG and M/EEG time series, the authors demonstrate that cardiac activity is instantaneously reflected in neural recordings, even after applying ICA analysis to remove cardiac activity. This was more strongly the case for EEG than MEG data. Finally, spectral parameterization was done in large-scale resting-state MEG and ECG data in individuals between 18 and 88 years, and age effects were tested. A steepening of spectral slopes with age was observed particularly for ECG and, to a lesser extent, in cleaned MEG data in most frequency ranges and sensors investigated. The authors conclude that commonly observed age effects on neural aperiodic activity can mainly be explained by cardiac activity.

      Strengths:

      Compared to previous investigations, the authors demonstrate the effects of aging on the spectral slope in the currently largest MEG dataset with equal age distribution available. Their efforts of replicating observed effects in another large MEG dataset and considering potential confounding by ocular activity, head movements, or preprocessing methods are commendable and valuable to the community. This study also employs a wide range of fitting ranges and two commonly used algorithms for spectral parameterization of neural and cardiac activity, hence providing a comprehensive overview of the impact of methodological choices. Based on their findings, the authors give recommendations for the separation of physiological and neural sources of aperiodic activity.

      Weaknesses:

      While the aim of the study is well-motivated and analyses rigorously conducted, the overall structure of the manuscript, as it stands now, is partially misleading. Some of the described results are not well-embedded and lack discussion.

      We want to thank the reviewer for their comments focussed on improving the overall structure of the manuscript. We agree with their suggestions that some results could be more clearly contextualized and restructured the manuscript accordingly.

      Reviewer #2 (Public review):

      I previously reviewed this important and timely manuscript at a previous journal where, after two rounds of review, I recommended publication. Because eLife practices an open reviewing format, I will recapitulate some of my previous comments here, for the scientific record.

      In that previous review, I revealed my identity to help reassure the authors that I was doing my best to remain unbiased because I work in this area and some of the authors' results directly impact my prior research. I was genuinely excited to see the earlier preprint version of this paper when it first appeared. I get a lot of joy out of trying to - collectively, as a field - really understand the nature of our data, and I continue to commend the authors here for pushing at the sources of aperiodic activity!

      In their manuscript, Schmidt and colleagues provide a very compelling, convincing, thorough, and measured set of analyses. Previously I recommended that the push even further, and they added the current Figure 5 analysis of event-related changes in the ECG during working memory. In my opinion this result practically warrants a separate paper its own!

      The literature analysis is very clever, and expanded upon from any other prior version I've seen.

      In my previous review, the broadest, most high-level comment I wanted to make was that authors are correct. We (in my lab) have tried to be measured in our approach to talking about aperiodic analyses - including adopting measuring ECG when possible now - because there are so many sources of aperiodic activity: neural, ECG, respiration, skin conductance, muscle activity, electrode impedances, room noise, electronics noise, etc. The authors discuss this all very clearly, and I commend them on that. We, as a field, should move more toward a model where we can account for all of those sources of noise together. (This was less of an action item, and more of an inclusion of a comment for the record.)

      I also very much appreciate the authors' excellent commentary regarding the physiological effects that pharmacological challenges such as propofol and ketamine also have on non-neural (autonomic) functions such as ECG. Previously I also asked them to discuss the possibility that, while their manuscript focuses on aperiodic activity, it is possible that the wealth of literature regarding age-related changes in "oscillatory" activity might be driven partly by age-related changes in neural (or non-neural, ECG-related) changes in aperiodic activity. They have included a nice discussion on this, and I'm excited about the possibilities for cognitive neuroscience as we move more in this direction.

      Finally, I previously asked for recommendations on how to proceed. The authors convinced me that we should care about how the ECG might impact our field potential measures, but how do I, as a relative novice, proceed. They now include three strong recommendations at the end of their manuscript that I find to be very helpful.

      As was obvious from previous review, I consider this to be an important and impactful cautionary report, that is incredibly well supported by multiple thorough analyses. The authors have done an excellent job responding to all my previous comments and concerns and, in my estimation, those of the previous reviewers as well.

      We want to thank the reviewer for agreeing to review our manuscript again and for recapitulating on their previous comments and the progress the manuscript has made over the course of the last ~2 years. The reviewer's comments have been essential in shaping the manuscript into its current form. Their feedback has made the review process truly feel like a collaborative effort, focused on strengthening the manuscript and refining its conclusions and resulting recommendations.

      Reviewer #3 (Public review):

      Summary:

      Schmidt et al., aimed to provide an extremely comprehensive demonstration of the influence cardiac electromagnetic fields have on the relationship between age and the aperiodic slope measured from electroencephalographic (EEG) and magnetoencephalographic (MEG) data.

      Strengths:

      Schmidt et al., used a multiverse approach to show that the cardiac influence on this relationship is considerable, by testing a wide range of different analysis parameters (including extensive testing of different frequency ranges assessed to determine the aperiodic fit), algorithms (including different artifact reduction approaches and different aperiodic fitting algorithms), and multiple large datasets to provide conclusions that are robust to the vast majority of potential experimental variations.

      The study showed that across these different analytical variations, the cardiac contribution to aperiodic activity measured using EEG and MEG is considerable, and likely influences the relationship between aperiodic activity and age to a greater extent than the influence of neural activity.

      Their findings have significant implications for all future research that aims to assess aperiodic neural activity, suggesting control for the influence of cardiac fields is essential.

      We want to thank the reviewer for their thorough engagement with our work and the resultant substantive amount of great ideas both mentioned in the section of Weaknesses and Authors Recommendations below. Their suggestions have sparked many ideas in us on how to move forward in better separating peripheral- from neuro-physiological signals that are likely to greatly influence our future attempts to better extract both cardiac and muscle activity from M/EEG recordings. So we want to thank them for their input, time and effort!

      Weaknesses:

      Figure 4I: The regressions explained here seem to contain a very large number of potential predictors. Based on the way it is currently written, I'm assuming it includes all sensors for both the ECG component and ECG rejected conditions?

      I'm not sure about the logic of taking a complete signal, decomposing it with ICA to separate out the ECG and non-ECG signals, then including these latent contributions to the full signal back into the same regression model. It seems that there could be some circularity or redundancy in doing so. Can the authors provide a justification for why this is a valid approach?

      After observing significant effects both in the MEG<sub>ECG component</sub> and MEG<sub>ECG rejected</sub> conditions in similar frequency bands we wanted to understand whether or not these age-related changes are statistically independent. To test this we added both variables as predictors in a regression model (thereby accounting for the influence of the other in relation to age). The regression models we performed were therefore actually not very complex. They were built using only two predictors, namely the data (in a specific frequency range) averaged over channels on which we noticed significant effects in the ECG rejected and ECG components data respectively (Wilkinson notation: age ~ 1 + ECG rejected + ECG components). This was also described in the results section stating that: “To see if MEG<sub>ECG rejected</sub> and MEG<sub>ECG component</sub> explain unique variance in aging at frequency ranges where we noticed shared effects, we averaged the spectral slope across significant channels and calculated a multiple regression model with MEG<sub>ECG component</sub> and MEG<sub>ECG rejected</sub> as predictors for age (to statistically control for the effect of MEG<sub>ECG component</sub>s and MEG<sub>ECG rejected</sub> on age). This analysis was performed to understand whether the observed shared age-related effects (MEG<sub>ECG rejected</sub> and MEG<sub>ECG component</sub>) are in(dependent).”  

      We hope this explanation solves the previous misunderstanding.

      I'm not sure whether there is good evidence or rationale to support the statement in the discussion that the presence of the ECG signal in reference electrodes makes it more difficult to isolate independent ECG components. The ICA algorithm will still function to detect common voltage shifts from the ECG as statistically independent from other voltage shifts, even if they're spread across all electrodes due to the referencing montage. I would suggest there are other reasons why the ICA might lead to imperfect separation of the ECG component (assumption of the same number of source components as sensors, non-Gaussian assumption, assumption of independence of source activities).

      The inclusion of only 32 channels in the EEG data might also have reduced the performance of ICA, increasing the chances of imperfect component separation and the mixing of cardiac artifacts into the neural components, whereas the higher number of sensors in the MEG data would enable better component separation. This could explain the difference between EEG and MEG in the ability to clean the ECG artifact (and perhaps higher-density EEG recordings would not show the same issue).

      The reviewer is making a good argument suggesting that our initial assumption that the presence of cardiac activity on the reference electrode influences the performance of the ICA may be wrong. After rereading and rethinking upon the matter we think that the reviewer is correct and that their assumptions for why the ECG signal was not so easily separable from our EEG recordings are more plausible and better grounded in the literature than our initial suggestion. We therefore now highlight their view as a main reason for why the ECG rejection was more challenging in EEG data. However, we also note that understanding the exact reason probably ends up being an empirical question that demands further research stating that:

      “Difficulties in removing ECG related components from EEG signals via ICA might be attributable to various reasons such as the number of available sensors or assumptions related to the non-gaussianity of the underlying sources. Further understanding of this matter is highly important given that ICA is the most widely used procedure to separate neural from peripheral physiological sources. ”

      In addition to the inability to effectively clean the ECG artifact from EEG data, ICA and other component subtraction methods have also all been shown to distort neural activity in periods that aren't affected by the artifact due to the ubiquitous issue of imperfect component separation (https://doi.org/10.1101/2024.06.06.597688). As such, component subtraction-based (as well as regression-based) removal of the cardiac artifact might also distort the neural contributions to the aperiodic signal, so even methods to adequately address the cardiac artifact might not solve the problem explained in the study. This poses an additional potential confound to the "M/EEG without ECG" conditions.

      The reviewer is correct in stating that, if an “artifactual” signal is not always present but appears and disappears (like e.g. eye-blinks) neural activity may be distorted in periods where the “artifactual” signal is absent. However, while this plausibly presents a problem for ocular activity, there is no obvious reason to believe that this applies to cardiac activity. While the ECG signal is non-stationary in nature, it is remarkably more stable than eye-movements in the healthy populations we analyzed (especially at rest). Therefore, the presence of the cardiac “artifact” was consistently present across the entirety of the MEG recordings we visually inspected.

      Literature Analysis, Page 23: was there a method applied to address studies that report reducing artifacts in general, but are not specific to a single type of artifact? For example, there are automated methods for cleaning EEG data that use ICLabel (a machine learning algorithm) to delete "artifact" components. Within these studies, the cardiac artifact will not be mentioned specifically, but is included under "artifacts".

      The literature analysis was largely performed automatically and solely focussed on ECG related activity as described in the methods section under Literature Analysis, if no ECG related terms were used in the context of artifact rejection a study was flagged as not having removed cardiac activity. This could have been indeed better highlighted by us and we apologize for the oversight on our behalf. We now additionally link to these details stating that:

      “However, an analysis of openly accessible M/EEG articles (N<sub>Articles</sub>=279; see Methods - Literature Analysis for further details) that investigate aperiodic activity revealed that only 17.1% of EEG studies explicitly mention that cardiac activity was removed and only 16.5% measure ECG (45.9% of MEG studies removed cardiac activity and 31.1% of MEG studies mention that ECG was measured; see Figure 1EF).”

      The reviewer makes a fair point that there is some uncertainty here and our results probably present a lower bound of ECG handling in M/EEG research as, when I manually rechecked the studies that were not initially flagged in studies it was often solely mentioned that “artifacts” were rejected. However, this information seemed too ambiguous to assume that cardiac activity was in fact accounted for. However, again this could have been mentioned more clearly in writing and we apologize for this oversight. Now this is included as part of the methods section Literature Analysis stating that:

      “All valid word contexts were then manually inspected by scanning the respective word context to ensure that the removal of “artifacts” was related specifically to cardiac and not e.g. ocular activity or the rejection of artifacts in general (without specifying which “artifactual” source was rejected in which case the manuscript was marked as invalid). This means that the results of our literature analysis likely present a lower bound for the rejection of cardiac activity in the M/EEG literature investigating aperiodic activity.”

      Statistical inferences, page 23: as far as I can tell, no methods to control for multiple comparisons were implemented. Many of the statistical comparisons were not independent (or even overlapped with similar analyses in the full analysis space to a large extent), so I wouldn't expect strong multiple comparison controls. But addressing this point to some extent would be useful (or clarifying how it has already been addressed if I've missed something).

      In the present study we tried to minimize the risk of type 1 errors by several means, such as A) weakly informative priors, B) robust regression models and C) by specifying a region of practical equivalence (ROPE, see Methods Statistical Inference for further Information) to define meaningful effects.

      Weakly informative priors can lower the risk of type 1 errors arising from multiple testing by shrinking parameter estimates towards zero (see e.g. Lemoine, 2019). Robust regression models use a Student T distribution to describe the distribution of the data. This distribution features heavier tails, meaning it allocates more probability to extreme values, which in turn minimizes the influence of outliers. The ROPE criterion ensures that only effects exceeding a negligible size are considered meaningful, representing a strict and conservative approach to interpreting our findings (see Kruschke 2018, Cohen, 1988).

      Furthermore, and more generally we do not selectively report “significant” effects in the situations in which multiple analyses were conducted on the same family of data (e.g. Figure 2 & 4). Instead we provide joint inference across several plausible analysis options (akin to a specification curve analysis, Simonsohn, Simmons & Nelson 2020) to provide other researchers with an overview of how different analysis choices impact the association between cardiac and neural aperiodic activity.

      Lemoine, N. P. (2019). Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos, 128(7), 912-928.

      Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2020). Specification curve analysis. Nature Human Behaviour, 4(11), 1208-1214.

      Methods:

      Applying ICA components from 1Hz high pass filtered data back to the 0.1Hz filtered data leads to worse artifact cleaning performance, as the contribution of the artifact in the 0.1Hz to 1Hz frequency band is not addressed (see Bailey, N. W., Hill, A. T., Biabani, M., Murphy, O. W., Rogasch, N. C., McQueen, B., ... & Fitzgerald, P. B. (2023). RELAX part 2: A fully automated EEG data cleaning algorithm that is applicable to Event-Related-Potentials. Clinical Neurophysiology, result reported in the supplementary materials). This might explain some of the lower frequency slope results (which include a lower frequency limit <1Hz) in the EEG data - the EEG cleaning method is just not addressing the cardiac artifact in that frequency range (although it certainly wouldn't explain all of the results).

      We want to thank the reviewer for suggesting this interesting paper, showing that lower high-pass filters may be preferable to the more commonly used >1Hz high-pass filters for detection of ICA components that largely contain peripheral physiological activity. However, the results presented by Bailey et al. contradict the more commonly reported findings by other researchers that >1Hz high-pass filter is actually preferable (e.g. Winkler et al. 2015; Dimingen, 2020 or Klug & Gramann, 2021) and recommendations in widely used packages for M/EEG analysis (e.g. https://mne.tools/1.8/generated/mne.preprocessing.ICA.html). Yet, the fact that there seems to be a discrepancy suggests that further research is needed to better understand which type of high-pass filtering is preferable in which situation. Furthermore, it is notable that all the findings for high-pass filtering in ICA component detection and removal that we are aware of relate to ocular activity. Given that ocular and cardiac activity have very different temporal and spectral patterns it is probably worth further investigating whether the classic 1Hz high-pass filter is really also the best option for the detection and removal of cardiac activity. However, in our opinion this requires a dedicated investigation on its own..

      We therefore highlight this now in our manuscript stating that:

      “Additionally, it is worth noting that the effectiveness of an ICA crucially depends on the quality of the extracted components(63,64) and even widely suggested settings e.g. high-pass filtering at 1Hz before fitting an ICA may not be universally applicable (see supplementary material of (64)).

      Winkler, S. Debener, K. -R. Müller and M. Tangermann, "On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP," 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 2015, pp. 4101-4105, doi: 10.1109/EMBC.2015.7319296.

      Dimigen, O. (2020). Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. NeuroImage, 207, 116117.

      Klug, M., & Gramann, K. (2021). Identifying key factors for improving ICA‐based decomposition of EEG data in mobile and stationary experiments. European Journal of Neuroscience, 54(12), 8406-8420.

      It looks like no methods were implemented to address muscle artifacts. These can affect the slope of EEG activity at higher frequencies. Perhaps the Riemannian Potato addressed these artifacts, but I suspect it wouldn't eliminate all muscle activity. As such, I would be concerned that remaining muscle artifacts affected some of the results, particularly those that included high frequency ranges in the aperiodic estimate. Perhaps if muscle activity were left in the EEG data, it could have disrupted the ability to detect a relationship between age and 1/f slope in a way that didn't disrupt the same relationship in the cardiac data (although I suspect it wouldn't reverse the overall conclusions given the number of converging results including in lower frequency bands). Is there a quick validity analysis the authors can implement to confirm muscle artifacts haven't negatively affected their results?

      I note that an analysis of head movement in the MEG is provided on page 32, but it would be more robust to show that removing ICA components reflecting muscle doesn't change the results. The results/conclusions of the following study might be useful for objectively detecting probable muscle artifact components: Fitzgibbon, S. P., DeLosAngeles, D., Lewis, T. W., Powers, D. M. W., Grummett, T. S., Whitham, E. M., ... & Pope, K. J. (2016). Automatic determination of EMG-contaminated components and validation of independent component analysis using EEG during pharmacologic paralysis. Clinical neurophysiology, 127(3), 1781-1793.

      We thank the reviewer for their suggestion. Muscle activity can indeed be a potential concern, for the estimation of the spectral slope. This is precisely why we used head movements (as also noted by the reviewer) as a proxy for muscle activity. We also agree with the reviewer that this is not a perfect estimate. Additionally, also the riemannian potato would probably only capture epochs that contain transient, but not persistent patterns of muscle activity.

      The paper recommended by the reviewer contains a clever approach of using the steepness of the spectral slope (or lack thereof) as an indicator whether or not an independent component (IC) is driven by muscle activity. In order to determine an optimal threshold Fitzgibbon et al. compared paralyzed to temporarily non paralyzed subjects. They determined an expected “EMG-free” threshold for their spectral slope on paralyzed subjects and used this as a benchmark to detect IC’s that were contaminated by muscle activity in non paralyzed subjects.

      This is a great idea, but unfortunately would go way beyond what we are able to sensibly estimate with our data for the following reasons. The authors estimated their optimal threshold on paralyzed subjects for EEG data and show that this is a feasible threshold to be applied across different recordings. So for EEG data it might be feasible, at least as a first shot, to use their threshold on our data. However, we are measuring MEG and as alluded to in our discussion section under “Differences in aperiodic activity between magnetic and electric field recordings” the spectral slope differs greatly between MEG and EEG recordings for non-trivial reasons. Furthermore, the spectral slope even seems to also differ across different MEG devices. We noticed this when we initially tried to pool the data recorded in Salzburg with the Cambridge dataset. This means we would need to do a complete validation of this procedure for the MEG data recorded in Cambridge and in Salzburg, which is not feasible considering that we A) don’t have direct access to one of the recording sites and B) would even if we had access face substantial hurdles to get ethical approval for the experiment performed by Fitzgibbon et al..

      However, we think the approach brought forward by Fitzgibbon and colleagues is a clever way to remove muscle activity from EEG recordings, whenever EMG was not directly recorded. We therefore suggested in the Discussion section that ideally also EMG should be recorded stating that:

      “It is worth noting that, apart from cardiac activity, muscle activity can also be captured in (non-)invasive recordings and may drastically influence measures of the spectral slope(72). To ensure that persistent muscle activity does not bias our results we used changes in head movement velocity as a control analysis (see Supplementary Figure S9). However, it should be noted that this is only a proxy for the presence of persistent muscle activity. Ideally, studies investigating aperiodic activity should also be complemented by measurements of EMG. Whenever such measurements are not available creative approaches that use the steepness of the spectral slope (or the lack thereof) as an indicator to detect whether or not e.g. an independent component is driven by muscle activity are promising(72,73). However, these approaches may require further validation to determine how well myographic aperiodic thresholds are transferable across the wide variety of different M/EEG devices.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) As outlined above, I recommend rephrasing the last section of the introduction to briefly summarize/introduce all main analysis steps undertaken in the study and why these were done (for example, it is only mentioned that the Cam-CAN dataset was used to study the impact of cardiac on MEG activity although the author used a variety of different datasets). Similarly, I am missing an overview of all main findings in the context of the study goals in the discussion. I believe clarifying the structure of the paper would not only provide a red thread to the reader but also highlight the efforts/strength of the study as described above.

      This is a good call! As suggested by the reviewer we now try to give a clearer overview of what was investigated why. We do that both at the end of the introduction stating that: “Using the publicly available Cam-CAN dataset(28,29), we find that the aperiodic signal measured using M/EEG originates from multiple physiological sources. In particular, significant portions of age-related changes in aperiodic activity –normally attributed to neural processes– can be better explained by cardiac activity. This observation holds across a wide range of processing options and control analyses (see Supplementary S1), and was replicable on a separate MEG dataset. However, the extent to which cardiac activity accounts for age-related changes in aperiodic activity varies with the investigated frequency range and recording site. Importantly, in some frequency ranges and sensor locations, age-related changes in neural aperiodic activity still prevail. But does the influence of cardiac activity on the aperiodic spectrum extend beyond age? In a preliminary analysis, we demonstrate that working memory load modulates the aperiodic spectrum of “pure” ECG recordings. The direction of this working memory effect mirrors previous findings on EEG data(5) suggesting that the impact of cardiac activity goes well beyond aging. In sum, our results highlight the complexity of aperiodic activity while cautioning against interpreting it as solely “neural“ without considering physiological influences.”

      and at the beginning of the discussion section:

      “Difficulties in removing ECG related components from EEG signals via ICA might be attributable to various reasons such as the number of available sensors or assumptions related to the non-gaussianity of the underlying sources. Further understanding of this matter is highly important given that ICA is the most widely used procedure to separate neural from peripheral physiological sources (see Figure 1EF). Additionally, it is worth noting that the effectiveness of an ICA crucially depends on the quality of the extracted components(63,64) and even widely suggested settings e.g. high-pass filtering at 1Hz before fitting an ICA may not be universally applicable (see supplementary material of (64)). “

      (2) I found it interesting that the spectral slopes of ECG activity at higher frequency ranges (> 10 Hz) seem mostly related to HRV measures such as fractal and time domain indices and less so with frequency-domain indices. Do the authors have an explanation for why this is the case? Also, the analysis of the HRV measures and their association with aperiodic ECG activity is not explained in any of the method sections.

      We apologize for the oversight in not mentioning the HRV analysis in more detail in our methods section. We added a subsection to the Methods section entitled ECG Processing - Heart rate variability analysis to further describe the HRV analyses.

      “ECG Processing - Heart rate variability analysis

      Heart rate variability (HRV) was computed using the NeuroKit2 toolbox, a high level tool for the analysis of physiological signals. First, the raw electrocardiogram (ECG) data were preprocessed, by highpass filtering the signal at 0.5Hz using an infinite impulse response (IIR) butterworth filter(order=5) and by smoothing the signal with a moving average kernel with the width of one period of 50Hz to remove the powerline noise (default settings of neurokit.ecg.ecg_clean). Afterwards, QRS complexes were detected based on the steepness of the absolute gradient of the ECG signal. Subsequently, R-Peaks were detected as local maxima in the QRS complexes (default settings of neurokit.ecg.ecg_peaks; see (98) for a validation of the algorithm). From the cleaned R-R intervals, 90 HRV indices were derived, encompassing time-domain, frequency-domain, and non-linear measures. Time-domain indices included standard metrics such as the mean and standard deviation of the normalized R-R intervals , the root mean square of successive differences, and other statistical descriptors of interbeat interval variability. Frequency-domain analyses were performed using power spectral density estimation, yielding for instance low frequency (0.04-0.15Hz) and high frequency (0.15-0.4Hz) power components. Additionally, non-linear dynamics were characterized through measures such as sample entropy, detrended fluctuation analysis and various Poincaré plot descriptors. All these measures were then related to the slopes of the low frequency (0.25 – 20 Hz) and high frequency (10 – 145 Hz) aperiodic spectrum of the raw ECG.”

      With regards to association of the ECG’s spectral slopes at high frequencies and frequency domain indices of heart rate variability. Common frequency domain indices of heart rate variability fall in the range of 0.01-.4Hz. Which probably explains why we didn’t notice any association at higher frequency ranges (>10Hz).

      This is also stated in the related part of the results section:

      “In the higher frequency ranges (10 - 145 Hz) spectral slopes were most consistently related to fractal and time domain indices of heart rate variability, but not so much to frequency-domain indices assessing spectral power in frequency ranges < 0.4 Hz.”

      (3) Related to the previous point - what is being reflected in the ECG at higher frequency ranges, with regard to biological mechanisms? Results are being mentioned, but not further discussed. However, this point seems crucial because the age effects across the four datasets differ between low and high-frequency slope limits (Figure 2C).

      This is a great question that definitely also requires further attention and investigation in general (see also Tereshchenko & Josephson, 2015). We investigated the change of the slope across frequency ranges that are typically captured in common ECG setups for adults (0.05 - 150Hz, Tereshchenko & Josephson, 2015; Kusayama, Wong, Liu et al. 2020). While most of the physiological significant spectral information of an ECG recording rests between 1-50Hz (Clifford & Azuaje, 2006), meaningful information can be extracted at much higher frequencies. For instance, ventricular late potentials have a broader frequency band (~40-250Hz) that falls straight in our spectral analysis window. However, that’s not all, as further meaningful information can be extracted at even higher frequencies (>100Hz). Yet, the exact physiological mechanisms underlying so-called high-frequency QRS remain unclear (HF-QRS; see Tereshchenko & Josephson, 2015; Qiu et al. 2024 for a review discussing possible mechanisms). Yet, at the same time the HF-QRS seems to be highly informative for the early detection of myocardial ischemia and other cardiac abnormalities that may not yet be evident in the standard frequency range (Schlegel et al. 2004; Qiu et al. 2024). All optimism aside, it is also worth noting that ECG recordings at higher frequencies can capture skeletal muscle activity with an overlapping frequency range up to 400Hz (Kusayama, Wong, Liu et al. 2020). We highlight all of this now when introducing this analysis in the results sections as outstanding research question stating that:

      “However, substantially less is known about aperiodic activity above 0.4Hz in the ECG. Yet, common ECG setups for adults capture activity at a broad bandwidth of 0.05 - 150Hz(33,34).

      Importantly, a lot of the physiological meaningful spectral information rests between 1-50Hz(35), similarly to M/EEG recordings. Furthermore, meaningful information can be extracted at much higher frequencies. For instance, ventricular late potentials have a broader frequency band (~40-250Hz(35)). However, that’s not all, as further meaningful information can be extracted at even higher frequencies (>100Hz). For instance, the so-called high-frequency QRS seems to be highly informative for the early detection of myocardial ischemia and other cardiac abnormalities that may not yet be evident in the standard frequency range(36,37). Yet, the exact physiological mechanisms underlying the high-frequency QRS remain unclear (see (37) for a review discussing possible mechanisms). ”

      Tereshchenko, L. G., & Josephson, M. E. (2015). Frequency content and characteristics of ventricular conduction. Journal of electrocardiology, 48(6), 933-937.

      Kusayama, T., Wong, J., Liu, X. et al. Simultaneous noninvasive recording of electrocardiogram and skin sympathetic nerve activity (neuECG). Nat Protoc 15, 1853–1877 (2020). https://doi.org/10.1038/s41596-020-0316-6

      Clifford, G. D., & Azuaje, F. (2006). Advanced methods and tools for ECG data analysis (Vol. 10). P. McSharry (Ed.). Boston: Artech house.

      Qiu, S., Liu, T., Zhan, Z., Li, X., Liu, X., Xin, X., ... & Xiu, J. (2024). Revisiting the diagnostic and prognostic significance of high-frequency QRS analysis in cardiovascular diseases: a comprehensive review. Postgraduate Medical Journal, qgae064.

      Schlegel, T. T., Kulecz, W. B., DePalma, J. L., Feiveson, A. H., Wilson, J. S., Rahman, M. A., & Bungo, M. W. (2004, March). Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. In Mayo Clinic Proceedings (Vol. 79, No. 3, pp. 339-350). Elsevier.

      (4) Page 10: At first glance, it is not quite clear what is meant by "processing option" in the text. Please clarify.

      Thank you for catching this! Upon re-reading this is indeed a bit oblivious. We now swapped “processing options” with “slope fits” to make it clearer that we are talking about the percentage of effects based on the different slope fits.

      (5) The authors mention previous findings on age effects on neural 1/f activity (References Nr 5,8,27,39) that seem contrary to their own findings such as e.g., the mostly steepening of the slopes with age. Also, the authors discuss thoroughly why spectral slopes derived from MEG signals may differ from EEG signals. I encourage the authors to have a closer look at these studies and elaborate a bit more on why these studies differ in their conclusions on the age effects. For example, Tröndle et al. (2022, Ref. 39) investigated neural activity in children and young adults, hence, focused on brain maturation, whereas the CamCAN set only considers the adult lifespan. In a similar vein, others report age effects on 1/f activity in much smaller samples as reported here (e.g., Voytek et al., 2015).

      I believe taking these points into account by briefly discussing them, would strengthen the authors' claims and provide a more fine-grained perspective on aging effects on 1/f.

      The reviewer is making a very important point. As age-related differences in (neuro-)physiological activity are not necessarily strictly comparable and entirely linear across different age-cohorts (e.g. age-related changes in alpha center frequency). We therefore, added the suggested discussion points to the discussion section.

      “Differences in electric and magnetic field recordings aside, aperiodic activity may not change strictly linearly as we are ageing and studies looking at younger age groups (e.g. <22; (44) may capture different aspects of aging (e.g. brain maturation), than those looking at older subjects (>18 years; our sample). A recent report even shows some first evidence of an interesting putatively non-linear relationship with age in the sensorimotor cortex for resting recordings(59)”

      (6) The analysis of the working memory paradigm as described in the outlook-section of the discussion comes as a bit of a surprise as it has not been introduced before. If the authors want to convey with this study that, in general, aperiodic neural activity could be influenced by aperiodic cardiac activity, I recommend introducing this analysis and the results earlier in the manuscript than only in the discussion to strengthen their message.

      The reviewer is correct. This analysis really comes a bit out of the blue. However, this was also exactly the intention for placing this analysis in the discussion. As the reviewer correctly noted, the aim was to suggest “that, in general, aperiodic neural activity could be influenced by aperiodic cardiac activity”. We placed this outlook directly after the discussion of “(neuro-)physiological origins of aperiodic activity”, where we highlight the potential challenges of interpreting drug induced changes to M/EEG recordings. So the aim was to get the reader to think about whether age is the only feature affected by cardiac activity and then directly present some evidence that this might go beyond age.

      However, we have been rethinking this approach based on the reviewers comments and moved that paragraph to the end of the results section accordingly and introduce it already at the end of the introduction stating that:

      “But does the influence of cardiac activity on the aperiodic spectrum extend beyond age? In a preliminary analysis, we demonstrate that working memory load modulates the aperiodic spectrum of “pure” ECG recordings. The direction of this working memory effect mirrors previous findings on EEG data(5) suggesting that the impact of cardiac activity goes well beyond aging.”

      (7) The font in Figure 2 is a bit hard to read (especially in D). I recommend increasing the font sizes where necessary for better readability.

      We agree with the Reviewer and increased the font sizes accordingly.

      (8) Text in the discussion: Figure 3B on page 10 => shouldn't it be Figure 4?

      Thank you for catching this oversight. We have now corrected this mistake.

      (9) In the third section on page 10, the Figure labels seem to be confused. For example, Figure 4 E is supposed to show "steepening effects", which should be Figure 4B I believe.

      Please check the figure labels in this section to avoid confusion.

      Thank you for catching this oversight. We have now corrected this mistake.

      (10) Figure Legend 4 I), please check the figure labels in the text

      Thank you for catching this oversight. We have now corrected this mistake.

      Reviewer #3 (Recommendations for the authors):

      I have a number of suggestions for improving the manuscript, which I have divided by section in the following:

      ABSTRACT:

      I would suggest re-writing the first sentences to make it easier to read for non-expert readers: "The power of electrophysiologically measured cortical activity decays with an approximately 1/fX function. The slope of this decay (i.e. the spectral exponent, X) is modulated..."

      Thank you for the suggestion. We adjusted the sentence as suggested to make it easier for less technical readers to understand that “X” refers to the exponent.

      Including the age range that was studied in the abstract could be informative.

      Done as suggested.

      As an optional recommendation, I think it would increase the impact of the article if the authors note in the abstract that the current most commonly applied cardiac artifact reduction approaches don't resolve the issue for EEG data, likely due to an imperfect ability to separate the cardiac artifact from the neural activity with independent component analysis. This would highlight to the reader that they can't just expect to address these concerns by cleaning their data with typical cleaning methods.

      I think it would also be useful to convey in the abstract just how comprehensive the included analyses were (in terms of artifact reduction methods tested, different aperiodic algorithms and frequency ranges, and both MEG and EEG). Doing so would let the reader know just how robust the conclusions are likely to be.

      This is a brilliant idea! As suggested we added a sentence highlighting that simply performing an ICA may not be sufficient to separate cardiac contributions to M/EEG recordings and refer to the comprehensiveness of the performed analyses.

      INTRODUCTION:

      I would suggest re-writing the following sentence for readability: "In the past, aperiodic neural activity, other than periodic neural activity (local peaks that rise above the "power-law" distribution), was often treated as noise and simply removed from the signal"

      To something like: "In the past, aperiodic neural activity was often treated as noise and simply removed from the signal e.g. via pre-whitening, so that analyses could focus on periodic neural activity (local peaks that rise above the "power-law" distribution, which are typically thought to reflect neural oscillations).

      We are happy to follow that suggestion.

      Page 3: please provide the number of articles that were included in the examination of the percentage that remove cardiac activity, and note whether the included articles could be considered a comprehensive or nearly comprehensive list, or just a representative sample.

      We stated the exact number of articles in the methods section under Literature Analysis. However, we added it to the Introduction on page 3 as suggested by the reviewer. The selection of articles was done automatically, dependent on a list of pre-specified terms and exclusively focussed on articles that had terms related to aperiodic activity in their title (see Literature Analysis). Therefore, I would personally be hesitant in calling it a comprehensive or nearly comprehensive list of the general M/EEG literature as the analysis of aperiodic activity is still relatively niche compared to the more commonly investigated evoked potentials or oscillations. I think whether or not a reader perceives our analysis as comprehensive should be up to them to decide and does not reflect something I want to impose on them. This is exacerbated by the fact that the analysis of neural aperiodic activity has rapidly gained traction over the last years (see Figure 1D orange) and the literature analysis was performed almost 2 years ago and therefore, in my eyes, only represents a glimpse in the rapidly evolving field related to the analysis of aperiodic activity.

      Figure 1E-F: It's not completely clear that the "Cleaning Methods" part of the figure indicates just methods to clean the cardiac artifact (rather than any artifact). It also seems that ~40% of EEG studies do not apply any cleaning methods even from within the studies that do clean the cardiac artifact (if I've read the details correctly). This seems unlikely. Perhaps there should be a bar for "other methods", or "unspecified"? Having said that, I'm quite familiar with the EEG artifact reduction literature, and I would be very surprised if ~40% of studies cleaned the cardiac artifact using a different method to the methods listed in the bar graph, so I'm wondering if I've misunderstood the figure, or whether the data capture is incomplete / inaccurate (even though the conclusion that ICA is the most common method is almost certainly accurate).

      The cleaning is indeed only focussed on cardiac activity specifically. This was however also mentioned in the caption of Figure 1: “We were further interested in determining which artifact rejection approaches were most commonly used to remove cardiac activity, such as independent component analysis (ICA(22)), singular value decomposition (SVD(23)), signal space separation (SSS(24)), signal space projections (SSP(25)) and denoising source separation (DSS(26)).” and in the methods section under Literature Analysis. However, we adjusted figure 1EF to make it more obvious that the described cleaning methods were only related to the ECG. Aside from using blind source separation techniques such as ICA a good amount of studies mentioned that they cleaned their data based on visual inspection (which was not further considered). Furthermore, it has to be noted that only studies were marked as having separated cardiac from neural activity, when this was mentioned explicitly.

      RESULTS:

      Page 6: I would delete the "from a neurophysiological perspective" clause, which makes the sentence more difficult to read and isn't so accurate (frequencies 13-25Hz would probably more commonly be considered mid-range rather than low or high). Additionally, both frequency ranges include 15Hz, but the next sentence states that the ranges were selected to avoid the knee at 15Hz, which seems to be a contradiction. Could the authors explain in more detail how the split addresses the 15Hz knee?

      We removed the “from a neurophysiological perspective” clause as suggested. With regards to the “knee” at ~15Hz I would like to defer the reviewer to Supplementary Figure S1. The Knee Frequency varies substantially across subjects so splitting the data at only 1 exact Frequency did not seem appropriate. Additionally, we found only spurious significant age-related variations in Knee Frequency (i.e. only one out of the 4 datasets; not shown).

      Furthermore, we wanted to better connect our findings to our MEG results in Figure 4 and also give the readers a holistic overview of how different frequency ranges in the aperiodic ECG would be affected by age. So to fulfill all of these objectives we decided to fit slopes with respective upper/lower bounds around a range of 5Hz above and below the average 15Hz Knee Frequency across datasets.

      The later parts of this same paragraph refer to a vast amount of different frequency ranges, but only the "low" and "high" frequency ranges were previously mentioned. Perhaps the explanation could be expanded to note that multiple lower and upper bounds were tested within each of these low and high frequency windows?

      This is a good catch we adjusted the sentence as suggested. We now write: “.. slopes were fitted individually to each subject's power spectrum in several lower (0.25 – 20 Hz) and higher (10-145 Hz) frequency ranges.”

      The following two sentences seem to contradict each other: "Overall, spectral slopes in lower frequency ranges were more consistently related to heart rate variability indices(> 39.4% percent of all investigated indices)" and: "In the lower frequency range (0.25 - 20Hz), spectral slopes were consistently related to most measures of heart rate variability; i.e. significant effects were detected in all 4 datasets (see Figure 2D)." (39.4% is not "most").

      The reviewer is correct in stating that 39.4% is not most. However, the 39.4% is the lowest bound and only refers to 1 dataset. In the other 3 datasets the percentage of effects was above 64% which can be categorized as “most” i.e. above 50%. We agree that this was a bit ambiguous in the sentence so we added the other percentages as well as a reference to Figure 2D to make this point clearer.

      Figure 2D: it isn't clear what the percentages in the semi-circles reflect, nor why some semi-circles are more full circles while others are only quarter circles.

      The percentages in the semi-circles reflect the amount of effects (marked in red) and null effects (marked in green) per dataset, when viewed as average across the different measures of HRV. Sometimes less effects were found for some frequency ranges resulting in quarters instead of semi circles.

      Page 8: I think the authors could make it more clear that one of the conditions they were testing was the ECG component of the EEG data (extracted by ICA then projected back into the scalp space for the temporal response function analysis).

      As suggested by the reviewer we adjusted our wording and replaced the arguably a bit ambiguous “... projected back separately” with “... projected back into the sensor space”. We thank the reviewer for this recommendation, as it does indeed make it easier to understand the procedure.

      “After pre-processing (see Methods) the data was split in three conditions using an ICA(22). Independent components that were correlated (at r > 0.4; see Methods: MEG/EEG Processing - pre-processing) with the ECG electrode were either not removed from the data (Figure 3ABCD - blue), removed from the data (Figure 2ABCD - orange) or projected back into the sensor space (Figure 3ABCD - green).”

      Figure 4A: standardized beta coefficients for the relationship between age and spectral slope could be noted to provide improved clarity (if I'm correct in assuming that is what they reflect).

      This was indeed shown in Figure 4A and noted in the color bar as “average beta (standardized)”. We do not specifically highlight this in the text, because the exact coefficients would depend on both on the analyzed frequency range and the selected electrodes.

      Figure 4I: The regressions explained at this point seems to contain a very large number of potential predictors, as I'm assuming it includes all sensors for both the ECG component and ECG rejected conditions? (if that is not the case, it could be explained in greater detail). I'm also not sure about the logic of taking a complete signal, decomposing it with ICA to separate out the ECG and non-ECG signals, then including them back into the same regression model. It seems that there could be some circularity or redundancy in doing so. However, I'm not confident that this is an issue, so would appreciate the authors explaining why it this is a valid approach (if that is the case).

      After observing significant effects both in the MEG<sub>ECG component</sub> and MEG<sub>ECG rejected</sub> conditions in similar frequency bands we wanted to understand whether or not these age-related changes are statistically independent. To test this we added both variables as predictors in a regression model (thereby accounting for the influence of the other in relation to age). The regression models we performed were therefore actually not very complex. They were built using only two predictors, namely the data (in a specific frequency range) averaged over channels on which we noticed significant effects in the ECG rejected and ECG components data respectively (Wilkinson notation: age ~ 1 + ECG rejected + ECG components). This was also described in the results section stating that: “To see if MEG<sub>ECG rejected</sub> and MEG<sub>ECG component</sub> explain unique variance in aging at frequency ranges where we noticed shared effects, we averaged the spectral slope across significant channels and calculated a multiple regression model with MEG<sub>ECG component</sub> and MEG<sub>ECG rejected</sub> as predictors for age (to statistically control for the effect of MEG<sub>ECG component</sub>s and MEG<sub>ECG rejected</sub> on age). This analysis was performed to understand whether the observed shared age-related effects (MEG<sub>ECG rejected</sub> and MEG<sub>ECG component</sub>) are in(dependent).”  

      We hope this explanation solves the previous misunderstanding.

      The explanation of results for relationships between spectral slopes and aging reported in Figure 4 refers to clusters of effects, but the statistical inference methods section doesn't explain how these clusters were determined.

      The wording of “cluster” was used to describe a “category” of effects e.g. null effects. We changed the wording from “cluster” to “category” to make this clearer stating now that: “This analysis, which is depicted in Figure 4, shows that over a broad amount of individual fitting ranges and sensors, aging resulted in a steepening of spectral slopes across conditions (see Figure 4E) with “steepening effects” observed in 25% of the processing options in MEG<sub>ECG not rejected</sub> , 0.5% in MEG<sub>ECG rejected</sub>, and 60% for MEG<sub>ECG components</sub>. The second largest category of effects were “null effects” in 13% of the options for MEG<sub>ECG not rejected</sub> , 30% in MEG<sub>ECG rejected</sub>, and 7% for MEG<sub>ECG components</sub>. ”

      Page 12: can the authors clarify whether these age related steepenings of the spectral slope in the MEG are when the data include the ECG contribution, or when the data exclude the ECG? (clarifying this seems critical to the message the authors are presenting).

      We apologize for not making this clearer. We now write: “This analysis also indicates that a vast majority of observed effects irrespective of condition (ECG components, ECG not rejected, ECG rejected) show a steepening of the spectral slope with age across sensors and frequency ranges.”

      Page 13: I think it would be useful to describe how much variance was explained by the MEG-ECG rejected vs MEG-ECG component conditions for a range of these analyses, so the reader also has an understanding of how much aperiodic neural activity might be influenced by age (vs if the effects are really driven mostly by changes in the ECG).

      With regards to the explained variance I think that the very important question of how strong age influences changes in aperiodic activity is a topic better suited for a meta analysis. As the effect sizes seems to vary largely depending on the sample e.g. for EEG in the literature results were reported at r=-0.08 (Cesnaite et al. 2023), r=-0.26 (Cellier et al. 2021), r=-0.24/r=-0.28/r=-0.35 (Hill et al. 2022) and r=0.5/r=0.7 (Voytek et al. 2015). I would defer the reader/reviewer to the standardized beta coefficients as a measure of effect size in the current study that is depicted in Figure 4A.

      Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental cognitive neuroscience, 50, 100969.

      Cesnaite, E., Steinfath, P., Idaji, M. J., Stephani, T., Kumral, D., Haufe, S., ... & Nikulin, V. V. (2023). Alterations in rhythmic and non‐rhythmic resting‐state EEG activity and their link to cognition in older age. NeuroImage, 268, 119810.

      Hill, A. T., Clark, G. M., Bigelow, F. J., Lum, J. A., & Enticott, P. G. (2022). Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Developmental Cognitive Neuroscience, 54, 101076.

      Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., & Gazzaley, A. (2015). Age-related changes in 1/f neural electrophysiological noise. Journal of Neuroscience, 35(38), 13257-13265.

      Also, if there are specific M/EEG sensors where the 1/f activity does relate strongly to age, it would be worth noting these, so future research could explore those sensors in more detail.

      I think it is difficult to make a clear claim about this for MEG data, as the exact location or type of the sensor may differ across manufacturers. Such a statement could be easier made for source projected data or in case EEG electrodes were available, where the location would be normed eg. according to the 10-20 system.

      DISCUSSION:

      Page 15: Please change the wording of the following sentence, as the way it is currently worded seems to suggest that the authors of the current manuscript have demonstrated this point (which I think is not the case): "The authors demonstrate that EEG typically integrates activity over larger volumes than MEG, resulting in differently shaped spectra across both recording methods."

      Apologies for the oversight! The reviewer is correct we in fact did not show this, but the authors of the cited manuscript. We correct the sentence as suggested stating now that:

      “Bénar et al. demonstrate that EEG typically integrates activity over larger volumes than MEG, resulting in differently shaped spectra across both recording methods.”

      Page 16: The authors mention the results can be sensitive to the application of SSS to clean the MEG data, but not ICA. I think it would be sensitive to the application of either SSS or ICA?

      This is correct and actually also supported by Figure S7, as differences in ICA thresholds affect also the detection of age-related effects. We therefore adjusted the related sentences stating now that:

      “ In case of the MEG signal this may include the application of Signal-Space-Separation algorithms (SSS(24,55)), different thresholds for ICA component detection (see Figure S7), high and low pass filtering, choices during spectral density estimation (window length/type etc.), different parametrization algorithms (e.g. IRASA vs FOOOF) and selection of frequency ranges for the aperiodic slope estimation.”

      It would be worth clarifying that the linked mastoid re-reference alone has been proposed to cancel out the ECG signal, rather than that a linked-mastoid re-reference improves the performance of the ICA separation (which could be inferred by the explanation as it's currently written).

      This is correct and we adjusted the sentence accordingly! Stating now that:

      “ Previous work(12,56) has shown that a linked mastoid reference alone was particularly effective in reducing the impact of ECG related activity on aperiodic activity measured using EEG. “

      The issue of the number of EEG channels could probably just be noted as a potential limitation, as could the issue of neural activity being mixed into the ECG component (although this does pose a potential confound to the M/EEG without ECG condition, I suspect it wouldn't be critical).

      This is indeed a very fair point as a higher amount of electrodes would probably make it easier to better isolate ECG components in the EEG, which may be the reason why the separation did not work so well in our case. However, this is ultimately an empirical question so we highlighted it in the discussion section stating that: “Difficulties in removing ECG related components from EEG signals via ICA might be attributable to various reasons such as the number of available sensors or assumptions related to the non-gaussianity of the underlying sources. Further understanding of this matter is highly important given that ICA is the most widely used procedure to separate neural from peripheral physiological sources. ”

      OUTLOOK:

      Page 19: Although there has been a recent trend to control for 1/f activity when examining oscillatory power, recent research suggests that this should only be implemented in specific circumstances, otherwise the correction causes more of a confound than the issue does. It might be worth considering this point with regards to the final recommendation in the Outlook section: Brake, N., Duc, F., Rokos, A., Arseneau, F., Shahiri, S., Khadra, A., & Plourde, G. (2024). A neurophysiological basis for aperiodic EEG and the background spectral trend. Nature Communications, 15(1), 1514.

      We want to thank the reviewer for recommending this very interesting paper! The authors of said paper present compelling evidence showing that, while peak detection above an aperiodic trend using methods like FOOOF or IRASA is a prerequisite to determine the presence of oscillatory activity, it’s not necessarily straightforward to determine which detrending approach should be applied to determine the actual power of an oscillation. Furthermore, the authors suggest that wrongfully detrending may cause larger errors than not detrending at all. We therefore added a sentence stating that: “However, whether or not periodic activity (after detection) should be detrended using approaches like FOOOF or IRASA still remains disputed, as incorrectly detrending the data may cause larger errors than not detrending at all(75).”

      RECOMMENDATIONS:

      Page 20: "measure and account for" seems like it's missing a word, can this be re-written so the meaning is more clear?

      Done as suggested. The sentence now states: “To better disentangle physiological and neural sources of aperiodic activity, we propose the following steps to (1) measure and (2) account for physiological influences.”

      I would re-phrase "doing an ICA" to "reducing cardiac artifacts using ICA" (this wording could be changed in other places also).

      I do not like to describe cardiac or ocular activity as artifactual per se. This is also why I used hyphens whenever I mention the word “artifact” in association with the ECG or EOG. However, I do understand that the wording of “doing an ICA” is a bit sloppy. We therefore reworded it accordingly throughout the manuscript to e.g. “separating cardiac from neural sources using an ICA” and “separating physiological from neural sources using an ICA”.

      I would additionally note that even if components are identified as unambiguously cardiac, it is still likely that neural activity is mixed in, and so either subtracting or leaving the component will both be an issue (https://doi.org/10.1101/2024.06.06.597688). As such, even perfect identification of whether components are cardiac or not would still mean the issue remains (and this issue is also consistent across a considerable range of component based methods). Furthermore, current methods including wavelet transforms on the ICA component still do not provide good separation of the artifact and neural activity.

      This is definitely a fair point and we also highlight this in our recommendations under 3 stating that:

      “However, separating physiological from neural sources using an ICA is no guarantee that peripheral physiological activity is fully removed from the cortical signal. Even more sophisticated ICA based methods that e.g. apply wavelet transforms on the ICA components may still not provide a good separation of peripheral physiological and neural activity76,77. This turns the process of deciding whether or not an ICA component is e.g. either reflective of cardiac or neural activity into a challenging problem. For instance, when we only extract cardiac components using relatively high detection thresholds (e.g. r > 0.8), we might end up misclassifying residual cardiac activity as neural. In turn, we can’t always be sure that using lower thresholds won’t result in misinterpreting parts of the neural effects as cardiac. Both ways of analyzing the data can potentially result in misconceptions.”

      Castellanos, N. P., & Makarov, V. A. (2006). Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. Journal of neuroscience methods, 158(2), 300-312.

      Bailey, N. W., Hill, A. T., Godfrey, K., Perera, M. P. N., Rogasch, N. C., Fitzgibbon, B. M., & Fitzgerald, P. B. (2024). EEG is better when cleaning effectively targets artifacts. bioRxiv, 2024-06.

      METHODS:

      Pre-processing, page 24: I assume the symmetric setting of fastica was used (rather than the deflation setting), but this should be specified.

      Indeed the reviewer is correct, we used the standard setting of fastICA implemented in MNE python, which is calling the FastICA implementation in sklearn that is per default using the “parallel” or symmetric algorithm to compute an ICA. We added this information to the text accordingly, stating that:

      “For extracting physiological “artifacts” from the data, 50 independent components were calculated using the fastica algorithm(22) (implemented in MNE-Python version 1.2; with the parallel/symmetric setting; note: 50 components were selected for MEG for computational reasons for the analysis of EEG data no threshold was applied).”

      Temporal response functions, page 26: can the authors please clarify whether the TRF is computed against the ECG signal for each electrode or sensory independently, or if all electrodes/sensors are included in the analysis concurrently? I'm assuming it was computed for each electrode and sensory separately, since the TRF was computed in both the forward and backwards direction (perhaps the meaning of forwards and backwards could be explained in more detail also - i.e. using the ECG to predict the EEG signal, or using the EEG signal to predict the ECG signal?).

      A TRF can also be conceptualized as a multiple regression model over time lags. This means that we used all channels to compute the forward and backward models. In the case of the forward model we predicted the signal of the M/EEG channels in a multivariate regression model using the ECG electrode as predictor. In case of the backward model we predicted the ECG electrode based on the signal of all M/EEG channels. The forward model was used to depict the time window at which the ECG signal was encoded in the M/EEG recording, which appears at 0 time lags indicating volume conduction. The backward model was used to see how much information of the ECG was decodable by taking the information of all channels.

      We tried to further clarify this approach in the methods section stating that:

      “We calculated the same model in the forward direction (encoding model; i.e. predicting M/EEG data in a multivariate model from the ECG signal) and backward direction (decoding model; i.e. predicting the ECG signal using all M/EEG channels as predictors).”

      Page 27: the ECG data was fit using a knee, but it seems the EEG and MEG data was not.

      Does this different pose any potential confound to the conclusions drawn? (having said this, Figure S4 suggests perhaps a knee was tested in the M/EEG data, which should perhaps be explained in the text also).

      This was indeed tested in a previous review round to ensure that our results are not dependent on the presence/absence of a knee in the data. We therefore added figure S4, but forgot to actually add a description in the text. We are sorry for this oversight and added a paragraph to S1 accordingly:

      “Using FOOOF(5), we also investigated the impact of different slope fitting options (fixed vs. knee model fits) on the aperiodic age relationship (see Supplementary Figure S4). The results that we obtained from these analyses using FOOOF offer converging evidence with our main analysis using IRASA.”

      Page 32: my understanding of the result reported here is that cleaning with ICA provided better sensitivity to the effects of age on 1/f activity than cleaning with SSS. Is this accurate? I think this could also be reported in the main manuscript, as it will be useful to researchers considering how to clean their M/EEG data prior to analyzing 1/f activity.

      The reviewer is correct in stating that we overall detected slightly more “significant” effects, when not additionally cleaning the data using SSS. However, I am a bit wary of recommending omitting the use of SSS maxfilter solely based on this information. It can very well be that the higher quantity of effects (when not employing SSS maxfilter) stems from other physiological sources (e.g. muscle activity) that are correlated with age and removed when applying SSS maxfiltering. I think that just conditioning the decision of whether or not maxfilter is applied based on the amount or size of effects may not be the best idea. Instead I think that the applicability of maxfilter for research questions related to aperiodic activity should be the topic of additional methodological research. We therefore now write in Text S1:

      “Considering that we detected less and weaker aperiodic effects when using SSS maxfilter is it advisable to omit maxfilter, when analyzing aperiodic signals? We don’t think that we can make such a judgment based on our current results. This is because it's unclear whether or not the reduction of effects stems from an additional removal of peripheral information (e.g. muscle activity; that may be correlated with aging) or is induced by the SSS maxfiltering procedure itself. As the use of maxfilter in detecting changes of aperiodic activity was not subject of analysis that we are aware of, we suggest that this should be the topic of additional methodological research.”

      Page 39, Figure S6 and Figure S8: Perhaps the caption could also briefly explain the difference between maxfilter set to false vs true? I might have missed it, but I didn't gain an understanding of what varying maxfilter would mean.

      Figure S6 shows the effect of ageing on the spectral slope averaged across all channels. The maxfilter set to false in AB) means that no maxfiltering using SSS was performed vs. in CD) where the data was additionally processed using the SSS maxfilter algorithm. We now describe this more clearly by writing in the caption:

      “Supplementary Figure S6: Age-related changes in aperiodic brain activity are most prominent on explained by cardiac components irrespective of maxfiltering the data using signal space separation (SSS) or not AC) Age was used to predict the spectral slope (fitted at 0.1-145Hz) averaged across sensors at rest in three different conditions (ECG components not rejected [blue], ECG components rejected [orange], ECG components only [green].”

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Weber et al. investigate the role of 4 dopaminergic neurons of the Drosophila larva in mediating the association between an aversive high-salt stimulus and a neutral odor. The 4 DANs belong to the DL1 cluster and innervate non-overlapping compartments of the mushroom body, distinct from those involved in appetitive associative learning. Using specific driver lines, they show that activation of the DAN-g1 is sufficient to mimic an aversive memory and it is also necessary to form a high-salt memory of full strength, although optogenetic silencing of this neuron only partially affects the performance index. The authors use calcium imaging to show that the DAN-g1 is not the only one that responds to salt. DAN-c1 and d1 also respond to salt, but they seem to play no role in the assays tested. DAN-f1, which does not respond to salt, is able to lead to the formation of memory (if optogenetically activated), but it is not necessary for the salt-odor memory formation in normal conditions. However, silencing of DAN-f1 together with DAN-g1, enhances the memory deficit of DAN-g1.

      Strengths:

      The paper therefore reveals that also in the Drosophila larva as in the adult, rewards and punishments are processed by exclusive sets of DANs and that a complex interaction between a subset of DANs mediates salt-odor association.

      Overall, the manuscript contributes valuable results that are useful for understanding the organization and function of the dopaminergic system. The behavioral role of the specific DANs is accessed using specific driver lines which allow for testing of their function individually and in pairs. Moreover, the authors perform calcium imaging to test whether DANs are activated by salt, a prerequisite for inducing a negative association with it. Proper genetic controls are carried across the manuscript.

      Weaknesses:

      The authors use two different approaches to silence dopaminergic neurons: optogenetics and induction of apoptosis. The results are not always consistent, and the authors could improve the presentation and interpretation of the data. Specifically, optogenetics seems a better approach than apoptosis, which can affect the overall development of the system, but apoptosis experiments are used to set the grounds of the paper.

      The physiological data would suggest the role of a certain subset of DANs in salt-odor association, but a different partially overlapping set seems to be necessary. This should be better discussed and integrated into the author's conclusion. The EM data analysis reveals a non-trivial organization of sensory inputs into DANs and it is hard to extrapolate a link to the functional data presented in the paper.

      We would like to thank reviewer 1 for the positive evaluation of our work and for the critical suggestions for improvement. In the new version of the manuscript, we have centralized the optogenetic results and moved some of the ablation experiments to the Supplement. We also discuss in detail the experimental differences in the results. In addition, we have softened our interpretation of the specificity of memory for salt. As a result, we now emphasize more the general role of DANs for aversive learning in the larva. These changes are now also summarized and explained more simply and clearly in the Discussion, along with a revised discussion of the EM data.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors show that dopaminergic neurons (DANs) from the DL1 cluster in Drosophila larvae are required for the formation of aversive memories. DL1 DANs complement pPAM cluster neurons which are required for the formation of attractive memories. This shows the compartmentalized network organization of how an insect learning center (the mushroom body) encodes memory by integrating olfactory stimuli with aversive or attractive teaching signals. Interestingly, the authors found that the 4 main dopaminergic DL1 neurons act redundantly, and that single-cell ablation did not result in aversive memory defects. However, ablation or silencing of a specific DL1 subset (DAN-f1,g1) resulted in reduced salt aversion learning, which was specific to salt but no other aversive teaching stimuli were tested. Importantly, activation of these DANs using an optogenetic approach was also sufficient to induce aversive learning in the presence of high salt. Together with the functional imaging of salt and fructose responses of the individual DANs and the implemented connectome analysis of sensory (and other) inputs to DL1/pPAM DANs, this represents a very comprehensive study linking the structural, functional, and behavioral role of DL1 DANs. This provides fundamental insight into the function of a simple yet efficiently organized learning center which displays highly conserved features of integrating teaching signals with other sensory cues via dopaminergic signaling.

      Strengths:

      This is a very careful, precise, and meticulous study identifying the main larval DANs involved in aversive learning using high salt as a teaching signal. This is highly interesting because it allows us to define the cellular substrates and pathways of aversive learning down to the single-cell level in a system without much redundancy. It therefore sets the basis to conduct even more sophisticated experiments and together with the neat connectome analysis opens the possibility of unraveling different sensory processing pathways within the DL1 cluster and integration with the higher-order circuit elements (Kenyon cells and MBONs). The authors' claims are well substantiated by the data and clearly discussed in the appropriate context. The authors also implement neat pathway analyses using the larval connectome data to its full advantage, thus providing network pathways that contribute towards explaining the obtained results.

      Weaknesses:

      While there is certainly room for further analysis in the future, the study is very complete as it stands. Suggestions for clarification are minor in nature.

      We would like to thank reviewer 2 for the positive evaluation of our work. In fact, follow-up work is already underway to further analyze the role of the individual DL1 DANs. We have addressed the constructive and detailed suggestions for improvement in our point-by-point responses in the “Recommendations for the authors” section.

      Reviewer #3 (Public Review):

      The study of Weber et al. provides a thorough investigation of the roles of four individual dopamine neurons for aversive associative learning in the Drosophila larva. They focus on the neurons of the DL-1 cluster which already have been shown to signal aversive teaching signals. However, the authors go far beyond the previous publications and test whether each of these dopamine neurons responds to salt or sugar, is necessary for learning about salt, bitter, or sugar, and is sufficient to induce a memory when optogenetically activated. In addition, previously published connectomic data is used to analyze the synaptic input to each of these dopamine neurons. The authors conclude that the aversive teaching signal induced by salt is distributed across the four DL-1 dopamine neurons, with two of them, DAN-f1 and DAN-g1, being particularly important. Overall, the experiments are well designed and performed, support the authors' conclusions, and deepen our understanding of the dopaminergic punishment system.

      Strengths:

      (1) This study provides, at least to my knowledge, the first in vivo imaging of larval dopamine neurons in response to tastants. Although the selection of tastants is limited, the results close an important gap in our understanding of the function of these neurons.

      (2) The authors performed a large number of experiments to probe for the necessity of each individual dopamine neuron, as well as combinations of neurons, for associative learning. This includes two different training regimens (1 or 3 trials), three different tastants (salt, quinine, and fructose) and two different effectors, one ablating the neuron, the other one acutely silencing it. This thorough work is highly commendable, and the results prove that it was worth it. The authors find that only one neuron, DAN-g1, is partially necessary for salt learning when acutely silenced, whereas a combination of two neurons, DAN-f1 and DAN-g1, are necessary for salt learning when either being ablated or silenced.

      (3) In addition, the authors probe whether any of the DL-1 neurons is sufficient for inducing an aversive memory. They found this to be the case for three of the neurons, largely confirming previous results obtained by a different learning paradigm, parameters, and effector.

      (4) This study also takes into account connectomic data to analyze the sensory input that each of the dopamine neurons receives. This analysis provides a welcome addition to previous studies and helps to gain a more complete understanding. The authors find large differences in inputs that each neuron receives, and little overlap in input that the dopamine neurons of the "aversive" DL-1 cluster and the "appetitive" pPAM cluster seem to receive.

      (5) Finally, the authors try to link all the gathered information in order to describe an updated working model of how aversive teaching signals are carried by dopamine neurons to the larva's memory center. This includes important comparisons both between two different aversive stimuli (salt and nociception) and between the larval and adult stages.

      Weaknesses:

      (1) The authors repeatedly claim that they found/proved salt-specific memories. I think this is problematic to some extent.

      (1a) With respect to the necessity of the DL-1 neurons for aversive memories, the authors' notion of salt-specificity relies on a significant reduction in salt memory after ablating DAN-f1 and g1, and the lack of such a reduction in quinine memory. However, Fig. 5K shows a quite suspicious trend of an impaired quinine memory which might have been significant with a higher sample size. I therefore think it is not fully clear yet whether DAN-f1 and DAN-g1 are really specifically necessary for salt learning, and the conclusions should be phrased carefully.

      (1b) With respect to the results of the optogenetic activation of DL-1 neurons, the authors conclude that specific salt memories were established because the aversive memories were observed in the presence of salt. However, this does not prove that the established memory is specific to salt - it could be an unspecific aversive memory that potentially could be observed in the presence of any other aversive stimuli. In the case of DAN-f1, the authors show that the neuron does not even get activated by salt, but is inhibited by sugar. Why should activation of such a neuron establish a specific salt memory? At the current state, the authors clearly showed that optogenetic activation of the neurons does induce aversive memories - the "content" of those memories, however, remains unknown.

      (2) In many figures (e.g. figures 4, 5, 6, supplementary figures S2, S3, S5), the same behavioural data of the effector control is plotted in several sub-figures. Were these experiments done in parallel? If not, the data should not be presented together with results not gathered in parallel. If yes, this should be clearly stated in the figure legends.

      We would also like to thank reviewer 3 for his positive assessment of our work. As already mentioned by reviewer 1, we understand the criticism that the salt specificity for which the individual DANs are coded is not fully always supported by the results of the work. We have therefore rewritten the relevant passages, which are also cited by the reviewer. We have also included the second point of criticism and incorporated it into our manuscript. As the control groups were always measured in parallel with the experimental animals, we can also present the data together in a sub-figure. We clearly state this now in the revised figure legends.

      Summary of recommendations to authors:

      Overall, the study is commendable for its systematic approach and solid methodology. Several weaknesses were identified, prompting the need for careful revisions of the manuscript:

      We thank the reviewers for the careful revision of our manuscript. In the subsequent sections, we aim to address their concerns as thoroughly as possible. A comprehensive one-to-one listing can be found below.

      (1) The authors should reconsider their assertion of uncovering a salt-specific memory, as the evidence does not conclusively demonstrate the exclusive necessity of DAN-f1 and DAN-g1 for salt learning. In particular, the optogenetic activation of DAN-f1 leads to plasticity but this might not be salt-specific. The precise nature of the memory content remains elusive, warranting a nuanced rephrasing of the conclusions.

      We only partially agree – optogenetic activation of DANs does not really allow to comment on its salt-specificity, true. However, we used high-salt concentrations during test. Over the years, the Gerber lab nicely demonstrated in several papers that larvae recall an aversive odor-salt memory only if salt is present during test (Gerber and Hendel, 2006; Niewalda et al 2008; Schleyer et al. 2011; Schleyer et al. 2015). The used US has to be present during test. Even at the same concentration other aversive stimuli (e.g. bitter quinine) are not able to allow the larvae to recall this particular type of memory. So, if the optogenetic activation of DAN-f1 establishes a memory that can be recalled on salt, we argue that it has to encode aspects of the salt information. On the other hand, only for DAN-g1 we see the necessity for salt learning. And – although (based on the current literature) very unlikely, we cannot fully exclude that the activation of DAN-f1 establishes a yet unknown type of memory that can be also recalled on a salt plate. Therefore, we partially agree and accordingly have rephrased the entire manuscript to avoid an over-interpretation of our data. Throughout the manuscript we avoid now to use the term salt-specific memory but rather describe the type of memory as aversive memory.

      (2) A thorough examination or discussion about the potential influence of blue light aversion on behavioral observations is necessary to ensure a balanced interpretation of the findings.

      To address this point every single behavioral experiment that uses optogenetic blue light activation runs with appropriate and mandatory controls. For blue light activation experiments, two genetic controls are used that either get the same blue light treatment (effector control, w1118>UAS-ChR2XXL) or no blue light treatment (dark control, XY-split-Gal4>UAS-ChR2XXL). For blue light inactivation experiments one group is added that has exactly the same genotype but did not receive food containing retinal. These experiments show that blue light exposure itself does not induce an aversive nor positive memory and blue light exposure does not impair the establishment of odor-high salt memory. In addition, we used the latest established transgenes available. ChR2<sup>XXL</sup> is very sensitive to blue light. Only 220 lux (60 µW/cm<sup>²</sup>) were necessary to obtain stable results. In our hands – short term exposure for up to 5 minutes with such low intensities does not induce a blue light aversion. Following the advice of the reviewer, we also address this concern by adding several sentences into the related results and methods sections.

      (3) The authors should address the limitations associated with the use of rpr/hid for neuronal ablations, such as the effects of potential developmental compensation.

      We agree with this concern. It is well possible that the ablation experiments induce compensatory effects during larval development. Such an effect may be the reason for differences in phenotypes when comparing hid,rpr ablation with optogenetic inhibition. This is now part of the discussion. In addition, we evaluated if the ablation worked in our experiments. So far controls were missing that show that the expression of hid,rpr really leads to the ablation of DANs. We now added these experiments and clearly show anatomically that the DANs are ablated (related to figure 4-figure supplement 6).

      (4) While the connectome analysis offers valuable insights into the observed functions of specific DANs in relation to their extrinsic (sensory) and intrinsic (state) inputs, integrating this data more cohesively within the manuscript through careful rewriting would enhance the coherence of the study.

      We understand this concern. Therefore, the new version of our manuscript is now intensifying the inclusion of the EM data in our interpretation of the results. Throughout the entire manuscript we have now rewritten the related parts. We have also completely revised the corresponding section in the results chapter.

      (5) More generally, the authors are encouraged to discuss internal discrepancies in the results of their functional manipulation experiments.

      Thank you for this suggestion. We do of course understand that we have not given the different results enough space in the discussion. We have now changed this and have been happy to comprehensively address the concern. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Here are some suggestions for clarification and improvement of the manuscript:

      (1) The authors should discuss why the silencing experiment with TH-GAL4 (Fig. 1) does not abolish memory formation (I assume that the PI should go to zero). Does it mean that other non-TH neurons are involved in salt-odor memory formation? Are there other lines that completely abolish this type of learning?

      Thank you very much for highlighting this crucial point. Indeed, the functional intervention does not completely eliminate the memory. There could be several reasons, or a combination thereof, for this outcome. For instance, it's plausible that the UAS-GtACR2 effector doesn't entirely suppress the activity of dopaminergic neurons. Additionally, the memory may comprise different types, not all of which are linked to dopamine function. It's also noteworthy that TH-Gal4 doesn't encompass all dopaminergic neurons – even a neuron from the DL1 cluster is absent (as previously reported in Selcho et al., 2009). Considering we're utilizing high salt concentrations in this experiment, it's conceivable that non gustatory-driven memories are formed based solely on the systemic effects of salt (e.g., increased osmotic pressure). These possibilities are now acknowledged in the text.

      (2) The Rpr experiments in Fig. 4 do not lead to any phenotype and there is a general assumption that the system compensates during development. However, there is no demonstration that Rpr worked or that development compensated for that. What do we learn from these data? Would it make sense to move it to supplement to make the story more compact? In addition: the conclusion at L 236 "DL1.... Are not individually necessary" is later disproved by optogenetic silencing. Similarly, optogenetic silencing of f1+g1 is affecting 1X and 3X learning, but not when using Rpr. Moreover, Rpr wdid not give any phenotype in other data in the supplementary material. I'm not sure how valid these results are.

      We acknowledge this concern and have actively deliberated various options for restructuring the presented ablation data. Ultimately, we reached a consensus that relocating Figure 4 to the supplement is warranted. Furthermore, corresponding adjustments have been made in the text. This decision amplifies the significance of the optogenetic results. In addition, we also addressed the other part of the concern. We examined the efficacy of hid and rpr in our experiments. Indeed, we successfully ablated specific DANs, as illustrated in the new anatomical data presented in Figure 4- figure supplement 6, which strengthens the interpretation of the hid,rpr experiments.

      (3) In most figures that show data for 1X and 3X training, there is no difference between these two conditions (I would suggest moving one set as a supplement). When a difference appears (Fig.5A-D) the implications are not discussed properly. Is it known that some circuits are necessary for the 1X but not for the 3X protocol? Is that a reasonable finding? I would expect the opposite, but I might lack of knowledge here. However, the optogenetic silencing of the same neurons in Figure 7 shows the same phenotype for 1X and 3X. Again, the validity of the Rpr experiments seems debatable.

      Different training protocols lead to different memory phases (STM and STM+ARM). We have shown that in the past in Widmann et al. 2016. Therefore, we are convinced that it makes sense to keep both data sets in the main manuscript. However, we agree that this was not properly introduced and discussed and therefore made the respective changes in the manuscript.

      (4) In Figure 3, it is unclear what the responses were tested against. Since they are so small and noisy there would be a need for a control. Moreover, in some cases, it looks like the DF/F is normalized to the wrong value: e.g. in DAN-c1 100mM, the activity in 0-10s is always above zero, and in pPAM with fructose is always below zero. This might not have any consequence on the results but should be adjusted.

      Thank you very much for your criticism, which we greatly appreciate. We have carefully re-examined the data and found that there was a mistake for the normalization of the values. We made the necessary adjustments to the evaluation, as per your suggestions. The updated figures, figure legends, and results have been incorporated into the new version of the manuscript. As noted by the reviewer, these corrections have not altered the interpretation of the data or the primary responses of the various DANs.

      (5) In the abstract: "Optogenetic activation of DAN-f1 and DAN-g1 alone suffices to substitute for salt punishment... Each DAN encodes a different aspect of salt punishment". These sentences might be misleading and an overstatement: only DAN-g1 shows a clear role, while the function of the other DANs in the context of salt-odor learning remains obscure.

      We have refined the respective part of the abstract accordingly. Consequently, we have reworded the related section, aiming to avoid any exaggeration.

      (6) The physiology is done in L1 larvae but behavior is tested in L3 larvae. There could be a change in this time that could explain the salt responses in c1 and d1 but no role in salt-odor learning?

      While we cannot dismiss the possibility of a developmental change from L1 to L3, a comparison of the anatomical data of the DL1 DANs from electron microscopy (EM) and light microscopy (LM) data indicates that their overall morphology remains consistent. However, it's important to note that this observation does not analyse the physiological aspects of these cells. Consequently, we have incorporated this concern into the discussion of the revised version of the manuscript.

      (7) The introduction needs some editing starting at L 129, as it ends with a discussion of a previously published EM data analysis. I would rather suggest stating which questions are addressed in this paper and which methods will be used and perhaps a hint on the results obtained.

      We understand the concern. We have added a concise paragraph to the conclusion of the introduction, highlighting the biological question, technical details, and a short hint on the acquired findings.

      (8) It is clear to me that the presentation of salt during the test is necessary for recall, however in L 166 I don't understand the explanation: how is the memory used in a beneficial way in the test? The salt is present everywhere and the odor cue is actually useless to escape it.

      Extensive research, exemplified by studies such as Schleyer et al. (2015) published in Elife, clearly demonstrates that the recall of odor-high salt memory occurs exclusively when tested on a high salt plate. Even when tested on a bitter quinine plate, the aversive memory is not recalled. This phenomenon is attributed to the triggering of motivation to recall the memory by the omnipresent abundance of the unconditioned stimulus (US) during the test, which in our case is high salt. Furthermore, the concentration of the stimulus plays a crucial role (Schleyer et al. 2011). The odor cue indicates where the situation could potentially be improved; however, if high salt is absent, this motivational drive diminishes as there is no memory present to enhance the already favorable situation. Additionally, the motivation to evade the omnipresent and unpleasant high salt stimulus persists throughout the entire 5-minute test period.

      (9) L288: the fact that f1 shows a phenotype in this experiment does not mean that it encodes a salt signal, indeed it does not respond to salt. It perhaps induces a plasticity that can be recalled by salt, but not necessarily linked to salt. The synergy between f1 and g1 in the salt assay was postulated based on exp with Rpr, but the validity of these experiments is dubious. I'm not sure there is sufficient evidence from Figures 6 and 7 to support a synergistic action between f1 and g1.

      It is true that DAN-f1 alone is not necessary for mediating a high salt teaching signal based on ablation, optogenetic inhibition and even physiology. However, optogenetic activation alone shows a memory tested on a salt plate. Given the logic explained above that is accepted by several publications, we would like to keep the statement. Especially as the joined activation with DAN-g1 gives rise to significant higher or lower values after joined optogenetic activation or inactivation (Figure 5E and F, Figure 6E and F in the new version). Nevertheless, we have modified the sentence. In the text we describe these effects now as “these results may suggest that DAN-f1 and DAN-g1 encode aspects of the natural aversive high salt teaching signal under the conditions that we tested”. We think that this is an appropriate and three-fold restricted statement. Therefore, we would like to keep it in this restricted version. However, we are happy to reconsider this if the reviewer thinks it is critical. 

      (10) I find the EM analysis hard to read. First of all, because of the two different graphical representations used in Fig. 8, wouldn't one be sufficient to make the point? Secondly, I could not grasp a take-home-message: what do we learn from the EM data? Do they explain any of the results? It seems to me that they don't provide an explanation of why some DL1 neurons respond to salt and others don't.

      We understand that the EM analysis is hard to read and have now carefully rewritten this part of the manuscript. See also general concern 4 above. The main take home message is not to explain why some DL1 neurons respond to salt and other do not. This cannot be resolved due to the missing information on the salt perceiving receptor cells. Unfortunately, we miss the peripheral nervous system in the EM - the first layer of salt information processing. However, our analysis shows clearly that the 4 DANs have their own identity based on their connectivity. None of them is the same – but to a certain extent similarities exist. This nicely reflects the physiological and behavioral results. We have now clarified that in the result to ease the understanding for the readership. In addition, we also clearly state that we don’t address the point why some DL1 neurons respond to salt and why others don’t respond.

      (11) Do the manipulations (activation and silencing) affect odor preference in the presence of salt? Did the authors test that the two odors do not drive different behaviors on the salty plate? Or did they only test the odor preference on plain agarose? Can we exclude a role for the DAN in driving multisensory-driven innate behavior?

      Innate odor preferences are not changed by the presence of salt or even other tastants (this work but see also Schleyer et al 2015, Figure 3, Elife). Even the naïve choice between two odors is the same if tested in the presence of different tastants (Schleyer et al 2015, Figure 3, Elife). This shows – at least for the tested stimuli and conditions – that are similar to the ones that we use – that there is no multisensory-driven innate odor-taste behavior. Therefore – at least to our knowledge - experiments as the ones suggested by the reviewer were never done in larval odor-taste learning studies. Therefore, we suggest that DAN activation has no effect on innate larval behavior. However, we are happy to reconsider this if the reviewer thinks it is critical. 

      (12) L 280: the authors generalize the conclusion to all DL1-DANs, but it does not apply to c1 and d1.

      Thanks for this comment. We deleted that sentence as suggested and thus do not anymore generalize the conclusion to all DL-DANs.

      (13) L345: I do not see the described differences in Fig. 8F, presynaptic sites of both types seem to appear in rather broad regions: could the author try to clarify this?

      We understand that the anatomical description of the data is often hard to read. Especially to readers that are not used to these kind of figures. We have therefore modified the text to ease the understanding and clarify the difference in the labeled brain regions for the broad readership.

      (14) L373: the conclusion on c1 is unsupported by data: this neuron responds to both salt and fructose (Figure 3 ) while the conclusion is purely based on EM data analysis.

      The sentence is not a conclusion but a speculation and we also list the cell's response to positive and negative gustatory stimuli. Therefore, we do not understand exactly what the reviewer means here. However, we have tried to address the criticism and have revised the sentences.

      (15) L385: the data on d1 seem to be inconsistent with Eschbach 2020, but the authors do not discuss if this is due to the differential vs absolute training, or perhaps the presence of the US during the test (which does not seem to be there in Eschbach, 2020) - is the training protocol really responsible for this inconsistency? For f1 the data seem to be consistent across these studies. The authors should clarify how the exp in Fig 6 differs from Eschbach, 2020 and how one could interpret the differences.

      True. This concern is correct. We now discuss the difference in more detail. Eschbach et al. used Cs-Crimson as a genetic tool, a one odor paradigm with 3 training cycles, and no gustatory cues in their approach. These differences are now discussed in the new version of the manuscript.

      (16) L460-475 A long part of this paragraph discusses the similarities between c1 and d1 and corresponding PPL1 neurons in the adult fly. However, c1 and d1 do not really show any phenotype in this paper, I'm not sure what we learn from this discussion and how much this paper can contribute to it. I would have wished for a discussion of how one could possibly reconcile the observed inconsistencies.

      Based on the comments of the different reviewers several paragraphs in the discussion were modified. We agree that the part on the larval-adult comparison is quite long. Thus we have shortened it as suggested by the reviewer.

      Minor corrections:

      L28 "resultant association" maybe resulting instead.

      L55 "animals derive benefit": remove derive.

      L78 "composing 12,000 neurons": composed of.

      L79 what is stable in a "stable behavioral assay"?

      L104: 2 times cluste.

      L122: "DL1 DANs are involved" in what?

      Fig. 1 please check subpanels labels, D repeats.

      L 362: "But how do individual neurons contribute to the teaching signal of the complete cluster?" I don't understand the question.

      L364 I did not hear before about the "labeled line hypothesis" in this context - could the author clarify?

      L368: edit "combinatorically".

      L390: "current suppression" maybe acute suppression.

      L 400 I'm not sure what is meant by "judicious functional configuration" and "redundancy". The functions of these cells are not redundant, and no straightforward prediction of their function can be done from their physiological response to salt.

      Thanks a lot for your in detail review of our manuscript. We welcome your well-taken concerns and have made the requested changes for all points that you have raised.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figure 1 the reconstruction of pPAM and DL1 DANs shows the compartmentalized innervation of the larval MB. However, the images are a bit low in color contrast to appreciate the innervation well. In particular in panel B, it is hard to identify the innervated MB body structure. A schematic model of the larval MB and DAN innervation domains like in Fig. 2A would help to clarify the innervation pattern to the non-specialist.

      We understand this concern and have changed figure 1 as suggested by the reviewer. A schematic model of the MB and DANs is now presented already in figure 1 as well as the according supplemental figure.

      (2) Blue light itself can be aversive for larvae and thus interfere with the aversive learning paradigm. Does the given Illuminance (220 lux) used in these experiments affect the behavior and learning outcome?

      Yes, in former times high intensities of blue light were necessary to trigger the first generation optogenetic tools. The high intensity blue light itself was able to establish an aversive memory (e.g. Rohwedder et al. 2016). Usage of the second generation optogenetic tools allowed us to strongly reduce the applied light intensity. Now we use 220 lux (equal to 60 µW/cm<sup>2</sup>). Please note that all Gal4 and UAS controls in the manuscript are nonsignificant different from zero. The mild blue light stimulation therefore does not serve as a teaching signal and has neither an aversive nor an appetitive effect. Furthermore, we use this mild light intensity for several other behavioral paradigms (locomotion, feeding, naïve preferences) and have never seen an effect on the behavior.

      (3) Fig.2: Except for MB054B-Gal4 only the MB expression pattern is shown for other lines. Is there any additional expression in other cells of the brain? In the legend in line 761, the reporter does not show endogenous expression, rather it is a fluorescent reporter signal labeling the mushroom body.

      The lines were initially identified by a screen on larval MB neurons done together with Jim Truman, Marta Zlatic and Bertram Gerber. Here full brain scans were always analyzed. These images can be seen in Eschbach et al. 2020, extended figure 1. Neither in their evaluation nor in our anatomical evaluation (using a different protocol) additional expression in brain cells was detectable. We also modified the figure legend as suggested.

      (4) Fig.3: Precise n numbers per experiment should be stated in the figure legend.

      True, we now present n numbers per experiment whenever necessary.

      (5) Fig.4: Have the authors confirmed complete ablation of the targeted neuron using rpr/hid? Ablations can be highly incomplete depending on the onset and strength of Gal4 expression, leaving some functionality intact. While the ablation experiments are largely in line with the acute silencing of single DANs during high salt learning performed later on (Fig.7), there is potentially an interesting aspect of developmental compensation hidden in this data. Not a major point, but potentially interesting to check.

      We agree with this criticism. We have not tested if the expression of hid,rpr in DL1 DANs does really ablate them. Therefore we did an additional experiment to show that. The new data is now present as a supplemental figure (Figure 4- figure supplement 6). The result shows that expression of hid,rpr ablates also DL1 DANs similar to earlier experiments where we used the same effectors to ablate serotoniergic neurons (Huser et al., 2012, figure 5).

      (6) The performance index in Fig. 4 and 5 sometimes seems lower and the variability is higher than in some of the other experiments shown. Is this due to the high intrinsic variability of these particular experiments, or the background effects of the rpr/hid or splitGal4 lines?

      The general variability of these experiments is within the expected and known borders. In these kind of experiments there is always some variation due to several external factors (e.g. experimental time over the year). Therefore it is always important to measure controls and experimental animals at the same time. Of course that’s what we did and we only compare directly results of individual datasets. But not between different datasets. This is further hampered given that the experiments of Figure 4 (now Figure 4- figure supplement 1) and Figure 5 (now Figure 4) differ in several parameters from other learning experiments presented later in the text. Optogenetic activation uses blue light stimulation instead of “real world” high salt. Most often direct activation of specific DANs in the brain is more stable than the external high salt stimulation. Also optogenetic inactivation uses blue light stimulation and also retinal supplemented food. Both factors can affect the measurement. We thus want to argue that it is for each experiment most often the particular parameters that affect the variability of the results rather than background effects of the rpr/hid and split-Gal4 lines.

      (7) Fig.7: This is a neat experiment showing the effects of acute silencing of individual DL1 DANs. As silencing DAN-f1/g1 does not result in complete suppression of aversive learning, it would be highly interesting to test (or speculate about) additive or modulatory effects by the other DANs. Dan-c-1/d-1 also responds to high salt but does not show function on its own in these assays. I am aware that this is currently genetically not feasible. It would however be a nice future experiment.

      True, we were intensively screening for DL1 cluster specific driver lines that cover all 4 DL1 neurons or other combinations than the ones we tested. Unfortunately, we did not succeed in identifying them. Nevertheless, we will further screen new genetic resources (e.g. Meissner et al., 2024, bioRxiv) to expand our approach in future experiments. Please also see our comment on concern 1 of reviewer 1 for further technical limitations and biological questions that can also potentially explain the absence of complete suppression of high salt learning and memory. Some of these limitations are now also mentioned and discussed in the new version of the manuscript.

      (8) The discussion is excellent. I would just amend that it is likely that larval DAN-c1, which has high interconnectivity within the larval CNS, is likely integrating state-dependent network changes, similar to the role of some DANs in innate and state-dependent preference behavior. This might contribute to modulating learned behavior depending on the present (acute) and previous environmental conditions.

      Thanks a lot for bringing this up. We rewrote this part and added a discussion on recent work on DAN-c1 function in larvae as well as results on DAN function in innate and state-dependent preference behavior.

      (9) Citation in line 1115 missing access information: "Schnitzer M, Huang C, Luo J, Je Woo S, Roitman L, et al. 2023. Dopamine signals integrate innate and learned valences to regulate memory dynamics. Research Square".

      Unfortunately this escaped our notice. The paper is now published in Nature: Huang, C., Luo, J., Woo, S.J. et al. Dopamine-mediated interactions between short- and long-term memory dynamics. Nature 634, 1141–1149 (2024). https://doi.org/10.1038/s41586-024-07819-w. We have now changed the citation. The new citation includes the missing access information.

      Reviewer #3 (Recommendations For The Authors):

      Regarding my issue about salt specificity in the public review, I want to make clear that I do not suggest additional experiments, but to be very careful in phrasing the conclusions, in particular whenever referring to the experiments with optogenetic activation. This includes presenting these experiments as "(salt) substitution" experiments - inferring that the optogenetic activation would substitute for a natural salt punishment. As important and interesting as the experiments are, they simply do not allow such an interpretation at this point.

      Results, line 140ff: When presenting the results regarding TH-Gal4 crossed to ChR2-XXL, please cite Schroll et al. 2006 who demonstrated the same results for the first time.

      Thanks for mentioning this. We now cite Schroll et al. 2006 here in the text of the manuscript.

      Figure 3: The subfigure labels (ABC) are missing.

      Unfortunately this escaped our notice. Thanks a lot – we have now corrected this mistake.

      Figure 5: For I and L, it reads "salt replaced with fru", but the sketch on the left shows salt in the test. I assume that fructose was not actually present in the test, and therefore the figure can be misleading. I suggest separate sketches. Also, I and L are not mentioned in the figure legend.

      True, this is rather confusing. Based on the well taken concern we have changed the figure by adding a new and correct scheme for sugar reward learning that does not symbolize fructose during test.

      Figure S1: The experimental sketches for E,F and G,H seem to be mixed up.

      We thank the reviewer for bringing this up. In the new version we corrected this mistake.

      Figure S5: There are three sub-figures labelled with B. Please correct.

      Again, thanks a lot. We made the suggested correction in Figure S5.

      Discussion, line 353ff: this and the following sentences can be read as if the authors have discovered the DL-1 neurons as aversive teaching mediators in this study. However, Eschbach et al. 2020 already demonstrated very similar results regarding the optogenetic activation of single DL-1 DANs. I suggest to rephrase and cite Eschbach et al. 2020 at this point.

      That is correct. Our focus was on the gustatory pathway. The original discovery was made by Eschbach et al. We have now corrected this in the discussion and clarified our contribution. It was never our intention to hide this work, as the laboratory was also involved. Nevertheless, this is an annoying omission on our side.

      Line 385-387: this sentence is only correct with respect to Eschbach et al. 2020. Weiglein et al. 2021 used ChR2-XXL as an effector, but another training regimen.

      We understand this criticism. Therefore, we changed the sentence as suggested by the reviewer. See also our response on concern 15 of reviewer 1.

      Line 389ff: I do not understand this sentence. What is meant by persistent and current suppression of activity? If this refers to the behavioural experiments, it is misleading as in the hid, reaper experiments neurons are ablated and not suppressed in activity.

      We made the requested changes in the text. It is true that the ablation of a neuron throughout larval life is different from constantly blocking the output of a persisting neuron.

      Methods, line 615 ff: the performance index is said to be calculated as the difference between the two preferences, but the equation shows the average of the preferences.

      Thanks a lot. We are sorry for the confusion. We have carefully rewritten this part of the methods section to avoid any misunderstanding.

      When discussing the organization of the DL1 cluster, on several occasions I have the impression the authors use the terms "redundant" and "combinatorial" synonymously. I suggest to be more careful here. Redundancy implies that each DAN in principle can "do the job", whereas combinatorial coding implies that only a combination of DANs together can "do the job". If "the job" is establishing an aversive salt memory, the authors' results point to redundancy: no experimental manipulation totally abolished salt learning, implying that the non-manipulated neurons in each experiment sufficed to establish a memory; and several DANs, when individually activated, can establish an aversive memory, implying that each of them indeed can "do the job".

      Based on this concern we have rewritten the discussion as suggested to be more precise when talking about redundancy or combinatorial coding of the aversive teaching signal. Basically, we have removed all the combinatorial terms and replaced them by the term “redundancy”.

      The authors mix parametric and non-parametric statistical tests across the experiments dependent on whether the distribution of the data is normal or not. It would help readers if the authors would clearly state for which data which tests were used.

      We understand the criticism and now have added an additional supplemental file that includes all the information on the statistical tests applied and the distribution of the data.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary

      In this study, the authors build upon previous research that utilized non-invasive EEG and MEG by analyzing intracranial human ECoG data with high spatial resolution. They employed a receptive field mapping task to infer the retinotopic organization of the human visual system. The results present compelling evidence that the spatial distribution of human alpha oscillations is highly specific and functionally relevant, as it provides information about the position of a stimulus within the visual field.

      Using state-of-the-art modeling approaches, the authors not only strengthen the existing evidence for the spatial specificity of the human dominant rhythm but also provide new quantification of its functional utility, specifically in terms of the size of the receptive field relative to the one estimated based on broad band activity.

      We thank the reviewer for their positive summary.

      Weakness 1.1

      The present manuscript currently omits the complementary view that the retinotopic map of the visual system might be related to eye movement control. Previous research in non-human primates using microelectrode stimulation has clearly shown that neuronal circuits in the visual system possess motor properties (e.g. Schiller and Styker 1972, Schiller and Tehovnik 2001). More recent work utilizing Utah arrays, receptive field mapping, and electrical stimulation further supports this perspective, demonstrating that the retinotopic map functions as a motor map. In other words, neurons within a specific area responding to a particular stimulus location also trigger eye movements towards that location when electrically stimulated (e.g. Chen et al. 2020).

      Similarly, recent studies in humans have established a link between the retinotopic variation of human alpha oscillations and eye movements (e.g., Quax et al. 2019, Popov et al. 2021, Celli et al. 2022, Liu et al. 2023, Popov et al. 2023). Therefore, it would be valuable to discuss and acknowledge this complementary perspective on the functional relevance of the presented evidence in the discussion section.

      The reviewer notes that we do not discuss the oculomotor system and alpha oscillations. We agree that the literature relating eye movements and alpha oscillations are relevant.

      At the Reviewer’s suggestion, we added a paragraph on this topic to the first section of the Discussion (section 3.1, “Other studies have proposed … “).

      Reviewer #2 (Public Review):

      Summary:

      In this work, Yuasa et al. aimed to study the spatial resolution of modulations in alpha frequency oscillations (~10Hz) within the human occipital lobe. Specifically, the authors examined the receptive field (RF) tuning properties of alpha oscillations, using retinotopic mapping and invasive electroencephalogram (iEEG) recordings. The authors employ established approaches for population RF mapping, together with a careful approach to isolating and dissociating overlapping, but distinct, activities in the frequency domain. Whereby, the authors dissociate genuine changes in alpha oscillation amplitude from other superimposed changes occurring over a broadband range of the power spectrum. Together, the authors used this approach to test how spatially tuned estimated RFs were when based on alpha range activity, vs. broadband activities (focused on 70-180Hz). Consistent with a large body of work, the authors report clear evidence of spatially precise RFs based on changes in alpha range activity. However, the size of these RFs were far larger than those reliably estimated using broadband range activity at the same recording site. Overall, the work reflects a rigorous approach to a previously examined question, for which improved characterization leads to improved consistency in findings and some advance of prior work.

      We thank the reviewer for the summary.

      Strengths:

      Overall, the authors take a careful and well-motivated approach to data analyses. The authors successfully test a clear question with a rigorous approach and provide strong supportive findings. Firstly, well-established methods are used for modeling population RFs. Secondly, the authors employ contemporary methods for dissociating unique changes in alpha power from superimposed and concomitant broadband frequency range changes. This is an important confound in estimating changes in alpha power not employed in prior studies. The authors show this approach produces more consistent and robust findings than standard band-filtering approaches. As noted below, this approach may also account for more subtle differences when compared to prior work studying similar effects.

      We thank the reviewer for the positive comments.

      Weaknesses:

      Weakness 2.1 Theoretical framing:

      The authors frame their study as testing between two alternative views on the organization, and putative functions, of occipital alpha oscillations: i) alpha oscillation amplitude reflects broad shifts in arousal state, with large spatial coherence and uniformity across cortex; ii) alpha oscillation amplitude reflects more specific perceptual processes and can be modulated at local spatial scales. However, in the introduction this framing seems mostly focused on comparing some of the first observations of alpha with more contemporary observations. Therefore, I read their introduction to more reflect the progress in studying alpha oscillations from Berger's initial observations to the present. I am not aware of a modern alternative in the literature that posits alpha to lack spatially specific modulations. I also note this framing isn't particularly returned to in the discussion.

      This was helpful feedback. We have rewritten nearly the entire Introduction to frame the study differently. The emphasis is now on the fact that several intracranial studies of spatial tuning of alpha (in both human and macaque) tend to show increases in alpha due to visual stimulation, in contrast to a century of MEG/EEG studies, from Berger to the present, showing decreases. We believe that the discrepancy is due to an interaction between measurement type and brain signals. Specifically, intracranial measurements sum decreases in alpha oscillations and increases in broadband power on the same trials, and both signals can be large. In contrast, extracranial measures are less sensitive to the broadband signals and mostly just measure the alpha oscillation. Our study reconciles this discrepancy by removing the baseline broadband power increases, thereby isolating the alpha oscillation, and showing that with iEEG spatial analyses, the alpha oscillation decreases with visual stimulation, consistent with EEG and MEG results.

      Weakness 2.2 A second important variable here is the spatial scale of measurement.

      It follows that EEG based studies will capture changes in alpha activity up to the limits of spatial resolution of the method (i.e. limited in ability to map RFs). This methodological distinction isn't as clearly mentioned in the introduction, but is part of the author's motivation. Finally, as noted below, there are several studies in the literature specifically addressing the authors question, but they are not discussed in the introduction.

      The new Introduction now explicitly contrasts EEG/MEG with intracranial studies and refers to the studies below.

      Weakness 2.3 Prior studies:

      There are important findings in the literature preceding the author's work that are not sufficiently highlighted or cited. In general terms, the spatio-temporal properties of the EEG/iEEG spectrum are well known (i.e. that changes in high frequency activity are more focal than changes in lower frequencies). Therefore, the observations of spatially larger RFs for alpha activities is highly predicted. Specifically, prior work has examined the impact of using different frequency ranges to estimate RF properties, for example ECoG studies in the macaque by Takura et al. NeuroImage (2016) [PubMed: 26363347], as well as prior ECoG work by the author's team of collaborators (Harvey et al., NeuroImage (2013) [PubMed: 23085107]), as well as more recent findings from other groups (Luo et al., (2022) BioRxiv: https://doi.org/10.1101/2022.08.28.505627). Also, a related literature exists for invasively examining RF mapping in the time-voltage domain, which provides some insight into the author's findings (as this signal will be dominated by low-frequency effects). The authors should provide a more modern framing of our current understanding of the spatial organization of the EEG/iEEG spectrum, including prior studies examining these properties within the context of visual cortex and RF mapping. Finally, I do note that the author's approach to these questions do reflect an important test of prior findings, via an improved approach to RF characterization and iEEG frequency isolation, which suggests some important differences with prior work.

      Thank you for these references and suggestions. Some of the references were already included, and the others have been added.

      There is one issue where we disagree with the Reviewer, namely that “the observations of spatially larger RFs for alpha activities is highly predicted”. We agree that alpha oscillations and other low frequency rhythms tend to be less focal than high frequency responses, but there are also low frequency non-rhythmic signals, and these can be spatially focal. We show this by demonstrating that pRFs solved using low frequency responses outside the alpha band (both below and above the alpha frequency) are small, similar to high frequency broadband pRFs, but differing from the large pRFs associated with alpha oscillations. Hence we believe the degree to which signals are focal is more related to the degree of rhythmicity than to the temporal frequency per se. While some of these results were already in the supplement, we now address the issue more directly in the main text in a new section called, “2.5 The difference in pRF size is not due to a difference in temporal frequency.”

      We incorporated additional references into the Introduction, added a new section on low frequency broadband responses to the Results (section 2.5), and expanded the Discussion (section 3.2) to address these new references.

      Weakness 2.4 Statistical testing:

      The authors employ many important controls in their processing of data. However, for many results there is only a qualitative description or summary metric. It appears very little statistical testing was performed to establish reported differences. Related to this point, the iEEG data is highly nested, with multiple electrodes (observations) coming from each subject, how was this nesting addressed to avoid bias?

      We reviewed the primary claims made in the manuscript and for each claim, we specify the supporting analyses and, where appropriate, how we address the issue of nesting. Although some of these analyses were already in the manuscript, many of them are new, including all of the analyses concerning nesting. We believe that putting this information in one place will be useful to the reader, and we now include this text as a new section in supplement, Graphical and statistical support for primary claims.

      Reviewer #2 (Recommendations For The Authors):

      Recommendation 2.1:

      Data presentation: In several places, the authors discuss important features of cortical responses as measured with iEEG that need to be carefully considered. This is totally appropriate and a strength of the author's work, however, I feel the reader would benefit from more depiction of the time-domain responses, to help better understand the authors frequency domain approach. For example, Figure 1 would benefit from showing some form of voltage trace (ERP) and spectrogram, not just the power spectra. In addition, part (a) of Figure 1 could convey some basic information about the timing of the experimental paradigm.

      We changed panel A of Figure 1 to include the timing of the experimental paradigm, and we added panels C and D to show the electrode time series before and after regression out of the ERP.

      Recommendation 2.2

      Update introduction to include references to prior EEG/iEEG work on spatial distribution across frequency spectrum, and importantly, prior work mapping RFs with different frequencies.

      We have addressed this issue and re-written our introduction. Please refer to our response in Public Review for further details.

      Recommendation 2.3

      Figure 3 has several panels and should be labeled to make it easier to follow.The dashed line in lower power spectra isn't defined in a legend and is missing from the upper panel - please clarify.

      We updated Figure 3 and reordered the panels to clarify how we computed the summary metrics in broadband and alpha for each stimulus location (i.e., the “ratio” values plotted in panel B). We also simplified the plot of the alpha power spectrum. It now shows a dashed line representing a baseline-corrected response to the mapping stimulus, which is defined in the legend and explained in the caption.

      Recommendation 2.4

      Power spectra are always shown without error shading, but they are mean estimates.

      We added error shading to Figures 1, 2 and 3.

      Recommendation 2.5

      The authors deal with voltage transients in response to visual stimulation, by subtracting out the trail averaged mean (commonly performed). However, the efficacy of this approach depends on signal quality and so some form of depiction for this processing step is needed.

      We added a depiction of the processing steps for regressing out the averaged responses in Figure 1 in an example electrode (panels C and D). We also show in the supplement the effect of regressing out the ERP on all the electrode pRFs. We have added Supplementary Figure 1-2.

      Recommendation 2.6

      I have a similar request for the authors latency correction of their data, where they identified a timing error and re-aligned the data without ground truth. Again, this is appropriate, but some depiction of the success of this correction is very critical for confirming the integrity of the data.

      We now report more detail on the latency correction, and also point out that any small error in the estimate would not affect our conclusions (4.6 ECoG data analysis | Data epoching). The correction was important for a prior paper on temporal dynamics (Groen et al, 2022), which used data from the same participants and estimated the latency of responses. In this paper, our analyses are in the spectral domain (and discard phase), so small temporal shifts are not critical. We now also link to the public code associated with that paper, which implemented the adjustment and quantified the uncertainty in the latency adjustment.

      More details on latency adjustment provided in section 4.6.

      Recommendation 2.7

      In many places the authors report their data shows a 'summary' value, please clarify if this means averaging or summation over a range.

      For both broadband and alpha, we derive one summary value (a scalar) for trial for each stimulus. For broadband, the summary metric is the ratio of power during a given trial and power during blanks, where power in a trial is the geometric mean of the power at each frequency within the defined band). This is equation 3 in the methods, which is now referred to the first time that summary metrics are mentioned in the results.  For alpha, the summary metric is the height of the Gaussian from our model-based approach. This is in equations 1 and 2, and is also now referred to the first time summary metrics are mentioned in the results.

      We added explanation of the summary metrics in the figure captions and results where they are first used, and also referred to the equations in the methods where they are defined.

      Recommendation 2.8

      The authors conclude: "we have discovered that spectral power changes in the alpha range reflect both suppression of alpha oscillations and elevation of broadband power." It might not have been the intention, but 'discovered' seems overstated.

      We agree and changed this sentence.

      Recommendation 2.9

      Supp Fig 9 is a great effort by the authors to convey their findings to the reader, it should be a main figure.

      We are glad you found Supplementary Figure 9 valuable. We moved this figure to the main text.

      Reviewer #3 (Public Review):

      Summary:

      This study tackles the important subject of sensory driven suppression of alpha oscillations using a unique intracranial dataset in human patients. Using a model-based approach to separate changes in alpha oscillations from broadband power changes, the authors try to demonstrate that alpha suppression is spatially tuned, with similar center location as high broadband power changes, but much larger receptive field. They also point to interesting differences between low-order (V1-V3) and higher-order (dorsolateral) visual cortex. While I find some of the methodology convincing, I also find significant parts of the data analysis, statistics and their presentation incomplete. Thus, I find that some of the main claims are not sufficiently supported. If these aspects could be improved upon, this study could potentially serve as an important contribution to the literature with implications for invasive and non-invasive electrophysiological studies in humans.

      We thank the reviewer for the summary.

      Strengths:

      The study utilizes a unique dataset (ECOG & high-density ECOG) to elucidate an important phenomenon of visually driven alpha suppression. The central question is important and the general approach is sound. The manuscript is clearly written and the methods are generally described transparently (and with reference to the corresponding code used to generate them). The model-based approach for separating alpha from broadband power changes is especially convincing and well-motivated. The link to exogenous attention behavioral findings (figure 8) is also very interesting. Overall, the main claims are potentially important, but they need to be further substantiated (see weaknesses).

      We thank the reviewer for the positive comments.

      Weaknesses:

      I have three major concerns:

      Weakness 3.1. Low N / no single subject results/statistics:

      The crucial results of Figure 4,5 hang on 53 electrodes from four patients (Table 2). Almost half of these electrodes (25/53) are from a single subject. Data and statistical analysis seem to just pool all electrodes, as if these were statistically independent, and without taking into account subject-specific variability. The mean effect per each patient was not described in text or presented in figures. Therefore, it is impossible to know if the results could be skewed by a single unrepresentative patient. This is crucial for readers to be able to assess the robustness of the results. N of subjects should also be explicitly specified next to each result.

      We have added substantial changes to deal with subject specific effects, including new results and new figures.

      • Figure 4 now shows variance explained by the alpha pRF broken down by each participant for electrodes in V1 to V3. We also now show a similar figure for dorsolateral electrodes in Supplementary Figure 4-2.

      • Figure 5, which shows results from individual electrodes in V1 to V3, now includes color coding of electrodes by participant to make it clear how the electrodes group with participant. Similarly, for dorsolateral electrodes, we show electrodes grouped by participant in Supplementary Figure 5-1. Same for Supplementary Figure 6-2.

      • Supplementary Figure 7-2 now shows the benefits of our model-based approach for estimating alpha broken down by individual participants.

      • We also now include a new section in the supplement that summarizes for every major claim, what the supporting data are and how we addressed the issue of nesting electrodes by participant, section Graphical and statistical support for primary claims.

      Weakness 3.2. Separation between V1-V3 and dorsolateral electrodes:

      Out of 53 electrodes, 27 were doubly assigned as both V1-V3 and dorsolateral (Table 2, Figures 4,5). That means that out of 35 V1-V3 electrodes, 27 might actually be dorsolateral. This problem is exasperated by the low N. for example all the 20 electrodes in patient 8 assigned as V1-V3 might as well be dorsolateral. This double assignment didn't make sense to me and I wasn't convinced by the authors' reasoning. I think it needlessly inflates the N for comparing the two groups and casts doubts on the robustness of these analyses.

      Electrode assignment was probabilistic to reflect uncertainty in the mapping between location and retinotopic map. The probabilistic assignment is handled in two ways.

      (1) For visualizing results of single electrodes, we simply go with the maximum probability, so no electrode is visualized for both groups of data. For example, Figure 5a (V1-V3) and supplementary Figure 5-1a (dorsolateral electrodes) have no electrodes in common: no electrode is in both plots.

      (2) For quantitative summaries, we sample the electrodes probabilistically (for example Figures 4, 5c). So, if for example, an electrode has a 20% chance of being in V1 to V3, and 30% chance of being in dorsolateral maps, and a 50% chance of being in neither, the data from that electrode is used in only 20% of V1-V3 calculations and 30% of dorsolateral calculations. In 50% of calculations, it is not used at all. This process ensures that an electrode with uncertain assignment makes no more contribution to the results than an electrode with certain assignment. An electrode with a low probability of being in, say, V1-V3, makes little contribution to any reported results about V1-V3. This procedure is essentially a weighted mean, which the reviewer suggests in the recommendations. Thus, we believe there is not a problem of “double counting”.

      The alternative would have been to use maximum probability for all calculations. However, we think that doing so would be misleading, since it would not take into account uncertainty of assignment, and would thus overstate differences in results between the maps.

      We now clarify in the Results that for probabilistic calculations, the contribution of an electrode is limited by the likelihood of assignment (Section 2.3). We also now explain in the methods why we think probabilistic sampling is important.

      Weakness 3.3. Alpha pRFs are larger than broadband pRFs:

      First, as broadband pRF models were on average better fit to the data than alpha pRF models (dark bars in Supp Fig 3. Top row), I wonder if this could entirely explain the larger Alpha pRF (i.e. worse fits lead to larger pRFs). There was no anlaysis to rule out this possibility.

      We addressed this question in a new paragraph in Discussion section 3.1 (“What is the function of the large alpha pRFs?”, paragraph beginning… “Another possible interpretation is that the poorer model fit in the alpha pRF is due to lower signal-to-noise”). This paragraph both refers to prior work on the relationship between noise and pRF size and to our own control analyses (Supplementary Figure 5-2).

      Weakness 3.4 Statistics

      Second, examining closely the entire 2.4 section there wasn't any formal statistical test to back up any of the claims (not a single p-value is mentioned). It is crucial in my opinion to support each of the main claims of the paper with formal statistical testing.

      We agree that it is important for the reader to be able to link specific results and analyses to specific claims. We are not convinced that null hypothesis statistical testing is always the best approach. This is a topic of active debate in the scientific community.

      We added a new section that concisely states each major claim and explicitly annotates the supporting evidence. (Section 4.7). Please also refer to our responses to Reviewer #2 regarding statistical testing (Reviewer weakness 2.4 “Statistical testing”)

      Weakness 3.5 Summary

      While I judge these issues as crucial, I can also appreciate the considerable effort and thoughtfulness that went into this study. I think that addressing these concerns will substantially raise the confidence of the readership in the study's findings, which are potentially important and interesting.

      We again thank the reviewer for the positive comments.

      Reviewer #3 (Recommendations For The Authors):

      Suggestions for how to address the three major concerns:

      Suggestion 3.1.

      I am very well aware that it's very hard to have n=30 in a visual cortex ECOG study. That's fine. Best practice would be to have a linear mixed effects model with patients as a random effect. However, for some figures with just 3-4 patients (Figure 4,5) the sample size might be too small even for that. At the very minimum, I would expect to show in figures/describe in text all results per patient (perhaps one can do statistics within each patient, and show for each patient that the effect is significant). Even in primate studies with just two subjects it is expected to show that the results replicate for subject A and B. It is necessary to show that your results don't depend on a single unrepresentative subject. And if they do, at least be transparent about it.

      We have addressed this thoroughly. Please see response to Weakness 3.1 (“Low N / no single subject results/statistics”).

      Suggestion 3.2.

      I just don't get it. I would simply assign an electrode to V1-V3 or dorsolateral cortex based on which area has the highest probability. It doesn't make sense to me that an electrode that has 60% of being in dorsolateral cortex and only 10% to be in V1-V3 would be assigned as both V1-V3 and dorsolateral. Also, what's the rationale to include such electrode in the analysis for let's say V1-V3 (we have weak evidence to believe it's there)? I would either assign electrodes based on the highest probability, or alternatively do a weighted mean based on the probability of each electrode belonging to each region group (e.g. electrode with 40% to be in V1-V3, will get twice the weight as an electrode who has 20% to be in V1-V3) but this is more complicated.

      We have addressed this issue. Please refer to our response in Public Review (“Weakness 3.2 Separation between V1-V3 and dorsolateral”) for details.

      Suggestion 3.3.

      First, to exclude the possibility that alpha pRF are larger simply because they have a worse fit to the neural data, I would show if there is a correlation between the goodnessof-fit and pRF size (for alpha and broadband signals, separately). No [negative] correlation between goodness-of-fit and pRF size would be a good sign. I would also compare alpha & broadband receptive field size when controlling for the goodness-of-fit (selecting electrodes with similar goodness-of-fit for both signals). If the results replicate this way it would be convincing.

      Second, there are no statistical tests in section 2.4, possibly also in others. Even if you employ bootstrap / Monte-Carlo resampling methods you can extract a p-value.

      We have addressed this issue. Please refer to our response in Public Review Point 3.3 (“Alpha pRFs are larger than broadband pRFs”) for further details.

      Suggestion 3.4.

      Also, I don't understand the resampling procedure described in lines 652-660: "17.7 electrodes were assigned to V1-V3, 23.2 to dorsolateral, and 53 to either " - but 17.7 + 23.2 doesn't add up to 53. It also seems as if you assign visual areas differently in this resampling procedure than in the real data - "and randomly assigned each electrode to a visual area according to the Wang full probability distributions". If you assign in your actual data 27 electrodes to both visual areas, the same should be done in the resampling procedure (I would expect exactly 35 V1-V3 and 45 dorsolateral electrodes in every resampling, just the pRFs will be shuffled across electrodes).

      We apologize for the confusion.

      We fixed the sentence above, clarified the caption to Table 2, and also explained the overall strategy of probabilistic resampling better. See response to Public Review point 3.2 for details.

      Suggestion 3.5.

      These are rather technical comments but I believe they are crucial points to address in order to support your claims. I genuinely think your results are potentially interesting and important but these issues need to be first addressed in a revision. I also think your study may carry implications beyond just the visual domain, as alpha suppression is observed for different sensory modalities and cortical regions. Might be useful to discuss this in the discussion section.

      Agree. We added a paragraph on this point to the Discussion (very end of 3.2).

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for their thoughtful feedback. We have made substantial revisions to the manuscript to address each of their comments, as we detail below. We want to highlight one major change in particular that addresses a concern raised by both reviewers: the role of the drift rate in our models. Motivated by their astute comments, we went back through our models and realized that we had made a particular assumption that deserved more scrutiny. We previously assumed that the process of encoding the observations made correct use of the objective, generative correlation, but then the process of calculating the weight of evidence used a mis-scaled, subjective version of the correlation. These assumptions led us to scale the drift rate in the model by a term that quantified how the standard deviation of the observation distribution was affected by the objective correlation (encoding), but to scale the bound height by the subjective estimate of the correlation (evidence weighing). However, we realized that encoding may also depend on the subjective correlation experienced by the participant. We have now tested several alternative models and found that the best-fitting model assumes that a single, subjective estimate of the correlation governs both encoding and evidence weighing. An important consequence of updating our models in this way is that we can now account for the behavioral data without needing the additional correlation-dependent drift terms (which, as reviewer #2 pointed out, were difficult to explain).

      We also note that we changed the title slightly, replacing “weighting” with “weighing” for consistency with our usage throughout the manuscript.

      Please see below for more details about this important point and our responses to the reviewers’ specific concerns. 

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The behavioral strategies underlying decisions based on perceptual evidence are often studied in the lab with stimuli whose elements provide independent pieces of decision-related evidence that can thus be equally weighted to form a decision. In more natural scenarios, in contrast, the information provided by these pieces is often correlated, which impacts how they should be weighted. Tardiff, Kang & Gold set out to study decisions based on correlated evidence and compare the observed behavior of human decision-makers to normative decision strategies. To do so, they presented participants with visual sequences of pairs of localized cues whose location was either uncorrelated, or positively or negatively correlated, and whose mean location across a sequence determined the correct choice. Importantly, they adjusted this mean location such that, when correctly weighted, each pair of cues was equally informative, irrespective of how correlated it was. Thus, if participants follow the normative decision strategy, their choices and reaction times should not be impacted by these correlations. While Tardiff and colleagues found no impact of correlations on choices, they did find them to impact reaction times, suggesting that participants deviated from the normative decision strategy. To assess the degree of this deviation, Tardiff et al. adjusted drift-diffusion models (DDMs) for decision-making to process correlated decision evidence. Fitting these models to the behavior of individual participants revealed that participants considered correlations when weighing evidence, but did so with a slight underestimation of the magnitude of this correlation. This finding made Tardiff et al. conclude that participants followed a close-to-normative decision strategy that adequately took into account correlated evidence.

      Strengths:

      The authors adjust a previously used experimental design to include correlated evidence in a simple, yet powerful way. The way it does so is easy to understand and intuitive, such that participants don't need extensive training to perform the task. Limited training makes it more likely that the observed behavior is natural and reflective of everyday decision-making. Furthermore, the design allowed the authors to make the amount of decision-related evidence equal across different correlation magnitudes, which makes it easy to assess whether participants correctly take account of these correlations when weighing evidence: if they do, their behavior should not be impacted by the correlation magnitude.

      The relative simplicity with which correlated evidence is introduced also allowed the authors to fall back to the well-established DDM for perceptual decisions, which has few parameters, is known to implement the normative decision strategy in certain circumstances, and enjoys a great deal of empirical support. The authors show how correlations ought to impact these parameters, and which changes in parameters one would expect to see if participants misestimate these correlations or ignore them altogether (i.e., estimate correlations to be zero). This allowed them to assess the degree to which participants took into account correlations on the full continuum from perfect evidence weighting to complete ignorance. With this, they could show that participants in fact performed rational evidence weighting if one assumed that they slightly underestimated the correlation magnitude.

      Weaknesses:

      The experiment varies the correlation magnitude across trials such that participants need to estimate this magnitude within individual trials. This has several consequences:

      (1) Given that correlation magnitudes are estimated from limited data, the (subjective) estimates might be biased towards their average. This implies that, while the amount of evidence provided by each 'sample' is objectively independent of the correlation magnitude, it might subjectively depend on the correlation magnitude. As a result, the normative strategy might differ across correlation magnitudes, unlike what is suggested in the paper. In fact, it might be the case that the observed correlation magnitude underestimates corresponds to the normative strategy.

      We thank the reviewer for raising this interesting point, which we now address directly with new analyses including model fits (pp. 15–24). These analyses show that the participants were computing correlation-dependent weights of evidence from observation distributions that reflected suboptimal misestimates of correlation magnitudes. This strategy is normative in the sense that it is the best that they can do, given the encoding suboptimality. However, as we note in the manuscript, we do not know the source of the encoding suboptimality (pp. 23–24). We thus do not know if there might be a strategy they could have used to make the encoding more optimal.

      (2) The authors link the normative decision strategy to putting a bound on the log-likelihood ratio (logLR), as implemented by the two decision boundaries in DDMs. However, as the authors also highlight in their discussion, the 'particle location' in DDMs ceases to correspond to the logLR as soon as the strength of evidence varies across trials and isn't known by the decision maker before the start of each trial. In fact, in the used experiment, the strength of evidence is modulated in two ways:

      (i) by the (uncorrected) distance of the cue location mean from the decision boundary (what the authors call the evidence strength) and

      (ii) by the correlation magnitude. Both vary pseudo-randomly across trials, and are unknown to the decision-maker at the start of each trial. As previous work has shown (e.g. Kiani & Shadlen (2009), Drugowitsch et al. (2012)), the normative strategy then requires averaging over different evidence strength magnitudes while forming one's belief. This averaging causes the 'particle location' to deviate from the logLR. This deviation makes it unclear if the DDM used in the paper indeed implements the normative strategy, or is even a good approximation to it.

      We appreciate this subtle, but important, point. We now clarify that the DDM we use includes degrees of freedom that are consistent with normative decision processes that rely on the imperfect knowledge that participants have about the generative process on each trial, specifically: 1) a single drift-rate parameter that is fit to data across different values of the mean of the generative distribution, which is based on the standard assumption for these kinds of task conditions in which stimulus strength is varied randomly from trial-to-trial and thus prevents the use of exact logLR (which would require stimulus strength-specific scale factors; Gold and Shadlen, 2001); 2) the use of a collapsing bound, which in certain cases (including our task) is thought to support a stimulus strength-dependent calibration of the decision variable to optimize decisions (Drugowitsch et al, 2012); and 3) free parameters (one per correlation) to account for subjective estimates of the correlation, which affected the encoding of the observations that are otherwise weighed in a normative manner in the best-fitting model.

      Also, to clarify our terminology, we define the objective evidence strength as the expected logLR in a given condition, which for our task is dependent on both the distance of the mean from the decision boundary and the correlation (p. 7). 

      Given that participants observe 5 evidence samples per second and on average require multiple seconds to form their decisions, it might be that they are able to form a fairly precise estimate of the correlation magnitude within individual trials. However, whether this is indeed the case is not clear from the paper.

      These points are now addressed directly in Results (pp. 23–24) and Figure 7 supplemental figures 1–3. Specifically, we show that, as the reviewer correctly surmised above, empirical correlations computed on each trial tended to be biased towards zero (Fig 7–figure supplement 1). However, two other analyses were not consistent with the idea that participants’ decisions were based on trial-by-trial estimates of the empirical correlations: 1) those with the shortest RTs did not have the most-biased estimates (Fig 7–figure supplement 2), and 2) there was no systematic relationship between objective and subjective fit correlations across participants (Fig 7–figure supplement 3).

      Furthermore, the authors capture any underestimation of the correlation magnitude by an adjustment to the DDM bound parameter. They justify this adjustment by asking how this bound parameter needs to be set to achieve correlation-independent psychometric curves (as observed in their experiments) even if participants use a 'wrong' correlation magnitude to process the provided evidence. Curiously, however, the drift rate, which is the second critical DDM parameter, is not adjusted in the same way. If participants use the 'wrong' correlation magnitude, then wouldn't this lead to a mis-weighting of the evidence that would also impact the drift rate? The current model does not account for this, such that the provided estimates of the mis-estimated correlation magnitudes might be biased.

      We appreciate this valuable comment, and we agree that we previously neglected the potential impact of correlation misestimates on evidence strength. As we now clarify, the correlation enters these models in two ways: 1) via its effect on how the observations are encoded, which involves scaling both the drift and the bound; and 2) via its effect on evidence weighing, which involves scaling only the bound (pp. 15–18). We previously assumed that only the second form of scaling might involve a subjective (mis-)estimate of the correlation. We now examine several models that also include the possibility of either or both forms using subjective correlation estimates. We show that a model that assumes that the same subjective estimate drives both encoding and weighing (the “full-rho-hat” model) best accounts for the data. This model provides better fits (after accounting for differences in numbers of parameters) than models with: 1) no correlation-dependent adjustments (“base” model), 2) separate drift parameters for each correlation condition (“drift” model), 3) optimal (correlation-dependent) encoding but suboptimal weighing (“bound-rho-hat” model, which was our previous formulation), 4) suboptimal encoding and weighing (“scaled-rho-hat” model), and 5) optimal encoding but suboptimal weighing and separate correlation-dependent adjustments to the drift rate (“boundrho-hat plus drift” model). We have substantially revised Figures 5–7 and the associated text to address these points.

      Lastly, the paper makes it hard to assess how much better the participants' choices would be if they used the correct correlation magnitudes rather than underestimates thereof. This is important to know, as it only makes sense to strictly follow the normative strategy if it comes with a significant performance gain.

      We now include new analyses in Fig. 7 that demonstrate how much participants' choices and RT deviate from: 1) an ideal observer using the objective correlations, and 2) an observer who failed to adjust for the fit subjective correlation when weighing the evidence (i.e., using the subjective correlation for encoding but a correlation of zero for weighing). We now indicate that participants’ performance was quite close to that predicted by the ideal observer (using the true, objective correlation) for many conditions. Thus, we agree that they might not have had the impetus to optimize the decision process further, assuming it were possible under these task conditions.

      Reviewer #2 (Public review):

      Summary:

      This study by Tardiff, Kang & Gold seeks to: i) develop a normative account of how observers should adapt their decision-making across environments with different levels of correlation between successive pairs of observations, and ii) assess whether human decisions in such environments are consistent with this normative model.

      The authors first demonstrate that, in the range of environments under consideration here, an observer with full knowledge of the generative statistics should take both the magnitude and sign of the underlying correlation into account when assigning weight in their decisions to new observations: stronger negative correlations should translate into stronger weighting (due to the greater information furnished by an anticorrelated generative source), while stronger positive correlations should translate into weaker weighting (due to the greater redundancy of information provided by a positively correlated generative source). The authors then report an empirical study in which human participants performed a perceptual decision-making task requiring accumulation of information provided by pairs of perceptual samples, under different levels of pairwise correlation. They describe a nuanced pattern of results with effects of correlation being largely restricted to response times and not choice accuracy, which could partly be captured through fits of their normative model (in this implementation, an extension of the well-known drift-diffusion model) to the participants' behaviour while allowing for misestimation of the underlying correlations.

      Strengths:

      As the authors point out in their very well-written paper, appropriate weighting of information gathered in correlated environments has important consequences for real-world decisionmaking. Yet, while this function has been well studied for 'high-level' (e.g. economic) decisions, how we account for correlations when making simple perceptual decisions on well-controlled behavioural tasks has not been investigated. As such, this study addresses an important and timely question that will be of broad interest to psychologists and neuroscientists. The computational approach to arrive at normative principles for evidence weighting across environments with different levels of correlation is very elegant, makes strong connections with prior work in different decision-making contexts, and should serve as a valuable reference point for future studies in this domain. The empirical study is well designed and executed, and the modelling approach applied to these data showcases a deep understanding of relationships between different parameters of the drift-diffusion model and its application to this setting. Another strength of the study is that it is preregistered.

      Weaknesses:

      In my view, the major weaknesses of the study center on the narrow focus and subsequent interpretation of the modelling applied to the empirical data. I elaborate on each below:

      Modelling interpretation: the authors' preference for fitting and interpreting the observed behavioural effects primarily in terms of raising or lowering the decision bound is not well motivated and will potentially be confusing for readers, for several reasons. First, the entire study is conceived, in the Introduction and first part of the Results at least, as an investigation of appropriate adjustments of evidence weighting in the face of varying correlations. The authors do describe how changes in the scaling of the evidence in the drift-diffusion model are mathematically equivalent to changes in the decision bound - but this comes amidst a lengthy treatment of the interaction between different parameters of the model and aspects of the current task which I must admit to finding challenging to follow, and the motivation behind shifting the focus to bound adjustments remained quite opaque. 

      We appreciate this valuable feedback. We have revised the text in several places to make these important points more clearly. For example, in the Introduction we now clarify that “The weight of evidence is computed as a scaled version of each observation (the scaling can be applied to the observations or to the bound, which are mathematically equivalent; Green and Swets, 1966) to form the logLR” (p. 3). We also provide more details and intuition in the Results section for how and why we implemented the DDM the way we did. In particular, we now emphasize that the correlation enters these models in two ways: 1) via its effect on encoding the observations, which scales both the drift and the bound; and 2) via its effect on evidence weighing, which scales only the bound (pp. 15–18).

      Second, and more seriously, bound adjustments of the form modelled here do not seem to be a viable candidate for producing behavioural effects of varying correlations on this task. As the authors state toward the end of the Introduction, the decision bound is typically conceived of as being "predefined" - that is, set before a trial begins, at a level that should strike an appropriate balance between producing fast and accurate decisions. There is an abundance of evidence now that bounds can change over the course of a trial - but typically these changes are considered to be consistently applied in response to learned, predictable constraints imposed by a particular task (e.g. response deadlines, varying evidence strengths). In the present case, however, the critical consideration is that the correlation conditions were randomly interleaved across trials and were not signaled to participants in advance of each trial - and as such, what correlation the participant would encounter on an upcoming trial could not be predicted. It is unclear, then, how participants are meant to have implemented the bound adjustments prescribed by the model fits. At best, participants needed to form estimates of the correlation strength/direction (only possible by observing several pairs of samples in sequence) as each trial unfolded, and they might have dynamically adjusted their bounds (e.g. collapsing at a different rate across correlation conditions) in the process. But this is very different from the modelling approach that was taken. In general, then, I view the emphasis on bound adjustment as the candidate mechanism for producing the observed behavioural effects to be unjustified (see also next point).

      We again appreciate this valuable feedback and have made a number of revisions to try to clarify these points. In addition to addressing the equivalence of scaling the evidence and the bound in the Introduction, we have added the following section to Results (Results, p.18):

      “Note that scaling the bound in these formulations follows conventions of the DDM, as detailed above, to facilitate interpretation of the parameters. These formulations also raise an apparent contradiction: the “predefined” bound is scaled by subjective estimates of the correlation, but the correlation was randomized from trial to trial and thus could not be known in advance. However, scaling the bound in these ways is mathematically equivalent to using a fixed bound on each trial and scaling the observations to approximate logLR (see Methods). This equivalence implies that in the brain, effectively scaling a “predefined” bound could occur when assigning a weight of evidence to the observations as they are presented.”

      We also note in Methods (pp. 40–41):

      “In the DDM, this scaling of the evidence is equivalent to assuming that the decision variable accumulates momentary evidence of the form (x1 + x2) and then dividing the bound height by the appropriate scale factor. An alternative approach would be to scale both the signal and noise components of the DDM by the scale factor. However, scaling the bound is both simpler and maintains the conventional interpretation of the DDM parameters in which the bound reflects the decision-related components of the evidence accumulation process, and the drift rate represents sensory-related components.”

      We believe we provide strong evidence that participants adjust their evidence weighing to account for the correlations (see response below), but we remain agnostic as to how exactly this weighing is implemented in the brain.

      Modelling focus: Related to the previous point, it is stated that participants' choice and RT patterns across correlation conditions were qualitatively consistent with bound adjustments (p.20), but evidence for this claim is limited. Bound adjustments imply effects on both accuracy and RTs, but the data here show either only effects on RTs, or RT effects mixed with accuracy trends that are in the opposite direction to what would be expected from bound adjustment (i.e. slower RT with a trend toward diminished accuracy in the strong negative correlation condition; Figure 3b). Allowing both drift rate and bound to vary with correlation conditions allowed the model to provide a better account of the data in the strong correlation conditions - but from what I can tell this is not consistent with the authors' preregistered hypotheses, and they rely on a posthoc explanation that is necessarily speculative and cannot presently be tested (that the diminished drift rates for higher negative correlations are due to imperfect mapping between subjective evidence strength and the experimenter-controlled adjustment to objective evidence strengths to account for effects of correlations). In my opinion, there are other candidate explanations for the observed effects that could be tested but lie outside of the relatively narrow focus of the current modelling efforts. Both explanations arise from aspects of the task, which are not mutually exclusive. The first is that an interesting aspect of this task, which contrasts with most common 'univariate' perceptual decision-making tasks, is that participants need to integrate two pieces of information at a time, which may or may not require an additional computational step (e.g. averaging of two spatial locations before adding a single quantum of evidence to the building decision variable). There is abundant evidence that such intermediate computations on the evidence can give rise to certain forms of bias in the way that evidence is accumulated (e.g. 'selective integration' as outlined in Usher et al., 2019, Current Directions in Psychological Science; Luyckx et al., 2020, Cerebral Cortex) which may affect RTs and/or accuracy on the current task. The second candidate explanation is that participants in the current study were only given 200 ms to process and accumulate each pair of evidence samples, which may create a processing bottleneck causing certain pairs or individual samples to be missed (and which, assuming fixed decision bounds, would presumably selectively affect RT and not accuracy). If I were to speculate, I would say that both factors could be exacerbated in the negative correlation conditions, where pairs of samples will on average be more 'conflicting' (i.e. further apart) and, speculatively, more challenging to process in the limited time available here to participants. Such possibilities could be tested through, for example, an interrogation paradigm version of the current task which would allow the impact of individual pairs of evidence samples to be more straightforwardly assessed; and by assessing the impact of varying inter-sample intervals on the behavioural effects reported presently.

      We thank the reviewer for this thoughtful and valuable feedback. We have thoroughly updated the modeling section to include new analysis and clearer descriptions and interpretations of our findings (including Figs. 5–7 and additional references to the Usher, Luyckx, and other studies that identified decision suboptimalities). The comment about “an additional computational step” in converting the observations to evidence was particularly useful, in that it made us realize that we were making what we now consider to be a faulty assumption in our version of the DDM. Specifically, we assumed that subjective misestimates of the correlation affected how observations were converted to evidence (logLR) to form the decision (implemented as a scaling of the bound height), but we neglected to consider how suboptimalities in encoding the observations could also lead to misestimates of the correlation. We have retained the previous best-fitting models in the text, for comparison (the “bound-rho-hat” and “bound-rho-hat + drift” models). In addition, we now include a “full-rho-hat” model that assumes that misestimates of rho affect both the encoding of the observations, which affects the drift rate and bound height, and the weighing of the evidence, which affects only the bound height. This was the best-fitting model for most participants (after accounting for different numbers of parameters associated with the different models we tested). Note that the full-rho-hat model predicts the lack of correlation-dependent choice effects and the substantial correlation-dependent RT effects that we observed, without requiring any additional adjustments to the drift rate (as we resorted to previously).

      In summary, we believe that we now have a much more parsimonious account of our data, in terms of a model in which subjective estimates of the correlation are alone able to account for our patterns of choice and RT data. We fully agree that more work is needed to better understand the source of these misestimates but also think those questions are outside the scope of the present study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      A few minor comments:

      (1) Evidence can be correlated in multiple ways. It could be correlated within individual pieces of evidence in a sequence, or across elements in that sequence (e.g., across time). This distinction is important, as it determines how evidence ought to be accumulated across time. In particular, if evidence is correlated across time, simply summing it up might be the wrong thing to do. Thus, it would be beneficial to make this distinction in the Introduction, and to mention that this paper is only concerned with the first type of correlation.

      We now clarify this point in the Introduction (p. 5–6).

      (2) It is unclear without reading the Methods how the blue dashed line in Figure 4c is generated. To my understanding, it is a prediction of the naive DDM model. Is this correct?

      We now specify the models used to make the predictions shown in Fig. 4c (which now includes an additional model that uses unscaled observations as evidence).

      (3) In Methods, given the importance of the distribution of x1 + x2, it would be useful to write it out explicitly, e.g., x1 + x2 ~ N(2 mu_g, ..), specifying its mean and its variance.

      Excellent suggestion, added to p. 38.

      (4) From Methods and the caption of Figure 6 - Supplement 1 it becomes clear that the fitted DDM features a bound that collapses over time. I think that this should also be mentioned in the main text, as it is a not-too-unimportant feature of the model.

      Excellent suggestion, added to p. 15, with reference to Fig. 6-supplement 1 on p. 20.

      (5) The functional form of the bound is 2 (B - tb t). To my understanding, the effective B changes as a function of the correlation magnitude. Does tb as well? If not, wouldn't it be better if it does, to ensure that 2 (B - tb t) = 0 independent of the correlation magnitude?

      In our initial modeling, we also considered whether the correlation-dependent adjustment, which is a function of both correlation sign and magnitude, should be applied to the initial bound or to the instantaneous bound (i.e., after collapse, affecting tb as well). In a pilot analysis of data from 22 participants in the 0.6 correlation-magnitude group, we found that this choice had a negligible effect on the goodness-of-fit (deltaAIC = -0.9, protected exceedance probability = 0.63, in favor of the instantaneous bound scaling). We therefore used the instantaneous bound version in the analyses reported in the manuscript but doubt this choice was critical based on these results. We have clarified our implementation of the bound in Methods (p. 43–44).

      Reviewer #2 (Recommendations for the authors):

      In addition to the points raised above, I have some minor suggestions/open questions that arose from my reading of the manuscript:

      (1) Are the predictions outlined in the paper specific to cases where the two sources are symmetric around zero? If distributions are allowed to be asymmetric then one can imagine cases (i.e. when distribution means are sufficiently offset from one another) where positive correlations can increase evidence strength and negative correlations decrease evidence strength. There's absolutely still value and much elegance in what the authors are showing with this work, but if my intuition is correct, it should ideally be acknowledged that the predictions are restricted to a specific set of generative circumstances.

      We agree that there are a lot of ways to manipulate correlations and their effect on the weight of evidence. At the end of the Discussion, we emphasize that our results apply to this particular form of correlation (p. 32).

      (2) Isn't Figure 4C misleading in the sense that it collapses across the asymmetry in the effect of negative vs positive correlations on RT, which is clearly there in the data and which simply adjusting the correlation-dependent scale factor will not reproduce?

      We agree that this analysis does not address any asymmetries in suboptimal estimates of positive versus negative correlations. We believe that those effects are much better addressed using the model fitting, which we present later in the Results section. We have now simplified the analyses in Fig. 4c, reporting the difference in RT between positive and negative correlation conditions instead of a linear regression.

      (3) I found the transition on p.17 of the Results section from the scaling of drift rate by correlation to scaling of bound height to be quite abrupt and unclear. I suspect that many readers coming from a typical DDM modelling background will be operating under the assumption that drift rate and bound height are independent, and I think more could be done here to explain why scaling one parameter by correlation in the present case is in fact directly equivalent to scaling the other.

      Thank you for the very useful feedback, we have substantially revised this text to make these points more clearly.

      (4) P.3, typo: Alan *Turing*

      That’s embarrassing. Fixed.

      (5) P.27, typo: "participants adopt a *fixed* bound"

      Fixed.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      The manuscript suggests the zebrafish homolog of ctla-4 and generates a new mutant in it. However, the locus that is mutated is confusingly annotated as both CD28 (current main annotation in ZFIN) and CTLA-4/CD152 (one publication from 2020), see: https://zfin.org/ZDB-GENE-070912-128. Both human CTLA-4 and CD28 align with relatively similar scores to this gene. There seem to be other orthologs of these receptors in the zebrafish genome, including CD28-like (https://zfin.org/ZDB-GENE-070912-309) which neighbors the gene annotated as CD28 (exhibiting similar synteny as human CD28 and CTLA-4). It would be helpful to provide more information to distinguish between this family of genes and to further strengthen the evidence that this mutant is in ctla-4, not cd28. Also, is one of these genes in the zebrafish genome (e.g. cd28l) potentially a second homolog of CTLA-4? Is this why this mutant is viable in zebrafish and not mammals? Some suggestions:

      (a) A more extensive sequence alignment that considers both CTLA-4 and CD28, potentially identifying the best homolog of each human gene, especially taking into account any regions that are known to produce the functional differences between these receptors in mammals and effectively assigns identities to the two genes annotated as "cd28" and "cd28l" as well as the gene "si:dkey-1H24.6" that your CD28 ORF primers seem to bind to in zebrafish.

      In response to the reviewer's insightful suggestions, we have conducted more extensive sequence alignment and phylogenetic analyses that consider both CTLA-4, CD28, and CD28-like molecules, taking into account key regions crucial for the functionalities and functional differences between these molecules across various species, including mammals and zebrafish.

      Identification of zebrafish Ctla-4: We identified zebrafish Ctla-4 as a homolog of mammalian CTLA-4 based on key conserved structural and functional characteristics. Structurally, the Ctla-4 gene shares similar exon organization compared to mammalian CTLA-4. Ctla-4 is a type I transmembrane protein with typical immunoglobulin superfamily features. Multiple amino acid sequence alignments revealed that Ctla-4 contains a <sup>113</sup>LFPPPY<sup>118</sup> motif and a <sup>123</sup>GNGT<sup>126</sup> motif in the ectodomain, and a tyrosine-based <sup>206</sup>YVKF<sup>209</sup> motif in the distal C-terminal region. These motifs closely resemble MYPPPY, GNGT, and YVKM motifs in mammalian CTLA-4s, which are essential for binding to CD80/CD86 ligands and molecular internalization and signaling inhibition. Despite only 23.7% sequence identity to human CTLA-4, zebrafish Ctla-4 exhibits a similar tertiary structure with a two-layer β-sandwich architecture in its extracellular IgV-like domain. Four cysteine residues responsible for the formation of two pairs of disulfide bonds (Cys<sup>20</sup>-Cys<sup>91</sup>/Cys<sup>46</sup>-Cys<sup>65</sup> in zebrafish and Cys<sup>21</sup>-Cys<sup>92</sup>/Cys<sup>48</sup>-Cys<sup>66</sup> in humans) that connect the two-layer β-sandwich are conserved. Additionally, a separate cysteine residue (Cys<sup>120</sup> in zebrafish and Cys<sup>120</sup> in humans) involved in dimerization is also present, and Western blot analysis under reducing and non-reducing conditions confirmed Ctla-4’s dimerization. Phylogenetically, Ctla-4 clusters with other known CTLA-4 homologs from different species with high bootstrap probability, while zebrafish Cd28 groups separately with other CD28s. Functionally, Ctla-4 is predominantly expressed on CD4<sup>+</sup> T and CD8<sup>+</sup> T cells in zebrafish. It plays a pivotal inhibitory role in T cell activation by competing with CD28 for binding to CD80/86, as validated through a series of both in vitro and in vivo assays, including microscale thermophoresis assays which demonstrated that Ctla-4 exhibits a significantly higher affinity for Cd80/86 than Cd28 (KD = 0.50 ± 0.25 μM vs. KD = 2.64 ± 0.45 μM). These findings confirm Ctla-4 as an immune checkpoint molecule, reinforcing its identification within the CTLA-4 family.

      Comparison between zebrafish Cd28 and "Cd28l": Zebrafish Cd28 contains an extracellular SYPPPF motif and an intracellular FYIQ motif. The extracellular SYPPPF motif is essential for binding to Cd80/CD86, while the intracellular FYIQ motif likely mediates kinase recruitment and co-stimulatory signaling. In contrast, the "Cd28l" molecule lacks the SYPPPF motif, which is critical for Cd80/CD86 binding, and exhibits strong similarity in its C-terminal 79 amino acids to Ctla-4 rather than Cd28. Consequently, "Cd28l" resembles an atypical Ctla-4-like molecule but fails to exhibit Cd80/CD86 binding activity.

      We have incorporated the relevant analysis results into the main text of the revised manuscript and updated Supplementary Figure 1. Additionally, we provide key supplementary analyses here for the reviewer's convenience.  

      Author response image 1.

      Illustrates the alignment of Ctla-4 (XP_005167576.1) and Ctla-4-like (XP_005167567.1, previously referred to as "Cd28l") in zebrafish, generated using ClustalX and Jalview. Conserved and partially conserved amino acid residues are highlighted in color gradients ranging from carnation to red, respectively. The B7-binding motif is encircled with a red square.

      (b) Clearer description in the main text of such an analysis to better establish that the mutated gene is a homolog of ctla-4, NOT cd28.

      We appreciate the reviewer's advice. Additional confirmation of zebrafish Ctla-4 is detailed in lines 119-126 of the revised manuscript.

      (c) Are there mammalian anti-ctla-4 and/or anti-cd28 antibodies that are expected to bind to these zebrafish proteins? If so, looking to see whether staining is lost (or western blotting is lost) in your mutants could be additionally informative. (Our understanding is that your mouse anti-Ctla-4 antibody is raised against recombinant protein generated from this same locus, and so is an elegant demonstration that your mutant eliminates the production of the protein, but unfortunately does not contribute additional information to help establish its homology to mammalian proteins).

      This suggestion holds significant value. However, a major challenge in fish immunology research is the limited availability of antibodies suitable for use in fish species; antibodies developed for mammals are generally not applicable. We attempted to use human and mouse anti-CTLA-4 and anti-CD28 antibodies to identify Ctla-4 and Cd28 in zebrafish, but the results were inconclusive, with no expected signals. This outcome likely arises from the low sequence identity between human/mouse CTLA-4 and CD28 and their zebrafish homologs (ranging from 21.3% to 23.7% for CTLA-4 and 21.2% to 24.0% for CD28). Therefore, developing specific antibodies against zebrafish Ctla-4 is essential for advancing this research.

      The methods section is generally insufficient and doesn't describe many of the experiments performed in this manuscript. Some examples:

      (a) No description of antibodies used for staining or Western blots (Figure1C, 1D, 1F).

      (b) No description of immunofluorescence protocol (Figure 1D, 1F).

      (c) No description of Western blot protocol (Figure 1C, 2C).

      (d) No description of electron microscopy approach (Figure 2K).

      (e) No description of the approach for determining microbial diversity (Entirety of Figure 6).

      (f) No description of PHA/CFSE/Flow experiments (Figure 7A-E).

      (g) No description of AlphaFold approach (Figures 7F-G).

      (h) No description of co-IP approach (Figure 7H).

      (i) No description of MST assay or experiment (Figure 7I).

      (j) No description of purification of recombinant proteins, generation of anti-Ctla-4 antibody, or molecular interaction assays (Figures S2 and S6).

      We apologize for this oversight. The methods section was inadvertently incomplete due to an error during the file upload process at submission. This issue has been addressed in the revised manuscript. We appreciate your understanding.

      Figure 5 suggests that there are more Th2 cells 1, Th2 cells 2, and NKT cells in ctla-4 mutants through scRNA-seq. However, as the cell numbers for these are low in both genotypes, there is only a single replicate for each genotype scRNA-seq experiment, and dissociation stress can skew cell-type proportions, this finding would be much more convincing if another method that does not depend on dissociation was used to verify these results. Furthermore, while Th2 cells 2 are almost absent in WT scRNA-seq, KEGG analysis suggests that a major contributor to their clustering may be ribosomal genes (Fig. 5I). Since no batch correction was described in the methods, it would be beneficial to verify the presence of this cluster in ctla-4 mutants and WT animals through other means, such as in situ hybridization or transgenic lines.   

      We are grateful for the insightful comments provided by the reviewer. Given that research on T cell subpopulations in fish is still in its nascent stages, the availability of specific marker antibodies and relevant transgenic strains remains limited. Our single-cell RNA sequencing (scRNA-seq) analysis revealed that a distinct Th2 subset 2 was predominantly observed in Ctla-4 mutants but was rare in wild-type zebrafish, it suggests that this subset may primarily arise under pathological conditions associated with Ctla-4 mutation. Due to the near absence of Th2 subset 2 in wild-type samples, KEGG enrichment analysis was performed exclusively on this subset from Ctla-4-deficient intestines. The ribosome pathway was significantly enriched, suggesting that these cells may be activated to fulfill their effector functions. However, confirming the presence of Th2 subset 2 using in situ hybridization or transgenic zebrafish lines is currently challenging due to the lack of lineage-specific markers for detailed classification of Th2 cell subsets and the preliminary nature of scRNA-seq predictions.

      To address the reviewers' suggestion to confirm compositional changes in Th2 and NKT cells using dissociation-independent methods, we quantified mRNA levels of Th2 (il4, il13, and gata3) and NKT (nkl.2, nkl.4, and prf1.1) cell marker genes via RT-qPCR in intestines from wild-type and mutant zebrafish. As shown in Figure S7B and S7C, these markers were significantly upregulated in Ctla-4-deficient intestines compared to wild-type controls. This indicates an overall increase in Th2 and NKT cell activity in mutant zebrafish, aligning with our scRNA-seq analysis and supports the validity of our initial findings.

      Before analyzing the scRNA-seq data, we performed batch correction using the Harmony algorithm via cloud-based Cumulus v1.0 on the aggregated gene-count matrices. This methodological detail has been included in the “Materials and Methods” section of the revised manuscript. Moreover, the RT-qPCR results are presented in Supplementary Figures S7B and S7C.

      Quality control (e.g., no. of UMIs, no. of genes, etc.) metrics of the scRNAseq experiments should be presented in the supplementary information for each sample to help support that observed differential expression is not merely an outcome of different sequencing depths of the two samples.

      As illustrated in Fig. S5, the quality control data have been supplemented to include the effective cell number of the sample, along with pre- and post-filtering metrics such as nFeature_RNA, nCount_RNA and mitochondrial percentage (percent.mito). Furthermore, scatter plots comparing the basic information of the sample cells before and after filtering are provided.

      Some references to prior research lack citations. Examples:

      (a)"Given that Ctla-4 is primarily expressed on T cells (Figure 1E-F), and its absence has been shown to result in intestinal immune dysregulation, indicating a crucial role of this molecule as a conserved immune checkpoint in T cell inhibition."

      The references were incorporated into line 71 of the revised manuscript.

      (b) Line 83: Cite evidence/review for the high degree of conservation in adaptive immunity.

      The references were incorporated into line 93 of the revised manuscript.

      (c) Lines 100-102: Cite the evidence that MYPPPY is a CD80/86 binding motif.

      The references were incorporated into line 117 of the revised manuscript.

      The text associated with Figure 8 (Lines 280-289) does not clearly state that rescue experiments are being done in mutant zebrafish.

      We have provided a clear explanation of the rescue experiments conducted in Ctla-4-deficient zebrafish. This revision has been incorporated into line 319.

      Line 102: Is there evidence from other animals that LFPPPY can function as a binding site for CD80/CD86? Does CD28 also have this same motif?

      The extracellular domains of CTLA-4 and CD28, which bind to CD80/CD86, are largely conserved across various species. This conservation is exemplified by a central PPP core motif, although the flanking amino acids exhibit slight variations. In mammals, both CTLA-4 and CD28 feature the conserved MYPPPY motif. By contrast, in teleost fish, such as rainbow trout, CTLA-4 contains an LYPPPY motif, while CD28 has an MYPPPI motif (Ref. 1). Grass carp CTLA-4 displays an LFPPPY motif, whereas its CD28 variant bears an IYPPPF motif. Yeast two-hybrid assays confirm that these motifs facilitate interactions between grass carp CTLA-4 and CD28 with CD80/CD86 (Ref. 2). Similarly, zebrafish Ctla-4 contains the LFPPPY motif observed in grass carp, while Cd28 exhibits a closely related SYPPPF motif.

      References:

      (1) Bernard, D et al. (2006) Costimulatory Receptors in a Teleost Fish: Typical CD28, Elusive CTLA-4. J Immunol. 176: 4191-4200.

      (2) Lu T Z et al. (2022) Molecular and Functional Analyses of the Primordial Costimulatory Molecule CD80/86 and Its Receptors CD28 and CD152 (CTLA-4) in a Teleost Fish. Frontiers in Immunology. 13:885005.

      Line 110-111: Suggest adding citation of these previously published scRNAseq data to the main text in addition to the current description in the Figure legend.

      The reference has been added in line 129 in the main text.

      Figure 3B: It would be helpful to label a few of the top differentially expressed genes in Panel B?

      The top differentially expressed genes have been labeled in Figure 3B.

      Figure 3G: It's unclear how this analysis was conducted, what this figure is supposed to demonstrate, and in its current form it is illegible.

      Figure 3G displays a protein-protein interaction network constructed from differentially expressed genes. The densely connected nodes, representing physical interactions among proteins, provide valuable insights for basic scientific inquiry and biological or biomedical applications. As proteins are crucial to diverse biological functions, their interactions illuminate the molecular and cellular mechanisms that govern both healthy and diseased states in organisms. Consequently, these networks facilitate the understanding of pathogenic and physiological processes involved in disease onset and progression.

      To construct this network, we first utilized the STRING database (https://string-db.org) to generate an initial network diagram using the differentially expressed genes. This diagram was subsequently imported into Cytoscape (version 3.9.1) for visualization and further analysis. Node size and color intensity reflect the density of interactions, indicating the relative importance of each protein. Figure 3G illustrates that IL1β was a central cytokine hub in the disease process of intestinal inflammation in Ctla-4-deficient zebrafish.

      Expression scale labeling:

      (a) Most gene expression scales are not clearly labeled: do they represent mean expression or scaled expression? Has the expression been log-transformed, and if so, which log (natural log? Log10? Log2?). See: Figure 3E, 3I, 4D, 4E, 5B, 5G, 5H, 6I.

      The gene expression scales are detailed in the figure legends. Specifically, Figures 3E, 3I, and 6I present heatmaps depicting row-scaled expression levels for the corresponding genes. In contrast, Figures 4D and 4E display heatmaps illustrating the mean expression of these genes. Additionally, the dot plots in Figures 5B, 5G, and 5H visualize the mean expression levels of the respective genes.

      (b) For some plots, diverging color schemes (i.e. with white/yellow in the middle) are used for non-diverging scales and would be better represented with a sequential color scale. See: 4D, 4E, and potentially others (not fully clear because of the previous point).

      The color schemes in Figures 4D and 4E have been updated to a sequential color scale. The gene expression data depicted in these figures represent mean expression values and have not undergone log transformation. This information has been incorporated into the figure legend for clarity.

      Lines 186-187: Though it is merely suggested, apoptotic gene expression can be upregulated as part of the dissociation process for single-cell RNAseq. This would be much stronger if supported by a staining, such as anti-Caspase 3.

      Following the reviewer's insightful recommendations, we conducted a TUNEL assay to evaluate apoptosis in the posterior intestinal epithelial cells of both wild-type and Ctla-4-deficient zebrafish. As expected, our results demonstrate a significant increase in epithelial cell apoptosis in Ctla-4-deficient zebrafish compared with wild-type fish. The corresponding data are presented in Figure S6D and have been incorporated into the manuscript. Detailed protocols for the TUNEL assay have also been included in the Materials and Methods section.

      Author response image 2.

      Illustrates the quantification of TUNEL-positive cells per 1 × 10<sup>4</sup> μm<sup>2/⁻</sup> in the posterior intestines of both wild-type (WT) and ctla-4<sup>⁻/⁻</sup> zebrafish (n = 5). The data demonstrate a comparative analysis of apoptotic cell density between the two genotypes.

      Lines 248-251: This manuscript demonstrates gut inflammation and also changes in microbial diversity, but I don't think it demonstrates an association between them, which would require an experiment that for instance rescues one of these changes and shows that it ameliorates the other change, despite still being a ctla-4 mutant.

      We appreciate the valuable comments from the reviewer. Recently, the relationship between inflammatory bowel disease (IBD) and gut microbial diversity has garnered considerable attention, with several key findings emerging from human IBD studies. For instance, patients with IBD (including ulcerative colitis and Crohn's disease) exhibit reduced microbial diversity, which is correlated with disease severity. This decrease in microbial richness is thought to stem from the loss of normal anaerobic bacteria, such as Bacteroides, Eubacterium, and Lactobacillus (Refs. 1-6). Research using mouse models has shown that inflammation increases oxygen and nitrate levels within the intestinal lumen, along with elevated host-derived electron acceptors, thereby promoting anaerobic respiration and overgrowth of Enterobacteriaceae (Ref 7). Consistent with these findings, our study observed a significant enrichment of Enterobacteriaceae in the inflamed intestines of Ctla-4-deficient zebrafish, which supporting the observations in mice. Despite this progress, the zebrafish model for intestinal inflammation remains under development, with limitations in available techniques for manipulating intestinal inflammation and reconstructing gut microbiota. These challenges hinder investigations into the association between intestinal inflammation and changes in microbial diversity. We plan to address these issues through ongoing technological advancements and further research. We thank the reviewer for their understanding.

      References:

      (1) Ott S J, Musfeldt M, Wenderoth D F, Hampe J, Brant O, Fölsch U R et al. (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685-693.

      (2) Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L et al. (2006) Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205-211.

      (3) Qin J J, Li R Q, Raes J, Arumugam M, Burgdorf K S, Manichanh C et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-U70.

      (4) Sha S M, Xu B, Wang X, Zhang Y G, Wang H H, Kong X Y et al. (2013) The biodiversity and composition of the dominant fecal microbiota in patients with inflammatory bowel disease. Diagn Micr Infec Dis 75:245-251.

      (5) Ray K. (2015) IBD. Gut microbiota in IBD goes viral. Nat Rev Gastroenterol Hepatol 12:122.

      (6) Papa E, Docktor M, Smillie C, Weber S, Preheim S P, Gevers D et al. (2012) Non-Invasive Mapping of the Gastrointestinal Microbiota Identifies Children with Inflammatory Bowel Disease. Plos One 7: e39242-39254.

      (7) Hughes E R, Winter M G, Duerkop B A, Spiga L, de Carvalho T F, Zhu W H et al. (2017) Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe 21:208-219.

      Lines 270-272 say that interaction between Cd28/ctla-4 and Cd80/86 was demonstrated through bioinformatics, flow-cytometry, and Co-IP. Does this need to reference Fig S6D for the flow data? Figures 7F-G are very hard to read or comprehend as they are very small. Figure 7H is the most compelling evidence of this interaction and might stand out better if emphasized with a sentence referencing it on its own in the manuscript. 

      In this study, we utilized an integrated approach combining bioinformatics prediction, flow cytometry, and co-immunoprecipitation (Co-IP) to comprehensively investigate and validate the interactions between Cd28/Ctla-4 and Cd80/86. Flow cytometry analysis, as depicted in Supplementary Figure 6D (revised as Supplementary Figure 8F), demonstrated the surface expression of Cd80/86 on HEK293T cells and quantified their interactions with Cd28 and Ctla-4. These experiments not only validated the interactions between Cd80/86 and Cd28/Ctla-4 but also revealed a dose-dependent relationship, providing robust supplementary evidence for the molecular interactions under investigation. Furthermore, in Figure 7F-G, the axis font sizes were enlarged to improve readability. Additionally, in response to reviewers' feedback, we have emphasized Figure 7H, which presents the most compelling evidence for molecular interactions, by including a standalone sentence in the text to enhance its prominence.

      For Figure 7A-E, for non-immunologists, it is unclear what experiment was performed here - it would be helpful to add a 1-sentence summary of the assay to the main text or figure legend.

      We apologize for this oversight. Figures 7A–E illustrate the functional assessment of the inhibitory role of Ctla-4 in Cd80/86 and Cd28-mediated T cell activation. A detailed description of the methodologies associated with Figures 7A–E is provided in the ‘Materials and Methods’ section of the revised manuscript.

      For Figure 7F-G, it is extremely hard to read the heat map legends and the X and Y-axis. Also, what the heatmaps show and how that fits the overall narrative can be elaborated significantly.

      We regret this oversight. To enhance clarity, we have increased the font size of the heatmap legends and the X and Y-axes, as shown in the following figure. Additionally, a detailed analysis of these figures is provided in lines 299–306 of the main text.

      In general, the main text that accompanies Figure 7 should be expanded to more clearly describe these experiments/analyses and their results.

      We have conducted a detailed analysis of the experiments and results presented in Figure 7. This analysis is described in lines 278-314.

      Reviewer #2:

      The scRNASeq assay is missing some basic characterization: how many WT and mutant fish were assayed in the experiment? how many WT and mutant cells were subject to sequencing? Before going to the immune cell types, are intestinal cell types comparable between the two conditions? Are there specific regions in the tSNE plot in Figure 4A abundant of WT or ctla-4 mutant cells?

      In the experiment, we analyzed 30 wild-type and 30 mutant zebrafish for scRNA-seq, with an initial dataset comprising 8,047 cells in the wild-type group and 8,321 cells in the mutant group. Sample preparation details are provided on lines 620-652. Due to the relatively high expression of mitochondrial genes in intestinal tissue, quality control filtering yielded 3,263 cells in the wild-type group and 4,276 cells in the mutant group. Given that the intestinal tissues were dissociated using identical protocols, the resulting cell types are comparable between the two conditions. Both the wild-type and Ctla-4-deficient groups contained enterocytes, enteroendocrine cells, smooth muscle cells, neutrophils, macrophages, B cells, and a cluster of T/NK/ILC-like cells. Notably, no distinct regions were enriched for either condition in the tSNE plot (Figure 4A).

      The cell proliferation experiment using PHA stimulation assay demonstrated the role of Ctla-4 in cell proliferation, while the transcriptomic evidence points towards activation rather than an overall expansion of T-cell numbers. This should be discussed towards a more comprehensive model of how subtypes of cells can be differentially proliferating in the disease model.

      In the PHA-stimulated T cell proliferation assay, we aimed to investigate the regulatory roles of Ctla-4, Cd28, and Cd80/86 in T cell activation, focusing on validating Ctla-4's inhibitory function as an immune checkpoint. While our study examined general regulatory mechanisms, it did not specifically address the distinct roles of Ctla-4 in different T cell subsets. We appreciate the reviewer's suggestion to develop a more comprehensive model that elucidates differential T cell activation across various subsets in disease models. However, due to the nascent stage of research on fish T cell subsets and limitations in lineage-specific antibodies and transgenic strains, such investigations are currently challenging. We plan to pursue these studies in the future. Despite these constraints, our single-cell RNA sequencing data revealed an increased proportion of Th2 subset cells in Ctla-4-deficient zebrafish, as evidenced by elevated expression levels of Th2 markers (Il4, Il13, and Gata3) via RT-qPCR (see Figures S7B). Notably, recent studies in mouse models have shown that naïve T cells from CTLA-4-deficient mice tend to differentiate into Th2 cells post-proliferation, with activated Th2 cells secreting higher levels of cytokines like IL-4, IL-5, and IL-13, thereby exerting their effector functions (Refs. 1-2). Consequently, our findings align with observations in mice, suggesting conserved CTLA-4 functions across species. We have expanded the "Discussion" section to clarify these points.

      References:

      (1) Bour-Jordan H, Grogan J L, Tang Q Z, Auger J A, Locksley R M, Bluestone J A et al. (2003) CTLA-4 regulates the requirement for cytokine-induced signals in T<sub>H</sub>2 lineage commitment. Nature Immunology 4: 182-188.

      (2) Khattri Roli, Auger, Julie A, Griffin Matthew D, Sharpe Arlene H, Bluestone Jeffrey A et al. (1999) Lymphoproliferative Disorder in CTLA-4 Knockout Mice Is Characterized by CD28-Regulated Activation of Th2 Responses. The Journal of Immunology 162:5784-5791.

      It would be nice if the authors could also demonstrate whether other tissues in the zebrafish have an inflammation response, to show whether the model is specific to IBD.

      In addition to intestinal tissues, we also performed histological analysis on the liver of Ctla-4-deficient zebrafish. The results showed that Ctla-4 deficiency led to mild edema in a few hepatocytes, and lymphocyte infiltration was not significant. Compared to the liver, we consider intestinal inflammation to be more pronounced.

      Some minor comments on terminology

      (a) "multiomics" usually refers to omics experiments with different modalities (e.g. transcriptomics, proteomics, metabolomics etc), while the current paper only has transcriptomics assays. I wouldn't call it "multiomics" analysis.

      We appreciate the reviewer's attention to this issue. The "multi-omics" has been revised to "transcriptomics".

      (b) In several parts of the figure legend the author mentioned "tSNE nonlinear clustering" (Figures 4A and 5A). tSNE is an embedding method rather than a clustering method.

      The "tSNE nonlinear clustering" has been revised to "tSNE embedding”.

      (c) Figure 1E is a UMAP rather than tSNE.

      The "tSNE" has been revised to "UMAP" in the figure legend in line 1043.

      Reviewer #3: 

      Line 28: The link is not directly reflected in this sentence describing CTLA-4 knockout mice.

      We appreciate the reviewer for bringing this issue to our attention. We have expanded our description of CTLA-4 knockout mice on lines 77-84.

      Line 80-83: There is a lack of details about the CTLA-4-deficient mice. The factor that Th2 response could be induced has been revealed in mouse model. See the reference entitled "CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment" published in Nature Immunology.

      We thank the reviewer for providing valuable references. We have added descriptions detailing the differentiation of T cells into Th2 cells in CTLA-4-deficient mice on lines 78–81, and the relevant references have been cited in the revised manuscript.

      To better introduce the CTLA-4 immunobiology, the paper entitled "Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy" published in Molecules and Cells should be referred.

      We have provided additional details on CTLA-4 immunology (lines 75-84) and have included the relevant reference in the revised manuscript.

      In current results, there are many sentences that should be moved to the discussion, such as lines 123-124, lines 152-153, lines 199-200, and lines 206-207. So, the result sections just describe the results, and the discussions should be put together in the discussion.

      We have relocated these sentences to the 'Discussion' section and refined the writing.

      In the discussion, the zebrafish enteritis model, such as DSS/TNBS and SBMIE models, should also be compared with the current CTLA-4 knockout model. Also, the comparison between the current fish IBD model and the previous mouse model should also be included, to enlighten the usage of CTLA-4 knockout zebrafish IBD model.

      We compared the phenotypes of our current Ctla-4-knockout zebrafish IBD model with other models, including DSS-induced IBD models in zebrafish and mice, as well as TNBS- and SBM-induced IBD models in zebrafish. The details are included in the "Discussion" section (lines 353-365).

      As to the writing, the structure of the discussion is poor. The paragraphs are very long and hard to follow. Many findings from current results were not yet discussed. I just can't find any discussion about the alteration of intestinal microbiota.

      In response to the reviewers' constructive feedback, we have revised and enhanced the discussion section. Furthermore, we have integrated the most recent research findings relevant to this study into the discussion to improve its relevance and comprehensiveness.

      In the discussion, the aerobic-related bacteria in 16s rRNA sequencing results should be focused on echoing the histopathological findings, such as the emptier gut of CTLA-4 knockout zebrafish.

      As mentioned above, the discussion section has been revised and expanded to provide a better understanding of the potential interplay among intestinal inflammatory pathology, gut microbiota alterations, and immune cell dysregulation in Ctla-4-deficient zebrafish. Furthermore, promising avenues for future research that warrant further investigation were also discussed.

      In the current method, there are no descriptions for many used methods, which already generated results, such as WB, MLR, MST, Co-IP, AlphaFold2 prediction, and how to make currently used anti-zfCTLA4 antibody. Also, there is a lack of description of the method of the husbandry of knockout zebrafish line.

      We regret these flaws. The methods section was inadvertently incomplete due to an error during the file upload process at submission. This issue has been rectified in the revised manuscript. Additionally, Ctla-4-deficient zebrafish were reared under the same conditions as wild-type zebrafish, and the rearing methods are now described in the "Generation of Ctla-4-deficient zebrafish" section of the Materials and Methods.

      Line 360: the experimental zebrafish with different ages could be a risk for unstable intestinal health. See the reference entitled "The immunoregulatory role of fish-specific type II SOCS via inhibiting metaflammation in the gut-liver axis" published in Water Biology and Security. The age-related differences in zebrafish could be observed in the gut.

      We appreciate the reviewers' reminders. The Ctla-4 mutant zebrafish used in our experiments were 4 months old, while the wild-type zebrafish ranged from 4 to 6 months old. These experimental fish were relatively young and uniformly distributed in age. During our study, we examined the morphological structures of the intestines in zebrafish aged 4 to 6 months and observed no significant abnormalities. These findings align with previous research indicating no significant difference in intestinal health between 3-month-old and 6-month-old wild-type zebrafish (Ref. 1). Consequently, we conclude that there is no notable aging-related change in the intestines of zebrafish aged 4 to 6 months. This reduces the risk associated with age-related variables in our study. We have added an explanation stating that the Ctla-4 mutant zebrafish used in the experiments were 4 months old (Line 449) in the revised manuscript.

      Reference

      (1) Shan Junwei, Wang Guangxin, Li Heng, Zhao Xuyang et al. (2023) The immunoregulatory role of fish-specific type II SOCS via inhibiting metaflammation in the gut-liver axis. Water Biology and Security 2: 100131-100144.

      Section "Generation of Ctla-4-deficient zebrafish": There is a lack of description of PCR condition for the genotyping.

      The target DNA sequence was amplified at 94 °C for 4 min, followed by 35 cycles at 94°C for 30 s, 58°C for 30 s and 72°C for 30 s, culminating in a final extension at 72 °C for 10 min. The polymerase chain reaction (PCR) conditions are described in lines 458-460.

      How old of the used mutant fish? There should be a section "sampling" to provide the sampling details.

      The "Sampling" information has been incorporated into the "Materials and Methods" section of the revised manuscript. Wild-type and Ctla-4-deficient zebrafish of varying months were housed in separate tanks, each labeled with its corresponding birth date. Experiments utilized Ctla-4-deficient zebrafish aged 4 months and wild-type zebrafish aged between 4 to 6 months.

      Line 378-380: The index for the histopathological analysis should be detailed, rather than just provide a reference. I don't think these indexes are good enough to specifically describe the pathological changes of intestinal villi and mucosa. It is suggested to improve with detailed parameters. As described in the paper entitled "Pathology of Gastric Intestinal Metaplasia: Clinical Implications" published in Am J Gastroenterol., histochemical, normal gastric mucins are pH neutral, and they stain magenta with periodic acid-Schiff (PAS). In an inflamed gut, acid mucins replace the original gastric mucins and are stained blue with Alcian blue (AB). So, to reveal the pathological changes of goblet cells and involved mucin components, AB staining should be added. Also, for the number of goblet cells in the inflammatory intestine, combining PAS and AB staining is the best way to reveal all the goblet cells. In Figure 2, there were very few goblet cells. The infiltration of lymphocytes and the empty intestinal lumen could be observed. Thus, the ratio between the length of intestinal villi and the intestinal ring radius should calculated.

      In response to the reviewers’ valuable suggestions, we have augmented the manuscript by providing additional parameters related to the pathological changes observed in the Ctlta-4-deficient zebrafish intestines, including the mucin component changes identified through PAS and AB-PAS staining, the variations in the number of goblet cells evaluated by AB-PAS staining, and the ratio of intestinal villi length to the intestinal ring radius, as illustrated in the following figures. These new findings are detailed in the "Materials and Methods" (lines 563-566) and "Results" (lines 143-146) sections, along with Supplementary Figure S3 of the revised manuscript.

      Section "Quantitative real-time PCR": What's the machine used for qPCR? How about the qPCR validation of RNA seq data? I did not see any related description of data and methods for qPCR validation. In addition, beta-actin is not a stable internal reference gene, to analyze inflammation and immune-related gene expression. See the reference entitled "Actin, a reliable marker of internal control?" published in Clin Chim Acta. Other stable housekeeping genes, such as EF1alpha and 18s, could be better internal references.

      RT-qPCR experiments were conducted using a PCR thermocycler device (CFX Connect Real-Time PCR Detection System with Precision Melt Analysis<sup>TM</sup> Software, Bio-Rad, Cat. No. 1855200EM1). This information has been incorporated into lines 608-610 of the "Materials and Methods" section. In these experiments, key gene sequences of interest, including il13, mpx, and il1β, were extracted from RNA-seq data for RT-qPCR validation. To ensure accurate normalization, potential internal controls were evaluated, and β-actin was identified as a suitable candidate due to its consistent expression levels in the intestines of both wild-type and Ctla-4-deficient zebrafish. The use of β-actin as an internal control is further supported by its application in recent studies on intestinal inflammation (Refs 1–2).

      References:

      (1) Tang Duozhuang, Zeng Ting, Wang Yiting, Cui Hui et al. (2020) Dietary restriction increases protective gut bacteria to rescue lethal methotrexate-induced intestinal toxicity. Gut Microbes 12: 1714401-1714422.

      (2) Malik Ankit, Sharma Deepika et al. (2023) Epithelial IFNγ signaling and compartmentalized antigen presentation orchestrate gut immunity. Nature 623: 1044-1052.

      How to generate sCtla-4-Ig, Cd28-Ig and Cd80/86? No method could be found.

      We apologize for the omission of these methods. The detailed protocols have now been added to the "Materials and Methods" section of the revised manuscript (lines 464-481).

      Figure 5: As reviewed in the paper entitled "Teleost T and NK cell immunity" published in Fish and Shellfsh Immunology, two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. There is no NKT cell identified in the teleost yet. Therefore, "NKT-like" could be better to describe this cell type.

      We refer to "NKT" cells as "NKT-like" cells, as suggested.

      For the supplementary data of scRNA-seq, there lacks the details of expression level.

      The expression levels of the corresponding genes are provided in Supplemental Table 4.

      Supplemental Table 1: There are no accession numbers of amplified genes.

      The accession numbers of the amplified genes are included in Supplemental Table 1.

      The English needs further editing.

      We have made efforts to enhance the English to meet the reviewers' expectations.

      Line 32: The tense should be the past.

      This tense error has been corrected.

      Line 363-365: The letter of this approval should be provided as an attachment.

      The approval document is provided as an attachment.

      Line 376: How to distinguish the different intestinal parts? Were they judged as the first third, second third, and last third parts of the whole intestine?

      The differences among the three segments of zebrafish intestine are apparent. The intestinal tube narrows progressively from the anterior to the mid-intestine and then to the posterior intestine. Moreover, the boundaries between the intestinal segments are well-defined, facilitating the isolation of each segment.

      Line 404: Which version of Cytoscape was used?

      The version of Cytoscape used in this study is 3.9.1. Information about the Cytoscape version is provided on line 603.

      The product information of both percoll and cell strainer should be provided.

      The information regarding Percoll and cell strainers has been added on lines 626 and 628, respectively.

      Line 814: Here should be a full name to tell what is MST.

      The acronym MST stands for "Microscale Thermophoresis", a technique that has been referenced on lines 1157-1158.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This study presents valuable findings related to seasonal brain size plasticity in the Eurasian common shrew (Sorex araneus), which is an excellent model system for these studies. The evidence supporting the authors' claims is convincing. However, the authors should be careful when applying the term adaptive to the gene expression changes they observe; it would be challenging to demonstrate the differential fitness effects of these gene expression changes. The work will be of interest to biologists working on neuroscience, plasticity, and evolution.

      We appreciate the reviewers’ suggestions and comments. For the phylogenetic ANOVA we used (EVE), which tests for a separate RNA expression optimum specific to the shrew lineage consistent with expectations for adaptive evolution of gene expression. But, as you noted, while this analysis highlights many candidate genes evolving in a manner consistent with positive selection, further functional validation is required to confirm if and how these genes contribute to Dehnel’s phenomenon. In the discussion, we now emphasize that inferred adaptive expression of these genes is putative and outline that future studies are needed to test the function of proposed adaptations. For example, cell line validations of BCL2L1 on apoptosis is a case study that tests the function of a putatively adaptive change in gene expression, and it illuminates this limitation. We also have refined our discussion to focus more on pathway-level analyses rather than on individual genes, and have addressed other issues presented, including clarity of methods and using sex as a covariate in our analyses.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this paper, Thomas et al. set out to study seasonal brain gene expression changes in the Eurasian common shrew. This mammalian species is unusual in that it does not hibernate or migrate but instead stays active all winter while shrinking and then regrowing its brain and other organs. The authors previously examined gene expression changes in two brain regions and the liver. Here, they added data from the hypothalamus, a brain region involved in the regulation of metabolism and homeostasis. The specific goals were to identify genes and gene groups that change expression with the seasons and to identify genes with unusual expression compared to other mammalian species. The reason for this second goal is that genes that change with the season could be due to plastic gene regulation, where the organism simply reacts to environmental change using processes available to all mammals. Such changes are not necessarily indicative of adaptation in the shrew. However, if the same genes are also expression outliers compared to other species that do not show this overwintering strategy, it is more likely that they reflect adaptive changes that contribute to the shrew's unique traits.

      The authors succeeded in implementing their experimental design and identified significant genes in each of their specific goals. There was an overlap between these gene lists. The authors provide extensive discussion of the genes they found.

      The scope of this paper is quite narrow, as it adds gene expression data for only one additional tissue compared to the authors' previous work in a 2023 preprint. The two papers even use the same animals, which had been collected for that earlier work. As a consequence, the current paper is limited in the results it can present. This is somewhat compensated by an expansive interpretation of the results in the discussion section, but I felt that much of this was too speculative. More importantly, there are several limitations to the design, making it hard to draw stronger conclusions from the data. The main contribution of this work lies in the generated data and the formulation of hypotheses to be tested by future work.

      Thank you for your interest in our manuscript and for your insights. We addressed your comments below: we now highlight the limitations of our study design in the discussion and emphasize that, while a second optimum of gene expression in shrews is consistent with adaptive evolution, we recognize that not all sources of variation in gene expression can be fully accounted for. We highlight the putative nature of these results in our revisions, especially in our new limitations section (lines 541-555).

      Strengths:

      The unique biological model system under study is fascinating. The data were collected in a technically sound manner, and the analyses were done well. The paper is overall very clear, well-written, and easy to follow. It does a thorough job of exploring patterns and enrichments in the various gene sets that are identified.

      I specifically applaud the authors for doing a functional follow-up experiment on one of the differentially expressed genes (BCL2L1), even if the results did not support the hypothesis. It is important to report experiments like this and it is terrific to see it done here.

      We are glad to hear that you found our manuscript fascinating and clearly written. While we hoped to see an effect of BCL2L1 on apoptosis as proposed, we agree that reporting null results is valuable when validating evolutionary inferences.

      Weaknesses:

      While the paper successfully identifies differentially expressed seasonal genes, the real question is (as explained by the authors) whether these are evolved adaptations in the shrews or whether they reflect plastic changes that also exist in other species. This question was the motivation for the inter-species analyses in the paper, but in my view, these cannot rigorously address this question. Presumably, the data from the other species were not collected in comparable environments as those experienced by the shrews studied here. Instead, they likely (it is not specified, and might not be knowable for the public data) reflect baseline gene expression. To see why this is problematic, consider this analogy: if we were to compare gene expression in the immune system of an individual undergoing an acute infection to other, uninfected individuals, we would see many, strong expression differences. However, it would not be appropriate to claim that the infected individual has unique features - the relevant physiological changes are simply not triggered in the other individuals. The same applies here: it is hard to draw conclusions from seasonal expression data in the shrews to non-seasonal data in the other species, as shrew outlier genes might still reflect physiological changes that weren't active in the other species.

      There is no solution for this design flaw given the public data available to the authors except for creating matched data in the other species, which is of course not feasible. The authors should acknowledge and discuss this shortcoming in the paper.

      Thank you for taking the time to provide such insightful feedback. As you noted, whiles shrews experience seasonal size changes, their environments may differ from the other species used in this experiment, leading to increased or decreased expression of certain genes and reducing our ability accurately detect selection across the phylogeny. Although we sought to control for as many sources of variation as possible, such as using only post-pubescent, wild, or non-domesticated individuals when feasible, we recognize that not all sources of variation can be fully accounted for within a practical experiment. We agree that these sources of variation can introduce both false positives and negatives into our results, and we have now highlighted this limitation within our discussion (lines 538-552).

      Related to the point above: in the section "Evolutionary Divergence in Expression" it is not clear which of the shrew samples were used. Was it all of them, or only those from winter, fall, etc? One might expect different results depending on this. E.g., there could be fewer genes with inferred adaptive change when using only summer samples. The authors should specify which samples were included in these analyses, and, if all samples were used, conduct a robustness analysis to see which of their detected genes survive the exclusion of certain time points.

      Thank you for this attention to detail. We used spring adults for this analysis. This decision was made as only used post pubescent individuals for all species in the analysis, and this was the only season where adult shrews were going through Dehnel’s phenomenon. We have now clarified this in both the methods and results (line 247 and line 667)

      In the same section, were there also genes with lower shrew expression? None are mentioned in the text, so did the authors not test for this direction, or did they test and there were no significant hits?

      We did test for decreased shrew expression compared to the rest of the species, but there were no significant genes with significant decreases. We hypothesize that there are two potential reasons for this results; 1) If a gene were to be selected for decreased expression, selection for constitutive expression of the gene across all species may be weak, and thus found in other lineages as well, or 2) decreased or no expression may relax selection on the coding regions, and thus these genes are not pulled out as we identify 1:1 orthologs. This is consistent with results provided from the original methods manuscript. Thank you for pointing out that we did not discuss this information in the text, and we now include it in our results (lines 250-251).

      The Discussion is too long and detailed, given that it can ultimately only speculate about what the various expression changes might mean. Many of the specific points made (e.g. about the blood-brain-barrier being more permissive to sensing metabolic state, about cross-organ communication, the paragraphs on single, specific genes) are a stretch based on the available data. Illustrating this point, the one follow-up experiment the authors did (on BCL2L1) did not give the expected result. I really applaud the authors for having done this experiment, which goes beyond typical studies in this space. At the same time, its result highlights the dangers of reading too much into differential expression analyses.

      We agree with your point, while our extensive discussion is useful for testing future hypotheses, ultimately some of the discussion may be too speculative for our readers. To amend this, we have reduced some portions of our discussion and focused more on pathways than individual genes, including removing mechanisms related to HRH2, FAM57B, GPR3, and GABAergic neurons. We hope that this highlights to the reader the speculative nature of many of our results.

      There is no test of whether the five genes observed in both analyses (seasonal change and inter-species) exceed the number expected by chance. When two gene sets are drawn at random, some overlap is expected randomly. The expected overlap can be computed by repeated draws of pairs of random sets of the same size as seen in real data and by noting the overlap between the random pairs. If this random distribution often includes sets of five genes, this weakens the conclusions that can be drawn from the genes observed in the real data.

      Thank you for highlighting this approach, it is greatly needed. After running this test, we found that observed overlapping genes were more than the expected overlap, yet not significant. We now show this in our methods (lines 277-278) and results (lines 719-720).

      Reviewer #2 (Public review):

      Summary:

      Shrews go through winter by shrinking their brain and most organs, then regrow them in the spring. The gene expression changes underlying this unusual brain size plasticity were unknown. Here, the authors looked for potential adaptations underlying this trait by looking at differential expression in the hypothalamus. They found enrichments for DE in genes related to the blood-brain barrier and calcium signaling, as well as used comparative data to look at gene expression differences that are unique in shrews. This study leverages a fascinating organismal trait to understand plasticity and what might be driving it at the level of gene expression. This manuscript also lays the groundwork for further developing this interesting system.

      We are glad you found our manuscript interesting and thank and thank you for your feedback. We hope that we have addressed all of your concerns as described below.

      Strengths:

      One strength is that the authors used OU models to look for adaptation in gene expression. The authors also added cell culture work to bolster their findings.

      Weaknesses:

      I think that there should be a bit more of an introduction to Dehnel's phenomenon, given how much it is used throughout.

      Thank you for this insight. With a lengthy introduction and discussion, we agree that the importance of Dehnel’s phenomenon may have been overshadowed. We have shortened both sections and emphasized the background on Dehnel’s phenomenon in the first two paragraphs of the introduction, allowing this extraordinary seasonal size plasticity to stand out.

      Reviewer #3 (Public review):

      Summary:

      In their study, the authors combine developmental and comparative transcriptomics to identify candidate genes with plastic, canalized, or lineage-specific (i.e., divergent) expression patterns associated with an unusual overwintering phenomenon (Dehnel's phenomenon - seasonal size plasticity) in the Eurasian shrew. Their focus is on the shrinkage and regrowth of the hypothalamus, a brain region that undergoes significant seasonal size changes in shrews and plays a key role in regulating metabolic homeostasis. Through combined transcriptomic analysis, they identify genes showing derived (lineage-specific), plastic (seasonally regulated), and canalized (both lineage-specific and plastic) expression patterns. The authors hypothesize that genes involved in pathways such as the blood-brain barrier, metabolic state sensing, and ion-dependent signaling will be enriched among those with notable transcriptomic patterns. They complement their transcriptomic findings with a cell culture-based functional assessment of a candidate gene believed to reduce apoptosis.

      Strengths:

      The study's rationale and its integration of developmental and comparative transcriptomics are well-articulated and represent an advancement in the field. The transcriptome, known for its dynamic and plastic nature, is also influenced by evolutionary history. The authors effectively demonstrate how multiple signals-evolutionary, constitutive, and plastic-can be extracted, quantified, and interpreted. The chosen phenotype and study system are particularly compelling, as it not only exemplifies an extreme case of Dehnel's phenotype, but the metabolic requirements of the shrew suggest that genes regulating metabolic homeostasis are under strong selection.

      Weaknesses:

      (1) In a number of places (described in detail below), the motivation for the experimental, analytical, or visualization approach is unclear and may obscure or prevent discoveries.

      Thank you for finding our research and manuscript compelling, as well as the valuable feedback that will drastically improve our manuscript. We hope that we have alleviated your concerns below by following your instructions below.

      (2) Temporal Expression - Figure 1 and Supplemental Figure 2 and associated text:

      - It is unclear whether quantitative criteria were used to distinguish "developmental shift" clusters from "season shift" clusters. A visual inspection of Supplemental Figure 2 suggests that some clusters (e.g., clusters 2, 8, and to a lesser extent 12) show seasonal variation, not just developmental differences between stages 1 and 2. While clustering helps to visualize expression patterns, it may not be the most appropriate filter in this case, particularly since all "season shift" clusters are later combined in KEGG pathway and GO analyses (Figure 1B).

      - The authors do not indicate whether they perform cluster-specific GO or KEGG pathway enrichment analyses. The current analysis picks up relevant pathways for hypothalamic control of homeostasis, which is a useful validation, but this approach might not fully address the study's key hypotheses.

      Thank you for this valuable feedback. We did not want to include clusters we deemed to be related to development, as this should not be attributed to changes associated with Dehnel’s phenomenon. We did this through qualitative, visual inspection, which we realize can differ between parties (i.e., clusters 2, 8, and 12 appeared to be seasonal). Qualitatively, we were looking for extreme divergence between Stage 1 and Stage 5 individuals, as expression was related to season and not development, then the average of these stages within cluster should be relatively similar. We have now quantified this as large differences in z-score (abs(summer juvenile-summer adult)>1.25) without meaningful interseason variations determined by a second local maximum (abs(autumn-winter)<0.5 and abs(winter-summer)<0.5)), and added it both our methods (lines 699-702) and results (line 192).

      Regarding the combination of clusters for pathway enrichment compared to individual pathways, we agree that combining clusters may be more informative for overall homeostasis, compared to individual clusters which may inform us on processes directly related to Dehnel’s phenomenon. Initially, we were tentative to conduct this analysis, as clusters contain small gene sets, reducing the ability to detect pathway enrichments. We have now included this analysis, which is reported in our methods (lines 703-704), results (lines 203-204)., and new supplemental table.

      (3) Differential expression between shrinkage (stage 2) and regrowth (stage 4) and cell culture targets

      - The rationale for selecting BCL2L1 for cell culture experiments should be clarified. While it is part of the apoptosis pathway, several other apoptosis-related genes were identified in the differential gene expression (DGE) analysis, some showing stronger differential expression or shrew-specific branch shifts. Why was BCL2L1 prioritized over these other candidates?

      We agree that our rationale for validating BCL2L1 function in neural cell lines was not clearly explained in the manuscript. We selected BCL2L1 because it is the furthest downstream gene in the apoptotic pathway, thus making it the most directly involved gene in programmed cell death, whereas upstream genes could influence additional genes or alternative processes. We have clarified this choice in the revised methods section (lines 748-750).

      - The authors mention maintaining (or at least attempting to maintain) a 1:1 sex ratio for the comparative analysis, but it is unclear if this was also done for the S. araneus analysis. If not, why? If so, was sex included as a covariate (e.g., a random effect) in the differential expression analysis? Sex-specific expression elevates with group variation and could impact the discovery of differentially expressed genes.

      Regarding the use of sex as a covariate, we acknowledge the concerns raised. In our evolutionary analyses, we maintained a balanced sex ratio within species when possible. EVE models handle the effect of sex on gene expression as intraspecific variation. In shrews, however, we used males exclusively, as females were only found among juvenile individuals. Including those juvenile females would have introduced age effects, with perhaps a larger effect on our results. For the seasonal data, we have now included sex as a covariate in differential expression analyses. However, our design is imbalanced in relation to sex, which we have now discussed in our methods (lines 713-714) and discussion limitations (lines 544-548).

      (4) Discussion: The term "adaptive" is used frequently and liberally throughout the discussion. The interpretation of seasonal changes in gene expression as indicators of adaptive evolution should be done cautiously as such changes do not necessarily imply causal or adaptive associations.

      Thank you for this insight. We have reviewed our discussion and clarified that adaptations are putative (i.e. lines 146, 285, and 332), and highlighted this in our limitations section.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I would recommend always spelling out "Dehnel's phenomenon" or even replacing this term (after crediting the DP term) with the more informative "seasonal size plasticity". Every time I saw "DP", I had to remind myself what this referred to. If the authors choose not to do so, please use the acronym consistently (e.g. line 186 has it spelled out).

      We have replaced the acronym DP with either the full term or the more informative “seasonal size plasticity” throughout the text.

      (2) Line 202: "DEG" has not been defined. Simply add to the line before.

      Thank you for this attention to detail. We have added this to the line above (210).

      (3) Please add a reference for the "AnAge" tool that was used to determine if samples were pubescent.

      Thank you for identifying this oversight. We have now cited the proper paper in line 634.

      (4) In the BCL2L1 section in the results, add a callout to Figure 2D.

      We have now added a callout to Figure 2D within the results (line 234).

      Reviewer #2 (Recommendations for the authors):

      (1) Line 122: is associated? These adaptations?

      Thank you for identifying that we were missing the words “associated with” here. We have fixed this in the revision.

      (2) The first paragraph of the Results should be moved to the methods, except maybe the number of orthologs.

      Thank you for this insight. We have removed this portion from the results section.

      (3) Why a Bonferroni correction on line 188? That seems too strict.

      We agree the Bonferroni correction is strict. Results when using other less strict methods for controlling false discovery rate are also not significant after correction. These corrections can be found within the data, however, we only report on the Bonferroni correction.

      (4) Line 427: "is a novel candidate gene for several neurological disorders" needs some references. I see them a couple of sentences later, but that's quite a sentence with no references at the end.

      We have added the proper citations for this sentence (line 524).

      Reviewer #3 (Recommendations for the authors):

      (1) Temporal Expression - Figure 1 and Supplemental Figure 2 and associated text Line176-193:

      - The authors report the total number of genes meeting inclusion criteria (>0.5-fold change between any two stages and 2 samples >10 normalized reads), but it would be more informative to also provide the number of genes within each temporal cluster. This would offer a clearer understanding of how gene expression patterns are distributed over time.

      Unfortunately, this information is difficult to depict on our figure and would use too much space in the text. We have thus added a description of the range of genes in a new supplemental table depicting this information.

      - It is unclear whether quantitative criteria were used to distinguish "developmental shift" clusters from "season shift" clusters. A visual inspection of Supplemental Figure 2 suggests that some clusters (e.g., clusters 2, 8, and to a lesser extent 12) show seasonal variation, not just developmental differences between stages 1 and 2. While clustering helps to visualize expression patterns, it may not be the most appropriate filter in this case, particularly since all "season shift" clusters are later combined in KEGG pathway and GO analyses (Fig. 1B). Using a differential gene expression criterion might be more suitable. For example, do excluded genes show significant log-fold differences between late-stage comparisons?

      As previously mentioned, we have now quantified seasonal shifts as large differences in z-score (abs(summer juveniles-summer adults)>1.25) without meaningful interseason variations determined by a second local maximum (abs(autumn-winter)<0.5 and abs(winter-summer)<0.5)), and added it to our methods (lines 699-702).  We then follow this up with differential expression analyses as described in Figure 2.

      - Did the authors perform cluster-specific GO or KEGG pathway enrichment analyses instead of focusing on the combined set of genes across the season shift clusters? While I understand that the small number of genes in each cluster may be limiting, if pathways emerge from cluster-specific analysis, they could provide more detailed insights into the functional significance of these temporal expression patterns. The current analysis picks up relevant pathways for hypothalamic control of homeostasis, which is a useful validation, but this approach might not fully address the study's key hypotheses. Additionally, no corrections for multiple hypothesis testing were applied, as noted in the results. A more refined gene set (e.g., using differential expression criteria, described above) could be more appropriate for these analyses.

      We have now included cluster-specific KEGG enrichments as previously described.

      (2) Differential expression between shrinkage (stage 2) and regrowth (stage 4) and cell culture targets - Figure 2 and lines195-227:

      - The rationale for selecting BCL2L1 for cell culture experiments should be clarified. While it is part of the apoptosis pathway, several other apoptosis-related genes were identified in the differential gene expression (DGE) analysis, some showing stronger differential expression or shrew-specific branch shifts. Why was BCL2L1 prioritized over these other candidates?

      We have now included the reasoning for further validation of BCL2L1 as described above.

      - The relevance of the "higher degree" differentially expressed genes needs more explanation. Although this group of genes is highlighted in the results, they are not featured in any subsequent analyses, leaving their importance unclear.

      Thank you for this insight. We have removed this from the methods as it is not relevant to subsequent analyses or conclusions.

      - The authors mention maintaining (or at least attempting to maintain) a 1:1 sex ratio for the comparative analysis (Line 525), but it is unclear if this was also done for the S. araneus analysis. If so, was sex included as a covariate (e.g., a random effect) in the differential expression analysis?

      We have now incorporated information on sex as described above.

      (3) Discussion:

      The term "adaptive" is used frequently and liberally throughout the discussion, but the authors should be cautious in interpreting seasonal changes in gene expression as indicators of adaptive evolution. Such changes do not necessarily imply causal or adaptive associations, and this distinction should be clearly stated when discussing the results.

      Thank you for this feedback and we agree with your conclusion, while a second expression optimum in the shrew lineage is indicative of adaptive expression, we cannot fully determine whether these are caused by genetic or environmental factors, despite careful attention to experimental design. We have highlighted this as a limitation in the discussion.

      (4) Minor Editorial Comment:

      Line 105: "... maintenance of an energy budgets..." delete "an"

      We have removed this grammatical error.

    1. Author response:

      (This author response relates to the first round of peer review by Biophysics Colab. Reviews and responses to both rounds of review are available here: https://sciety.org/articles/activity/10.1101/2023.10.23.563601.)

      General Assessment:

      Pannexin (Panx) hemichannels are a family of heptameric membrane proteins that form pores in the plasma membrane through which ions and relatively large organic molecules can permeate. ATP release through Panx channels during the process of apoptosis is one established biological role of these proteins in the immune system, but they are widely expressed in many cells throughout the body, including the nervous system, and likely play many interesting and important roles that are yet to be defined. Although several structures have now been solved of different Panx subtypes from different species, their biophysical mechanisms remain poorly understood, including what physiological signals control their activation. Electrophysiological measurements of ionic currents flowing in response to Panx channel activation have shown that some subtypes can be activated by strong membrane depolarization or caspase cleavage of the C-terminus. Here, Henze and colleagues set out to identify endogenous activators of Panx channels, focusing on the Panx1 and Panx2 subtypes, by fractionating mouse liver extracts and screening for activation of Panx channels expressed in mammalian cells using whole-cell patch clamp recordings. The authors present a comprehensive examination with robust methodologies and supporting data that demonstrate that lysophospholipids (LPCs) directly Panx-1 and 2 channels. These methodologies include channel mutagenesis, electrophysiology, ATP release and fluorescence assays, molecular modelling, and cryogenic electron microscopy (cryo-EM). Mouse liver extracts were initially used to identify LPC activators, but the authors go on to individually evaluate many different types of LPCs to determine those that are more specific for Panx channel activation. Importantly, the enzymes that endogenously regulate the production of these LPCs were also assessed along with other by-products that were shown not to promote pannexin channel activation. In addition, the authors used synovial fluid from canine patients, which is enriched in LPCs, to highlight the importance of the findings in pathology. Overall, we think this is likely to be a landmark study because it provides strong evidence that LPCs can function as activators of Panx1 and Panx2 channels, linking two established mediators of inflammatory responses and opening an entirely new area for exploring the biological roles of Panx channels. Although the mechanism of LPC activation of Panx channels remains unresolved, this study provides an excellent foundation for future studies and importantly provides clinical relevance.

      We thank the reviewers for their time and effort in reviewing our manuscript. Based on their valuable comments and suggestions, we have made substantial revisions. The updated manuscript now includes two new experiments supporting that lysophospholipid-triggered channel activation promotes the release of signaling molecules critical for immune response and demonstrates that this novel class of agonist activates the inflammasome in human macrophages through endogenously expressed Panx1. To better highlight the significance of our findings, we have excluded the cryo-EM panel from this manuscript. We believe these changes address the main concerns raised by the reviewers and enhance the overall clarity and impact of our findings. Below, we provide a point-by-point response to each of the reviewers’ comments.

      Recommendations:

      (1) The authors present a tremendous amount of data using different approaches, cells and assays along with a written presentation that is quite abbreviated, which may make comprehension challenging for some readers. We would encourage the authors to expand the written presentation to more fully describe the experiments that were done and how the data were analysed so that the 2 key conclusions can be more fully appreciated by readers. A lot of data is also presented in supplemental figures that could be brought into the main figures and more thoroughly presented and discussed.

      We appreciate and agree with the reviewers’ observation. Our initial manuscript may have been challenging to follow due to our use of both wild-type and GS-tagged versions of Panx1 from human and frog origins, combined with different fluorescence techniques across cell types. In this revision, we used only human wild-type Panx1 expressed in HEK293S GnTI- cells, except for activity-guided fractionation experiments, where we used GS-tagged Panx1 expressed in HEK293 cells (Fig. 1). For functional reconstitution studies, we employed YO-PRO-1 uptake assays, as optimizing the Venus-based assay was challenging. We have clarified these exceptions in the main text. We think these adjustments simplify the narrative and ensure an appropriate balance between main and supplemental figures.

      (2) It would also be useful to present data on the ion selectivity of Panx channels activated by LPC. How does this compare to data obtained when the channel is activated by depolarization? If the two stimuli activate related open states then the ion selectivity may be quite similar, but perhaps not if the two stimuli activate different open states. The authors earlier work in eLife shows interesting shifts in reversal potentials (Vrev) when substituting external chloride with gluconate but not when substituting external sodium with N-methyl-D-glucamine, and these changed with mutations within the external pore of Panx channels. Related measurements comparing channels activated by LPC with membrane depolarization would be valuable for assessing whether similar or distinct open states are activated by LPC and voltage. It would be ideal to make Vrev measurements using a fixed step depolarization to open the channel and then various steps to more negative voltages to measure tail currents in pinpointing Vrev (a so called instantaneous IV).

      We fully agree with the reviewer on the importance of ion selectivity experiments. However, comparing the properties of LPC-activated channels with those activated by membrane depolarization presented technical challenges, as LPC appears to stimulate Panx1 in synergy with voltage. Prolonged LPC exposure destabilizes patches, complicating G-V curve acquisition and kinetic analyses. While such experiments could provide mechanistic insights, we think they are beyond the scope of current study.

      (3) Data is presented for expression of Panx channels in different cell types (HEK vs HEKS GnTI-) and different constructs (Panx1 vs Panx1-GS vs other engineered constructs). The authors have tried to be clear about what was done in each experiment, but it can be challenging for the reader to keep everything straight. The labelling in Fig 1E helps a lot, and we encourage the authors to use that approach systematically throughout. It would also help to clearly identify the cell type and channel construct whenever showing traces, like those in Fig 1D. Doing this systematically throughout all the figures would also make it clear where a control is missing. For example, if labelling for the type of cell was included in Fig 1D it would be immediately clear that a GnTI- vector alone control for WT Panx1 is missing as the vector control shown is for HEK cells and formally that is only a control for Panx2 and 3. Can the authors explain why PLC activates Panx1 overexpressed in HEK293 GnTl- cells but not in HEK293 cells? Is this purely a function of expression levels? If so, it would be good to provide that supporting information.

      As mentioned above, we believe our revised version is more straightforward to digest. We have improved labeling and provided explanations where necessary to clarify the manuscript. While Panx1 expression levels are indeed higher in GnTI- than in HEK293 cells, we are uncertain whether the absence of detectable currents in HEK293 cells is solely due to expression levels. Some post-translational modifications that inhibit Panx1, such as lysine acetylation, may also impact activity. Future studies are needed to explore these mechanisms further.

      (4) The mVenus quenching experiments are somewhat confusing in the way data are presented. In Fig 2B the y axis is labelled fluorescence (%) but when the channel is closed at time = 0 the value of fluorescence is 0 rather than 100 %, and as the channel opens when LPC is added the values grow towards 100 instead of towards 0 as iodide permeates and quenches. It would be helpful if these types of data could be presented more intuitively. Also, how was the initial rate calculated that is plotted in Fig 2C? It would be helpful to show how this is done in a figure panel somewhere. Why was the initial rate expressed as a percent maximum, what is the maximum and why are the values so low? Why is the effect of CBX so weak in these quenching experiments with Panx1 compared to other assays? This assay is used in a lot of experiments so anything that could be done to bolster confidence is what it reports on would be valuable to readers. Bringing in as many control experiments that have been done, including any that are already published, would be helpful.

      We modified the Y-axis in Figure 2 to “Quench (%)” for clarity. The data reflects fluorescence reduction over time, starting from LPC addition, normalized to the maximal decrease observed after Triton-X100 addition (3 minutes), enabling consistent quenching value comparisons. Although the quenching value appears small, normalization against complete cell solubilization provides reproducible comparisons. We do not fully understand why CBX effects vary in Venus quenching experiments, but we speculate that its steroid-like pentacyclic structure may influence the lysophospholipid agonistic effects. As noted in prior studies (DOI: 10.1085/jgp.201511505; DOI: 10.7554/eLife.54670), CBX likely acts as an allosteric modulator rather than a simple pore blocker, potentially contributing to these variations.

      (5) Could provide more information to help rationalize how Yo-Pro-1, which has a charge of +2, can permeate what are thought to be anion favouring Panx channels? We appreciate that the biophysical properties of Panx channel remain mysterious, but it would help to hear how a bit more about the authors thinking. It might also help to cite other papers that have measured Yo-Pro-1 uptake through Panx channels. Was the Strep-tagged construct of Panx1 expressed in GnTI- cells and shown to be functional using electrophysiology?

      Our recent study suggest that the electrostatic landscape along the permeation pathway may influence its ion selectivity (DOI: 10.1101/2024.06.13.598903). However, we have not yet fully elucidated how Panx1 permeates both anions and cations. Based on our findings, ion selectivity may vary with activation stimulus intensity and duration. Cation permeation through Panx1 is often demonstrated with YO-PRO-1, which measures uptake over minutes, unlike electrophysiological measurements conducted over milliseconds to seconds. We referenced two representative studies employing YO-PRO-1 to assess Panx1 activity. Whole-cell current measurements from a similar construct with an intracellular loop insertion indicate that our STREP-tagged construct likely retains functional capacity.

      (6) In Fig 5 panel C, data is presented as the ratio of LPC induced current at -60 mV to that measured at +110 mV in the absence of LPC. What is the rationale for analysing the data this way? It would be helpful to also plot the two values separately for all of the constructs presented so the reader can see whether any of the mutants disproportionately alter LPC induced current relative to depolarization activated current. Also, for all currents shown in the figures, the authors should include a dashed coloured line at zero current, both for the LPC activated currents and the voltage steps.

      We used the ratio of LPC-induced current to the current measured at +110 mV to determine whether any of the mutants disproportionately affect LPC-induced current relative to depolarization-activated current. Since the mutants that did not respond to LPC also exhibited smaller voltage-stimulated currents than those that did respond, we reasoned that using this ratio would better capture the information the reviewer is suggesting to gauge. Showing the zero current level may be helpful if the goal was to compare basal currents, which in our experience vary significantly from patch to patch. However, since we are comparing LPC- and voltage-induced currents within the same patch, we believe that including basal current measurements would not add useful information to our study.

      Given that new experiments included to further highlight the significance of the discovery of Panx1 agonists, we opted to separate structure-based mechanistic studies from this manuscript and removed this experiment along with the docking and cryo-EM studies.

      (7) The fragmented NTD density shown in Fig S8 panel A may resemble either lipid density or the average density of both NTD and lipid. For example, Class7 and Class8 in Fig.S8 panel D displayed split densities, which may resemble a phosphate head group and two tails of lipid. A protomer mask may not be the ideal approach to separate different classes of NTD because as shown in Fig S8 panel D, most high-resolution features are located on TM1-4, suggesting that the classification was focused on TM1-4. A more suitable approach would involve using a smaller mask including NTD, TM1, and the neighbouring TM2 region to separate different NTD classes.

      We agree with the reviewer and attempted 3D classification using multiple smaller masks including the suggested region. However, the maps remained poorly defined, and we were unable to confidently assign the NTD.

      (8) The authors don’t discuss whether the LPC-bound structures display changes in the external part of the pore, which is the anion-selective filter and the narrower part of the pore. If there are no conformational changes there, then the present structures cannot explain permeability to large molecules like ATP. In this context, a plot for the pore dimension will be helpful to see differences along the pore between their different structures. It would also be clearer if the authors overlaid maps of protomers to illustrate differences at the NTD and the "selectivity filter."

      Both maps show that the narrowest constriction, formed by W74, has a diameter of approximately 9 Å. Previous steered molecular dynamics simulations suggest that ATP can permeate through such a constriction, implying an ion selection mechanism distinct from a simple steric barrier.

      (9) The time between the addition of LPC to the nanodisc-reconstituted protein and grid preparation is not mentioned. Dynamic diffusion of LPC could result in equal probabilities for the bound and unbound forms. This raises the possibility of finding the Primed state in the LPC-bound state as well. Additionally, can the authors rationalize how LPC might reach the pore region when the channel is in the closed state before the application of LPC?

      We appreciate the reviewer’s insight. We incubated LPC and nanodisc-reconstituted protein for 30 minutes, speculating that LPC approaches the pore similarly to other lipids in prior structures. In separate studies, we are optimizing conditions to capture more defined conformations.

      (10) In the cryo-EM map of the “resting” state (EMDB-21150), a part of the density was interpreted as NTD flipped to the intracellular side. This density, however, is poorly defined, and not connected to the S1 helix, raising concerns about whether this density corresponds to the NTD as seen in the “resting” state structure (PDB-ID: 6VD7). In addition, some residues in the C-terminus (after K333 in frog PANX1) are missing from the atomic model. Some of these residues are predicted by AlphaFold2 to form a short alpha helix and are shown to form a short alpha helix in some published PANX1 structures. Interestingly, in both the AF2 model and 6WBF, this short alpha helix is located approximately in the weak density that the authors suggest represents the “flipped” NTD. We encourage the authors to be cautious in interpreting this part as the “flipped” NTD without further validation or justification.

      We agree that the density corresponding the extended NTD into the cytoplasm is relatively weak. In our recent study, we compared two Panx1 structures with or without the mentioned C-terminal helix and found evidence suggesting the likelihood of NTD extension (DOI: 10.1101/2024.06.13.598903). Nevertheless, to prevent potential confusion, we have removed the cryo-EM panel from this manuscript.

      (11) Since the authors did not observe densities of bound PLC in the cryo-EM map, it is important to acknowledge in the text the inherent limitations of using docking and mutagenesis methods to locate where PLC binds.

      Thank you for the suggestion. We have removed this section to avoid potential confusion.

      Optional suggestions:

      (1) The authors used MeOH to extract mouse liver for reversed-phase chromatography. Was the study designed to focus on hydrophobic compounds that likely bind to the TMD? Panx1 has both ECD and ICD with substantial sizes that could interact with water soluble compounds? Also, the use of whole-cell recordings to screen fractions would not likely identify polar compounds that interact with the cytoplasmic part of the TMD? It would be useful for the authors to comment on these aspects of their screen and provide their rationale for fractionating liver rather than other tissues.

      We have added a rationale in line 90, stating: “The soluble fractions were excluded from this study, as the most polar fraction induced strong channel activities in the absence of exogenously expressed pannexins.” Additionally, we have included a figure to support this rationale (Fig. S1A).

      (2) The authors show that LPCs reversibly increase inward currents at a holding voltage of -60 mV (not always specified in legends) in cells expressing Panx1 and 2, and then show families of currents activated by depolarizing voltage steps in the absence of LPC without asking what happens when you depolarize the membrane after LPC activation? If LPCs can be applied for long enough without disrupting recordings, it would be valuable to obtain both I-V relations and G-V relations before and after LPC activation of Panx channels. Does LPC disproportionately increase current at some voltages compared to others? Is the outward rectification reduced by LPC? Does Vrev remain unchanged (see point above)? Its hard to predict what would be observed, but almost any outcome from these experiments would suggest additional experiments to explore the extent to which the open states activated by LPC and depolarization are similar or distinct.

      Unfortunately, in our hands, the prolonged application of lysolipids at concentrations necessary to achieve significant currents tends to destabilize the patch. This makes it challenging to obtain G-V curves or perform the previously mentioned kinetic analyses. We believe this destabilization may be due to lysolipids’ surfactant-like qualities, which can disrupt the giga seal. Additionally, prolonged exposure seems to cause channel desensitization, which could be another confounding factor.

      (3) From the results presented, the authors cannot rule out that mutagenesis-induced insensitivity of Panx channels to LPCs results from allosteric perturbations in the channels rather than direct binding/gating by LPCs. In Fig 5 panel A-C, the authors introduced double mutants on TM1 and TM2 to interfere with LPC binding, however, the double mutants may also disrupt the interaction network formed within NTD, TM1, and TM2. This disruption could potentially rearrange the conformation of NTD, favouring the resting closed state. Three double Asn mutants, which abolished LPC induced current, also exhibited lower currents through voltage activation in Fig 5S, raising the possibility the mutant channels fail to activate in response to LPC due to an increased energy barrier. One way to gain further insight would be to mutate residues in NTD that interact with those substituted by the three double Asn mutants and to measuring currents from both voltage activation and LPC activation. Such results might help to elucidate whether the three double Asn mutants interfere with LPC binding. It would also be important to show that the voltage-activated currents in Fig. S5 are sensitive to CBX?

      Thank you for the comment, with which we agree. Our initial intention was to use the mutagenesis studies to experimentally support the docking study. Due to uncertainties associated with the presented cryo-EM maps, we have decided to remove this study from the current manuscript. We will consider the proposed experiments in a future study.

      (4) Could the authors elaborate on how LPC opens Panx1 by altering the conformation of the NTDs in an uncoordinated manner, going from “primed” state to the “active” state. In the “primed” state, the NTDs seem to be ordered by forming interactions with the TMD, thus resulting in the largest (possible?) pore size around the NTDs. In contrast, in the “active” state, the authors suggest that the NTDs are fragmented as a result of uncoordinated rearrangement, which conceivably will lead to a reduction in pore size around NTDs (isn’t it?). It is therefore not intuitive to understand why a conformation with a smaller pore size represents an “active” state.

      We believe the uncoordinated arrangement of NTDs is dynamic, allowing for potential variations in pore size during the activated conformation. Alternatively, NTD movement may be coupled with conformational changes in TM1 and the extracellular domain, which in turn could alter the electrostatic properties of the permeation pathway. We believe a functional study exploring this mechanism would be more appropriately presented as a separate study.

      (5) Can the authors provide a positive control for these negative results presented in Fig S1B and C?

      The positive results are presented in Fig. 1D and E.

      (6) Raw images in Fig S6 and Fig S7 should contain units of measurement.

      Thank you for pointing this out.

      (7) It may be beneficial to show the superposition between primed state and activated state in both protomer and overall structure. In addition, superposition between primed state and PDB 7F8J.

      We attempted to superimpose the cryo-EM maps; however, visually highlighting the differences in figure format proved challenging. Higher-resolution maps would allow for model building, which would more effectively convey these distinctions.

      (8) Including particles number in each class in Fig S8 panel C and D would help in evaluating the quality of classification.

      Noted.

      (9) A table for cryo-EM statistics should be included.

      Thanks, noted.

      (10) n values are often provided as a range within legends but it would be better to provide individual values for each dataset. In many figures you can see most of the data points, which is great, but it would be easy to add n values to the plots themselves, perhaps in parentheses above the data points.

      While we agree that transparency is essential, adding n-values to each graph would make some figures less clear and potentially harder to interpret in this case. We believe that the dot plots, n-value range, and statistical analysis provide adequate support for our claims.

      (11) The way caspase activation of Panx channels is presented in the introduction could be viewed as dismissive or inflammatory for those who have studied that mechanism. We think the caspase activation literature is quite convincing and there is no need to be dismissive when pointing out that there are good reasons to believe that other mechanisms of activation likely exist. We encourage you to revise the introduction accordingly.

      Thank you for this comment. Although we intended to support the caspase activation mechanism in our introduction, we understand that the reviewer’s interpretation indicates a need for clarification. We hope the revised introduction removes any perception of dismissiveness.

      (12) Why is the patient data in Fig 4F normalized differently than everything else? Once the above issues with mVenus quenching data are clarified, it would be good to be systematic and use the same approach here.

      For Fig. 4F, we used a distinct normalization method to account for substantial day-to-day variation in experiments involving body fluids. Notably, we did not apply this normalization to other experimental panels due to their considerably lower day-to-day variation.

      (13) What was the rational for using the structure from ref 35 in the docking task?

      The docking task utilized the human orthologue with a flipped-up NTD. We believe that this flipped-up conformation is likely the active form that responds to lysolipids. As our functional experiments primarily use the human orthologue for biological relevance, this structure choice is consistent. Our docking data shows that LPC does not dock at this site when using a construct with the downward-flipped NTD.

      (14) Perhaps better to refer to double Asn ‘substitutions’ rather than as ‘mutations’ because that makes one think they are Asn in the wt protein.

      Done.

      (15) From Fig S1, we gather that Panx2 is much larger than Panx1 and 3. If that is the case, its worth noting that to readers somewhere.

      We have added the molecular weight of each subtype in the figure legend.

      (16) Please provide holding voltages and zero current levels in all figures presenting currents.

      We provided holding voltages. However, the zero current levels vary among the examples presented, making direct comparisons difficult. Since we are comparing currents with and without LPC, we believe that indicating zero current levels is unnecessary for this study.

      (17) While the authors successfully establish lysophospholipid-gating of Panx1 and Panx2, Panx3 appears unaffected. It may be advisable to be more specific in the title of the article.

      We are uncertain whether Panx3 is unaffected by lysophospholipids, as we have not observed activation of this subtype under any tested conditions.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study aims to understand the malaria antigen-specific cTfh profile of children and adults living in a malaria holoendemic area. PBMC samples from children and adults were unstimulated or stimulated with PfSEA-1A or PfGARP in vitro for 6h and analysed by a cTfh-focused panel. Unsupervised clustering and analysis on cTfh were performed.

      The main conclusions are:

      (1) the cohort of children has more diverse (cTfh1/2/17) recall responses compared to the cohort of adults (mainly cTfh17) and

      (2) Pf-GARP stimulates better cTfh17 responses in adults, thus a promising vaccine candidate.

      Strengths:

      This study is in general well-designed and with excellent data analysis. The use of unsupervised clustering is a nice attempt to understand the heterogeneity of cTfh cells. Figure 9 is a beautiful summary of the findings.

      Weaknesses:

      (1) Most of my concerns are related to using PfSEA-1A and PfGARP to analyse cTfh in vitro stimulation response. In vitro, stimulation on cTfh cells has been frequently used (e.g. Dan et al, PMID: 27342848), usually by antigen stimulation for 9h and analysed CD69/CD40L expression, or 18h and CD25/OX40. However, the authors use a different strategy that has not been validated to analyse in vitro stimulated cTfh. Also, they excluded CD25+ cells which might be activated cTfh. I am concerned about whether the conclusions based on these results are reliable.

      It has been shown that cTfh cells can hardly produce cytokines by Dan et al. However, in this paper, the authors report the significant secretion of IL-4 and IFNg on some cTfh clusters after 6h stimulation. If the stimulation is antigen-specific through TCR, why cTfh1 cells upregulate IL-4 but not IFNg in Figure 6? I believe including the representative FACS plots of IL-4, IFNg, IL21 staining, and using %positive rather than MFI can make the conclusion more convincing. Similarly, the author should validate whether TCR stimulation under their system for 6h can induce robust BCL6/cMAF expression in cTfh cells. Moreover, there is no CD40L expression. Does this mean TCR stimulation mediated BCl6/cMAF upregulation and cytokine secretion precede CD40L expression?

      In summary, I am particularly concerned about the method used to analyse PfSEA-1A and PfGARP-specific cTfh responses because it lacks proper validation. I am unsure if the conclusions related to PfSEA-1A/PfGARP-specific responses are reliable.

      An unfortunate reality of these types of complex immunologic studies is that it takes time to optimize a multiparameter flow cytometry panel, run this number of samples, and then conduct the analysis (not to mention the time it takes for a manuscript to be accepted for peer-review). An unexpected delay, frankly, was the COVID-19 pandemic when non-essential research lab activities were put on hold. We designed our panel in 2019 and referred to the “T Follicular Helper Cells” Methods and Protocols book from Springer 2015. Obviously the field of human immunology took a huge leap forward during the pandemic as we sought to characterize components of protective immunity, and as a result there are several new markers we will choose for future studies of Tfh subsets. We agree with the reviewer that cytokine expression kinetics differ depending on the in vitro stimulation conditions. Due to small blood volumes obtained from healthy children, we were limited in the number of timepoints we could test. However, since we were most interested in IL21 expression, we found 6 hrs to be the best in combination with the other markers of interest during our optimization experiments. We did find IFNg expression from non-Tfh cells, therefore we believe our stimulation conditions worked.

      Dan et al used stimulated tonsils cells to assess the CXCR5<sup>pos</sup>PD1<sup>pos</sup>CD45RA<sup>neg</sup> Tfh and CXCR5<sup>neg</sup> CD45RA<sup>neg</sup> non-Tfh whereas in our study, we evaluated CXCR5<sup>pos</sup>PD1<sup>pos</sup>CD45RA<sup>neg</sup> Tfh from PBMCs. Dan et al PBMCs’ work used EBV/CMV or other pathogen product stimuli and only gated on CD25<sup>pos</sup>OX40<sup>pos</sup> cells which are not the cells we are assessing in our study. This might explain in part the differences in cytokine kinetics, as we evaluated CD25<sup>neg</sup> PBMCs only. However, we agree that more recent studies focused on CXCR5<sup>pos</sup>PD1<sup>pos</sup> cells included more Activation-induced marker (AIM) markers, which are missing in our study, inducing a lack of depth in our analysis.

      Percentage of positive cells and MFI are complementary data. Indeed, the percentage of positive cells only indicates which cells express the marker of interest without giving a quantitative value of this expression. MFI indicates how much the marker of interest is expressed by cells which is important as it can indicate degree of activation or exhaustion per cell. Meta-cluster analysis is not ideal to assess the percentage of positivity whereas it does provide essential information regarding the intensity of expression. We added supplemental figures 14 (Bcl6 and cMAF), 15 (INFg and IL21) and 16 (IL4 and IL21) where percentage of positive cells were manually gated directly from the total CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD45RA<sup>neg</sup>CD25<sup>neg</sup> TfH based on the FMO or negative control, and we overlaid the positive cells on the UMAP of all the CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD45RA<sup>neg</sup>CD25<sup>neg</sup> meta-clusters. Results from the manual gating are consistent with the results we show using clustering. However, it helps to better visualize that antigen-specific IL21 expression was statistically significant in children whereas the high background observed for adults did not reveal higher expression after stimulation, perhaps suggesting an upper threshold of cytokine expression (supplemental figure 15). The following sentence has been added in the methods at the end of the “OMIQ analysis” section: “ However, the percentage of positive IFN𝛾, IL-4, IL-21, Bcl6, or cMAF using manual gating can be found in Supplemental Figures 14, 15, and 16 along with the overlay of the gated positive cells on the CD4<sup>pos</sup>CXCR5<sup>pos</sup>CD25<sup>neg</sup> UMAP and the cytoplots of the gated positive cells for each meta-cluster (Supplemental Figures 14, 15, and 16).”

      Indeed cMAF can be induced by TCR signaling, ICOS and IL6 (Imbratta et. al, 2020). However, in our study populations, ICOS was expressed (see Author response image 1, panel A) in absence of any stimulation suggesting that CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD25<sup>neg</sup>CD45RA<sup>neg</sup> cells were already capable of expressing cMAF. Indeed, after gating Bcl6 and cMAF positive cells based on their FMOs (Author response image 1, panel B and C, respectively), we overlaid positive cells on the CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD25<sup>neg</sup>CD45RA<sup>neg</sup> cells UMAP and we can see that most of our cells already express cMAF alone (Author response image 1, panel D), co-express cMAF and Bcl6 (Author response image 1, panel E), confirming that they are TfH cells, whereas very few cells only expressed Bcl6 alone (Author response image 1, panel F). Because we knew that cT<sub>FH</sub> already expresses Bcl6 and cMAF, we focused our analysis on the intensity of their expression to assess if our vaccine candidates were inducing more expression of these transcription factors.

      Author response image 1.

      (2) The section between lines 246-269 is confusing. Line 249, comparing the abundance after antigen stimulation is improper because 6h stimulation (under Golgi stop) should not induce cell division. I think the major conclusions are contained in Figure 5e, that (A) antigen stimulation will not alter cell number in each cluster and (B) children have more MC03, 06 and fewer MC02, etc.). The authors should consider removing statements between lines 255-259 because the trends are the same regardless of stimulations.

      We agree, there is no cell division after 6h and that different meta clusters did not proliferate after this short of in vitro stimulation. The use of the word ‘abundance’ in the context of cluster analysis is in reference to comparing the contribution of events by each group to the concatenated data. After the meta clusters are defined and then deconvoluted by study group, certain meta clusters could be more abundant in one group compared to another - meaning they contributed more events to a particular metacluster.

      Dimensionality reduction is more nuanced than manual gating and reveals a continuum of marker expression between the cell subsets, as there is no hard “straight line” threshold, as observed when using in 2D gating. Because of this, differences are revealed in marker expression levels after stimulation making them shift from one cluster to another - thereby changing their abundance.

      To clarify how this type of analysis is interpreted, we have modified lines 255-259 as follows:

      “In contrast, the quiescent PfSEA-1A- and PfGARP-specific cT<sub>FH</sub>2-like cluster (MC02) was significantly more abundant in adults compared to children (Figure 5c and 5d, pf<0.05). Interestingly, following PfGARP stimulation, the activated cT<sub>FH</sub>1/17-like subset (MC09) became more abundant in children compared to adults (Figure 5d, pf<0.05 with a False Discovery Rate=0.08), but no additional subsets shifted phenotype after PfSEA-1A stimulation (Figure 5c).”

      Reviewer #2 (Public Review):

      Summary:

      Forconi et al explore the heterogeneity of circulating Tfh cell responses in children and adults from malaria-endemic Kenya, and further compare such differences following stimulation with two malaria antigens. In particular, the authors also raised an important consideration for the study of Tfh cells in general, which is the hidden diversity that may exist within the current 'standard' gating strategies for these cells. The utility of multiparametric flow cytometry as well as unbiased clustering analysis provides a potentially potent methodology for exploring this hidden depth. However, the current state of analysis presented does not aid the understanding of this heterogeneity. This main goal of the study could hopefully be achieved by putting all the parameters used in one context, before dissecting such differences into their specific clinical contexts.

      Strengths:

      Understanding the full heterogeneity of Tfh cells in the context of infection is an important topic of interest to the community. The study included clinical groupings such as age group differences and differences in response to different malaria antigens to further highlight context-dependent heterogeneity, which offers new knowledge to the field. However, improvements in data analyses and presentation strategies should be made in order to fully utilize the potential of this study.

      Weaknesses:

      In general, most studies using multiparameter analysis coupled with an unbiased grouping/clustering approach aim to describe differences between all the parameters used for defining groupings, prior to exploring differences between these groupings in specific contexts. However, the authors have opted to separate these into sections using "subset chemokine markers", "surface activation markers" and then "cytokine responses", yet nuances within all three of these major groups were taken into account when defining the various Tfh identities. Thus, it would make sense to show how all of these parameters are associated with one another within one specific context to first logically establish to the readers how can we better define Tfh heterogeneity. When presented this way, some of the identities such as those that are less clear such as "MC03/MC04/ MC05/ MC08" may even be better revealed. once established, all of these clusters can then be subsequently explored in further detail to understand cluster-specific differences in children vs adults, and in the various stimulation conditions. Since the authors also showed that many of the activation markers were not significantly altered post-stimulation thus there is no real obstacle for merging the entire dataset for the first part of this study which is to define Tfh heterogeneity in an unbiased manner regardless of age groups or stimulation conditions. Other studies using similar approaches such as Mathew et al 2020 (doi: 10.1126/science.abc8) or Orecchioni et al 2017 (doi: 10.1038/s41467-017-01015-3) can be referred to for more effective data presentation strategies.

      Accordingly, the expression of cytokines and transcription factors can only be reliably detected following stimulation. However, the underlying background responses need to be taken into account for understanding "true" positive signals. The only raw data for this was shown in the form of a heatmap where no proper ordering was given to ensure that readers can easily interpret the expression of these markers following stimulation relative to no stimulation. Thus, it is difficult to reliably interpret any real differences reported without this. Finally, the authors report differences in either cluster abundance or cluster-specific cytokine/ transcription factor expression in Tfh cell subsets when comparing children vs adults, and between the two malaria antigens. The comparisons of cytokine/transcription factor between groups will be more clearly highlighted by appropriately combining groupings rather than keeping them separate as in Figures 6 and 7.

      Thank you for sharing these references. Similar to SPADE clustering and ViSNE dimensionality algorithms used in Orecchioni et al, we used all the extracellular markers from our panel in our FlowSOM algorithm with consensus meta-clustering which includes both the chemokine receptors and activation markers even though they are presented separately in our manuscript across the figure 3 and 4. This was explained in the methods section (lines 573 - 587). We then chose the UMAP algorithm as visual dimensionality reduction of the meta-clusters generated by FlowSOM-consensus meta-clustering as explained under the “OMIQ analysis” subpart of our methods (lines 588- 604). Therefore, we believe we have conducted the analysis as this reviewer suggests even if we chose to show the figures that were informative to our story. The heatmap of the results brings the possibility to see which combination of markers respond or not to the different conditions and between groups, all the raw data are present from the supplemental figures 10 to 13 showing, using bar plots, the differences expressed in the heatmaps. We believe it strengthens our interpretation of the results.

      Regarding the transcription factor and cytokine background, we added supplemental figures 14, 15 and 16 where we used manual gating to select Bcl6, cMAF, IFNg, IL21 or IL4 positive cells directly from total CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD45RA<sup>neg</sup>CD25<sup>neg</sup> TfH cells based on the FMO or negative control, and we overlaid the positive cells on the UMAP of all the CXCR5<sup>pos</sup>CD4<sup>pos</sup>CD45RA<sup>neg</sup>CD25<sup>neg</sup> meta-clusters. Moreover, all the dot plots (with their statistics) used for the heatmap figure 6 and 7 can be found in the supplemental figures 10, 11, 12 and 13. These supplemental figures address the concerns above by showing the difference of signals between unstimulated and stimulated conditions.

      Reviewer #3 (Public Review):

      Summary:

      The goal of this study was to carry out an in-depth granular and unbiased phenotyping of peripheral blood circulating Tfh specific to two malaria vaccine candidates, PfSEA-1A and PfGARP, and correlate these with age (children vs adults) and protection from malaria (antibody titers against Plasmodium antigens.). The authors further attempted to identify any specific differences in the Tfh responses to these two distinct malaria antigens.

      Strengths:

      The authors had access to peripheral blood samples from children and adults living in a malaria-endemic region of Kenya. The authors studied these samples using in vitro restimulation in the presence of specific malaria antigens. The authors generated a very rich data set from these valuable samples using cutting-edge spectral flow cytometry and a 21-plex panel that included a variety of surface markers, cytokines, and transcription factors.

      Weaknesses:

      - Quantifying antigen-specific T cells by flow cytometry requires the use of either 1- tetramers or 2- in vitro restimulation with specific antigens followed by identification of TCR-activated cells based on de-novo expression of activation markers (e.g. intracellular cytokine staining and/or surface marker staining). Although authors use an in vitro restimulation strategy, they do not focus their study on cells de-novo expressing activation markers as a result of restimulation; therefore, their study is not really on antigen-specific cTfh. Moreover, the authors report no changes in the expression of activation markers commonly used to identify antigen-specific T cells upon in vitro restimulation (including IFNg and CD40L); therefore, it is not clear if their in vitro restimulation with malaria antigens actually worked.

      We understand the reviewer’s point of view and apologies for any confusion. IFNg was expressed but not statistically different between groups. Indeed, looking at the CD8 T cells and using manual gating, we were able to show that IFNg was increased but not statistically significant upon stimulation from CD4<sup>pos</sup>CXCR5<sup>pos</sup> cells (supplemental figure 15, panel C), confirming our primary observation using clustering analysis. These results showed that our malaria antigen induced IFNg response in some participants, but not all of them, revealing heterogeneity in this response among individuals within the same group.

      Regarding CD40L, in the supplemental figure 7, we can see that some of our meta-clusters expressed more CD40L upon stimulation, but again without leading to statistical differences between groups. Combined with the increased expression of other cytokines and transcription factors, we showed that our stimulation did indeed work. However, because of the high variation within groups, there were no statistical differences across our groups. Because CD40L is not the only marker showing specific T cell activation, and not all T cells respond using this marker alone, a more comprehensive multimarker AIM panel might have highlighted differences between groups. We recognized the limitations of our study and believe that future study will benefit from more activation markers commonly used to identify antigone-specific T cells such as CD69, OX40, 4-1BB (AIM panel), among other markers.

      - CXCR5+CD4+ memory T cells have been shown to present multi-potency and plasticity, capable of differentiating to non-Tfh subsets upon re-challenge. Although authors included in their flow panel a good number of markers commonly used in combination to identify Tfh (CXCR5, PD-1, ICOS, Bcl-6, IL-21), they only used one single marker (CXCR5) as their basis to define Tfh, thus providing a weak definition for Tfh cells and follow up downstream analysis.

      Sorry for the confusion, even though the subsampled on the CD4<sup>pos</sup>CXCR5<sup>pos</sup> CD25<sup>neg</sup> cells to run our FlowSOM, we showed the different levels of expression across meta-clusters (figure 4 panels A and B) of PD1 (Tfh being PD1 positive cells) and ICOS (indicating the activation stage of the Tfh, “T Follicular Helper Cells” Methods and Protocols book from Springer 2015). We also included an overlay of the manually gated double positive Bcl6-cMAF cells on the CXCR5<sup>pos</sup>CD45RA<sup>neg</sup>CD25<sup>neg</sup> CD4 T cell UMAP plot to show that most of them express Bcl6 (supplemental figure 14). Interestingly, the manually gated IL21 positive cells were less abundant, particularly for children (supplemental figure 15). Because we were not able to include all the markers that are now used to define Tfh cells, we referred to our cell subsets as “TFH-like”. This is an acknowledged limitation of our study. Due to the limited blood volume obtained from children and cost of running multiplex flow cytometry assays, our results showing antigen-specific heterogeneity of Tfh subset will have to be validated in future studies that include these additional defining markers.

      - Previous works have used FACS-sorting and in vitro assays for cytokine production and B cell help to study the functional capacity of different cTfh subsets in blood from Plasmodium-infected individuals. In this study, authors do not carry out any such assays to isolate and evaluate the functional capacity of the different Tfh subsets identified. Thus, all the suggestions for the role that these different cTfh subsets may have in vivo in the context of malaria remain highly hypothetical.

      Unfortunately, low blood volumes obtained from children prevented us from running in vitro functional assays and the study design did not allow us to correlate them with protection. However, since the function of identified Tfh subsets from malaria-exposed individuals has been evaluated using Pf lysates in other studies, we referenced them when interpreting the differences we reported in Tfh subset recognition between malaria antigens. If either of these antigens move forward into vaccine trials, then evaluating their function would be important.

      - The authors have not included malaria unexposed control groups in their study, and experimental groups are relatively small (n=13).

      This study design did not include the recruitment of malaria naive negative controls as its goal was to assess malaria antigen-specific responses comparing the quality and abundance between malaria-exposed children to adults to these potential new vaccine targets PfSEA-1A and PfGARP. We did however test 3 malaria-naive adults and found no non-specific activation after stimulation with these two malaria antigens. Since this was done as part of our assay optimization, we did not feel the need to show these negative findings.

      And even with our small sample size, we demonstrated significant age-associated differences in malaria antigen-specific responses from cT<sub>FH</sub>-like subsets.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor points are:

      (1) Line 88, cTfh cells are not only from GC-Tfh, they have GC-independent origin (He et al, PMID: 24138884).

      The following sentence was added line 88 “Interestingly, cT<sub>FH</sub> cells can also come from peripheral cT<sub>FH</sub> precursor CCR7<sup>low</sup>PD1<sup>high</sup>CXCR5<sup>pos</sup> cells; thus, they also have a GC-independent origin (He, Cell, 2013 PMID: 24138884).

      (2) I believe all participants were free of blood-stage infection upon enrolment. But can authors clearly state this information between lines 151-159?

      We mentioned in the methods, line 495-496 “Participants were eligible if they were healthy and not experiencing any symptoms of malaria at the time venous blood was collected”. However, using qPCR we found 5 children with malaria blood stage. As shown in Author response image 2, comparing malaria free to blood-stage children, no differences were observed without any stimulation. However, MC03 is more abundant upon malaria antigen stimulation in the blood-stage group whereas MC04 is more abundant in the malaria free group upon PfGARP stimulation only confirming that our stimulation worked.

      Author response image 2.

      Reviewer #3 (Recommendations For The Authors):

      (1) The strategy for gating on antigen-specific cTfh cells needs to be revised. The correct approach would be to gate on those cells that respond by de-novo expression of activation markers upon antigen restimulation (also termed activation-induced markers. e.g. CD69, CD40L, CXCL13 and IL-21, Niessl 2020; CD69, CD40L, CD137 and OX40, Lemieux 2023; CD137 and OX40, Grifoni 2020). As it stands, the study is not really on antigen-specific T cells, but rather on the overall CD4 T cell compartment plus or minus antigenic stimulation.

      We recognized the limitation in our flow panel design which prevents us from performing this gating. We originally based our panel design on the “T follicular helper cells methods and protocols” book (Springer 2015) which used CD45RA, CD25, CXCR5, CCR6, CXCR3, CCR7, ICOS and PD1 to define cT<sub>FH</sub>. We had already optimized our 21-color panel, purchased reagents and started to run our experiments by the time these publications modified how to define TFH cells Niessl, Lemieux and Grifoni’s publication. Indeed we optimized and performed our assay from November 2019 to March 2020, finishing to run the samples during the first quarantine. Because of the urgent needs of research on SARS-CoV-2 that we were involved with from this time and moving forward, the analysis of our TFH work got highly postponed. Moreover, 2020 is also the year where many TFH papers came out with better ways to define cT<sub>FH</sub> and responses to antigen stimulations. In our future studies, our panel will include AIM.

      (2) It is not clear if the antigenic stimulation actually worked. Does the proportion of IFNg+ or IL-4+ or IL-21+ or CD40L+ or CD25+ CD4 or CD8 T cells increase following in vitro antigen restimulation?

      Yes, using manual gating, we are able to show an increase of IL4 (supplemental figure 16 panel B and C), and IL21 (supplemental figure 15 panel J and K) production in both children and adults. However, we did not observe significant production of IFNg (supplemental figure 15, panel C) and changes in CD40L expression (supplemental figure 7) after malaria antigen stimulation, however, our positive control SEB worked. So, yes our stimulation assay worked but these 2 malaria antigens did not significantly induce these cytokines. This could be that they are too low to detect in every participant since they are single antigens and not whole parasite lysates, as other studies have used. It could also be that these antigens don’t stimulate CD40L or IFNg in all our participants. We brought up this limitation as follow in the discussion, line 473: “Although the heterogeneity in the response of CD40L and IFNγ suggests that our tested malaria antigens did not induce significant differences in the expression of these markers in all our participants, our panel did not include other activated induced markers, such as OX40, 4-1BB, and CD69”.

      (3) It is not clear what is the proportion of cTfh over the total CD4 T cell compartment among the different groups. Does this vary among different groups? It would be valuable to display this as an old-fashioned combination of contour plots with outliers for illustrating flow cytometry and bar graphs for the cumulative data.

      The proportion of CD3<sup>pos</sup>CD4<sup>pos</sup>CD25<sup>neg</sup>CXCR5<sup>pos</sup> cTfh cells did not differ within the total number of CD4 T cells between groups (figure 2).

      (4) The gating strategy could be refined and become more robust if adding additional markers in combination with CXCR5 for identifying cTfh (e.g. CXCR5+Bcl6+).

      Thank you for this suggestion. An overlay of Bcl6 expression can be found in supplemental figure 14 where we confirm that our CXCR5+ cT<sub>FH</sub>-like subsets express cMAF and Bcl6.

      (5) The protocols for intracellular and intranuclear staining seem to be incomplete in Materials and Methods. In particular, cell permeabilization strategies seem to be missing.

      Our apologies for this oversight, we added the following sentences in the methods line 545: “Cells were fixed and permeabilized for 45 mins using the transcription factor buffer set (BD Pharmingen) followed by a wash with the perm-wash buffer. Intracellular staining was performed at 4 °C for 45 more mins followed by two washes using the kit’s perm-wash buffer”.

      (6) In Materials and Methods, the authors mention they have used fluorescence minus one control to set their gating strategy. It would be valuable to show these, either on the main body or as part of supplementary figures.

      We added the cytoplots of the FMOs and/or negative controls as appropriate in the supplemental figures 14 (cMAF and Bcl6), 15 (IFNg and IL21) and 16 (IL4 and IL21).

      (7) Line 194 and Figure 3, it is not clear the criteria that the authors used for down-sampling events before FlowSOM analysis. Was this random? Was this done with unstimulated or stimulated samples?

      We chose to down-sample on CD3posCD4<sup>pos</sup>CD25<sup>neg</sup>CD45RA<sup>neg</sup> and CXCR5<sup>pos</sup> cells prior to our FlowSOM to allow more cluster analysis to focus only on the differences among those cells. The down-sampling used 1,000 CD3posCD4<sup>pos</sup>CD25<sup>neg</sup> CD45RA<sup>neg</sup>CXCR5<sup>pos</sup> cells from each fcs file (unstimulated and stimulated samples). If the fcs file had more than 1,000 CXCR5<sup>pos</sup> cells, the down-sampling was done randomly by the OMIQ platform algorithm to select only 1,000 CXCR5<sup>pos</sup> cells within this specific fcs file. The latest sentence was added to the methods line 593.

      (8) Lanes 201, 202, As it stands, the take of the authors on the role of different cTfh subsets during infection remains highly speculative. Are these differences in cTfh phenotypes actually reflected in their in vitro capacity to provide B cell help (e.g. as in the Obeng-Adjei 2015 paper) or to produce IL-21, express co-stimulatory molecules, or any other characteristic that would allow them to better infer their functional roles during infection? Any additional in vitro analysis of the functional capacity of isolated cTfh subsets identified in this research would greatly increase its value.

      We agree with the reviewer that this sentence is speculative, and we rephrase it as follow: “First, we found different CXCR5 expression levels between meta-clusters (Figure 3b); CXCR5 is essential for cT<sub>FH</sub> cells to migrate to the lymph nodes and interact with B-cells”. We would have liked to perform in vitro functional assays. However, as explained above, we did not have sufficient cells collected from children to do so.

      (9) It is not clear why authors omitted IL-17 and did not use IFNg and IL-4 to refine their definition of Th1, Th2 and Th17 cTfh.

      We would have liked to include IL-17, however we were constrained by only having access to a 4 lasers cytometer at the time we ran our assay. In light of needing to prioritize markers, when we were designing our flow panel, cTfh1 were shown to be preferentially activated during episodes of acute febrile malaria children (Obeng-Adjei). Therefore, we chose to focus on IFNg and IL4 to differentiate Tfh1 from Tfh2, in addition to other markers as surrogate of functional potential. We did not use IFNg and IL4 to refine our definition of Tfh1, Tfh2 and Tfh17 as recent publications have shown that IL4 is not only expressed in Tfh2 but also in the other Tfh subsets, at lower intensity (Gowthaman among others). Therefore IFNg and IL4 by themselves were not sufficient to properly define the different Tfh subsets. In future studies, we plan to include transcription factor profiles (T-bet, BATF, GATA3) to further refine definitions of Tfh subsets.

      (10) Lines, 226, 228, based on the combination of markers that the MC03 subset expresses, it is tempting to think that this is the only "truly" committed Tfh subset from the entire analysis. Please, discuss.

      If the reviewer is referring to changes in marker expression levels that indicate they have not reached a level of differentiation that would make them reliable (ie “true) Tfh cells, we agree that this is an important question now that we have technology that can measure and analyse so many phenotypic markers at once. This brings forward the need for the scientific method - to replicate study findings to determine whether they are consistent given the same study design and experimental conditions.

      (11) Lines 243 244, Again, is this reflected in functional capacity?

      The study described in this manuscript did not include functional assays. However, this did not change the key finding that different malaria antigens behaved differently, demonstrating heterogeneity in Tfh recognition of malaria antigens. Regarding CD40L expression, we did not observe differences between groups, however some individuals had an increase of their CD40L (supplemental figure 7). It is possible that some individuals had responded through other activated induced markers (CD69, ICOS, OX40, 4-1BB among others) and that our stimulation condition was not long enough to assess CD40L expression upon malaria antigen stimulation. This limitation has been addressed by editing the line 243-244 as follows: “we were unable to find statistical differences in the CD40L expression between groups as only few individuals responded through it (supplemental figure 7).”

      (12) Lines 243, 244, Are these cTfh subsets exclusively detected in malaria-exposed individuals? This is confounded by the lack of a malaria unexposed control group in this study, which would have been highly valuable.

      We agree with the reviewer that having non-naive children would have been valuable as a negative control group. However, this study was conducted in Kenya where all children are suspected to have had at least one malaria infection. We also did not have ethical approval or the means to enroll children in the USA who would not have been exposed to malaria as a negative control group. Since we were also evaluating differences by age group, comparing US adults would not have helped to address this point. Therefore, this remains an open question that might be addressed by another study recruiting children in non-malaria endemic areas.

      (13) Line 267, as the authors have not gated on T cells de-novo expressing activation markers in response to antigen restimulation, how do they know these are indeed antigen-specific cTfh?

      Omiq analysis accounts for marker expression levels in the resting cells (unstimulated well) for each individual compared to each experimental/stimulated well. The algorithm computationally determines whether that expression level changed without an arbitrary positive threshold, keeping the expression levels as a continuous variable, not dichotomous - which is the power of unbiased cluster analyses. Therefore, we know that these cells are antigen-specific based on the statistical difference in intensity expression between the resting cells and the stimulated ones. Nevertheless, manual gating to show “de-novo” responding cells, produced the same results as assessing the MFI of each meta-cluster (supplemental figures 14, 15 and 16).

      (14) Lines, 292-295, it is very surprising that Tfh cells would not produce IL-21 upon restimulation. Have the authors observed upregulation of IL-21 following SEB restimulation?

      Yes, we observed IL21 positive cells upon SEB stimulation (supplemental figure 15, panel J and K). However we found unexpectedly high background levels of IL21, specifically within the adult group (supplemental figure 15, panel K and M) making it challenging to find antigen-specific increases above background. Interestingly, an increase in IL21 using manual gating was observed upon PfSEA-1A or PfGARP stimulation in children (supplemental figure 15, panel J and L).

      (15) In Figures 3 and 4, it is not clear if there are any significant differences in expression of different markers between different cTfh subsets and/or different conditions. Moreover, the lack of differences in response to antigen stimulation seems to suggest that it did not work adequately.

      We intentionally chose 6-hours stimulation to better assess changes in cytokines which we did. However, because it is a short stimulation, we did not expect dramatic changes in the extracellular markers presented in the figure 3 and 4. A longer stimulation, such as 24h, will highlight properly these changes.

      (16) Figure 5b would benefit from bar graphs.

      Please find below the bar-graphs for the highlighted meta-clusters in figure 5b. We did not include these bar-graphs to our figure 5 as they do not bring new information. They repeat the information already presented through the EdgeR plot.

      Author response image 3.

      (17) Figures 6 and 7 would greatly benefit from showing individual examples of old-fashioned contour with outliers flow plots to illustrate the different cTfh subsets identified in the study.

      The different cT<sub>FH</sub> subsets can be found with a contour plot with outliers in the supplemental figure 4.

      (18) Figures 3,4, 6, and 7, the authors exclusively focused on the study of MFI to measure the expression of cytokine and transcription factors among different groups/stimulations. Have the authors observed any differences in the percentage or absolute counts of cytokine+ and/or TF+ between different subsets of cTfh and/or different conditions?

      Yes. We added the supplemental figures 14 (transcription factors) and 15/16 (cytokines) where cytokines and transcription factors were assessed using manual gating. We found that total CD4<sup>pos</sup>CXCR5<sup>pos</sup> IL4 was significantly increased upon stimulation in both adults and children while IFNg was not. However, we found significantly higher IFNg on total CD8<sup>pos</sup> cells showing that the stimulation worked, but the total CD4<sup>pos</sup>CXCR5<sup>pos</sup> did not express IFNg. Finally, we observed a trend of higher IL21<sup>pos</sup>CD4<sup>pos</sup>CXCR5<sup>pos</sup> in adults, not significant due to high background whereas IL21 was significantly increased upon stimulation in children. Regarding cMAF and Bcl6, both transcription factors were significantly increased upon stimulation within children only.

      (19) Figure 8, the definition for high and low PfGARP antibody titers seems rather arbitrary. Are these associations still significant when attempting a regular correlation analysis between Ab values (i.e. Net MFI) and different cTfh subsets?

      Yes, the definition for high and low PfGARP antibody levels is arbitrary but when looking at the antibody data (figure 1b), it was naturally bimodal. Therefore as a sub-analysis, we assess the association between PfGARP antibodies levels and cT<sub>FH</sub> subsets, see Author response image 4. We checked the correlation between the abundance of the meta-clusters and the level of IgG anti-PfGARP and anti-PfSEA after PfGARP and PfSEA stimulation. We also checked the correlation between the MFI expression of Bcl6 and cMAF after stimulation (PfGARP or PfSEA-1A minus the unstimulated) by the meta-clusters and the level of IgG anti-PfGARP and anti-PfSEA. However, we believe that because of our small sample size, our results are not robust enough and that we risk over-interpreting the data. Therefore, we choose not to include this analysis in the manuscript.

      Author response image 4.

      (20) The comprehensive 21-plex panel that authors used in this study could generate insights on additional immune cells beyond cTfh (e.g. additional CD4 T cell subsets, CD8 T cells, CD19 B cells). It is not clear why the authors limited their analysis to cTfh only.

      The primary goal of the study was to assess the cT<sub>FH</sub> response to malaria vaccine candidates. However, we were able to assess the IFNg expression for CD8 T cells upon stimulation using the manual gating as indicated in the supplemental figure 15. Without additional markers to more clearly define other CD4 T cell or B cell subsets, we do not believe this dataset would go deep enough into characterizing antigen-specific responses to malaria antigens that would yield new insight.

      (21) Minor point, the punctuation should be revised throughout the manuscript.

      Punctuation was revised throughout the manuscript by our departmental scientific writer Dr. Trombly, as per reviewer request.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Weaknesses:

      (1) Only Experiment 1 of Rademaker et al (2019) is reanalyzed. The previous study included another experiment (Expt 2) using different types of distractors which did result in distractor-related costs to neural and behavioral measures of working memory. The Rademaker et al (2019) study uses these two results to conclude that neural WM representations are protected from distraction when distraction does not impact behavior, but conditions that do impact behavior also impact neural WM representations. Considering this previous result is critical for relating the present manuscript's results to the previous findings, it seems necessary to address Experiment 2's data in the present work

      We thank the reviewer for the proposal to analyze Experiment 2 where subjects completed the same type of visual working memory task, but instead had either a flashing orientation distractor or a naturalistic (gazebo or face) distractor present during two-thirds of the trials. As the reviewer points out, unlike Experiment 1, these two conditions in Experiment 2 had a behavioral impact on recall accuracy, when compared to the blank delay. We have now run the temporal cross-decoding analysis, temporally-stable neural subspace analysis, and condition cross-decoding analysis in Experiment 2. The results from the stable subspace analysis are present in Figure 3, while the results from the temporal cross-decoding analysis and condition cross-decoding analysis are present in the Supplementary Data.

      First, we are unable to draw strong conclusions from the temporal cross-decoding analysis, as the decoding accuracies across time in Experiment 2 are much lower compared to Experiment 1. In some ROIs of the naturalistic distractor condition we see that some diagonal elements are not part of the above-chance decoding cluster, making it difficult to draw any conclusions regarding dynamic clusters. We do see some dynamic coding in the naturalistic condition in V3 where the off-diagonals do not show above-chance decoding. Since the temporal cross-decoding provides low accuracies, we do not examine the dynamics of neural subspaces across time.

      We do, however, run the stable subspace analysis on the flashing orientation distractor condition. Just like in Experiment 1, we examine temporally stable target and distractor subspaces. When projecting the distractor onto the working memory target subspace, we see a higher overlap between the two as compared to Experiment 1. A similar pattern is seen also when projecting the target onto the distractor subspace. We still see an above-chance principal angle between the target and distractor; however, this angle is qualitatively smaller compared to Experiment 1. This shows that the degree of separation between the two neural subspaces is impacted by behavioral performance during recall.

      (2) Primary evidence for 'dynamic coding', especially in the early visual cortex, appears to be related to the transition between encoding/maintenance and maintenance/recall, but the delay period representations seem overall stable, consistent with previous findings

      We agree with the reviewer that we primarily see dynamic coding between the encoding/maintenance and at the end of the maintenance periods, implying the WM representations are stable in most ROIs. The only place where we argue that we might see more dynamic coding during the delay itself is in V1 during the noise distractor trials in Experiment 1.

      (3) Dynamicism index used in Figure 1f quantifies the proportion of off-diagonal cells with significant differences in decoding performance from the diagonal cell. It's unclear why the proportion of time points is the best metric, rather than something like a change in decoding accuracy. This is addressed in the subsequent analysis considering coding subspaces, but the utility of the Figure 1f analysis remains weakly justified.

      We agree that other metrics can also provide a summary of dynamics; here, the dynamicism index just acts as a summary visualizing the dynamic elements. It offers an intuitive way to visualize peaks and troughs of the dynamic code across the extent of the trial.

      (4) There is no report of how much total variance is explained by the two PCs defining the subspaces of interest in each condition, and timepoint. It could be the case that the first two principal components in one condition (e.g., sensory distractor) explain less variance than the first two principal components of another condition.

      We thank the reviewer for this comment. We have now included the percent variance explained for the two PCs in both the temporally-stable target and distractor subspace and the dynamic subspace analysis. The percent-explained is comparable across analyses; the first PC ranges from 43-50% and the second ranges from 28-37%. The PCs within each analysis (dynamic no-distractor, orientation and noise distractor; temporally-stable target and distractor) are even closer in range (Figure 2c and 3d).

      (5) Converting a continuous decoding metric (angular error) to "% decoding accuracy" serves to obfuscate the units of the actual results. Decoding precision (e.g., sd of decoding error histogram) would be more interpretable and better related to both the previous study and behavioral measures of WM performance.

      We thank the reviewer for the comments. FCA is a linear function of the angular error that uses the following equation:

      We think that the FCA does not obfuscate the results, but instead provides an intuitive scale where 0% accuracy corresponds to a 180° error, 50% to a 90° error and so on. This also makes it easy to reverse-calculate the absolute error if need be. Our lab has previously used this method in other neuroimaging papers with continuous variables (Barbieri et al. 2023, Weber et al. 2024).

      We do, however, agree that “% decoding accuracy” does not provide an accurate reflection of the metric used. We have thus now changed “% decoding accuracy” to “Accuracy (% FCA)”.

      (6) This report does not make use of behavioral performance data in the Rademaker et al (2019) dataset.

      We have now analyzed Experiment 2 which, as previously mentioned by the reviewer and unlike Experiment 1, showed a decrease in recall accuracy during the two distractor conditions. We address the results from Experiment 2 in a previous response (please see Weaknesses 1).

      We do not, however, relate single subject behavioral performance to neural measurements, as we do not think there is enough power to do so with a small number of subjects in both Experiment 1 and 2. 

      (7) Given there were observed differences between individual retinotopic ROIs in the temporal cross-decoding analyses shown in Figure 1, the lack of data presented for the subspace analyses for the corresponding individual ROIs is a weakness

      We have now included an additional supplementary figure that shows individual plots of each ROI for the temporally stable subspace analysis for both Experiment 1 and Experiment 2 (Supplementary Figure 5). 

      Reviewer #1 (Recommendations For The Authors):

      (1) Is there any relationship between stable/dynamic coding properties and aspects of behavioral performance? This seems like a major missed opportunity to better understand the behavioral relevance or importance of the proposed dynamic and orthogonal coding schemes. For example, is it the case that participants who have more orthogonal coding subspaces between orientation distractor and remembered orientation show less of a behavioral consequence to distracting orientations? Less induced bias? I know these differences weren't significant at the group level in the original study, but maybe individual variability in the metrics of this study can explain differences in performance between participants in the reported dataset

      As mentioned in the previous response, we do not run individual correlations between dynamic or orthogonal coding metrics and behavioral performance, because of the small number of subjects in both experiments. We believe that for a brain-behavior correlation between average behavioral error of subjects and an average brain measure, we would need a larger sample size.  

      (2) The voxel selection procedure differs from the original study. The authors should add additional detail about the number of voxels included in their analyses, and how this number of voxels compares to that used in the original study.

      We have now added a figure summarizing the number of voxels selected across participants. We do select fewer voxels compared to Rademaker et al. 2019 (see their Supplementary Tables 9 and 10 and our Supplementary Figure 8). For example we have ~500 voxels on average in V1 in Experiment 1, while the original study had ~1000. As mentioned in the methods, we aimed to select voxels that reliably responded to both the perception localizer conditions and the working memory trials.

      (3) Lines 428-436 specify details about how data is rescaled prior to decoding. The procedure seems to estimate rescaling factors according to some aspect of the training data, and then apply this rescaling to the training and testing data. Is there a possibility of leakage here? That is - do aspects of the training data impact aspects of the testing data, and could a decoder pick up on such leakage to change decoding? It seems this is performed for each training/testing timepoint pair, and so the temporal unfolding of results may depend on this analysis choice.

      Thank you for the suggestion. To prevent data leakage, the mean and standard deviation are computed exclusively from the training set. These scaling parameters are then applied to the test set, ensuring that no information from the test set influences the training process. This transformation simply adjusts the test set to the same scale as the training data, without exposing the model to unseen test data during training.

      (4) Figure 1d, V1: it looks like the 'dynamics' are a bit non-symmetric - perhaps the authors could comment on this detail of the results? Why would we expect there would be a dynamic cluster on one side of the diagonal, but not the other? Given that this region, condition is the primary evidence for a dynamic code that's not related to the beginning/end of delay (see other comments), figuring this out is of particular importance.

      We thank the reviewer for this question. We think that this is just due to small numerical differences in the upper and lower triangles of the matrix, rather than a neuroscientifically interesting effect. However, this is only a speculative observation.

      (5) I think it's important to address the issue I raised in "weaknesses" about variance explained by the top N principal components in each condition. What are we supposed to learn from data projected into subspaces fit to different conditions if the subspaces themselves are differently useful?

      Thank you, this has now been addressed in a previous comment (please see Weakness 4). 

      Reviewer #2:

      Weaknesses:

      (1) An alternative interpretation of the temporal dynamic pattern is that working memory representations become less reliable over time. As shown by the authors in Figure 1c and Figure 4a, the on-diagonal decoding accuracy generally decreased over time. This implies that the signal-to-noise ratio was decreasing over time. Classifiers trained with data of relatively higher SNR and lower SNR may rely on different features, leading to poor generalization performance. This issue should be addressed in the paper.

      We thank the reviewer for raising this issue and we have now run three simulations that aim to address whether a changing SNR across time might create dynamic clusters. 

      In the first simulation we created a dataset of 200 voxels that have a sine or cosine response function to orientations between 1° to 180°, the same orientations as the remembered target. A circular shift is applied to each voxel to vary preferred (or maximal) responses of each simulated voxel. We then assess the decoding performance under different SNR conditions during training and testing. For each of the seven iterations we selected 108 responses (out of 180) to train on and 108 to test on. To increase variability the selected trials differed in each iteration. Random white noise was applied to the data and thus the SNR was independently scaled according to the specified levels for train and test data. We then use the same pSVR decoder as in the temporal cross decoding analysis to train and test. 

      The second and third simulations more directly address whether increased noise levels  would induce the decoder to rely on different features of the no-distractor and noise distractor data. We use empirical data from the primary visual cortex (V1; where dynamic coding was seen in the noise distractor trials) under the no-distractor and noise distractor conditions for the second and third simulations, respectively. Data from time points 5.6–8.8 seconds after stimulus onset are averaged across five TRs. As in the first simulation, SNR is systematically manipulated by adding white noise. Additionally, to see whether the initial decrease in SNR and subsequent increase would result in dynamic coding clusters, we initially increased and subsequently decreased the amplitude of added noise. The same pSVR decoder was used to train and test on the data with different levels of added noise.

      We see an absence of dynamic elements in the SNR cross-decoding matrices, as the decoding accuracy primarily depends on the training data rather than test data. This results in some off-diagonal values in the decoding matrix that are higher, rather than smaller, than corresponding on-diagonal elements.

      We have now added a Methods section explaining the simulations in more detail and Supplementary Figure 9 showing the SNR cross-decoding matrices. 

      (2) The paper tests against a strong version of stable coding, where neural spaces representing WM contents must remain identical over time. In this version, any changes in the neural space will be evidence of dynamic coding. As the paper acknowledges, there is already ample evidence arguing against this possibility. However, the evidence provided here (dynamic coding cluster, angle between coding spaces) is not as strong as what prior studies have shown for meaningful transformations in neural coding. For instance, the principal angle between coding spaces over time was smaller than 8 degrees, and around 7 degrees between sensory distractors and WM contents. This suggests that the coding space for WM was largely overlapping across time and with that for sensory distractors. Therefore, the major conclusion that working memory contents are dynamically coded is not well-supported by the presented results.

      We thank the reviewer for this comment. The principal angles we calculate are above-baseline, meaning that we subtract the within-subspace principal angles from the between-subspace principal angles and take the average. Thus a 7 degree difference does not imply that there are only 7 degrees separating e.g. the sensory distractor from the target; it just indicates that the separation is 7 degrees above chance. 

      (3) Relatedly, the main conclusions, such as "VWM code in several visual regions did not generalize well between different time points" and "VWM and feature-matching sensory distractors are encoded in separable coding spaces" are somewhat subjective given that cross-condition generalization analyses consistently showed above chance-level performance. These results could be interpreted as evidence of stable coding. The authors should use more objective descriptions, such as 'temporal generalization decoding showed reduced decoding accuracy in off-diagonals compared to on-diagonals.

      Thank you, we agree that our previous claims might have been too strong. We have now toned down our statements in the Abstract and use “did not fully generalize” and “VWM and feature-matching sensory distractors are encoded in coding spaces that do not fully overlap.”

      Reviewer #2 (Recommendations For The Authors):

      Weakness 1 can potentially be addressed with data simulations that fix the signal pattern, vary the noise pattern, and perform the same temporal generalization analysis to test whether changes in SNR can lead to seemingly dynamic coding formats.

      Thank you for the great suggestion. We have now run the suggested simulations. Please see above (response to Weakness 1).

      There are mismatches in the statistical symbols shown in Figure 4 and Supplementary Table 2. It seems that there was a swap between the symbols for the noise between-condition and noise within-condition.

      Thank you, this has now been fixed.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors investigate ligand and protein-binding processes in GPCRs (including dimerization) by the multiple walker supervised molecular dynamics method. The paper is interesting and it is very well written.

      Strengths:

      The authors' method is a powerful tool to gain insight on the structural basis for the pharmacology of G protein-coupled receptors.

      We thank the Reviewer for the positive comment on the manuscript and the proposed methods.

      Reviewer #2 (Public review):

      The study by Deganutti and co-workers is a methodological report on an adaptive sampling approach, multiple walker supervised molecular dynamics (mwSuMD), which represents an improved version of the previous SuMD.

      Case-studies concern complex conformational transitions in a number of G protein Coupled Receptors (GPCRs) involving long time-scale motions such as binding-unbinding and collective motions of domains or portions. GPCRs are specialized GEFs (guanine nucleotide exchange factors) of heterotrimeric Gα proteins of the Ras GTPase superfamily. They constitute the largest superfamily of membrane proteins and are of central biomedical relevance as privileged targets of currently marketed drugs.

      MwSuMD was exploited to address:

      a) binding and unbinding of the arginine-vasopressin (AVP) cyclic peptide agonist to the V2 vasopressin receptor (V2R);

      b) molecular recognition of the β2-adrenergic receptor (β2-AR) and heterotrimeric GDPbound Gs protein;

      c) molecular recognition of the A1-adenosine receptor (A1R) and palmotoylated and geranylgeranylated membrane-anchored heterotrimeric GDP-bound Gi protein;

      d) the whole process of GDP release from membrane-anchored heterotrimeric Gs following interaction with the glucagon-like peptide 1 receptor (GLP1R), converted to the active state following interaction with the orthosteric non-peptide agonist danuglipron.

      The revised version has improved clarity and rigor compared to the original also thanks to the reduction in the number of complex case studies treated superficially.

      The mwSuMD method is solid and valuable, has wide applicability and is compatible with the most world-widely used MD engines. It may be of interest to the computational structural biology community.

      The huge amount of high-resolution data on GPCRs makes those systems suitable, although challenging, for method validation and development.

      While the approach is less energy-biased than other enhanced sampling methods, knowledge, at the atomic detail, of binding sites/interfaces and conformational states is needed to define the supervised metrics, the higher the resolution of such metrics is the more accurate the outcome is expected to be. Definition of the metrics is a user- and system-dependent process.

      We thank the Reviewer for the positive comment on the revised manuscript and mwSuMD. We agree that the choice of supervised metrics is user- and systemdependent. We aim to improve this aspect in the future with the aid of interpretable machine learning.

      Reviewer #3 (Public review):

      Summary:

      In the present work Deganutti et al. report a structural study on GPCR functional dynamics using a computational approach called supervised molecular dynamics.

      Strengths:

      The study has potential to provide novel insight into GPCR functionality. Example is the interaction between D344 and R385 identified during the Gs coupling by GLP-1R. However, validation of the findings, even computationally through for instance in silico mutagenesis study, is advisable.

      Weaknesses:

      No significant advance of the existing structural data on GPCR and GPCR/G protein coupling is provided. Most of the results are reproductions of the previously reported structures.

      The method focus of our study (mwSuMD) is an enhancement of the supervised molecular dynamics that allows supervising two metrics at the same time and uses a score, rather than a tabù-like algorithm, for handing the simulation. Further changes are the seeding of parallel short replicas (walkers) rather than a series of short simulations, and the software implementation on different MD engines (e.g. Acemd, OpenMM, NAMD, Gromacs).

      We agree with the Reviewer that experimental validation of the findings would be advisable, in line with any computational prediction. We are positive that future studies from our group employing mwSuMD will inform mutagenesis and BRET-based experiments.

      Reviewer #2 (Recommendations for the authors):

      As for GLP1R, I remain convinced that the 7LCI would have been better as a reference for all simulations than 7LCJ, also because 7LCI holds a slightly more complete ECD.

      We agree that 7LCJ would have been a better starting point than 7LCI for simulations because it presents the stalk region, contrary to 7LCJ. However, we do not think it might have influenced the output because the stalk is the most flexible segment of GLP1R, and any initial conformation is usually not retained during MD simulations.

      Please, correct everywhere the definition of the 6LN2 structure of GPL1R as a ligand-free or apo, because that structure is indeed bound to a negative allosteric modulator docked on the cytosolic end of helix-6

      We thank the reviewer for this precision. The text has been modified accordingly.

      As for the beta2-AR, the "full-length" AlphaFold model downloaded from the GPCRdb is not an intermediate active state because it is very similar to the receptor in the 3SN6 complex with Gs. Please, eliminate the inappropriate and speculative adjective "intermediate".

      We have changed “intermediate” to “not fully active”, which is less speculative since full activation can be achieved only in the presence of the G protein.

      Incidentally, in that model, the C-tail, eliminated by the authors, is completely wrong and occupies the G protein binding site. It is not clear to me the reason why the authors preferred to used an AlphaFold model as an input of simulations rather than a high resolution structural model, e.g. 4LDO. Perhaps, the reason is that all ICL regions, including ICL3, were modeled by AlphaFold even if with low confidence. I disagree with that choice.

      We understand the reviewer’s point of view. Should we have simulated an “equilibrium” receptor-ligand complex, we would have made the same choice. However, the conformational changes occurring during a G protein binding are so consistent that the starting conformation of the receptor becomes almost irrelevant as long as a sensate structure is used.  

      Reviewer #3 (Recommendations for the authors):

      The revised version of the manuscript is more concise, focusing only on two systems. However, the authors have responded superficially to the reviewers' comments, merely deleting sections of text, making minor corrections, or adding small additions to the text. In particular, the authors have not addressed the main critical points raised by both Reviewer 2 and Reviewer 3. 

      For example, the RMSD values for the binding of PF06882961 to GLP-1R remain high, raising doubts about the predictive capabilities of the method, at least for this type of system.

      What is the RMSD of the ligand relative to the experimental pose obtained in the simulations? This value must be included in the text.

      We have added this piece of information about PF06882961 RMSD in the text, which on page 6 now reads “We simulated the binding of PF06882961, reaching an RMSD to its bound conformation in 7LCJ of 3.79 +- 0.83 Å (computed on the second half of the merged trajectory, superimposing on GLP-1R Ca atoms of TMD residues 150 to 390), using multistep supervision on different system metrics (Figure 2) to model the structural hallmark of GLP-1R activation (Video S5, Video S6).”

      Similarly, the activation mechanism of GLP-1R is only partially simulated.

      Furthermore, it is not particularly meaningful to justify the high RMSD values of the SuMD simulations for the binding of Gs to GLP-1R by comparing them with those reported under unbiased MD conditions. "Replica 2, in particular, well reproduced the cryo-EM GLP-1R complex as suggested by RMSDs to 7LCI of 7.59{plus minus}1.58Å, 12.15{plus minus}2.13Å, and 13.73{plus minus}2.24Å for Gα, Gβ, and Gγ respectively. Such values are not far from the RMSDs measured in our previous simulations of GLP-1R in complex with Gs and GLP-149 (Gα = 6.18 {plus minus} 2.40 Å; Gβ = 7.22 {plus minus} 3.12 Å; Gγ = 9.30 {plus minus} 3.65 Å), which indicates overall higher flexibility of Gβ and Gγ compared to Gα, which acts as a sort of fulcrum bound to GLP-1R."

      Without delving into the accuracy of the various calculations, the authors should acknowledge that comparing protein structures with such high RMSD values has no meaningful significance in terms of convergence toward the same three-dimensional structure.

      The text has been edited to accommodate the reviewer’s suggestion and still give the readers the measure of the high flexibility of Gs bound to GLP-1R. It now reads “Such values do not support convergence with the static experimental structure but are not far from the RMSDs measured in our previous simulations of GLP-1R in complex with G<sub>s</sub> and GLP-1 (G<sub>α</sub> = 6.18 ± 2.40 Å; G<sub>b</sub> = 7.22 ± 3.12 Å; G<sub>g</sub> = 9.30 ± 3.65 Å), which indicates overall higher flexibility of G<sub>b</sub> and G<sub>g</sub> compared to G<sub>α</sub>, which acts as a sort of fulcrum bound to GLP-1R.”

      Have the authors simulated the binding of the Gs protein using the experimentally active structure of GLP-1R in complex with the ligand PF06882961 (PDB ID 7LCJ)? Such a simulation would be useful to assess the quality of the binding simulation of Gs to the GLP1R/PF06882961 complex obtained from the previous SuMD.

      We considered performing the Gs binding simulation to the active structure of GLP-1R.

      However, the GLP-1R (and other class B receptors) fully active state, as reported in 7LCJ, depends on the presence of the Gs and can be reached only upon effector coupling. Since it is unlikely that the unbound receptor is already in the fully active state, we reasoned that considering it as a starting point for Gs binding simulations would have been an artifact.

      An example of the insufficient depth of the authors' replies can be seen in their response: "We note that among the suggested references, only Mafi et al report about a simulated G protein (in a pre-formed complex) and none of the work sampled TM6 rotation without input of energy."

      This statement is inaccurate. For instance, D'Amore et al. (Chem 2024, doi: 10.1016/j.chempr.2024.08.004) simulated Gs coupling to A2A as well as TM6 rotation, as did Maria-Solano and Choi (eLife 2023, doi: 10.7554/eLife.90773.1). The former employed path collective variables metadynamics, which is not cited in the introduction or the discussion, despite its relevance to the methodologies mentioned.

      Respectfully, our previous reply is correct, as all of the mentioned articles used enhanced (energy-biased) approaches, so the claim “none of the work sampled TM6 rotation without input of energy” stands. The reference to D’Amore et al. (published after the previous round of reviews of this manuscript) has been added to the introduction; we thank the reviewer for pointing it out. 

      Additionally, SuMD employs a tabu algorithm that applies geometric supervision to the simulation, serving as an alternative approach to enhancing sampling compared to the "input of energy" techniques as called by the authors. A fair discussion should clearly acknowledge this aspect of the SuMD methodology.

      We have now specified in the Methods that a tabù-like algorithm is part of SuMD, which, despite being the parent technique of mwSuMD, is not the focus of the present work. We provide extended references for readers interested in SuMD. mwSuMD, on the other hand, does not use a tabù-like algorithm but rather a continuative approach based on a score to select the best walker for each batch, as described in the Methods.

    1. Author response:

      Reviewer #1 (Evidence, reproducibility and clarity):

      Minor comments:

      In the results section (lines 498-499), the authors describe free kinetochores in many cells without associated spindle microtubules. However, some nuclei appear to have kinetochores, as presented in Figure 6. Could the authors clarify how this conclusion was derived using transmission electron microscopy (TEM) without serial sectioning, as this is not explicitly mentioned in the materials and methods?

      We observed free kinetochores in the ALLAN-KO parasites with no associated spindle microtubules (see Fig. 6Gh), while kinetochores are attached to spindle microtubules in WT-GFP cells (see Fig. 6Gc). To provide further evidence we analysed additional images and found that ALLAN-KO cells have free kinetochores in the centre of nucleus, unattached to spindle microtubules. We provide some more images clearly showing free kinetochores in these cells (new supplementary Fig. S11).

      However, in the ALLAN mutant, this difference is not absolute: in a search of over 50 cells, one example of a cell with a “normal” nuclear spindle and attached kinetochores was observed.

      The use of serial sectioning has limitations for examining small structures like kinetochores in whole cells. The limitations of the various techniques (for example, SBF-SEM vs tomography) are highlighted in our previous study (Hair et al 2022; PMID: 38092766), and we consider that examining a population of randomly sectioned cells provides a better understanding of the overall incidence of specific features.

      Discussion Section:

      Could the authors expand on why SUN1 and ALLAN are not required during asexual replication, even though they play essential roles during male gametogenesis?

      We observed no phenotype in asexual blood stage parasites associated with the sun1 and allan gene deletions. Several other Plasmodium berghei gene knockout parasites with a phenotype in sexual stages, for example CDPK4 (PMID: 15137943), SRPK (PMID: 20951971), PPKL (PMID: 23028336) and kinesin-5 (PMID: 33154955) have no phenotype in blood stages, so perhaps this is not surprising. One explanation may be the substantial differences in the mode of cell division between these two stages. Asexual blood stages produce new progeny (merozoites) over 24 hours with closed mitosis and asynchronous karyokinesis during schizogony, while male gametogenesis is a rapid process, completed within 15 min to produce eight flagellated gametes. During male gametogenesis the nuclear envelope must expand to accommodate the increased DNA content (from 1N to 8N) before cytokinesis. Furthermore, male gametogenesis is the only stage of the life cycle to make flagella, and axonemes must be assembled in the cytoplasm to produce the flagellated motile male gametes at the end of the process. Thus, these two stages of parasite development have some very different and specific features.

      Lines 611-613 states: "These loops serve as structural hubs for spindle assembly and kinetochore attachment at the nuclear MTOC, separating nuclear and cytoplasmic compartments." Could the authors elaborate on the evidence supporting this statement?

      We observed the loops/folds in the nuclear envelope (NE) as revealed by SUN1-GFP and 3D TEM images during male gametogenesis. These folds/loops occur mainly in the vicinity of the nuclear MTOC where the spindles are assembled (as visualised by EB1 fluorescence) and attached to kinetochores (as visualised by NDC80 fluorescence). These loops/folds may form due to the contraction of the spindle pole back to the nuclear periphery, inducing distortion of the NE. Since there is no physical segregation of chromosomes during the three rounds of mitosis (DNA increasing from 1N to 8N), we suggest that these folds provide additional space for spindle and kinetochore dynamics within an intact NE to maintain separation from the cytoplasm (as shown by location of kinesin-8B).

      In lines 621-622, the authors suggest that ALLAN may have a broader role in NE remodelling across the parasite's lifecycle. Could they reflect on or remind readers of the finding that ALLAN is not essential during the asexual stage?

      ALLAN-GFP is expressed throughout the parasite life cycle but as the reviewer points out, a functional role is more pronounced during male gametogenesis. This does not mean that it has no role at other stages of the life cycle even if there is no obvious phenotype following deletion of the gene during the asexual blood stage. The fact that ALLAN is not essential during the asexual blood stage is noted in lines 628-29.

      Reviewer #2 (Evidence, reproducibility and clarity):

      Introduction

      Line 63: The authors stat: "NE is integral to mitosis, supporting spindle formation, kinetochore attachment, and chromosome segregation..". Seemingly at odds, they also say (Line 69) that 'open' "mitosis is "characterized by complete NE disassembly".

      The authors could explain better the ideas presented in their quoted review from Dey and Baum, which points out that truly 'open' and 'closed' topologies may not exist and that even in 'open' mitosis, remnants of the NE may help support the mitotic spindle.

      We have modified the sentence in which we discuss current opinions about ‘open’ and ‘closed’ mitosis. It is believed that there is no complete disassembly of the NE during open mitosis and no completely intact NE during closed mitosis, respectively. In fact, the NE plays a critical role in the different modes of mitosis during MTOC organisation and spindle dynamics. Please see the modified lines 64-71.

      Results

      Fig 7 is the final figure; but would be more useful upfront.

      We have provided a new introductory figure (Fig 1) showing a schematic of conventional /canonical LINC complexes and evidence of SUN protein functions in model eukaryotes and compare them to what is known in apicomplexans.

      Fig 1D. The authors generated a C-terminal GFP-tagged SUN1 transfectants and used ultrastructure expansion microscopy (U-ExM) and structured illumination microscopy (SIM) to examine SUN1-GFP in male gametocytes post-activation. The immuno-labelling of SUN1-GFP in these fixed cells appears very different to the live cell images of SUN1-GFP. The labelling profile comprises distinct punctate structures (particularly in the U-ExM images), suggesting that paraformaldehyde fixation process, followed by the addition of the primary and secondary antibodies has caused coalescing of the SUN1-GFP signal into particular regions within the NE.

      We agree with the reviewer. Fixation with paraformaldehyde (PFA) results in a coalescence of the SUN1-GFP signal. We have also tried methanol fixation (see new Fig. S2), but a similar problem was encountered.

      Given these fixation issues, the suggestion that the SUN1-GFP signal is concentrated at the BB/ nuclear MTOC and "enriched near spindle poles" needs further support.

      These statements seem at odd with the data for live cell imaging where the SUN1-GFP seems evenly distributed around the nuclear periphery. Can the observation be quantitated by calculating the percentage of BB/ nuclear MTOC structures with associated SUN1-GFP puncta? If not, I am not convinced these data help understand the molecular events.

      We agree with the reviewer that whilst the live cell imaging showed an even distribution of SUN1-GFP signal, after fixation with either PFA or methanol, then SUN1-GFP puncta are observed in addition to the peripheral location around the stained DNA (Hoechst) (See Fig. S2; puncta are indicated by arrows). These SUN1-GFP labelled puncta were observed at the junction of the nuclear MTOC and the basal body (Fig. 2F). Quantification of the distribution showed that these SUN1-GFP puncta are associated with nuclear MTOC in more than 90 % of cells (18 cells examined). Live cell imaging of the dual labelled parasites; SUN1xkinesin-8B (Fig. 2H) and SUN1x EB1 (Fig. 2I) provides further support for the association of SUN1-GFP puncta with BB (kinesin-8B) /nuclear MTOC (EB1).

      The authors then generated dual transfectants and examined the relative locations of different markers in live cells. These data are more informative.

      The authors state; " ..SUN1-GFP marked the NE with strong signals located near the nuclear MTOCs situated between the BB tetrads". The nuclear MTOCs are not labelled in this experiment. The SUN1-GFP signal between the kinesin-8B puncta is evident as small puncta on regions of NE distortion. I would prefer to not describe this signal as "strong". The signal is stronger in other regions of the NE.

      We have modified the sentence on line 213 to accommodate this suggestion.

      Line 219. The authors state; "..SUN1-GFP is partially colocalized with spindle poles as indicated by EB1,.. it shows no overlap with kinetochores (NDC80)." The authors should provide an analysis of the level of overlap at a pixel by pixel level to support this statement.

      We now provide the overlap at a pixel-by-pixel level for representative images, and we have quantified more cells (n>30), as documented in the new Fig. S4A. We have also modified the sentence on line 219 to reflect these additions.

      The SUN1 construct is C-terminally GFP-tagged. By analogy with human SUN1, the C-terminal SUN domain is expected to be in the NE lumen. That is in a different compartment to EB1, which is located in the nuclear lumen (on the spindle). Thus, the overlap of signal is expected to be minimal.

      We agree with the reviewer that the overlap between EB1 and Sun1 signals is expected to be minimal. We have quantified the data and included it in Supplementary Fig. S4A.

      Similarly, given that EB1 and NDC80 are known to occupy overlapping locations on the spindle, it seems unlikely that SUN1 can overlap with one and not the other.

      We agree with the reviewer’s analysis that EB1 and NDC80 occupy overlapping locations on the spindle, although the length of NDC80 is less at the ends of spindles (see Author response image 1A) as shown in our previous study where we compared the locations of two spindle proteins, ARK2 and EB1, with that of NDC80 (Zeeshan et al, 2022; PMID: 37704606). In the present study we observed that Sun1-GFP partially overlaps with EB1 at the ends of the spindle, but not with NDC80. Please see Author response image 1B.

      Author response image 1.

      I note on Line 609, the authors state "Our study demonstrates that SUN1 is primarily localized to the nuclear side of the NE.." As per Fig 7D, and as discussed above, the bulk of the protein, including the SUN1 domain, is located in the space between the INM and the ONM.

      We appreciate the reviewer’s correction; we have now modified the sentence to indicate that the protein is largely localized in the space between the INM and the ONM on line 617.

      Interestingly, as the authors point out, nuclear membrane loops are evident around EB1 and NDC80 focal regions. The data suggests that the contraction of the spindle pole back to the nuclear periphery induces distortion of the NE.

      We agree with the reviewer’s suggestion that the data indicate that contraction of spindle poles back to the nuclear periphery may induce distortion of the NE.

      The author should discuss further the overlap of findings of this study with that from a recent manuscript (https://doi.org/10.1016/j.cels.2024.10.008). That Sayers et al. study identified a complex of SUN1 and ALLC1 as essential for male fertility in P. berghei. Sayers et al. also provide evidence that this complex particulate in the linkage of the MTOC to the NE and is needed for correct mitotic spindle formation during male gametogenesis.

      We thank the reviewer for this suggestion. The study by Sayers et al, (2024) was published while our manuscript was under preparation. It was interesting to see that these complementary studies have similar findings about the role of SUN1 and the novel complex of SUN1-ALLAN. Our study contains a more detailed, in-depth analysis both by Expansion and TEM of SUN1. We include additional studies on the role of ALLAN.  We discuss the overlap in the findings of the two studies in lines 590-605.

      While the work is interesting, the conclusions may need to be tempered. The authors suggestion that in the absence of KASH-domain proteins, the SUN1-ALLAN complex forms a non-canonical LINC complex (that is, a connection across the NE), that "achieves precise nuclear and cytoskeletal coordination".

      We have toned down the wording of this conclusion in lines 665-677.

      In other organisms, KASH interacts with the C-terminal domain on SUN1, which as mentioned above is located between the INM and ONM. By contrast, ALLAN interacts with the N-terminal domain of SUN1, which is located in the nuclear lumen. The SUN1-ALLAN interaction is clearly of interest, and ALLAN might replace some of the roles of lamins. However, the protein that functionally replaces KASH (i.e. links SUN1 to the ONM) remains unidentified.

      We agree with reviewer, and future studies will need to focus on identifying the KASH replacement that links SUN1 to the ONM.

      It may also be premature to suggest that the SUN1-ALLAN complex is promising target for blocking malaria transmission. How would it be targeted?

      We have deleted the sentence that raised this suggestion.

      While the above datasets are interesting and internally consistent, there are two other aspects of the manuscript that need further development before they can usefully contribute to the molecular story.

      The authors undertook a transcriptomic analysis of Δsun1 and WT gametocytes, at 8 and 30 min post-activation, revealing moderate changes (~2-fold change) in different genes. GO-based analysis suggested up-regulation of genes involved in lipid metabolism. Given the modest changes, it may not be correct to conclude that "lipid metabolism and microtubule function may be critical functions for gametogenesis that can be perturbed by sun1 deletion." These changes may simply be a consequence of the stalled male gametocyte development.

      Following the reviewer’s suggestion we have moved these data to the supplementary information (Fig. S5D-I) and toned down their discussion in the results and discussion sections.

      The authors have then undertaken a detailed lipid analysis of the Δsun1 and WT gametocytes, before and after activation. Substantial changes in lipid metabolites might not be expected in such a short period of time. And indeed, the changes appear minimal. Similarly, there are only minor changes in a few lipid sub-classes between Δsun1 and WT gametocytes. In my opinion, the data are not sufficient to support the authors conclusion that "SUN1 plays a crucial role, linking lipid metabolism to NE remodelling and gamete formation."

      In agreement with the reviewer’s comments we have moved  these data to supplementary information (Fig. S6) and substantially toned down the conclusions based on these findings.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Major comments:

      My main concern with this manuscript is that the authors do conclude not only that SUN1 is important for spindle formation and basal body segregation, but also that it influences for lipid metabolism and NE dynamics. I don't think the data supports this conclusion, for several reasons listed below. I would suggest to remove this claim from the manuscript or at least tone it down unless more supporting data are provided, in particular showing any change in NE dynamics in the SUN1-KO. Instead I would recommend to focus on the more interesting role of SUN1-ALLAN in bipartite MTOC organisation, which likely explains all observed phenotypes (including those in later stages of the parasite life cycle). In addition, some aspects of the knockout phenotype should be quantified to a bit deeper level.

      In more detail:

      - The lipidomics analysis is clearly the weakest point of the manuscript: The authors state that there are significant changes in some lipid populations between WT and sun1-KO, and between activated and non-activated cells, yet no statistical analysis is shown and the error bars are quite high compared to only minor changes in the means. For some discussed lipids, the result text does not match the graphs, e.g. PA, where the increase upon activation is more pronounced in the SUN1-KO vs WT (contrary to the text), or MAG, which is reduced in the SUN1-KO vs WT (contrary to the text). I don't see the discussed changes in arachidonic acid levels and myristic acid levels in the data either. Even if the authors find after analysis some statistically significant differences between some groups, they should carefully discuss the biological significance of these differences. As it is, I do not think the presented data warrants the conclusion that deletion of SUN1 changes lipid homeostasis, but rather shows that overall lipid homeostasis is not majorly affected by gametogenesis or SUN1 deletion. As a minor comment, if you decide to keep the lipidomics analysis in the manuscript, please state how many replicates were done.

      As detailed above we have moved the lipidomics data to supplementary information (Fig. S6) and substantially toned down the discussion of these data in the results and discussion sections.

      - I can't quite follow the logic why the authors performed transcriptomic analysis of the SUN1 and how they chose their time points. Their data up to this point indicate that SUN1 has a structural or coordinating role in the bipartite MTOC during male gametogenesis. Based on that it is rather unlikely that SUN1 KO directly leads to transcriptional changes within the 8 min of exflagellation. Isn't it more likely that transcriptional differences are purely a downstream effect of incomplete/failed gametogenesis? This is particularly true for the comparison at 30 min, which compares a mixture of exflagellated/emerged gametes and zygotes in WT to a mixture of aberrant, arrested gametes in the knockout, which will likely not give any meaningful insight. The by far most significant GO-term is then also nuclear-transcribed mRNA catabolic process, which is likely not related at all to SUN1 function (and the authors do not even comment on this in the main text). I would therefore suggest removing the 30 min data set from this manuscript. As a minor point, I would suggest highlighting some of the top de-regulated gene IDs in the volcano plots and stating their function. Also, please state how you prepared the cells for the transcriptomes and in how many replicates this was done.

      As suggested by the reviewer we have removed the 30 min post activation data from the manuscript. We have also moved the rest of the transcriptomics data to supplementary information (Fig. S5) and toned down the presentation of this aspect of the work in the results and discussion sections.

      - Live-cell imaging of SUN1-GFP does nicely visualise the NE during gametogenesis, showing a highly dynamic NE forming loops and folds, which is very exciting to see. It would be beneficial to also show a video from the life-cell imaging.

      We have now added videos to the manuscript as suggested by the reviewer. Please see the supplementary Videos S1 and S2.

      In their discussion, the authors state multiple times that NE dynamics are changed upon SUN1 KO. Yet, they do not provide data supporting this claim, i.e. that the extended loops and folds found in the nuclear envelope during gametogenesis are affected in any way by the knockout of SUN1 or ALLAN. What happens to the NE in absence of SUN1? Are there less loops and folds? In absence of a reliable NE marker this may not be entirely easy to address, but at least some SBF-SEM images of the sun1-KO gametocytes could provide insight.

      It was difficult to provide SBF-SEM images as that work is beyond the scope of this manuscript. We will consider this approach in our future work. We re-examined many of our TEM images of SUN1-KO and ALLAN-KO parasites and did find some micrographs showing aberrant nuclear membrane folding (<5%) (Please see Author response image 2). However, we also observed similar structures in some of the WT-GFP samples (<5%), so we do not think this is a strong phenotype of the SUN1 or ALLAN mutants.

      Author response image 2.

       

      - I think the exciting part of the manuscript is the cell biological role of SUN1 on male gametogenesis, which could be carved out a bit more by a more detailed phenotyping. Specifically it would be good to quantify

      (1) If DNA replication to an octoploid state still occurs in SUN1-KO and ALLAN-KO,

      DNA replication is not affected in the SUN1-KO and ALLAN-KO mutants: DNA content increases to 8N (data added in Fig. 3J and Fig. S10F).

      (2) The proportion of anucleated gametes in WT and the KO lines

      We have added these data in Fig. 3K and Fig. S10G

      (3) A quantification of the BB clustering phenotype (in which proportion of cells do the authors see this phenotype). This could be addressed by simple fixed immunofluorescence images of the respective WT/KO lines at various time points after activation (or possibly by reanalysis of the already obtained images) and would really improve the manuscript.

      We have reanalysed the BB clustering phenotype and added the quantitative data in Fig. 4E and Fig. S7.

      Especially the claim that emerged SUN1-KO gametes lack a nucleus is currently only based on single slices of few TEM cells and would benefit from a more thorough quantification in both SUN1- and ALLAN-Kos

      We have examined many microgametes (100+ sections). In WT parasites a small proportion of gametes can appear to lack a nucleus if it does not extend all the way to the apical and basal ends (Hair et al. 2022). However, the proportion of microgametes that appear to lack a nucleus (no nucleus seen in any section) was much higher in the SUN1 mutant. In contrast, this difference was not as clear cut in the ALLAN mutant with a small proportion of intact (with axoneme and nucleus) microgametes being observed.

      We have done additional analysis of male gametes, looking for the presence of the nucleus by live cell imaging after DNA staining with Hoechst. These data are added in Fig. 3K (for Sun1-KO) and Fig. S10G (for Allan-KO).

      - The TEM suggests that in the SUN1-KO, kinetochores are free in the nucleus. Are all kinetochores free or do some still associate to a (minor/incorrectly formed) spindle? The authors could address this by tagging NDC80 in the KO lines.

      Our observation and quantification of the data indicated that 100% of kinetochores were attached to spindle microtubules and that 0% were unattached kinetochores in the WT parasites. However, the exact opposite was found for the SUN1 mutant with 100% unattached kinetochores and 0% attached. The result was not quite as clear cut in the ALLAN mutant, with 98% unattached and 2% attached. An important observation was the lack of separation of the nuclear poles and any spindle formation. Spindle formation was never or very rarely observed in the mutants.

      - Finally, I think it is curious that in contrast to SUN1, ALLAN seems to be less important, with some KO parasite completing the life cycle. Maybe a more detailed phenotyping as above gives some more hints to where the phenotypic difference between the two proteins lies. I would assume some ALLAN-KO cells can still segregate the basal body. Can the authors speculate/discuss in more detail why these two proteins seems to have slightly different phenotypes?

      We agree with the reviewer. Overall, the ALLAN-KO has a less prominent phenotype than that of the Sun1-KO. The main difference is that in the ALLAN-KO mutant some basal body segregation can occur, leading to the production of some fertile microgametocytes, and ookinetes, and oocyst formation (Fig. 8). Approximately 5% of oocysts sporulated to release infective sporozoites that could infect mice in bite back experiments and complete the life cycle. In contrast the Sun1-KO mutant made no healthy oocysts, or infective sporozoites, and could not complete the life cycle in bite back experiments. We have analysed the phenotype in detail and provide quantitative data for gametocyte stages by EM and ExM in Figs. 4 and S8 (SUN1) and Figs. 7 and S11 (ALLAN). We have also performed detailed analysis of oocyst and sporozoite stages and included the data in Fig. 3 (SUN1) and S10 (ALLAN).

      Based on the location, and functional and interactome data, we think that SUN1 plays a central role in coordinating nucleoplasm and cytoplasmic events as a key component of the nuclear membrane lumen, whereas ALLAN is located in the nucleoplasm. Deleting the SUN1 gene may disrupt the connection between INM and ONM whereas the deletion of ALLAN may affect only the INM.

      Some additional points where the data is not entirely sound yet or could be improved:

      - Localisation of SUN1: There seems to be a discrepancy between SUN1-GFP location as observed by live cell microscopy, and by Expansion Microscopy (ExM), similar for ALLAN-GFP. By live-cell microscopy, the SUN1 localisation is much more evenly distributed around the NE, while the localisation in ExM is much more punctuated, and e.g. in Figure 1E seems to be within the nucleus. Do the authors have an explanation for this? Also, in Fig. 1D there are two GFP foci at the cell periphery (bottom left of the image), which I would think are not SUN1-Foci, as they seem to be outside of the cell. Is the antibody specific? Was there a negative control done for the antibody (WT cells stained with GFP antibodies after ExM)?

      High resolution SIM and expansion microscopy showed that the SUN1-GFP molecules coalesce to form puncta, in contrast to the more uniform distribution observed by live cell imaging. This apparent difference may be due to a better resolution that could not be achieved by live cell imaging. We agree with the reviewer that the two green foci are outside of the cell. As a negative control we have used WT-ANKA cells (which contain no GFP) and the anti-GFP antibody, which gave no signal. This confirms the specificity of the antibody (please see the new Fig. S3). 

      - The authors argue that SIM gave unexpected results due to PFA fixation leading to collapse of the NE loops. However, they also fix their ExM cells and their EM cells with PFA and do not observe a collapse, at least from what I see in the two presented images and in the 3D reconstruction. Is there something else different in the sample preparation?

      There was no difference in the fixation process for samples examined by SIM and ExM, but we used an anti-GFP antibody in ExM to visualise the SUN1-GFP, while in SIM the images of GFP signal were collected directly after fixation.  We used both PFA and methanol as fixative, and both methods showed a coalescing of the SUN1-GFP signal (please see the new Fig. S2 and S3).

      Can the authors trace their NE in ExM according to the NHS-Ester signal?

      We could trace the NE in the ExM by the NHS-ester signal and observed that the SUN1-GFP signal was largely coincident with the NE (Please see the new Fig. S3B).

      - Fig 2D: It would be good to not just show images of oocysts but actually quantify their size from images. Also, have the authors determined the sporozoite numbers in SUN1-KO?

      We have measured oocyst size (data added in new Fig. 3) and added the sporozoite quantification data in Fig. 3D.

      - Line 481-483: the authors state that oocyst size is reduced in ALLAN-KO but do not show the data. Please quantify oocyst size or at least show representative images. Also the drastic decrease in sporozoite numbers (Fig. 6D, E) is not mentioned in the text. Please add reference to Fig S7D when talking about the bite back data.

      We have added the oocyst size data in Fig. S10. We mention the changes in sporozoite numbers (now  shown in Fig. 7D, E), and refer to  the bite back data shown in current Fig. 7E.

      - Fig S1C, 6C: Both WB images are stitched, but this is not clearly indicated e.g. by leaving a small gap between the lanes. Also please show a loading control along with the western blots. Also there seems to be a (unspecific?) band in the control, running at the same height as Allan-GFP WB. What exactly is the control?

      We have provided the original blot showing the bands of ALLAN-GFP and SUN1-GFP. As a positive control, we used an RNA associated protein (RAP-GFP) that is highly expressed in Plasmodium and regularly used in our lab for this purpose.

      - Regarding the crossing experiment: The authors conclude from this cross that SUN1 is only needed in males, yet for this conclusion they would need to also show that a cross with a female line does not rescue the phenotype. The authors should repeat the cross with a male-deficient line to really test if the phenotype is an exclusively male phenotype. In addition, line 270-272 states that no oocysts/sporozoites were detected in sun1-ko and nek4-ko parasites. However, the figure 2E shows only oocysts, not sporozoites, and shows also that sun1-ko does form oocysts, albeit dead ones.

      We have now performed the experiment of crossing the Sun1-KO parasite line with a male deficient line (Hap2-KO) and added the data in Fig. 3I. We have added images showing sporozoites in oocysts.

      - In Fig S1 the authors show that they also generated a SUN1-mCherry line, yet they do not use it in any of the presented experiments (unless I missed it). Would it be beneficial to cross the SUN1-mCherry line with the Allan1-GFP line to test colocalisation (possibly also by expansion microscopy)?

      We did generate a SUN1-mCherry line, with the intent to cross ALLAN-GFP and SUN1-mCherry lines and observe the co-location of the proteins. Despite multiple attempts this cross was unsuccessful. This may have been due to their close proximity such that the addition of both GFP and mCherry was difficult to facilitate a proper protein-protein interaction between either of the proteins.

      - Line 498: "In a significant proportion of cells" - What was the proportion of cells, and what does significant mean in this context?

      Approximately 67% of cells showed the clumping of BBs. We have now added the numbers in Figs. 6H and S11I.

      - The authors should discuss a bit more how their work relates to the work of Sayers et al. 2024, which also identified the SUN1-ALLAN complex. The paper is cited, but only very briefly commented on.

      We have extended this discussion now in lines 590-605.

      Suggestions how to improve the writing and data presentation.

      - General presentation of microscopy images: Considering that large parts of the manuscript are based on microscopy data, their presentation could be improved. Single-channel microscopy images would benefit from being depicted in gray scale instead of color, which would make it easier to see the structures and intensities (especially for blue channels).

      Whilst we agree with the reviewer, sometimes it is difficult to see the features in the merged images. Therefore, we would like to request to be allowed to retain the colours, which can be easily followed in both individual and merged images.

      Also, it would be good to harmonize in which panels arrows are shown (e.g. Fig 1G, where some white arrows are in the SUN1-GFP panel, while others are in the merge panel, but they presumably indicate the same thing.). At the same time, Fig 1H doesn't have any with arrows, even though the figure legend states so.

      We apologise for this lack of consistency, and we have now added arrows wherever they are missing to harmonise in the presentations.

      Fig 3A and S4 show the same experiment but are coloured in different colours (NHS-Eester in green vs grey scale).

      - Are the scale bars of all expansion microscopy images adjusted for the expansion factor?

      Yes, the scale bars are adjusted accordingly.

      - The figure legends would benefit from streamlining, as they have very different style between figures (eg Fig. 6 which has a concise figure legend vs microscopy figures where figure legends are very long and describe not only the figure but the results)

      The figure legends have been streamlined, with removal of the description of results.

      - Line 155-156: The text makes it sound like the expression only happens after activation. is that the case? Are these images activated or non-activated gametocytes?

      They are expressed before activation, but the signal intensifies after activation. Images from before and after activation of gametocytes have been added in Fig. S1F.

      - Line 267: Reference to the original nek4-KO paper missing

      This reference is now included.

      - Line 301: The reference to Figure 2J seems to be a bit arbitrarily placed. Also, this schematic of lipid metabolism is never discussed in relation to the transcriptomic or lipidomic data.

      We have moved these data to supplementary information and modified the text.

      - Line 347-349 states that gametes emerged, but the referenced figure shows activated gametocytes before exflagellation.

      We have corrected the text to the start of exflagellation.

      - Line 588: Spelling mistake in SUN1-domain

      Corrected.

      - Line 726/731: i missing in anti-GFP

      Corrected.

      - Line 787-789: statement of scale bar and number of cells imaged is not at the right position in the figure legend.

      Moved to right place

      - Line 779, 783: "shades of green" should be just "green". Same goes for line 986, 989 with "shades of grey"

      Changed.

      - Line 974, 976: please correct to WT-GFP and dsun1

      Corrected.

      - Line 1041, 1044: WT-GFP instead of WTGFP.

      Corrected to WT-GFP.

      - Fig 1B, D, E, Fig S1G, H: What are the time points of imaging?

      We have added the time points to the images in these figures.

      - Fig 1D/Line 727: the scale of the scale bar on the inset is missing.

      We have added the scale bar.

      - Fig 3 E-G and 6H-J: Please indicate total number of cells/images analysed per quantification, either in the graphs themselves or in the figure legend.

      We indicate now the number of cells analysed in individual figures and also in Fig. S5C and S8C, respectively.

      - Fig 5B: What is NP

      Nuclear Pole (NP), also known as the nuclear/acentriolar MTOC (Zeeshan et al 2022; PMID: 35550346).

      - Fig S1B/D: The legend states that there is an arrow indicating the band, but there is none.

      We have added the arrow.

      - Fig S2C: Is the scale bar really the same for the zygote and the ookinete?

      We have checked this and used the same for both zygote and ookinete.

      - Fig S3C, S7C: which stages was qRT-PCR done on?

      Gametocytes activated for 8 min.

      - Fig. S3D, S7D: According to the figure legend, three independent experiments were performed. How many mice were used per experiment? It would be good to depict the individual data points instead of the bar graph. For S7D, 3 data points are depicted (one in WT, two in allan-KO), what do they mean?

      The bite back experiment was performed using 15-20 mosquitoes infected with WT-GFP and gene knockout lines to feed on one naïve mouse each, in three different experiments. We have now included the data points in the bar diagrams.

      - Fig S3: Panel letters E and G are missing

      We have updated the lettering in current Fig. S5

      - Fig 3D: Please indicate what those boxes are. I presume that these are the insets show in b, e and j, but it is never mentioned. J is not even larger than i. Also, f is quite cropped, it would be good to see the large-scale image it comes from to see where in the nucleus these kinetochores are placed. Were there unbound kinetochores found in WT?

      We mention the boxes in the figure legends. It is rare to find unbound kinetochores in WT parasite. We provide large scale and zoomed-in images of free kinetochores in Fig. S8.

      - Fig S4: Insets are not mentioned in the figure legend. Please add scale bar to zoom-ins

      We now describe the insets in the figure legends and have added scale bars to the zoomed-in images.

      - Fig S5A, B: Please indicate which inset belongs to which sub-panel. Where does Ac stem from?

      We have now included the full image showing the inset (new Fig. S8).

      - Fig S5C and S8C: Change "DNA" to "Nucleus".

      We have changed “DNA” to “Nucleus”. Now they are Fig. S8K and S11I.

      Reviewer #3 (Significance):

      Yet, the statement that SUN1 is also important for lipid homoeostasis and NE dynamics is currently not backed up by sufficient data. I believe that the manuscript would benefit from removing the less convincing transcriptomic and lipidomic datasets and rather focus on more deeply characterising the cell biology of the knockouts. This way, the results would be interesting not only for parasitologists, but also for more general cell biologists.

      We have moved the lipidomics and transcriptomics data to supplementary information and toned down the emphasis on these data to make the manuscript more focused on the cell biology and analysis of the genetic KO data.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This paper contains what could be described as a "classic" approach towards evaluating a novel taste stimuli in an animal model, including standard behavioral tests (some with nerve transections), taste nerve physiology, and immunocytochemistry of taste cells of the tongue. The stimulus being tested is ornithine, from a class of stimuli called "kokumi" (in terms of human taste); these kokumi stimuli appear to enhance other canonical tastes, increasing what are essentially hedonic attributes of other stimuli. The mechanism for ornithine detection is thought to be GPRC6A receptors expressed in taste cells. The authors showed evidence for this in an earlier paper with mice; this paper evaluates ornithine taste in a rat model, and comes to a similar conclusion, albeit with some small differences between the two rodent species.

      Strengths:

      The data show effects of ornithine on taste/intake in laboratory rats: In two-bottle and briefer intake tests, adding ornithine results in higher intake of most, but all not all stimuli tested. Bilateral chorda tympani (CT) nerve cuts or the addition of GPRC6A antagonists decreased or eliminated these effects. Ornithine also evoked responses by itself in the CT nerve, but mainly at higher concentrations; at lower concentrations it potentiated the response to monosodium glutamate. Finally, immunocytochemistry of taste cell expression indicated that GPRC6A was expressed predominantly in the anterior tongue, and co-localized (to a small extent) with only IP3R3, indicative of expression in a subset of type II taste receptor cells.

      Weaknesses:

      As the authors are aware, it is difficult to assess a complex human taste with complex attributes, such as kokumi, in an animal model. In these experiments they attempt to uncover mechanistic insights about how ornithine potentiates other stimuli by using a variety of established experimental approaches in rats. They partially succeed by finding evidence that GPRC6A may mediate effects of ornithine when it is used at lower concentrations. In the revision they have scaled back their interpretations accordingly. A supplementary experiment measuring certain aspects of the effects of ornithine added to Miso soup in human subjects is included for the express purpose of establishing that the kokumi sensation of a complex solution is enhanced by ornithine; however, they do not use any such complex solutions in the rat studies. Moreover, the sample size of the human experiment is (still) small - it really doesn't belong in the same manuscript with the rat studies.

      Despite the reviewer’s suggestion, we would like to include the human sensory experiment. Our rationale is that we must first demonstrate that the kokumi of miso soup is enhanced by the addition of ornithine, which is then followed by basic animal experiments to investigate the underlying mechanisms of kokumi in humans.

      We did not present the additive effects of ornithine on miso soup in the present rat study because our previous companion paper (Fig. 1B in Mizuta et al., 2021, Ref. #26) already confirmed that miso soup supplemented with 3 mM L-ornithine (but not D-ornithine) was statistically significantly (P < 0.001) preferred to plain miso soup by mice.

      Furthermore, we believe that our sample size (n = 22) is comparable to those employed in other studies. For example, the representative kokumi studies by Ohsu et al. (Ref. #9), Ueda et al. (Ref. #10), Shibata et al. (Ref. #20), Dunkel et al. (Ref. #37), and Yang et al. (Ref. #44) used sample sizes of 20, 19, 17, 9, and 15, respectively.

      Reviewer #2 (Public review):

      Summary:

      The authors used rats to determine the receptor for a food-related perception (kokumi) that has been characterized in humans. They employ a combination of behavioral, electrophysiological, and immunohistochemical results to support their conclusion that ornithine-mediated kokumi effects are mediated by the GPRC6A receptor. They complemented the rat data with some human psychophysical data. I find the results intriguing, but believe that the authors overinterpret their data.

      Strengths:

      The authors provide compelling evidence that ornithine enhances the palatability of several chemical stimuli (i.e., IMP, MSG, MPG, Intralipos, sucrose, NaCl, quinine). Ornithine also increases CT nerve responses to MSG. Additionally, the authors provide evidence that the effects of ornithine are mediated by GPRC6A, a G-protein-coupled receptor family C group 6 subtype A, and that this receptor is expressed primarily in fungiform taste buds. Taken together, these results indicate that ornithine enhances the palatability of multiple taste stimuli in rats and that the enhancement is mediated, at least in part, within fungiform taste buds. This is an important finding that could stand on its own. The question of whether ornithine produces these effects by eliciting kokumi-like perceptions (see below) should be presented as speculation in the Discussion section.

      Weaknesses:

      I am still unconvinced that the measurements in rats reflect the "kokumi" taste percept described in humans. The authors conducted long-term preference tests, 10-min avidity tests and whole chorda tympani (CT) nerve recordings. None of these procedures specifically model features of "kokumi" perception in humans, which (according to the authors) include increasing "intensity of whole complex tastes (rich flavor with complex tastes), mouthfulness (spread of taste and flavor throughout the oral cavity), and persistence of taste (lingering flavor)." While it may be possible to develop behavioral assays in rats (or mice) that effectively model kokumi taste perception in humans, the authors have not made any effort to do so. As a result, I do not think that the rat data provide support for the main conclusion of the study--that "ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor."

      Kokumi can be assessed in humans, as demonstrated by the enhanced kokumi perception observed when miso soup is supplemented with ornithine (Fig. S1). Currently, we do not have a method to measure the same kokumi perception in animals. However, in the two-bottle preference test, our previous companion paper (Fig. 1B in Mizuta et al. 2021, Ref. #26) confirmed that miso soup supplemented with 3 mM L-ornithine (but not D-ornithine) was statistically significantly (P < 0.001) preferred over plain miso soup by mice.

      Of the three attributes of kokumi perception in humans, the “intensity of whole complex tastes (rich flavor with complex tastes)” was partly demonstrated in the present rat study. In contrast, “mouthfulness (the spread of taste and flavor throughout the oral cavity)” could not be directly detected in animals and had to be inferred in the Discussion. “Persistence of taste (lingering flavor)” was evident at least in the chorda tympani responses; however, because the tongue was rinsed 30 seconds after the onset of stimulation, the duration of the response was not fully recorded.

      It is well accepted in sensory physiology that the stronger the stimulus, the larger the tonic response—and consequently, the longer it takes for the response to return to baseline. For example, Kawasaki et al. (2016, Ref. #45) clearly showed that the duration of sensation increased proportionally with the concentration of MSG, lactic acid, and NaCl in human sensory tests. The essence of this explanation has been incorporated into the Discussion (p. 12).

      Why are the authors hypothesizing that the primary impacts of ornithine are on the peripheral taste system? While the CT recordings provide support for peripheral taste enhancement, they do not rule out the possibility of additional central enhancement. Indeed, based on the definition of human kokumi described above, it is likely that the effects of kokumi stimuli in humans are mediated at least in part by the central flavor system.

      We agree with the reviewer’s comment. Our CT recordings indicate that the effects of kokumi stimuli on taste enhancement occur primarily at the peripheral taste organs. The resulting sensory signals are then transmitted to the brain, where they are processed by the central gustatory and flavor systems, ultimately giving rise to kokumi attributes. This central involvement in kokumi perception is discussed on page 12. Although kokumi substances exert their effects at low concentrations—levels at which the substance itself (e.g., ornithine) does not become more favorable or (in the case of γ-Glu-Val-Gly) exhibits no distinct taste—we cannot rule out the possibility that even faint taste signals from these substances are transmitted to the brain and interact with other taste modalities.

      The authors include (in the supplemental data section) a pilot study that examined the impact of ornithine on variety of subjective measures of flavor perception in humans. The presence of this pilot study within the larger rat study does not really mice sense. While I agree with the authors that there is value in conducting parallel tests in both humans and rodents, I think that this can only be done effectively when the measurements in both species are the same. For this reason, I recommend that the human data be published in a separate article.

      Despite the reviewer’s suggestion, we intend to include the human sensory experiment. Our rationale is that we must first demonstrate that the kokumi of miso soup is enhanced by the addition of ornithine, and then follow up with basic animal experiments to investigate the potential underlying mechanisms of kokumi in humans.

      In our previous companion paper (Fig. 1B in Mizuta et al., 2021, Ref. #26), we confirmed with statistical significance (P < 0.001) that mice preferred miso soup supplemented with 3 mM L-ornithine (but not D-ornithine) over plain miso soup. However, as explained in our response to Reviewer #2’s first concern (in the Public review), it is difficult to measure two of the three kokumi attributes—aside from the “intensity of whole complex tastes (rich flavor with complex tastes)”—in animal models.

      The authors indicated on several occasions (e.g., see Abstract) that ornithine produced "synergistic" effects on the CT nerve response to chemical stimuli. "Synergy" is used to describe a situation where two stimuli produce an effect that is greater than the sum of the response to each stimulus alone (i.e., 2 + 2 = 5). As far as I can tell, the CT recordings in Fig. 3 do not reflect a synergism.

      We appreciate your comments regarding the definition of synergy. In Fig. 5 (not Fig. 3), please note the difference in the scaling of the ordinate between Fig. 5D (ornithine responses) and Fig. 5E (MSG responses). When both responses are presented on the same scale, it becomes evident that the response to 1 mM ornithine is negligibly small compared to the MSG response, which clearly indicates that the response to the mixture of MSG and 1 mM ornithine exceeds the sum of the individual responses to MSG and 1 mM ornithine. Therefore, we have described the effect as “synergistic” rather than “additive.” The same observation applies to the mice experiments in our previous companion paper (Fig. 8 in Mizuta et al. 2021, Ref. #26), where synergistic effects are similarly demonstrated by graphical representation. We have also added the following sentence to the legend of Fig. 5:

      “Note the different scaling of the ordinate in (D) and (E).”

      Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether GPRC6A mediates kokumi taste initiated by the amino acid L-ornithine. They used Wistar rats, a standard laboratory strain, as the primary model and also performed an informative taste test in humans, in which miso soup was supplemented with various concentrations of L-ornithine. The findings are valuable and overall the evidence is solid. L-Ornithine should be considered to be a useful test substance in future studies of kokumi taste and the class C G protein coupled receptor known as GPRC6A (C6A) along with its homolog, the calcium-sensing receptor (CaSR) should be considered candidate mediators of kokumi taste. The researchers confirmed in rats their previous work on Ornithine and C6A in mice (Mizuta et al Nutrients 2021).

      Strengths:

      The overall experimental design is solid based on two bottle preference tests in rats. After determining the optimal concentration for L-Ornithine (1 mM) in the presence of MSG, it was added to various tastants including: inosine 5'-monophosphate; monosodium glutamate (MSG); mono-potassium glutamate (MPG); intralipos (a soybean oil emulsion); sucrose; sodium chloride (NaCl; salt); citric acid (sour) and quinine hydrochloride (bitter). Robust effects of ornithine were observed in the cases of IMP, MSG, MPG and sucrose; and little or no effects were observed in the cases of sodium chloride, citric acid; quinine HCl. The researchers then focused on the preference for Ornithine-containing MSG solutions. Inclusion of the C6A inhibitors Calindol (0.3 mM but not 0.06 mM) or the gallate derivative EGCG (0.1 mM but not 0.03 mM) eliminated the preference for solutions that contained Ornithine in addition to MSG. The researchers next performed transections of the chord tympani nerves (with sham operation controls) in anesthetized rats to identify a role of the chorda tympani branches of the facial nerves (cranial nerve VII) in the preference for Ornithine-containing MSG solutions. This finding implicates the anterior half-two thirds of the tongue in ornithine-induced kokumi taste. They then used electrical recordings from intact chorda tympani nerves in anesthetized rats to demonstrate that ornithine enhanced MSG-induced responses following the application of tastants to the anterior surface of the tongue. They went on to show that this enhanced response was insensitive to amiloride, selected to inhibit 'salt tastant' responses mediated by the epithelial Na+ channel, but eliminated by Calindol. Finally they performed immunohistochemistry on sections of rat tongue demonstrating C6A positive spindle-shaped cells in fungiform papillae that partially overlapped in its distribution with the IP3 type-3 receptor, used as a marker of Type-II cells, but not with (i) gustducin, the G protein partner of Tas1 receptors (T1Rs), used as a marker of a subset of type-II cells; or (ii) 5-HT (serotonin) and Synaptosome-associated protein 25 kDa (SNAP-25) used as markers of Type-III cells.

      At least two other receptors in addition to C6A might mediate taste responses to ornithine: (i) the CaSR, which binds and responds to multiple L-amino acids (Conigrave et al, PNAS 2000), and which has been previously reported to mediate kokumi taste (Ohsu et al., JBC 2010) as well as responses to Ornithine (Shin et al., Cell Signaling 2020); and (ii) T1R1/T1R3 heterodimers which also respond to L-amino acids and exhibit enhanced responses to IMP (Nelson et al., Nature 2001). These alternatives are appropriately discussed and, taken together, the experimental results favor the authors' interpretation that C6A mediates the Ornithine responses. The authors provide preliminary data in Suppl. 3 for the possibility of co-expression of C6A with the CaSR.

      Weaknesses:

      The authors point out that animal models pose some difficulties of interpretation in studies of taste and raise the possibility in the Discussion that umami substances may enhance the taste response to ornithine (Line 271, Page 9).

      Ornithine and umami substances interact to produce synergistic effects in both directions—ornithine enhances responses to umami substances, and vice versa. These effects may depend on the concentrations used, as described in the Discussion (pp. 9–10). Further studies are required to clarify the precise nature of this interaction.

      One issue that is not addressed, and could be usefully addressed in the Discussion, relates to the potential effects of kokumi substances on the threshold concentrations of key tastants such as glutamate. Thus, an extension of taste distribution to additional areas of the mouth (previously referred to as 'mouthfulness') and persistence of taste/flavor responses (previously referred to as 'continuity') could arise from a reduction in the threshold concentrations of umami and other substances that evoke taste responses.

      Thank you for this important suggestion. If ornithine reduces the threshold concentrations of tastants—including glutamate—and enhances their suprathreshold responses, then adding ornithine may activate additional taste cells. This effect could explain kokumi attributes such as an “extension of taste distribution” and possibly the “persistence of responses.” As shown in Fig. 2, the lowest concentrations used for each taste stimulus are near or below the thresholds, which indicates that threshold concentrations are reduced—especially for MSG and MPG. We have incorporated this possibility into the Discussion as follows (p.12):

      “Kokumi substances may reduce the threshold concentrations as well as they increase the suprathreshold responses of tastants. Once the threshold concentrations are lowered, additional taste cells in the oral cavity become activated, and this information is transmitted to the brain. As a result, the brain perceives this input as coming from a wider area of the mouth.”

      The status of one of the compounds used as an inhibitor of C6A, the gallate derivative EGCG, as a potential inhibitor of the CaSR or T1R1/T1R3 is unknown. It would have been helpful to show that a specific inhibitor of the CaSR failed to block the ornithine response.

      Thank you for this important comment. We attempted to identify a specific inhibitor of CaSR. Although we considered using NPS-2143—a commonly used CaSR inhibitor—it is known to also inhibit GPRC6A. We agree that using a specific CaSR inhibitor would be beneficial and plan to pursue this in future studies.

      It would have been helpful to include a positive control kokumi substance in the two bottle preference experiment (e.g., one of the known gamma glutamyl peptides such as gamma-glu-Val-Gly or glutathione), to compare the relative potencies of the control kokumi compound and Ornithine, and to compare the sensitivities of the two responses to C6A and CaSR inhibitors.

      We agree with this comment. In retrospect, it may have been advantageous to directly compare the potencies of CaSR and GPRC6A agonists in enhancing taste preferences—and to evaluate the sensitivity of these preferences to CaSR and GPRC6A antagonists. However, we did not include γ-Glu-Val-Gly in the present study because we have already reported its supplementation effects on the ingestion of basic taste solutions in rats using the same methodology in a separate paper (Yamamoto and Mizuta, 2022, Ref. #25). The results from both studies are compared in the Discussion (p. 11).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major:

      I am not convinced by the Author's arguments for including the human data. I appreciate their efforts in adding a few (5) subjects and improving the description, but it still feels like it is shoehorned into this paper, and would be better published as a different manuscript.

      This human study is short, but it is complete rather than preliminary. The rationale for us to include the human data as supplementary information is shown in responses to the reviewer’s Public review.

      Minor concerns:

      Page 3 paragraph 1: Suggest "contributing to palatability".

      Thank you for this suggestion. We have rewritten the text as follows:

      “…, the brain further processes these sensations to evoke emotional responses, contributing to palatability or unpleasantness”.

      Page 4 paragraph 2: The text still assumes that "kokumi" is a meaningful descriptor for what rodents experience. Re-wording the following sentence like this could help:

      "Neuroscientific studies in mice and rats provide evidence that gluthione and y-Glu-Val-Gly activate CaSRs, and modify behavioral responses to other tastants in a way that may correspond to kokumi taste as experienced by humans. However, to our..."

      Or something similar.

      Thank you for this suggestion. We have rewritten the sentence according to your suggestion as follows:

      "Neuroscientific studies (23,25,30) in mice and rats provide evidence that glutathione and y-Glu-Val-Gly activate CaSRs, and modify behavioral responses to other tastants in a way that may correspond to kokumi as experienced by humans”.

      Page 7 paragraph 1 - put the concentrations of Calindol and EGCG used (in the physiology exps) in the text.

      We have added the concentrations: “300 µM calindol and 100 µM EGCG”.

      Reviewer #2 (Recommendations for the authors):

      I have included all of my recommendations in the public review section.

      Reviewer #3 (Recommendations for the authors):

      Although the definitions of 'thickness', 'mouthfulness' and 'continuity' have been revised very helpfully in the Introduction, 'mouthfulness' reappears at other points in the MS e.g., Page 4, Results, Line 3; Page 9, Line 3. It is best replaced by the new definition in these other locations too.

      We wish to clarify that our revised text stated, “…to clarify that kokumi attributes are inherently gustatory, in the present study we use the terms ‘intensity of whole complex tastes (rich flavor with complex tastes)’ instead of ‘thickness,’ ‘mouthfulness (spread of taste and flavor throughout the oral cavity)’ instead of ‘continuity,’ and ‘persistence of taste (lingering flavor)’ instead of ‘continuity.’” The term “mouthfulness” was retained in our text, though we provided a more specific explanation. In the re-revised version, we have added “(spread of taste in the oral cavity)” immediately after “mouthfulness.”

      I doubt that many scientific readers will be familliar with the term 'intragemmal nerve fibres' (Page 8, Line 4). It is used appropriately but it would be helpful to briefly define/explain it.

      We have added an explanation as follows:

      “… intragemmal nerve fibers, which are nerve processes that extend directly into the structure of the taste bud to transmit taste signals from taste cells to the brain.”

      I previously pointed out the overlap between the CaSR's amino acid (AA) and gamma-glutamyl-peptide binding site. I was surprised by the authors' response which appeared to miss the point being made. It was based on the impacts of selected mutations in the receptor's Venus FlyTrap domain (Broadhead JBC 2011) on the responses to AAs and glutathione analogs. The significantly more active analog, S-methylglutathione is of additional interest because, like glutathione itself, it is present in mammalian body fluids. My apologies to the authors for not more carefully explaining this point.

      Thank you for this comment. Both CaSR and GPRC6A are recognized as broad-spectrum amino acid sensors; however, their agonist profiles differ. Aromatic amino acids preferentially activate CaSR, whereas basic amino acids tend to activate GPRC6A. For instance, among basic amino acids, ornithine is a potent and specific activator of GPRC6A, while γ-Glu-Val-Gly in addition to amino acids is a high-potency activator of CaSR. It remains unclear how effectively ornithine activates CaSR and whether γ-glutamyl peptides also activate GPRC6A. These questions should be addressed in future studies.

    1. Author response:

      We thank the reviewers for their evaluation, for helpful suggestions to improve clarity and accuracy, and for their positive reception of the manuscript. We will incorporate their suggestions in a revised manuscript. Here, we respond to their major comments. 

      The reviewers suggest that a molecular study of Hofstenia’s reproductive systems would be beneficial, as would mechanistic explanations for its unusual reproductive behavior. We agree with the reviewers that both of these would be interesting avenues, although we think this is outside the scope of this current manuscript. This manuscript studies growth and reproductive dynamics in acoels, and establishes a foundation to study its underlying molecular, developmental, and physiological machinery. 

      Our previous molecular work, using scRNAseq and FISH, identified several germline markers. Here, we show that two of them are specific markers of testes and ovaries, respectively. This, together, with our new anatomical data, allows us to identify the expression domains of most of these other markers more clearly. Some markers may be expressed in a presumptive common germline that eventually splits into an anterior male germline and posterior female germline. We agree with the reviewers that understanding the dynamics of germline differentiation and its molecular genetic underpinnings would be very interesting, and we hope to address this in future work. 

      As the reviewers note, we do not understand how sperm is stored, how the worm’s own sperm can travel to its ovaries to enable selfing, or how eggs in the ovaries travel within the body. We agree with the reviewers that understanding these processes would be very interesting. Our histological and molecular work so far has been unable to find tube-like structures or other cavities for storage and transport. Potentially, cells could move within the parenchyma. Explaining these events will require substantial effort (including mechanistic studies of cell behavior and ultrastructural studies that the reviewers suggest), and we hope to do this in future work. 

      We agree with Reviewer 1 that it is interesting that Piwi-1 expression is only observed in the ovaries and not in the testes - unusual given its broad germline expression in many taxa. Although there are several possible explanations for this finding (for eg. Piwi-1 could be expressed at low levels in male germline, perhaps other Piwi proteins are expressed in male germline, or Piwi may play roles in male germline progenitors that are not co-located with maturing sperm, etc), we do not currently know why this is so, and we will discuss these possibilities in our revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors demonstrate impairments induced by a high cholesterol diet on GLP-1R dependent glucoregulation in vivo as well as an improvement after reduction in cholesterol synthesis with simvastatin in pancreatic islets. They also map sites of cholesterol high occupancy and residence time on active versus inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations and screened for key residues selected from these sites and performed detailed analyses of the effects of mutating one of these residues, Val229, to alanine on GLP-1R interactions with cholesterol, plasma membrane behaviour, clustering, trafficking and signalling in pancreatic beta cells and primary islets, and describe an improved insulin secretion profile for the V229A mutant receptor.

      These are extensive and very impressive studies indeed. I am impressed with the tireless effort exerted to understand the details of molecular mechanisms involved in the effects of cholesterol for GLP-1 activation of its receptor. In general, the study is convincing, the manuscript well written and the data well presented.

      Some of the changes are small and insignificant which makes one wonder how important the observations are. For instance, in figure 2 E (which is difficult to interpret anyway because the data are presented in percent, conveniently hiding the absolute results) does not show a significant result of the cyclodextrin except for insignificant increases in basal secretion. That is not identical to impairment of GLP-1 receptor signaling!

      We assume that the reviewer refers to Figure 1E, where we show the percentage of insulin secretion in response to 11 mM glucose +/- exendin-4 stimulation in mouse islets pretreated with vehicle or MβCD loaded with 20 mM cholesterol. While we concur with the reviewer that the effect in this case is triggered by increased basal insulin secretion at 11 mM glucose, exendin-4 appears to no longer compensate for this increase by proportionally amplifying insulin responses in cholesterol-loaded islets, leading to a significantly decreased exendin-4induced insulin secretion fold increase under these circumstances, as shown in Figure 1F. We interpret these results as a defect in the GLP-1R capacity to amplify insulin secretion beyond the basal level to the same extent as in vehicle conditions. An alternative explanation is that there is a maximum level of insulin secretion in our cells, and 11 mM glucose + exendin-4 stimulation gets close to that value. With the increasing effect of cholesterol-loaded MβCD on basal secretion at 11 mM glucose, exendin-4 stimulation would then appear to work less well.

      We have performed a simple experiment to investigate this possibility: insulin secretion following stimulation with a secretagogue cocktail (20 mM glucose, 30 mM KCl, 10 µM FSK and 100 µM IBMX) in islets +/- MβCD/cholesterol loading to determine if maximal stimulation had been reached or not in our original experiment. This experiment, now included in Supplementary Figure 1C, demonstrates that insulin secretion can increase up to ~4% (from ~2%) in our islets, supporting our initial conclusion. We have also included absolute insulin concentrations as well as percentages of secretion for all the experiments included in the study in the new Supplementary File 1 to improve the completeness of the report.

      To me the most important experiment of them all is the simvastatin experiment, but the results rest on very few numbers and there is a large variation. Apparently, in a previous study using more extensive reduction in cholesterol the opposite response was detected casting doubt on the significance of the current observation. I agree with the authors that the use of cyclodextrin may have been associated with other changes in plasma membrane structure than cholesterol depletion at the GLP-1 receptor.

      We agree with the reviewer that the insulin secretion results in vehicle versus LPDS/simvastatin treated mouse islets (Figure 1H, I) are relatively variable. We have therefore performed 2 extra biological repeats of this experiment (for a total n of 7). Results now show a significant increase in exendin-4-stimulated secretion with no change in basal secretion in islets pre-incubated with LPDS/simvastatin.  

      The entire discussion regarding the importance of cholesterol would benefit tremendously from studies of GLP-1 induced insulin secretion in people with different cholesterol levels before and after treatment with cholesterol-lowering agents. I suspect that such a study would not reveal major differences.

      We agree with the reviewer that such study would be highly relevant. While this falls outside the scope of the present paper, we encourage other researchers with access to clinical data on GLP-1R agonist responses in individuals taking cholesterol lowering agents to share their results with the scientific community. We have highlighted this point in the paper discussion to emphasise the importance of more research in this area.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors provided a proof of concept that they can identify and mutate a cholesterol-binding site of a high-interest class B receptor, the GLP-1R, and functionally characterize the impact of this mutation on receptor behavior in the membrane and downstream signaling with the intent that similar methods can be useful to optimize small molecules that as ligands or allosteric modulators of GLP-1R can improve the therapeutic tools targeting this signaling system.

      Strengths:

      The majority of results on receptor behavior are elucidated in INS-1 cells expressing the wt or mutant GLP-1R, with one experiment translating the findings to primary mouse beta-cells. I think this paper lays a very strong foundation to characterize this mutation and does a good job discussing how complex cholesterol-receptor interactions can be (ie lower cholesterol binding to V229A GLP-1R, yet increased segregation to lipid rafts). Table 1 and Figure 9 are very beneficial to summarize the findings. The lower interaction with cholesterol and lower membrane diffusion in V229A GLP-1R resembles the reduced diffusion of wt GLP-1R with simv-induced cholesterol reductions, although by presumably decreasing the cholesterol available to interact with wt GLP-1R. This could be interesting to see if lowering cholesterol alters other behaviors of wt GLP-1R that look similar to V229A GLP-1R. I further wonder if the authors expect that increased cholesterol content of islets (with loading of MβCD saturated with cholesterol or high-cholesterol diets) would elevate baseline GLP-1R membrane diffusion, and if a more broad relationship can be drawn between GLP-1R membrane movement and downstream signaling.

      Membrane diffusion experiments are difficult to perform in intact islets as our method requires cell monolayers for RICS analysis. We however agree that it is of interest to investigate if cholesterol loading affects GLP-1R diffusion. To this end, we have performed further RICS analysis in INS-1 832/3 SNAP/FLAG-hGLP-1R cells pretreated with vehicle or MβCD loaded with 20 mM cholesterol (new Supplementary Figures 1D and 1E). Interestingly, results show significantly increased plasma membrane diffusion of exendin-4-stimulated receptors, with no change in basal diffusion, following MβCD/cholesterol loading. This behaviour differs from that of the V229A mutant receptor which shows reduced diffusion under basal conditions, a pattern that mimics that of the WT receptor under low cholesterol conditions (by pre-treatment with LPDS/simvastatin).

      Weaknesses:

      I think there are no obvious weaknesses in this manuscript and overall, I believe the authors achieved their aims and have demonstrated the importance of cholesterol interactions on GLP-1R functioning in beta-cells. I think this paper will be of interest to many physiologists who may not be familiar with many of the techniques used in this paper and the authors largely do a good job explaining the goals of using each method in the results section.

      The intent of some methods, for example the Laurdan probe studies, are better expanded in the discussion.

      We have expanded on the rationale behind the use of Laurdan to assess behaviours of lipid packed membrane nanodomains in the methods, results and discussion of the revised manuscript.

      I found it unclear what exactly was being measured to assess 'receptor activity' in Fig 7E and F.

      Figures 7E and F refer to bystander complementation assays measuring the recruitment of nanobody 37 (Nb37)-SmBiT, which binds to active Gas, to either the plasma membrane (labelled with KRAS CAAX motif-LgBiT), or to endosomes (labelled with Endofin FYVE domain-LgBiT) in response to GLP-1R stimulation with exendin-4. This assay therefore measures GLP-1R activation specifically at each of these two subcellular locations. We have included a schematic of this assay in the new Supplementary Figure 3 to clarify the aim of these experiments.

      Certainly many follow-up experiments are possible from these initial findings and of primary interest is how this mutation affects insulin homeostasis in vivo under different physiological conditions. One of the biggest pathologies in insulin homeostasis in obesity/t2d is an elevation of baseline insulin release (as modeled in Fig 1E) that renders the fold-change in glucose stimulated insulin levels lower and physiologically less effective. No difference in primary mouse islet baseline insulin secretion was seen here but I wonder if this mutation would ameliorate diet-induced baseline hyperinsulinemia.

      We concur with the reviewer that it would be interesting to determine the effects of the GLP1R V229A mutation on insulin secretion responses under diet-induced metabolic stress conditions. While performing in vivo experiments on glucoregulation in mice harbouring the V229A mutation falls outside the scope of the present study, we have included ex vivo insulin secretion experiments in islets from GLP-1R KO mice transduced with adenoviruses expressing SNAP/FLAG-hGLP-1R WT or V229A and subsequently treated with vehicle versus MβCD loaded with 20 mM cholesterol to replicate the conditions of Figure 1E in the new Supplementary Figure 4.

      I would have liked to see the actual islet cholesterol content after 5wks high-cholesterol diet measured to correlate increased cholesterol load with diminished glucose-stimulated inulin. While not necessary for this paper, a comparison of islet cholesterol content after this cholesterol diet vs the more typical 60% HFD used in obesity research would be beneficial for GLP-1 physiology research broadly to take these findings into consideration with model choice.

      We have included these data in Supplementary Figure 1A.

      Another area to further investigate is does this mutation alter ex4 interaction/affinity/time of binding to GLP-1 or are all of the described findings due to changes in behavior and function of the receptor?

      To answer this question, have performed binding affinity experiments, which show no differences, in INS-1 832/3 SNAP/FLAG-hGLP-1R WT versus V229A cells (new Supplementary Figure 2D).

      Lastly, I wonder if V229A would have the same impact in a different cell type, especially in neurons? How similar are the cholesterol profiles of beta-cells and neurons? How this mutation (and future developed small molecules) may affect satiation, gut motility, and especially nausea, are of high translational interest. The comparison is drawn in the discussion between this mutation and ex4-phe1 to have biased agonism towards Gs over beta-arrestin signaling. Ex4-phe1 lowered pica behavior (a proxy for nausea) in the authors previously co-authored paper on ex4-phe1 (PMID 29686402) and I think drawing a parallel for this mutation or modification of cholesterol binding to potentially mitigate nausea is worth highlighting.

      While experiments in neurons are outside the scope of the present study, we have added this worthy point to the discussion and hypothesise on possible effects of GLP-1R mutants with modified cholesterol interactions on central GLP-1R actions in the revised manuscript.

      Reviewer #1 (Recommendations for the authors):

      There are no line numbers

      These have now been added.

      Abstract: "Cholesterol is a plasma membrane enriched lipid" - sorry for being finicky, but shouldn't this read; "a lipid often enriched in plasma membranes"

      We have modified the abstract to state that: “Cholesterol is a lipid enriched at the plasma membrane”.

      p. 4 "Moreover, islets extracted from high cholesterol-fed mice". How do you "extract islets"?

      We have exchanged the term “extracted” by “isolated”. Islet isolation is described in the paper methods section.

      p. 4 The sentence "These effects were accompanied by decreased GLP-1R plasma membrane diffusion under vehicle conditions, measured by Raster Image Correlation Spectroscopy (RICS) in rat insulinoma INS-1 832/3 cells with endogenous GLP-1R deleted [INS-1 832/3 GLP-1R KO cells (27)] stably expressing SNAP/FLAG-tagged human GLP-1R (SNAP/FLAG-hGLP-1R), an effect that is normally triggered by agonist binding (28), as also observed here (Supplementary Figure 1C, D)" is a masterpiece of complexity. Perhaps breaking up would facilitate reading?

      This paragraph has now been modified in the revised manuscript.

      p. 5. I cannot evaluate the "coarse grain molecular dynamics" studies.

      Reviewer #2 (Recommendations for the authors):

      I view this as an excellent manuscript with very comprehensive work and clear translational relevance. I don't think any further experiments are needed for the scope outlined in this manuscript. The discussion is already long but a short postulation on how this may translate to GLP-1R-cholesterol interactions in other cell types, specifically neurons with the intent on manipulating satiation and nausea, could be worthwhile.

      This has now been added.

      The only thing for readability I would suggest is a sentence in the results mentioning why you're doing the Laurdan analysis, and what is the output for assessing 'receptor activity' in the membrane and endosomes.

      Both points have now been added.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The authors examine CD8 T cell selective pressure in early HCV infection using. They propose that after initial CD8-T mediated loss of virus fitness, in some participants around 3 months after infection, HCV acquires compensatory mutations and improved fitness leading to virus progression.

      Strengths:

      Throughout the paper, the authors apply well-established approaches in studies of acute to chronic HIV infection for studies of HCV infection. This lends rigor the to the authors' work.

      Weaknesses:

      (1) The Discussion could be strengthened by a direct discussion of the parallels/differences in results between HIV and HCV infections in terms of T cell selection, entropy, and fitness.

      We have added a direct discussion of the parallels/differences between HIV and HCV throughout the discussion including at lines 308 – 310 and 315 -327.

      Lines 308-310: “In fact, many parallels can be drawn between HIV infections and HCV infections in the context of emerging viral species that escape T cell immune responses.”

      Lines: 315-327: “One major difference between HCV and HIV infection is the event where patients infected with HCV have an approximately 25% chance to naturally clear the infection as opposed to just achieving viral control in HIV infections. Here, we probed the underlying mechanism, and questioned how the host immune response and HCV mutational landscape can allow the virus to escape the immune system. To understand this process, taking inspiration from HIV studies (24), a quantitative analysis of viral fitness relative to viral haplotypes was conducted using longitudinal samples to investigate whether a similar phenomenon was identified in HCV infections for our cohort for patients who progress to chronic infection. We observed a decrease in population average relative fitness in the period of <90DPI with respect to the T/F virus in chronic subjects infected with HCV. The decrease in fitness correlated positively with IFN-γ ELISPOT responses and negatively with SE indicating that CD8+ T-cell responses drove the rapid emergence of immune escape variants, which initially reduced viral fitness. This is similarly reflected in HIV infected patients where strong CD8+ T-cell responses drove quicker emergence of immune escape variants, often accompanied by compensatory mutations (24).”

      (2) In the Results, please describe the Barton model functionality and why the fitness landscape model was most applicable for studies of HCV viral diversity.

      This has been added to the introduction section rather than Results as we feel that it is more appropriate to show why it is most applicable to HCV viral diversity in the background section of the manuscript. We write at lines 77-90:

      “Barton et al.’s [23] approach to understand HIV mutational landscape resulting in immune escape had two fundamental points: 1) replicative fitness depends on the virus sequence and the requirement to consider the effect of co-occurring mutations, and 2) evolutionary dynamics (e.g. host immune pressure). Together they pave the way to predict the mutational space in which viral strains can change given the unique immune pressure exerted by individuals infected with HIV. This model fits well with the pathology of HCV infection. For instance, HIV and HCV are both RNA viruses with rapid rate of mutation. Additionally, like HIV, chronic infection is an outcome for HCV infected individuals, however, unlike HIV, there is a 25% probability that individuals infected with HCV will naturally clear the virus. Previously published studies [9] have shown that HIV also goes through a genetic bottleneck which results in the T/F virus losing dominance and replaced by a chronic subtype, identified by the immune escape mutations. The concepts in Barton’s model and its functionality to assess the fitness based on the complex interaction between viral sequence composition and host immune response is also applicable to early HCV infection.”

      (3) Recognize the caveats of the HCV mapping data presented.

      We have now recognized the caveats of the HCV mapping data at lines 354-256 “While our findings here are promising, it should be recognized that although the bioinformatics tool (iedb_tool.py) proved useful for identifying potential epitopes, there could be epitopes that are not predicted or false-positive from the output which could lead to missing real epitopes”

      (4) The authors should provide more data or cite publications to support the authors' statement that HCV-specific CD8 T cell responses decline following infection.

      We have now clarified at lines 352-353 that the decline was toward “selected epitopes that showed evidence of escape”.

      Furthermore, we have cited two publications at line 352 that support our statement.

      (5) Similarly, as the authors' measurements of HCV T and humoral responses were not exhaustive, the text describing the decline of T cells with the onset of humoral immunity needs caveats or more rigorous discussion with citations (Discussion lines 319-321).

      We have now added a caveat in the discussion at lines 357-360 which reads

      “In conclusion, this study provides initial insights into the evolutionary dynamics of HCV, showing that an early, robust CD8+ T-cell response without nAbs strongly selects against the T/F virus, enabling it to escape and establish chronic infection. However, these findings are preliminary and not exhaustive, warranting further investigation to fully understand these dynamics. “

      (6) What role does antigen drive play in these data -for both T can and antibody induction?

      It is possible that HLA-adapted mutations could limit CD8 T cell induction if the HLAs were matched between transmission pairs, as has been shown previously for HIV (https://doi.org/10.1371/journal.ppat.1008177) with some data for HCV (https://journals.asm.org/doi/10.1128/jvi.00912-06). However, we apologise as we are not entirely sure that this is what the reviewer is asking for in this instance.

      (7) Figure 3 - are the X and Y axes wrongly labelled? The Divergent ranges of population fitness do not make sense.

      Our apologies, there was an error with the plot in Figure 3 and the X and Y axis were wrongly labelled. This has now been resolved.

      (8) Figure S3 - is the green line, average virus fitness?

      This has now been clarified in Figure S3.

      (9) Use the term antibody epitopes, not B cell epitopes.

      We now use the term antibody epitopes throughout the manuscript.

      Reviewer #1 (Recommendations for the authors):

      Recommendations for improving the writing and presentation:

      (1) Introduction:

      Line 52: 'carry mutations B/T cell epitopes'. Two points

      i) These are antibody epitopes (and antibody selection) not B cell epitopes

      We have corrected this sentence at line 55 which now reads: “carry mutations within epitopes targeted by B cells and CD8+ T cells”.

      ii) To avoid confusion, add text that mutations were generated following selection in the donor.

      For HCV, it is unclear if mutations are generated following selection or have been occurring in low frequencies outside detection range. Only when selection by host immune pressure arises do the potentially low-frequency variants become dominant. However, we do acknowledge it is potentially misleading to only mention new variants replacing the transmitted/founder population. We have modified the sentence at line 52 to read:

      “At this stage either an existing variant that was occurring in low-frequency outside detection range or an existing variant with novel mutations generated following immune selection is observed in those who progress to chronic infection”

      - Lines 51-56: Human studies of escape and progression are associative, not causative as implied.

      Correct, evidence suggesting that escape and progression are currently associative. We have now corrected these lines to no longer suggest causation.

      - Line 65: Suggest you clarify your meaning of 'easier'?

      This sentence, now at line 72, has been modified to: “subtype 1b viruses have a higher probability to evade immune responses”

      (2) Results:

      - Line 147: Barton model (ref'd in Intro) is directly referred to here but not referenced.

      The reference has been added.

      - The authors should cite previous HIV literature describing associations between the rate of escape and Shannon Entropy e.g. the interaction between immunodominance, entropy, and rate of escape in acute HIV infection was described in Liu et al JCI 2013 but is not cited.

      We have now cited previous HIV research at line 147-151, adding Liu et al:

      “Additionally, the interaction between immunodominance, entropy, and escape rate in acute HIV infection has been described, where immunodominance during acute infection was the most significant factor influencing CD8+ T cell pressure, with higher immunodominance linked to faster escape (27). In contrast, lower epitope entropy slowed escape, and together, immunodominance and entropy explained half of the variability in escape timing (27).”

      - Line 319: The authors suggest that HCV-specific CD8 T cell response declines following early infection. On what are they basing this statement? The authors show their measured T cell responses decline but their approach uses selected epitopes and they are therefore unable to assess total HCV T cell response in participants (Where there is no escape, are T cell magnitudes maintained or do they still decline?). Can the authors cite other studies to support their statement?

      We have now clarified that the decline was toward “selected epitopes that showed evidence of escape”. Furthermore, we also cite two studies to support our findings.

      - Throughout the authors talk in terms of CD8 T cells but the ELISpot detects both CD4 and CD8 T cell responses. I suggest the authors be more explicit that their peptide design (9-10mers) is strongly biased to only the detection of CD8 T cells.

      To make this clearer and more explicit we have now added to the methods section at line 433-435:

      “While the ELISpot assay detects responses from both CD4 and CD8 T cells, our peptide design (9-10mers) is strongly biased toward CD8 T-cell detection. We have therefore interpreted ELISpot responses primarily in terms of CD8 T-cell activity.”

      - The points made in lines 307-321 could be more succinct

      We have now edited the discussion (lines 307 – 321) to make the points more succinct (now lines 307-323).

      Minor corrections to text, figures:

      - Figure 2: suggest making the Key bigger and more obvious.

      We have now made the key bigger and more obvious

      - Figure 3 A & D....is there an error on the X-axis...are you really reporting ELISpot data of < 1 spot/10^6? Perhaps the X and Y axes are wrongly labelled?

      Our apologies, there was an error with the plot in Figure 3 and the X and Y axis were wrongly labelled. This has now been resolved.

      - Figure 5: As this is PBMC, remove CD8 from the description of ELISpot. 

      We have now removed CD8 from the description of ELISpot in both Figure 5 and Figure S3

      Reviewer #2 (Public review):

      Summary:

      In this work, Walker and collaborators study the evolution of hepatitis C virus (HCV) in a cohort of 14 subjects with recent HCV infections. They focus in particular on the interplay between HCV and the immune system, including the accumulation of mutations in CD8+ T cell epitopes to evade immunity. Using a computational method to estimate the fitness effects of HCV mutations, they find that viral fitness declines as the virus mutates to escape T-cell responses. In long-term infections, they found that viral fitness can rebound later in infection as HCV accumulates additional mutations.

      Strengths:

      This work is especially interesting for several reasons. Individuals who developed chronic infections were followed over fairly long times and, in most cases, samples of the viral population were obtained frequently. At the same time, the authors also measured CD8+ T cell and antibody responses to infection. The analysis of HCV evolution focused not only on variation within particular CD8+ T cell epitopes but also on the surrounding proteins. Overall, this work is notable for integrating information about HCV sequence evolution, host immune responses, and computational metrics of fitness and sequence variation. The evidence presented by the authors supports the main conclusions of the paper described above.

      Weaknesses:

      One notable weakness of the present version of the manuscript is a lack of clarity in the description of the method of fitness estimation. In the previous studies of HIV and HCV cited by the authors, fitness models were derived by fitting the model (equation between lines 435 and 436) to viral sequence data collected from many different individuals. In the section "Estimating survival fitness of viral variants," it is not entirely clear if Walker and collaborators have used the same approach (i.e., fitting the model to viral sequences from many individuals), or whether they have used the sequence data from each individual to produce models that are specific to each subject. If it is the former, then the authors should describe where these sequences were obtained and the statistics of the data.

      If the fitness models were inferred based on the data from each subject, then more explanation is needed. In prior work, the use of these models to estimate fitness was justified by arguing that sequence variants common to many individuals are likely to be well-tolerated by the virus, while ones that are rare are likely to have high fitness costs. This justification is less clear for sequence variation within a single individual, where the viral population has had much less time to "explore" the sequence landscape. Nonetheless, there is precedent for this kind of analysis (see, e.g., Asti et al., PLoS Comput Biol 2016). If the authors took this approach, then this point should be discussed clearly and contrasted with the prior HIV and HCV studies.

      We thank the reviewer for pointing out the weakness in our explanation and description of the fitness model. The model has been generated using publicly released viral sequences and this has been described in a previous publication by Hart et al. 2015. T/F virus from each of the subjects chronically infected with HCV in our cohort were given to the model by Hart et al. to estimate the initial viral fitness of the T/F variant. Subsequent time points of each subject containing the subvariants of the viral population were also estimated using the same model (each subtype). For each subject, these subvariant viral fitness values were divided by the fitness value of the initial T/F virus (hence relative fitness of the earliest time points with no mutations in the epitope regions were a value of 1.000). All other fitness values are therefore relative fitness to the T/F variant.

      We have further clarified this point in the methods section “Estimating survival fitness of viral variant” to better describe how the data of the model was sourced (Lines 465-499).

      To add to the reviewer’s point, we agree that sequence variants common to many individuals are likely to be well-tolerated by the virus and this event was observed in our findings as our data suggested that immune escape variants tended to revert to variants that were closer the global consensus strain. Our previous publications have indicated that T/F viruses during transmission were variants that were “fit” for transmission between hosts, especially in cases where the donor was a chronic progressor, a single T/F is often observed. Progression to immune escape and adaptation to chronic infection in the new host has an in-between process of genetic expansion via replication followed by a bottleneck event under immune pressure where overall fitness (overall survivability including replication and exploring immune escape pathways) can change. Under this assumption we questioned whether the observation reported in HIV studies (i.e. mutation landscapes that allow HIV adaptation to host) also happens in HCV infections. Furthermore, cohort used in this study is a rare cohort where patients were tracked from uninfected, to HCV RNA+, to seroconversion and finally either clearing the virus or progression to chronic infection. Thus, it is of importance to understand the difference between clearance and chronic progression.

      Another important point for clarification is the definition of fitness. In the abstract, the authors note that multiple studies have shown that viral escape variants can have reduced fitness, "diminishing the survival of the viral strain within the host, and the capacity of the variant to survive future transmission events." It would be helpful to distinguish between this notion of fitness, which has sometimes been referred to as "intrinsic fitness," and a definition of fitness that describes the success of different viral strains within a particular individual, including the potential benefits of immune escape. In many cases, escape variants displace variants without escape mutations, showing that their ability to survive and replicate within a specific host is actually improved relative to variants without escape mutations. However, escape mutations may harm the virus's ability to replicate in other contexts. Given the major role that fitness plays in this paper, it would be helpful for readers to clearly discuss how fitness is defined and to distinguish between fitness within and between hosts (potentially also mentioning relevant concepts such as "transmission fitness," i.e., the relative ability of a particular variant to establish new infections).

      Thank you for pointing out the weakness of our definition of fitness. We have now clarified this at multiple sections of the paper: In the abstract at lines 18-21 and in the introduction at lines 64-69.

      These read:

      Lines 18-21: “However, this generic definition can be further divided into two categories where intrinsic fitness describes the viral fitness without the influence of any immune pressure and effective fitness considers both intrinsic fitness with the influence of host immune pressure.”

      Lines 64-69: “This generic definition of fitness can be further divided into intrinsic fitness (also referred to as replicative fitness), where the fitness of sequence composition of the variant is estimated without the influence of host immune pressure. On the other hand, effective fitness (from here on referred to as viral fitness) considers fundamental intrinsic fitness with host immune pressure acting as a selective force to direct mutational landscape (19)[REF], which subsequently influences future transmission events as it dictates which subvariants remain in the quasispecies.”

      One concern about the analysis is in the test of Shannon entropy as a way to quantify the rate of escape. The authors describe computing the entropy at multiple time points preceding the time when escape mutations were observed to fix in a particular epitope. Which entropy values were used to compare with the escape rate? If just the time point directly preceding the fixation of escape mutations, could escape mutations have already been present in the population at that time, increasing the entropy and thus drawing an association with the rate of escape? It would also be helpful for readers to include a definition of entropy in the methods, in addition to a reference to prior work. For example, it is not clear what is being averaged when "average SE" is described.

      We thank the reviewer to point out the ambiguity in describing average SE. This has been rectified by adding more information in the methods section (Lines 397 to 400):

      “Briefly, SE was calculated using the frequency of occurrence of SNPs based on per codon position, this was further normalized by the length of the number of codons in the sequence which made up respective protein. An average SE value was calculated for each time point in each protein region for all subjects until the fixation event.”

      To answer the reviewer’s question, we computed entropy at multiple time points preceding the observation in the escape mutation. The escape rate was calculated for the epitopes targeted by immune response. We compared the average SE based on change of each codon position and then normalised by protein length, where the region contained the epitope and the time it took to reach fixation. We observed that if the protein region had a higher rate of variation (i.e. higher average SE) then we also see a quicker emergence of an immune escape epitope. Since we took SE from the very first time point and all subsequent time points until fixation, we do not think that escape mutations already been present at the population would alter the findings of the association with rate of escape. Especially, these escape mutations were rarely observed at early time points. It is likely that due to host immune pressure that the escape variant could be observed, the SE therefore suggest the liberty of exploration in the mutation landscape. If the region was highly restrictive where any mutations would result in a failed variant, then we should observe relatively lower values of average SE. In other words, the higher variability that is allowed in the region, the greater the probability that it will find a solution to achieve immune escape.

      Reviewer #2 (Recommendations for the authors):

      In addition to the main points above, there are a few minor comments and suggestions about the presentation of the data.

      (1) It's not clear how, precisely, the model-based fitness has been calculated and normalized. It would be helpful for the authors to describe this explicitly. Especially in Figure 3, the plotted fitness values lie in dramatically different ranges, which should be explained (maybe this is just an error with the plot?).

      We have now clarified how the model-based fitness has been calculated and normalized in the method section “Estimating survival fitness of viral variants” at line 465-472.

      “The model used for estimating viral fitness has been previously described by Hart et al. (19). Briefly, the original approach used HCV subtype 1a sequences to generate the model for the NS5B protein region. To update the model for other regions (NS3 and NS2) as well as other HCV subtypes in this study, subtype 1b and subtype 3a sequences were extracted from the Los Almos National Laboratory HCV database. An intrinsic fitness model was first generated for each subtype for NS5B, NS3 and NS2 region of the HCV polyprotein. Then using, longitudinally sequenced data from patients chronically infected with HCV as well as clinically documented immune escape to describe high viral fitness variants, we generated estimates of the viral fitness for subjects chronically infected with HCV in our cohort.”

      Our apologies, there was an error with the plot in Figure 3. This has now been resolved.

      (2) In different plots, the authors show every pairwise comparison of ELISPOT values, population fitness, average SE, and rate of escape. It may be helpful to make one large matrix of plots that shows all of these pairwise comparisons at the same time. This could make it clear how all the variables are associated with one another. To be clear, this is a suggestion that the authors can consider at their discretion.

      Thank you for the suggestion to create a matrix of plots for pairwise comparisons. While this approach could indeed clarify variable associations, implementing it is outside the scope of this project. We appreciate the idea and may consider it in future studies as we continue to expand on this work.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The crystal structure of the Sld3CBD-Cdc45 complex presented by Li et al. is a novel contribution that significantly advances our understanding of CMG formation during the rate-limiting step of DNA replication initiation. This structure provides insights into the intermediate steps of CMG formation. The study builds upon previously known structures of Sld3 and Cdc45 and offers new perspectives into how Cdc45 is loaded onto MCM DH through Sld3-Sld7. The most notable finding is the structural difference in Sld3CBD when bound to Cdc45, particularly the arrangement of the α8-helix, which is essential for Cdc45 binding and may also pertain to its metazoan counterpart, Treslin. Additionally, the conformational shift in the DHHA1 domain of Cdc45 suggests a possible mechanism for its binding to MCM2NTD.

      Strengths:

      The manuscript is generally well-written, with a precise structural analysis and a solid methodological section that will significantly advance future studies in the field. The predictions based on structural alignments are intriguing and provide a new direction for exploring CMG formation, potentially shaping the future of DNA replication research.

      Weaknesses:

      The main weakness of the manuscript lies in the lack of experimental validation for the proposed Sld3-Sld7-Cdc45 model. Specifically, the claim that Sld3 binding to Cdc45-MCM does not inhibit GINS binding, a finding that contradicts previous research, is not sufficiently substantiated with experimental evidence. To strengthen their model, the authors must provide additional experimental data to support this mechanism. Also, the authors have not compared the recently published Cryo-EM structures of the metazoan CMG helicases with their predicted models to see if Sld3/Treslin does not cause any clash with the GINS when bound to the CMG. Still, the work holds great potential in its current form but requires further experiments to confirm the authors' conclusions.

      We appreciate the reviewers’ careful reading and the comments.

      Our structural analysis of Sld3CBD-Cdc45 showed the detailed interaction map between Sld3CBD and Cdc45 at 2.6 Å resolution. The Sld3, MCM and GINS binding sites of Cdc45 completely differed, suggesting that the Sld3CBD, Cdc45 and GINS could bind to MCM together. The SCMG-DNA model confirmed such a binding manner, although our study does not show how this binding manner affects the GINS loading by other initiation factors (Dpb11, Sld2, et. al). Regarding the previous studies, competition of Sld3 and GINS for binding to Cdc45 or Cdc45-MCM (Bruck et. al), which may be caused by the conformation change of Cdc45 DHHA1 between Sld3CBD-Cdc45 and CMG. We modified our manuscript and discussed (P7/L168-173, and P10/L282-286). Following the comment, we checked the recently published Cryo-EM structure (PDBID:8Q6O) with their predicted models of the metazoan CMG helicases (P7/L198-P8/L202) and added the Cdc45 mutation experiments to confirm our conclusion ([Recommendations for the authors] Q18).

      Reviewer #2 (Public review):

      Summary

      The manuscript presents valuable findings, particularly in the crystal structure of the Sld3CBD-Cdc45 interaction and the identification of additional sequences involved in their binding. The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is novel, and the results provide insights into potential conformational changes that occur upon interaction. However, the work remains incomplete as several main claims are only partially supported by experimental data, particularly the proposed model for Sld3 interaction with GINS on the CMG. Additionally, the single-stranded DNA binding data from different species do not convincingly advance the manuscript's central arguments.

      Strengths

      (1) The Sld3CBD-Cdc45 structure is a novel contribution, revealing critical residues involved in the interaction.

      (2) The model structures generated from the crystal data are well presented and provide valuable insights into the interaction sequences between Sld3 and Cdc45.

      (3) The experiments testing the requirements for interaction sequences are thorough and conducted well, with clear figures supporting the conclusions.

      (4) The conformational changes observed in Sld3 and Cdc45 upon binding are interesting and enhance our understanding of the interaction.

      (5) The modeling of the Sld7-Sld3CBD-CDC45 subcomplex is a new and valuable addition to the field.

      Weaknesses

      (1) The proposed model for Sld3 interacting with GINS on the CMG needs more experimental validation and conflicts with published findings. These discrepancies need more detailed discussion and exploration.

      Our structural analysis experiment of Sld3CBD-Cdc45 showed the detailed interaction information between Sld3CBD and Cdc45 at 2.6 Å resolution. The Sld3CBD-binding site of Cdc45 is completely different from that of GINS and MCM binding to Cdc45, suggesting that the Sld3CBD, Cdc45, and GINS could bind to MCM together. The SCMG-DNA model confirmed such a binding manner. Following the comment, we added a Cdc45 mutant analysis, disrupting the binding to MCM and GINS but not affecting the Sld3CBD binding (Supplementary Figure 9). Our model is consistent with the GINS-loading requirement (the phosphorylation of Sld3 on Cdc45-MCM) and has no discrepancies with the stepwise loading fashion (Please see the responses to [Recommendations for the authors] Reviewer#1-Q14-15]). Regarding the previous studies, competition of Sld3 and GINS for binding to Cdc45 or Cdc45-MCM (Bruck et. al), by in vitro binding experiments, please see the responses to [Recommendations for the authors] Q6.

      (2) The section on the binding of Sld3 complexes to origin single-stranded DNA needs significant improvement. The comparisons between Sld3-CBD, Sld3CBD-Cdc45, and Sld7-Sld3CBD-Cdc45 involve complexes from different species, limiting the comparisons' value.

      As suggested, we tried to improve the ssDNA-binding section (Please see the responses to [Recommendations for the authors]: Q4 and Q5). We used Sld7-Sld3CBD-Cdc45 from different sources due to limitations in protein expression. These two sources belong to the same family and the proteins Sld7, Sld3 and Cdc45 have sequence conservation with similar structures predicted by the alphafold3 (RMSD = 0.356, 1.392, and 0.891 for Ca atoms of Sld7CTD, Sld7NTD-Sld3NTD, and Sld3CBD-Cdc45). Such similarity in source and protein lever allows us to do the comparison.

      (3) The authors' model proposing the release of Sld3 from CMG based on its binding to single-stranded DNA is unclear and needs more elaboration.

      Considering that ssDNA (ssARS1) is produced by CMG, the ssDNA-binding of Sld3 should happen after forming an active CMG. Therefore, the results of ssDNA binding experiments implied that the Sld3 release could be with the binding to ssDNA produced by CMG. We tried to present more elaborations in the revised version. (Please see the responses to [Recommendations for the authors] Q4, Q5).

      Reviewer #3 (Public review):

      Summary:

      The paper by Li et al. describes the crystal structure of a complex of Sld3-Cdc45-binding domain (CBD) with Cdc45 and a model of the dimer of an Sld3-binding protein, Sld7, with two Sld3-CBD-Cdc45 for the tethering. In addition, the authors showed the genetic analysis of the amino acid substitution of residues of Sld3 in the interface with Cdc45 and biochemical analysis of the protein interaction between Sld3 and Cdc45 as well as DNA binding activity of Sld3 to the single-strand DNAs of the ARS sequence.

      Strengths:

      The authors provided a nice model of an intermediate step in the assembly of an active Cdc45-MCM-GINS (CMG) double hexamers at the replication origin, which is mediated by the Sld3-Sld7 complex. The dimer of the Sld3-Sld7 complexes tethers two MCM hexamers together for the recruitment of GINS-Pol epsilon on the replication origin.

      Weaknesses:

      The biochemical analysis should be carefully evaluated with more quantitative ways to strengthen the authors' conclusion.

      We thank your positive assessment. We provided more quantitative information and tried to quantify the experiments as suggested (Please see the responses to [Recommendations for the authors]).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have several concerns that I will outline below, accompanied by my suggestions.

      (1) "The title of the paper- "Structural and functional insights into Cdc45 recruitment by Sld7-Sld3 for CMG complex Formation," appears misleading because it appears that authors present a structure of Sld3-Sld7 in complex with Cdc45, which is not the case here. If authors can provide additional structures proving the function of this complex, then this title justifies it. Otherwise, I recommend making a title that justifies the presented work in its current form.

      Following the comment, we change the title to “Sld3CBD-Cdc45 structural insights into Cdc45 recruitment for CMG complex formation”.

      (2) In lines 70-72, where the authors mention the known structures of different proteins, intermediates, and complexes, I recommend including PDB IDs of the described structures and reference citations. This will help the readers to analyze what is missing in the pathway and why this structure is essential.

      Following the comment, we added PBDIDs and references (P3/L72-74).

      (3) The representation of Figure 1A is unclear and looks clumsy. If the structure were rotated in another orientation, where α8 and α9 would be displayed on the forward side, it would be more helpful to understand the complex forming regions by looking at the structure. Also, I recommend highlighting the α8 and α9 in a contrasting color to be easily visible and attract readers' attention. Similarly, it would also be helpful if DHAA1 would be shown in a different color.

      Following the comment, we modified the Figure1 to show α8 and α9 of Sld3CBD and DHAA1 of Cdc45 clearly in revised version.

      (4) Can authors add a supplementary figure showing the probability of disorderness of the α8 helix region in the Sld3? Also, highlight what region became ordered in their structure.

      Yes, we have showed the disordered α8 helix region and highlight ordered α8 in the Sld3 in Figure S4 A.

      (5) Can you compare the Cdc45 long distorted helix (Supplementary Figure 3B) in the Sld3-Cdc45 complex with the Xenoupus and drosophila Cdc45 from their CMG structures? Also, can the authors explain why this helix is destabilized in their structure but is relatively stable in another Cdc45 structure (in CMG and HuCdc45)?

      We have checked all Cdc45 from published cryo-EM CMG structures, including Xenopus CMG-donson (8Q6O) and Drosophila CMG (6RAW), and all of them ordered the long helix in the CMG complex, whereas this long helix was disordered in the crystal structure of Sld3CBD-Cdc45 and Entamoeba histolytica Cdc45. The crystal packing around the long helix showed that it looks to be stabilized by crystal packing only in huCdc45, therefore we suggested that this long helix is detestable for crystallization.

      (6) I recommend adding the following parameters to Supplementary Table 2: 1. Rmerge values, 2. Wilson B factor, 3. Average B factor, and 4. Total number of molecules in ASU.

      We are sorry to make a mistake about Rmerge in Table 2. We correct it. We added the Wilson B factor, the average B factor, and the total number of Sld3CBD-Cde45 in ASU.

      (7) Can authors provide the B factor values of the α8 helix of Sld3?

      We checked the B factor values of the helix α8CTP of Sld3 in Sld3CBD-Cdc45. Since this helix binds to Cdc45 stably, the average B factor of the main chain is 45 Å<sup>2</sup> less than that of the whole structure. We added the average B factor of helix α8CTP into the Supplementary Figure 4A legend.

      (8) Can authors explain why higher Ramachandran outliers exist in their structure? Can it be reduced below 1% during refinement?

      There are 13 outliers (1.67%) in different places: four are close to the disorder regions (poor electron map), four are in a loop with poor map and the remains are turn parts or a loop. For the residues with poor electron maps, we could not modify them to the allow Ramachandran region with low Rfree value, so we could not reduce them to below 1% during refinement while keeping the current Rfree value.

      (9) In Supplementary Figure 8, please show the CD spectra of the Sld3WT. Why is the Sld3-3S peak relatively flat? Was the sample precipitating while doing the measurements, or does it have less concentration than others?

      To check the folding of the mutants, we did CD experiments with the estimated secondary structure elements. Because WT Sld3CBD was prepared in a complex with Cdc45, while the mutants of Sld3CBD existed along, we calculated the elements of secondary structure from the crystal structure of Sld3CBD-Cdc45. The concentration of samples was controlled to the same level for CD measurement. The relative plat of the Sld3-3S peak may be caused by precipitating while doing the measurement.

      (10) Can authors generate the alpha fold three models of the Sld3CBD-Cdc45-MCM-dsDNA and SCMG-dsDNA and compare them with the models they have generated?

      We tried to predict the Sld3CBD-Cdc45-MCM-dsDNA and SCMG-dsDNA using Alphafold3. Although the results showed similar structures to our models, many parts were disordered. So, we did not use the predicted structures.

      (11) The authors say that the overall molecular mass of the Sld7-Sld3ΔC-Cdc45 was >400kDa on the SEC column. However, the column used for purifying this complex and the standards that were run on it for molecular weight calculations have not been written anywhere. If the Superdex 200 column was used, then the sample of more than 400kDa should not elute at the position shown in Supplementary Figure 2B. I recommend showing the standard MW plot and where the elution volume of the Sld7-Sld3ΔC-Cdc45 lies on the standard curve. Also, add how molecular weight calculations were done and the calculated molecular mass.

      Following the comment, we added a measurement of Superdex 200 16/60 column (SEC) using a standard sample kit into Supplementary Figure 2 to show that the molecular weight of the peak at the position was estimated to be > 400 k Da.

      (12) I also recommend using at least one of the techniques, either SEC-MALS or AUC, to calculate the actual molecular mass of the Sld7-Sld3ΔC-Cdc45 complex and to find its oligomeric state. If the authors want to prove their hypothesis that a dimer of this complex binds to MCMDH, it is essential to show that it exists as a dimer. Based on the current SEC profile, it appears as a monomer peak if the S200 SEC column is being used.

      As the response to (11), we added the standard MW plot (measurement using Superdex 200 16/60 column) using a standard sample kit. The molecular weight at the peak elution position of Sld7-Sld3ΔC-Cdc45 was estimated to be 429k Da. Considering that the Sld7-Sld3ΔC-Cdc45 dimer should be a flexible long-shaped molecule, the elution position could be at a larger molecular weight position than the real one (158 x 2 k Da). We also tried to confirm the particle size using SEC-SAXS, as the response to the next question (13).

      (13) Dynamic light scattering is not the most accurate method for calculating intermolecular distance. I recommend using another technique that calculates the accurate molecular distances between two Cdc45 if Sld7-Sld3ΔC-Cdc45 is forming a dimer. Techniques such as FRET could be used. Otherwise, some complementary methods, such as SAXS, could also be used to generate a low-resolution envelope and fit the speculated dimer model inside, or authors could try negative staining the purified Sld7-Sld3ΔC-Cdc45 and generate 2D class averages and low-resolution ab initio models to see how the structure of this complex appears and whether it satisfies the speculated model of the dimeric complex.

      We have tried both negative staining TEM and SEC-SAXS experiments. We could not obtain images good enough of negative staining of TEM to generate 2D class averages and low-resolution ab initio models. The results of SEC-SAXS provided a molecular weight of 370 - 420 kDa, and an Rg > 85 Å, which are consistent with our conclusion from SEC and DLS results but with large error due to the measurement temperature at 10-15°C (measuring equipment limitation). The peak of SCE-SAXS under measurement conditions was not as sharp as purification at 4°C and SAXS data is not good enough to make a molecular model, so we did not add them to our manuscript.

      (14) Authors mentioned in the introduction section (lines 72-73) that based on the single-molecule experiments, Cdc45 is recruited in a stepwise manner to MCMDH. If this is true and if Sld7-Sld3ΔC-Cdc45 forms a dimer, this is also true, then for stepwise recruitment, the dimer will have to break into monomers, and this will be an energy-expensive process for the cell. So, would such a process occur physiologically? Can the authors explain how this would physiologically happen inside the cell?

      Sld7-Sld3-Cdc45 consists of domains linked by long loops, so the dimer Cdc45-Sld3-[Sld7]2-Sld3-Cdc45 is flexible long-sharp. Such a flexible dimer does not mean that two Cdc45 molecules must bind to MCM DH simultaneously and may bind to MCM DH by stepwise manner. The dimer formation of Sld7-Sld3-Cdc45 is advantageous for recruiting efficiently and saving energy. Moreover, our proposal of Cdc45-Sld3-[Sld7]2-Sld3-Cdc45 on MCM DH could be a stage during CMG formation in the cell. Following the comment, we added such descriptions (P7/L194, and P10/L276-279).

      (15) Can authors show experimentally that a dimer of Sld7-Sld3ΔC-Cdc45 is binding to MCMDH and not a monomer in a stepwise fashion?

      In our study, we provided experiments of particle size to show the dimer of Sld7-Sld3-Cdc45 off MCM DH and a model of SCMG to indicate the dimer of Sld7-Sld3ΔC-Cdc45 on MCM DH. This question should be addressed future by the Cryo-EM of Sld7-Sld3-Cdc45-MCM DH or Sld7-Sld3-CMG. As the response to Q14, the flexible dimer of Sld7-Sld3ΔC-Cdc45 binding on MCMDH does not contradict the stepwise-loading fashion. The dimer of Sld7-Sld3ΔC-Cdc45 binding on MCM DH shows a stage.

      (16) Can authors highlight where Sld7 will lie on their model shown in Figures 3A and 3C, considering their model shown in 3B is true?

      We predict that the Sld7-Sld3-Cdc45 should be in a dimer form of Cdc45-Sld3-[Sld7]2-Sld3-Cdc45 based on the structures and the particle size analysis. The Sld7 dimer could be across MCM DH on the top of Figure 3A right and 3C right. However, we could not add the Sld7 molecule to the models because there is no interaction data between Sld7 and MCM.

      (17) In Supplementary Figure 10, can authors show the residues between the loop region highlighted in the dotted circle to show that there is no steric clash between the residues in that region of their predicted model?

      Following the comment, we added the residues in Supplementary Figure 10 (Supplementary Figure 11 in the revised version) to show no steric clash in our predicted model.

      (18) It is essential to show experimentally that Sld3CBD neighbors MCM2 and binds Cdc45 on the opposite side of the GINS binding site. I recommend that the authors design an experiment that proves this statement. Mutagenesis experiments for the predicted residues that could be involved in interaction with proper controls might help to prove this point. Since this is the overall crux of the paper, it has to be demonstrated experimentally.

      We thank the reviewer’s recommendation. Our structural analysis experiment shows the interaction information between Sld3CBD and Cdc45 at 2.6 Å resolution. The Sld3CBD-binding site, GINS-binding site, and MCM-binding site of Cdc45 are completely different, indicating that the Sld3CBD, Cdc45 and GINS could bind to MCM together. The SCMG model confirmed such a binding manner. Following the recommendation, we added mutant analysis of Cdc45 G367D and W481R, which was reported to disrupt the binding to MCM and GINS, respectively. Both mutants do not affect the binging to Sld3CBD as we predicted (Supplementary Figure 9B). We modified our manuscript and discussed this point more clearly (P7/L170-173).

      (19) I recommend rewriting the sentence in lines 208-210. During EMSA experiments, new bands do not appear; instead, there is no shift at lower ratios, so you see a band similar to the control for Sld3CBD-Cdc45. So, re-write the sentence correctly to avoid confusion when interpreting the result.

      Following the comment, we rewrote this sentence to "The ssDNA band remained (Figure 4B) and new bands corresponding to the ssDNA–protein complex appeared in CBB staining PAGE (Supplementary Figures 13) when the Sld3CBD–Cdc45 complex was mixed with ssDNA at the same ratio, indicating that the binding affinity of Sld3CBD–Cdc45 for ssDNA was lower than that of Sld3CBD alone” (P8/L226-229)

      (20) Since CDK-mediated phosphorylation of Sld3 is known to be required for GINS loading, the ssDNA binding affinity of phosphorylated Sld3 remains the same. I wonder what would happen if phosphorylated Sld3 were used for the experiment shown in Figure 4B.

      The CDK phosphorylation site is located at Sld3CTD and our ssDNA-binding experiment did not include the Sld3CTD, so phosphorylated Sld3 does not affect the results shown in Figure 4B.

      (21) Sld3CBD-Cdc45 has a reduced binding affinity for ss DNA, and Sld7-Sld3ΔC-Cdc45 and Sl7-Sld3ΔC have a similar binding affinity to Sld3CBD based on figure 4B. It appears that Sld3CBD reduces the DNA binding affinity of CDC45 or vice versa. Is it correct to say so?

      Our opinion is “vice versa”. Cdc45 reduces the ssDNA-binding affinity of Sld3CBD. Although we could not point out the ssDNA-binding sites of Sld3CBD, the surface charge of Sld3CBD implies that α8CTP could contribute to ssDNA-binding (Supplementary Figures 15).

      (22) Cdc45 binds to the ssDNA by itself, but in the case of Sld3CBD-Cdc45, the binding affinity is reduced for Sld3CBD and Cdc45. Based on their structure, can authors explain what leads to this complex's reduced binding affinity to the ssDNA? Including a figure showing how Sld7-Sld3CBD-Cdc45 interacts with the DNA would be a nice idea.

      Previous studies showed that Cdc45 binds tighter to long ssDNA (> 60 bases) and the C-terminus of Cdc45 is responsible for the ssDNA binding activity. The structure of Sld3CBD-Cdc45 shows the C-terminal domain DHHA1 of Cdc45 binds to Sld3CBD, which may lead to Sld3CBD-Cdc45 complex reduced ssDNA-binding affinity of Cdc45. We agree that showing a figure of how Sld7-Sld3CBD-Cdc45 interacts with ssDNA is a nice idea. However, there is no detailed interaction information between Sld7-Sld3Δ-Cdc45 and ssDNA, so we could not give a figure to show the ssDNA-binding manner. We added a figure to show the surface charges of Sld3CBD of Sld3CBD-Cdc45, and Sld3NTD-Sld7NTD, respectively (Supplemental Figure 15).

      (23) Based on the predicted model of Sld7-Sld3 and Cdc45 complex, can authors explain how Sld7 would restore the DNA binding ability of the Sld3CBD?

      It can be considered that Sld7 and Sld3NTD could bind ssDNA. Although we did not perform the ssDNA-binding assay of Sld7, the Sld3NTD-Sld7NTD surface shows a large positive charge area which may contribute to ssDNA-binding (Supplemental Figure 15). We added the explanation (P9/L245-248).

      (24) It would be important to show binding measurements and Kd values of all the different complexes shown in Figure 4B with ssDNA to explain the dissociation of Cdc45 from Sld7-Sld3 after the CMG formation. I also recommend describing the statement from lines 224-227 more clearly how Sld7-Sld3-Cdc45 is loading Cdc45 on CMG.

      As the reviewer mentioned, the binding measurements and Kd of values of all the different complexes are important to explain the dissociation of Sld7-Sld3 from CMG. The pull-down assay using chromatography may be affected by balancing the binding affinity and chromatography conditions. Therefore, we used EMSA with native-PAGE, which is closest to the natural state. However, the disadvantage is that the Kd values could not be estimated. For lines 224-227, the ssARS1-binding affinity of Sld3 and its complex should relate to the dissociation of Sld7–Sld3 from the CMG complex but not Cdc45 loading, because ssARS1 is unwound from dsDNA by the CMG complex after Cdc45 and GINS loading. We modified the description (P9/L248-251).

      (25) Can authors explain why SDS-PAGE was used to assess the ssDNA (See line 420)?

      We are sorry for making this mistake and corrected it to “polyacrylamide gel electrophoresis”.

      (26) In line 421, can the authors elaborate on a TMK buffer?

      We are sorry for this omission and added the content of the TMK buffer (P16/L453).

      (27) I am curious to know if the authors also attempted to Crystallize the Sld7-Sld3CBD-Cdc45 complex. This complex structure would support the authors' hypothesis in this article.

      We tried to crystallize Sld7-Sld3Δ-Cdc45 but could not get crystals. We also tried using cryo-EM but failed to obtain data.

      Reviewer #2 (Recommendations for the authors):

      (1) The manuscript would be strengthened if the authors acknowledged in greater detail how their work agrees with or disagrees with Itou et al. (PMID: 25126958 DOI: 10.1016/j.str.2014.07.001). The introduction insufficiently described the findings of that previous work in lines 63-64.

      We compared Sld3CBD in Sld3CBD-Cdc45 to the monomer reported by Itou et al. (PMID: 25126958 DOI: 10.1016/j.str.2014.07.001) in the section of [The overall structure of Sld3CBD-Cdc45] and point out the structural similarity and difference (P5/L105-106), especially, conformation change of Sld3CBD α8 for binding to Cdcd45, which agrees to the mutant experiments of Itou et al., (P3/L126-127). Another Cdc45-binding site of Sld3CBD in the Sld3CBD-Cdc45 complex is α9 not residues predicted in previous studies.

      (2) Figure 2. Could you please perform and present data from multiple biological replicates (e.g., at least two independent experiments) for each mutant strain? This would help ensure that the observed pull-downs (2A-B) and growth patterns (2C) are consistent and reproducible.

      We have done pull-downs three times from co-expression to purification and pull-down assay. We added descriptions to the method of [Mutant analysis of Sld3 and Cdc45]. The growth patterns are two times in Figure 2C.

      (3) Figure 3B. The match between the predicted complex length and particle size measured by dynamic light scattering (DLS) is striking. Did the authors run the analysis with vehicle controls and particle size standards? There is no mention of these controls.

      Following the comment, we added the control data of buffer and standard protein lysozyme, and the descriptions to the method of [Dynamic light scattering].

      (4) Figure 4. In lines 216-217, the authors write that the binding of the K. marxianus complex "demonstrates that the presence of Sld7 could restore the single-stranded DNA binding capacity of Sld3." Another explanation is that complexes from each species bind differently. If the authors want to make a strong claim, they should compare the binding of complexes containing the same proteins.

      Agree with the comment, to make a strong claim using samples from the same source is better. Due to limitations in protein overexpression, we used Sld7-Sld3ΔC-Cdc45 from different sources two sources belong to the identical family (Saccharomycetaceae) and the proteins Sld7, Sld3 and Cdc45 have sequence conservation with similar structures (RMSD = 0.356, 1.392, and 0.891 for Ca atoms of Sld7CTD, Sld7NTD-Sld3NTD, and Sld3CBD-Cdc45) predicted by the alphafold3. Such similarity in source and protein level allows us to do the comparison. Moreover, we modified the description to “indicates that the presence of Sld7 and Sld3NTD could increase the ssDNA-binding affinity to a level comparable to that of Sld3CBD.

      (5) The logic of the following is unclear: "Considering that ssDNA is unwound from dsDNA by the helicase CMG complex, Sld7-Sld3ΔC-Cdc45, and Sld7-Sld3C having a stronger ssDNA-binding capacity than Sld3CBD-Cdc45 may imply a relationship between the dissociation of Sld7-Sld3 from the CMG complex and binding to ssDNA unwound by CMG." (Lines 224-227). How do the authors imagine that the binding affinity difference due to Sld7 contributes to the release of Sld3? Please explain.

      Considering that ssARS1 is unwound from dsARS1 by the activated helicase CMG complex formed after loading Cdc45 and GINS, Sld3–Sld7 having a stronger ssARS1-binding affinity may provide an advantage for the dissociation of Sld7–Sld3 from the CMG complex. We modified the sentence of Lines 224-227 (P9/L248-251).

      (6) The authors suggest that the release of Sld3 from the helicase is related to its association with single-stranded ARS1 DNA. They refer to the work of Bruck et al. (doi: 10.1074/jbc.M111.226332), which demonstrates that single-stranded origin DNA inhibits the interaction between Sld3 and MCM2-7 in vitro. The authors selectively choose data from this previous work, only including data that supports their model while disregarding other data. This approach hinders progress in the field. Specifically, Bruck proposed a model in which the association of Sld3 and GINS with MCM2-7 is mutually exclusive, explaining how Sld3 is released upon CMG assembly. In Figure 3 of the authors' model, they suggest that Sld3 can associate with MCM2-7 through CDC45, even when GINS is bound. Furthermore, Bruck's work showed that ssARS1-2 does not disrupt the Sld3-Cdc45 interaction. Instead, Bruck's data demonstrated that ssARS1-2 disrupts the interaction between MCM2-7 and Sld3 without Cdc45. While we do not expect the authors to consider all data in the literature when formulating a model, we urge them to acknowledge and discuss other critical data that challenges their model. Additionally, it would be beneficial for the field if the authors include both modes of Sld3 interaction with MCM2-7 (i.e., directly with MCM or through CDC45) when proposing a model for how CMG assembly and Sld3 release occurs.

      In our discussion, we referred to the studies of Bruck’s data (doi: 10.1074/jbc.M111.226332) but did not discuss more because we didn’t perform similar experiments in vitro, and we do not think that no discussion hinders progress in the field. Promoting research progress, the new experiment should provide a new proposal and updated knowledge. Although we do not know exactly the positional relationship between Sld3 and Dpb11-Sld2 on MCM during GINS recruiting, the Sld3CBD-Cdc45 structure shows clearly that the Sld3CBD-binding site of Cdc45 is completely different from that of GINS and MCM binding to Cdc45. The model SCMG confirmed such a binding manner, Sld3, Cdc45 and GINS could bind together. The competition of Sld3 and GINS for binding to Cdc45 or Cdc45-MCM reported by Bruck et. al, may be caused by the conformation change of Cdc45 DHHA1 between Sld3CBD-Cdc45 and CMG, or without other initiation factors (CMG formation is regulated by the initial factors). We modified the discussion (P10/L282-286). Regarding ssARS1-binding, we did not discuss with Bruck's data that ARS1-2 does not disrupt the Sld3-Cdc45 interaction, because the data does not conflict with our proposal, although the data does not have an advantage. We propose that the release of Sld3 and Sld7 from CMG could be associated with the binding of ssARS1 unwound by CMG, but the dissociation event of Sl3-Sld7 doesn’t only ssARS1-binding. The exploration of unwound-ssARS1 causes the conformation change of CMG, which may be another event for Sld3-Sld7 dissociation. However, we do not have more experiments to confirm this and Bruck’s ssDNA-binding experiment did not use all of Sld3, Cdc45 and MCM, so we do not discuss more with Bruck’ data in the revised version (P11/L303-305).,

      Reviewer #3 (Recommendations for the authors):

      Major points:

      (1) Figure 1, Sld3CBD-Cdc45 complex: Please indicate the number of critical residues and those of alpha-helixes and beta-sheets in this Figure or Supplemental Figure to confirm the authors' claim.

      Following the comment, we added the number of alpha-helixes and beta-sheets with residue numbers in Figure 1, and Supplemental Figures 4 and 5. We also added a topology diagram (Supplemental Figure 3).

      (2) Figure 2A and B: Please quantify the interaction here with a proper statistical comparison.

      In the experiments of Figures 2A and 2B, we used a co-expression system to co-purify the complexes and check their binding. For quantifying, we added the concentrations of the samples used in the Method of [Mutant analysis of Sld3 and Cdc45].

      (3) Figure 3B, EMSA: If these are from the EMSA assay, at least free DNAs and protein-bound DNAs are present on the gel. However, the authors showed one band, which seems to be free DNA in Figure 3B and separately the smear band of the protein complex in Supplementary Figure 12, and judged the DNA binding by the disappearance of the band (line 207). Interestingly, in the case of Sld3CBD, there are few smear bands (Supplementary Figure 12). Where is DNA in this case? The disappearance could be due to the contaminated nucleases (need a control non-specific DNA). Without showing the Sld3CBD-DNA complex in the gel, the conclusion that the DNA binding activity of Sld3CBD-Cdc45 to DNA is lower than Sld3CBD alone (line 210) is very much speculative. The same is true for Sld7-Sld3dC-Cdc45.

      Please explain the method (EMSA) briefly in the main text and show a whole gel in both Figures. If the authors insist that the Sld3 DNA-binding activity is altered with Cdc43 (and MCM), it is better to perform a more quantitative DNA binding assay such as BIAcore (surface plasmon), etc.

      In the EMSA, we use SYBR (Figure 4B) and CBB (Supplementary Figure 13) staining to show bands of ssDNA and protein, respectively. As the reviewer mentioned, the disappearance of the bands could be due to the contaminated nucleases, we did experiments with non-specific ssDNA-binding as a control using the same proteins shown in Supplementary Figure 14. So, we are convinced that the disappearance of the ssDNA bands or not disappearance could occur when binding to protein or not. We added such explanations in the text (P9/L242-244). As we mentioned in the legend of Supplementary Figure 13, the Sld3CBD could not enter the gel, even when bound to ssDNA, because the pI values exceeded the pH of the running buffer.

      Following the reviewer's comments, we attempted a pull-down experiment using Histag (C-terminal histag of Sld3CBD/Sld3ΔC). Unfortunately, we encountered difficulties in achieving the balance between binding and chromatography conditions.

      (4) Figure 3B: Please quantify the DNA binding here with a proper statistical comparison with triplicate.

      For EMSA (Figure 3B), we used samples of ssDNA:protein= 1:0. 1:1, 1:2, 1:4 and 0:1 molecular ratios with 10 pM as a 1 unit. We added concentrations of the samples in the Method of [Electrophoretic mobility shift assay for ssDNA binding].

      Following the comment, we tried to quantify the binding strength by integrating the grayscale of the bands in gel photos. However, we are concerned because this quantitative calculation through grayscale could not provide an accurate representation of results. Many sample groups cannot be run on one gel. Therefore, the gel differences in parameters cause large errors in the calculation as shown in Author response image 1. Although the calculated integral grayscale chart is consistent with our conclusion, we do not want to add this to our manuscript.

      Author response image 1.

      (5) Because of poor writing, the authors need to ask for English editing.

      We are very sorry for the language. We asked a company (Editag, https:www.editage.jp) to do a native speaker revision and used AI to recheck English.

      Minor points:

      (1) Lines 47-58, Supplementary Figure 1: Although the sentences describe well how CMG assembles on the replication origin, the figure does not reflect what is written, but rather shows a simple schematic figure related to the work. However, for the general readers, it is very useful to see a general model of the CMG assembly. Then, the authors need to emphasize the steps focused in this study.

      Thank you for your thoughtful comments. We optimized Figure 1 and hope it will be more understandable to general readers.

      (2) Line 50, DDK[6F0L](superscript): what is 5F0L?

      We are sorry for this mistake, that is a PDBID of the DDK structure. we deleted 6F0L.

      (3) Lines 68 and 69, ssDNA and dsDNA: should be "single-stranded DNA (ssDNA)" and double-stranded DNA (dsDNA) when these words appear for the first time.

      Following the comment, we modified it to “single-stranded DNA (ssDNA)” and “double-stranded DNA (dsDNA)” (P3/L68,70).

      (4) Line 84, Cdc45s: What "s" means here?

      We are sorry for this mistake, we modified it to “Cdc45”.

      (5) Line 87, Sld3deltaC: What is Sld3deltaC? This is the deletion of either the Cdc45-binding domain or the C-terminal domain.

      Sld3ΔC is a deletion of the C-terminal domain of Sld3. We added the residue range and explanation (P4/L91).

      (6) Line 103: Although the authors mentioned beta-sheets 1-14 in the text, there is no indication in Figures. It is impossible to see the authors' conclusion.

      The secondary structure elements of Sld3CBD-Cdc45 are shown in Supplementary Figures 4 and 5. Following the comment, we added a topology diagram of Sld3CBD and Cdc45 in the Sld3CBD-Cdc45 complex as Supplementary Figure 3 and added citations when describing structural elements.

      (7) Line 106, huCdc45: Does this mean human Cdc45? If so, it should be "human CDC45 (huCDC45). CMG form is from budding yeast? Please specify the species.

      Yes, huCdc45 is human Cdc45. We modified it into “human CDC45 (huCdc45)”.

      (8) Line 107, Supplemental Figure 3B, black ovals: Please add "alpha7" in the Figure.

      Following the comment, we added a label of Cdc45 α7 to Supplemental Figure 3B and 3C (Supplemental Figure 4B and 4C in revised version).

      (9) Line 128, DHHA1: What is this? Please explain it in the text.

      Following the comment, we added the information on DHHA1 (P3/L75-77).

      (10) Line 130, beta13, and beta14: If the authors would like to point out these structures, please indicate where these sheets are in Figures.

      We added a topology diagram as Supplementary Figure 3 to show the β-sheet in DHH and added a citation in the text.

      (11) Line 133: Please add (Figure 1B) after the a8CTP.

      Following the comment, we added “(Figure 1C)” (1B is 1C in revised version) after the α8CTP (P6/L133).

      (12) Line 140: After DHHA1, please add (Figure 1C).

      Following the comment, we added the figure citation after the DHHA1 (P6/L140).

      (13) Line 142: After DHHA1, please add (Figure 1D).

      Following the comment, we added the figure citation after the DHHA1 (P6/L142).

      (14) Line 149, Sld3-Y seemed to retain a faint interaction with Cdc45. The Cdc45 band is too faint here. Moreover, as shown above, without the quantification with proper statistics, it is hard to draw this kind of conclusion.

      We agree that the Cdc45 band corresponding to Sld3-Y in the pull-down assay was very faint, so we performed an in vivo experiment (Fig2C) to confirm this result.

      (15) Line 149, Figure 2A and B: What kind of interaction assay was used here? Simple pull-down. It seems to eluate from the column. If so, how do the authors evaluate the presence of the proteins in different fractions? Please explain the method briefly in the main text.

      Figure 2 shows a co-express pull-down binding assay. To describe the co-express pull-down experiments clearly, we added more explanations in the Methods [Mutation analysis of Sld3 and Cdc45].

      (16) Line 154-155: Please show the quantification to see if the reduced binding is statistically significant.

      Here, we explain why Cdc45-A remained Sld3CBD-bind ability. Although mutant Cdc45-A has reduced three hydrogen bonds with D344 of Sld3CBD, the remaining hydrogen-bond network keeps contact between Sld3CBD and Cdc45.

      (17) Line 158, cell death: "No growth" does not mean cell death. Please rephrase here.

      Following the comment, we modified it to “no growth” (P6/L158).

      (18) Line 166: After CMG dimer, please add "respectively".

      Following the comment, we added the word “, respectively” after CMG dimer (P7/L178).

      (19) Line 194-195: I can not catch the meaning. Please rephrase here to clarify the claim. What are ssARS1-2 and ARS1-5?

      Following the comment, we added more information about ssDNA fragments at the beginning of this section (P8/L210-214).

      (20) Figure 4A and Supplemental Figure 12 top, schematic figure of ARS region. It is hard to catch. More explanation of the nature of the DNA substrates and much better schematic presentations would be appreciated.

      Following the comment, we added more information about ARS1 to the figure legend.

      (21) Figure 1A, dotted ovals should be dotted squares as shown in the enlarged images on the bottom.

      Following the comment, we modified Figure 1A and the legend to change the dotted ovals into dotted squares.

    1. Think for a minute about consequentialism. On this view, we should do whatever results in the best outcomes for the most people. One of the classic forms of this approach is utilitarianism, which says we should do whatever maximizes ‘utility’ for most people. Confusingly, ‘utility’ in this case does not refer to usefulness, but to a sort of combo of happiness and wellbeing. When a utilitarian tries to decide how to act, they take stock of all the probable outcomes, and what sort of ‘utility’ or happiness will be brought about for all parties involved. This process is sometimes referred to by philosophers as ‘utility calculus’. When I am trying to calculate the expected net utility gain from a projected set of actions, I am engaging in ‘utility calculus’ (or, in normal words, utility calculations). Now, there are many reasons one might be suspicious about utilitarianism as a cheat code for acting morally, but let’s assume for a moment that utilitarianism is the best way to go. When you undertake your utility calculus, you are, in essence, gathering and responding to data about the projected outcomes of a situation. This means that how you gather your data will affect what data you come up with. If you have really comprehensive data about potential outcomes, then your utility calculus will be more complicated, but will also be more realistic. On the other hand, if you have only partial data, the results of your utility calculus may become skewed. If you think about the potential impact of a set of actions on all the people you know and like, but fail to consider the impact on people you do not happen to know, then you might think those actions would lead to a huge gain in utility, or happiness. When we think about how data is used online, the idea of a utility calculus can help remind us to check whether we’ve really got enough data about how all parties might be impacted by some actions. Even if you are not a utilitarian, it is good to remind ourselves to check that we’ve got all the data before doing our calculus. This can be especially important when there is a strong social trend to overlook certain data. Such trends, which philosophers call ‘pernicious ignorance’, enable us to overlook inconvenient bits of data to make our utility calculus easier or more likely to turn out in favor of a preferred course of action.

      These paragraphs tell us that it is important to collect comprehensive data, think about the impact of relevant parties, and considering the groups that are easily overlooked before making decisions. This reminds me of cyberbullying in the society today. Lots of people only listen to one side of the story. They get emotionally stirred up by comments on a popular influencer’s social post and end up participating in online bullying against the other group. This kind of behavior stems from a lack of critical thinking and the unwillingness to investigate the truth from multiple perspectives, which can have serious consequences.

    2. Can you think of an example of pernicious ignorance in social media interaction? What’s something that we might often prefer to overlook when deciding what is important?

      An example in social media is internet violence. Most people cite common shaming as upholding justice but are remiss in forgetting the psychological as well as emotional harm inflicted on the target. By focusing on the enjoyment of calling someone out at any cost while forgetting the long-term impact on the target's well-being, users forget the harm that their actions may result in eventually

  2. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. Shannon Bond. Twitter takes Elon Musk to court, accusing him of bad faith and hypocrisy. NPR, July 2022. URL: https://www.npr.org/transcripts/1111032233 (visited on 2023-11-24).

      In this NPR transcript we learn that basically Elon Musk has broken a contract with twitter as he "secretly stopped taking action to buy twitter" this idea shows which the two people in this transcript mention of changing mind when he feels and trashing the company, it is interesting that even billionaires think that their wish-washy thinking may not harm others or the reputation of others when it actually does.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan (Response to Reviewers)

      1. General Statements [optional]

      Response: We are pleased the reviewers appreciate the power of this novel proteomics methodology that allowed us to uncover new depths on the complexity of the ribosome ubiquitination code in response to stress. We also appreciate that the reviewers think that this is a "very timely" study and "interesting to a broad audience" that can change the models of translation control currently adopted in the field. Characterizing complex cellular processes is critical to advance scientific knowledge and our work is the first of its kind using targeted proteomics methods to unveil the integrated complexity of ribosome ubiquitin signals in eukaryotic systems. We also appreciate the fairness of the comments received and below we offer a comprehensive revision plan substantially addressing the main points raised by the reviewers. According to the reviewers' suggestions, we will also expand our studies to two additional E3 ligases (Mag2 and Not4) known to ubiquitinate ribosomes, which will create an even more complete perspective of ubiquitin roles in translation regulation.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors present a potentially powerful proteomics platform using parallel reaction monitoring (PRM) to quantitatively profile ribosomal protein (RP) ubiquitylation, with a focus on yeast under hydrogen peroxide (H₂O₂) stress. This approach robustly identifies both known and novel RP modifications, including basal ubiquitylation events previously undetected, and identifies Hel2-dependent mechanisms. The data support the conclusion that RPs are regulated by a multifaceted ubiquitin code, establishing a good foundation for the study.

      However, the study's focus shifts in a manner that introduces several limitations. Following the rigorous PRM-based analyses, the reliance on Western blotting without replication or quantification (e.g., single-experiment data in Figs. 3-5) significantly weakens the evidence. Experimental design becomes inconsistent, with variable combinations of stressors (H₂O₂, MMS, 4-NQO) and genetic backgrounds (WT, hel2Δ, rad6Δ) that preclude systematic comparisons. For instance, Fig. 3C/E and Fig. 4 omit critical controls (e.g., MMS in Fig. 4, rad6Δ in Fig. 3E), while Fig. 5 conflates distinct variables by comparing H₂O₂-treated rad6Δ with MMS-treated hel2Δ-a design that obscures causal relationships. Furthermore, Fig. 3F highlights that 4-NQO and MMS elicit divergent responses in hel2Δ, undermining the rationale for using these stressors interchangeably. These inconsistencies culminate in a fragmented narrative; attempts to link ISR activation or ribosome stalling to RP ubiquitylation become impossible, leaving the primary takeaway as "stress responses are complex" rather than advancing mechanistic insight.

              __Response: __We appreciate the evaluation of our work and that the power of our proteomics method established a good foundation for the study. We also understand the reviewer's concerns and we will detail below a plan to enhance quantification and increase systematic comparisons. The experiments presented here were conducted with biological replicates, but in several instances, we focused on presence and absence of bands, or their pattern (mono vs poly-ub) because of the semi-quantitative nature of immunoblots. We will revise the figures and present their quantification and statistical analyses. In additional, we did not intend to use these stressors interchangeably, but instead, to use select conditions to highlight the complexity the stress response. In particular, we followed up with H2O2 *versus* 4-NQO because both chemicals are considered sources of oxidative stress. Even though it is unfeasible to compare every single stress condition in every strain background, in the revised version, we will include additional controls to increase the cohesion of the narrative, and expand the comparison between MMS, H2O2, and 4-NQO, as suggested. Details below.
      

      To strengthen the work, the following revisions are essential:

      R1.1. Repeat and quantify immunoblots: All Western blotting data require biological replicates and statistical analysis to support claims.

              __Response: __As requested, we will display quantification and statistical analysis of the suggested and new immunoblots that will be conducted during the revision period.
      

      R1.3. Remove non-parallel comparisons: The mRNA expression analysis in Fig. 5, which compares dissimilar conditions (e.g., rad6Δ + H₂O₂ vs. hel2Δ + MMS), should be omitted or redesigned to enable direct, strain- and stressor-matched contrasts.

              __Response: __We will follow the reviewers' suggestion and redesign the analysis to increase consistency and prioritize data under identical conditions. To increase confidence in the mRNA data analysis, we intend to perform follow up experiments and analyze protein abundance of *ARG proteins* and *CTT1 *under different conditions. The remaining data using non-parallel comparisons will be moved to supplemental material and de-emphasized in the final version of the manuscript.
      

      R1.4. Standardize experimental variables: Restructure the study to maintain identical genetic backgrounds and stressors across all figures, enabling systematic interrogation of enzyme- or stress-specific effects on the ubiquitin code.

              __Response: __To ensure a better comparison across strains and conditions, we will re-run several experiments and focus on our main stress conditions. Specifically:
      
      • 3D: We plan to re-run this experiment and include MMS

      • 3E: We plan to perform the same panel of experiments in rad6D ,and display WT data as main figure.

      • 4A-B: We plan to perform translation output (HPG incorporation) experiments with MMS as suggested

      • 4C: We plan to re-run blots for p-eIF2a under MMS for improved comparison.

      Reviewer #1 (Significance (Required)):

      The authors present a potentially powerful proteomics platform using parallel reaction monitoring (PRM) to quantitatively profile ribosomal protein (RP) ubiquitylation, with a focus on yeast under hydrogen peroxide (H₂O₂) stress. This approach robustly identifies both known and novel RP modifications, including basal ubiquitylation events previously undetected, and identifies Hel2-dependent mechanisms. The data support the conclusion that RPs are regulated by a multifaceted ubiquitin code, establishing a good foundation for the study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript the authors use a new target proteomics approach to quantify site-specific ubiquitin modification across the ribosome before and after oxidative stress. Then they validate their findings following in particular ubiquitination of Rps20 and Rps3 and extend their analysis to different forms of oxidative stress. Finally they question the relevance of two known actors of ribosome ubiquitination, Hel2 and Rad6. It is not easy to summarize the observations because in fact the major finding is that the patterns of ribosome ubiquitination occur in a stresser and enyzme specific manner (even when considering only oxidative stress). However, the complexity revealed by this study is very relevant for the field, because it underlies that the ubiquitination code of ribosomes is not easy to interpret with regard to translation dynamics and responses to stress or players involved. It suggests that some of the models that have generally been adopted probably need to be amended or completed. I am not a proteomics expert, so I cannot comment on the validity of the new proteomics approach, of whether the methods are appropriately described to reproduce the experiments. However, for the follow up experiments, the results following Rps20 and Rps3 ubiquitination are well performed, nicely controlled and are appropriately interpreted.

      Maybe what one can regret is that the authors have limited their analysis to the study of Hel2 and Rad6, and not included other enyzmes that have already been associated with regulation of ribosome ubiquitination, to get a more complete picture. It may not take that much time to test more mutants, but of course there is the risk that rather than enable to make a working model it might make things even more complex.

              __Response: __We value the positive evaluation of our work. We also appreciate the notion that it meaningfully expands the knowledge on the complexity of the ribosome ubiquitination code, challenges the current models of translation control, and conducted well-performed, and nicely controlled experiments. To address the main concern of the reviewer, we will expand our work by studying two additional enzymes involved in ribosome ubiquitination (Mag2 and Not4) and provide a more comprehensive picture of this integrated system. Specifically, we will generate yeast strains deleted for *MAG2* and *NOT4*, and evaluate their impact in ribosome ubiquitination under our main conditions of stress. We will investigate the role of these additional E3s in translation output (HPG incorporation), and in inducing the integrated stress response via phosphorylated eIF2α and Gcn4 expression. Additional follow up experiments will be performed according to our initial results.
      

      Reviewer #2 (Significance (Required)):

      In recent years, regulation of translation elongation dynamics has emerged as a much more relevant site of control of gene expression that previously envisonned. The ribosome has emerged as a hub for control of stress responses. Therefore this study is certainly very timely and interesting for a broad audience. However, it does fall short of giving any simple picture, and maybe the only point one can question is whether it is interesting to publish a manuscript that concludes that regulation is complicated, without really being able to provide any kind of suggestive model.

      My feeling is nevertheless that it will impact how scientists in the field design their experiments and what they will conclude. It will certainly also drive new experiments and approaches, and lead to investigations on how all the different players in regulation of ribosome modification talk to each other and signal to signaling pathways.

              __Response: __We appreciate the comments and the balanced view that studies like ours will still be impactful and contribute to a number of fields in multiple and meaningful ways. With the new experiments proposed here, and used of additional mutants and strains, we intend to propose and provide a more unified model that explain this complex and dynamic relationship.
      

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Recent studies have shown that the ubiquitination of uS3 (Rps3) is crucial for the quality control of nonfunctional rRNA, specifically in the process known as 18S noncoding RNA degradation (NRD). Additionally, the ubiquitination of uS10 (Rps20) plays a significant role in ribosome-associated quality control (RQC). However, the dynamics of ribosome ubiquitination in response to oxidative stress are not yet fully understood.

      In this study, the authors developed a targeted proteomics method to quantify the dynamics of ribosome ubiquitination in response to oxidative stress, both relatively and stoichiometrically. They identified 11 ribosomal sites that exhibited increased ubiquitin modification after exposure to hydrogen peroxide (H2O2). This included two known targets: uS10 and uS3 (of Hel2), which recognize collided ribosomes and initiate the processes of 18S NRD and translation quality control (RQC). Using isotope-labeled peptides, the researchers demonstrated that these modifications are non-stoichiometric and display significant variability among different peptides.

      Furthermore, the authors explored how specific enzymes in the ubiquitin system affect these modifications and their impact on global translation regulation. They found that uS3 (Rps3) and uS10 (Rps20) were modified differently by various stressors, which in turn influenced the Integrated Stress Response (ISR). The authors suggest that different types of stressors alter the pattern of ubiquitinated ribosomes, with Rad6 and Hel2 potentially competing for specific subpopulations of ribosomes.

      Overall, this study emphasizes the complexity of the ubiquitin ribosomal code. However, further experiments are necessary to validate these findings before publication.

      Major Comments:

      I consider the additional experiments essential to support the claims of the paper.

      R3.1. To understand the roles of ribosome ubiquitination at the specific sites, the authors must perform stressor-specific suppression of global translation, as demonstrated in Figures 4 and 5. This should include the uS10-K6R/K8R and uS3-K212R mutants.

              __Response: __We understand the importance of the suggested experiment. We have already requested and kindly received strains expressing these mutations, which will reduce the time required to successfully address this point. We will perform our translation and ISR assays such as the one referred by the reviewer in Figs. 4A-C and 5E, and results will determine the role of individual ribosome ubiquitination sites in translation control.
      

      R3.2. It is crucial to ensure that experiments are adequately replicated and that statistical analysis is thorough, with precise quantification. For a more accurate comparison between wild-type (WT) and Hel2 deletion mutants regarding ribosome ubiquitination, the authors should quantify the ubiquitinated ribosomes in both WT and Hel2 mutants under stress conditions. This quantification should be conducted on the same blot, using diluted control samples. Similarly, in Figures 3F and 4C, for an accurate comparison between WT and Hel2 or Rad6 deletion mutants, the authors should quantify the ubiquitinated ribosomes across these conditions. Again, this quantification should be performed on the same blot with the dilution of control samples.

              __Response: __As was also requested by reviewer 1 and discussed above (point R1.1), we will conduct quantification and display statistical analyses for our immunoblots. In addition, we will re-run the aforementioned experiments to improve quantification following the reviewers' request (same gel & diluted control samples).
      

      Reviewer #3 (Significance (Required)):

      • General assessment:

      Recent studies reveal that the ubiquitination of uS3 (Rps3) is essential for the quality control of nonfunctional rRNA (18S NRD), while the ubiquitination of uS10 (Rps20) plays a crucial role in ribosome-associated quality control (RQC). However, the dynamics of ribosome ubiquitination in response to oxidative stress remain unclear.

      • Advance:

      In this study, the authors developed a targeted proteomics method to quantify ribosome ubiquitination dynamics in response to oxidative stress, both relatively and stoichiometrically. By utilizing isotope-labeled peptides, they demonstrated that these modifications are non-stoichiometric and exhibit significant variability across different peptides. They identified 11 ribosomal sites that showed increased ubiquitin modification following H2O2 exposure, including two known targets of Hel2, which recognize collided ribosomes and induce translation quality control (RQC).

      • Audience: This information will be of interest to a specialized audience in the fields of translation, ribosome function, quality control, ubiquitination, and proteostasis.

      • The field: Translation, ribosome function, quality control, ubiquitination, and proteostasis.

      __ Response:__ We appreciate that our work will be valuable to a number of fields in protein dynamics and that our method advances the field by measuring ribosome ubiquitination relatively and stoichiometrically in response to stress.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Response: All requested changes require experiments and data analyses, and a complete revision plan is delineated above in section #2.

      • *

      4. Description of analyses that authors prefer not to carry out

      • *

      R1.2. Leverage the PRM platform: Apply the established quantitative proteomics approach to validate or extend findings in Fig. 3 (e.g., RAD6-dependent ubiquitylation), ensuring methodological consistency.

              __Response: __Although we understand the interest on the proposed result for consistency, this is the only requested experiment that we do not intend to conduct. Because of the lack of overall ubiquitination of ribosomal proteins in *rad6**D* in response to H2O2 (e.g., Silva et al., 2015, Simoes et al., 2022), we believe that this PRM experiment in unlikely to produce meaningful insight on the ubiquitination code. In this context, we expected that sites regulated by Hel2 will be the ones largely modified in rad6*D *and we followed up on them via immunoblot. Moreover, this experiment would not be time or cost-effective, and resources and efforts could be used to strengthen other important areas of the manuscript, such as including the E3's Mag2 and Not4 into our work.
      
    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      This is a very interesting paper investigating the fitness and cellular effects of mutations that drive dihedral protein complex into forming filaments. The Levy group have previously shown that this can happen relatively easily in such complexes and this paper now investigates the cellular consequences of this phenomenon. The study is very rigorous biophysically and very surprisingly comes up empty in terms of an effect: apparently this kind of self-assembly can easily be tolerated in yeast, which was certainly not my expectation. This is a very interesting result, because it implies that such assemblies may evolve neutrally because they fulfill the two key requirements for such a trajectory: They are genetically easily accessible (in as little as a single mutation), and they have perhaps no detrimental effect on fitness. This immediately poses two very interesting questions: Are some natural proteins that are known to form filaments in the cell perhaps examples of such neutral trajectories? And if this trait is truly neutral (as long as it doesn't affect the base biochemical function of the protein in question), why don't we observe more proteins form these kinds of ordered assemblies.

      I have no major comments about the experiments as I find that in general very carefully carried out. I have two more general comments:

      1. The fitness effect of these assemblies, if one exists, seems very small. I think it's worth remembering that even very small fitness effects beyond even what competition experiments can reveal could in principle be enough to keep assembly-inducing alleles at very low frequencies in natural populations. Perhaps this could be acknowledged in the paper somewhere.
      2. The proteins used in this study I think were chosen such that they do not have an important function in yeast that could be disrupted by assembly This allows the effect of the large scale assemblies to be measured in isolation. If I deduced this correctly, this should probably be pointed out agin in this paper (I apologise if I missed this).
      3. The model system in which these effects were tested for is yeast. This organism has a rigid cell wall and I was wondering if this makes it more tolerant to large scale assemblages than wall-less eukaryotes. Could the authors comment on this?

      Minor points:

      In Figure 2D, what are the fits? And is there any analysis that rules out expression effects on the mutant caused by higher levels of the wild-type? The error bars in Figure 2E are not defined.

      Significance

      This is a remarkably rigours paper that investigates whether self-assembly into large structures has any fitness effect on a single celled organism. This is very relevant, because a landmark paper from the Levy group showed that many proteins are very close in genetic terms to forming such assemblies. The general expectation I think would have been that this phenomenon is pretty harmful. This would have explained why such filaments are relatively rare as far as we know. This paper now does a large number of highly rigours experiments to first prove beyond doubt that a range of model proteins really can be coaxed into forming such filaments in yeast cells through a very small number of mutations. Its perhaps most surprising result is that this does not negatively affect yeast cells.

      From an evolutionary perspective, this is a very interesting and highly surprising result. It forces us to rethink why such filaments are not more common in Nature. Two possible answers come to mind: First, it's possible that filamentation is not directly harmful to the cell, but that assembling proteins into filaments can interfere with their basic biochemical function (which was not tested for here).

      Second, perhaps assembly does cause a fitness defect, but one so small that it is hard to measure experimentally. Natural selection is very powerful, and even fitness coefficients we struggle to measure in the laboratory can have significant effects in the wild. If this is true, we might expect such filaments to be more common in organisms with small effective population sizes, in which selection is less effective.

      A third possibility is of course that the prevalence of such self-assembly is under-appreciated. Perhaps more proteins than we currently know assemble into these structures under some conditions without any benefit or detriment to the organism.

      These are all fascinating implications of this work that straddle the fields of evolutionary genetics and biochemistry and are therefore relevant to a very wide audience. My own expertise is in these two fields. I also think that this work will be exciting for synthetic biologists, because it proves that these kinds of assemblies are well tolerated inside cells.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      The article emphasizes vocal social behavior but none of the experiments involve a social element. Marmosets are recorded in isolation which could be sufficient for examining the development of vocal behavior in that particular context. However, the early-life maturation of vocal behavior is strongly influenced by social interactions with conspecifics. For example, the transition of cries and subharmonic phees which are high-entropy calls to more low-entropy mature phees is affected by social reinforcement from the parents. And this effect extends cross context where differences in these interaction patterns extend to vocal behavior when the marmosets are alone. From the chord diagrams, cries still consist of a significant proportion of call types in lesioned animals. Additionally, though it is an intriguing finding that the infants' phee calls have acoustic differences being 'blunted of variation, less diverse and more regular,' the suggestion that the social message conveyed by these infants was 'deficient, limited, and/or indiscriminate' is not but can be tested with, for example, playback experiments.

      We recognize that our definition of vocal social behavior is not within the normal realm of direct social interactions. We were particularly interested in marmoset vocalizations as a social signal, such as phees, cries and twitter, even when their family members or conspecifics are not visibly present. Generally speaking, in the laboratory, infant marmosets make few calls when in the presence of another conspecific, but when isolated they naturally make phee calls to reach out to their distantly located relatives. In this context, while we did not assess the animals interacting directly, we assessed what are normally referred to as ‘social contact calls,’ hence the term ‘social vocalizations.’ Playback recordings might provide potential evidence of antiphonal calling as a means of social interaction and might reveal the poor quality of the social message conveyed by the infant, but even here, the vocalizing marmoset would be calling to a non-visible conspecific. Thus, although our experiment lacked a direct social element, our data suggest that in the absence of a functioning ACC in early life, infant calls that convey social information, and which would elicit feedback from parents and other family members, may be compromised, and this could potentially influence how that infant develops its social interactive skills. We have now commented on the significance of social vocalizations in the introductory text (page 3) and discussion (page 15).

      The manuscript would benefit from the addition of more details to be able to better determine if the conclusions are well supported by the data. Understanding that this is very difficult data to get, the number of marmosets and some variability in the collection of the data would allow for the plotting of each individual across figures. For example, in the behavioral figures, which is the marmoset that is in the behavioral data that has a sparing of the ACC lesion in one hemisphere? Certain figures, described below in the recommendations for the authors, could also do with additional description.

      Thanks for these suggestions. We have plotted the individual animals in the relevant figures and addressed the comments and recommendations listed below.

      Reviewer #1 (Recommendations For The Authors):

      Given the number of marmosets, variability in the collected data, lesion extent, and different controls, I would like to see more plots with individuals indicated (perhaps with different symbols). More details could also be added for several plots.

      Figure 2D (new) and 2E now have plots that represent the individual animals, each represented by a different symbol.

      Figure 2A) Since lesions are bilateral, could you also show the extent of the lesions on the other side for completeness?

      Our intention was to process one hemisphere of each brain for Golgi staining to examine changes in cell morphology in the ACC and associated brain regions following the lesion. Unfortunately, the Golgi stain was unsuccessful. Consequently, we were unable to use the tissue to reconstruct the bilateral extent of the lesion. We did, however, first establish the bilateral nature of the lesion through coronal slices of the animals MRI scan before processing the intact hemisphere to confirm the bilateral extent of the lesion. The MRI scans (every 5th section) for each control and lesioned animal is compiled in a figure in the supplementary materials (Fig. S1). These scans show that the ACC-lesioned animals have bilateral lesions with one animal (ACC1) showing some sparing in one hemisphere, as we noted in the text. We have now made reference to this supplemental figure in the text (page 5).

      Figure 2B/C) In Figure 2B, control and ACC lesions are in the columns while right next to it in 2C, ACC lesion and control are in the rows. Could these figures be adjusted so that they are consistent?

      We have now adjusted these figures and updated the figure legends accordingly.

      Figure 2C) Is there quantification of the 'loss of neurons and respective increase in glial cells at the lesioned site especially at the interface between gray and white matter'? There are multiple slices for each animal.

      Thanks for suggesting this. We have now quantified these data which are presented as a new graph as Fig. 2D. These data revealed a significant loss of neurons (NeuN) in the ACC group as well as an increase in glial cells (GFAP and Iba1) relative to the controls. The figure legend and results have also been updated.

      Figure 2C) It is difficult for me to distinguish between white and purple - could you show color channels independently since images were split into separate channels for each fluorophore?

      Fig. 2C has been revised to better visualize the neurons and glia at the gray and white matter interface. We found that grayscale images for each channel offered a better contrast than separating the channels for each fluorophore.

      Figure 2C/D) I like how there are individual dots here for the individual marmosets. Since there are four in each group, could they be represented throughout with symbols (with a key indicating the pair and also the control condition)? For example, were there changes in the histology for control animals that got saline injections as opposed to those that didn't get any surgery?

      We have highlighted the individual animals with different symbols in the figures. Although some animals were twin pairs, it was not possible to have twins in all cases. Only two sets were twins. We have indicated the symbols that represent the twin pair in Fig. 2 as well as the MRI scans of the twin pairs in Fig. S1. There were no observed changes in histology for the sham animals relative to the other non-sham controls. The MRI scan for one sham CON2 shows herniated tissue in the right hemisphere which is a normal consequence of brain exposure caused by a craniotomy.

      Figure 3D-E) Here, individual data points could be informative especially given that some animals are missing data past the third week.

      To prevent cluttering the figure with too many data points, we have added the sample size for each group in the figure legend (pages 33).

      Figure 3D/F) What exactly is the period that goes into this analysis? In the text, 'Further analysis showed that the ACC lesion had minimal effects on the rate of most call types during this period'. Is this period from weeks 3 to 6 relative to the proportions in week 2? I think I also don't quite understand the chord diagram. The legend says 'the numbers around each chord diagram represents relative probability value for each call type transition' so how does that relate to the proportion of these call types? It looks like there is a wider slice for cries for ACC-lesioned animals each week. I also don't see in the week 4 chord diagram, the text description of 'elevation in the rate of 'other' calls, which comprised tsik, egg, eck, chatter and seep calls. These calls were significantly elevated in animals after the ACC lesion."

      We apologize for the confusion. Fig 3D and Fig 3F are not directly related. Fig. 3D shows the different types of emitted calls. The figure shows the averaged data per group pooled from post-surgery weeks (week 3 – week 6). It represents the proportion of individual call types relative to the total number of calls during each recording period. The only major finding here was the increased rate of ‘other’ calls comprising tsik, egg, ock, chatter and seep calls. These calls were significantly elevated in animals after the ACC lesion.

      While Fig. 3D represents the differences in the proportion of calls, the chord diagrams in Fig. 3F represents the probability of call-to-call transition obtained from a probability matrix. At postnatal week 6, marmosets with ACC lesions showed a higher likelihood of transitions between all call types, but less frequent transitions between social contact calls relative to sham controls. The chord diagrams visualize the weighted probabilities and directionality of these transitions between the different call types. Weighted probabilities were used to account for variations in call counts. The thickness of the arrows or links indicates the probability of a call transition, while the numbers surrounding each chord diagram represent the relative probability value for each specific transition. We have now reworded the text and clarified these details in the figure legend (pages 32-33).

      Figure 3E) How is the ratio on the y-axis calculated here?

      The y-axis represents the averaged value of the ratios of the number of social contact calls relative to non-social contact calls in each recording per subject per group (i.e., (x̄ (# social calls / # non-social calls). This is now included in the figure legend and the axis is updated (page 32).

      Also, cries could be considered a 'social contact call' since they are produced by infants to elicit responses from the parents. There is also the hypothesis in the literature that cries transition into phees.

      The reviewer is correct. Cries are often considered a social contact call because they elicit parental feedback. We decided to separate cry-calls from other social contact calls for two reasons. First, in our sample, we found cry behavior to be highly variable across the animals. For example, one control infant cried incessantly whereas another control infant cried less than normal. This extreme variability in animals of the same group masked the features between animals that reliably differentiated between them. Second, cry-calls elicit feedback from parents who are normally within the vicinity of the infant whereas phee calls elicit antiphonal phee calls from any distantly located conspecific. In other words, the context in which these calls are often elicited are very different.

      The use of 'syntactical' is a bit jarring to me because outside of linguistics, its use in animal communication generally refers to meaning-bearing units that can be combined into well-formed complexes such as pod-specific whale songs or predator alarm calls with concatenated syllable types in some species of monkeys. To my knowledge, individual phee syllables have not been currently shown to carry information on their own and may be better described as 'sequential' rather than 'syntactical'.

      We agree. We have made this change accordingly.

      Figure 4B) How many phee calls with differing numbers of syllables are present each week? How equal is the distribution given that later analyses go up to 5 syllables?

      The total number of phee calls with differing number of syllables ranged between 20-40 phees. This number varied between subjects, per week. The most common were 3- and 4-syllable phee calls which ranged from 7-15. Due to this variability, Fig. 4B presents the average syllable count. The axis is now updated.

      Figure 4C-E) How is the data combined here? Is there a 2nd syllable, the combined data from the 2nd syllable from phee calls of all lengths (1 - 5?). If so, are there differences based on how long the total sequence is?

      The combined data represents the specific syllable (e.g., the 1st syllable in a 2-syllable phee, in a 3-syllable phee and in a 4-syllable phee) irrespective of the length of the sequence in a sequence. No differences were observed between 2nd syllable in a 2 syllable phee and 2nd syllable in a 3 or a 4 syllable phee. We have included this detail in the figure legend (page 33-34).

      So duration is a vocal parameter that is highly dependent on physical factors such as body size and lung volume, where there differences in physical growth between the pairs of ACC-lesioned marmosets and their twins? Entropy is less closely tied to these physical factors but has previously been shown to decrease as phee calls mature, which we can also see in the negative relationship of the control animals. Do you know of experiments that show that lower entropy calls are more 'blunted'?

      Thank you for raising the important issue of physical growth factors. For twin pairs, it is not uncommon for one infant to be slightly bigger, heavier or stronger than the other presumably because one gets more access to food. With increasing age, we did not observe significant changes in bodyweight between the groups. We examined grip strength in all infants as a means of assessing how well the infant was able to access food during nursing. Poor grip strength would indicate a lower propensity to ‘hang on’ to the mother for nursing which could lead to lower weight gain and reduced physical growth. We found that both grip strength and body weight increased as the infants got older and both parameters were equivalent. We have included an additional figure to show the normal increase in both weight and grip strength to the supplemental materials (Fig. S3) and have made reference to this in the text (page 8).

      As for entropy, it’s impact on the emotional quality of vocalizations has not been systematically explored. Generally speaking, high entropy relates to high randomness and distortion in the signal. Accordingly, one view posits low-entropy phee calls represent mature sounding calls relative to noisy and immature high-entropy calls (e.g., Takahasi et al 2017). In the current study, the reduction in syllable entropy observed for both groups of animals with increasing age is consistent with this view. At the same time entropy can relate to vocal complexity; high entropy refers to complex and variable sound patterns whereas low entropy sounds are predictable, less diverse and simple vocal sequences (Kershenbaum, A. 2013. Entropy rate as a measure of animal vocal complexity. Bioacoustics, 23(3), 195–208). One possibility is that call maturity does not equate directly to emotional quality. In other words, a low-entropy mature call can also be lacking in emotion as observed in humans with ACC damage; these patients show mature speech, but they lack the variations in rhythms, patterns and intonation (i.e., prosody) that would normally convey emotional salience and meaning. Our observation of a reduction in phee syllable entropy in the ACC group in the context of being short and loud with reduced peak frequency is consistent with this view. Our use of the word ‘blunt’ was to convey how the calls exhibited by the ACC group were potentially lacking emotional meaning. Beyond this speculation, we are not aware of any papers that have examined the relationship between entropy and blunted calls directly. We have now included this speculation in the discussion (pages 12-13).

      Reviewer #2 (Public Review):

      The authors state that the integrity of white matter tracts at the injection site was impacted but do not show data.

      We have added representative micrographs of a control and ACC-lesioned animal in a new supplementary figure which shows the neurotoxin impacted the integrity of white matter tracts local to the site of the lesion (Fig. S2).

      The study only provides data up to the 6th week after birth. Given the plasticity of the cortex, it would be interesting to see if these impairments in vocal behavior persist throughout adulthood or if the lesioned marmosets will recover their social-vocal behavior compared to the control animals.

      We agree. Our original intention was to examine behavior into adulthood. Unfortunately, the COVID-19 pandemic compromised the continuation of the study. We were limited by the data that we were allowed to acquire due to imposed restrictions. Some non-vocalization data collected when the animals were young adults is currently being prepared for another paper.

      Even though this study focuses entirely on the development of social vocalizations, providing data about altered social non-vocal behaviors that accompany ACC lesions is missing. This data can provide further insights and generate new hypotheses about the exact role of ACC in social vocal development. For example, do these marmosets behave differently towards their conspecifics or family members and vice versa, and is this an alternate cause for the observed changes in social-vocal development?

      We agree. At the time however, apparatus for assessing behavior between the infant’s family and non-family members was not available. Assessing such behaviors in the animals holding room posed some difficulty since marmosets are easily distracted by other animals as well as the presence of an experimenter, amongst other things. This is an area of investigation we are currently pursuing.

      Reviewer #3 (Public Review):

      It is striking to find that the vocal repertoire of infant marmosets was not significantly affected by ACC lesions. During development, the neural circuits are still maturing and the role of different brain regions may evolve over time. While the ACC likely contributes to vocalizations across the lifespan, its relative importance may vary depending on the developmental stage. In neonates, vocalizations may be more reflexive or driven by physiological needs. At this stage, the ACC may play a role in basic socioemotional regulation but may not be as critical for vocal production. Since the animals lived for two years, further analysis might be helpful to elucidate the precise role of ACC in the vocal behavior of marmosets.

      Figure 3D. According to the Introduction "...infant ACC lesions abolish the characteristic cries that infants normally issue when separated from its mother". Are the present results in marmosets showing the opposite effect? Please discuss.

      To date, the work of Maclean (1985) is the only publication that describes the effect of early cingulate ablation on the spontaneous production of ‘separation calls’ largely construed as cries, coos and whimpers in response to maternal separation. All of this work was largely performed in rhesus macaques or squirrel monkeys. In addition to ablating the cingulate cortex, Maclean found that it was necessary to ablate the subcallosal (areas 25) and preseptal cingulate cortex (presumably referring to prelimbic area 32) to permanently eliminate the spontaneous production of separation cry calls. Our ablation of the ACC was more circumscribed to area 24 and is therefore consistent with MacLean’s earlier work that removal of ACC alone does not eliminate cry behavior. In adults, ACC ablation is insufficient at eliminating vocalization as well. We make reference to this on pages 13-14 of the discussion.

      Figure 3E and Discussion. Phees are mature contact calls and cries immature contact calls (Zhang et al, 2019, Nat Commun). Therefore, I would rather say that the proportion of immature (cries) contact calls increases vs the mature (phee, trill, twitters) contact calls in the ACC group. Cries are also "isolated-induced contact calls" to attract the attention of the caregivers.

      The reviewer is correct in that cries are directed towards caregivers but in our sample, cry behavior was highly variable between the infants. Consequently, in Fig. 3E social contact calls include phee, twitter and trill calls but does not include cries which were separated (see also response to reviewer #1). Many of the calls made during babbling were immature in their spectral pattern (compare phee calls between Fig. 3A and 3B). Cries typically transitioned into phees, twitters or trills before they fully matured. Fig 3E shows that the controls made more isolation-induced social contact calls at postnatal week 6 which were presumably maturing at this time point. Thus, if anything, there was an increase in the proportion of mature contact calls vs immature contact calls with increasing age.

      Figure 4D. Animal location and head direction within the recording incubator can have significant effects on the perceived amplitude of a call. Were these factors taken into account?

      The reviewer makes an excellent observation. Unfortunately, we did not account for location and head direction because the infants were quite mobile in the incubator. The directional microphone was hidden from view because the infants were distracted by it, and positioned ~12 cm from the marmoset, and placed in the exact same location for every recording. In addition, calls with phantom frequencies were eliminated during visual inspection of spectrograms. Beyond these details, location and head direction were not taken into account.

      Figure 4E. When a phee call has a higher amplitude, as is the case for the ACC group (Figure 4D), the energy of the signal will be concentrated more strongly at the phee call frequency ~8KHz. This concentration of the energy reduces the variability in the frequency distribution, leading to lower entropy. The interpretation of the results should be reconsidered. A faint call (control group) can exhibit more variability in the frequency content since the energy is distributed across a wider range of frequencies contributing to higher entropy. It can still be "fixed, regular, and stereotyped" if the behavior is consistent or predictable with little variation. Also, to define ACC calls as "monotonic" I would rather search for the lack of frequency modulation, amplitude variation, or narrower bandwidth.

      We very much appreciate this explanation. We were able to identify the maximum frequency that closely matched pitch of a sound for each syllable in a multisyllabic phee. New Fig. 4E shows that the peak frequency for each phee syllable was lower in the ACC-lesioned monkeys which may directly translate to the low entropy observed in this group. The term “monotonic” was used to relate our data to the classical and long-standing evidence of human ACC lesions causing monotonous intonation of speech. When all factors are taken into account, it is evident that the vocal phee signature of the ACC-lesioned animal was structurally different to the controls implicating a less complex and stereotyped ACC signal. Further studies are needed to systematically explore the relationship between entropy and emotional quality of vocalizations

      Apart from the changes in the vocal behavior, did the AAC lesions manifest in any other observable cognitive, emotional, or social behavior? ACC plays a role in processing pain and modulating pain perception. Could that be the reason for the observed increase in the proportion of cries in the ACC group and the increase in the phee call amplitude? Did the cries in the ACC group also display a higher amplitude than the cries in the control group?

      It was our intention to acquire as much data as possible from these infants as they matured from a cognitive, social and emotional perspective. Unfortunately, our study was hampered by variety of reasons including the COVID-19 pandemic which imposed major restrictions on our ability to continue with the experiment in a time sensitive manner. In addition, the development and construction of the custom apparatus to measure these behaviors was stalled during this period further preventing us from collecting behavioral data at regular time intervals. As for the cry behavior, the number of cries, in the ACC group were very low especially at postnatal week 5 and 6. Consequently, there were very few data points to work with.

      Discussion. Louder calls have the potential to travel longer distances compared to fainter calls, possess higher energy levels, and can propagate through the environment more effectively. If the ACC group produced louder phee syllables, how could be the message conveyed over long distances "deficient, limited, and/or indiscriminate"?

      Thanks for raising this interesting concept. Not all calls emitted by the animals were loud. We specifically examined the long-distance phee call in this regard. The phee syllables emitted by the ACC group were high amplitude with low frequencies, short duration and low entropy. Taking these factors into account, it is conceivable that the phee calls produced by the ACC group could not effectively convey their message over long distances despite their propagation through the environment. We have made reference to this in the discussion where we focus is specifically on the phee calls only (pages 12).

      Abstract: Do marmosets have syntax? Consider replacing "syntactical" with a more appropriate term (maybe "syntax-like").

      Thanks for this suggestion. We have replaced the term syntactical with ‘sequential’ as per the recommendation of reviewer #1.

      Introduction: "...cries that infants normally issue when separated from its mother". Please replace "its" with "their".

      This has been corrected.

      Results: Is the reference to Fig 1B related to the text?

      We have included and referred to Fig. 1B in the text (results and methods) to show other researchers how they can use this technique as a reliable and safe means of monitoring tidal volume under anesthesia in small infant marmoset without intubation.

      I understand that both "spectrograph" and "spectrogram" are used to analyze the frequency content of a signal. Nevertheless, "spectrogram" refers to the visual representation of the frequency content of a signal over time, and this term is commonly used in audio signal processing and specifically in the vocal communication field. I would recommend replacing "spectrograph" with "spectrogram".

      Thanks for this suggestion. We have corrected this throughout the manuscript.

      (Concerning the previous comment in the public review). Cries are uttered to attract the attention of the caregivers. The increase in the proportion of cries in the ACC group does not match the sentence: "...these infants appeared to make little effort in using vocalizations to solicit social contact when socially isolated".

      We apologize for the confusion. It is not the case that the ACC animals make more cries. Cry calls were highly variable amongst the animals. Consequently, although Fig 3D gives the impression that the proportion of cries in higher in ACC animals they did not differ significantly from the controls. Due to their high variability, cries were removed in the measurement of social contact. Accordingly, Fig. 3E does not include cry behavior; it shows that the ACC animals engage less in social contact calls.

      Related to Figure 3. What is the difference between "egg" and "eck" calls? Do you mean "ock"?

      We apologize. This was a typo. It should be ock calls.

      Figure 4B. Is the sample size five animals per group and per week? Overlapping data points seem to be placed next to each other. Why in some groups (e.g. ACC 6 weeks) less than five dots are visible?

      The sample size differed per week because of the lack of recording during the COVID restrictions. In Fig 4b, we have now separated the overlapping dots. We have also added the sample size of the groups in the figure legends.

      Would the authors expect to see stronger differences between the lesioned and the control groups when comparing a later developmental stage? The animals were euthanized at the age of

      These speculation is certainly feasible and yes, we were hoping to establish this level of detail with testing at later developmental stages. This is an aspect of development we are currently pursuing.

      Could these experiments be conducted?

      I’m afraid these animals are longer available, but we are currently conducting experiments in other animals with early life neurochemical manipulations who show behavioral changes into early adulthood.

      ACC lesion: It is reported that the lesions extended past 24b into motor area 6M. Did the animal display any motor control disability?

      Surprisingly, despite the lesion encroaching into 6M, these animals showed no observable motor impairment. We assessed the animals grip strength and body weight and discovered normal strength and growth in weight in both controls and the lesioned group. We have added this data as supplemental information (Fig. S3).

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This study investigates what happens to the stimulus-driven responses of V4 neurons when an item is held in working memory. Monkeys are trained to perform memory-guided saccades: they must remember the location of a visual cue and then, after a delay, make an eye movement to the remembered location. In addition, a background stimulus (a grating) is presented that varies in contrast and orientation across trials. This stimulus serves to probe the V4 responses, is present throughout the trial, and is task-irrelevant. Using this design, the authors report memory-driven changes in the LFP power spectrum, changes in synchronization between the V4 spikes and the ongoing LFP, and no significant changes in firing rate.

      Strengths:

      (1) The logic of the experiment is nicely laid out.

      (2) The presentation is clear and concise.

      (3) The analyses are thorough, careful, and yield unambiguous results.

      (4) Together, the recording and inactivation data demonstrate quite convincingly that the signal stored in FEF is communicated to V4 and that, under the current experimental conditions, the impact from FEF manifests as variations in the timing of the stimulus-evoked V4 spikes and not in the intensity of the evoked activity (i.e., firing rate).

      Weaknesses:

      I think there are two limitations of the study that are important for evaluating the potential functional implications of the data. If these were acknowledged and discussed, it would be easier to situate these results in the broader context of the topic, and their importance would be conveyed more fairly and transparently.

      (1) While it may be true that no firing rate modulations were observed in this case, this may have been because the probe stimuli in the task were behaviorally irrelevant; if anything, they might have served as distracters to the monkey's actual task (the MGS). From this perspective, the lack of rate modulation could simply mean that the monkeys were successful in attending the relevant cue and shielding their performance from the potentially distracting effect of the background gratings. Had the visual probes been in some way behaviorally relevant and/or spatially localized (instead of full field), the data might have looked very different.

      Any task design involves tradeoffs; if the visual stimulus was behaviorally relevant, then any observed neurophysiological changes would be more confounded by possible attentional effects. We cannot exclude the possibility that a different task or different stimuli would produce different results; we ourselves have reported firing rate enhancements for other types of visual probes during an MGS task (Merrikhi et al. 2017). We have added an acknowledgement of these limitations in the discussion section (lines 323-330 in untracked version). At minimum, our results show a dissociation between the top-down modulation of phase coding, which is enhanced during WM even for these task-irrelevant stimuli, and rate coding. Establishing whether and how this phase coding is related to perception and behavior will be an important direction for future work.

      With this in mind, it would be prudent to dial down the tone of the conclusions, which stretch well beyond the current experimental conditions (see recommendations).

      We have edited the title (removing the word ‘primarily’) and key sentences throughout to tone down the conclusions, generally to state that the importance of a phase code in WM modulations is *possible* given the observed results, rather than certain (see abstract lines 26-27, introduction lines 59-62, conclusion lines 310-311).

      (2) Another point worth discussing is that although the FEF delay-period activity corresponds to a remembered location, it can also be interpreted as an attended location, or as a motor plan for the upcoming eye movement. These are overlapping constructs that are difficult to disentangle, but it would be important to mention them given prior studies of attentional or saccade-related modulation in V4. The firing rate modulations reported in some of those cases provide a stark contrast with the findings here, and I again suspect that the differences may be due at least in part to the differing experimental conditions, rather than a drastically different encoding mode or functional linkage between FEF and V4.

      We have added a paragraph to the discussion section addressing links to attention and motor planning (lines 315-333), and specifically acknowledging the inherent difficulties of fully dissociating these effects when interpreting our results (lines 323-330).

      Reviewer #2 (Public review):

      Summary:

      It is generally believed that higher-order areas in the prefrontal cortex guide selection during working memory and attention through signals that selectively recruit neuronal populations in sensory areas that encode the relevant feature. In this work, Parto-Dezfouli and colleagues tested how these prefrontal signals influence activity in visual area V4 using a spatial working memory task. They recorded neuronal activity from visual area V4 and found that information about visual features at the behaviorally relevant part of space during the memory period is carried in a spatially selective manner in the timing of spikes relative to a beta oscillation (phase coding) rather than in the average firing rate (rate code). The authors further tested whether there is a causal link between prefrontal input and the phase encoding of visual information during the memory period. They found that indeed inactivation of the frontal eye fields, a prefrontal area known to send spatial signals to V4, decreased beta oscillatory activity in V4 and information about the visual features. The authors went one step further to develop a neural model that replicated the experimental findings and suggested that changes in the average firing rate of individual neurons might be a result of small changes in the exact beta oscillation frequency within V4. These data provide important new insights into the possible mechanisms through which top-down signals can influence activity in hierarchically lower sensory areas and can therefore have a significant impact on the Systems, Cognitive, and Computational Neuroscience fields.

      Strengths:

      This is a well-written paper with a well-thought-out experimental design. The authors used a smart variation of the memory-guided saccade task to assess how information about the visual features of stimuli is encoded during the memory period. By using a grating of various contrasts and orientations as the background the authors ensured that bottom-up visual input would drive responses in visual area V4 in the delay period, something that is not commonly done in experimental settings in the same task. Moreover, one of the major strengths of the study is the use of different approaches including analysis of electrophysiological data using advanced computational methods of analysis, manipulation of activity through inactivation of the prefrontal cortex to establish causality of top-down signals on local activity signatures (beta oscillations, spike locking and information carried) as well as computational neuronal modeling. This has helped extend an observation into a possible mechanism well supported by the results.

      Weaknesses:

      Although the authors provide support for their conclusions from different approaches, I found that the selection of some of the analyses and statistical assessments made it harder for the reader to follow the comparison between a rate code and a phase code. Specifically, the authors wish to assess whether stimulus information is carried selectively for the relevant position through a firing rate or a phase code. Results for the rate code are shown in Figures 1B-G and for the phase code are shown in Figure 2. Whereas an F-statistic is shown over time in Figure 1F (and Figure S1) no such analysis is shown for LFP power. Similarly, following FEF inactivation there is no data on how that influences V4 firing rates and information carried by firing rates in the two conditions (for positions inside and outside the V4 RF). In the same vein, no data are shown on how the inactivation affects beta phase coding in the OUT condition.

      Per the reviewer’s suggestion, we have added several new supplementary figures. We now show the F-statistic for discriminability over time for the LFP timecourse (Fig. S2), and as a function of power in various frequencies (Fig. S4). We have added before/after inactivation comparisons of the LFP and spiking activity, and their respective F-statistics for discrimination between contrasts and orientations in Fig. S9. Lastly, we added a supplementary figure evaluating the impact of FEF inactivation on beta phase coding in the OUT condition, showing no significant change (Fig. S11).

      Moreover, some of the statistical assessments could be carried out differently including all conditions to provide more insight into mechanisms. For example, a two-way ANOVA followed by post hoc tests could be employed to include comparisons across both spatial (IN, OUT) and visual feature conditions (see results in Figures 2D, S4, etc.). Figure 2D suggests that the absence of selectivity in the OUT condition (no significant difference between high and low contrast stimuli) is mainly due to an increase in slope in the OUT condition for the low contrast stimulus compared to that for the same stimulus in the IN condition. If this turns out to be true it would provide important information that the authors should address.

      We have updated the STA slope measurement, excluding the low contrast condition which lacks a clear peak in the STA. Additionally, we equalized the bin widths and aligned the x-axes for better visual comparability. Then, we performed a two-way ANOVA, analyzing the effects of spatial features (IN vs. OUT) and visual conditions (contrast and orientation). The results showed a significant effect of the visual feature on both orientation (F = 3.96, p=0.046) and contrast (F = 14.26, p<10<sup>-3</sup>). However, neither the spatial feature nor the spatial-visual interaction exhibited significant effects for orientation (F = 0.52, p=0.473, F=1.56, p=0.212) or contrast (F = 2.19, p=0.139, F=1.15, p=0.283).

      There are also a few conceptual gaps that leave the reader wondering whether the results and conclusion are general enough. Specifically,

      (1) The authors used microstimulation in the FEF to determine RFs. It is thus possible that the FEF sites that were inactivated were largely more motor-related. Given that beta oscillations and motor preparatory activity have been found to be correlated and motor sites show increased beta oscillatory activity in the delay period, it is possible that the effect of FEF inactivation on V4 beta oscillations is due to inactivation of the main source of beta activity. Had the authors inactivated sites with a preponderance of visual neurons in the FEF would the results be different?

      We do not believe this to be likely based on what is known anatomically and functionally about this circuitry. Anatomically, the projections from FEF to V4 arise primarily from the supragranular layers, not layers which contain the highest proportion of motor activity (Barone et al. 2000, Pouget et al. 2009, Markov et al. 2013). Functionally, based on electrical identification of V4-projecting FEF neurons, we know that FEF to V4 projections are predominantly characterized by delay rather than motor activity (Merrikhi et al. 2017). We have now tried to emphasize these points when we introduce the inactivation experiments (lines 185-186).

      Experimentally, the spread of the pharmacological effect with our infusion system is quite large relative to any clustering of visual vs. motor neurons within the FEF, with behavioral consequences of inactivation spreading to cover a substantial portion of the visual hemifield (e.g., Noudoost et al. 2014, Clark et al. 2014), and so our manipulation lacks the spatial resolution to selectively target motor vs. other FEF neurons.

      (2) Somewhat related to this point and given the prominence of low-frequency activity in deeper layers of the visual cortex according to some previous studies, it is not clear where the authors' V4 recordings were located. The authors report that they do have data from linear arrays, so it should be possible to address this.

      Unfortunately, our chamber placement for V4 has produced linear array penetration angles which do not reliably allow identification of cortical layers. We are aware of previous results showing layer-specific effects of attention in V4 (e.g., Pettine et al. 2019, Buffalo et al. 2011), and it would indeed be interesting to determine whether our observed WM-driven changes follow similar patterns. We may be able to analyze a subset of the data with current source density analysis to look for layer-specific effects in the future, but are not able to provide any information at this time.

      (3) The authors suggest that a change in the exact frequency of oscillation underlies the increase in firing rate for different stimulus features. However, the shift in frequency is prominent for contrast but not for orientation, something that raises questions about the general applicability of this observation for different visual features.

      While the shift in peak frequency across contrasts is more prominent than that across orientations (Fig. S3A-B), the relationship between orientation and peak frequency is also significant (one-way ANOVA for peak frequency across contrasts, F<sub>Contrast</sub>=10.72, p<10<sup>-4</sup>; or across orientations, F<sub>Orientation</sub>=3, p=0.030; stats have been added to Fig. S3 caption). This finding also aligns with previous studies, which reported slight peak frequency shifts (~1–2 Hz) in the context of attention (Fries, 2015). To address the question of whether the frequency-firing rate correlation generalizes to orientation-driven changes, we now examine the relationship between peak frequency and firing rate separately for each contrast level (Fig. S14). The average normalized response as a function of peak frequency, pooled across subsamples of trials from each of 145 V4 neurons (100 subsamples/neuron), IN vs. OUT conditions, shows a significant correlation during the delay period for each contrast (contrast low (F<sub>Condition</sub>=0.03, p=0.867; F<sub>Frequency</sub>=141.86, p<10<sup>-18</sup>; F<sub>Interaction</sub>=10.70, p=0.002, ANCOVA), contrast middle (F<sub>Condition</sub>=7.18, p=0.009; F<sub>Frequency</sub>=96.76, p<10<sup>-14</sup>; F<sub>Interaction</sub>=0.13, p=0.716, ANCOVA), contrast high (F<sub>Condition</sub>=12.51, p=0.001; F<sub>Frequency</sub>=333.74, p<10<sup>-29</sup>; F<sub>Interaction</sub>=7.91, p=0.006, ANCOVA).

      (4) One of the major points of the study is the primacy of the phase code over the rate code during the delay period. Specifically, here it is shown that information about the visual features of a stimulus carried by the rate code is similar for relevant and irrelevant locations during the delay period. This contrasts with what several studies have shown for attention in which case information carried in firing rates about stimuli in the attended location is enhanced relative to that for stimuli in the unattended location. If we are to understand how top-down signals work in cognitive functions it is inevitable to compare working memory with attention. The possible source of this difference is not clear and is not discussed. The reader is left wondering whether perhaps a different measure or analysis (e.g. a percent explained variance analysis) might reveal differences during the delay period for different visual features across the two spatial conditions.

      We have added discussion regarding the relationship of these results to previous findings during attention in the discussion section (lines 315-333).

      The use of the memory-guided saccade task has certain disadvantages in the context of this study. Although delay activity is interpreted as memory activity by the authors, it is in principle possible that it reflects preparation for the upcoming saccade, spatial attention (particularly since there is a stimulus in the RF), etc. This could potentially change the conclusion and perspective.

      We have added a new discussion paragraph addressing the relationship to attention and motor planning (lines 315-333). We have also moderated the language used to describe our conclusions throughout the manuscript in light of this ambiguity.

      For the position outside the V4 RF, there is a decrease in both beta oscillations and the clustering of spikes at a specific phase. It is therefore possible that the decrease in information about the stimuli features is a byproduct of the decrease in beta power and phase locking. Decreased oscillatory activity and phase locking can result in less reliable estimates of phase, which could decrease the mutual information estimates.

      Looking at the SNR as a ratio of power in the beta band to all other bands, there is no significant drop in SNR between conditions (SNRIN = 4.074+-984, SNROUT = 4.333+-0.834 OUT, p=0.341, Wilcoxon signed-rank). Therefore, we do not think that the change in phase coding is merely a result of less reliable phase estimates.

      The authors propose that coherent oscillations could be the mechanism through which the prefrontal cortex influences beta activity in V4. I assume they mean coherent oscillations between the prefrontal cortex and V4. Given that they do have simultaneous recordings from the two areas they could test this hypothesis on their own data, however, they do not provide any results on that.

      This paper only includes inactivation data. We are working on analyzing the simultaneous recording data for a future publication.

      The authors make a strong point about the relevance of changes in the oscillation frequency and how this may result in an increase in firing rate although it could also be the reverse - an increase in firing rate leading to an increase in the frequency peak. It is not clear at all how these changes in frequency could come about. A more nuanced discussion based on both experimental and modeling data is necessary to appreciate the source and role (if any) of this observation.

      As the reviewer notes, it is difficult to determine whether the frequency changes drive the rate changes, vice versa, or whether both are generated in parallel by a common source. We have adjusted our language to reflect this (lines 291-293). Future modeling work may be able to shed more light on the causal relationships between various neural signatures.

      Reviewer #3 (Public review):

      Summary:

      In this report, the authors test the necessity of prefrontal cortex (specifically, FEF) activity in driving changes in oscillatory power, spike rate, and spike timing of extrastriate visual cortex neurons during a visual-spatial working memory (WM) task. The authors recorded LFP and spikes in V4 while macaques remembered a single spatial location over a delay period during which task-irrelevant background gratings were displayed on the screen with varying orientation and contrast. V4 oscillations (in the beta range) scaled with WM maintenance, and the information encoded by spike timing relative to beta band LFP about the task-irrelevant background orientation depended on remembered location. They also compared recorded signals in V4 with and without muscimol inactivation of FEF, demonstrating the importance of FEF input for WM-induced changes in oscillatory amplitude, phase coding, and information encoded about background orientations. Finally, they built a network model that can account for some of these results. Together, these results show that FEF provides meaningful input to the visual cortex that is used to alter neural activity and that these signals can impact information coding of task-irrelevant information during a WM delay.

      Strengths:

      (1) Elegant and robust experiment that allows for clear tests for the necessity of FEF activity in WM-induced changes in V4 activity.

      (2) Comprehensive and broad analyses of interactions between LFP and spike timing provide compelling evidence for FEF-modulated phase coding of task-irrelevant stimuli at remembered location.

      (3) Convincing modeling efforts.

      Weaknesses:

      (1) 0% contrast background data (standard memory-guided saccade task) are not reported in the manuscript. While these data cannot be used to consider information content of spike rate/time about task-irrelevant background stimuli, this condition is still informative as a 'baseline' (and a more typical example of a WM task).

      We have added a new supplementary figure to show the effect of WM on V4 LFP power and SPL in 0% contrast trials (Fig. S6). These results (increases in beta LFP power and SPL when remembering the V4 RF location) match our previous report for the effect of spatial WM on LFP power and SPL within extrastriate area MT (Bahmani et al. 2018).

      (2) Throughout the manuscript, the primary measurements of neural coding pertain to task-irrelevant stimuli (the orientation/contrast of the background, which is unrelated to the animal's task to remember a spatial location). The remembered location impacts the coding of these stimulus variables, but it's unclear how this relates to WM representations themselves.

      Indeed, here we have focused on how maintaining spatial WM impacts visual processing of incoming sensory information, rather than on how the spatial WM signal itself is represented and maintained. Behaviorally, this impact on visual signals could be related to the effects of the content of WM on perception and reaction times (e.g., Soto et al. 2008, Awh et al. 1998, Teng et al. 2019), but no such link to behavior is shown in our data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      As mentioned above, the two points I raised in the public review merit a bit of development in the Discussion. In addition, the authors should revise some of their conclusions.

      For instance (L217):

      "The finding that WM mainly modulates phase coded information within extrastriate areas fundamentally shifts our understanding of how the top-down influence of prefrontal cortex shapes the neural representation, suggesting that inducing oscillations is the main way WM recruits sensory areas."

      In my opinion, this one is over-the-top on various counts.

      Here is another exaggerated instance (L298):

      "...leading us to conclude that representations based on the average firing rate of neurons are not the primary way that top-down signals enhance sensory processing."

      Again, as noted above, the problem is that one could make the case that the top-down signals are, in fact, highly effective, since they are completely quashing any distracter-related modulation in firing rate across RFs. There is only so much that one can conclude from responses to stimuli that are task-irrelevant, uniform across space, and constant over the course of a trial.

      I think even the title goes too far. What the work shows, by all accounts, is that the sustained activity in FEF has a definitive impact on V4 *even* with respect to a sustained, irrelevant background stimulus. The result is very robust in this sense. However, this is quite different from saying that the *primary* means of functional control for FEF is via phase coding. Establishing that would require ruling out other forms of control (i.e., rate coding) in all or a wide range of experimental conditions. That is far from the restricted set of conditions tested here and is also at variance with many other experiments demonstrating effects of attention or even FEF microstimulation on V4 firing activity.

      To reiterate, in my opinion, the work is carefully executed and the data are interesting and largely unambiguous. I simply take issue with what can be reliably concluded, and how the results fit with the rest of the literature. Revisions along these lines would improve the readability of the paper considerably.

      We have edited the title (removing the word ‘primarily’) and key sentences throughout to tone down the conclusions, generally to state that the importance of a phase code in WM modulations is *possible* given the observed results, rather than certain (see abstract lines 26-27, introduction lines 59-62, conclusion lines 310-311).

      Reviewer #3 (Recommendations for the authors):

      (1) My primary comment that came up multiple times as I read the manuscript (and which is summarized above) is that I wasn't ever sure why the authors are focused on analyzing neural coding of task-irrelevant sensory information during a WM task as a function of WM contents (remembered location). Most studies of neural codes supporting WM often focus on coding the remembered information - not other information. Conceptually, it seems that the brain would want to suppress - or at least not enhance - representations of task-irrelevant information when performing a demanding task, especially when there is no search requirement, and when there is no feature correspondence between the remembered and viewed stimuli. (i.e., the interaction between WM and visual input is more obvious for visual search for a remembered target). Why, in theory, would a visual region need to improve its coding of non-remembered information as a function of WM? This isn't meant to detract from the results, which are indeed very interesting and I think quite informative. The authors are correct that this is certainly relevant for sensory recruitment models of WM - there's clear evidence for a role of feedback from PFC to extrastriate cortex - but what role, specifically, each region plays in this task is critical to describe clearly, especially given the task-irrelevance of the input. Put another way: what if the animal was remembering an oriented grating? In that case, MI between spike-based measures and orientation would be directly relevant to questions of neural WM representations, as the remembered feature is itself being modeled. But here, the focus seems to be on incidental coding.

      Indeed, here we have focused on how maintaining spatial WM impacts visual processing of incoming sensory information, rather than on how the spatial WM signal itself is represented and maintained. Behaviorally, this impact on visual signals could be related to the effects of the content of WM on perception and reaction times (e.g., Soto et al. 2008, Awh et al. 1998, Teng et al. 2019), but no such link to behavior is shown in our data.

      Whether similar phase coding is also used to represent the content of object WM (for example, if the animal was remembering an oriented grating), or whether phase coding is only observed for WM’s modulation of the representation of incoming sensory signals, is an important question to be addressed in future work.

      (2) Related to the above, the phrasing of the second sentence of the Discussion (lines 291-292) is ambiguous - do the authors mean that the FEF sends signals that carry WM content to V4, or that FEF sends projections to V4, and V4 has the WM content? As presently phrased, either of these are reasonable interpretations, yet they're directly opposing one another (the next sentence clarifies, but I imagine the authors want to minimize any confusion).

      We have edited this sentence to read, “Within prefrontal areas, FEF sends direct projections to extrastriate visual areas, and activity in these projections reflects the content of WM.”

      (3) I'm curious about how the authors consider the spatial WM task here different from a cued spatial attention task. Indeed, both require sustained use of a location for further task performance. The section of the Discussion addressing similar results with attention (lines 307-311) presently just summarizes the similarities of results but doesn't offer a theoretical perspective for how/why these different types of tasks would be expected to show similar neural mechanisms.

      We have added discussion regarding the relationship of these results to previous findings during attention in the discussion section (lines 315-333).

      (4) As far as I can tell, there is no consideration of behavioral performance on the memory-guided saccade task (RT, precision) across the different stimulus background conditions. This should be reported for completeness, and to determine whether there is an impact of the (likely) task-irrelevant background on task performance. This analysis should also be reported for Figure 3's results characterizing how FEF inactivation disrupts behavior (if background conditions were varied, see point 7 below).

      We have added the effect of inactivation on behavioral RT and % correct across the different stimulus background conditions (Fig. S8). Background contrast and orientation did not impact either RT or % correct.

      (5) Results from Figure 2 (especially Figures 2A-B) concerning phase-locked spiking in V4 should be shown for 0%-contrast trials as well, as these trials better align with 'typical' WM tasks.

      We have added a new supplementary figure to show the effect of WM on V4 LFP power and SPL in 0% contrast trials (Fig. S6). These results (increases in beta LFP power and SPL) match our previous report for the effect of spatial WM on LFP power and SPL within extrastriate area MT (Bahmani et al. 2018).

      (6) The magnitude of SPL difference in aggregate (Figure 2B) is much, much smaller than that of the example site shown (Figure 2A), such that Figure 2A's neuron doesn't appear to be visible on Figure 2B's scatterplot. Perhaps a more representative sample could be shown? Or, the full range of x/y axes in Figure 2B could be plotted to illustrate the full distribution.

      We have updated Fig. 2A with a more representative sample neuron.

      (7) I'm a bit confused about the FEF inactivation experiments. In the Methods (lines 512-513), the authors mention there was no background stimulus presented during the inactivation experiment, and instead, a typical 8-location MGS task was employed. However, in the results on pg 8 (Lines 201-214), and Figure 3G, the authors quantify a phase code MI. The previous phase code MI analysis was looking at MI between each spike's phase and the background stimulus - but if there's no background, what's used to compute phase code MI? Perhaps what they meant to write was that, in addition to the primary task with a manipulation of background properties, an 8-location MGS task was additionally employed.

      The reviewer is correct that both tasks were used after inactivation (the 8-location task to assess the spread of the behavioral effect of inactivation, and the MGS-background task for measuring MI). We have edited the methods text to clarify.

      (8) How is % Correct defined for the MGS task? (what is the error threshold? Especially for the results described in lines 192-193).

      The % correct is defined as correct completed trials divided by the total number of trials; the target window was a circle with radius of 2 or 4 dva (depending on cue eccentricity). These details have been added to the Methods.

      (9) The paragraph from lines 183-200 describes a number of behavioral results concerning "scatter" and "RT" - the RT shown seems extremely high, and perhaps is normalized. Details of this normalization should be included in the Methods. The "scatter" is listed as dva, but it's not clear how scatter is quantified (std dev of endpoint distribution? Mean absolute error), nor how target eccentricity is incorporated (as scatter is likely higher for greater target eccentricity).

      We have renamed ‘scatter’ to ‘saccade error’ in the text to match the figure, and now provide details in the Methods section. Both RT and saccade error are normalized for each session, details are now provided in the Methods. Since error was normalized for each session before performing population statistics, no other adjustment for eccentricity was made.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      (1) Line numbers are missing.

      Added

      (2) VR classroom. Was this a completely custom design based on Unity, or was this developed on top of some pre-existing code? Many aspects of the VR classroom scenario are only introduced (e.g., how was the lip-speech synchronisation done exactly?). Additional detail is required. Also, is or will the experiment code be shared publicly with appropriate documentation? It would also be useful to share brief example video-clips.

      We have added details about the VR classroom programming to the methods section (p. 6-7), and we have now included a video-example as supplementary material.

      “Development and programming of the VR classroom were done primarily in-house, using assets (avatars and environment) were sourced from pre-existing databases. The classroom environment was adapted from assets provided by Tirgames on TurboSquid (https://www.turbosquid.com/Search/Artists/Tirgames) and modified to meet the experimental needs. The avatars and their basic animations were sourced from the Mixamo library, which at the time of development supported legacy avatars with facial blendshapes (this functionality is no longer available in current versions of Mixamo). A brief video example of the VR classroom is available at: https://osf.io/rf6t8.

      “To achieve realistic lip-speech synchronization, the teacher’s lip movements were controlled by the temporal envelope of the speech, adjusting both timing and mouth size dynamically. His body motions were animated using natural talking gestures.”

      While we do intent to make the dataset publicly available for other researchers, at this point we are not making the code for the VR classroom public. However, we are happy to share it on an individual-basis with other researchers who might find it useful for their own research in the future.

      (3) "normalized to the same loudness level using the software Audacity". Please specify the Audacity function and parameters.

      We have added these details (p.7)

      “All sound-events were normalized to the same loudness level using the Normalize function in the audio-editing software Audacity (theaudacityteam.org, ver 3.4), with the peak amplitude parameter set to -5 dB, and trimmed to a duration of 300 milliseconds.“

      (4) Did the authors check if the participants were already familiar with some of the content in the mini-lectures?

      This is a good point. Since the mini-lectures spanned many different topics, we did not pre-screen participants for familiarity with the topics, and it is possible that some of the participants had some pre-existing knowledge.

      In hindsight, it would have been good to have added some reflective questions regarding participants prior knowledge as well as other questions such as level of interest in the topic and/or how well they understood the content. These are elements that we hope to include in future versions of the VR classroom.

      (5) "Independent Component Analysis (ICA) was then used to further remove components associated with horizontal or vertical eye movements and heartbeats". Please specify how this selection was carried out.

      Selection of ICA components was done manually based on visual inspection of their time-course patterns and topographical distributions, to identify components characteristic of blinks, horizontal eye-movements and heartbeats). Examples of these distinct components are provided in Author response image 1 below. These is now specified in the methods section.

      Author response image 1.

      (6) "EEG data was further bandpass filtered between 0.8 and 20 Hz". If I understand correctly, the data was filtered a second time. If that's the case, please do not do that, as that will introduce additional and unnecessary filtering artifacts. Instead, the authors should replace the original filter with this one (so, filtering the data only once). Please see de Cheveigne and Nelkn, Neuron, 2019 for an explanation. Also, please provide an explanation of the rationale for further restricting the cut-off bands in the methods section. Finally, further details on the filters should be included (filter type and order, for example).

      Yes, the data was indeed filtered twice. The first filter is done as part of the preprocessing procedure, in order to remove extremely high- and low- frequency noise but retain most activity within the range of “neural” activity. This broad range is mostly important for the ICA procedure, so as to adequately separate between ocular and neural contribution to the recorded signal.

      However, since both the speech tracking responses and ERPs are typically less broadband and are comprised mostly of lower frequencies (e.g., those that make up the speech-envelope), a second narrower filter was applied to improve TRF model-fit and make ERPs more interpretable.

      In both cases we used a fourth order zero-phase Butterworth IIR filter with 1-seconds of padding, as implemented in the Fieldtrip toolbox. We have added these details to the manuscript.

      (7) "(~ 5 minutes of data in total), which is insufficient for deriving reliable TRFs". That is a bit pessimistic and vague. What does "reliable" mean? I would tend to agree when talking about individual subject TRFs, which 5 min per participant can be enough at the group level. Also, this depends on the specific speech material. If the features are univariate or multivariate. Etc. Please narrow down and clarify this statement.

      We determined that the data in the Quiet condition (~5 min) was insufficient for performing reliable TRF analysis, by assessing whether its predictive-power was significantly better than chance. As shown in Author response image 2 below, the predictive power achieved using this data was not higher than values obtained in permuted data (p = 0.43). Therefore, we did not feel that it was appropriate to include TRF analysis of the Quiet condition in this manuscript. We have now clarified this in the manuscript (p. 10)

      Author response image 2.

      (8) "Based on previous research in by our group (Kaufman & Zion Golumbic 2023), we chose to use a constant regularization ridge parameter (λ= 100) for all participants and conditions". This is an insufficient explanation. I understand that there is a previous paper involved. However, such an unconventional choice that goes against the original definition and typical use of these methods should be clearly reported in this manuscript.

      We apologize for not clarifying this point sufficiently, and have added an explanation of this methodological choice (p.11):

      “The mTRF toolbox uses a ridge-regression approach for L2 regularization of the model to ensure better generalization to new data. We tested a range of ridge parameter values (λ's) and used a leave-one-out cross-validation procedure to assess the model’s predictive power, whereby in each iteration, all but one trials are used to train the model, and it is then applied to the left-out trial. The predictive power of the model (for each λ) is estimated as the Pearson’s correlation between the predicted neural responses and the actual neural responses, separately for each electrode, averages across all iterations. We report results of the model with the λ the yielded the highest predictive power at the group-level (rather than selecting a different λ for each participant which can lead to incomparable TRF models across participants; see discussion in Kaufman & Zion Golumbic 2023).”

      Assuming that the explanation will be sufficiently convincing, which is not a trivial case to make, the next issue that I will bring up is that the lambda value depends on the magnitude of input and output vectors. While the input features are normalised, I don't see that described for the EEG signals. So I assume they are not normalized. In that case, the lambda would have at least to be adapted between subjects to account for their different magnitude.

      We apologize for omitting this detail – yes, the EEG signals were normalized prior to conducting the TRF analysis. We have updated the methods section to explicitly state this pre-processing step (p.10).

      Another clarification, is that value (i.e., 100) would not be comparable either across subjects or across studies. But maybe the authors have a simple explanation for that choice? (note that this point is very important as this could lead others to use TRF methods in an inappropriate way - but I understand that the authors might have specific reasons to do so here). Note that, if the issue is finding a reliable lambda per subject, a more reasonable choice would be to use a fixed lambda selected on a generic (i.e., group-level) model. However selecting an arbitrary lambda could be problematic (e.g., would the results replicate with another lambda; and similarly, what if a different EEG system was used, with different overall magnitude, hence the different impact of the regularisation).

      We fully agree that selecting an arbitrary lambda is problematic (esp across studies). As clarified above, the group-level lambda chosen here for the encoding more was data-driven, optimized based on group-level predictive power.

      (9) "L2 regularization of the model, to reduce its complexity". Could the authors explain what "reduce its complexity" refers to?

      Our intension here was to state that the L2 regularization constrains the model’s weights so that it can better generalize between to left-out data. However, for clarity we have now removed this statement.

      (10) The same lambda value was used for the decoding model. From personal experience, that is very unlikely to be the optimal selection. Decoding models typically require a different (usually larger) lambda than forward models, which can be due to different reasons (different SNR of "input" of the model and, crucially, very different dimensionality).

      We agree with the reviewer that treatment of regularization parameters might not be identical for encoding and decoding models. Our initial search of lambda parameters was limited to λ= 0.01 - 100, with λ= 100 showing the best reconstruction correlations. However, following the reviewer’s suggestion we have now broadened the range and found that, in fact reconstruction correlations are further improved and the best lambda is λ= 1000 (see Author response image 3 below, left panel). Importantly, the difference in decoding reconstruction correlations between the groups is maintained regardless of the choice of lambda (although the effect-size varies; see Author response image 3, right panel). We have now updated the text to reflect results of the model with λ= 1000.

      Author response image 3.

      (11) Skin conductance analysis. Additional details are required. For example, how was the linear interpolation done exactly? The raw data was downsampled, sure. But was an anti-aliasing filter applied? What filter exactly? What implementation for the CDA was run exactly?

      We have added the following details to the methods section (p. 14):

      “The Skin Conductance (SC) signal was analyzed using the Ledalab MATLAB toolbox (version 3.4.9; Benedek and Kaernbach, 2010; http://www.ledalab.de/) and custom-written scripts. The raw data was downsampled to 16Hz using FieldTrip's ft_resampledata function, which applies a built-in anti-aliasing low-pass filter to prevent aliasing artifacts. Data were inspected manually for any noticeable artifacts (large ‘jumps’), and if present were corrected using linear interpolation in Ledalab. A continuous decomposition analysis (CDA) was employed to separate the tonic and phasic SC responses for each participant. The CDA was conducted using the 'sdeco' mode (signal decomposition), which iteratively optimizes the separation of tonic and phasic components using the default regularization settings.”

      (12) "N1- and P2 peaks of the speech tracking response". Have the authors considered using the N1-P2 complex rather than the two peaks separately? Just a thought.

      This is an interesting suggestion, and we know that this has been used sometimes in more traditional ERP literature. In this case, since neither peak was modulated across groups, we did not think this would yield different results. However, it is a good point to keep in mind for future work.

      (13) Figure 4B. The ticks are missing. From what I can see (but it's hard without the ticks), the N1 seems later than in other speech-EEG tracking experiments (where is closer to ~80ms). Could the authors comment on that? Or maybe this looks similar to some of the authors' previous work?

      We apologize for this and have added ticks to the figure.

      In terms of time-course, a N1 peak at around 100ms is compatible with many of our previous studies, as well as those from other groups.

      (14) Figure 4C. Strange thin vertical grey bar to remove.

      Fixed.

      (15) Figure 4B: What about the topographies for the TRF weights? Could the authors show that for the main components?

      Yes. The topographies of the main TRF components are similar to those of the predictive power and are compatible with auditory responses. We have added them to Figure 4B.

      (16) Figure 4B: I just noticed that this is a grand average TRF. That is ok (but not ideal) only because the referencing is to the mastoids. The more appropriate way of doing this is to look at the GFP, instead, which estimates the presence of dipoles. And then look at topographies of the components. Averaging across channels makes the plotted TRF weaker and noisier. I suggest adding the GFP to the plot. Also, the colour scale in Figure 4A is deceiving, as blue is usually used for +/- in plots of the weights. While that is a heatmap, where using a single colour or even yellow to red would be less deceiving at first look. Only cosmetics, indeed. The result is interesting nonetheless!

      We apologize for this, and agree with the reviewer that it is better not to average across EEG channels. In the revised Figure, we now show the TRFs based on the average of electrodes FC1, FC2, and FCz, which exhibited the strongest activity for the two main components.

      Following the previous comment, we have also included the topographical representation of the TRF main components, to give readers a whole-head perspective of the TRF.

      We have also fixed the color-scales.

      We are glad that the reviewer finds this result interesting!

      (17) Figure 4C. This looks like a missed opportunity. That metric shows a significant difference overall. But is that underpinned but a generally lower envelope reconstruction correlation, or by a larger deviation in those correlations (so, that metric is as for the control in some moments, but it drops more frequently due to distractibility)?

      We understand the reviewer’s point here, and ideally would like to be able to address this in a more fine-grained analysis, for example on a trial-by-trial basis. However, the design of the current experiment was not optimized for this, in terms of (for example) number of trials, the distribution of sound-events and behavioral outcomes. We hope to be able to address this issue in our future research.

      (18) I am not a fan of the term "accuracy" for indicating envelope reconstruction correlations. Accuracy is a term typically associated with classification. Regression models are typically measured through errors, loss, and sometimes correlations. 'Accuracy' is inaccurate (no joke intended).

      We accept this comment and now used the term “reconstruction correlation”.

      (19) Discussion. "The most robust finding in". I suggest using more precise terminology. For example, "largest effect-size".

      We agree and have changed the terminology (p. 31).

      (20) "individuals who exhibited higher alpha-power [...]". I probably missed this. But could the authors clarify this result? From what I can see, alpha did not show an effect on the group. Is this referring to Table 2? Could the authors elaborate on that? How does that reconcile with the non-significant effect of the group? In that same sentence, do you mean "and were more likely"? If that's the case, and they were more likely to report attentional difficulties, how is it that there is no group-effect when studying alpha?

      Yes, this sentence refers to the linear regression models described in Figure 10 and in Table 2. As the reviewer correctly points out, this is one place where there is a discrepancy between the results of the between-group analysis (ADHD diagnosis yes/no) and the regression analysis, which treats ADHD symptoms as a continuum, across both groups. The same is true for the gaze-shift data, which also did not show a significance between-group effect but was identified in the regression analysis as contributing to explaining the variance in ADHD symptoms.

      We discuss this point on pages 30-31, noting that “although the two groups are clearly separable from each other, they are far from uniform in the severity of symptoms experienced”, which motivated the inclusion of both analyses in this paper.

      At the bottom of p. 31 we specifically address the similarities and differences between the between-group and regression-based results. In our opinion, this pattern emphasizes that while neither approach is ‘conclusive’, looking at the data through both lenses contributes to an overall better understanding of the contributing factors, as well as highlighting that “no single neurophysiological measure alone is sufficient for explaining differences between the individuals – whether through the lens of clinical diagnosis or through report of symptoms”.

      (21) "why in the latter case the neural speech-decoding accuracy did not contribute to explaining ASRS scores [...]". My previous point 1 on separating overall envelope decoding from its deviation could help there. The envelope decoding correlation might go up and down due to SNR, while you might be more interested in the dynamics over time (i.e., looking at the reconstructions over time).

      Again, we appreciate this comment, but believe that this additional analysis is outside the scope of what would be reliably-feasible with the current dataset. However, since the data will be made publicly available, perhaps other researchers will have better ideas as to how to do this.

      (22) Data and code sharing should be discussed. Also, specific links/names and version numbers should be included for the various libraries used.

      We are currently working on organizing the data to make it publicly available on the Open Science Project.

      We have updated links and version numbers for the various toolboxes/software used, throughout the manuscript.

      Reviewer #2:

      (1) While it is highly appreciated to study selective attention in a naturalistic context, the readers would expect to see whether there are any potential similarities or differences in the cognitive and neural mechanisms between contexts. Whether the classic findings about selective attention would be challenged, rebutted, or confirmed? Whether we should expect any novel findings in such a novel context? Moreover, there are some studies on selective attention in the naturalistic context though not in the classroom, it would be better to formulate specific hypotheses based on previous findings both in the strictly controlled and naturalistic contexts.

      Yes, we fully agree that comparing results across different contexts would be extremely beneficial and important.

      The current paper serves as an important proof-first-concept demonstrating the plausibility and scientific potential of using combined EEG-VR-eyetracking to study neurophysiological aspects of attention and distractibility, but is also the basis for formulating specific hypothesis that will be tested in follow-up studies.

      If fact, a follow up study is already ongoing in our lab, where we are looking into this point, by testing users in different VR scenarios (e.g., classroom, café, office etc.), and assessing whether similar neurophysiological patterns are observed across contexts and to what degree they are replicable within and across individuals. We hope to share these data with the community in the near future.

      (2) Previous studies suggest handedness and hemispheric dominance might impact the processing of information in each hemisphere. Whether these issues have been taken into consideration and appropriately addressed?

      This is an interesting point. In this study we did not specifically control for handedness/hemispheric dominance, since most of the neurophysiological measured used here are sensory/auditory in their nature, and therefore potentially invariant to handedness. Moreover, the EEG signal is typically not very sensitive to hemispheric dominance, at least for the measures used here. However, this might be something to consider more explicitly in future studies. Nonetheless, we have added handedness information to the Methods section (p. 5): “46 right-handed, 3 left-handed”

      (3) It would be interesting to know how students felt about the Virtual Classroom context, whether it is indeed close to the real classroom or to some extent different.

      Yes, we agree. Obviously, the VR classroom differs in many ways from a real classroom, in terms of the perceptual experience, social aspects and interactive possibilities. We did ask participants about their VR experience after the experiment, and most reported feeling highly immersed in the VR environment and engaged in the task, with a strong sense of presence in the virtual-classroom.

      We note that, in parallel to the VR studies in our lab, we are also conducting experiments in real classrooms, and we hope that the cross-study comparison will be able to shed more light on these similarities/differences.

      (4) One intriguing issue is whether neural tracking of the teacher's speech can index students' attention, as the tracking of speech may be relevant to various factors such as sound processing without semantic access.

      Another excellent point. While separating the ‘acoustic’ and ‘semantic’ contributions to the speech tracking response is non-trivial, we are currently working on methodological approaches to do this (again, in future studies) following, for example, the hierarchical TRF approach used by Brodbeck et al. and others.

      (5) There are many results associated with various metrics, and many results did not show a significant difference between the ADHD group and the control group. It is difficult to find the crucial information that supports the conclusion. I suggest the authors reorganize the results section and report the significant results first, and to which comparison(s) the readers should pay attention.

      We apologize if the organization of the results section was difficult to follow. This is indeed a challenge when collecting so many different neurophysiological metrics.

      To facilitate this, we have now added a paragraph at the beginning of the result section, clarifying its structure (p.16):

      The current dataset is extremely rich, consisting of many different behavioral, neural and physiological responses. In reporting these results, we have separated between metrics that are associated with paying attention to the teacher (behavioral performance, neural tracking of the teacher’s speech, and looking at the teacher), those capturing responses to the irrelevant sound-events (ERPs and event-related changes in SC and gaze); as well as more global neurophysiological measures that may be associated with the listeners’ overall ‘state’ of attention or arousal (alpha- and beta-power and tonic SC).

      Moreover, within each section we have ordered the analysis such that the ones with significant effects are first. We hope that this contributes to the clarity of the results section.

      (6) The difference between artificial and non-verbal humans should be introduced earlier in the introduction and let the readers know what should be expected and why.

      We have added this to the Introduction (p. 4)

      (7) It would be better to discuss the results against a theoretical background rather than majorly focusing on technical aspects.

      We appreciate this comment. In our opinion, the discussion does contain a substantial theoretical component, both regarding theories of attention and attention-deficits, and also regarding their potential neural correlates. However, we agree that there is always room for more in depth discussion.

      Reviewer #3:

      Major:

      (1) While the study introduced a well-designed experiment with comprehensive physiological measures and thorough analyses, the key insights derived from the experiment are unclear. For example, does the high ecological validity provide a more sensitive biomarker or a new physiological measure of attention deficit compared to previous studies? Or does the study shed light on new mechanisms of attention deficit, such as the simultaneous presence of inattention and distraction (as mentioned in the Conclusion)? The authors should clearly articulate their contributions.

      Thanks for this comment.

      We would not say that this paper is able to provide a ‘more sensitive biomarker’ or a ‘new physiological measure of attention’ – in order to make those type of grand statements we would need to have much more converging evidence from multiple studies and using both replication and generalization approaches.

      Rather, from our perspective, the key contribution of this work is in broadening the scope of research regarding the neurophysiological mechanisms involved in attention and distraction.

      Specifically, this work:

      (1) Offers a significant methodological advancement of the field – demonstrating the plausibility and scientific potential of using combined EEG-VR-eyetracking to study neurophysiological aspects of attention and distractibility in contexts that ‘mimic’ real-life situations (rather than highly controlled computerized tasks).

      (2) Provides a solid basis formulating specific mechanistic hypothesis regarding the neurophysiological metrics associated with attention and distraction, the interplay between them, and their potential relation to ADHD-symptoms. Rather than being an end-point, we see these results as a start-point for future studies that emphasize ecological validity and generalizability across contexts, that will hopefully lead to improved mechanisms understanding and potential biomarkers of real-life attentional capabilities (see also response to Rev #2 comment #1 above).

      (3) Highlights differences and similarities between the current results and those obtained in traditional ‘highly controlled’ studies of attention (e.g., in the way ERPs to sound-events differ between ADHD and controls; variability in gaze and alpha-power; and more broadly about whether ADHD symptoms do or don’t map onto specific neurophysiological metrics). Again, we do not claim to give a definitive ’answer’ to these issues, but rather to provide a new type of data that can expands the conversation and address the ecological validity gap in attention research.

      (2) Based on the multivariate analyses, ASRS scores correlate better with the physiological measures rather than the binary deficit category. It may be worthwhile to report the correlation between physiological measures and ASRS scores for the univariate analyses. Additionally, the correlation between physiological measures and behavioral accuracy might also be interesting.

      Thanks for this. The beta-values reported for the regression analysis reflect the correlations between the different physiological measures and the ASRS scores (p. 30). From a statistical perspective, it is better to report these values rather than the univariate correlation-coefficients, since these represent the ‘unique’ relationship with each factor, after controlling for all the others.

      The univariate correlations between the physiological measures themselves, as well as with behavioral accuracy, are reported in Figure 10

      (3) For the TRF and decoding analysis, the authors used a constant regularization parameter per a previous study. However, the optimal regularization parameter is data-dependent and may differ between encoding and decoding analyses. Furthermore, the authors did not conduct TRF analysis for the quiet condition due to the limited ~5 minutes of data. However, such a data duration is generally sufficient to derive a stable TRF with significant predictive power (Mesik and Wojtczak, 2023).

      The reviewer raises two important points, also raised by Rev #1 (see above).

      Regarding the choice of regularization parameters, we have now clarified that although we used a common lambda value for all participants, it was selected in a data-driven manner, so as to achieve an optimal predictive power at the group-level.

      See revised methods section:

      “The mTRF toolbox uses a ridge-regression approach for L2 regularization of the model to ensure better generalization to new data. We tested a range of ridge parameter values (λ's) and used a leave-one-out cross-validation procedure to assess the model’s predictive power, whereby in each iteration, all but one trials are used to train the model, and it is then applied to the left-out trial. The predictive power of the model (for each λ) is estimated as the Pearson’s correlation between the predicted neural responses and the actual neural responses, separately for each electrode, averages across all iterations. We report results of the model with the λ the yielded the highest predictive power at the group-level (rather than selecting a different λ for each participant which can lead to incomparable TRF models across participants; see discussion in Kaufman & Zion Golumbic 2023).”

      Regarding whether data was sufficient in the Quiet condition for performing TRF analysis – we are aware of the important work by Mesik & Wojtczak, and had initially used this estimate when designing our study. However, when assessing the predictive-power of the TRF model trained on data from the Quiet condition, we found that it was not significantly better than chance (see Author response image 2, ‘real’ predictive power vs. permuted data). Therefore, we ultimately did not feel that it was appropriate to include TRF analysis of the Quiet condition in this manuscript. We have now clarified this in the manuscript (p. 10)

      (4) As shown in Figure 4, for ADHD participants, decoding accuracy appears to be lower than the predictive power of TRF. This result is surprising because more data (i.e., data from all electrodes) is used in the decoding analysis.

      This is an interesting point – however, in our experience it is not necessarily the case that decoding accuracy (i.e., reconstruction correlation with the stimulus) is higher than encoding predictive-power. While both metrics use Pearson’s’ correlations, they quantify the similarity between two different types of signals (the EEG and the speech-envelope). Although the decoding procedure does use data from all electrodes, many of them don’t actually contain meaningful information regarding the stimulus, and thus could just as well hinder the overall performance of the decoding.

      (5) Beyond the current analyses, the authors may consider analyzing inter-subject correlation, especially for the gaze signal analysis. Given that the area of interest during the lesson changes dynamically, the teacher might not always be the focal point. Therefore, the correlation of gaze locations between subjects might be better than the percentage of gaze duration on the teacher.

      Thanks for this suggestion. We have tried to look into this, however working with eye-gaze in a 3-D space is extremely complex and we are not able to calculate reliable correlations between participants.

      (6) Some preprocessing steps relied on visual and subjective inspection. For instance, " Visual inspection was performed to identify and remove gross artifacts (excluding eye movements) " (P9); " The raw data was downsampled to 16Hz and inspected for any noticeable artifacts " (P13). Please consider using objective processes or provide standards for subjective inspections.

      We are aware of the possible differences between objective methods of artifact rejection vs. use of manual visual inspection, however we still prefer the manual (subjective) approach. As noted, in this case only very large artifacts were removed, exceeding ~ 4 SD of the amplitude variability, so as to preserve as many full-length trials as possible.

      (7) Numerous significance testing methods were employed in the manuscript. While I appreciate the detailed information provided, describing these methods in a separate section within the Methods would be more general and clearer. Additionally, the authors may consider using a linear mixed-effects model, which is more widely adopted in current neuroscience studies and can account for random subject effects.

      Indeed, there are many statistical tests in the paper, given the diverse types of neurophysiological data collected here. We actually thought that describing the statistics per method rather than in a separate “general” section would be easier to follow, but we understand that readers might diverge in their preferences.

      Regarding the use of mixed-effect models – this is indeed a great approach. However, it requires deriving reliable metrics on a per-trial basis, and while this might be plausible for some of our metrics, the EEG and GSR metrics are less reliable at this level. This is why we ultimately chose to aggregate across trials and use a regular regression model rather than mixed-effects.

      (8) Some participant information is missing, such as their academic majors. Given that only two lesson topics were used, the participants' majors may be a relevant factor.

      To clarify – the mini-lectures presented here actually covered a large variety of topics, broadly falling within the domains of history, science and social-science and technology. Regarding participants’ academic majors, these were relatively diverse, as can be seen in Author response table 1 and Author response image 4.

      Author response table 1.

      Author response image 4.

      (9) Did the multiple regression model include cross-validation? Please provide details regarding this.

      Yes, we used a leave-one-out cross validation procedure. We have now clarified this in the methods section which now reads:

      “The mTRF toolbox uses a ridge-regression approach for L2 regularization of the model to ensure better generalization to new data. We tested a range of ridge parameter values (λ's) and used a leave-one-out cross-validation procedure to assess the model’s predictive power, whereby in each iteration, all but one trials are used to train the model, and it is then applied to the left-out trial. The predictive power of the model (for each λ) is estimated as the Pearson’s correlation between the predicted neural responses and the actual neural responses, separately for each electrode, averages across all iterations. We report results of the model with the λ the yielded the highest predictive power at the group-level (rather than selecting a different λ for each participant which can lead to incomparable TRF models across participants; see discussion in Kaufman & Zion Golumbic 2023).”

      Minor:

      (10) Typographical errors: P5, "forty-nine 49 participants"; P21, "$ref"; P26, "Table X"; P4, please provide the full name for "SC" when first mentioned.

      Thanks! corrected

    1. It’s Friday at 7:30 pm and Amy is really tired after work. Her wife isn’t home yet—she had to stay late—and so while she’d normally eat out, she’s not eager to go out alone, nor is she eager to make a big meal just for herself. She throws a frozen dinner in the microwave and heads to the living room to sit down on her couch to rest her legs. Once it’s done, she takes it out, eats it far too fast, and spends the rest of the night regretting her poor diet and busy day.

      Although not disagreeing with the use of personas to understand user problems, is it not concerning that through their creation we may be including our own personal biases and backgrounds? I found it hard to truly understand and empathize with the scenario, most likely because my own scenario and lifestyle is very different to Ko's. My positionality as a young, healthy college aged person would impact my ability to define issues with this user persona. I think that the designer's background and situation should be heavily considered before the creation of a user persona or scenario in order to minimize the implications of bias.

    1. Now, that doesn’t mean that a situation is undesirable to everyone. For one person a situation might be undesirable, but to another, it might be greatly desirable.

      This is an important statement that stands out to me. It connects to what I learned in INFO380 where we discussed how when companies are making designs and adding features, they have to consider which ones are the most beneficial and desirable. I think that this shows the importance of designers doing research and learning more about the stakeholders involved to help them make these decisions. If research isn't done properly, the company may waste a lot of resources and time. I also think it is important to consider underrepresented demographics that may be users of the product and see how they can possibly be considered in these decision-making processes. This makes me appreciate designers even more as this process is not easy and can be difficult having to make decisions that don't please some users but this might be something they learn as they develop their skills since you can't please everyone.

    1. Bots present a similar disconnect between intentions and actions. Bot programs are written by one or more people, potentially all with different intentions, and they are run by others people, or sometimes scheduled by people to be run by computers. This means we can analyze the ethics of the action of the bot, as well as the intentions of the various people involved, though those all might be disconnected.

      This part brings up a very interesting point about who is responsible for a bots actions. I think it is who ever used it, the creator might have different intentions for its use, and the bot may get used differently.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02465

      Corresponding author(s): Saravanan, Palani

      1. General Statements

      We would like to thank the Review Commons Team for handling our manuscript and the Reviewers for their constructive feedback and suggestions. In our revised manuscript, we have addressed and incorporated all the major suggestions of the reviewers, and we have also added new significant data on the role of Tropomyosin in regulation of endocytosis through its control over actin monomer pool maintenance and actin network homeostasis. We believe that with all these additions, our study has significantly gained in quality, strength of conclusions made, and scope for future work.

      2. Point-by-point description of the revisions

      Reviewer #1

      Evidence, reproducibility and clarity

      There are 2 Major issues -

      Having an -ala-ser- linker between the GFP and tropomyosin mimics acetylation. This is not the case, and more likely the this linker acts as a spacer that allows tropomyosin polymers to form on the actin, and without it there is steric hindrance. A similar result would be seen with a simple flexible uncharged linker. It has been shown in a number of labs that the GFP itself masks the effect of the charge on the amino terminal methionine. This is consistent with NMR, crystallographic and cryo structural studies. Biochemical studies should be presented to demonstrate that the impact of a linker for the conclusions stated to be made, which provide the basis of a major part of this study.

      Response: We would like to clarify that all mNG-Tpm constructs used in our study contain a 40 amino-acid (aa) flexible linker between the N-terminal mNG fluorescent protein and the Tpm protein as per our earlier published study (Hatano et al., 2022). During initial optimization, we have also experimented with linker length and the 40aa-linker length works optimally for clear visualization of Tpm onto actin cable structures in budding yeast, fission yeast (both S. pombe and S. japonicus), and mammalian cells (Hatano et al., 2022). These constructs have also been used since in other studies (Wirshing et al., 2023; Wirshing and Goode, 2024) and currently represents the best possible strategy to visualize Tpm isoforms in live cells. In our study, we characterized these proteins for functionality and found that both mNG-Tpm1 and mNG-Tpm2 were functional and can rescue the synthetic lethality observed in Dtpm1Dtpm2 cells. During our study, we observed that mNG-Tpm1 expression from a single-copy integration vector did not restore full length actin cables in Dtpm1 cells (Fig. 1B, 1C). We hypothesized that this could be a result of reduced binding affinity of the tagged tropomyosin due to lack of normal N-terminal acetylation which stabilizes the N-terminus. The 40aa linker is unstructured and may not be able to neutralize the charge on the N-terminal Methionine, thus, we tried to insert -Ala-Ser- dipeptide which has been routinely used in vitro biochemical studies to stabilize the N-terminal helix and impart a similar effect as the N-terminal acetylation (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) by restoring normal binding affinity of Tpm to F-actin (Monteiro et al., 1994; Greenfield et al., 1994). We observed that addition of the -Ala-Ser- dipeptide to mNG-Tpm fusion, indeed, restored full length actin cables when expressed in Dtpm1 cells, performing significantly better in our in vivo experiments (Fig. 1B, 1C). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may stabilize the N-terminus of Tpm and allow normal head-to-tail dimer formation (Greenfield et al., 1994; Monteiro et al., 1994; Frye et al., 2010). We have discussed this in our new Discussion section (Lines 350-372). Since, the addition of -AS- dipeptide was referred to as "acetyl-mimic (am)" in a previous study (Alioto et al., 2016), we continued to use the same nomenclature in our study. Now as per your suggestions and to be more accurate, we have renamed "mNG-amTpm" constructs as "mNG-ASTpm" throughout the study to not confuse or claim that -AS- addition mimics acetylation. In any case, we have not seen any other ill effect of -AS- dipeptide introduction in addition to our 40 amino acid linker suggesting that it can also be considered part of the linker. Although, we agree with the reviewer that biochemical characterization of the effect of linker would be important to determine, we strongly believe that it is currently outside the scope of this study and should be taken up for future work with these proteins. Our study has majorly aimed to understand the functionality and utility of these mNG-Tpm fusion proteins for cell biological experiments in vivo, which was not done earlier in any other model system.

      My major issue however is making the conclusions stated here, using an amino-terminal fluorescent protein tag that s likely to impact any type of isoform selection at the end of the actin polymer. Carboxyl terminal tagging may have a reduced effect, but modifying the ends of the tropomyosin, which are integral in stabilising end to end interactions with itself on the actin filament, never mind any section systems that may/maynot be present in the cell, is not appropriate.

      Response: We agree with the reviewer that N-terminal tagging of tropomyosin may have effects on its function, but these constructs represent the only fluorescently tagged functional tropomyosin constructs available currently while C-terminal fusions are either non-functional (we were unable to construct strains with endogenous Tpm1 gene fused C-terminally to GFP) or do not localize clearly to actin structures (See Figure R1 showing endogenous C-terminally tagged Tpm2-yeGFP that shows almost no localization to actin cables). To our knowledge, our study represents a first effort to understand the question of spatial sorting of Tpm isoforms, Tpm1 and Tpm2, in S. cerevisiae and any future developments with better visualization strategies for Tpm isoforms without compromising native N-terminal modifications and function will help improve our understanding of these proteins in vivo. We have also discussed these possibilities in our new Discussion section (Lines 391-396).

      Significance

      This paper explores the role of formin in determining the localisation of different tropomyosins to different actin polymers and cellular locations within budding yeast. Previous studies have indicated a role for the actin nucleating proteins in recruiting different forms of tropomyosin within fission yeast. In mammalian cells there is variation in the role of formins in affiecting tropomyosin localisation - variation between cell type. There is also evidence that other actin binding proteins, and tropomyosin abundance play roles in regulating the tropomyosin-actin association according to cell type. Biochemical studies have previously been undertaken using budding yeast and fission yeast that the core actin polymerisation domain of formins do not interact with tropomyosin directly. The significance of this study, given the above, and the concerns raised is not clear to this reviewer.

      Response: __Our study explores multiple facets of Tropomyosin (Tpm) biology. The lack of functional tagged Tpm has been a major bottleneck in understanding Tpm isoform diversity and function across eukaryotes. In our study, we characterize the first functional tagged Tpm proteins (Fig. 1, Fig. S1) and use them to answer long-standing questions about localization and spatial sorting of Tpm isoforms in the model organism S. cerevisiae (Fig. 2, Fig. 3, Fig. S2, Fig. S3). We also discover that the dual Tpm isoforms, Tpm1 and Tpm2, are functionally redundant for actin cable organization and function, while having gained divergent functions in Retrograde Actin Cable Flow (RACF) (Fig. 4, Fig. 5A-D, Fig. S4, Fig. S5, Fig. S6). We have now added new data on role of global Tpm levels controlling endocytosis via maintenance of normal linear-to-branched actin network homeostasis in S. cerevisiae (Fig. 5E-G)__. We respectfully differ with the reviewer on their assessment of our study and request the reviewer to read our revised manuscript which discusses the significance, limitations, and future perspectives of our study in detail.

      Reviewer #2

      Evidence, reproducibility and clarity

      This manuscript by Dhar, Bagyashree, Palani and colleagues examines the function of the two tropomyosins, Tpm1 and Tpm2, in the budding yeast S. cerevisiae. Previous work had shown that deletion of tpm1 and tpm2 causes synthetic lethality, indicating overlapping function, but also proposed that the two tropomyosins have distinct functions, based on the observation that strong overexpression of Tpm2 causes defects in bud placement and fails to rescue tpm1∆ phenotypes (Drees et al, JCB 1995). The manuscript first describes very functional mNeonGreen tagged version of Tpm1 and Tpm2, where an alanine-serine dipeptide is inserted before the first methionine to mimic acetylation. It then proposes that the Tpm1 and Tpm2 exhibit indistinguishable localization and that low level overexpression (?) of Tpm2 can replace Tpm1 for stabilization of actin cables and cell polarization, suggesting almost completely redundant functions. They also propose on specific function of Tpm2 in regulating retrograde actin cable flow.

      Overall, the data are very clean, well presented and quantified, but in several places are not fully convincing of the claims. Because the claims that Tpm1 and Tpm2 have largely overlapping function and localization are in contradiction to previous publication in S. cerevisiae and also different from data published in other organisms, it is important to consolidate them. There are fairly simple experiments that should be done to consolidate the claims of indistinguishable localization, and levels of expression, for which the authors have excellent reagents at their disposal.

      1. Functionality of the acetyl-mimic tagged tropomyosin constructs: The overall very good functionality of the tagged Tpm constructs is convincing, but the authors should be more accurate in their description, as their data show that they are not perfectly functional. For instance, the use of "completely functional" in the discussion is excessive. In the results, the statement that mNG-Tpm1 expression restores normal growth (page 3, line 69) is inaccurate. Fig S1C shows that tpm1∆ cells expressing mNG-Tpm1 grow more slowly than WT cells. (The next part of the same sentence, stating it only partially restores length of actin cables should cite only Fig S1E, not S1F.) Similarly, the growth curve in Fig S1C suggests that mNG-amTpm1, while better than mNG-Tpm1 does not fully restore the growth defect observed in tpm1∆ (in contrast to what is stated on p. 4 line 81). A more stringent test of functionality would be to probe whether mNG-amTpm1 can rescue the synthetic lethality of the tpm1∆ tpm2∆ double mutant, which would also allow to test the functionality of mNG-amTpm2.

      __Response: __We would like to thank the reviewer for his feedback and suggestions. Based on the suggestions, we have now more accurately described the growth rescue observed by expression of mNG-ASTpm1 in Dtpm1 cells in the revised text. We have also removed the use of "completely functional" to describe mNG-Tpm functionality and corrected any errors in Figure citations in the revised manuscript.

      As per reviewers' suggestion, we have now tested rescue of synthetic lethality of Dtpm1Dtpm2 cells by expression of all mNG-Tpm variants and we find that all of them are capable of restoring the viability of Dtpm1Dtpm2 cells when expressed under their native promoters via a high-copy plasmid (pRS425) (Fig. S1E) but only mNG-Tpm1 and mNG-ASTpm1 restored viability of Dtpm1Dtpm2 cells when expressed under their native promoters via an integration plasmid (pRS305) (Fig. S1F). These results clearly suggest that while both mNG-Tpm1 and mNG-Tpm2 constructs are functional, Tpm1 tolerates the presence of the N-terminal fluorescent tag better than Tpm2. These observations now enhance our understanding of the functionality of these mNG-Tpm fusion proteins and will be a useful resource for their usage and experimental design in future studies in vivo.

      It would also be nice to comment on whether the mNG-amTpm constructs really mimicking acetylation. Given the Ala-Ser peptide ahead of the starting Met is linked N-terminally to mNG, it is not immediately clear it will have the same effect as a free acetyl group decorating the N-terminal Met.

      Response: __We agree with the reviewer's observation and for the sake of clarity and accuracy, we have now renamed "mNG-amTpm" with "mNG-ASTpm". The use of -AS- dipeptide is very routine in studies with Tpm (Alioto et al., 2016; Palani et al., 2019; Christensen et al., 2017) and its addition restores normal binding affinities to Tpm proteins purified from E. coli (Monteiro et al., 1994). We agree with the reviewer that the -AS- dipeptide addition may not mimic N-terminal acetylation structurally but as per previous studies, it may help neutralize the impact of a freely protonated Met on the alpha-helical structure and stabilize the N-terminus helix of Tpm and allow normal head-to-tail dimer formation (Monteiro et al., 1994; Frye et al., 2010; Greenfield et al., 1994). Consistent with this, we also observe a highly significant improvement in actin cable length when expressing mNG-ASTpm as compared to mNG-Tpm in Dtpm1 cells, suggesting an improvement in function probably due to increased binding affinity (Fig. 1B, 1C). We have also discussed this in our answer to Question 1 of Reviewer 1 and the revised manuscript (Lines 350-372)__.

      __ Localization of Tpm1 and Tpm2:__Given the claimed full functionality of mNG-amTpm constructs and the conclusion from this section of the paper that relative local concentrations may be the major factor in determining tropomyosin localization to actin filament networks, I am concerned that the analysis of localization was done in strains expressing the mNG-amTpm construct in addition to the endogenous untagged genes. (This is not expressly stated in the manuscript, but it is my understanding from reading the strain list.) This means that there is a roughly two-fold overexpression of either tropomyosin, which may affect localization. A comparison of localization in strains where the tagged copy is the sole Tpm1 (respectively Tpm2) source would be much more conclusive. This is important as the results are making a claim in opposition to previous work and observation in other organisms.

      Response: __We thank the reviewer for this observation and their suggestions. We agree that relative concentrations of functional Tpm1 and Tpm2 in cells may influence the extent of their localizations. As per the reviewer's suggestion, we have now conducted our quantitative analysis in cells lacking endogenous Tpm1 and only expressing mNG-ASTpm1 from an integrated plasmid copy at the leu2 locus and the data is presented in new __Figure S3. We compared Tpm-bound cable length (Fig. S3A, S3B) __and Tpm-bound cable number (Fig. S3A, S3C) along with actin cable length (Fig. S3D, S3E) and actin cable number (Fig. S3D, S3F) in wildtype, Dbnr1, and Dbni1 cells. Our analysis revealed that mNG-ASTpm1 localized to actin cable structures in wildtype, Dbnr1, and Dbni1 cells and the decrease observed in Tpm-bound cable length and number upon loss of either Bnr1 or Bni1, was accompanied by a corresponding decrease in actin cable length and number upon loss of either Bnr1 or Bni1. Thus, this analysis reached the same conclusion as our earlier analysis (Fig. 2) that mNG-ASTpm1 does not show preference between Bnr1 and Bni1-made actin cables. mNG-ASTpm2 did not restore functionality, when expressed as single integrated copy, in Dtpm1Dtpm2 cells (new results in __Fig. S1E, S1F, S5A) thus, we could not conduct a similar analysis for mNG-ASTpm2. This suggests that use of mNG-ASTpm2 would be more meaningful in the presence of endogenous Tpm2 as previously done in Fig. 2D-F.

      We have now also performed additional yeast mating experiments with cells lacking bnr1 gene and expressing either mNG-ASTpm1 or mNG-ASTpm2 and the data is shown in new Figure 3. From these observations, we observe that both mNG-ASTpm1 and mNG-ASTpm2 localize to the mating fusion focus in a Bnr1-independent manner (Fig. 3B, 3D) and suggests that they bind to Bni1-made actin cables that are involved in polarized growth of the mating projection. These results also add strength to our conclusion that Tpm1 and Tpm2 localize to actin cables irrespective of which formin nucleates them. Overall, these new results highlight and reiterate our model of formin-isoform independent binding of Tpm1 and Tpm2 in S. cerevisiae.

      In fact, although the authors conclude that the tropomyosins do not exhibit preference for certain actin structures, in the images shown in Fig 2A and 2D, there seems to be a clear bias for Tpm1 to decorate cables preferentially in the bud, while Tpm2 appears to decorate them more in the mother cell. Is that a bias of these chosen images, or does this reflect a more general trend? A quantification of relative fluorescence levels in bud/mother may be indicative.

      Response: __We thank the reviewer for pointing this out. Our data and analysis do not suggest that Tpm1 and Tpm2 show any preference for decoration of cables in either mother or bud compartment. As per the reviewer's suggestion, we have now quantified the ratio of mean mNG fluorescence in the bud to the mother (Bud/Mother) and the data is shown in __Figure. S2G. The bud-to-mother ratio was similar for mNG-ASTpm1 and mNG-ASTpm2 in wildtype cells, and the ratio increased in Dbnr1 cells and decreased in Dbni1 cells for both mNG-ASTpm1 and mNG-ASTpm2 (Fig. S2G). __This is consistent with the decreased actin cable signal in the mother compartment in Dbnr1 cells and decreased actin cable signal in the bud compartment in Dbni1 cells (Fig. S2A-D). Thus, our new analysis shows that both mNG-ASTpm1 and mNG-ASTpm2 have similar changes in their concentration (mean fluorescence) upon loss of either formins Bnr1 and Bni1 and show similar ratios in wildtype cells as well, suggesting no preference for binding to actin cables in either bud or mother compartment. The preference inferred by the reviewer seems to be a bias of the current representative images and thus, we have replaced the images in __Fig. 2A, 2D to more accurately represent the population.

      The difficulty in preserving mNG-amTpm after fixation means that authors could not quantify relative Tpm/actin cable directly in single fixed cells. Did they try to label actin cables with Lifeact instead of using phalloidin, and thus perform the analysis in live cells?

      __Response: __We did not use LifeAct for our analysis as LifeAct is known to cause expression-dependent artefacts in cells (Courtemanche et al., 2016; Flores et al., 2019; Xu and Du, 2021) and it also competes with proteins that regulate normal cable organization like cofilin. Use of LifeAct would necessitate standardization of expression to avoid such artefacts in vivo. Also, phalloidin staining provides the best staining of actin cables and allows for better quantitative results in our experiments. The use of LifeAct along with mNG-Tpm would also require optimization with a red fluorescent protein which usually tend to have lower brightness and photostability. However, during the revision of our study, a new study from Prof. Goode's lab has developed and optimized expression of new LifeAct-3xmNeonGreen constructs for use in S. cerevisiae (Wirshing and Goode, 2024). Thus, a similar strategy of using tandem copies of bright and photostable red fluorescent proteins can be explored for use in combination with mNG-Tpm in the future studies.

      __ Complementation of tpm1∆ by Tpm2:__

      I am confused about the quantification of Tpm2 expression by RT-PCR shown in Fig S3F. This figure shows that tpm2 mRNA expression levels are identical in cells with an empty plasmid or with a tpm2-encoding plasmid. In both strains (which lack tpm1), as well as in the WT control, one tpm2 copy is in the genome, but only one strain has a second tpm2 copy expressed from a centromeric plasmid, yet the results of the RT-PCR are not significantly different. (If anything, the levels are lower in the tpm2 plasmid-containing strain.) The methods state that the primers were chosen in the gene, so likely do not distinguish the genomic from the plasmid allele. However, the text claims a 1-fold increase in expression, and functional experiments show a near-complete rescue of the tpm1∆ phenotype. This is surprising and confusing and should be resolved to understand whether higher levels of Tpm2 are really the cause of the observed phenotypic rescue.

      The authors could for instance probe for protein levels. I believe they have specific nanobodies against tropomyosin. If not, they could use expression of functional mNG-amTpm2 to rescue tpm1∆. Here, the expression of the protein can be directly visualized.

      Response: __We thank the reviewer for pointing this out. We would like to clarify that in our RT-qPCR experiments, the primers were chosen within the Tpm1 and Tpm2 gene and do not distinguish between transcripts from endogenous or plasmid copy. We have now mentioned this in the Materials and Methods section of the revised manuscript. So, they represent a relative estimate of the total mRNA of these genes present in cells. We were consistently able to detect ~19 fold increase in Tpm2 total mRNA levels as compared to wildtype and ∆tpm1 cells (Fig. S4D) when tpm2 was expressed from a high-copy plasmid (pRS425). This increase in Tpm2 mRNA levels was accompanied by a rescue in growth (Fig. S4A) and actin cable organization (Fig. S4B) of ∆tpm1 cells containing pRS425-ptpm2TPM2. When tpm2 was expressed from a low-copy number centromeric plasmid (pRS316), we detected a ~2 fold increase in Tpm2 transcript levels when using the tpm1 promoter and no significant change was detected when using tpm2 promoter (Fig. S4E)__. We have made sure that these results are accurately described in the revised manuscript.

      As per the reviewer's suggestion, we have now conducted a more extensive analysis to ascertain the expression levels of Tpm2 in our experiments and the data is now presented in new Figure S5. We used mNG-ASTpm1 and mNG-ASTpm2 to rescue growth of ∆tpm1 (Fig. S5A) and correlated growth rescue with protein levels using quantified fluorescence intensity (Fig. S5B, S5C) and western blotting (anti-mNG) (Fig. S5D, S5E). We find that ∆tpm1 cells containing pRS425-ptpm1mNG-ASTpm1 had the highest protein level followed by pRS425-ptpm2 mNG-ASTpm2, pRS305-ptpm1mNG-ASTpm1, and the least protein levels were found in pRS305-ptpm2 mNG-ASTpm2 containing ∆tpm1 cells in both fluorescence intensity and western blotting quantifications (Fig. S5C, S5E). Surprisingly, we were not able to detect any protein levels in ∆tpm1 cells containing pRS305-ptpm2 mNG-ASTpm2 with western blotting (Fig. S5D) which was also accompanied by a lack of growth rescue (Fig. S5A). This most likely due to weak expression from the native Tpm2 promoter which is consistent with previous literature (Drees et al., 1995). Taken together, this data clearly shows that the rescue observed in ∆tpm1 cells is caused due to increased expression of mNG-ASTpm2 in cells and supports our conclusion that increase in Tpm2 expression leads to restoration of normal growth and actin cables in ∆tpm1 cells.

      __ Specific function of Tpm2:__

      The data about the retrograde actin flow is interpreted as a specific function of Tpm2, but there is no evidence that Tpm1 does not also share this function. To reach this conclusion one would have to investigate retrograde actin flow in tpm1∆ (difficult as cables are weak) or for instance test whether Tpm1 expression restores normal retrograde flow to tpm2∆ cells.

      Response: __We agree with the reviewer and as per the reviewer's suggestion, we have performed another experiment which include wildtype, ∆tpm2 cells containing empty pRS316 vector or pRS316-ptpm2TPM1 or pRS316-ptpm1TPM1. We find that RACF rate increased in ∆tpm2 cells as compared to wildtype and was restored to wildtype levels by exogenous expression of Tpm2 but not Tpm1 (Fig. S6E, S6F). Since, actin cables were not detectable in ∆tpm1 cells, we measured RACF rates in ∆tpm1 cells expressing Tpm1 or Tpm2 from a plasmid copy, which restored actin cables as shown previously in __Fig. 5A-C. We observed that RACF rates were similar to wildtype in ∆tpm1 cells expressing either Tpm1 or Tpm2 (Fig. S6E, S6F), suggesting that Tpm1 is not involved in RACF regulation. Taken together, these results suggest a specific role for Tpm2, but not Tpm1, in RACF regulation in S. cerevisiae, consistent with previous literature (Huckaba et al., 2006).

      Minor comments: __1.__The growth of tpm1∆ with empty plasmid in Fig S3A is strangely strong (different from other figures).

      Response: We thank the reviewer for pointing this out. We have now repeated the drop test multiple times (Fig. R2), but we see similar growth rates as the drop test already presented in Fig. S4A. __At this point, it would be difficult to ascertain the basis of this difference observed at 23{degree sign}C and 30{degree sign}C, but a recent study that links leucine levels to actin cable stability (Sing et al., 2022) might explain the faster growth of these ∆tpm1 cells containing a leu2 gene carrying high-copy plasmid. However, there is no effect on growth rate at 37{degree sign}C which is consistent with other spot assays shown in __Fig. S1D, S4F, S5A.

      Significance

      I am a cell biologist with expertise in both yeast and actin cytoskeleton.

      The question of how tropomyosin localizes to specific actin networks is still open and a current avenue of study. Studies in other organisms have shown that different tropomyosin isoforms, or their acetylated vs non-acetylated versions, localize to distinct actin structures. Proposed mechanisms include competition with other ABPs and preference imposed by the formin nucleator. The current study re-examines the function and localization of the two tropomyosin proteins from the budding yeast and reaches the conclusion that they co-decorate all formin-assembled structures and also share most functions, leading to the simple conclusion that the more important contribution of Tpm1 is simply linked to its higher expression. Once consolidated, the study will appeal to researchers working on the actin cytoskeleton.

      We thank the reviewer for their positive assessment of our work and the constructive feedback that has greatly improved the quality of our study. After addressing the points raised by the reviewer, we believe that our study has significantly gained in consolidating the major conclusions of our work.

      **Referees cross-commenting**

      Having read the other reviewers' comments, I do agree with reviewer 1 that it is not clear whether the Ala-Ser linker really mimics acetylation. I am less convinced than reviewer 3 that the key conclusions of the study are well supported, notably the issue of Tpm2 expression levels is not convincing to me.

      Response: __We acknowledge the reviewer's point about the effect of Ala-Ser dipeptide and would request the reviewer to refer to our response to Reviewer 1 (Question 1) for a more detailed discussion on this. We have also extensively addressed the question of Tpm2 expression levels as suggested by the reviewer (new data in __Figure S5) which has further strengthened the conclusions of our study.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:__ The study presents the first fully functional fluorescently tagged Tpm proteins, enabling detailed probing of Tpm isoform localization and functions in live cells. The authors created a modified fusion protein, mNG-amTpm, which mimicked native N-terminal acetylation and restored both normal growth and full-length actin cables in yeast cells lacking native Tpm proteins, demonstrating the constructs' full functionality. They also show that Tpm1 and Tpm2 do not have a preference for actin cables nucleated by different formins (Bnr1 and Bni1). Contrary to previous reports, the study found that overexpressing Tpm2 in Δtpm1 cells could restore growth rates and actin cable formation. Furthermore, it is shown that despite its evolutionary divergence, Tpm2 retains actin-protective functions and can compensate for the loss of Tpm1, contributing to cellular robustness.

      Major and Minor Comments: 1. The key conclusions of this paper are convincing. However, I suggest that more detail be provided regarding the image analysis used in this study. Specifically, since threshold settings can impact the quality of the generated data and, therefore, its interpretation, it would be useful to see a representative example of the quantification methods used for actin cable length/number (as in refs. 80 and 81) and mitochondria morphology. These could be presented as Supplemental Figures. Additionally, it would help to interpret the results if the authors could be more specific about the statistical tests that were used.

      Response: __We agree with the reviewer's suggestions and have now updated our Materials and Methods section to describe the image analysis pipelines used in more detail. We have also added examples of quantification procedure for actin cable length/number and mitochondrial morphology as an additional Supplementary __Figure S7. Briefly, the following pipelines were used:

      • Actin cable length and number analysis: This was done exactly as mentioned in McInally et al., 2021, McInally et al., 2022. Actin cables were manually traced in Fiji as shown in __ S7A__, and then the traces files for each cell were run through a Python script (adapted from McInally et al., 2022) that outputs mean actin cable length and number per cell.
      • Mitochondria morphology: Mitochondria Analyzer plug-in in Fiji was used to segment out the mitochondrial fragments. The parameters used for 2D segmentation of mitochondria were first optimized using "2D Threshold Optimize" to find the most accurate segmentation and then the same parameters were run on all images. After segmentation of the mitochondrial network, measurements of fragment number were done using "Analyze Particles" function in Fiji. An example of the overall process is shown in __ S7B.__ As per the reviewer's suggestion, we have now included the description of the statistical test used in the Figure Legends of each Figure in the revised manuscript. We have used One-Way Anova with Tukey's Multiple Comparison test, Kruskal-Wallis test with Dunn's Multiple Comparisons, and Unpaired Two-tailed t-test using the in-built functions in GraphPad Prism (v.6.04).

      **Referees cross-commenting**

      I agree with both reviewers 1 and 2 regarding the issues with the Ala-Ser acetylation mimic and Tpm2 expression levels, respectively. I think the authors should be more careful in how they frame the results, but I consider that these issues do not invalidate the main conclusions of this study.

      Response: __We acknowledge the reviewer's concern about the Ala-Ser dipeptide and would request them to refer our earlier discussion on this in response to Reviewer 1 (Question 1) and Reviewer 2 (Question 2). We would also request the reviewer to refer to our answer to Reviewer 2 (Question 6) where we have extensively addressed the question of Tpm2 expression levels and their effect on rescue of Dtpm1 cells. This data is now presented as new __Figure S5 in our revised manuscript.

      Reviewer#3 (Significance (Required)):

      The finding that Tpm2 can compensate for the loss of Tpm1, restoring actin cable organization and normal growth rates, challenges previous assumptions about the non-redundant functions of these isoforms in Saccharomyces cerevisiae (ref. 16). It also supports a concentration-dependent and formin-independent localization of Tpm isoforms to actin cables in this species. The development of fully functional fluorescently tagged Tpm proteins is a significant methodological advancement. This advancement overcomes previous visualization challenges and allows for accurate in vivo studies of Tpm function and regulation in S. cerevisiae.

      The findings will be of particular interest to researchers in the field of cellular and molecular biology who study actin cytoskeleton dynamics. Additionally, it will be relevant for those utilizing advanced microscopy and live-cell imaging techniques.

      As a researcher, my experience lies in cytoskeleton dynamics and protein interactions, though I do not have specific experience related to tropomyosin. I use different yeast species as models and routinely employ live-cell imaging as a tool.

      We thank the reviewer for their positive outlook and assessment of our study. We have incorporated all their suggestions, and we are confident that the revised manuscript has significantly improved in quality due to these additions.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      Summary

      In this extensive comparative study, Moreno-Borrallo and colleagues examine the relationships between plasma glucose levels, albumin glycation levels, diet and lifehistory traits across birds. Their results confirmed the expected positive relationship between plasma blood glucose level and albumin glycation rate but also provided findings that are somewhat surprising or contrast with findings of some previous studies (positive relationships between blood glucose and lifespan, or absent relationships between blood glucose and clutch mass or diet). This is the first extensive comparative analysis of glycation rates and their relationships to plasma glucose levels and life history traits in birds that is based on data collected in a single study, with blood glucose and glycation measured using unified analytical methods (except for blood glucose data for 13 species collected from a database).

      Strengths

      This is an emerging topic gaining momentum in evolutionary physiology, which makes this study a timely, novel and important contribution. The study is based on a novel data set collected by the authors from 88 bird species (67 in captivity, 21 in the wild) of 22 orders, except for 13 species, for which data were collected from a database of veterinary and animal care records of zoo animals (ZIMS). This novel data set itself greatly contributes to the pool of available data on avian glycemia, as previous comparative studies either extracted data from various studies or a ZIMS database (therefore potentially containing much more noise due to different methodologies or other unstandardised factors), or only collected data from a single order, namely Passeriformes. The data further represents the first comparative avian data set on albumin glycation obtained using a unified methodology. The authors used LC-MS to determine glycation levels, which does not have problems with specificity and sensitivity that may occur with assays used in previous studies. The data analysis is thorough, and the conclusions are substantiated. Overall, this is an important study representing a substantial contribution to the emerging field evolutionary physiology focused on ecology and evolution of blood/plasma glucose levels and resistance to glycation.

      Weaknesses

      Unfortunately, the authors did not record handling time (i.e., time elapsed between capture and blood sampling), which may be an important source of noise because handling-stress-induced increase in blood glucose has previously been reported. Moreover, the authors themselves demonstrate that handling stress increases variance in blood glucose levels. Both effects (elevated mean and variance) are evident in Figure ESM1.2. However, this likely makes their significant findings regarding glucose levels and their associations with lifespan or glycation rate more conservative, as highlighted by the authors.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      I understand that your main objective regarding glycation rate and lifespan, was to analyse the species resistance to glycation with respect to lifespan, while factoring out the species-specific variation in blood glucose level. However, I still believe that the absolute glycation level (i.e., not controlled for blood glucose level) may also be important for the evolution of lifespan. Given that blood glucose is positively related to both glycation and lifespan (although with a plateau in the latter case), lifespan could possibly be positively correlated with absolute glycation levels. If significant, that would be an interesting and counterintuitive finding, which would call for an explanation, thereby potentially stimulating further research. If not significant, it would show that long-lived species do not have higher glycation levels, despite having higher blood glucose levels, thereby strengthening your argument about higher resistance of longlived species to glycation. So, in my opinion, the inclusion of an additional model of glycation level on life-history traits, without controlling for blood glucose, is worth considering.

      We include now this model as supplementary material, indicating it in several parts of the text, including some of these issues we discussed here.

      Lines 230-231: Please, provide a citation for these GVIF thresholds

      We include it now.

      Figure 3: I think that showing both glucose and glycation rate on the linear scale, rather than log scale, would better illustrate your conclusion - the slowing rise of glycation rate with increasing glucose levels.

      That is a good point, although it may also be confusing for readers to see a graph that represents the data in a different way as the models. Maybe showing both graphs (as 3.A and 3.B) can solve it?

      Figure 4. I recommend stating in the caption that the whiskers do not represent interquartile ranges (a standard option in box plots) but credible intervals as mentioned in the current version of the public author response.

      Sorry about that, it was missed. Now it is included. Nevertheless, interquartile ranges from the posterior distributions can still be observed here represented with the boxes. Then the whiskers are the credible intervals.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Guo and colleagues used a cell rounding assay to screen a library of compounds for inhibition of TcdB, an important toxin produced by Clostridioides difficile. Caffeic acid and derivatives were identified as promising leads, and caffeic acid phenethyl ester (CAPE) was further investigated.

      Strengths:

      Considering the high morbidity rate associated with C. difficile infections (CDI), this manuscript presents valuable research in the investigation of novel therapeutics to combat this pressing issue. Given the rising antibiotic resistance in CDI, the significance of this work is particularly noteworthy. The authors employed a robust set of methods and confirmatory tests, which strengthened the validity of the findings. The explanations provided are clear, and the scientific rationale behind the results is well-articulated. The manuscript is extremely well-written and organized. There is a clear flow in the description of the experiments performed. Also, the authors have investigated the effects of CAPE on TcdB in careful detail and reported compelling evidence that this is a meaningful and potentially useful metabolite for further studies.

      Weaknesses:

      This is really a manuscript about CAPE, not caffeic acid, and the title should reflect that. Also, a few details are missing from the description of the experiments. The authors should carefully revise the manuscript to ascertain that all details that could affect the interpretation of their results are presented clearly. Just as an example, the authors state in the results section that TcdB was incubated with compounds and then added to cells. Was there a wash step in between? Could compound carryover affect how the cells reacted independently from TcdB? This is just an example of how the authors should be careful with descriptions of their experimental procedures. Lastly, authors should be careful when drawing conclusions from the analysis of microbiota composition data. Ascribing causality to correlational relationships is a recurring issue in the microbiome field. Therefore, I suggest authors carefully revise the manuscript and tone down some statements about the impact of CAPE treatment on the gut microbiota.

      Thanks for your constructive suggestion. We have carefully revised the manuscript, including the description of title, results and methods sections.

      Reviewer #2 (Public review):

      Summary:

      This work is towards the development of nonantibiotic treatment for C. difficile. The authors screened a chemical library for activity against the C. difficile toxin TcdB, and found a group of compounds with antitoxin activity. Caffeic acid derivatives were highly represented within this group of antitoxin compounds, and the remaining portion of this work involves defining the mechanism of action of caffeic acid phenethyl ester (CAPE) and testing CAPE in mouse C. difficile infection model. The authors conclude CAPE attenuates C. difficile disease by limiting toxin activity and increasing microbial diversity during C. difficile infection.

      Strengths/ Weaknesses:

      The strategy employed by the authors is sound although not necessarily novel. A compound that can target multiple steps in the pathogenies of C. difficile would be an exciting finding. However, the data presented does not convincingly demonstrate that CAPE attenuates C. difficile disease and the mechanism of action of CAPE is not convincingly defined. The following points highlight the rationale for my evaluation.

      (1) The toxin exposure in tissue culture seems brief (Figure 1). Do longer incubation times between the toxin and cells still show CAPE prevents toxin activity?

      Thanks for your comments. The cytotoxicity assay was employed to directly assess the protective capacity of CAPE against cell death induced by TcdB. Our observations at 1 and 12 h post-TcdB exposure revealed that CAPE effectively mitigated the toxic effects of the TcdB at both time points, demonstrating its potent protective role. Please see Figure S1.

      (2) The conclusion that CAPE has antitoxin activity during infection would be strengthened if the mouse was pretreated with CAPE before toxin injections (Figure 1D).

      Thanks for your constructive comments. According to your suggestion, we administered TcdB 2 h after pretreatment with CAPE. The outcomes demonstrated that CAPE pretreatment significantly enhanced the survival rate of the intoxicated mice, confirming that CAPE retains its antitoxin efficacy during the infection process. Please see Figure S2.

      (3) CAPE does not bind to TcdB with high affinity as shown by SPR (Figure 4). A higher affinity may be necessary to inhibit TcdB during infection. The GTD binds with millimolar affinity and does not show saturable binding. Is the GTD the binding site for CAPE? Auto processing is also affected by CAPE indicating CAPE is binding non-GTD sites on TcdB.

      Thanks for your comments. Our findings indicate that the GTD domain is a critical binding site for CAPE. CAPE exerts its protective effects at multiple stages of TcdB-mediated cell death, including inhibiting TcdB's self-cleavage and blocking the activity of GTD, thereby preventing the glycosylation modification of Rac1 by TcdB.

      (4) In the infection model, CAPE does not statistically significantly attenuate weight loss during C. difficile infection (Figure 6). I recognize that weight loss is an indirect measure of C. difficile disease but histopathology also does not show substantial disease alleviation (see below).

      Thanks for your comments. Our comparative analysis revealed a notable distinction in the body weight of mice on the third day post-infection (Figure 6B). Similarly, the dry/wet stool ratio exhibited a comparable pattern, suggesting that treatment with phenethyl caffeic acid ameliorated Clostridium difficile-induced diarrhea to a significant degree (Figure 6C).

      (5) In the infection model (Figure 6), the histopathology analysis shows substantial improvement in edema but limited improvement in cellular infiltration and epithelial damage. Histopathology is probably the most critical parameter in this model and a compound with disease-modifying effects should provide substantial improvements.

      Thanks for your comments. Edema, inflammatory factor infiltration, and epithelial damage served as key evaluation metrics. Statistical analysis revealed that the pathological scores of mice treated with CAPE were markedly reduced compared to those in the model group (Figure 6F).

      (6) The reduction in C. difficile colonization is interesting. It is unclear if this is due to antitoxin activity and/or due to CAPE modifying the gut microbiota and metabolites (Figure 6). To interpret these data, a control is needed that has CAPE treatment without C. difficile infection or infection with an atoxicogenic strain.

      The observed reduction in C. difficile fecal colonization following drug treatment may be attributed to the CAPE's antitoxin properties or its capacity to modify the intestinal microbiota and metabolites. These two mechanisms likely work in tandem to combat CDI. CDI is primarily triggered by the toxins A (TcdA) and B (TcdB) secreted by the bacterium. Certain therapies, including monoclonal antibodies like bezlotoxumab, target CDI by neutralizing these toxins, thereby mitigating gut damage and subsequent C. difficile colonization(1,2). The establishment of C. difficile in the gut is intricately linked to the equilibrium of the intestinal microbiota. Although antibiotic treatments can inhibit C. difficile growth, they may also disrupt the microbial balance, potentially facilitating the overgrowth of other pathogens. Consequently, interventions such as fecal microbiota transplantation (FMT) are designed to reestablish gut flora balance and consequently decrease C. difficile colonization(3,4). Moreover, the administration of probiotics and prebiotics is considered to reduce C. difficile colonization by modifying the gut environment(5,6).

      (7) Similar to the CAPE data, the melatonin data does not display potent antitoxin activity and the mouse model experiment shows marginal improvement in the histopathological analysis (Figure 9). Using 100 µg/ml of melatonin (~ 400 micromolar) to inactivate TcdB in cell culture seems high. Can that level be achieved in the gut?

      The uptake and dissemination of melatonin within the body varies with the dose administered. For instance, in rats, the bioavailability of melatonin following administration was found to be 53.5%, whereas in dogs, bioavailability was nearly complete (100%) at a dose of 10 mg/kg, yet it decreased to 16.9% at a lower dose of 1 mg/kg(7). This data suggests that the absorption of melatonin differs across various animal species and is influenced by the dose administered. Moreover, it underscores the higher potential bioavailability of melatonin, implying that a dose of 200 mg/kg should be adequate to achieve the desired concentration in the body post-administration.

      (8) The following parameters should be considered and would aid in the interpretation of this work. Does CAPE directly affect the growth of C. difficile? Does CAPE affect the secretion of TcdB from C. difficile? Does CAPE alter the sporulation and germination of C. diffcile?

      We incorporated CAPE into the MIC assay for detecting C. difficile, as well as for assessing the sporulation capacity of C. difficile and evaluating the secretion level of TcdB. The findings revealed that CAPE markedly repressed tcdB transcription at a concentration of 16 μg/mL and effectively suppressed the growth and sporulation of C. difficile BAA-1870 at a concentration of 32 μg/mL. Please see Figure S3.

      References:

      (1) Skinner AM, et al. Efficacy of bezlotoxumab to prevent recurrent Clostridioides difficile infection (CDI) in patients with multiple prior recurrent CDI. Anaerobe. 2023 Dec; 84: 102788.

      (2) Wilcox MH, et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N Engl J Med. 2017 Jan 26;376(4):305-317.

      (3) Khoruts A, Sadowsky MJ. Understanding the mechanisms of faecal microbiota transplantation. Nat Rev Gastroenterol Hepatol. 2016 Sep;13(9):508-16.

      (4) Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol. 2021 Jan;18(1):67-80.

      (5) Mills JP, Rao K, Young VB. Probiotics for prevention of Clostridium difficile infection. Curr Opin Gastroenterol. 2018 Jan;34(1):3-10.

      (6) Lau CS, Chamberlain RS. Probiotics are effective at preventing Clostridium difficile-associated diarrhea: a systematic review and meta-analysis. Int J Gen Med. 2016 Feb 22; 9:27-37.

      (7) Yeleswaram K, et al. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997 Jan;22(1):45-51.

      Reviewer #3 (Public review):

      Summary:

      The study is well written, and the results are solid and well demonstrated. It shows a field that can be explored for the treatment of CDI.

      Strengths:

      The results are really good, and the CAPE shows a good and promising alternative for treating CDI. The methodology and results are well presented, with tables and figures that corroborate them. It is solid work and very promising.

      Weaknesses:

      Some references are too old or missing.

      Thanks for your constructive suggestion. We have included and refreshed several references to enhance the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      While the manuscript convincingly demonstrates that CAPE affects the TcdB toxin and reduces its toxicity in vitro, it would be beneficial to include data on the effect of CAPE on the growth of C. difficile. This would help ensure that the observed in vivo effects are not merely due to reduced bacterial growth but rather due to the specific action of CAPE on the toxin.

      Thanks for your constructive suggestion. We have augmented our findings with the impact of CAPE on the bacteria themselves, revealing that CAPE not only hampers the growth of the bacterial cells but also suppresses their capacity to produce spores. Please see Figure S3.

      (1) Line 41, line 115 - authors should clarify what they mean when mentioning Bacteroides within parentheses.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (2) Line 71 - Is C. difficile really found "in the environment"?

      Thanks for your comments. C. difficile is prevalent across various natural settings, including soil and water ecosystems. A study has identified highly diverse strains of this bacterium within environmental samples(1). Moreover, the significant presence of C. difficile in soil and lawn specimens collected near Australian hospitals indicates that the organism is indeed a common inhabitant in the environment(2).

      (3) Lines 128-130 - Was there a wash step here? What could be the impact of compound carryover in this experiment?

      Thanks for your comments. Following pre-incubation of TcdB with CAPE, remove the compounds that have not bound to TcdB through centrifugation. The persistence of the compound in the culture post-washing could result in an inflated assessment of its efficacy, particularly if it continues to engage with TcdB or the cells beyond the initial 1-hour pre-incubation window. The carryover of the compound might also give rise to misleading positive results, where the compound seems to confer protection or inhibition against TcdB-mediated cell rounding, whereas such effects are actually due to the lingering activity of the compound. This carryover could skew the determination of the compound's minimum effective concentration, as the effective concentration interacting with the cells might be inadvertently elevated. Furthermore, if the compounds possess cytotoxic properties or impact cell viability, carryover could generate artifacts in cell morphology that are unrelated to the direct interaction between TcdB and the compounds.

      (4) Lines 133-134 - I suggest authors mention how many caffeic acid derivatives there were in the entire library so that the suggested "enrichment" of them in the group of bioactive compounds can be better judged.

      Thanks for your comments. The natural compound library contained eight caffeic acid derivatives, of which methyl caffeic acid and ferulic acid displayed no efficacy. This information has been incorporated into the manuscript.

      (5) Line 135 - I recommend the authors add the molarity of the compound solutions used.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (6) Line 247 - I think the term "CAPE mice" is confusing. Please use a full description.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (7) Line 248 - I also think the terms "model mice" and "model group" are confusing. Maybe call them "control mice"?

      Thanks for your comments. The terms "model mice" and "model group" are indeed synonymous, and we have subsequently clarified that control mice refer to those that have not been infected with C. difficile.

      (8) Line 273 - "most abundant species at the genus level" is incorrect. I think what you mean is "most abundant TAXA".

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (9) Line 278 - Please include your p-value cut-off together with the LDA score.

      Thanks for your comments. We have revised the above description to “LDA score > 3.5, p < 0.05”.

      (10) Line 292 - Details on how metabolomics was performed should be included here.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (11) Line 299 - 1.5 is a fairly low cut-off. The authors should at a minimum also include the p-value cut-off used.

      Response: Thanks for your comments. We have revised the above description to “fold change > 1.5, p < 0.05”.

      (12) Line 307 - Purine "degradation" would be better here.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (13) Line 328 onward - The melatonin experiment is a weird one. Although I fully understand the rationale behind testing the effect of melatonin in the mouse model, the idea that just because melatonin levels changed in the gut it would act as a direct inhibitor of TcdB was very far-fetched, even though it ended up working. Authors should explain this in the manuscript.

      Thanks for your comments. Furthermore, beyond our murine studies, we have confirmed that melatonin significantly diminishes TcdB-induced cytotoxicity at the cellular level (Figure 9A). Additionally, it has been documented that melatonin, acting as an antimicrobial adjuvant and anti-inflammatory agent, can decrease the recurrence of CDI(3). Consequently, we contend that the aforementioned statement is substantiated.

      (14) Lines 429-435 - There are seemingly contradictory pieces of information here. The authors state that adenosine is released from cells upon inflammation and that CAPE treatment caused an increase in adenosine levels. Later in this section, the authors state that adenosine prevents TcdA-mediated damage and inflammation. This should be clarified and better discussed.

      Thanks for your comments. Adenosine modulates immune responses and inflammatory cascades by interacting with its receptors, including its capacity to suppress the secretion of specific pro-inflammatory mediators. We have updated this depiction in the manuscript.

      (15) Lines 513-514 - How was this phenotype quantified?

      Thanks for your comments. Initially, we introduced TcdB at a final concentration of 0.2 ng/mL along with various concentrations of compounds into 1 mL of medium for a 1-h pre-incubation period. Subsequently, unbound compounds were removed through centrifugation, and the resulting mixture was then applied to the cells.

      (16) Figure 3 - panels are labeled incorrectly.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (17) Figure 5C - it is unclear what the different colors and labels represent.

      Thanks for your comments. In the depicted graph, blue denotes the total binding energy, red signifies the electrostatic interactions, green corresponds to the van der Waals forces, and orange indicates solvation or hydration effects. The horizontal axis represents the mutation of the amino acid residue at the respective position to alanine. As illustrated in Figure 5C, the mutations W520A and GTD exhibit the highest binding energies.

      References:

      (1) Janezic S, et al. Highly Divergent Clostridium difficile Strains Isolated from the Environment. PLoS One. 2016 Nov 23;11(11): e0167101.

      (2) Perumalsamy S, Putsathit P, Riley TV. High prevalence of Clostridium difficile in soil, mulch and lawn samples from the grounds of Western Australian hospitals. Anaerobe. 2019 Dec; 60:102065.

      (3) Sutton SS, et al. Melatonin as an Antimicrobial Adjuvant and Anti-Inflammatory for the Management of Recurrent Clostridioides difficile Infection. Antibiotics (Basel). 2022 Oct 25;11(11):1472.

      Reviewer #2 (Recommendations for the authors):

      Minor comments and questions.

      (1) Which form of TcdB is being used in these experiments?

      Thanks for your comments. The TcdB proteins used in this study are TcdB1 subtypes.

      (2) Why are THP-1 cells being used in these assays?

      Thanks for your comments. For the purposes of this study, we employed a diverse array of cell lines, including Vero, HeLa, THP-1, Caco-2, and HEK293T. Each cell line was selected to serve a specific experimental objective. The inclusion of the THP-1 cell line was necessitated by the need to incorporate a macrophage cell line to ensure the comprehensive nature of our experiments, allowing for the testing of both epithelial cells and macrophages. C. difficile is a kind of intestinal pathogenic bacteria, and immune clearance plays a vital role in the process of pathogen infection, so THP-1 cells are used as important immune cells.

      (3) Please improve the quality of the microscopy images in Figure 1.

      Thanks for your comments. We have improved the quality of the microscopy images in Figure 1.

      (4) Does the flow cytometry experiment in Figure 2B show internalization? Surface-bound toxins would provide the same histogram.

      Thanks for your comments. Figure 2B was employed to assess the internalization of TcdB, and the findings indicate that CAPE does not influence the internalization process of TcdB.

      (5) The sensogram in Figure 4A does not look typical and should be clarified.

      Thanks for your comments. Typically, small molecules and proteins engage in a rapid binding and dissociation dynamic. However, as depicted in Figure 4A, the interaction between CAPE and TcdB demonstrates a gradual progression towards equilibrium. This behavior can be primarily explained by the swift occupation of the protein's primary binding sites by the small molecule in the initial stages. Subsequently, CAPE binds to secondary or lower affinity sites, extending the time needed to reach equilibrium. Additionally, the likelihood of CAPE binding to multiple sites on TcdB requires time for the exploration and occupation of these diverse locations before equilibrium is attained, we have incorporated an analysis of this potential scenario into the manuscript.

      Reviewer #3 (Recommendations for the authors):

      These are my suggestions for the text:

      (1) Line 29: high recurrent rates.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (2) Line 32: Where is the caffeic acid identified? I think a line should be included.

      Thanks for your comments. Caffeic acid was identified from natural compounds library and we have completed the corresponding modifications according to the suggestions.

      (3) Line 39: C. difficile is not italic.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (4) Line 41: Bacteroides spp.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      (5) Line 56: This number of casualties 56.000 is still happening or it was in the past?

      Thanks for your comments. The mortality rates reported in the manuscript reflect a downturn in the incidence and fatality of CDI around 2017(1), as the infection gained broader recognition. Nonetheless, a recent study reveals that the mortality rate for CDI cases in Germany can soar to 45.7% within a year, with the overall economic burden amounting to approximately 1.6 billion euros. This underscores the ongoing significance of CDI as a global public health challenge(2).

      (6) Line 104: Where did the idea of testing caffeic acid come from? Any previous study of the authors? Any studies with the inhibition of other pathogens?

      Thanks for your comments. Initially, we conducted a screen of a compound library comprising 2,076 compounds and identified several potent inhibitors, which, upon structural analysis, were revealed to be caffeic acid derivatives. Prior to our investigation, no studies had explored the potential of CAPE in this context.

      (7) Line 115: Bacteroides spp.

      Thanks for your comments. We have completed the corresponding modifications according to the suggestions.

      Results section

      (8) Did the authors try the caffeic acid with the TcdA or binary toxin? I know this is not the purpose of the study, but TcdA toxin has a high identity structure with TcdB and generates inflammation in the gut via neutrophils. Negative strains for the major toxins and positive for the binary toxin also cause severe cases of CDI.

      Thanks for your comments. Although we acknowledge the significance of TcdA and binary toxins in CDI, we did not investigate the impact of CAPE on these toxins. Our focus was exclusively on the effect of CAPE against TcdB, as it is the primary virulence factor in C. difficile pathogenesis. Since TcdA and TcdB are highly similar in structure, we will analyze the neutralization effect of CAPE on TcdA in later studies.

      (9) Does caffeic acid have any effect on C. difficle? Or does it only gain the toxins? That would be ideal.

      Thanks for your comments. We have included additional related assays in our study. Beyond directly neutralizing TcdB, CAPE also demonstrates the capacity to inhibit the growth and spore formation of C. difficile.

      (10) Line 230: C. difficile BAA-1870 is a clinical strain? There are no details about it in the paper.

      Thanks for your comments. C. difficile BAA-1870 (RT027/ST1), a highly virulent isolate frequently employed in research(3-6), was kindly donated by Professor Aiwu Wu. We have meticulously noted the PCR ribotype in our manuscript.

      (11) Line 236: Did the mice fully recover from CDI after the administration of the CAPE? Was one dose enough?

      Thanks for your comments. CAPE was administered orally at 24 h intervals, commencing with the initial dose on Day 0. By the time a significant difference was observed on Day 3, the treatment had been administered a total of three times.

      Methodology

      (12) Most of the methods do not have a reference.

      Thanks for your comments. We have added several references to the methods.

      Discussion section

      (13) The first two paragraphs of the discussion should be summarized. Those details were already explained in the introduction.

      Thanks for your comments. The discussion section and the introduction address slightly different focal points; therefore, we aim to retain the first two paragraphs to maintain continuity and context.

      (14) Line 382: Bezolotoxumab was approved by the FDA in 2016. It is not recent.

      Thanks for your comments. We have revised the above description.

      (15) Line 410: "Despite the high 410 cure rate and increasing popularity of FMT, its safety remains controversial. Although this is true, recently (2022) the FDA approved the Rebyota, which was later cited by the authors.

      Thanks for your comments. We have revised the above description.

      (16) Lines 415-416: "the abundance of Bacteroides, a critical gut microbiota component that is required for C. difficile resistance". There is only one reference cited by the authors. I suppose that if it is true, more studies should be mentioned. Why are probiotics with Bacteroides spp. not available in the market?

      Thanks for your comments. We have supplemented additional references. The scarcity of probiotic products containing Bacteroides spp. on the market is primarily attributable to the stringent requirements of their survival conditions. As most Bacteroides spp. are anaerobic, they thrive in oxygen-deprived environments. This unique survival trait poses challenges in maintaining their viability during product preservation and distribution, which in turn escalates production costs and complexity. Furthermore, despite the significant role of Bacteroides in gut health, research into its potential probiotic benefits and safety is comparatively underexplored.

      References:

      (1) Guh AY, et al. Emerging Infections Program Clostridioides difficile Infection Working Group. Trends in U.S. Burden of Clostridioides difficile Infection and Outcomes. N Engl J Med. 2020 Apr 2;382(14):1320-1330.

      (2) Schley K, et al. Costs and Outcomes of Clostridioides difficile Infections in Germany: A Retrospective Health Claims Data Analysis. Infect Dis Ther. 2024 Nov 20.

      (3) Saito R, et al. Hypervirulent clade 2, ribotype 019/sequence type 67 Clostridioides difficile strain from Japan. Gut Pathog. 2019 Nov 4; 11:54.

      (4) Pellissery AJ, Vinayamohan PG, Venkitanarayanan K. In vitro antivirulence activity of baicalin against Clostridioides difficile. J Med Microbiol. 2020 Apr;69(4):631-639.

      (5) Shao X, et al. Chemical Space Exploration around Thieno[3,2-d]pyrimidin-4(3H)-one Scaffold Led to a Novel Class of Highly Active Clostridium difficile Inhibitors. J Med Chem. 2019 Nov 14;62(21):9772-9791.

      (6) Mooyottu S, Flock G, Venkitanarayanan K. Carvacrol reduces Clostridium difficile sporulation and spore outgrowth in vitro. J Med Microbiol. 2017 Aug;66(8):1229-1234.

  3. docdrop.org docdrop.org
    1. They may not reach out to their professors when they are performing poorly in the class, fearing that they will be judged as lacking in the ability to succeed in school.

      This makes a lot of sense because I think students who come from low-income backgrounds have always had to work extra hard to end up at the same place as their wealthier counterparts who have more resources and thus more opportunities. It may make them feel "weak" to ask for help even though it is totally normal for us to reach out to professors when we are struggling. I think there is a big psychological effect that is going on here. No one wants to feel like they cannot handle a class or exam, especially if they have put a lot of pressure on themselves to overcome their situation. It is totally understandable when lower-income students have trouble reaching our, but we should work on creating a safe space where students feel comfortable reaching out regardless of their situations.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Govindan and Conrad use a genome-wide CRISPR screen to identify genes regulating retention of intron 4 in OGT, leveraging an intron retention reporter system previously described (PMID: 35895270). Their OGT intron 4 reporter reliably responds to O-GlcNAc levels, mirroring the endogenous splicing event. Through a genome-wide CRISPR knockout library, they uncover a range of splicing-related genes, including multiple core spliceosome components, acting as negative regulators of OGT intron 4 retention. They choose to follow up on SFSWAP, a largely understudied splicing regulator shown to undergo rapid phosphorylation in response to O-GlcNAc level changes (PMID: 32329777). RNA-sequencing reveals that SFSWAP depletion not only promotes OGT intron 4 splicing but also broadly induces exon inclusion and intron splicing, affecting decoy exon usage. While this study offers interesting insights into intron retention and O-GlcNAc signaling regulation, the RNA sequencing experiments lack the essential controls needed to provide full confidence to the authors' conclusions. 

      Strengths: 

      (1) This study presents an elegant genetic screening approach to identify regulators of intron retention, uncovering core spliceosome genes as unexpected positive regulators of intron retention. 

      (2) The work proposes a novel functional role for SFSWAP in splicing regulation, suggesting that it acts as a negative regulator of splicing and cassette exon inclusion, which contrasts with expected SR-related protein functions. 

      (3) The authors suggest an intriguing model where SFSWAP, along with other spliceosome proteins, promotes intron retention by associating with decoy exons. 

      We thank the reviewer for recognizing and detailing the strengths of our manuscript. 

      Weaknesses: 

      (1) The conclusions on SFSWAP impact on alternative splicing are based on cells treated with two pooled siRNAs for five days. This extended incubation time without independent siRNA treatments raises concerns about off-target effects and indirect effects from secondary gene expression changes, potentially limiting confidence in direct SFSWAP-dependent splicing regulation. Rescue experiments and shorter siRNA-treatment incubation times could address these issues. 

      We repeated our SFSWAP knockdown analysis and analyzed both OGT e4-e5 junction splicing and SFSWAP transcript levels by RT-qPCR (now included in Sup. Fig. S4) from day 2 to day 5 post siRNA treatment. We observed that the time point at which OGT intron 4 removal increases (day 2) coincides with the time at which SFSWAP transcript levels start decrease, consistent with a direct effect of SFSWAP knockdown on OGT intron 4 splicing. Moreover, the effect of SFSWAP knockdown on OGT intron 4 splicing peaks between day 4-5, supporting our use of these longer time points to cast a wide net for SFSWAP targets.

      (2) The mechanistic role of SFSWAP in splicing would benefit from further exploration. Key questions remain, such as whether SFSWAP directly binds RNA, specifically the introns and exons (including the decoy exons) it appears to regulate. Furthermore, given that SFSWAP phosphorylation is influenced by changes in O-GlcNAc signaling, it would be interesting to investigate this relationship further. While generating specific phosphomutants may not yield definitive insights due to redundancy and also beyond the scope of the study, the authors could examine whether distinct SFSWAP domains, such as the SR and SURP domains, which likely overlap with phosphorylation sites, are necessary for regulating OGT intron 4 splicing. 

      We absolutely agree with the reviewer that the current work stops short of a detailed mechanistic study, and we have made every attempt to be circumspect in our interpretations to reflect that limitation. In addition, we are very interested in delving more deeply into the mechanistic aspects of this regulation. In fact, we have initiated many of the experiments suggested by the reviewer (and more), but in each case, rigorous interpretable results will require a minimum another year’s time. 

      For example, we have used crosslinking and biotin labeling techniques (using previously available reagents from Eclipsebio) to test whether SFSWAP binds RNA. The results were negative, but the lack of strong SFSWAP antibodies required that we use a transiently expressed myc-tagged SFSWAP. Therefore, this negative result could be an artifact of the exogenous expression and/or tagging. Given the difficulties of “proving the negative”, considerably more work will be required to substantiate this finding. As another example, we intend to develop a complementation assay as suggested. For an essential gene, the ideal complementation system employs a degron system, and we have spent months attempting to generate a homozygous AID-tagged SFSWAP. Unfortunately, we so far have only found heterozygotes. Of course, this could be because the tag interferes with function, the insert was not efficiently incorporated by homologous repair, or that we simply haven’t yet screened a sufficient number of clones. We’re confident that these technical issues that can be addressed, but they will take a significant amount of time to resolve. While we would ideally define a mechanism, we think that the data reported here outlining functions for SFSWAP in splicing represent a body of work sufficient for publication. 

      (3) Data presentation could be improved (specific suggestions are included in the recommendations section). Furthermore, Excel tables with gene expression and splicing analysis results should be provided as supplementary datasheets. Finally, a more detailed explanation of statistical analyses is necessary in certain sections. 

      We have addressed all specific suggestions as detailed in the recommendations below.

      Reviewer #2 (Public review): 

      Summary: 

      The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly. 

      Strengths: 

      (1) Exhaustive analysis of potential splicing factors in an unbiased screen. 

      (2) Extensive genome wide bioinformatic analysis. 

      (3) Thoughtful discussion and literature survey. 

      We thank the reviewer for recognizing and detailing the strengths of our manuscript. 

      Weaknesses: 

      (1) No firm evidence linking SFSWAP to an O-GlcNAc specific mechanism. 

      We couldn’t agree more with this critique. Indeed, our intention at the outset for the screen was to find an O-GlcNAc sensor linking OGT splicing with O-GlcNAc levels. As often occurs with high-throughput screens, we didn’t find exactly what we were looking for, but the screen nonetheless pointed us to interesting biology. Prompted by our screen, we describe new insights into the function of SFSWAP a relatively uncharacterized essential gene. Currently, we are testing other candidates from our screen, and we are performing additional studies to identify potential O-GlcNAc sensors.  

      (2) Resulting model leaves many unanswered questions. 

      We agree (see Reviewer 1, point 2 response).  

      Reviewer #3 (Public review): 

      Summary: 

      The major novel finding in this study is that SFSWAP, a splicing factor containing an RS domain but no canonical RNA binding domain, functions as a negative regulator of splicing. More specifically, it promotes retention of specific introns in a wide variety of transcripts including transcripts from the OGT gene previously studied by the Conrad lab. The balance between OGT intron retention and OGT complete splicing is an important regulator of O-GlcNAc expression levels in cells. 

      Strengths: 

      An elegant CRISPR knockout screen employed a GFP reporter, in which GFP is efficiently expressed only when the OGT retained intron is removed (so that the transcript will be exported from the nucleus to allow for translation of GFP). Factors whose CRISPR knockdown causes decreased intron retention therefore increase GFP, and can be identified by sequencing RNA of GFP-sorted cells. SFSWAP was thus convincingly identified as a negative regulator of OGT retained intron splicing. More focused studies of OGT intron retention indicate that it may function by regulating a decoy exon previously identified in the intron, and that this may extend to other transcripts with decoy exons. 

      We thank the reviewer for recognizing the strengths of our manuscript. 

      Weaknesses: 

      The mechanism by which SFSWAP represses retained introns is unclear, although some data suggests it can operate (in OGT) at the level of a recently reported decoy exon within that intron.

      Interesting/appropriate speculation about possible mechanisms are provided and will likely be the subject of future studies. 

      We completely agree that this is a limitation of the current study (see above). Now that we have a better understanding of SFSWAP functions, we will continue to explore SFSWAP mechanisms as suggested. 

      Overall the study is well done and carefully described but some figures and some experiments should be described in more detail. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      (1) Clarify and add missing statistical details across the figures. For example, Figure S2 lacks statistical comparisons, and in Figures 4A and 4C the tests applied should be specified in the legend. 

      We have added appropriate statistical analysis wherever missing and edited figure legends to specify the tests used.

      (2) The authors are strongly encouraged to provide detailed tables of gene expression and alternative splicing analyses from RNA-Seq experiments (e.g., edgeR, rMATS, Whippet, and MAJIQ), as this would enhance transparency and facilitate data interpretation. 

      We have added tables for gene expression and alternate splicing analysis as suggested (Suppl. tables 3-

      6).

      (3) Although the legend sometimes indicates differently (e.g., Figure 3b, 5a, 5c, etc), the volcano plots showing the splicing changes do not contain a cutoff for marginally differential percent spliced in or intron retention values. 

      The legends have been edited to reflect the correct statistical and/or PSI cutoffs.

      (4) For consistency, use a consistent volcano plot format across all relevant figures (Figures 3b, 5a-c, S3, S4, S7, and S8), including cutoffs for differential splicing and the total count of up- and down-regulated events. 

      Due to different statistical frameworks and calculations employed by different alternate splicing pipelines, we could not use the same cutoffs for different pipelines.  However, we have now indicated the number of up- and down-regulated events for consistency among the volcano plots.

      (5) What is the overlap of differentially regulated events between the different analytical methodologies applied? 

      We analyzed the degree of overlap between the three pipelines used in the paper using a Venn diagram (added to Suppl. Fig. S7). However, as widely reported in literature (e.g., Olofsson et al., 2023; Biochem Biophys Res Commun. 2023; doi: 10.1016/j.bbrc.2023.02.053.), the degree of overlap between pipelines is quite low.

      (6) To further substantiate your conclusions, additional validations of RNA-Seq splicing data, ideally visualized on an agarose gel, would be valuable, especially for exons and introns regulated by SFSWAP, and particularly for OGT decoy exons in Figure 4c. 

      We have not included these experiments as we focused on other critiques for this resubmission. Because the RNA-seq, RT-PCR and RT-qPCR data all align, we are confident that the products we are seeing are correctly identified and orthogonally validated (Figs 2d, 4a, 4b, and 4c).  

      (7) It would be more informative if the CRISPR screen data were presented in a format where both the adjusted p-value and LFC values of the hits are presented. Perhaps a volcano plot? 

      We have now included these graphs in revised Supplementary Figure S2. 

      (8) In Figure 2d, a cartoon showing primer binding sites for each panel could aid interpretation, particularly in explaining the unexpected simultaneous increase in OGT mRNA and intron retention upon SFSWAP knockdown. 

      We have added a cartoon showing primer binding sites similar to that shown in Fig. 4a.

      (9) Page 9, line 1, states that SFSWAP autoregulates its expression by controlling intron retention. Including a Sashimi plot would provide visual support for this claim. 

      The data suggesting that SFSWAP autoregulates its own transcript abundance were reported in Zachar et al. (1994), not from our own studies. Validation of those data with our RNA-seq data is confounded by the fact that we are using siRNAs to knockdown the SFSWAP RNA at the transcript level (Fig. S15). 

      (10) In the legend of Figure S2 the authors state that negative results are inconclusive because RNA knockdowns are not verified by western blotting or qRT-PCR. This is correct, but the reviewer would also argue that the positive results are also inconclusive as they are not supported by a rescue experiment to confirm that the effect is not due to off-target effects. 

      This is a fair point with respect to the siRNA experiments on their own. However, the CRISPR screen was performed with sgRNAs, and MAGeCK RRA scores are high only for those genes that have multiple sgRNAs that up-regulate the gene. Examination of the SFSWAP sgRNAs individually shows that three of four SFSWAP sgRNAs had false discovery rates ≤10<sup>-42</sup> for GFP upregulation. Thus, the siRNAs provide an additional orthogonal approach. It seems unlikely that the siRNAs, and three independent sgRNAs will have the same off-target results. Thus, these combined observations support the conclusion that SFSWAP loss leads to decreased OGT intron retention.  

      (11) For clarity in Figure 3a, consider using differential % spliced in or intron retention bar plots with directionality (positive and negative axis) and labeling siSFSWAP as the primary condition. 

      (12) Consider presenting Figure 5D as a box plot with a Wilcoxon test for statistical comparison. 

      For both points 11 and 12, we have tried the graphs as the reviewer suggested. While these were good suggestions, in both cases we felt that the original plots ended up presenting a clearer presentation of the data (see Author response image 1).

      Author response image 1.

      (13) Please expand the Methods section to detail the Whippet and MAJIQ analyses. 

      We have expanded the methods section to include additional details of the alternate splicing analysis.

      (14) Include coordinates for the four possible OGT decoy exon combinations analyzed in the Methods section. 

      We have added the coordinates of all four decoy forms in the methods section.  

      (15) A section on SFSWAP mass spectrometry is listed in Methods but is missing from the manuscript. 

      This section has now been removed.

      Reviewer #2 (Recommendations for the authors): 

      This is an excellent contribution. The paper describes an effort to identify the factors responsible for intron retention and alternate exon splicing in a complex system known to be regulated by the O-GlcNAc cycling system. The CRISPR/Cas9 system was used to identify potential factors. The bioinformatic analysis is sophisticated and compelling. The conclusions are of general interest and advance the field significantly. 

      Some specific recommendations. 

      (1) The plots in Figure 3 describing SI and ES events are confusing to this reader. Perhaps the violin plot is not the best way to visualize these events. The same holds true for the histograms in the lower panel of Figure 3. Not sure what to make of these plots. 

      For Figure 3b, we include both scatter and violin plots to represent the same data in two distinct ways. For Figure 3d, we agree that these are not the simplest plots to understand, and we have spent significant time trying to come up with a better way of displaying these trends in GC content as they relate to SE and RI events. Unfortunately, we were unable to identify a clearer way to present these data. 

      (2) The model (Figure 6) is very useful but confusing. The legend and the Figure itself are somewhat inconsistent. The bottom line of the figure is apparent but I fear that the authors are trying to convey a more complete model than is apparent from this figure. Please revise. 

      We have simplified the figure from the previous submission. As mentioned above, we admit that mechanistic details remain unknown. However, we have tried to generate a model that reflects our data, adds some speculative elements to be tested in the future, but remains as simple as possible. We are not quite sure what the reviewer was referring to as “somewhat inconsistent”, but we have attempted to clarify the model in the revised Discussion and Figure legend.  

      (3) It is unclear how normalization of the RNA seq experiments was performed (eg. Figure S5 and 6).  

      The normalization differences in Fig. S5 and S6 (now Fig S8 and S9) were due to scaling differences during the use of rmats2sashimiplot software. We have now replaced Fig. S5 to reflect correctly scaled images.

      I am enthusiastic about the manuscript and feel that with some clarification it will be an important contribution. 

      Thank you for these positive comments about our study!

      Reviewer #3 (Recommendations for the authors): 

      (1) In Figure 1f, it is clear that siRNA-mediated knockdown of OGT greatly increases spliced RNA as the cells attempt to compensate by more efficient intron removal (three left lanes). However, there is no discussion of the various treatments with TG or OSMI. Might quantitation of these lanes not also show the desired effects of TG and OSMI on spliced transcript levels? 

      The strong effect of OGT knockdown masks the (comparatively modest) effects of subsequent inhibitor treatments on the reporter RNA. We have edited the results section to clarify this.

      (2) In Figure 2c, why is the size difference between spliced RNA and intron-retained RNA so different in the GFP-probed gel (right) compared with the OGT-probed gel (left)? Even recognizing that the GFP probe is directed against reporter transcripts, and the OGT probe (I think) is directed against endogenous OGT transcripts, shouldn't the difference between spliced and unspliced bands be the same, i.e., +/- the intron 4 sequence. Also, why does the GFP probe detect the unspliced transcript so poorly? 

      The fully spliced endogenous OGT mRNA is ~5.5 kb while the fully spliced reporter is only ~1.6kb, so the difference in size (the apparent shift relative to the mRNA) is quite different. Moreover, the two panels in Fig 2c are not precisely scaled to one another, so direct comparisons cannot be made. 

      The intron retained isoform does not accumulate to high levels in this reporter, a phenotype that we also observed with our GFP reporter designed to probe the regulation of the MAT2A retained intron (Scarborough et al., 2021). We are not certain about the reason for these observations, but suspect that the reporter RNA’s retained intron isoforms are less stable in the nucleus than their endogenous counterparts. Alternatively, the lack of splicing may affect 3´ processing of the transcripts so that they do not accumulate to the high levels observed for the wild-type genes. 

      (3) Please provide more information about the RNA-seq experiments. How many replicates were performed under each of the various conditions? The methods section says three replicates were performed for the UPF1/TG experiments; was this also true for the SFSWAP experiments?  

      All RNA-seq experiments were performed in biological triplicates. We have edited the methods section to clarify this.

      (4) Relatedly, the several IGV screenshots shown in Figure 3C presumably represent the triplicate RNA seq experiments. In part D, how many experiments does the data represent? Is it a compilation of three experiments? 

      Fig. 3d is derived from alternate splicing analysis performed on three biological replicates. We have added the number of replicates (n=3) on the figure to clarify this. We have also noted that the three IGV tracks represent biological replicates in the Figure legend for 3c.  

      (5) Please provide more details regarding the qRT-PCR experiments. 

      We have provided the positions of primer sets used for RT-qPCR analysis and cartoon depictions of target sites below the data wherever appropriate.

      (6) In the discussion of decoy exon function (in the Discussion section), several relevant observations are cited to support a model in which decoy exons promote assembly of splicing factors. One might also cite the finding that eCLIP profiling has found enriched binding of U2AF1 and U2AF2 at the 5' splice site region of decoy exons (reference 16). 

      Excellent point. This has now been added to the Discussion. 

      Minor corrections / clarifications: 

      (1) In the Figure 2A legend, CRISPR is misspelled. 

      Corrected.

      (2) In the discussion, the phrase "indirectly inhibits splicing of exons 4 and 5, but promoting stable unproductive assembly of the spliceosome", the word "but" should probably be "by". 

      Corrected.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #2 (Public review):

      The authors have constructively responded to previous referee comments and I believe that the manuscript is a useful addition to the literature. I particularly appreciate the quantitative approach to social behavior, but have two cautionary comments.

      (1) Conceptually it is important to further justify why this particular maximum entropy model is appropriate. Maximum entropy models have been applied across a dizzying array of biological systems, including genes, neurons, the immune system, as well as animal behavior, so would seem quite beneficial to explain the particular benefits here, for mouse social behavior as coarse-grained through the eco-hab chamber occupancy. This would be an excellent chance to amplify what the models can offer for biological understanding, particularly in the realm of social behavior

      We thank the reviewer for this comment. Maximum entropy models, along with other statistical inference methods that learn interaction patterns from simultaneously-measured degrees of freedom, help distinguish various types of interactions, e.g. direct vs. indirect interactions among animals, individual preference to food vs. social interaction with pairs. As research on social behavior expands from focusing on pairs of animals to studying groups in (semi-)naturalistic environments, maximum entropy models serve as a crucial link between high-throughput data and the need to identify and distinguish interaction rules. Specifically, among all possible maximum entropy models, the pairwise maximum entropy model is one of the simplest that can describe interactions among individuals, which serves as an excellent starting point to understand collective and social behavior in animals.

      Although the Eco-HAB setup currently records spatially coarse-grained data, it still provides more spatial information compared to the traditional three-chamber tests used to assess sociability for rodents. By showing that the maximum entropy model can effectively analyze Eco-HAB data, we hope to highlight its potential in research of social behavior in animals.

      To amplify what the models can offer for biological understanding particularly in the realm of social behavior, We have updated the Introduction to add a more logical structure to the need of using maximum entropy models to identify interactions among mice. Additionally, we updated the first paragraph of the Discussion to make it specific that it is the use of maximum entropy models that identifies interaction patterns from the high-throughput data. Finally, we have also added in the Discussion (line 422-425) arguments supporting the specific use of pairwise maximum entropy models to study social behaviors.

      (2) Maximum entropy models of even intermediate size systems involve a large number of parameters. The authors are transparent about that limitation here, but I still worry that the conclusion of the sufficiency of pairwise interactions is simply not general, and this may also relate to the differences from previous work. If, as the authors suggest in the discussion, this difference is one of a choice of variables, then that point could be emphasized. The suggestion of a follow up study with a smaller number of mice is excellent.

      We thank the reviewer for raising the issue and agree that the caveat of how general pairwise interactions can describe social behavior of animals needs to be discussed. We have added a sentence in the Discussion to point out this important caveat. “More generally, this discrepancy when looking at different choices of variables raises the issue that when studying social behavior of animals in a group, it is important to test and compare interaction models with different complexity (e.g. pairwise or with higher-order interactions).” We have also toned down our conclusion to limit our results of pairwise interactions describing mice co-localization patterns to the data collected in Eco-HAB (also see Reviewer 3 Major Point 2).

      Reviewer #3 (Public review):

      Summary:

      Chen et al. present a thorough statistical analysis of social interactions, more precisely, co-occupying the same chamber in the Eco-HAB measurement system. They also test the effect of manipulating the prelimbic cortex by using TIMP-1 that inhibits the MMP-9 matrix metalloproteinase. They conclude that altering neural plasticity in the prelimbic cortex does not eliminate social interactions, but it strongly impacts social information transmission.

      Strengths:

      The quantitative approach to analyzing social interactions is laudable and the study is interesting. It demonstrates that the Eco-HAB can be used for high throughput, standardized and automated tests of the effects of brain manipulations on social structure in large groups of mice.

      Weaknesses:

      A demonstration of TIMP-1 impairing neural plasticity specifically in the prelimbic cortex of the treated animals would greatly strengthen the biological conclusions. The Eco-HAB provides coarser spatial information compared to some other approaches, which may influence the conclusions.

      Recommendations for the authors:  

      Reviewer #3 (Recommendations for the authors):

      Major points

      (1) Do the Authors have evidence that TIMP-1 was effective, as well as specific to the prelimbic cortex?

      We refer to the literature for the effectiveness and specificity of TIMP-1 to the prelimbic cortex.

      Specifically, the study by Okulski et al. (Biol. Psychiatry 2007) provides clear evidence that TIMP1 plays a role in synaptic plasticity in the prefrontal cortex. They showed that TIMP-1 is induced in the medial prefrontal cortex (mPFC) following stimulation that triggers late long-term potentiation (LTP), a key model of synaptic plasticity. Overexpression of TIMP-1 in the mPFC blocked the activity of matrix metalloproteinases (MMPs) and prevented the induction of late LTP in vivo. Similar effects were observed with pharmacological inhibition of MMP-9 in vitro, reinforcing the idea that TIMP-1 regulates extracellular proteolysis as part of the plasticity mechanism in the prefrontal cortex. These findings confirm that TIMP-1 is both effective and active in this specific brain region.

      Further evidence comes from Puścian et al. (Mol. Psychiatry 2022), who used TIMP-1-loaded nanoparticles to influence neuronal plasticity in the amygdala. They found that TIMP-1 affected MMP expression, LTP, and dendritic morphology, showing its impact on synaptic modifications. More directly relevant, Winiarski et al. (Sci. Adv. 2025) demonstrated that injecting TIMP-1-loaded nanoparticles into the prelimbic cortex altered responses to social stimuli, further supporting the idea that TIMP-1 has region-specific effects on behavioral processes.

      We have also updated the main text (page 8, 1st paragraph of “Effect of impairing neuronal plasticity in the PL on subterritory preferences and sociability”) of the manuscript to include the above references.

      (2) The Authors seem to suggest that one main reason for the different results compared to Shemesh et al. 2013 was the coarseness of the Eco-HAB data. In this case, I think this conclusion should be toned down because of this significant caveat.

      We thank the reviewer for pointing this out, and agree that this caveat and difference should be emphasized. To tone down the conclusion, we have

      (1) added details about the Eco-HAB (it being coarse-grained, etc.) in the abstract to tone down the conclusion.

      (2) added to the results summary in the Discussion (top of page 12) that the results are “within in the setup of the semi-naturalistic Eco-HAB experiments”

      (3) added to the Discussion (page 13) that the different results compared to Shemesh et al 2013 means that general studies of social behavior need to compare models with different levels of complexity (e.g. pairwise vs. higher-order interactions). (Also see Reviewer 2 Comment 2.)

      Minor points

      (1) Please explain what is measured in Fig. 1C (what is on the y axis?).

      Figure 1C shows the activity of the mice as measured by the rate of transitions, i.e. the number of times the mice switch boxes during each hour of the day, averaged over all N = 15 mice and T = 10 days (cohort M1). The error bars represent variability of activities across individuals or across days. For mouse-to-mouse variability (blue), we first compute for each mouse its number of transitions averaged over the same hour for all 10 days, then we compute its standard deviation across all 15 mice and plot it as error bars. For day-to-day variability (orange), we first compute for each day the number of transitions for each hour averaged over all mice, then compute its standard deviation across all 10 days as the errorbar. We have added the detailed explanation in the caption of Figure 1C.

      (2) In Fig. 3, it would be better to present the control group also in the main figure instead of the supplementary.

      We have merged Figure 3 and Figure 3 Supplementary 1 to present the control group also in the main figure.

      (3) In Fig. 3 and corresponding supplements, there seems to be a large difference between males and females. I think this would deserve some more discussion.

      While not being the main focus of this paper, we agree with the reviewer that the difference between male and female is important and deserves attention in the discussion and also future study. Thus we have added a paragraph in the Discussion (line 394-399, bottom of page 12).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      The authors set out to analyse the roles of the teichoic acids of Streptococcus pneumoniae in supporting the maintenance of the periplasmic region. Previous work has proposed the periplasm to be present in Gram positive bacteria and here advanced electron microscopy approach was used. This also showed a likely role for both wall and lipo-teichoic acids in maintaining the periplasm. Next, the authors use a metabolic labelling approach to analyse the teichoic acids. This is a clear strength as this method cannot be used for most other well studied organisms. The labelling was coupled with super-resolution microscopy to be able to map the teichoic acids at the subcellular level and a series of gel separation experiments to unravel the nature of the teichoic acids and the contribution of genes previously proposed to be required for their display. The manuscript could be an important addition to the field but there are a number of technical issues which somewhat undermine the conclusions drawn at the moment. These are shown below and should be addressed. More minor points are covered in the private Recommendations for Authors.

      Weaknesses to be addressed:

      (1) l. 144 Was there really only one sample that gave this resolution? Biological repeats of all experiments are required.

      CEMOVIS is a very challenging method that is not amenable to numerous repeats. However, multiple images were recorded from at least two independent samples for each strain. Additional sample images are shown in a new Fig. S3.

      CETOVIS is even more challenging (only two publications in Pubmed since 2015) and was performed on a single ultrathin section that, exceptionally, laid perfectly flat on the EM grid, allowing tomography data acquisition on ∆tacL cells. The reconstructed tomogram confirmed the absence of a granular layer in the depth of the section. Additionally, the numbering of Fig. S4A-B (previously misidentified as Fig. S2A-B) has been corrected in the text of V2.

      (2) Fig. 4A. Is the pellet recovered at "low" speeds not just some of the membrane that would sediment at this speed with or without LTA? Can a control be done using an integral membrane protein and Western Blot? Using the tacL mutant would show the behaviour of membranes alone.

      We think that the pellet is not just some of the membrane but most of it. In support of this view, the “low” speed pellets after enzymatic cell lysis contain not just some membrane lipids, but most of them (Fig. S10A). We therefore expect membrane proteins to be also present in this fraction. We performed a Western blot using antibodies against the membrane protein PBP2x (new Fig. S7C). Unfortunately, no signal was detected most likely due to protein degradation from contaminant proteases that we could trace to the purchased mutanolysin. The same sedimentation properties were observed with the ∆tacL strain as shown in Fig. 6A. However, in the ∆tacL strain the membrane pellet still contains membrane-bound TA precursors. It is therefore impossible to test definitely if pneumococcal membranes totally devoid of TA would sediment in the same way.

      (3) Fig. 4A. Using enzymatic digestion of the cell wall and then sedimentation will allow cell wall associated proteins (and other material) to become bound to the membranes and potentially effect sedimentation properties. This is what is in fact suggested by the authors (l. 1000, Fig. S6). In order to determine if the sedimentation properties observed are due to an artefact of the lysis conditions a physical breakage of the cells, using a French Press, should be carried out and then membranes purified by differential centrifugation. This is a standard, and well-established method (low-speed to remove debris and high-speed to sediment membranes) that has been used for S. pneumoniae over many years but would seem counter to the results in the current manuscript (for instance Hakenbeck, R. and Kohiyama, M. (1982), Purification of Penicillin-Binding Protein 3 from Streptococcus pneumoniae. European Journal of Biochemistry, 127: 231-236).

      Thank you for this suggestion. We have tested this hypothesis by breaking cells with a Microfluidizer followed by differential centrifugation. This experiment, which requires an important minimal volume, was performed with unlabeled cells (due to the cost of reagents) and assessed by Western blot using antibodies against the membrane protein PBP2x (new Fig. S7C). In this case, the majority of the membrane material was found in the high-speed pellet, as expected.

      We also applied the spheroplast lysis procedure of Flores-Kim et al. to the labeled cells, and found that most of the labeled material sedimented at low speed (new Fig. S7B), as observed with our own procedure.

      With these new results, the section on membrane density has been removed from the Supplementary Information. Instead, the fractionation is further discussed in terms of size of membrane fragments and presence of intact spheroplasts in the notes in Supplementary Information preceding Fig. S7.

      (4) l. 303-305. The authors suggest that the observed LTA-like bands disappear in a pulse chase experiment (Fig. 6B). What is the difference between this and Fig. 5B, where the bands do not disappear? Fig. 5C is the WT and was only pulse labelled for 5 min and so would one not expect the LTA-like bands to disappear as in 6B?

      Fig. 6B shows a pulse-chase experiment with strain ∆tacL, whereas Fig. 5C shows a similar experiment with the parental WT strain. The disappearance of the LTA-like band pattern with the ∆tacL strain (Fig. 6B), and their persistence in the WT strain (Fig. 5C), indicate that these bands are the undecaprenyl-linked TA in ∆tacL and proper LTA in the WT. A sentence has been added to better explain this point in V2.

      Note that we have exchanged the previous Fig. 5C and Fig. S13B, so that the experiments of Fig. 5A and 5C are in the same medium, as suggested by Reviewer #2.

      (5) Fig. 6B, l. 243-269 and l. 398-410. If, as stated, most of the LTA-like bands are actually precursor then how can the quantification of LTA stand as stated in the text? The "Titration of Cellular TA" section should be re-evaluated or removed? If you compare Fig. 6C WT extract incubated at RT and 110oC it seems like a large decrease in amount of material at the higher temperature. Thus, the WT has a lot of precursors in the membrane? This needs to be quantified.

      Indeed, the quantification of the ratio of LTA and WTA in the WT strain rests on the assumption that the amount of membrane-linked polymerized TA precursors is negligible in this strain. This assumption is now stated in the Titration section. We think it is the case. The true LTA and TA precursors do not have exactly the same electrophoretic mobility, being shifted relative to each other by about half a ladder “step”. This difference is visible when samples are run in adjacent lanes on the same gel, as in the new Fig. 6C. The difference of migration was well documented in the original paper about the deletion of tacL, although tacL was known as rafX at that time, and the ladders were misidentified as WTA (Wu et al. 2014. A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in Streptococcus pneumoniae: implications for bacterial virulence. J Bacteriol. 196, 3324-34. doi: 10.1128/JB.01696-14). This reference was added in V2. The experiment in the new Fig. 6C was repeated to have all samples on the same gel and treated at a lower temperature. The minor effect on the amount of LTA when WT cells are heated at pH 4.2 may be due to the removal of some labeled phosphocholine. We have NMR evidence that the phosphocholine in position D is labile to acidic treatment of LTA, which may lack in some cases, as reported by Hess et al. (Nat Commun. 2017 Dec 12;8(1):2093. doi: 10.1038/s41467-017-01720-z).

      (6) L. 339-351, Fig. 6A. A single lane on a gel is not very convincing as to the role of LytR. Here, and throughout the manuscript, wherever statements concerning levels of material are made, quantification needs to be done over appropriate numbers of repeats and with densitometry data shown in SI.

      Yes indeed. Apart from the titration of TA in the WT strain, we haven’t yet carried out a thorough quantification of TA or LTA/WTA ratio in different strains and conditions, although we intend to do so in a follow-up study, using the novel opportunities offered by the method presented here.

      However, to better substantiate our statement regarding the ∆lytR strain, we have quantified two experiments performed in C-medium with azido-choline, and two experiments of pulse labeling in BHI medium. The results are presented in the additional supplementary Fig. S14. The value of 51% was a calculation error, and was corrected to 41%. Likewise, the decrease in the WTA/LTA ratio was corrected to 5 to 7-fold.

      (7) 14. l. 385-391. Contrary to the statement in the text, the zwitterionic TA will have associated counterions that result in net neutrality. It will just have both -ve and +ve counterions in equal amounts (dependent on their valency), which doesn't matter if it is doing the job of balancing osmolarity (rather than charge).

      Thank you for pointing out this point. The paragraph has been corrected in V2.

      Reviewer #2 (Public review):

      The Gram-positive cell wall contains for a large part of TAs, and is essential for most bacteria. However, TA biosynthesis and regulation is highly understudied because of the difficulties in working with these molecules. This study closes some of our important knowledge gaps related to this and provides new and improved methods to study TAs. It also shows an interesting role for TAs in maintaining a 'periplasmic space' in Gram positives. Overall, this is an important piece of work. It would have been more satisfying if the possible causal link between TAs and periplasmic space would have been more deeply investigated with complemented mutants and CEMOVIS. For the moment, there is clearly something happening but it is not clear if this only happens in TA mutants or also in strains with capsules/without capsules and in PG mutants, or in lafB (essential for production of another glycolipid) mutants. Finally, some very strong statements are made suggesting several papers in the literature are incorrect, without actually providing any substantiation/evidence supporting these claims. Nevertheless, I support the publication of this work as it pioneers some new methods that will definitively move the field forward.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) l. 55 It is stated that TA are generally not essential. This needs to be introduced in a little more detail as in several species they are collectively. Need some more references here to give context.

      We have expended the paragraph and added a selection of references in V2.

      (2) l. 63 and Fig. 1A. Is the model based on the images from this paper? Is the periplasm as thick as the peptidoglycan layer? Would you not expect the density of WTA to be the same throughout the wall, rather than less inside? Do the authors think that the TA are present as rods in the cell envelope and because of this the periplasm looks a little like a bilayer, is this so? Is the relative thickness of the layers based on the data in the paper (Table 1)?

      The model proposed in Fig. 1A is not based on our data. It is a representation of the model proposed by Harold Erickson, and the appropriate reference has been added to the figure legend in V2. We do not speculate on the relative density of WTA inside the peptidoglycan layer, at the surface or in the periplasm. The only constraint from the model is that the density of WTA in the periplasm should be sufficient for self-exclusion and allow the brush polymer theory to apply. The legend has been amended in V2.

      We indeed think that the bilayer appearance of the periplasmic space in the wild type strain, and the single layer periplasmic space in the ∆tacL and ∆lytR support the Erickson’s model. Although the model was drawn arbitrarily, it turns out that the relative thickness of the peptidoglycan and periplasmic scale is in rough agreement with the measurements reported in Table 1.

      (3) Fig. 2. It is hard to orient oneself to see the layers. The use of the term periplasmic space (l. 132) and throughout is probably not wise as it is not a space.

      We prefer to retain this nomenclature since the term periplasmic space has been used in all the cell envelope CEMOVIS publications and is at the core of Erickson’s hypothesis about these observations and teichoic acids.

      (4) L. 147. This is not referring to Fig. S2A-B as suggested but Fig. S3A-B.

      This has been corrected.

      (5) l. 148. How do you know the densities observed are due to PG or certainly PG alone? Perhaps it is better to call this the cell wall.

      Yes. Cell wall is a better nomenclature and the text and Table 1 have been corrected in V2, in accordance with Fig. 2.

      (6) l. 165. It is also worth noting that peripheral cell wall synthesis also happens at the same site so this may well not be just division.

      Yes. We have replaced “division site” by “mid-cell” in V2.

      (7) l. 214 What is the debris? If PG digestion has been successful then there will be marginal debris. Is this pellet translucent (like membranes)? If you use fluorescently labelled PG in the preparation has it all disappeared, as would be expected by fully digested and solubilised material?

      In traditional protocols of bacterial membrane preparation, a low-speed centrifugation is first performed to discard “debris” that to our knowledge have not been well characterized but are thought to consist of unbroken cells and large fragments of cell wall. After enzymatic degradation of the pneumococcal cell wall, the low-speed pellet is not translucent as in typical membrane pellets after ultracentrifugation, but is rather loose, unlike a dense pellet of unbroken cells. A description of the pellet appearance was added in V2.

      It is a good idea to check if some labeled PG is also pelleted at low-speed after digestion. In a double labeling experiment using azido-choline and a novel unpublished metabolic probe of the PG, we found that the PG was fully digested and labeled fragments migrated as a couple of fuzzy bands likely corresponding to different labeled peptides. These species were not pelleted at low speed.

      (8) l. 219. Can you give a reference to certify that the low mobility material is WTA? Why does it migrate differently than LTA? Or is the PG digestion not efficient?

      WTA released from sacculi by alkaline lysis were found to migrate as a smear at the top of native gels revealed by alcian-blue silver staining, which is incompatible with SDS (Flores-Kim, 2019, 2022). The references have be added in V2. It could be argued in this case that the smearing was due to partial degradation of the WTA by the alkaline treatment.

      Bui et al. (2012) reported the preparation of WTA by enzymatic digestion of sacculi, but the resulting WTA were without muropeptide, presumably due to a step of boiling at pH 5 used to deactivate the enzymes.

      To our knowledge, this is the first report of pneumococcal WTA prepared by digestion of sacculi and analyzed by SDS-PAGE. Since the migration of WTA in native and SDS-PAGE is similar, we hypothesize that they do not interact significantly with the dodecyl sulphate, in contrast to the LTA, which bear a lipidic moiety. The fuzziness of the WTA migration pattern may also result from the greater heterogeneity due to the attached muropeptide, such as different lengths (di-, tetra-saccharide…), different peptides despite the action of LytA (tri-, tetra-peptide…), different O-acetylation status, etc.

      (9) L. 226-227, Fig S8. Presumably several of the major bands on the Coomassie stained gel are the lysozyme, mutanolysin, recombinant LytA, DNase and RNase used to digest the cell wall etc.? Can the sizes of these proteins be marked on the gel. Do any of them come down with the material at low-speed centrifugation?

      We have provided a gel showing the different enzymes individually and mixed (new Fig. S9G). While performing several experiments of this type, we found that the mutanolysin might be contaminated with proteases. The enzymes do not appear to sediment at low speed.

      (10) Fig. S9B. It is difficult to interpret what is in the image as there appear to be 2 populations of material (grey and sometimes more raised). Does the 20,000 g material look the same?

      Fig. S10B is a 20,000 × g pellet. We agree that there appears to be two types of membrane vesicles, but we do not know their nature.

      (11) l. 277 and Fig. 5A. Why is it "remarkable" that there are apparently more longer LTA molecules as the cell reach stationary phase?

      This is the first time that a change of TA length is documented. Such a change could conceivably have consequences in the binding and activity of CBPs and the physiology of the cell envelope in general. These questions should be adressed in future studies.

      (12) l. 280. How do you know which is the 6-repeat unit?

      It is an assumption based on previous analyses by Gisch et al.( J Biol Chem 2013, 288(22):15654-67. doi: 10.1074/jbc.M112.446963). The reference was added.

      (13) Fig. 5A and C. Panel C, the cells were grown in a different medium and so are not comparable to Panel A. Why is Fig. S12B not substituted for 5B? Presumably these are exponential phase cells.

      We have interverted the Fig. S13B and 5C in V2, as suggested, and changed the text and legends accordingly.

      Reviewer #2 (Recommendations for the authors):

      L30: vitreous sections?

      Corrected in V2.

      L32: as their main universal function --> as a universal function. To show it's the main universal function, you will need to look at this across various bacterial species.

      Changed to “possible universal function” in V2.

      L35: enabled the titration the actual --> titration of the actual?

      Corrected in V2.

      L34: consider breaking up this very long sentence.

      Done in V2.

      L37: may compensate the absence--> may compensate for the absence.

      Corrected in V2.

      L45: Using metabolic labeling and electrophoresis showed --> Metabolic labeling and...

      Corrected in V2.

      L46: This finding casts doubts on previous results, since most LTA were likely unknowingly discarded in these studies. This needs to be rephrased and is unnecessarily callous. While the current work casts doubts on any quantitative assessments of actual LTA levels measured in previous studies, it does not mean any qualitative assessments or conclusions drawn from these experiments are wrong. Better would be to say: These findings suggest that previously reported quantitative assessments of LTA levels are likely underestimating actual LTA levels, since much of the LTA would have been unknowingly discarded.

      If the authors do think that actual conclusions are wrong in previous work, then they need to be more explicit and explain why they were wrong.

      Yes indeed. The statement was toned down in V2.

      L55: Although generally non-essential. I would remove or rephrase this statement. I don't think any TA mutant will survive out in the wild and will be essential under a certain condition. So perhaps not essential for growth under ideal conditions, but for the rest pretty essential.

      The paragraph was amended by qualifying the essentiality to laboratory conditions and including selected references.

      L95: Note that the prevailing model until reference 20 (Gibson and Veening) was that the TA is polymerized intracellularly (see e.g. Figure 2 of PMID: 22432701, DOI: 10.1089/mdr.2012.0026). This intracellular polymerisation model seemed unlikely according to Gibson and Veening ('As TarP is classified by PFAM as a Wzy-type polymerase with predicted active site outside the cell, we speculate that TarP and TarQ polymerize the TA extracellularly in contrast to previous reports.'), but there is no experimental evidence as far as this referee knows of either model being correct.

      Despite the lack of experimental evidence, we think that Gibson and Veening are very likely correct, based on their argument, and also by analogy with the synthesis of other surface polysaccharides from undecaprenyl- or dolichol-linked precursors. It is unfortunate that Figure 2 of PMID: 22432701, DOI: 10.1089/mdr.2012.0026 was published in this way, since there was no evidence for a cytoplasmic polymerization, to our knowledge.

      L97: It is commonly believed, although I'm not sure it has ever been shown, that the capsule is covalently attached at the same position on the PG as WTA. Therefore, there must be some sort of regulation/competition between capsule biosynthesis and WTA biosynthesis (see also ref. 21). The presence of the capsule might thus also influence the characteristics of the periplasmic space. Considering that by far most pneumococcal strains are encapsulated, the authors should discuss this and why a capsule mutant was used in this study and how translatable their study using a capsule mutant is to S. pneumoniae in general.

      A paragraph was added in the Introduction of V2 to present the complication and a sentence was added at the end of the discussion to mention that this should be studied in the future.

      L102: Ref 29 should probably be cited here as well?

      Since in Ref 29 (Flores-Kim et al. 2019) there is a detectable amount of LTA (presumably precursors TA) in the ∆tacL stain, we prefer to cite only Hess et al. 2017 regarding the absence of LTA in the absence of TacL. However, we added in V2 a reference to Flores-Kim et al. 2019 in the following paragraph regarding the role of the LTA/WTA ratio.

      L106: dependent on the presence of the phosphotransferase LytR (21). --> dependent on the presence of the phosphotransferase LytR, whose expression is upregulated during competence (21).

      Corrected in V2.

      L119: I fail to see how the conclusions drawn by other groups (I assume the authors mean work from the Vollmer, Rudner, Bernhardt, Hammerschmidt, Havarstein, Veening groups?) are invalid if they compared WTA:LTA ratios between strains and conditions if they underestimated the LTA levels? Supposedly, the LTA levels were underestimated in all samples equally so the relative WTA/LTA ratio changes will qualitatively give the same outcome? I agree that these findings will allow for a reassessment of previous studies in which presumably too low LTA levels were reported, but I would not expect a difference in outcome when people compared WTA:LTA ratios between strains?

      The sentence was rephrased in V2 to be neutral regarding previous work and rather emphasize future possibilities.

      L131: Perhaps it would be good to highlight that such a conspicuous space has been noticed before by other EM methods (see e.g. Figs.4 and 5 or ref 19, or one of the most clear TEM S. pneumoniae images I have seen in Fig. 1F of Gallay et al, Nat. Micro 2021). However, always some sort of staining had previously been performed so it was never clear this was a real periplasmic space. CEMOVIS has this big advantage of being label free and imaging cells in their presumed native state.

      Thanks for pointing out these beautiful data that we had overlooked. We have added a few sentences and references in the Discussion of V2.

      L201: References are not numbered.

      Corrected in V2.

      L271/L892: Change section title. 'Evolution' can have multiple meanings. It would be more clear to write something like 'Increased TA chain length in stationary phase cells' or something like that.

      Changed in V2.

      L275: harvested

      Corrected in V2.

      L329: add, as suggested shown previously (I guess refs 24 and 29)

      Reference to Hess et al. 2017 has been added in V2. A sentence and further references to Flores-Kim, 2019, 2022 and Wu et al. 2014 were added at the end of the discussion with respect to the LTA-like signal observed in these studies of ∆tacL strains.

      L337: I think a concluding sentence is warranted here. These experiments demonstrate that membrane-bound TA precursors accumulate on the outside of the membrane, and are likely polymerized on the outside as well, in line with the model proposed in ref. 20.

      From the point of view of formal logic, the accumulation of membrane-bound TA precursors on the outer face of the membrane does not prove that they were assembled there. They could still be polymerized inside and translocated immediately. However, since this is extremely unlikely for the reasons discussed by Gibson and Veening, we have added a mild conclusion sentence and the reference in V2.

      L343: How accurate are these quantifications? Just by looking at the gel, it seems there is much less WTA in the lytR mutant than 50% of the wild type?

      Yes, the 51% value was a calculation error. This was changed to 41%. Likewise, the decrease of the WTA amount relative to LTA was corrected to 5- to 7-fold.

      Apart from the titration of TA in the WT strain, we haven’t yet carried out a careful quantification neither of TA nor of the LTA/WTA ratio in different strains and conditions, although we intend to do so in the near future using the method presented here.

      However, to better substantiate our statement regarding the ∆lytR strain, we have quantified two experiments of growth in C-medium with azido-choline, and two experiments of pulse labeling in BHI medium. The results are presented in the additional supplementary Fig. S14.

      L342: although WTA are less abundant and LTA appear to be longer (Fig. 6A). although WTA are less abundant and LTA appear to be longer (Fig. 6A), in line with a previous report showing that LytR the major enzyme mediating the final step in WTA formation (ref. 21). (or something like that). Perhaps better is to start this paragraph differently. For instance: Previous work showed that LytR is the major enzyme mediating the final step in WTA formation (ref. 21). As shown in Fig. 6A, the proportion of WTA significantly decreased in the lytR mutant. However, there was still significant WTA present indicating that perhaps another LCP protein can also produce WTA.

      Changed in V2.

      Of note, WTA levels would be a lot lower in encapsulated strains as used in Ref. 21 (assuming WTA and capsule compete for the same linkage on PG). So perhaps it would be hard to detect any residual WTA in a encapsulated lytR mutant?

      Investigation of the relationship between TA and capsule incorporation or O-acetylation is definitely a future area of study using this method of TA monitoring.

      L371: see my comments related to L131. Some TEM images clearly show the presence of a periplasmic space.

      Comments and references have been added in V2.

      L402: It would be really interesting to perform these experiments on a wild type encapsulated strain. Would these have much more LTA? (I understand you cannot do these experiments perhaps due to biosafety, but it might be interesting to discuss).

      Yes. It would be interesting to compare the TA in D39 and D39 ∆cps strains. We have added this perspective at the end of the discussion in V2.

      L418: ref lacks number

      Corrected in V2.

      L423: refs missing.

      References added in V2.

      L487: See my comments regarding L46. I do not see one valid point in the current paper why underestimating LTA levels would change any of the conclusions drawn in Ref. 21. I do not know the other papers cited well enough, but it seems highly unlikely that their conclusions would be wrong by systematically underestimating LTA levels. As far as I understand it, this current work basically confirms the major conclusions drawn by these 'doubtful' papers (that TacL makes LTA and LytR is the main WTA producer). As such, I find this sentence highly unfair without precisely specifying what the exact doubts are. Sure, this current paper now shows that probably people have discarded unknowingly LTA and therefore underestimated LTA levels, so any quantitative assessment of LTA levels are probably wrong. That is one thing. But to say this casts doubts on these studies is very serious and unfair (unless the authors provide good arguments to support these serious claims).

      Yes indeed. The sentence was rephrased to be strictly factual in V2.

      Table 2: I assume these strains are delta cps? Would be relevant to list this genotype.

      The Table 2 was completed in V2.

      The authors should comment on why the mutants have not been complemented, especially for lytR as it's the last gene in a complex operon. It would be great to see WTA levels being restored by ectopic expression of LytR.

      Yes. We think this could be part of an in-depth study of the attachment of WTA, together with the investigation of the other LCP phosphotransferases.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Pradhan et al investigated the potential gustatory mechanisms that allow flies to detect cholesterol. They found that flies are indifferent to low cholesterol and avoid high cholesterol. They further showed that the ionotropic receptors Ir7g, Ir51b, and Ir56d are important for the cholesterol sensitivity in bitter neurons. The figures are clear and the behavior result is interesting. However, I have several major comments, especially on the discrepancy of the expression of these Irs with other lab published results, and the confusing finding that the same receptors (Ir7g, Ir51b) have been implicated in the detection of various seemingly unrelated compounds.

      Strengths:

      The results are very well presented, the figures are clear and well-made, text is easy to follow.

      Weaknesses:

      (1) Regarding the expression of Ir56d. The reported Ir56d expression pattern contradicts multiple previous studies (Brown et al., 2021 eLife, Figure 6a-c; Sanchez-Alcaniz et al., 2017 Nature Communications, Figure 4e-h; Koh et al., 2014 Neuron, Figure 3b). These studies, using three different driver lines, consistently showed Ir56d expression in sweet-sensing neurons and taste peg neurons. Importantly, Sanchez-Alcaniz et al. demonstrated that Ir56d is not expressed in Gr66a-expressing (bitter) neurons. This discrepancy is critical since Ir56d is identified as the key subunit for cholesterol detection in bitter neurons, and misexpression of Ir7g and Ir51b together is insufficient to confer cholesterol sensitivity (Fig.4b,d). Which Ir56d-GAL4 (and Gr66a-I-GFP) line was used in this study? Is there additional evidence (scRNA sequencing, in-situ hybridization, or immunostaining) supporting Ir56d expression in bitter neurons?

      We agree that the expression pattern of Ir56d diverges from two prior reports . The studies by Brown et al. and Koh et al. employed the same Ir56d-GAL4 driver line, which exhibited expression in sweet-sensing gustatory receptor neurons (GRNs) and taste peg neurons, but not bitter GRNs (the Sanchez-Alcaniz et al. paper did not use an Ir56d-Gal4).

      In our study, we used a Ir56d-GAL4 driver line (KDRC:2307) and the Gr66a-I-GFP reporter line (Weiss et al., 2011 Neuron). This is a crucial distinction, as differences in the regulatory regions used to generate different driver lines are well known to underlie differences in expression patterns. Our double-labeling experiments revealed co-expression of Ir56d with Gr66a-positive bitter GRNs specifically within the S6 and S7 sensilla—types previously shown to exhibit strong electrophysiological responses to cholesterol (Figure 2—figure supplement 1F).

      We believe this observation is biologically significant and consistent with our functional data. Specifically, targeted expression of Ir56d in bitter neurons using the Gr33a-GAL4 was sufficient to rescue cholesterol avoidance behavior in Ir56d<sup>1</sup> mutants (Figure 3G). These results demonstrate that Ir56d plays a functional role in bitter GRNs for cholesterol detection. The convergence of genetic, behavioral, and electrophysiological data presented in our study provides compelling support for this previously unappreciated expression pattern and function of Ir56d.

      (2) Ir51b has previously been implicated in detecting nitrogenous waste (Dhakal 2021), lactic acid (Pradhan 2024), and amino acids (Aryal 2022), all by the same lab. Additionally, both Ir7g and Ir51b have been implicated in detecting cantharidin, an insect-secreted compound that flies may or may not encounter in the wild, by the same lab. Is Ir51b proposed to be a specific receptor for these chemically distinct compounds or a general multimodal receptor for aversive stimuli? Unlike other multimodal bitter receptors, the expression level of Ir51b is rather low and it's unclear which subset of GRNs express this receptor. The chemical diversity among nitrogenous waste, amino acids, lactic acid, cantharidin, and cholesterol raises questions about the specificity of these receptors and warrants further investigation and at a minimum discussion in this paper. Given the wide and seemingly unrelated sensitivity of Ir51b and Ir7g to these compounds I'm leaning towards the hypothesis that at least some of these is non-specific and ecologically irrelevant without further supporting evidence from the authors.

      While it is true that IR51b and IR7g are responsive to a range of compounds, they share chemical features such as nitrogen-containing groups, hydrophobicity, or amphipathic structures suggesting that recognition of these chemicals may be mediated by the same or overlapping domains within the receptor complexes. These features could facilitate binding to a structurally diverse yet chemically related groups of aversive ligands.

      In the case of cholesterol, while its sterol ring system is distinct from the other compounds, it shares hydrophobic and amphipathic properties that may enable interaction with these receptors via similar structural motifs. Importantly, our data demonstrates that Ir51b and Ir7g are necessary but not sufficient on their own to confer cholesterol sensitivity, indicating that additional co-factors or receptor subunits are required for full functionality (Figure 4B, D). Furthermore, our dose-response analysis (Figure 3F) shows that Ir7g is particularly important at higher cholesterol concentrations, supporting the idea of graded sensitivity rather than indiscriminate activation. This suggests that these receptors may have evolved to recognize cholesterol and its analogs (e.g., phytosterols such as stigmasterol, yet to be tested), which are naturally found in the fly’s diet (e.g., yeast and plant-derived matter), as ecologically relevant cues signaling microbial contamination, lipid imbalance, or dietary overconsumption.

      We acknowledge the reviewer’s concern regarding the relatively low expression levels of Ir51b and Ir7g. However, we note that low transcript abundance does not necessarily equate to diminished physiological relevance. Finally, we agree that the chemical diversity of ligands associated with Ir51b and Ir7g warrants deeper investigation, particularly through structure-function studies aimed at identifying ligand-binding domains and receptor-ligand interactions at atomic resolution.

      (3) The Benton lab Ir7g-GAL4 reporter shows no expression in adults. Additionally, two independent labellar RNA sequencing studies (Dweck, 2021 eLife; Bontonou et al., 2024 Nature Communications) failed to detect Ir7g expression in the labellum. This contradicts the authors' previous RT-PCR results (Pradhan 2024 Fig. S4, Journal of Hazardous Materials) showing Ir7g expression in the labellum. Additionally the Benton and Carlson lab Ir51b-GAL4 reporters show no expression in adults as well. Please address these inconsistencies.

      With respect to Ir7g, we acknowledge that the Ir7g-GAL4 reporter line from the Benton lab does not exhibit detectable expression in adult labella. Furthermore, two independent transcriptomic studies—Dweck et al., 2021 (eLife) and Bontonou et al., 2024 (Nature Communications) also did not detect Ir7g transcripts in bulk RNA-seq datasets derived from adult labella. However, our previously published RT-PCR data (Pradhan et al., 2024, Journal of Hazardous Materials, Fig. S4) revealed Ir7g expression in labellar tissue, albeit at low levels. Our RT-PCR includes an internal control (tubulin) with the same reaction tube with control and the Ir7g mutant as a negative control. Therefore, we stand behind the findings that Ir7g is expressed in the labellum.

      We would like to point out that RT-PCR is more sensitive and better-suited to detect low-abundance transcripts than bulk RNA-seq, which may fail to capture transcripts due to limitations in depth of coverage. Moreover, immunohistochemistry can have limitations in detecting very low expression levels. Costa et al. 2013 (Translational lung cancer research) states that “RNA-Seq technique will not likely replace current RT-PCR methods, but will be complementary depending on the needs and the resources as the results of the RNA-Seq will identify those genes that need to then be examined using RT-PCR methods”.

      Similarly, regarding Ir51b, while the GAL4 reporter lines from the Benton and Carlson labs do not show robust adult expression, our RT-PCR and functional data strongly support a role for Ir51b in labellar bitter GRNs. Specifically, Ir51b<sup>1</sup> mutants display electrophysiological deficits in response to cholesterol (Figure 2A–B), and these defects are rescued by expressing Ir51b in Gr33a-positive bitter neurons (Figure 3G), providing functional validation of the RT-PCR expression.

      (4) The premise that high cholesterol intake is harmful to flies, which makes sensory mechanisms for cholesterol avoidance necessary, is interesting but underdeveloped. Animal sensory systems typically evolve to detect ecologically relevant stimuli with dynamic ranges matching environmental conditions. Given that Drosophila primarily consume fruits and plant matter (which contain minimal cholesterol) rather than animal-derived foods (which contain higher cholesterol), the ecological relevance of cholesterol detection requires more thorough discussion. Furthermore, at high concentrations, chemicals often activate multiple receptors beyond those specifically evolved for their detection. If the cholesterol concentrations used in this study substantially exceed those encountered in the fly's natural diet, the observed responses may represent an epiphenomenon rather than an ecologically and ethologically relevant sensory mechanism. What is the cholesterol content in flies' diet and how does that compare to the concentrations used in this paper?

      Drosophila melanogaster cannot synthesize sterols de novo, and must acquire them from its diet. In natural environments, flies acquire sterols from fermenting fruit, decaying plant matter, and yeast, which contain trace amounts of phytosterols (e.g., stigmasterol, β-sitosterol) and ergosterol. While the exact sterol concentrations in these sources remain uncharacterized, our behavioral assays used concentrations (0.001–0.01% by weight) that align with the low levels expected in such nutrient-limited ecological niches.

      In our study, the cholesterol concentrations tested ranged from 0.001% to 0.1%, thereby spanning both the physiologically relevant and slightly elevated range. Importantly, avoidance behaviors and receptor activation were most prominent at 0.1% cholesterol. While it is true that high chemical concentrations may elicit off-target effects via broad receptor activation, our genetic and electrophysiological data indicate that the observed responses are mediated by specific ionotropic receptors (Ir51b, Ir7g, Ir56d) and not merely generalized chemical stress.

      Ecologically, elevated sterol levels may also signal conditions unsuitable for egg-laying or larval development. For example, high levels of cholesterol or other sterols may occur in substrates colonized by pathogenic microbes, decaying animal tissue, or in cases of abnormal microbial fermentation, which could represent a nutritional or microbial hazard. The avoidance of cholesterol may help signal the flies to avoid consuming decaying animal tissue. In this context, sensory detection of excessive cholesterol might serve as a protective function.

      Reviewer #2 (Public review):

      Summary:

      In Cholesterol Taste Avoidance in Drosophila melanogaster, Pradhan et al. used behavioral and electrophysiological assays to demonstrate that flies can: (1) detect cholesterol through a subset of bitter-sensing gustatory receptor neurons (GRNs) and (2) avoid consuming food with high cholesterol levels. Mechanistically, they identified five members of the IR family as necessary for cholesterol detection in GRNs and for the corresponding avoidance behavior. Ectopic expression experiments further suggested that Ir7g + Ir56d or Ir51b + Ir56d may function as tuning receptors for cholesterol detection, together with the Ir25a and Ir76b co-receptors.

      Strengths:

      The experimental design of this study was logical and straightforward. Leveraging their expertise in the Drosophila taste system, the research team identified the molecular and cellular basis of a previously unrecognized taste category, expanding our understanding of gustation. A key strength of the study was its combination of electrophysiological recordings with behavioral genetic experiments.

      Weaknesses:

      My primary concern with this study is the lack of a systematic survey of the IRs of interest in the labellum GRNs. Consequently, there is no direct evidence linking the expression of putative cholesterol IRs to the B GRNs in the S6 and S7 sensilla.

      Specifically, the authors need to demonstrate that the IR expression pattern explains cholesterol sensitivity in the B GRNs of S6 and S7 sensilla, but not in other sensilla. Instead of providing direct IR expression data for all candidate IRs (as shown for Ir56d in Figure 2-figure supplement 1F), the authors rely on citations from several studies (Lee, Poudel et al. 2018; Dhakal, Sang et al. 2021; Pradhan, Shrestha et al. 2024) to support their claim that Ir7g, Ir25a, Ir51b, and Ir76b are expressed in B GRNs (Lines 192-194). However, none of these studies provide GAL4 expression or in situ hybridization data to substantiate this claim.

      Without a comprehensive IR expression profile for GRNs across all taste sensilla, it is difficult to interpret the ectopic expression results observed in the B GRN of the I9 sensillum or the A GRN of the L-sensillum (Figure 4). It remains equally plausible that other tuning IRs-beyond the co-receptor Ir25a and Ir76b-could interact with the ectopically expressed IRs to confer cholesterol sensitivity, rather than the proposed Ir7g + Ir56d or Ir51b + Ir56d combinations.

      We provide electrophysiological data demonstrating that the S6 and S7 sensilla respond to cholesterol (Figure 1D). This finding is consistent with the hypothesis that these sensilla harbor the complete receptor complexes necessary for cholesterol detection. In our electrophysiological recordings, only those bitter GRNs that co-express Ir56d along with either Ir7g or Ir51b generate action potentials in response to cholesterol. Other S-type sensilla lacking one or more of these subunits remain unresponsive, reinforcing the idea that these components are necessary for receptor function and sensory coding of cholesterol. Moreover, in the cholesterol-insensitive I9 sensillum (based on our mapping results using electrophysiology), co-expression of either Ir7g + Ir56d or Ir51b + Ir56d conferred de novo cholesterol sensitivity (Figure 4B). Importantly, no cholesterol response was observed when any of these IRs was expressed alone or when Ir7g + Ir51b were co-expressed without Ir56d. These findings strongly argue against the possibility that endogenous tuning IRs in I9 sensilla (e.g., Ir25a, Ir76b) are sufficient to generate cholesterol responsiveness.

      Furthermore, based on the literature, Ir25a and Ir76b are endogenously expressed in I- and L-type sensilla. Thus, their presence alone is insufficient for cholesterol responsiveness. These data support the model that cholesterol sensitivity depends on a specific, multi-subunit receptor complex (e.g., Ir7g + Ir25a + Ir56d + Ir76b or Ir51b + Ir25a + Ir56d + Ir76b).

      In conclusion, while we acknowledge that our data do not provide a full anatomical map of IR expression across all sensilla, our results strongly support the idea that cholesterol sensitivity in S6 and S7 sensilla arises from specific combinations of IRs expressed in the B GRNs.

      Reviewer #3 (Public review):

      Summary:

      Whether and how animals can taste cholesterol is not well understood. The study provides evidence that 1) cholesterol activates a subset of bitter-sensing gustatory receptor neurons (GRNs) in the fly labellum, but not other types of GRNs, 2) flies show aversion to high concentrations of cholesterol, and this is mediated by bitter GRNs, and 3) cholesterol avoidance depends on a specific set of ionotropic receptor (IR) subunits acting in bitter GRNs. The claims of the study are supported by electrophysiological recordings, genetic manipulations, and behavioral readouts.

      Strengths:

      Cholesterol taste has not been well studied, and the paper provides new insight into this question. The authors took a comprehensive and rigorous approach in several different parts of the paper, including screening the responses of all 31 labellar sensilla, screening a large panel of receptor mutants, and performing misexpression experiments with nearly every combination of the 5 IRs identified. The effects of the genetic manipulations are very clear and the results of electrophysiological and behavioral studies match nicely, for the most part. The appropriate controls are performed for all genetic manipulations.

      Weaknesses:

      The weaknesses of the study, described below, are relatively minor and do not detract from the main conclusions of the paper.

      (1) The paper does not state what concentrations of cholesterol are present in Drosophila's natural food sources. Are the authors testing concentrations that are ethologically Drosophila melanogaster primarily feeds on fermenting fruits and associated microbial communities, especially yeast, which serve as major sources of dietary sterols. These natural food sources are known to contain phytosterols such as stigmasterol and β-sitosterol. One study quantified phytosterols (e.g., stigmasterol, sitosterol) in fruits, reporting concentrations between 1.6–32.6 mg/100 g edible portion (~0.0016–0.0326% wet weight) (Han et al 2008). The range we tested falls within this range. Additionally, ergosterol, the principal sterol in yeast and a structural analog of cholesterol, is present at levels of about 0.005% to 0.02% in yeast-rich environments.

      To ensure physiological relevance, we designed our behavioral assays to include a broad concentration range of cholesterol, from 10<sup>-5</sup>% to 10<sup>-1</sup>%. This spans both physiological levels (0.001–0.01%), which are comparable to those found in the natural diet, and supra-physiological levels (e.g., 0.1%), which exceed natural exposure but help define the threshold for aversive behavior.

      Our results demonstrate that flies begin to avoid cholesterol at concentrations ≥10<sup>-3</sup>% more (Figure 3A), which falls within the upper physiological range and may reflect the threshold beyond which cholesterol or related sterols become deleterious. At these higher concentrations, excess sterols may disrupt membrane fluidity, interfere with hormone signaling, or promote microbial overgrowth—all of which could compromise fly health.

      (2) The paper does not state or show whether the expression of IR7g, IR51b, and IR56d is confined to bitter GRNs. Bitter-specific expression of at least some of these receptors would be necessary to explain why bitter GRNs but not sugar GRNs (or other GRN types) normally show cholesterol responses.

      We show the Ir56d-Gal4 is co-expressed with Gr66a-GFP in S6/S7 sensilla, indicating that it is expressed in bitter GRNs (Figure 2—figure supplement 1F). In the case of Ir7g and Ir51b, there are no reporters or antibodies to address expression. However, previously they have been shown to be expressed in bitter GRNs using RT-PCR (Dhakal et al. 2021, Communications Biology; Pradhan et al. 2024, Journal of Hazardous Materials). In addition, we provide functional evidence that bitter GRNs are required for the cholesterol response since silencing bitter GRNs abolishes cholesterol-induced action potentials (Figure 1E–F). Moreover, we showed that we could rescue the Ir7g<sup>1</sup>, Ir51b<sup>1</sup> and Ir56d<sup>1</sup> mutant phenotypes only when we expressed the cognate transgenes in bitter GRNs using the Gr33a-GAL4 (Figure 3G). Thus, while Ir7g/Ir51b are not exclusive to bitter GRNs, their functional role in cholesterol detection is bitter-GRN-specific.

      (3) The authors only investigated the responses of GRNs in the labellum, but GRN responses in the leg may also contribute to the avoidance of cholesterol feeding. Alternatively, leg GRNs might contribute to cholesterol attraction that is unmasked when bitter GRNs are silenced. In support of this possibility, Ahn et al. (2017) showed that Ir56d functions in sugar GRNs of the leg to promote appetitive responses to fatty acids.

      This is an interesting idea. Indeed, when bitter GRNs are hyperpolarized, the flies exhibit a strong attraction to cholesterol. Nevertheless, the cellular basis for cholesterol attraction and whether it is mediated by GRNs in the legs will require a future investigation.

      (4) The authors might consider using proboscis extension as an additional readout of taste attraction or aversion, which would help them more directly link the labellar GRN responses to a behavioral readout. Using food ingestion as a readout can conflate the contribution of taste with post-ingestive effects, and the regulation of food ingestion also may involve contributions from GRNs on multiple organs, whereas organ-specific contributions can be dissociated using proboscis extension. For example, does presenting cholesterol on the proboscis lead to aversive responses in the proboscis extension assay (e.g., suppression of responses to sugar)? Does this aversion switch to attraction when bitter GRNs are silenced, as with the feeding assay?

      We thank the reviewer for the suggestion regarding the use of the proboscis extension reflex (PER) assay to strengthen the link between labellar GRN activity and behavioral responses to cholesterol.

      Author response image 1.

      Our PER assay results shown above indicate that cholesterol presentation on the labellum or forelegs leads to an aversive response, as evidenced by a significant reduction in proboscis extension when compared to control stimuli (Author response image 1A. 2% sucrose or 2% sucrose with 10<sup>-1</sup>% cholesterol was applied to labellum or forelegs and the percent PER was recorded. n=6. Data were compared using single-factor ANOVA coupled with Scheffe’s post-hoc test. Statistical significance was compared with the control. Means ± SEMs. **p<0.01). This finding supports the idea that cholesterol is detected by labellar and leg GRNs and elicits behavioral avoidance. In contrast, sucrose stimulation robustly induces proboscis extension, as expected for an appetitive stimulus. We confirmed the defects of due to each Ir mutant by presenting the stimuli to the labellum (Author response image 1B). Together, these PER results provide a more direct behavioral correlate of labellar and leg GRN activation and reinforce our conclusion that cholesterol is sensed as an aversive tastant through the labellar bitter GRNs.

      (5) The authors claim that the cholesterol receptor is composed of IR25a, IR76b, IR56d, and either IR7g or IR51b. While the authors have shown that IR25a and IR76b are each required for cholesterol sensing, they did not show that both are required components of the same receptor complex. If the authors are relying on previous studies to make this assumption, they should state this more clearly. Otherwise, I think further misexpression experiments may be needed where only IR25a or IR76b, but not both, are expressed in GRNs.

      In our study, we relied on prior work demonstrating that Ir25a and Ir76b function as broadly required co-receptors in most IR-dependent chemosensory pathways (Ganguly et al., 2017; Lee et al., 2018). These studies showed that Ir25a and Ir76b are co-expressed in many GRNs across multiple taste modalities. Functional IR complexes often fail to form or signal properly in the absence of these co-receptors. Thus, it is widely accepted in the field that Ir25a and Ir76b function together as a core heteromeric scaffold for diverse IR complexes, akin to co-receptors in other ionotropic glutamate receptor families. We state that while Ir25a and Ir76b are presumed co-receptors in the cholesterol receptor complex based on their conserved roles, their direct physical interaction with Ir7g, Ir51b, and Ir56d remains to be demonstrated.

      In support of this model, we note that in our ectopic expression experiments using I9 sensilla, which endogenously express Ir25a and Ir76b, introduction of either Ir7g + Ir56d or Ir51b + Ir56d was sufficient to confer cholesterol sensitivity (Figure 4B). We obtained a similar result in L6 sensilla (Figure 4D), which also endogenously express Ir25a and Ir76b. These findings imply that both co-receptors are already present in these sensilla and are likely part of the functional complex. However, we agree that we have not directly tested the requirement for both co-receptors in a minimal reconstitution context, such as expressing only Ir25a or Ir76b alongside tuning IRs in an otherwise null background. Such an experiment would indeed provide more direct evidence of their joint requirement in the receptor complex. Future studies, including heterologous expression experiments, will be necessary to define the cholesterol-receptor complexes.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      The aim of this study is to test the overarching hypothesis that plasticity in BNST CRF neurons drives distinct behavioral responses to unpredictable threat in males and females. The manuscript provides evidence for a possible sex-specific role for CRF-expressing neurons in the BNST in unpredictable aversive conditioning and subsequent hypervigilance across sexes. As the authors note, this is an important question given the high prevalence of sex differences in stress-related disorders, like PTSD, and the role of hypervigilance and avoidance behaviors in these conditions. The study includes in vivo manipulation, bulk calcium imaging, and cellular resolution calcium imaging, which yield important insights into cell-type specific activity patterns. However, it is difficult to generate an overall conclusion from this manuscript, given that many of the results are inconsistent across sexes and across tests and there is an overall lack of converging evidence. For example, partial conditioning yields increased startle in males but not females, yet, CRF KO only increases startle response in males after full conditioning, not partial, and CRF neurons show similar activity patterns between partial and full conditioning across sexes. Further, while the study includes a KO of CRF, it does not directly address the stated aim of assessing whether plasticity in CRF neurons drives the subsequent behavioral effects unpredictable threat.

      We appreciate the reviewer’s summary and agree that there is a large amount of complexity to the results, and that it was difficult to generate a simple model/conclusion to summarize our work. This is the unfortunate side effect of looking across both sexes at different conditioning paradigms, however, we believe that it is important to convey this information to the field even without a simple answer.  Our data reinforces the very important findings from the Maren and Holmes groups that partial fear is a different process than full fear, and that the BNST plays a differential role here. We have reworded the manuscript to better convey this complexity.

      A major strength of this manuscript is the inclusion of both males and females and attention to possible behavioral and neurobiological differences between them throughout. However, to properly assess sex-differences, sex should be included as a factor in ANOVA (e.g. for freezing, startle, and feeding data in Figure 1) to assess whether there is a significant main effect or interaction with sex. If sex is not a statistically significant factor, both sexes should be combined for subsequent analyses. See, Garcia-Sifuentes and Maney, eLife 2021 https://elifesciences.org/articles/70817. There are additional cases where t-tests are used to compare groups when repeated measures ANOVAs would be more appropriate and rigorous.

      We agree with the reviewer that this is the more appropriate analysis and have changed the analysis and figures throughout the revised manuscript to better assess sex differences as well as differences between fear conditions.

      Additionally, it's unclear whether the two sexes are equally responsive to the shock during conditioning and if this is underlying some of the differences in behavioral and neuronal effects observed. There are some reports that suggest shock sensitivity differs across sexes in rodents, and thus, using a standard shock intensity for both males and females may be confounding effects in this study.

      This is a great point. We have conducted appropriate analysis (Sex by Tone Repeated measures two-way ANOVAS for each of the groups: Ctrl, Full, Part) and there are no sex differences in freezing between males and females. The extent of conditioning is not different between the groups suggesting that if there was a difference in shock sensitivity, it is not driving any discernible differences in behavioral performance. However, it is possible that the experience of the shock differs for the animals even in the absence of any measurable behavior.

      The data does not rule out that BNST CRF activity is not purely tracking the mobility state of the animal, given that the differences in activity also track with differences in freezing behavior. The data shows an inverse relationship between activity and freezing. This may explain a paradox in the data which is why males show a greater suppression of BNST activity after partial conditioning than full conditioning, if that activity is suspected to drive the increased anxiety-like response. Perhaps it reflects that activity is significantly suppressed at the end of the conditioning session because animals are likely to be continuously freezing after repeated shock presentations in that context. It would also explain why there is less of a suppression in activity over the course of the recall session, because there is less freezing as well during recall compared with conditioning.

      While it is possible that the BNST may be tracking activity, we believe it is not purely tracking mobility state. For instance, while freezing increases across tone exposures in Part fear regardless of sex, males show an increase while females show a reduction in BNST response during tone 5 (Fig 2K). The data the reviewer refers to showing the inverse relationship with BNST activity and freezing would have suggested the opposite response if it were purely tracking the mobility state of the animal. This is also the case with BNST<sup>CRF</sup> activity to first and last tone during recall. Despite the suppression of activity over the course of recall (Fig 5K), we see an increase in BNST<sup>CRF</sup> tone response when comparing tone 1 and 6 in males and a decrease in females (Fig 6M), again suggesting the BNST is responding to more than just activity.

      A mechanistic hypothesis linking BNST CRF neurons, the behavioral effects observed after fear conditioning, and manipulation of CRF itself are not clearly addressed here.

      We disagree with this assertion. The data suggests a model in which males respond with increased arousal and Part fear males show persistent activation of the BNST and BNST<sup>CRF</sup> neurons during fear conditioning and recall while female Part fear mice show the opposite response. This female response differs from what the field believes to be the role of the BNST in sustained fear. Additionally, we show that CRF knockdown is not involved in fear differentiation or fear expression in males, while it enhances fear learning and recall in females. We have reworded the manuscript to highlight these novel findings.

      Reviewer #2 (Public Review):

      This study examined the role of CRF neurons in the BNST in both phasic and sustained fear in males and females. The authors first established a differential fear paradigm whereby shocks were consistently paired with tones (Full) or only paired with tones 50% of the time (Part), or controls who were exposed to only tones with no shocks. Recall tests established that both Full and Part conditioned male and female mice froze to the tones, with no difference between the paradigms. Additional studies using the NSF and startle test, established that neither fear paradigm produced behavioral changes in the NSF test, suggesting that these fear paradigms do not result in an increase in anxiety-like behavior. Part fear conditioning, but not Full, did enhance startle responses in males but not females, suggesting that this fear paradigm did produce sustained increases in hypervigilance in males exclusively.

      Thank you for this clear summary of the behavioral work.

      Photometry studies found that while undifferentiated BNST neurons all responded to shock itself, only Full conditioning in males lead to a progressive enhancement of the magnitude of this response. BNST neurons in males, but not females, were also responsive to tone onset in both fear paradigms, but only in Full fear did the magnitude of this response increase across training. Knockdown of CRF from the BNST had no effect on fear learning in males or females, nor any effect in males on fear recall in either paradigm, but in females enhanced both baseline and tone-induced freezing only in Part fear group. When looking at anxiety following fear training, it was found in males that CRF knockdown modulated anxiety in Part fear trained animals and amplified startle in Fully trained males but had no effect in either test in females. Using 1P imaging, it was found that CRF neurons in the BNST generally decline in activity across both conditioning and recall trials, with some subtle sex differences emerging in the Part fear trained animals in that in females BNST CRF neurons were inhibited after both shock and omission trials but in males this only occurred after shock and not omission trials. In recall trials, CRF BNST neuron activity remained higher in Part conditioned mice relative to Full conditioned mice.

      Overall, this is a very detailed and complex study that incorporates both differing fear training paradigms and males and females, as well as a suite of both state of the art imaging techniques and gene knockdown approaches to isolate the role and contributions of CRF neurons in the BNST to these behavioral phenomena. The strengths of this study come from the thorough approach that the authors have taken, which in turn helped to elucidate nuanced and sex specific roles of these neurons in the BNST to differing aspects of phasic and sustained fear. More so, the methods employed provide a strong degree of cellular resolution for CRF neurons in the BNST. In general, the conclusions appropriately follow the data, although the authors do tend to minimize some of the inconsistencies across studies (discussed in more depth below), which could be better addressed through discussion of these in greater depth. As such, the primary weakness of this manuscript comes largely from the discussion and interpretation of mixed findings without a level of detail and nuance that reflects the complexity, and somewhat inconsistency, across the studies. These points are detailed below:

      - Given the focus on CRF neurons in the BNST, it is unclear why the photometry studies were performed in undifferentiated BNST neurons as opposed to CRF neurons specifically (although this is addressed, to some degree, subsequently with the 1P studies in CRF neurons directly). This does limit the continuity of the data from the photometry studies to the subsequent knockdown and 1P imaging studies. The authors should address the rationale for this approach so it is clear why they have moved from broader to more refined approaches.

      The reviewer raises a good point.  We did some preliminary photometry studies with BNST CRF neurons and found that there was poor time locked signal. We reasoned that this was due to the heterogeneity of the cell activity, as we saw in our previous publication (Yu et al). Because of this, we moved to the 1p imaging work in place of continued BNST CRF photometry. We have also reworded the manuscript to better discuss the complexities and inconsistencies in findings across the studies.

      - The CRF KD studies are interesting, but it remains speculative as to whether these effects are mediated locally in the BNST or due to CRF signaling at downstream targets. As the literature on local pharmacological manipulation of CRF signaling within the BNST seems to be largely performed in males, the addition of pharmacological studies here would benefit this to help to resolve if these changes are indeed mediated by local impairments in CRF release within the BNST or not. While it is not essential to add these experiments, the manuscript would benefit from a more clear description of what pharmacological studies could be performed to resolve this issue.

      We agree with the reviewer that the addition of this experiment would be highly informative for differentiating the role of CRF in the BNST. This is something that will need to be considered moving forward and we have added this as a point of discussion.

      - While I can appreciate the authors perspective, I think it is more appropriate to state that startle correlates with anxiety as opposed to outright stating that startle IS anxiety. Anxiety by definition is a behavioral cluster involving many outputs, of which avoidance behavior is key. Startle, like autonomic activation, correlates with anxiety but is not the same thing as a behavioral state of anxiety (particularly when the startle response dissociates from behavior in the NSF test, which more directly tests avoidance and apprehension). Throughout the manuscript the use of anxiety or vigilance to describe startle becomes interchangeable, but then the authors also dissociate these two, such as in the first paragraph of the discussion when stating that the Part fear paradigm produces hypervigilance in males without influencing fear or anxiety-like behaviors. The manuscript would benefit from harmonization of the language used to operationally define these behaviors and my recommendation would be to remain consistent with the description that startle represents hypervigilance and not anxiety, per se.

      The reviewer raises an excellent point, we have clarified in the revised manuscript.

      - The interpretation of the anxiety data following CRF KD is somewhat confusing. First, while the authors found no effect of fear training on behavior in the NSF test in the initial studies, now they do, however somewhat contradictory to what one would expect they found that Full fear trained males had reduced latency to feed (indicative of an anxiolytic response), which was unaltered by CRF KD, but in Part fear (which appeared to have no effect on its own in the NSF test), KD of CRF in these animals produced an anxiolytic effect. Given that the Part fear group was no different from control here it is difficult to interpret these data as now CRF KD does reduce latency to feed in this group, suggesting that removal of CRF now somehow conveys an anxiolytic response for Part fear animals. In the discussion the authors refer to this outcome as CRF KD "normalizing" the behavior in the NSF test of Part fear conditioned animals as now it parallels what is seen after Full fear, but given that the Part fear animals with GFP were no different then controls (and neither of these fear training paradigms produced any effect in the NSF test in the first arm of studies), it seems inappropriate to refer to this as "normalization" as it is unclear how this is now normalized. Given the complexity of these behavioral data, some greater depth in the discussion is required to put these data in context and describe the nuance of these outcomes, in particular a discussion of possible experimental factors between the initial behavioral studies and those in the CRF KD arm that could explain the discrepancy in the NSF test would be good (such as the inclusion of surgery, or other factors that may have differed between these experiments). These behavioral outcomes are even more complex given that the opposite effect was found in startle whereby CRF KD amplified startle in Full trained animals. As such, this portion of the discussion requires some reworking to more adequately address the complexity of these behavioral findings.

      The reviewer raises a good point, and we agree that there are many inconsistencies in the behaviors. We believe it is still good to show these results but have expanded the manuscript on potential reasons for these behavioral inconsistencies.

      Reviewer #3 (Public Review):

      Hon et al. investigated the role of BNST CRF signaling in modulating phasic and sustained fear in male and female mice. They found that partial and full fear conditioning had similar effects in both sexes during conditioning and during recall. However, males in the partially reinforced fear conditioning group showed enhanced acoustic startle, compared to the fully reinforced fear conditioning group, an effect not seen in females. Using fiber photometry to record calcium activity in all BNST neurons, the authors show that the BNST was responsive to foot shock in both sexes and both conditioning groups. Shock response increased over the session in males in the fully conditioned fear group, an effect not observed in the partially conditioned fear group. This effect was not observed in females. Additionally, tone onset resulted in increased BNST activity in both male groups, with the tone response increasing over time in the fully conditioned fear group. This effect was less pronounced in females, with partially conditioned females exhibiting a larger BNST response. During recall in males, BNST activity was suppressed below baseline during tone presentations and was significantly greater in the partially conditioned fear group. Both female groups showed an enhanced BNST response to the tone that slowly decayed over time. Next, they knocked CRF in the BNST to examine its effect on fear conditioning, recall and anxiety-like behavior after fear. They found no effect of the knockdown in either sex or group during fear conditioning. During fear recall, BNST CRF knockdown lead to an increase in freezing in only the partially conditioned females. In the anxiety-like behavior tasks, BNST CRF knockdown lead to increased anxiolysis in the partially reinforced fear male, but not in females. Surprisingly, BNST CRF knockdown increased startle response in fully conditioned, but not partially conditioned males. An effect not observed in either female group. In a final set of experiments, the authors single photon calcium imaging to record BNST CRF cell activity during fear conditioning and recall. Approximately, 1/3 of BNST CRF cells were excited by shock in both sexes, with the rest inhibited and no differences were observed between sexes or group during fear conditioning. During recall, BNST CRF activity decreased in both sexes, an effect pronounced in male and female fully conditioned fear groups.

      Overall, these data provide novel, intriguing evidence in how BNST CRF neurons may encode phasic and sustained fear differentially in males and females. The experiments were rigorous.

      We thank you for this positive review of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      There are several graphs representing different analyses of (presumably) the same group of subjects, but which have different N/group. For example, in Figure 2:

      (1) Fig 2P seems to have n=10 in Part Male group (Peak), but 2Q only has n=9 in Part Male group (AUC)

      (2) Fig 2S seems to have n=10 in Part Female group (Peak), but 2T only has n=7 in Part Female group (AUC)

      (3) Fig 2G (Tone Resp) has n=6 Full Males but 2F (Tone Resp), 2H (Shock Resp), and 2I (Shock Resp) have n=7 Full Males

      (4) Fig 2K (Tone Resp) has n=7 Full Females but 2L (Tone Resp), 2M (Shock Resp), and 2N (Shock Resp) have n=8 Full Females

      (5) Fig 2L (Tone Resp) has n=9 Part Females but 2K (Tone Resp), 2M (Shock Resp), and 2N (Shock Resp) have n=10 Part Females

      It's possible that this is just due to overlapping individual data points which are made harder to see due to the low resolution of the figures. If so, this can be easily rectified. However, there may also be subjects missing from some analyses which must be clarified or corrected.

      We thank you for catching these. We have gone through and fixed any issues with data points and have added statistics and exclusions in datasets to figure legends to further explain inconsistencies.

      Regarding statistical tests:

      (2) Data in Figs 2G and 2I should be analyzed using a two-way RM ANOVA.

      We have now included sex as a factor in most of our analysis and are now using appropriate statistical tests.

      (3) Data in Fig 3K should be analyzed using a two-way RM ANOVA.

      We are now using appropriate statistical tests.

      Calcium activity in response to the shock during conditioning and in response to the tone during recall should be included in Figure 5. Given partial and full animals also receive unequal presentations of the cue, it would be useful to see the effects trial by trial or normalized to the first 3 presentations only.

      The reviewer raises a great point. We have changed this figure and have now added the response to shock and tones. Since we are most interested in the difference between sustained and phasic fear, we decided to compare tone 3 in Full fear and tone 4 in Part fear, which differ in the ambiguity of their cue and only have one tone difference.

      Histology maps should be included for all experiments depicting viral spread and implant location for all animals, in addition to the included representative histology images. These can be placed in the supplement.

      We agree this is helpful. While we have confirmed all of the experiments are hits, the tissue is no longer in condition for this analysis.

      Referring to the quantification of peaks in fiber photometry and cellular resolution calcium imaging data as "spikes" is a bit misleading given the inexact relationship between GCAMP sensor dynamics/calcium binding and neuronal action potentials, perhaps calling it "event" frequency would be more clear.

      We have changed the references of spikes to events as suggested.

      The legend for Figure 2S is mislabeled as A.

      Thank you for catching this mistake, it has been fixed.

      The methods refer to CRFR1 fl/fl animals but it seems no experiments used these animals, only CRF fl/fl.

      We have fixed this, thank you.

      Reviewer #2 (Recommendations For The Authors):

      As stated in the public review, while I think the addition of local pharmacological studies blocking CRF1 and 2 receptors in the BNST in both males and females, done under the same conditions as all of the other testing herein, would help to resolve some of the speculation of interpreting the CRF KD data, I dont think these studies are essential to do, but it would be good for the authors to more explicitly state what studies could be done and how they could facilitate interpretation of these data.

      Thank you for this suggestion. We have added this discussion into the manuscript.

      Asides from this, my other recommendations for the authors are to more clearly address the discrepancies in behavioral outcomes across studies and explicitly describe their rationale for the sequence of experiments performed and to harmonize their operationalization of how they define anxiety.

      Again, we appreciate these great suggestions. We have added more discussion on the behavioral discrepancies as well as rationale for the experiments. We have also changed the wording to remain consistent that the NSF test relates to anxiety and the Startle test relates to vigilance.

      - In Figure 2, Panel S is listed as Panel A in the caption and should be corrected.

      Thank you for catching this mistake, we have fixed it.

      Reviewer #3 (Recommendations For The Authors):

      My biggest concerns I have regard the interpretations and some conclusions from this data set, which I have stated below.

      (1) It was surprising to see minimal and somewhat conflicting behavioral effects due to BNST CRF knockdown. The authors provide a representative image and address this in the conclusion. They mention the role of local vs projection CRF circuits as well as the role of GABA. I don't think those experiments are necessary for this manuscript. However, it may be worthwhile to see through in situ hybridization or IHC, to see BNST CRF levels after both full and partial conditioned fear paradigms. Additionally, it would help to see a quantification of the knockdown of the animals.

      Thank you for these great suggestions. We will consider these for future experiments. We piloted out some CRF sensor experiments to probe this, but it was unclear if the signal to noise for the sensor was sufficient. We hope to do more of this in the future if we ever manage to get funding for this work.

      The authors can add a figure showing deltaF/F changes from control.

      We did not have control mice in these in-vivo experiments Our main interests lie in understanding the differences in Full and Part Fear conditioning paradigms specifically.

      (2) Related to the previous point, it was surprising to see an effect of the CRF deletion in the full fear group compared to the partial fear in the acoustic startle task. To strengthen the conclusion about differential recruitment of CRF during phasic and sustained fear, the experiment in my previous point could help elucidate that. Conversely, intra-BNST administration of a CRF antagonist into the BNST before the acoustic startle after both conditioning tasks could also help. Or patch from BNST CRF neurons after the conditioning tasks to measure intrinsic excitability. Not all these experiments are needed to support the conclusion, it's some examples.

      We thank the reviewer for these suggestions and agree that these are important experiments. We will consider this in future experiments exploring the role of BNST CRF in fear conditioning.

      (3) In Figure 5 F and K, the authors report data combined for both part and full fear conditioning. Were there any differences between the number of excited or inhibited neurons b/t the conditioning groups?

      We are only looking at the first shock exposure in these figures. These were combined because the first tone and shock exposure is identical in Full and Part fear conditioning. Differences in these behavioral paradigms emerge after Tone 3 exposure, where Part fear does not receive a shock while Full fear does.

      Also, can the authors separate male and female traces in Fig 5 E and P?

      Traces in Fig E are from females only. We did not include male traces because males and females had identical responses to first shock, and we felt only one trace was needed as an example. Traces in Figure P are from males. We did not show female traces because females did not show differential effects from baseline to end.

      (4) Also, regarding the calcium imaging data, what was the average length of a transient induced by shock? Were there any differences between the sexes?

      We have many cells in each condition, and the length of traces after shock were all different and hard to quantify, as for example, sometimes cells were active before shock and thus trace length would be difficult to quantify. Therefore, to keep consistency and reduce ambiguity regarding trace lengths, we focused on keeping the time consistent across mice and focused on the 10 second window post shock to be consistent across conditions.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, Osiurak and colleagues investigate the neurocognitive basis of technical reasoning. They use multiple tasks from two neuroimaging studies and overlap analysis to show that the area PF is central for reasoning, and plays an essential role in tool-use and non-tool-use physical problem-solving, as well as both conditions of mentalizing task. They also demonstrate the specificity of the technical reasoning and find that the area PF is not involved in the fluid-cognition task or the mentalizing network (INT+PHYS vs. PHYS-only). This work suggests an understanding of the neurocognitive basis of technical reasoning that supports advanced technologies.

      Strengths:

      -The topic this study focuses on is intriguing and can help us understand the neurocognitive processes involved in technical reasoning and advanced technologies.

      -The researchers obtained fMRI data from multiple tasks. The data is rich and encompasses the mechanical problem-solving task, psychotechnical task, fluid-cognition task, and mentalizing task.

      -The article is well written.

      We sincerely thank Reviewer 1 for their positive and very helpful comments, which helped us improve the MS. Thank you.

      Weaknesses:

      - Limitations of the overlap analysis method: there are multiple reasons why two tasks might activate the same brain regions. For instance, the two tasks might share cognitive mechanisms, the activated regions of the two tasks might be adjacent but not overlapping at finer resolutions, or the tasks might recruit the same regions for different cognition functions.

      Thus, although overlap analysis can provide valuable information, it also has limitations.

      Further analyses that capture the common cognitive components of activation across different

      tasks are warranted, such as correlating the activation across different tasks within subjects for a region of interest (i.e. the PF).

      We thank Reviewer 1 for this comment. We added new analyses to address the two alternative interpretations stressed here by Reviewer 1, namely, the same-region-but-differentfonction interpretation and the adjacency interpretation. The new analyses ruled out both alternative interpretations, thereby reinforcing our interpretation.

      “The conjunction analysis reported was subject to at least two key limitations that needed to be overcome to assure a correct interpretation of our findings. The first was that the tasks could recruit the same regions for different cognition functions (same-region-but-different-function interpretation). The second was that the activated regions of the different tasks could be adjacent but did not overlap at finer resolutions (adjacency interpretation). We tested the same-region-but-different-function interpretation by conducting additional ROI analyses, which consisted of correlating the specific activation of the left area PF (i.e., difference in terms of mean Blood-Oxygen Level Dependent [BOLD] parameter estimates between the experimental condition minus the control condition) in the psychotechnical task, the fluid-cognition task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. This analysis did not include the mechanical problem-solving task because the sample of participants was not the same for this task. As shown in Fig. 5, we found significant correlations between all the tasks that were hypothesized as recruiting technical reasoning, i.e., the psychotechnical task and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .05). By contrast, no significant correlation was obtained between these three tasks and the fluid-cognition task (all p > .15). This finding invalidates the same-region-but-different-function interpretation by revealing a coherent pattern in the activation of the left area PF in situations in which participants were supposed to reason technically. We examined the adjacency interpretation by analysing the specific locations of individual peak activations within the left area PF ROI for the mechanical problemsolving task, the psychotechnical task, the fluid-cognition task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. These peaks, which corresponded to the maximum value of activation obtained for each participant within the left area PF ROI, are reported in Fig. 6. As can be seen, the peaks of the fluid-cognition task were located more anteriorly, in the left area PFt (Parietal Ft) and the postcentral cortex, compared to the peaks of the other four tasks, which were more posterior, in the left area PF. Statistical analyses based on the y coordinates of the individual activation peaks confirmed this description (Fig. 6). Indeed, the y coordinates of the peaks of the mechanical problem-solving task, the psychotechnical task and the PHYS-Only and INT+PHYS conditions of the mentalizing task were posterior to the y coordinates of the peaks of the fluid-cognition task (all p < .05), whereas no significant differences were reported between the four tasks (all p > .05). These findings speak against the adjacency interpretation by revealing that participants recruited the same part of the left area PF to perform tasks involving technical reasoning.” (p. 11-13)

      Control tasks may be inadequate: the tasks may involve other factors, such as motor/ actionrelated information. For the psychotechnical task, fluid-cognition task, and mentalizing task, the experiment tasks need not only care about technical-cognition information but also motor-related information, whereas the control tasks do not need to consider motor-related information (mainly visual shape information). Additionally, there may be no difference in motor-related information between the conditions of the fluid-cognition task. Therefore, the regions of interest may be sensitive to motor-related information, affecting the research conclusion.

      We thank Reviewer 1 for this comment. We added a specific section in the discussion that addresses this limitation.

      “The second limitation concerns the alternative interpretation that the left area PF is not central to technical reasoning but to the storage of sensorimotor programs about the prototypical manipulation of common tools. Here we show that the left area PF is recruited even in situations in which participants do not have to process common manipulable tools. For instance, some items of the psychotechnical task consisted of pictures of tractor, boat, pulley, or cannon. The fact that we found a common activation of the left area PF in such tasks as well as in the mechanical problem-solving task, in which participants could nevertheless simulate the motor actions of manipulating novel tools, indicates that this brain area is not central to tool manipulation but to physical understanding. That being said, some may suggest that viewing a boat or a cannon is enough to incite the simulation of motor actions, so our tasks were not equipped to distinguish between the manipulation-based approach and the reasoning-based approach. We have already shown that the left area PF is more involved in tasks that focus on the mechanical dimension of the tool-use action (e.g., the mechanical interaction between a tool and an object) than its motor dimension (i.e., the interaction between the tool and the effector [e.g., 24, 40]). Nevertheless, we recognize that future research is still needed to test the predictions derived from these two approaches.” (p. 18-19)

      -Negative results require further validation: the cognitive results for the fluid-cognition task in the study may need more refinement. For instance, when performing ROI analysis, are there any differences between the conditions? Bayesian statistics might also be helpful to account for the negative results.

      We agree that our negative results required further validation. We conducted the ROI analyses suggested by Reviewer 1, which confirmed the initial whole-brain analyses.

      “Region of interest (ROI) results. We conducted additional analyses to test the robustness of our findings. One of our results was that we did not report any specific activation of the left area PF in the fluid-cognition task contrary to the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. However, this negative result needed exploration at the ROI level. Therefore, we created a spherical ROI of the left area PF with a radius of 12 mm in the MNI standard space (–59; –31; 40). This ROI was literature-defined to ensure the independence of its selection (40). ROI results are shown in Fig. 4. The analyses confirmed the results obtained with the whole-brain analyses by indicating a greater activation of the left area PF in the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .001), but not in the fluid-cognition task (p \= .35).” (p. 10-11)

      Reviewer #1 (Recommendations For The Authors):

      (1) I may not fully grasp some of the arguments. In the abstract, what does the term "intermediate-level" mean, and why is it an intermediate-level state? In the sentence "the existence of a specific cognitive module in the human brain dedicated to materiality", I cannot see a clear link between technical cognition and the word "materiality".

      We used the term materiality to refer to a potential human trait that allows us to shape the physical world according to our ends, by using, making tools and transmiting them to others. This is a reference to Allen et al. (2020; PNAS): “We hope this empirical domain and modeling framework can provide the foundations for future research on this quintessentially human trait: using, making, and reasoning about tools and more generally shaping the physical world to our ends” (p. 29309). Scientists (including archaeologists, economists, psychologists, neuroscientists) interested in human materiality have tended to focus on how we manipulate things according to our thought (motor cognition) or how we conceptualize our behaviour to transmit it to others (language, social cognition). However, little has been said on the intermediate level, that is, technical cognition. We added the term “technical cognition” here, which should help to make the connection more quickly.

      “Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition.” (p. 2)

      (2) The introduction could provide more details on why the issue of "generalizability and specificity" is important to address, to clarify the significance of the research question.

      We followed this comment and added a sentence to explain why it is important to address this research question. Again, we thank Reviewer 1 for their helpful comments.

      “Here we focus on two key aspects of the technical-reasoning hypothesis that remain to be addressed: Generalizability and specificity. If technical reasoning is a specific form of reasoning oriented towards the physical world, then it should be implicated in all (the generalizability question) and only (the specificity question) the situations in which we need to think about the physical properties of our world.” (p. 5)

      Reviewer #2 (Public Review):

      Summary:

      The goal of this project was to test the hypothesis that a common neuroanatomic substrate in the left inferior parietal lobule (area PF) underlies reasoning about the physical properties of actions and objects. Four functional MRI (fMRI) experiments were created to test this hypothesis. Group contrast maps were then obtained for each task, and overlap among the tasks was computed at the voxel level. The principal finding is that the left PF exhibited differentially greater BOLD response in tasks requiring participants to reason about the physical properties of actions and objects (referred to as technical reasoning). In contrast, there was no differential BOLD response in the left PF when participants engaged in fMRI variant of the Raven's progressive matrices to assess fluid cognition.

      Strengths:

      This is a well-written manuscript that builds from extensive prior work from this group mapping the brain areas and cognitive mechanisms underlying object manipulation, technical reasoning, and problem-solving. Major strengths of this manuscript include the use of control conditions to demonstrate there are differentially greater BOLD responses in area PF over and above the baseline condition of each task. Another strength is the demonstration that area PF is not responsive in tasks assessing fluid cognition - e.g., it may just be that PF responds to a greater extent in a harder condition relative to an easy condition of a task. The analysis of data from Task 3 rules out this alternative interpretation. The methods and analysis are sufficiently written for others to replicate the study, and the materials and code for data analysis are publicly available.

      We sincerely thank Reviewer 2 for their precious comments, which helped us improve the MS. 

      Weaknesses:

      The first weakness is that the conclusions of the manuscript rely on there being overlap among group-level contrast maps presented in Figure 2. The problem with this conclusion is that different participants engaged in different tasks. Never is an analysis performed to demonstrate that the PF region identified in e.g., participant 1 in Task 2 is the same PF region identified in Participant 1 in Task 4.

      We added new analyses that demonstrated that “the PF region identified in e.g., participant 1 in Task 2 is the same PF region identified in Participant 1 in Task 4”. We thank Reviewer 2 for this comment, because these new analyses reinforced our interpretation.

      “The conjunction analysis reported was subject to at least two key limitations that needed to be overcome to assure a correct interpretation of our findings. The first was that the tasks could recruit the same regions for different cognition functions (same-region-but-different-function interpretation). The second was that the activated regions of the different tasks could be adjacent but did not overlap at finer resolutions (adjacency interpretation). We tested the same-region-but-different-function interpretation by conducting additional ROI analyses, which consisted of correlating the specific activation of the left area PF (i.e., difference in terms of mean Blood-Oxygen Level Dependent [BOLD] parameter estimates between the experimental condition minus the control condition) in the psychotechnical task, the fluid-cognition task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. This analysis did not include the mechanical problem-solving task because the sample of participants was not the same for this task. As shown in Fig. 5, we found significant correlations between all the tasks that were hypothesized as recruiting technical reasoning, i.e., the psychotechnical task and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .05). By contrast, no significant correlation was obtained between these three tasks and the fluid-cognition task (all p > .15). This finding invalidates the same-region-but-different-function interpretation by revealing a coherent pattern in the activation of the left area PF in situations in which participants were supposed to reason technically. We examined the adjacency interpretation by analysing the specific locations of individual peak activations within the left area PF ROI for the mechanical problemsolving task, the psychotechnical task, the fluid-cognition task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. These peaks, which corresponded to the maximum value of activation obtained for each participant within the left area PF ROI, are reported in Fig. 6. As can be seen, the peaks of the fluid-cognition task were located more anteriorly, in the left area PFt (Parietal Ft) and the postcentral cortex, compared to the peaks of the other four tasks, which were more posterior, in the left area PF. Statistical analyses based on the y coordinates of the individual activation peaks confirmed this description (Fig. 6). Indeed, the y coordinates of the peaks of the mechanical problem-solving task, the psychotechnical task and the PHYS-Only and INT+PHYS conditions of the mentalizing task were posterior to the y coordinates of the peaks of the fluid-cognition task (all p < .05), whereas no significant differences were reported between the four tasks (all p > .05). These findings speak against the adjacency interpretation by revealing that participants recruited the same part of the left area PF to perform tasks involving technical reasoning.” (p. 11-13)

      A second weakness is that there is a variance in accuracy between tasks that are not addressed. It is clear from the plots in the supplemental materials that some participants score below chance (~ 50%). This means that half (or more) of the fMRI trials of some participants are incorrect. The methods section does not mention how inaccurate trials were handled. Moreover, if 50% is chance, it suggests that some participants did not understand task instructions and were systematically selecting the incorrect item.

      It is true that the experimental conditions were more difficult than the control conditions, with some participants who performed at or below 50% in the experimental conditions. We added a section in the MS to stress this aspect. To examine whether this potential difficulty effect biased our interpretation, we conducted new ROI analyses by removing all the participants who performed at or below the chance level. These analyses revealed the same results as when no participant was excluded, suggesting that this did not bias our interpretation.

      “As mentioned above, the experimental conditions of all the tasks were more difficult than their control conditions. As a result, the specific activation of the left area PF documented above could simply reflect that this area responds to a greater extent in a harder condition relative to an easy condition of a task. This interpretation is nevertheless ruled out by the results obtained with the fluid-cognition task. We did not report a specific activation of the left area PF in this task while its experimental condition was more difficult than its control condition. To test more directly this effect of difficulty, we conducted new ROI analyses by removing all the participants who performed at or below 50% (Fig. S2). These new analyses replicated the initial analyses by showing a greater activation of the left area PF in the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .001), but not in the fluid-cognition task (p \= .48). In sum, the ROI analyses corroborated the wholebrain analyses and ruled out the potential effect of difficulty.” (p. 11)

      A third weakness is related to the fluid cognition task. In the fMRI task developed here, the participant must press a left or right button to select between 2 rows of 3 stimuli while only one of the 3 stimuli is the correct target. This means that within a 10-second window, the participant must identify the pattern in the 3x3 grid and then separately discriminate among 6 possible shapes to find the matching stimulus. This is a hard task that is qualitatively different from the other tasks in terms of the content being manipulated and the time constraints.

      We acknowledge that the fluid-cognition task involved a design that differed from the other tasks. However, this was also true for the other tasks, as the design also differed between the mechanical problem-solving task, the psychotechnical task, and the mentalizing task. Nevertheless, despite these distinctions, we found a consistent activation of the left area PF in these tasks with different designs including in the psychotechnical task, which seemed as difficult as the fluid-cognition task.

      “Region of interest (ROI) results. We conducted additional analyses to test the robustness of our findings. One of our results was that we did not report any specific activation of the left area PF in the fluid-cognition task contrary to the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task. However, this negative result needed exploration at the ROI level. Therefore, we created a spherical ROI of the left area PF with a radius of 12 mm in the MNI standard space (–59; –31; 40). This ROI was literature-defined to ensure the independence of its selection (40). ROI results are shown in Fig. 4. The analyses confirmed the results obtained with the whole-brain analyses by indicating a greater activation of the left area PF in the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .001), but not in the fluid-cognition task (p \= .35).” (p. 10-11)

      In sum, this is an interesting study that tests a neuro-cognitive model whereby the left PF forms a key node in a network of brain regions supporting technical reasoning for tool and non-tool-based tasks. Localizing area PF at the level of single participants and managing variance in accuracy is critically important before testing the proposed hypotheses.

      We thank Reviewer 2 for this positive evaluation and their suggestions. As detailed in our response, our revision took into consideration both the localization of the left area PF at the level of single participants and the variance in accuracy. 

      Reviewer #2 (Recommendations For The Authors):

      Did the fMRI data undergo high-pass temporal filtering prior to modeling the effects of interest? Participants engaged in a long (17-24 minutes) run of fMRI data collection. Highpass filtering of the data is critically important when managing temporal autocorrelation in the fMRI response (e.g., see Shinn et al., 2023, Functional brain networks reflect spatial and temporal autocorrelation. Nature Neuroscience).

      Yes. We added this information.

      “Regressors of non-interest resulting from 3D head motion estimation (x, y, z translation and three axes of rotation) and a set of cosine regressors for high-pass filtering were added to the design matrix.” (p. 25-26)

      Including scales in Figure 2 would help the reader interpret the magnitude of the BOLD effects.

      We added this information in Figure 3 (Figure 2 in the initial version of the MS).

      It was difficult to inspect the small thumbnail images of the task stimuli in Figure 1. Higher resolution versions of those stimuli would help facilitate understanding of the task design and trial structure.

      We changed both Figure 1 and Figure S1.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript reports two neuroimaging experiments assessing commonalities and differences in activation loci across mechanical problem-solving, technical reasoning, fluid cognition, and "mentalizing" tasks. Each task includes a control task. Conjunction analyses are performed to identify regions in common across tasks. As Area PF (a part of the supramarginal gyrus of the inferior parietal lobe) is involved across 3 of the 4 tasks, the investigators claim that it is the hub of technical cognition.

      Strengths:

      The aim of finding commonalities and differences across related problem-solving tasks is a useful and interesting one.

      The experimental tasks themselves appear relatively well-thought-out, aside from the concern that they are differentially difficult.

      The imaging pipeline appears appropriate.

      We thank Reviewer 3 for their constructive comments, which helped us improve the MS.

      Weaknesses:

      (1) Methodological

      As indicated in the supplementary tables and figures, the experimental tasks employed differ markedly in 1) difficulty and 2) experimental trial time. Response latencies are not reported (but are of additional concern given the variance in difficulty). There is concern that at least some of the differences in activation patterns across tasks are the result of these fundamental differences in how hard various brain regions have to work to solve the tasks and/or how much of the trial epoch is actually consumed by "on-task" behavior. These difficulty issues should be controlled for by 1) separating correct and incorrect trials, and 2) for correct trials, entering response latency as a regressor in the Generalized Linear Models, 3) entering trial duration in the GLMs.

      We thank Reviewer 3 for this comment. It is true that the experimental conditions were more difficult than the control conditions, with some participants who performed at or below 50% in the experimental conditions. We added a section in the MS to stress this aspect. We could not conduct new analyses by separating correct and incorrect trials because, for each task, participants had to respond only on the last item of the block. Therefore, we did not record a response for each event. Nevertheless, we could examine whether this potential difficulty effect biased our interpretation, by conducting new ROI analyses in which we removed all the participants who performed at or below the chance level. These analyses revealed the same results as when no participant was excluded, suggesting that this did not bias our interpretation. 

      “As mentioned above, the experimental conditions of all the tasks were more difficult than their control conditions. As a result, the specific activation of the left area PF documented above could simply reflect that this area responds to a greater extent in a harder condition relative to an easy condition of a task. This interpretation is nevertheless ruled out by the results obtained with the fluid-cognition task. We did not report a specific activation of the left area PF in this task while its experimental condition was more difficult than its control condition. To test more directly this effect of difficulty, we conducted new ROI analyses by removing all the participants who performed at or below 50% (Fig. S2). These new analyses replicated the initial analyses by showing a greater activation of the left area PF in the mechanical problem-solving task, the psychotechnical task, and the PHYS-Only and INT+PHYS conditions of the mentalizing task (all p < .001), but not in the fluid-cognition task (p \= .48). In sum, the ROI analyses corroborated the wholebrain analyses and ruled out the potential effect of difficulty.” (p. 11)

      A related concern is that the control tasks also differ markedly in the degree to which they were easier and faster than their corresponding experimental task. Thus, some of the control tasks seem to control much better for difficulty and time on task than others. For example, the control task for the psychotechnical task simply requires the indication of which array contains a simple square shape (i.e., it is much easier than the psychotechnical task), whereas the control task for mechanical problem-solving requires mentally fitting a shape into a design, much like solving a jigsaw puzzle (i.e., it is only slightly easier than the experimental task).

      It is true that some control conditions could be easier than other ones. These differences reinforced the common activation found in the left area PF in the tasks hypothesized as involving technical reasoning, because this activation survived irrespective of the differences in terms of experimental design. For us, the rationale is the same as for a meta-analysis, in which we try to find what is common to a great variety of tasks. The only detrimental consequence we identified here is that this difference explained why we did not report a specific activation of the left area PF in the fluid-cognition task, as if the left area PF was more responsive when the task was difficult. This possibility assumes that the experimental condition of the fluid-cognition task is much more difficult than its control condition compared to what can be seen in the other tasks. As Reviewer 2 stressed in Point 1, this interpretation is unlikely, because the differences between the experimental and control conditions were similar to the fluid-cognition task in the mechanical problem-solving and psychotechnical tasks. In addition, again, the new ROI analyses in which we removed all the participants who performed at or below the chance level in expetimental conditions reproduced our initital results.

      (2) Theoretical 

      The investigators seem to overlook prior research that does not support their perspective and their writing seems to lack scientific objectivity in places. At times they over-reach in the claims that can be made based on the present data. Some claims need to be revised/softened.

      As this comment is also mentioned below, please find our response to it below.

      Reviewer #3 (Recommendations For The Authors):

      (1) Because of the high level of detail, Figures 1 and S2 (particularly the mentalizing task and mechanical problem-solving task, and their controls) are very hard to parse, even when examined relatively closely. It is suggested that these figures be broken down into separate panels for Experiment 1 and Experiment 2 to facilitate understanding.

      We changed both Figure 1 and Figure S1.

      (2) The behavioral data (including response latencies) should be reported in the main results section of the paper and not in a supplement.

      The behavioural data are now reported in the main results. We did not report response latencies because participants were not prompted to respond as quickly as possible.

      “Behavioural results. All the behavioural results are given in Fig. 2. As shown, scores were higher in the experimental conditions than for the control conditions for all the tasks (all p < .05). In other words, the experimental conditions were more difficult than the control conditions. This difference in terms of difficulty can also be illustrated by the fact that some participants performed at or below the chance level in the experimental conditions whereas none did so in the control conditions.” (p. 8)

      (3) The investigators seem to overlook prior research that does not support their perspective and their writing seems to lack scientific objectivity in places. At times they over-reach in the claims that can be made based on the present data. For example, claims that need to be revised/softened include:

      Abstract: "Area PF... can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints". This statement is overly speculative.

      This statement is based on the fact that we reported a combined activation of the technical-reasoning network and the mentalizing network in the INT+PHYS condition of the mentalizing task. This suggests that both networks need to work together for solving a day-today problem in which both the physical constraints of the situation and the intention of the individual must be integrated. Our findings replicated previous ones with a similar task (e.g., Brunet et al. 2000; Völlm et al., 2006), in which the authors gave an interpretation similar to ours in considering that this task requires understanding physical and social causes. Perhaps that the reference to the results of the mentalizing task was not explicit enough. We added “dayto-day” before “problem” in the part of the discussion in which we discuss this possibility to make this aspect clearer.

      “In broad terms, the results of the mentalizing task indicate that causal reasoning has distinct forms and that it recruits distinct networks of the human brain (Social domain: Mentalizing; Physical domain: Technical reasoning), which can nevertheless interact together to solve day-to-day problems in which several domains are involved, such as in the INT+PHYS condition of the mentalizing task.” (p. 16)

      Introduction: "The manipulation-based approach... remains silent on the more general cognitive mechanisms...that must also encompass the use of unfamiliar or novel tools". This statement seems to be based on an overly selective literature review. There are a number of studies in which the relationship between a novel and familiar tool selection/use has been explored (e.g., Buchman & Randerath, 2017; Mizelle & Wheaton, 2010; Silveri & Ciccarelli, 2009; Stoll, Finkel et al., 2022; Foerster, 2023; Foerster, Borghi, & Goslin, 2020; Seidel, Rijntjes et al., 2023).

      We thank Reviewer 3 for this comment. Even if we accept the idea that we possess specific sensorimotor programs about tool manipulation, it remains that these programs cannot explain how an individual decides to bend a wire to make a hook or to pour water in a recipient to retrieve a target. As a matter of fact, such behaviour has been reported in nonhuman animals, such as crows (Weir et al., 2002, Nature) or orangutans (Mendes et al., 2007, Biology Letters). In these studies, the question is whether these nonhuman animals understand the physical causes or not, but the question of sensorimotor programs is never addressed (to our knowledge). This is also true in developmental studies on tool use (e.g., Beck et al., 2011, Cognition; Cutting et al., 2011, Journal of Experimental Child Psychology). This is what we meant here, that is, the manipulation-based approach is not equipped to explain how people solve physical problems by using or making tools – or any object – or by building constructions or producing technical innovations. However, we agree that some papers have been interested in exploring the link between common and novel tool use and have suggested that both could recruit common sensorimotor programs. It is noteworthy that these studies do not test the predictions from the manipulation-based approach versus the reasoning-based approach, so both interpretations are generally viable as stressed by Seidel et al. (2023), one of the papers recommended by Reviewer 3.

      “Apparently, the presentation of a graspable object that is recognizable as a tool is sufficient to provoke SMG activation, whether one tends to see the function of SMG to be either “technical reasoning” (Osiurak and Badets 2016; Reynaud et al. 2016; Lesourd et al. 2018; Reynaud et al. 2019) or “manipulation knowledge” (Sakreida et al. 2016; Buxbaum 2017; Garcea et al. 2019b).” (Seidel et al., 2023; p. 9)

      Regardless, as suggested by Reviewer 3, these papers deserve to be cited and this part needed to be rewritten to insist on the “making, construction, and innovation” dimension more than on the “unfamiliar and novel tool use” dimension to avoid any ambiguity.

      “This manipulation-based approach has provided interesting insights (12–16) and even elegant attempts to explain how these sensorimotor programs could support the use of both unfamiliar or novel tools (17–20), but remains silent on the more general cognitive mechanisms behind human technology that include the use of common and unfamiliar or novel tools but must also encompass tool making, construction behaviour, technical innovations, and transmission of technical content.” (p. 3)

      Introduction: "Here we focus on two important questions... to promote the technicalreasoning hypothesis as a comprehensive cognitive framework..."(italics added). This and other similar statements should be rewritten as testable scientific hypotheses rather than implying that the point of the research is to promote the investigators' preferred view.

      We agree that our phrasing could seem inappropriate here. What we meant here is that the technical-reasoning hypothesis could become an interesting framework for the study of the cognitive bases of human technology only if we are able to verify some of its key facets. As suggested, we rewrote this part. We also rewrote the abstract and the first paragraph of the discussion.

      “Here we focus on two key aspects of the technical-reasoning hypothesis that remain to be addressed: Generalizability and specificity. If technical reasoning is a specific form of reasoning oriented towards the physical world, then it should be implicated in all (the generalizability question) and only (the specificity question) the situations in which we need to think about the physical properties of our world.” (p. 5)

      Introduction: The Goldenberg and Hagmann paper cited actually shows that familiar tool use may be based either on retrieval from semantic memory or by inferring function from structure (mechanical problem solving); in other words, the investigators saw a role for both kinds of information, and the relationship between mechanical problem solving and familiar tool use was actually relatively weak. This requires correction.

      We disagree with Reviewer 3 on this point. The whole sentence is as follows:

      “This silence has been initially broken by a series of studies initiated by Goldenberg and Hagmann (9), which has documented a behavioural link in left brain-damaged patients between common tool use and the ability to solve mechanical problems by using and even sometimes making novel tools (e.g., extracting a target out from a box by bending a wire to create a hook) (9, 17).” (p. 3-4)

      We did not mention the interpretations given by Goldenberg and Hagmann about the link with the pantomime task, but only focused on the link they reported between common tool use and novel tool use. This is factual. In addition, we also disagree that the link between common tool use and novel tool use was weak.

      “The hypothesis put forward in the introduction predicts that knowledge about prototypical tool use assessed by pantomime of tool use and the ability to infer function from structure assessed by novel tool selection can both contribute to the use of familiar tools. Indeed results of both tests correlated signicantly with the use of familiar tools pantomime of tool use: r \= 0.77, novel tool selection: r \= 0.62; both P < 0.001), but there was also a signicant correlation between the two tests r \= 0.64, P < 0.001).” (Goldenberg & Hagmann, 1998; p. 585)

      As can be seen in this quote, they reported a significant correlation between novel tool selection and the use of familiar tools. It is also noteworthy that the novel tool selection test and the pantomime test correlated together. Georg Goldenberg told one of the authors (F. Osiurak; personal communication) that this result incited him to revise its idea that pantomime could assess “semantic knowledge”, which explains why he did not use it again as a measure of semantic knowledge. Instead, he preferred to use a classical semantic matching task in his 2009 Brain paper with Josef Spatt, in which they found a clearer dissociation between semantic knowledge and common/novel tool use not only at the behavioral level but also at the cerebral level.

      Introduction: Please expand and clarify this sentence "However, this involvement seems to be task-dependent, contrary to the systematic involvement of left are PF. The IFG and LOTC activations observed in prior studies are of interest as well. Were they indeed all taskdependent in these studies?

      We agree that this sentence is confusing. We meant that, in the studies reported just above in the paragraph, these regions were not systematically reported contrary to the left area PF. As we think that this information was not crucial for the logic of the paper, we preferred to remove it. 

      Introduction: If implicit mechanical knowledge is acquired through interactions with objects, how is that implicit knowledge conveyed to pass on the material culture to others?

      We thank Reviewer 3 for this comment. Although mechanical knowledge is implicit, it can be indirectly transmitted to other individuals, as shown in two papers we published in Nature Human Behaviour (Osiurak et al., 2021) and Science Advances (Osiurak et al., 2022). Actually, verbal teaching is not the only way to transmit information. There are many other ways of transmitting information such as gestural teaching (e.g., pointing the important aspects of a task to make them salient to the learner), observation without teaching (i.e., when we observe someone unbeknown to them) or reverse engineering (i.e., scrutinizing an artifact made by someone else). We have shown that even in reverse-engineering conditions, participants can benefit from what previous participants have done to increase their understanding of a physical system. In other words, all these forms of transmission allow the learners to understand new physical relationships without waiting that these relationships randomly occur in the environment. There is a wide literature on social learning, which describes very well how knowledge can be transmitted without using explicit communication. In fact, it is very likely that such forms of transmission were already present in our ancestors, allowing them to start accumulating knowledge without using symbolic language. We did not add this information in the MS because we think that this was a little bit beyond the scope of the MS. Nevetheless, we cited relevant literature on the topic to help the reader find it if interested in the topic.

      “Yet, recent accounts have proposed that non-social cognitive skills such as causal understanding or technical reasoning might have played a crucial role in cumulative technological culture (6, 29, 66). Support for these accounts comes from micro-society experiments, which have demonstrated that the improvement of technology over generations is accompanied by an increase in its understanding (67, 68), or that learners’ technical-reasoning skills are a good predictor of cumulative performance in such micro-societies (33, 69).” (p. 19)

      What distinguishes this implicit mechanical knowledge from stored knowledge about object manipulation? Are these two conceptualizations really demonstrably (testably) different?

      We agree that it is complex to distinguish between these two hypotheses as suggested by Seidel et al. (2023) cited above (see Reviewer 3 Point 8). We have conducted several studies to test the opposite predictions derived from each hypothesis. The main distinction concerns the understanding of physical materials and forces, which is central to the technical-reasoning hypothesis but not to the manipulation-based approach. Indeed, sensorimotor programs about tool manipulation are not assumed to contain information about physical materials and forces. In the present study, the understanding of physical materials and forces was needed in the four tasks hypothesized as requiring technical reasoning, i.e., the mechanical problem-solving task, the psychotechnical task and the PHYS-Only and INT+PHYS conditions of the mentalizing task. We can illustrate this aspect with items of each of these tasks. Figure 1A is of the mechanical problem-solving task. 

      As explained in the MS, participants had memorized the five possible tools before the scanner session. Thus, for 4 seconds, they had to imagine which of these tools could be used to extract the target out from the box. We did so to incit them to reason about mechanical solutions based on the physical properties of the problem. Then, they had 3 seconds to select the tool with the appropriate shape, here the right one. In this case, the motor action remains the same (i.e., pulling). Another illustration can be given, with the psychotechnical task (Figure 1B).

      In this task, the participant had to reason as to whether the boat-tractor connection was better in the left picture or in the right picture. This needs to reason about physical forces, but there is no need to recruit sensorimotor programs about tool manipulation. Finally, a last example can be given with the PHYS-Only condition of the mentalizing task (but the logic is the same for the INT+PHYS condition except that the character’s intentions must also be taken into consideration) Figure 1D).

      Here the participant must reason about which picture shows what is physically possible. In this task, there is no need to recruit sensorimotor programs about tool manipulation. In sum, what is common between these three tasks is the requirement to reason about physical materials and forces. We do not ignore that motor actions could be simulated in the mechanical problemsolving task, but no motor action needed to be simulated in the other three tasks. Therefore, what was common between all these tasks was the potential involvement of technical reasoning but not of sensorimotor programs about tool manipulation. Of course, an alternative is to consider that motor actions are always needed in all the situations, including situations where no “manipulable tool” is presented, such as a tractor and a boat, a pulley, or a cannon. We cannot rule out this alternative, which is nevertheless, for us, prejudicial because it implies that it becomes difficult to test the manipulation-based approach as motor actions would be everywhere. We voluntarily decided not to introduce a debate between the reasoning-based approach and the manipulation-based approach and preferred a more positive writing by stressing the insights from the present study. Note that we stressed the merits of the manipulation-based approach in the introduction because we sincerely think that this approach has provided interesting insights. However, we voluntarily did not discuss the debate between the two approaches. Given Reviewer 3’s comment (see also Reviewer 1 Point 2), we understand and agree that some words must be nevertheless said to discuss how the manipulation-based approach could interpret our results, thus stressing the potential limitations of our interpretations. Therefore, we added a specific section in the discussion in which we discussed this aspect in more details.

      “The second limitation concerns the alternative interpretation that the left area PF is not central to technical reasoning but to the storage of sensorimotor programs about the prototypical manipulation of common tools. Here we show that the left area PF is recruited even in situations in which participants do not have to process common manipulable tools. For instance, some items of the psychotechnical task consisted of pictures of tractor, boat, pulley, or cannon. The fact that we found a common activation of the left area PF in such tasks as well as in the mechanical problem-solving task, in which participants could nevertheless simulate the motor actions of manipulating novel tools, indicates that this brain area is not central to tool manipulation but to physical understanding. That being said, some may suggest that viewing a boat or a cannon is enough to incite the simulation of motor actions, so our tasks were not equipped to distinguish between the manipulation-based approach and the reasoning-based approach. We have already shown that the left area PF is more involved in tasks that focus on the mechanical dimension of the tool-use action (e.g., the mechanical interaction between a tool and an object) than its motor dimension (i.e., the interaction between the tool and the effector [e.g., 24, 40]). Nevertheless, we recognize that future research is still needed to test the predictions derived from these two approaches.” (p. 18-19)

      Introduction and throughout: The framing of left Area PF as a special area for technical reasoning is overly reductionistic from a functional neuroanatomic perspective in that it ignores a large relevant literature showing that the region is involved with many other tasks that seem not to require anything like technical cognition. Indeed, entering the coordinates - 56, -29, 36 (reported as the peak coordinates in common across the studied tasks) in Neurosynth reveals that 59 imaging studies report activations within 3 mm of those coordinates; few are action-related (a brief review indicated studies of verbal creativity, texture processing, reading, somatosensory processing, stress reactions, attentional selection etc). Please acknowledge the difficulty of claiming that a large brain region should be labeled the brain's technical reasoning area when it seems to also participate in so much else. The left IPL (including area PF) is densely connected to the ventral premotor cortex, and this network is activated in language and calculation tasks as well as tool use tasks (e.g., Matsumoto, Nair, et al., 2012). What other constructs might be able to unite this disparate literature, and are any of these alternative constructs ruled out by the present data? Lacking this objective discussion, the manuscript does read as a promotion of the investigators' preferred viewpoint.

      We thank Reviewer 3 for this comment. As stressed in the initial version of the MS, we did not write that the left area PF is sufficient but central to the network that allows us to reason about the physical world. Regardless, we agree that an objective discussion was needed on this aspect to help the reader not misunderstand our purpose. We added a section in this aspect as suggested. 

      “Before concluding, we would like to point out two potential limitations of the present study. The first limitation concerns the fact that the literature has documented the recruitment of the left area PF in many neuroimaging experiments in which there was no need to reason about physical events (e.g., language tasks). This can be easily illustrated by entering the left area PF coordinates in the Neurosynth database.

      This finding could be enough to refute the idea that this brain area is specific to technical reasoning. Although this limitation deserves to be recognized, it is also true for many other findings. For instance, sensory or motor brain regions such as the precentral or the postcentral cortex have been found activated in many non-motor tasks, the visual word form area in non-language tasks, or the Heschl’s gyrus in nonmusical tasks. This remains a major challenge for scientists, the question being how to solve these inconsistencies that can result from statistical errors or stress that considerable effort is needed to understand the very functional nature of these brain areas. Thus, understanding that the left area PF is central to physical understanding can be viewed as a first essential step before discovering its fundamental function, as suggested by the functional polyhedral approach (56).” (p. 18)

      Discussion: The discussion of a small cluster in the IFG (pars opercularis) that nearly survived statistical correction is noteworthy in light of the above point. This further underscores the importance of discussing networks and not just single brain regions (such as area PF) when examining complex processes. The investigators note, "a plausible hypothesis is that the left IFG integrates the multiple constraints posed by the physical situation to set the ground for a correct reasoning process, such as it could be involved in syntactic language processing". In fact, the hypothesis that the IFG and SMG are together related to resolving competition has been previously proposed, as has the more specific hypothesis that the SMG buffers actions and that the context-appropriate action is then selected by the IFG (e.g., Buxbaum & Randerath, 2018). The parallels with the way the SMG is engaged with competing lexical or phonological alternatives (e.g., Peramunage, Blumstein et al., 2011) have also been previously noted.

      We added the Buxbaum and Randerath (2018)’s reference in this section.

      “The functional role of the left IFG in the context of tool use has been previously discussed (24) and a plausible hypothesis is that the left IFG integrates the multiple constraints posed by the physical situation to set the ground for a correct reasoning process, such as it could be involved in syntactic language processing (for a somewhat similar view, see [51]).” (p. 16-17)

      Introduction and Discussion: Please clarify how the technical reasoning network overlaps with or is distinct from the tool-use network reported by many previous investigators.

      We added a couple of sentences in the discussion to clarify this point.

      “It should be clear here that we do not advocate the localizationist position simply stating that activation in the left area PF is the necessary and sufficient condition for technical reasoning. We rather defend the view according to which it requires a network of interacting brain areas, one of them – and of major importance – being the left area PF. This allows the engagement of different configurations of cerebral areas in different technical-reasoning tasks, but with a central process acting as a stable component: The left area PF. Thus, when people intend to use physical tools, it can work in concert with brain regions specific to object manipulation and motor control, thereby forming another network, the tool-use network. It can also interact with brain regions specific to intentional gestures to form a “social-learning” network that allows people to enhance their understanding about the physical aspects of a technical task (e.g., the making of a tool) through communicative gestures such as pointing gestures (42). The major challenge for future research is to specify the nature of the cognitive process supported by the left area PF and that might be involved in the broad understanding of the physical world.” (p. 14)

      Discussion: All of the experimental tasks require a response from a difficult choice in an array, and all of the tasks except for the fluid cognition task are likely to require prediction or simulation of a motion trajectory-whether an embodied or disembodied trajectory is unclear. The Discussion does mention the related (but distinct) idea of an "intuitive physics engine", a "kind of simulator", Please clarify how this study can rule out these alternative interpretations of the data. If the study cannot rule out these alternatives, the claims of the study (and the paper title which labels PF as a technical cognition area) should be scaled back considerably. 

      We thank Reviewer 3 for this comment. The authors of the papers on intuitive physics engine or associative learning do not suggest that these processes are embodied. As discussed above, we clarified our perspective on the role of the left area PF and hope that these modifications help the reader better understand it. We warmly thank Reviewer 3 for their comments, which considerably helped us improve the MS.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Hüppe and colleagues had already developed an apparatus and an analytical approach to capture swimming activity rhythms in krill. In a previous manuscript they explained the system, and here they employ it to show a circadian clock, supplemented by exogenous light, produces an activity pattern consistent with "twilight" diel vertical migration (DVM; a peak at sunset, a midnight sink, and a peak in the latter half of the night).

      They used light:dark (LD) followed by dark:dark (DD) photoperiods at two times of the year to confirm the circadian clock, coupled with DD experiments at four times of year to show rhythmicity occurs throughout the year along with DVM in the wild population. The individual activity data show variability in the rhythmic response, which is expected. However, their results showed rhythmicity was sustained in DD throughout the year, although the amplitude decayed quickly. The interpretation of a weak clock is reasonable, and they provide a convincing justification for the adaptive nature of such a clock in a species that has a wide distributional range and experiences various photic environments. These data also show that exogenous light increases the activity response and can explain the morning activity bouts, with the circadian clock explaining the evening and late-night bouts. This acknowledgement that vertical migration can be driven by multiple proximate mechanisms is important.

      The work is rigorously done, and the interpretations are sound. I see no major weaknesses in the manuscript. Because a considerable amount of processing is required to extract and interpret the rhythmic signals (see Methods and previous AMAZE paper), it is informative to have the individual activity plots of krill as a gut check on the group data.

      The manuscript will be useful to the field as it provides an elegant example of looking for biological rhythms in a marine planktonic organism and disentangling the exogenous response from the endogenous one. Furthermore, as high latitude environments change, understanding how important organisms like krill have the potential to respond will become increasingly important. This work provides a solid behavioral dataset to complement the earlier molecular data suggestive of a circadian clock in this species.

      We appreciate the positive evaluation of our work by Reviewer 1, acknowledging our approach to record locomotor activity in krill and the importance of the findings in assessing krill’s potential to respond to environmental change in their habitat.

      Reviewer #2 (Public review):

      Summary:

      This manuscript provides experimental evidence on circadian behavioural cycles in Antarctic krill. The krill were obtained directly from krill fishing vessels and the experiments were carried out on board using an advanced incubation device capable of recording activity levels over a number of days. A number of different experiments were carried out where krill were first exposed to simulated light:dark (L:D) regimes for some days followed by continuous darkness (DD). These were carried out on krill collected during late autumn and late summer. A further set of experiments was performed on krill across three different seasons (summer, autumn, winter), where incubations were all DD conditions. Activity was measured as the frequency by which an infrared beam close to the top of the incubation tube was broken over unit time. Results showed that patterns of increased and decreased activity that appeared synchronised to the LD cycle persisted during the DD period. This was interpreted as evidence of the operation of an internal (endogenous) clock. The amplitude of the behavioural cycles decreased with time in DD, which further suggests that this clock is relatively weak. The authors argued that the existence of a weak endogenous clock is an adaptation to life at high latitudes since allowing the clock to be modulated by external (exogenous) factors is an advantage when there is a high degree of seasonality. This hypothesis is further supported by seasonal DD experiments which showed that the periodicity of high and low activity levels differed between seasons.

      Strengths

      Although there has been a lot of field observations of various circadian type behaviour in Antarctic krill, relatively few experimental studies have been published considering this behaviour in terms of circadian patterns of activity. Krill are not a model organism and obtaining them and incubating them in suitable conditions are both difficult undertakings. Furthermore, there is a need to consider what their natural circadian rhythms are without the overinfluence of laboratory-induced artefacts. For this reason alone, the setup of the present study is ideal to consider this aspect of krill biology. Furthermore, the equipment developed for measuring levels of activity is well-designed and likely to minimise artefacts.

      We would like to thank Reviewer 2 for their positive assessment of our approach to study the influence of the circadian clock on krill behavior. We are delighted, that Reviewer 2 found our mechanistic approach in understanding daily behavioral patterns of Antarctic krill using the AMAZE set-up convincing, and that the challenging circumstances of working with a polar, non-model species are acknowledged.

      Weaknesses

      I have little criticism of the rationale for carrying out this work, nor of the experimental design. Nevertheless, the manuscript would benefit from a clearer explanation of the experimental design, particularly aimed at readers not familiar with research into circadian rhythms. Furthermore, I have a more fundamental question about the relationship between levels of activity and DVM on which I will expand below. Finally, it was unclear how the observational results made here related to the molecular aspects considered in the Discussion.

      (1) Explanation of experimental design - I acknowledge that the format of this particular journal insists that the Results are the first section that follows the Introduction. This nevertheless presents a problem for the reader since many of the concepts and terms that would generally be in the Methods are yet to be explained to the reader. Hence, right from the start of the Results section, the reader is thrown into the detail of what happened during the LD-DD experiments without being fully aware of why this type of experiment was carried out in the first place. Even after reading the Methods, further explanation would have been helpful. Circadian cycle type research of this sort often entrains organisms to certain light cycles and then takes the light away to see if the cycle continues in complete darkness, but this critical piece of knowledge does not come until much later (e.g. lines 369-372) leaving the reader guessing until this point why the authors took the approach they did. I would suggest the following (1) that more effort is made in the Introduction to explain the exact LD/DD protocols adopted (2) that a schematic figure is placed early on in the manuscript where the protocol is explained including some logical flow charts of e.g. if behavioural cycle continues in DD then internal clock exists versus if cycle does not continue in DD, the exogenous cues dominate - followed by - major decrease in cyclic amplitude = weak clock versus minor decrease = strong clock and so on

      We want to thank Reviewer 2 for pointing out that the experimental design and its rationale are not becoming clear early in the manuscript, especially for people outside the field of chronobiology. We added a new figure (now Fig. 1), illustrating the basic principle of chronobiological study design and how we adopted it. We also extended the description at the beginning of the Results section to clarify the rationale behind the experimental design.

      (2) Activity vs kinesis - in this study, we are shown data that (i) krill have a circadian cycle - incubation experiments; (ii) that krill swarms display DVM in this region - echosounder data (although see my later point). My question here is regarding the relationship between what is being measured by the incubation experiments and the in situ swarm behaviour observations. The incubation experiments are essentially measuring the propensity of krill to swim upwards since it logs the number of times an individual (or group) break a beam towards the top of the incubation tube. I argue that krill may be still highly active in the rest of the tube but just do not swim close to the surface, so this approach may not be a good measure of "activity". Otherwise, I suggest a more correct term of what is being measured is the level of "upward kinesis". As the authors themselves note, krill are negatively buoyant and must always be active to remain pelagic. What changes over the day-night cycle is whether they decide to expend that activity on swimming upwards, downwards or remaining at the same depth. Explaining the pattern as upward kinesis then also explains by swarms move upwards during the night. Just being more active at night may not necessarily result in them swimming upwards.

      We believe there is a slight misunderstanding in how what we call “activity” is measured. The experimental columns are equipped with five detector modules, evenly distributed over the height of the column. In our analysis we count all beam breaks caused by upward movement, i.e. every time a detector module is triggered after a detector module at a lower position has been triggered, and not only when the top detector module is triggered. In this way, we record upward swimming movements throughout the column, and not only when the krill swims all the way to the top of the column. This still means that what we are measuring is swimming activity, caused by upward swimming. We use this measure, to deliberately separate increased swimming activity, from baseline activity (i.e. swimming, which solely compensates for negative buoyancy) and inactivity (i.e. passive sinking).

      Higher activity is thus at first interpreted as an increase in swimming activity, which in the field may result in upwards-directed swimming but also could mean a horizontal increase in activity, for example, representing increased foraging and feeding activity. This would explain the daily activity pattern observed under LD cycles (now Fig. 3), which shows a general increase in activity during the dark phase. This nighttime increase could be used for both upward directed migration during sunset and horizontal directed swimming for feeding and foraging throughout the night.

      We added the following sentence to the description of the activity metric in the Methods section to clarify this point (lines 465-469):

      “To accomplish this, we organized the raw beam break data from all five detector modules in each experimental column in chronological order. We selected only those beam break detections that occurred after a detection in the detector module positioned lower on the column. Like this, we consider upward swimming movements throughout the full height of the column.”

      (3) Molecular relevance - Although I am interested in molecular clock aspects behind these circadian rhythms, it was not made clear how the results of the present study allow any further insight into this. In lines 282 to 284, the findings of the study by Biscontin et al (2017) are discussed with regard to how TIM protein is degraded by light via the clock photreceptor CRYTOCHROME 1. This element of the Discussion would be a lot more relevant if the results of the present study were considered in terms of whether they supported or refuted this or any other molecular clock model. As it stands, this paragraph is purely background knowledge and a candidate for deletion in the interest of shortening the Discussion.

      We agree that this part is not directly related to the data presented in the manuscript. We, therefore, omitted this part in the revised version of the manuscript to keep the discussion concise and focused on the results.

      Other aspects

      (i) 'Bimodal swimming' was used in the Abstract and later in the text without the term being fully explained. I could interpret it to mean a number of things so some explanation is required before the term is introduced.

      We thank the Reviewer for pointing this out. We provided an explanation for the term “bimodal” in the Results section, where the two clock driven activity bouts are described first, by extending the sentence in lines 161-164, which now reads:

      “This suggests that the circadian clock drives a distinct bimodal activity pattern with two activity peaks in one day, i.e. the evening and late-night activity bouts, while. In contrast, the morning activity bout is triggered by the onset of illumination in the experimental set-up.”.

      (ii) Midnight sinking - I was struck by Figure 2b with regards to the dip in activity after the initial ascent, as well as the rise in activity predawn. Cushing (1951) Biol Rev 26: 158-192 describes the different phases of a DVM common to a number of marine organisms observed in situ where there is a period of midnight sinking following the initial dusk ascent and a dawn rise prior to dawn descent. Tarling et al (2002) observe midnight sinking pattern in Calanus finmarchicus and consider whether it is a response to feeding satiation or predation avoidance (i.e. exogenous factors). Evidence from the present study indicates that midnight sinking (and potential dawn rise) behaviour could alternatively be under endogenous control to a greater or lesser degree. This is something that should certainly be mentioned in the Discussion, possibly in place of the molecular discussion element mentioned above - possibly adding to the paragraph Lines 303-319.

      We would like to thank the Reviewer for pointing this out and agree that adding the idea of an endogenous control of midnight sinking would be interesting to the discussion. We added the following section to the Discussion (lines 335-343):

      “Interestingly, the decrease in clock-controlled swimming activity during the early night, right after the evening activity bout, may further facilitate a phenomenon called “midnight sinking”, which describes the sinking of animals to intermediate depths after the evening ascent, followed by a second rise to the surface before the morning descend. This behavior has been observed in a number of zooplankton species, including calanoid copepods (see 69, 70 and references therein) and krill (71). While previous studies suggested several exogenous factors, such as satiation or predator presence, as drivers of the midnight sink (69, 70), our study suggests that this pattern may be partly under endogenous control.”

      (iii) Lines 200-207 - I struggled to follow this argument regarding Piccolin et al identifying a 12 h rhythm whereas the present study indicates a ~24 h rhythm. Is one contradicting the other - please make this clear.

      In our study, we found that the circadian clock drives a bimodal pattern of swimming activity in krill, meaning it controls two bouts of activity in a 24-hour cycle. Piccolin et al. (2020) identified a swimming activity pattern of ~12 h (i.e. two peaks in 24 h) at the group level, which aligns with our findings at the individual level. We revised the Section in the discussion for more clarity, which now reads:

      “Data from Piccolin et al. (20) showed a strong damping of the amplitude and indication of a remarkably short (~12 h) free running period (FRP) of vertical swimming behavior of a group of krill under constant darkness (20). The short period found in Piccolin et al. (20) complements is in line with our findings of a bimodal activity pattern the pattern of swimming activity under DD conditions on the individual level found in the present study, suggesting that the ~12 h rhythm in group swimming behavior in Piccolin et al. (20) could have resulted from a bimodal activity pattern at the individual level, as found in our study.” (lines 212-219).  

      (iv) Although I agree that the hydroacoustic data should be included and is generally supportive of the results, I think that two further aspects should be made clear for context (a) whether there was any groundtruthing that the acoustic marks were indeed krill and not potentially some other group know to perform DVM such as myctophids (b) how representative were these patterns - I have a sense that they were heavily selected to show only ones with prominent DVM as opposed to other parts of the dataset where such a pattern was less clear - I am aware of a lot of krill research where DVM is not such a clear pattern and it is disingenuous to provide these patterns as the definitive way in which krill behaves. I ask this be made clear to the reader (note also that there is a suggestion of midnight sinking in Fig 5b on 28/2).

      To clarify the mentioned points concerning the hydroacoustic data:

      a) As mentioned in the Methods section, only hydroacoustic data during active fishing was included in the analysis. E. superba occurs in large monospecific aggregations, and the fishery actively targets E. superba and monitors their catch and the proportion of non-target species continuously with cameras. Krill fishery bycatch rates are very low (0.1–0.3%, Krafft et al. 2022), and fishing operations would stop if non-target species were caught in significant proportions at any time. Therefore, and supported by our own observations when we conducted the experiments, we argue that it is a valid assumption that E. superba predominantly causes the backscattering signal shown in Figure 5 (now Fig. 6).

      b) We are aware of the fact that DVM patterns of Antarctic krill are highly variable and that normal DVM patterns do not need to be the rule (e.g. see our cited study on the plasticity of krill DVM by Bahlburg et al. 2023). The visualized data were not selected for their DVM pattern but represent the period directly preceding the sampling for behavioral experiments in four seasons (experiment 2), including the day of sampling. These periods were chosen to assess the DVM behavior of krill swarms in the field in the days before and during the sampling for behavioral experiments.

      To improve understanding, we modified the description in the Results, Discussion, and Methods sections, as well as the caption of Figure 5 (now Fig. 6), which now read:

      “To investigate whether krill swarms exhibited daily behavioral patterns in swimming behavior in the field before they were sampled for seasonal experiments, hydroacoustic data were recorded from the fishing vessel, continuously over a three-day period prior to sampling for the seasonal experiments described above…” (lines 191-194).

      “Furthermore, hydroacoustic recordings demonstrate that most krill swarms sampled exhibited synchronized DVM in the field in the days directly before sampling for behavioral experiments, indicating that in this region, krill remain behaviorally synchronized across a wide range of photoperiods.” (lines 397-400).

      “Hydroacoustic data were collected using a hull-mounted SIMRAD ES80 echosounder (Kongsberg Maritime AS) aboard the Antarctic Endurance, covering three days before the sampling for each of the seasonal behavioral experiments of experiment 2” (lines 512-515).

      “We only included data during active fishing periods and the vessel is specifically targeting E. superba, which occurs in large monospecific aggregations. Further, krill fishery bycatch rates are very low (0.1-0.3%, 84), which makes it highly probable that the recorded signal represents krill swarms.” (lines 523-526).

      “Hydroacoustic recordings showing the vertical distribution of krill swarms in the upper water column (<220 m) below the vessel, visualized by the mean volume backscattering signal (200 kHz), on the three days prior to krill sampling for experiments…” (lines 802-804).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      As noted in the public review, this is a logical and well-written manuscript. I have very few comments to consider addressing.

      The Results lead with a paragraph outlining the experimental approach. This is good, but you use the term "experiments" to refer to both the two sets, and the two or four subsets of experiments. Perhaps consider the subset experiments as "treatments"? I understood what you meant, but it took a few read-throughs to be sure I got it.

      We thank the reviewer for pointing this out and changed the nomenclature of the experiments throughout the manuscript. We now refer to the two sets of experiments as experiment 1 and 2, to the subsets of experiment 1 as “short day treatment” and “long day treatment”, and to the subsets of experiment 2 as summer treatment, late summer treatment, autumn treatment, and winter treatment. We also believe that the new Figure 1 is now helping to follow the experimental design more efficiently.

      Ln 140: "...off and decrease at lights-on."

      We adjusted the sentence accordingly.

      Ln 244: Can you define "extreme photic conditions"? I get what you mean, but to be clear to the reader this would help.

      We adjusted the sentence, which now reads:

      “This could confer a significant adaptive advantage to species inhabiting environments characterized by extreme photic conditions (53, 54, 60), such as phases of polar night or midnight sun as well as rapid changes in daylength, or species that rely on precise photoperiodic time measurement for accurate seasonal adaptation.” (lines 258-261).

      Figures: Consider adding an LSP for groups in Fig 1. Also, it would be useful to have LSP period estimates for each individual tested. This could be a separate table, or it could be added to the individual activity plots. Should S3 and S4 be reversed?

      We thank the reviewer for their suggestion and added an LSP as figure 1d (now Fig. 2d) to statistically support the group activity shown in Figure 1c (now Fig. 2c) as suggested. We added the individual animals' LSP period estimates to supplementary figures S2, S7, S8, S9, and S10. We also reversed Figures S3 and S4 to match the appearance in the main text. 

      Fig 5: are the light regime bars for b and c correct? They look similar, but there are only 15 days apart, so perhaps they are correct as is.

      We double checked the light regime bars in Fig. 5b and c (now 6b and c) and they are correct as is.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1 (Public review):

      Summary:

      This very interesting manuscript proposes a general mechanism for how activating signaling proteins respond to species-specific signals arising from a variety of stresses. In brief, the authors propose that the activating signal alters the structure by a universal allosteric mechanism.

      Strengths:

      The unitary mechanism proposed is appealing and testable. They propose that the allosteric module consists of crossed alpha-helical linkers with similar architecture and that their attached regulatory domains connect to phosphatases or other molecules through coiled-coli domains, such that the signal is transduced via rigidifying the alpha helices, permitting downstream enzymatic activity. The authors present genetic and structural prediction data in favor of the model for the system they are studying, and stronger structural data in other systems.

      Weaknesses:

      The evidence is indirect - targeted mutations, structural predictions, and biochemical data. Therefore, these important generalizable conclusions are not buttressed by impeccable data, which would require doing actual structures in B. subtilis, confirming experiments in other organisms, and possibly co-evolutionary coupling. In the absence of such data, it is not possible to rule out variant models.

      We thank the reviewer for their feedback. A challenge of studying flexible proteins is that it is often not possible to directly obtain high resolution structural data. For the case of B. subtilis RsbU, the independent experimental approaches we applied (including two unbiased genetic screens, targeted mutagenesis, SAXS, enzymology, and structure prediction, which includes evolutionary coupling) converged upon a model for activation, which we feel is well supported. Frustratingly, our attempts at determining high resolution experimental structures have been unsuccessful, which we think is due to the flexibility of the proteins revealed by our SAXS experiments. For example, we collected X-ray diffraction data from crystals of a fragment of B. subtilis RsbU containing the N-terminal domain and linker in which the linker was almost entirely disordered in the maps. We agree that doing experiments in other organisms would be valuable next steps to test the hypothesis that this coiled-coil based transduction mechanism is conserved across species, and will modify the text to differentiate this more speculative section of the manuscript.

      We have modified the abstract to read:

      “This coiled-coil linker transduction mechanism additionally suggests a resolution to the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases.”

      We have modified the results to read:

      "These predictions suggest a testable hypothesis that RsbP is controlled through an activation mechanism similar to that of RsbU (Fig. 5A)”

      “From this analysis, we speculate that linker-mediated phosphatase domain dimerization is an evolutionarily conserved, adaptable mechanism to control PPM phosphatase activity.”

      Based on this critique (and the critiques of the other reviewers), we plan to do energetic analysis of the predicted coiled coils from the enzymes we analyzed from other species and to incorporate this into the manuscript.

      We have modified the results to read:

      Consistent with a model in which the stability of the linker plays a conserved regulatory role, the AlphaFold2 models for many of the predicted structures have unfavorable polar residues buried in the coiled-coil interface (positions a and d, for which non-polar residues are most favorable) (Figure 5 – figure supplement 2).”

      Finally, in the manuscript, we have highlighted that this mechanism is not the only mechanism for activation of other proteins with effector domains connected to linkers, but rather one of many mechanisms (Fig 5G). The reviewer additionally made helpful suggestions about the text in detailed comments that we will incorporate as appropriate.

      Reviewer #2 (Public review):

      Summary:

      While bacteria have the ability to induce genes in response to specific stresses, they also use the General Stress Response (GSR) to deal with growth conditions that presumably include a larger range of stresses (for instance, stationary phase growth). The activation of GSR-specific sigma factors is frequently at the heart of the induction of a GSR. Given the range of stresses that can lead to GSR induction, the regulatory inputs are frequently complex. In B. subtilis, the stressosome, a multi-protein complex, contains a set of proteins that, upon appropriate stresses, initiate partner switching cascades that free the sigma B sigma factor from an anti-sigma. The focus here is on the mode of activation of RsbU, a serine/threonine phosphatase of the PPM family, leading to sigB activation. RbsT, a component of the degradosome interacts with RsbU upon stress, activating the phosphatase activity. Once active, RsbU dephosphorylates its target (RsbV, an anti-antisigma), which in turn binds the anti-sigma. The conclusion is that flexible linker domains upstream of the phosphatase domain are the target for activation, via binding of proteins to the N-terminal domain, resulting in a crossed-linker dimeric structure. The authors then use the information on RsbU to suggest that parallel approaches are used to activate PPM phosphatases for the GSR response in other bacteria. (Biology vs. Mechanism, evolution?)

      Strengths and Weaknesses:

      Many of these have to do with clarifying what was done and why. This includes the presentation and content of the figures.

      One issue relates to the background and context. A bit more information on the stresses that release RsbT would be useful here. The authors might also consider a figure showing the major conclusions and parallels for SpoIIE activation and possibly other partner switches that are discussed, introducing the switch change more clearly to set the stage for the work here (and the generalization). There are a lot of players to keep track of.

      We plan to carefully review the manuscript to improve the clarity of presentation and background. In particular, we thank the reviewer for pointing out the missing information about the release of RsbT from the stressosome. We will incorporate this information into the introduction and provide an additional figure.

      We have added the following text to the introduction:

      “RsbT is sequestered in a megadalton stress sensing complex called the stressosome, and is released to bind RsbU in response to specific stress signals including ethanol, heat, acid, salt, and blue light”

      We have added a new figure panel (2C) that shows the model for how Q94L, M166V, and RsbT binding induce conformational change of the PPM domain to recruit metal cofactor and activate RsbU (analogous, but slightly different from the mechanism for SpoIIE).

      The reviewer additionally provided detailed helpful comments that we will incorporate in the text and figures.

      Reviewer #3 (Public review):

      Summary:

      The authors present a study building on their previous work on activation of the general stress response phosphatase, RsbU, from Bacillus subtilis. Using computed structural models of the RsbU dimer the authors map previously identified activating mutations onto the structure and suggest further protein variants to test the role of the predicted linker helix and the interaction with RsbT on the activation of the phosphatase activity.

      Using in vivo and in vitro activity assays, the authors demonstrate that linker variants can constitutively activate RsbU and increase the affinity of the protein for RsbT, thus showing a link between the structure of the linker region and RsbT binding.

      Small angle X-ray scattering experiments on RsbU variants alone, and in complex with RsbT show structural changes consistent with a decreased flexibility of the RsbU protein, which is hypothesised to indicate a disorder-order transition in the linker when RsbT binds. This interpretation of the data is consistent with the biochemical data presented by the authors.

      Further computed structure models are presented for other protein phosphates from different bacterial species and the authors propose a model for phosphatase activation by partner binding. They compare this to the activation mechanisms proposed for histidine kinase two-component systems and GGDEF proteins and suggest the individual domains could be swapped to give a toolkit of modular parts for bacterial signalling.

      Strengths:

      The key mutagenesis data is presented with two lines of evidence to demonstrate RsbU activation - in vivo sigma-b activation assays utilising a beta-galactosidase reporter and in vitro activity assays against the RsbV protein, which is the downstream target of RsbU. These data support the hypothesis for RsbT binding to the RsbU linker region as well as the dimerisation domain to activate the RsbU activity.

      Weaknesses:

      Small angle scattering curves are difficult to unambiguously interpret, but the authors present reasonable interpretations that fit with the biochemical data presented. These interpretations should be considered as good models for future testing with other methods - hydrogen/deuterium exchange mass spectrometry, would be a good additional method to use, as exchange rates in the linker region would be affected significantly by the disorder/order transition on RsbT binding.

      We agree with the reviewer that the SAXS data has inherent ambiguity due to the nature of the measurement. However, SAXS is one of the best techniques to directly assess conformational flexibility. Our scattering data for RsbU have multiple signatures of flexibility supporting a high confidence conclusion. While the scattering data support a reduction in flexibility for the RsbT/RsbU complex, we agree that a high resolution structure would be valuable. However the combination of the scattering data with our biochemical and genetic data supports the validity of the AlphaFold predicted model. We thank the reviewer for the suggestion of future hydrogen/deuterium exchange experiments that would be complementary, but which we feel are beyond the scope of this work.

      The interpretation of the computed structure models should be toned down with the addition of a few caveats related to the bias in the models returned by AlphaFold2. For the full-length models of RsbU and other phosphatase proteins, the relationship of the domains to each other is likely to be the least reliable part of the models - this is apparent from the PAE plots shown in Supplementary Figure 8. Furthermore, the authors should show models coloured by pLDDT scores in an additional supplementary figure to help the reader interpret the confidence level of the predicted structures.

      We thank the reviewer for suggestions on how to clarify the discussion of AlphaFold models. We will decrease the emphasis on the computed models in the text and will add figures with the models colored by the pLDDT scores to aid in the interpretation.

      We have modified the text of the Abstract: “This coiled-coil linker transduction mechanism additionally suggests a resolution to the mystery of how shared sensory domains control serine/threonine phosphatases, diguanylate cyclases and histidine kinases.”

      We have modified the text of the Results: “These predictions suggest a testable hypothesis that RsbP is controlled through an activation mechanism similar to that of RsbU (Fig. 5A).”

      “From this analysis, we speculate that linker-mediated phosphatase domain dimerization is an evolutionarily conserved, adaptable mechanism to control PPM phosphatase activity”

      We have also added Figure 1 – figure supplement 2 with the AlphaFold2 models colored by the pLDDT scores.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Baral and colleagues investigate the regulatory mechanisms of the General Stress Response (GSR) in Bacillus subtilis, focusing on the phosphatase RsbU and its regulation by the protein RsbT. The GSR is a critical adaptive mechanism that allows bacteria to survive under various stress conditions by reshaping their physiology through a broad transcriptional response. RsbU, a key player in the GSR, facilitates the activation of the transcription factor SigB by dephosphorylating RsbV. This activation is mediated through a partner-switching mechanism involving RsbT. Baral and colleagues use a combination of genetic screening, structural predictions via AlphaFold2, and biophysical techniques such as SAXS and MALS to present a model for how RsbT regulates RsbU. Key findings include the identification of specific amino acid substitutions that enhance RsbU activity, the role of the α-helical linker in RsbU dimerization and activation, and the potential broader conservation of these mechanisms across bacterial species. However, as described below, additional work is required to solidify the results.

      Major Points

      (1) The manuscript is misnamed--it dissects a single step of the signal-transduction pathway regulating the general stress response. Instead, it is rather seeking a generalizable mechanism for kinase -phosphatase interactions across stresses.

      We have edited the title to “A General Mechanism for Initiating the General Stress Response in Bacteria” to reflect that that this study addresses the initiating event of the general stress response.

      (2) The genetic screen likely has limitations in detecting all possible variants that could affect RsbU activity. The readout is specific to σ^B activation, and the focus on specific amino acid substitutions may overlook other significant regions or mechanisms involved in the regulation of RsbU, particularly those involving RsbV and RsbT.

      Our screens were specifically designed to identify features of RsbU that contribute to regulation. Importantly, RsbU does not have any known targets other than RsbV and the downstream σ<sup>B</sup> response but agree that substitutions in either RsbV or RsbT could influence RsbU activation. In principle our suppressor screen with RsbU<sup>Y28I</sup> could have identified RsbT variants (rsbT was mutagenized in this screen), but we did not identify any such variants in the screen. We conducted a separate screen (published elsewhere) that specifically addressed how RsbU recognizes RsbV.

      (3) The authors largely focus on the biochemical and structural aspects of RsbU regulation. There is limited discussion on the broader functional implications of these findings in the context of bacterial physiology and stress response. Incorporating more in vivo studies to show how these mechanisms impact bacterial survival and adaptation would provide a more comprehensive understanding.

      We appreciate this comment, but did not conduct additional studies of survival and adaptation because the phenotypes of σ<sup>B</sup> deletion in B. subtilis under laboratory conditions are relatively mild and therefore difficult to assay. Future studies to address this in other systems could be highly informative.

      (4) The results primarily support the model of linker-mediated dimerization and rigidity. However, other potential regulatory mechanisms or interacting partners might also play significant roles in RsbU activation. A more thorough exploration of these possibilities would strengthen the study's conclusions.

      One of the major advantages of RsbU as a model for initiation of the general stress response is that the system is discreet with all evidence pointing to there being a single primary input (RsbT) and output (dephosphorylation of RsbV). While there are other possible variations on the system (for example RsbU may be directly activated by manganese stress), we focused on this system precisely because of its simplicity.

      (5) While the study presents evidence for the conservation of the described mechanism across different species, this assumption is based on structural predictions and limited experimental data. Broader experimental validation across diverse bacterial species would be necessary to substantiate this claim. Coevolution coupling along with conservation/evolutionary studies could be considered.

      We have altered the language in the paper to emphasize where we are making inferences from predictions that are therefore more speculative. We agree that a more detailed analysis of the evolutionary coupling would likely be fruitful. We note that these couplings are the major driving force of AlphaFold predictions, suggesting that these couplings contributed to the models that we analyzed.

      (6) The reliance on AlphaFold2 for structural predictions introduces potential biases and uncertainties inherent in computational models. Experimental validation of these models through additional techniques such as cryo-EM or X-ray crystallography would strengthen the conclusions.

      We agree with this point, which is why we performed extensive analysis and validation of the models for RsbU using SAXS, genetics, and biochemistry. The proposed techniques are made more challenging by flexibility and heterogeneity, which we detected in our experiments. Our attempts thus far at experimental structure determination are consistent with this being a major technical hurdle.

      (7) SAXS data provide low-resolution structural information, and the interpretation of flexibility versus rigidification might be overemphasized in its interpretation. This part of the study was difficult to interpret. Improving readability by breaking down the text into sections with clear headings for each figure panel and clarifying descriptions of the panels and methods would help. Complementary high-resolution techniques could provide a more definitive view of the linker's conformational changes.

      We have modified the presentation of the figures to clarify the SAXS analysis. The fact that the SAXS analysis suggests flexibility rather than a discrete inactive conformation means that high-resolution techniques may not be appropriate for this system.

      (8) The study primarily focuses on the model where RsbT binding rigidifies the RsbU linker. Alternative hypotheses, such as subtle conformational adjustments without complete rigidification, are not extensively explored or ruled out.

      Our analysis of the SAXS data strongly suggests that a subtle conformational change could not account for the scattering data that we obtained. We have modified the text to clarify this point.

      “Indicative of significant deviation between the RsbU structure in solution to the AlphaFold2 model, the scattering intensity profile (I(q) vs. q) was a poor fit (χ<sup>2</sup> 12.53) to a profile calculated from the AlphaFold2 model of an RsbU dimer using FoXS (Schneidman-Duhovny et al. 2016; Schneidman-Duhovny et al. 2013) (Fig. 4A). We therefore assessed the SAXS data for the RsbU dimer for features that report on flexibility (Kikhney & Svergun 2015). First, the scattering intensity data lacked distinct features caused by the multi-domain structure of RsbU from the AlphaFold2 model (Fig.4A).”

      (9) Future studies should aim to validate the AlphaFold2 predictions with high-resolution structural techniques. This would provide definitive evidence for the proposed conformational states of RsbU with and without RsbT.

      The fact that the SAXS analysis suggests flexibility rather than a discrete inactive conformation means that high-resolution techniques may not be appropriate for this system.

      (10) Investigating the RsbU-RsbT interaction in vivo using techniques like FRET, co-immunoprecipitation, or live-cell imaging would provide a more comprehensive understanding of their functional dynamics in a cellular context.

      We appreciate the reviewer’s suggestions for future experiments.

      (11) Exploring and testing alternative models of RsbU activation, such as partial rigidification or different modes of conformational change, would strengthen the conclusions.

      While our data strongly support that a flexible-to-rigid transition controls RsbU activation, we agree that it is possible that other mechanisms of linker modification could control other phosphatases and we discuss this at some length in the discussion.

      (12) The figure legends are quite dense and could benefit from some streamlining.

      We have edited the figure legends for clarity and length.

      Reviewer #2 (Recommendations for the authors):

      (1) Activation assays (Figures 1, 3, S2) are presented here as blue or white spots (reflecting a reporter activity). While off and on these are fairly clear, it is more difficult to compare the degree of activity (for instance that rsbU<sup>Q94L</sup> is more active than M166V). It would also be good to clearly present in the text the logic of asking if the mutant is RsbT independent or not (and the interpretation of that). Quantitative assays of these would be very useful.

      We chose not to perform quantitative-LacZ assays here because of several complications to interpreting these results that we encountered in our previously published study (Ho and Bradshaw, 2021). However, the level of blue pigmentation shown in Figure 1B for RsbU Q94L and RsbU M166V is qualitatively different, making the comparison possible. Most importantly, we observed cell density dependent changes in LacZ activity in the absence of rsbT for rsbU<sup>M166V</sup> expressing cells, meaning that comparisons between strains would be difficult. Additionally, we found that it was important to make a chromosomal replacement of rsbU to see the full effect of the M166V substitution. However, we were not able to construct a similar rsbU<sup>Q94L</sup> strain, likely because the high level σ<sup>B</sup> activity is lethal (we were able to construct this strain when σ<sup>B</sup> was deleted but only obtained strains with additional loss-of-function mutations in RsbU when σ<sup>B</sup> was present.

      We have modified the text to explain the logic of identifying RsbT independent variants: “We previously conducted a genetic screen (Ho & Bradshaw 2021) to identify features of RsbU that are important for phosphatase regulation by isolating gain-of-function variants that are active in the absence of RsbT.”

      (2) Explain Figure S8 graphs: as much as Alphafold is now in use, the authors should provide some further explanation of what is shown here. Blue (low error) is good, presumably. What are the A, B, C, and D sections showing? Different parts of a given letter region (and between them)? What is the x-axis? Is the top-ranked model used in every case in the text? How different are these models? The Methods section could be used for some of this (but doesn't in its current form). This also becomes important for the models generated later in the paper (Figure S7), which look rather different here.

      We have modified figure S8 to include additional labels and have added structures with the pLDDT scores shown. We have additionally modified the figure legends and methods to provide the requested information.

      (3) Figure 1C, D, Figure S2: amino acid ends of linker domains could be shown (text discusses 83-97 the linker as a two-turn coiled coil; Q94 is pretty close to the end of this coiled-coil? Figure S2 is even less clear - addresses of other amino acids would help, and or an added sequence showing the full linker and coiled-coil region). Some explanation for positions for readers to focus on for full coiled-coil would be useful in the legend of Figure S2. How strong a coiled-coil prediction is there for this region?

      We have added the sequence of the coiled-coil regions to the figures with numbering. For these analyses we used the Socket2 program, which analyzes a PDB file to identify coiled-coil regions and thus does not provide a confidence score. However, inspection of the sequence and the confidence scores of the AlphaFold2 models indicates that the coiled-coil regions are not ideal, consistent with this being a regulatory feature.

      Is it clear that the fully inactive proteins are still properly folded and soluble?

      In the case of RsbU, our biophysical analysis indicates that the inactive form of the protein is soluble. While phosphatase activity is substantially reduced, our unpublished comparison of single- and multiple-turnover reactions in the absence of RsbT indicates that nearly all of the enzyme is active.

      Finally, are there other positions that would also be expected, from this model, to stabilize the coiled-coil and thus bypass the requirement for RsbT? If so, it would be good to test these. Is it the burial of amino acid at position 94 that is important, or the ability to form crossed helices?

      Because of how short the predicted coiled-coil region is, we did not identify any obvious positions that would likely have the same effect as Q94 substitution. We considered making helix-breaking mutations, which would be predicted to block RsbU activation, but favored analysis of the wildtype protein because of limitations in interpreting the effects of loss-of-function mutations.

      (4) Figure 2A, RsbT binding to RsbU: It was not entirely clear to this reviewer why one would expect the RsbT binding, not needed for activation, to be increased by the mutation that stabilizes the crossed alpha helices. The change is impressive but doesn't the lack of a need for RsbT suggest that this mutation bypasses the normal mechanism? (Is dimerization enuf? Or other protein cross helices?).

      We have modified the text to clarify this point: “One prediction of our hypothesis that RsbT stabilizes the crossed alpha helices of the RsbU dimer, is that RsbT should bind more tightly to rsbU<sup>Q94L</sup> than to RsbU because the coiled-coil conformation that RsbT binds would be more energetically favorable.” Another way of putting this is that if the Q94L substitution activates RsbU through an on-pathway mechanism, RsbT must bind more tightly.

      (5) Figure 3A, Figure S3: Please label the yellow (interface) residues in RsbU and RsbT in Fig. S3 and the green (suppressor) spheres in Figure 3A.

      We have added labels to the figures as suggested.

      If RbsT interacts with the N-terminal dimerization domain and linker, why were residues 174 and 178 (from PPM domain) shown to be implicated in binding?

      The fact that residues in the switch region suppress a mutation that decreases RsbT binding suggests that this region is part of an allosteric network that links RsbT binding, the linker, and dimerization of the phosphatase domains. For example, any substitution that promotes a conformation of the phosphatase domain that is more favorable for dimerization would also promote RsbT binding. However, the precise details of how each mutation fits into this network is not clear and we have therefore chosen to not specify a particular model to avoid over interpreting our data.

      Are these marked in Figure S3?

      We have added labels to make this clear.

      Are these part of a dimerization interface in the C-terminal domain? Are any/all of these RsbU mutants suppressed by Q94L, as one might predict (apparently Y28I is since Q94L was again identified)?

      We chose to focus on Y28I because it was the best studied previously, but we would predict that Q94L would suppress other RsbT binding mutations.

      (6) Line 191-192: Is it surprising that no suppressors were isolated in RsbT?

      We didn’t have a preconception of whether or not it would be possible to identify similar suppressors in RsbT. Explanations for why we did not identify such suppressors could include that RsbT may be destabilized more easily by substitution, that RsbT is more constrained because it has other interaction partners, or that the particular substitutions that would suppress Y28I are less common by the PCR mutagenesis strategy we used.

      (7) Figure 3: Would the same mutants arise if the screen had been done in the absence of RsbT? Was RsbT-dependent tested for the rsbU alleles?

      Our prediction is that we would not have identified any of these mutations except for Q94L in the absence of rsbT. We tested a few of the alleles and found them all to be rsbT dependent, but did not systematically test all of the alleles and therefore did not include this analysis in the manuscript.

      Given the findings earlier in the paper for Q94L, suggesting that this stabilizes the coiled-coil and shows some activity in the absence of RsbT, it seems that the interpretation of other mutants in this region (and Q94L itself) as evidence that RsbT contacts the linker directly and that contact is necessary for activation may be an overinterpretation. If these are in fact RsbT independent, they support the importance of the linker (do they further stabilize coiled-coil formation?), rather than the role of RsbT here. Are G92 and T89 on the outside of the coiled-coil? If Q94 is buried, is it qualitatively different from these others?

      G92 and T89 are predicted to be exposed. The fact that these mutations are near Q94 is part of the reason that we focused on R91 and the predicted contact with D92 of RsbT as another approach to validate the predicted interface.

      (8) Figure 3C addresses the issue of direct interaction of RsbT with the RsbU linker to some extent, given that RsbU R91E doesn't appear to have a lot of activity without RsbT. It would be helped by telling the reader what the R91 contact is initially.

      We have modified the text to clarify this point: “To test the model that RsbT activates RsbU by directly interacting with the linker to dimerize the RsbU phosphatase domains, we introduced a charge swap at position R91 that would abolish a predicted salt-bridge with RsbT D92 (Fig. 3C).”

      (9) Figure 4 and the discussion of it in the text is not likely to be easily understandable for many readers. Aside from providing a bit more explanation of what these analyses are showing, it would be useful to start the whole section (or maybe even much earlier in the paper) with the information found on lines 261-264, that other studies show that the N-terminus dimerizes stably on its own (and is it known that the C-terminus does not?). Then the discussion of the alternative models early in this section would be clearer.

      We have updated the introduction to emphasize this point “RsbU has an N-terminal four-helix bundle domain that dimerizes RsbU and is also the binding site for RsbT, which activates RsbU as a phosphatase (Fig. 1C,D) (Delumeau et al. 2004).”

      We have also added clarification to the model presented at the beginning of this section: “A second possibility is that inactive RsbU is dimerized by the N-terminal domains but that the linkers of inactive RsbU are flexible and that the phosphatase domains only interact with each other when RsbT orders the linkers into a crossing conformation.”

      Is the dimerization of the N-terminal domains previously determined similar/the same as what is seen in the AlphaFold models used here (or the AlphaFold dimerization derived primarily from that data?).

      Yes, the dimerization in the AlphaFold models matches closely to the published structure.

      (10) Discussion and Figure 5: The final part of this work predicts AlphaFold models for a set of other phosphatases involved in initiating GSR across bacterial species, and suggests that linked-mediated phosphatase dimerization is the critical factor to activate the phosphatase. Clearly, this is the most speculative but interesting aspect of the paper. A number of possible questions are suggested by some of this:

      a. Do any of the activating mutants In RsbU and RsbP in the PPM domain (that apparently improve dimerization and thus activation) do a similar job in the other modeled proteins?

      This is an interesting question, but unfortunately most of these proteins have not been biochemically characterized. We highlight examples of RsbP and E. coli RssB for which similar activating mutations have been characterized.

      b. The legend (Figure 5G) suggests that all of the linker combinations will be coiled-coils, but that they will undergo different types of activating (and dimerizing?) transitions. Is that in fact what is being proposed here?

      Yes, this is our working hypothesis.

      c. If there is no dimerization (as noted, only weak dimerization has been reported for E. coli RssB), does that generalize the model to there are linkers and their structures are important? At the least, would the folding up of the E. coli RssB linker with antiadaptor binding be considered another mode of signal transduction or rather some sort of storage form?

      Interestingly, the P. aeruginosa RssB constitutively dimerizes, suggesting the E. coli is the outlier.

      d. Would the "toolkit" model, in which different changes occur in the linker regions, suggest that the interacting proteins are going to be critical for the type of linker changes that will be important? Or something about the nature of the linkers themselves?

      This is an interesting question that we cannot yet answer. We have chosen to focus on the possible flexibility of this mechanism and anticipate that a variety of mechanisms will be used.

      e. Given the extensive comparison to E. coli RssB, the authors might consider a figure to clarify the relative domain architecture, sequences that are akin to switch regions, and others important to the discussion here.

      We tried to highlight this in Figure 5C including coloring the regions similar to the switch regions.

      Reviewer #3 (Recommendations for the authors):

      Given the caveats noted above related to the reliability of computed structure models, I would recommend the authors make the following additions/modifications to their manuscript:

      (1) The authors should show alpha fold models coloured by pLDDT scores in an additional supplementary figure to help the reader interpret the confidence level of the predicted structures.

      We have added these models to figure 1 – figure supplement 2.

      (2) Because of the points mentioned above the authors should tone down the generalisation relating to the activation mechanism of this family of phosphatases presented in the discussion.

      We have modified the paper throughout to emphasize where we are speculating.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1:

      Summary:

      Kimura et al performed a saturation mutagenesis study of CDKN2A to assess functionality of all possible missense variants and compare them to previously identified pathogenic variants. They also compared their assay result with those from in silico predictors.

      Strengths:

      CDKN2A is an important gene that modulate cell cycle and apoptosis; therefore it is critical to accurately assess functionality of missense variants. Overall, the paper reads well and touches upon major discoveries in a logical manner.

      Weaknesses:

      The paper lacks proper details for experiments and basic data, leaving the results less convincing. Analyses are superficial and does not provide variant-level resolution. Many of which were addressed during the revision process.

      Comments on revisions:

      The manuscript was improved during the revision process.

      We thank the reviewer for their comments. We are grateful for the opportunity to provide additional information and data to clarify our approach and study results.

      Reviewer #2:

      Summary:

      This study describes a deep mutational scan across CDKN2A using suppression of cell proliferation in pancreatic adenocarcinoma cells as a readout for CDKN2A function. The results are also compared to in silico variant predictors currently utilized by the current diagnostic frameworks to gauge these predictors' performance. The authors also functionally classify CDKN2A somatic mutations in cancers across different tissues.

      Review:

      The goal of this paper was to perform functional classification of missense mutations in CDKN2A in order to generate a resource to aid in clinical interpretation of CDKN2A genetic variants identified in clinical sequencing. In our initial review, we concluded that this paper was difficult to review because there was a lack of primary data and experimental detail. The authors have significantly improved the clarity, methodological detail and data exposition in this revision, facilitating a fuller scientific review. Based on the data provided we do not think the functional characterization of CDKN2A variants is robust or complete enough to meet the stated goal of aiding clinical variant interpretation. We think the underlying assay could be used for this purpose but different experimental design choices and more replication would be required for these data to be useful. Alternatively, the authors could also focus on novel CDKN2A variants as there seems to be potential gain of function mutations that are simply lumped into "neutral" that may have important biological implications.

      Major concerns:

      Low experimental concordance. The p-value scatter plot (Figure 2 Figure Supplement 3A) across 560 variants shows low collinearity indicating poor replicability. These data should be shown in log2fold changes, but even after model fitting with the gamma GLM still show low concordance which casts strong doubt on the function scores.

      Concordance among non-significant p-values is generally low because most of the signal comes from random variability across repeats. If the observed log2 fold change between the repeats is entirely due to noise, one would expect two repeated p-values to behave like independent random uniforms. True concordance is typically more evident in significant p-values because they reflect consistent effects above random noise. Functionally deleterious variants are called when their associated p-value is significant. To confirm this statement, a scatter plot with the log2 normalized fold change was added in Figure 2 Supplement 3C. We see low concordance between repeats in the log2 normalized fold changes centered around 0, corresponding to log log2 normalized changes mainly due to noise. The concordance increases as the variants become significant. One can notice that the correlation coefficient between duplicate assay results was almost identical between the model-based p-values and log2normalized fold change (Figure 2-figure supplement 3A and 3C, Appendix 1-table 4, and Appendix 1-table 6). Also, importantly, no variant was functionally deleterious in one replicate and functionally neutral in another, implying a perfect concordance in calls if we exclude variants that were called indeterminate in one of the two repeats. Finally, of variants with discordant classifications, only 6/560 repeats (1.1%) were functionally deleterious (significant p-value) in one replicate and of indeterminate function in another. We have updated the text as follows:

      “Of variants with discordant classifications, 6 (1.1%) were functionally deleterious in one replicate and of indeterminate function in another. While 102 variants (18.2%) were functionally neutral in one replicate and of indeterminate function in another. Importantly, no variant that was functionally deleterious in one replicate and functionally neutral in another (Appendix 1 -table 4). Furthermore, the correlation coefficient between duplicate assay results was similar using the gamma GLM and log2 normalized fold change (Figure 2-figure supplement 3A and 3C).”

      The more detailed methods provided indicate that the growth suppression experiment is done in 156 pools with each pool consisting of the 20 variants corresponding to one of the 156 aa positions in CKDN2A. There are several serious problems with this design.

      Batch effects in each of the pools preventing comparison across different residues. We think this is a serious design flaw and not standard for how these deep mutational scans are done. The standard would be to combine all 156 pools in a single experiment. Given the sequencing strategy of dividing up CDKN2A into 3 segments, the 156 pools could easily have been collapsed into 3 (1 to 53, 54 to 110, 111 to 156). This would significantly minimize variation in handling between variants at each residue and would be more manageable for performance of further replicates of the screen for reproducibility purposes. The huge variation in confluency time 16-40 days for each pool suggest that this batch effect is a strong source of variation in the experiment.

      While there is variation in time to confluency between different amino acid residues, we do not anticipate this batch effect to significantly affect variant classifications in our study. For example, our results were generally consistent with previous classifications. All synonymous variants (one per residue) and benchmark benign variants assayed were classified as functionally neutral. Furthermore, of benchmark pathogenic variants assayed, none were classified as functionally neutral. 84% were classified as functionally deleterious and 16 percent were classified as indeterminate function.

      Lack of experimental/biological replication: The functional assay was only performed once on all 156 CDKN2A residues and was repeated for only 28 out of 156 residues, with only ~80% concordance in functional classification between the first and second screens. This is not sufficiently robust for variant interpretation. Why was the experiment not performed more than once for most aa sites?

      In our study we determined functional classifications for all CDKN2A missense variants while assessing variability with replicates across 28 residues. Of these variants, only 6 (1.1%) were functionally deleterious in one replicate and of indeterminate function in another. Furthermore, no variant was functionally deleterious in one replicate and functionally neutral in another (Appendix 1 -table 4).  As noted above, we provided additional context in the manuscript.

      For the screen, the methods section states that PANC-1 cells were infected at MOI=1 while the standard is an MOI of 0.3-0.5 to minimize multiple variants integrating into a single cell. At an MOI =1 under a Poisson process which captures viral integration, ~25% of cells would have more than 1 lentiviral integrant. So in 25% of the cells the effect of a variant would be confounded by one or more other variants adding noise to the assay.

      As noted previously, we are not able to differentiate effects due to multiple viral integrations per cells. However, we do not anticipate multiple viral integrations to significantly affect variant classifications in our study as our results are consistent with previous classifications, as described above.

      While the authors provide more explanation of the gamma GLM, we strongly advise that the heatmap and replicate correlations be shown with the log2 fold changes rather than the fit output of the p-values.

      Thank you for the suggestion. As noted, we provide additional explanation in the manuscript about why we classified variants using a gamma GLM. Using a gamma GLM, classification thresholds were determined using the change in representation of 20 non-functional barcodes in a pool of PANC-1 cells stably expressing CDKN2A after a period of in vitro proliferation. Our variant classifications were therefore not based on assay outputs for previously reported – benchmark – pathogenic or begin variants to determine thresholds. We strongly prefer using p-values and classifications using the gamma GLM in the manuscript. However, comparison of assay outputs using a gamma GLM and log2 fold change are included in the manuscript. Read counts, log2 fold change, and classifications based on log2 fold change are presented in the manuscript, for all variants. Readers who wish to use these data may do so and we refer them to the manuscript text, Appendix 1 -table 4, Appendix 1 -table 6, and Figure 2 -figure supplement 2.

      In this study, the authors only classify variants into the categories "neutral", "indeterminate", or "deleterious" but they do not address CDKN2A gain-of-function variants that may lead to decreased proliferation. For example, there is no discussion on variants at residue 104, whose proliferation values mostly consist of higher magnitude negative log2fold change values. These variants are defined as neutral but from the one replicate of the experiment performed, they appear to be potential gain-of-function variants.

      We have added a comment to the discussion to highlight that we did not identify potential gain-of-function variants. Specifically:

      “We classified CDKN2A missense variants using a gamma GLM, as either functionally deleterious, indeterminate functional or functionally neutral. However, we did not classify variants that may have gain-of-function effects, resulting in decreased representation in the cell pool. Future studies are necessary to determine the prevalence and significance of CDKN2A gain-of-function variants.”

      Minor concerns:

      The differentiation between variants of "neutral" and "indeterminate" function seems unnecessary and it seems like there are too many variants that fall into the "indeterminate" category. The authors seem to have set numerical thresholds for CDKN2A function using benchmark variants of known function. While the benchmark variants are important as a frame of reference for the "dynamic range" of the assay, their function scores should not necessarily be used to define hard cutoffs of whether a variant's function score can be interpreted.

      We did not utilize benchmark variants to define thresholds for functional classifications using a gamma GLM. This is one of the strengths of using a gamma GLM model for classification. As explained in our manuscript, classification thresholds were determined using the change in representation of 20 non-functional barcodes in a pool of PANC-1 cells stably expressing CDKN2A after a period of in vitro proliferation. Our variant classifications were therefore not based on assay outputs for previously reported – benchmark – pathogenic or begin variants. While not required when using a gamma GLM, we included indeterminate classifications, which are not uncommon.

      Figure 2 supplement 2 - on the x-axis, should "intermediate" be "indeterminate"?

      This, and a similar typographical error in Figure 2 -figure supplement 3, has been corrected.

    1. Reviewer #3 (Public review):

      This study investigates the characteristics of the autofluorescence signal excited by 740 nm 2-photon excitation, in the range of 420-500 nm, across the Drosophila brain. The fluorescence lifetime (FL) appears bi-exponential, with a short 0.4 ns time constant followed by a longer decay. The lifetime decay and the resulting parameter fits vary across the brain. The resulting maps reveal anatomical landmarks, which simultaneous imaging of genetically encoded fluorescent proteins helps to identify. Past work has shown that the autofluorescence decay time course reflects the balance of the redox enzyme NAD(P)H vs. its protein-bound form. The ratio of free-to-bound NADPH is thought to indicate relative glycolysis vs. oxidative phosphorylation, and thus shifts in the free-to-bound ratio may indicate shifts in metabolic pathways. The basics of this measure have been demonstrated in other organisms, and this study is the first to use the FLIM module of the STELLARIS 8 FALCON microscope from Leica to measure autofluorescence lifetime in the brain of the fly. Methods include registering the brains of different flies to a common template and masking out anatomical regions of interest using fluorescence proteins.

      The analysis relies on fitting an FL decay model with two free parameters, f_free and t_bound. F_free is the fraction of the normalized curve contributed by a decaying exponential with a time constant of 0.4 ns, thought to represent the FL of free NADPH or NADH, which apparently cannot be distinguished. T_bound is the time constant of the second exponential, with scalar amplitude = (1-f_free). The T_bound fit is thought to represent the decay time constant of protein-bound NADPH but can differ depending on the protein. The study shows that across the brain, T_bound can range from 0 to >5 ns, whereas f_free can range from 0.5 to 0.9 (Figure 1a). These methods appear to be solid, the full range of fits are reported, including maximum likelihood quality parameters, and can be benchmarks for future studies.

      The authors measure the properties of NADPH-related autofluorescence of Kenyon Cells (KCs) of the fly mushroom body. The results from the three main figures are:

      (1) Somata and calyx of mushroom bodies have a longer average tau_bound than other regions (Figure 1e);

      (2) The f_free fit is higher for the calyx (input synapses) region than for KC somata (Figure 2b);

      (3) The average across flies of average f_free fits in alpha/beta KC somata decreases from 0.734 to 0.718. Based on the first two findings, an accurate title would be "Autofluorecense lifetime imaging reveals regional differences in NADPH state in Drosophila mushroom bodies."

      The third finding is the basis for the title of the paper and the support for this claim is unconvincing. First, the difference in alpha/beta f_free (p-value of 4.98E-2) is small compared to the measured difference in f_free between somas and calyces. It's smaller even than the difference in average soma f_free across datasets (Figure 2b vs c). The metric is also quite derived; first, the model is fit to each (binned) voxel, then the distribution across voxels is averaged and then averaged across flies. If the voxel distributions of f_free are similar to those shown in Supplementary Figure 2, then the actual f_free fits could range between 0.6-0.8. A more convincing statistical test might be to compare the distributions across voxels between alpha/beta vs alpha'/beta' vs. gamma KCs, perhaps with bootstrapping and including appropriate controls for multiple comparisons.

      I recommend the authors address two concerns. First, what degree of fluctuation in autofluorescence decay can we expect over time, e.g. over circadian cycles? That would be helpful in evaluating the magnitude of changes following conditioning. And second, if the authors think that metabolism shifts to OXPHOS over glycolosis, are there further genetic manipulations they could make? They test LDH knockdown in gamma KCs, why not knock it down in alpha/beta neurons? The prediction might be that if it prevents the shift to OXPHOS, the shift in f_free distribution in alpha/beta KCs would be attenuated. The extensive library of genetic reagents is an advantage of working with flies, but it comes with a higher standard for corroborating claims.

      FLIM as a method is not yet widely prevalent in fly neuroscience, but recent demonstrations of its potential are likely to increase its use. Future efforts will benefit from the description of the properties of the autofluorescence signal to evaluate how autofluorescence may impact measures of FL of genetically engineered indicators.

    1. After some time, I also realized that if design was problem solving, then we all design to some degree. When you rearrange your room to better access your clothes, you’re doing interior design. When you create a sign to remind your roommates about their chores, you’re doing information design. When you make a poster or a sign for a club, you’re doing graphic design. We may not do any of these things particularly well or with great expertise, but each of these is a design enterprise that has the capacity for expertise and skill.

      In my opinion, design is framed as something everyone does, not just professionals, which makes it feel more universal and accessible. I think simple actions like rearranging a room or making a sign are forms of design, even if they lack the formal methods and expertise of professional work. However, while this perspective is valuable, it overlooks how structured processes and iteration differentiate professional design from everyday problem-solving.

    1. AbstractMicrobiome-based disease prediction has significant potential as an early, non-invasive marker of multiple health conditions linked to dysbiosis of the human gut microbiota, thanks in part to decreasing sequencing and analysis costs. Microbiome health indices and other computational tools currently proposed in the field often are based on a microbiome’s species richness and are completely reliant on taxonomic classification. A resurgent interest in a metabolism-centric, ecological approach has led to an increased understanding of microbiome metabolic and phenotypic complexity revealing substantial restrictions of taxonomy-reliant approaches. In this study, we introduce a new metagenomic health index developed as an answer to recent developments in microbiome definitions, in an effort to distinguish between healthy and unhealthy microbiomes, here in focus, inflammatory bowel disease (IBD). The novelty of our approach is a shift from a traditional Linnean phylogenetic classification towards a more holistic consideration of the metabolic functional potential underlining ecological interactions between species. Based on well-explored data cohorts, we compare our method and its performance with the most comprehensive indices to date, the taxonomy-based Gut Microbiome Health Index (GMHI), and the high dimensional principal component analysis (hiPCA)methods, as well as to the standard taxon-, and function-based Shannon entropy scoring. After demonstrating better performance on the initially targeted IBD cohorts, in comparison with other methods, we retrain our index on an additional 27 datasets obtained from different clinical conditions and validate our index’s ability to distinguish between healthy and disease states using a variety of complementary benchmarking approaches. Finally, we demonstrate its superiority over the GMHI and the hiPCA on a longitudinal COVID-19 cohort and highlight the distinct robustness of our method to sequencing depth. Overall, we emphasize the potential of this metagenomic approach and advocate a shift towards functional approaches in order to better understand and assess microbiome health as well as provide directions for future index enhancements. Our method, q2-predict-dysbiosis (Q2PD), is freely available (https://github.com/Kizielins/q2-predict-dysbiosis).

      This work has been peer reviewed in GigaScience (https://doi.org/10.1093/gigascience/giaf015), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 1: Vanessa Marcelino

      The manuscript proposes a new method to distinguish between healthy and diseased human gut microbiomes. The topic is timely, as to date, there is no consensus on what constitutes a healthy microbiome. The key conceptual advance of this study is the integration of functional microbiome features to define health. Their new computational approach, q2-predict-dysbiosis (Q2PD), is open source and available on GitHub.

      While the manuscript is conceptually innovative and interesting for the scientific community, there are several major limitations in the current version of this study.

      1. To develop the Q2PD, they define features associated with health by comparing it with microbiome samples from IBD patients. There are many more non-healthy/dysbiotic phenotypes beyond IBD, therefore it is not accurate to use IBD as synonymous of dysbiosis as done throughout this version of the paper.

      2. The study initially tests the performance of Q2PD against other gut microbiome health indexes (GMHI and hiPCA) using the same data that was used to select the health-associated features of Q2PD. Model performance should be assessed on independent data. On a separate analysis, they do use different datasets (from GMHI and hiPCA), but these datasets seem to be incomplete - GMHI and hiPCA publications have included 10 or more disease categories, and it is unclear why only 4 categories are shown in this study.

      3. While Q2PD does provide visible improvements in differentiating some diseases from healthy phenotypes, the accuracy and sensitivity of Q2PD isn't clear. To adopt Q2PD, I would like to know what are the chances that the classification results will be correct.

      4. There is very little documentation on how to use Q2PD. What are the expect outputs for example, do we need to chose a threshold to define health? Is the method completely dependent on Humann and Metaphlan outputs, or other formats are accepted? The test data contain some samples with zero counts. I got an error when trying it with the test data (ValueError: node array from the pickle has an incompatible dtype…).

      Therefore, I recommend including a range of disease categories to develop Q2PD and use independent datasets to validate the model in terms of accuracy and sensitivity. Alternatively, consider focusing this contribution on IBD. Making the code more user friendly will drastically increase the adoption of Q2PD by the community.

      Please also use page and line numbers when submitting the next version. Other suggestions:

      Abstract: I recommend replacing 'attributed' with 'linked', as 'attributed' suggests that dysbiosis may be causing (rather than reflecting) disease.

      Results: Please indicate what it is meant by 'function' here - it will be good to clarify that this method uses Metaphlan's read-based approach to identify metabolic pathways. What is used, pathway completeness or abundance?

      Results regarding Figure 3a are difficult to interpret. Is 'non-negatively correlated' the same as 'positively correlated'? What does the colour gradient represent - their abundance in those groups, or the strength of their correlation?

      "We observed that the prevalence of the pairs positively correlated in health was higher than in a number of disease-associated groups (Figure 3b)" . This is a very generalised statement considering that only half of the comparisons were significant. How co-occurring species were selected?

      "To test this, we compared the contributions of MDFS-identified species to "core functions" in different groups (Supplementary Figure 4)." How was this comparison made, based on species correlations? The caption of these figures could include more detail - it just says 'Top species contributions to functions.' but how do you define 'top' ? What do the colours represent?

      'This finding was congruent with our earlier suspicions of functional plasticity; modulation of function and thus altered connectivity in the interaction network, shifting towards less abundant, non-core functions upon perturbation of homeostasis.' This is reasonable, but I don't understand how you can draw this conclusion from these figures where there seems to be no significant difference between health and disease.

      Section 'Testing q2-predict-dysbiosis, GMHI and hiPCA accuracy of prediction for healthy and IBD individuals'

      What is the difference between fraction of "core functions" found the fraction of "core functions" among all functions?

      "Most importantly, Q2PD produced visually the highest scores for all healthy in comparison to unhealthy cohorts" . This was not statistically significant. In fact, GMHI finds more significant differences between health and disease than Q2PD.

      Sup. Figure 7 - would be informative to add the name/description of these metabolites not just their ID).

      'Although the threshold of 0.6 as determinant of health by the Q2PD was not applicable to the new datasets'. Does the threshold to define health with Q2PD change depending on the dataset? What are the implications of this for the applicability of this index?

      Effects of sequencing depth - this is a very good addition to the paper, the effects of sequencing depth can be profound but are ignored in most studies, so I commend the authors for doing this here. It would be even better, in my opinion, if this was done with the same datasets used to test/compare Q2PD with other methods, as using a different dataset here adds a new layer of confounding factors.

      'the GMHI and the hiPCA produced the opposite trend, wrongly indicating patient recovery.' The difference here is striking, what is driving this trend?

      The Gut Microbiome Wellness Index 2 (GMWI2) is now published. I don't think it needs to be part of the benchmarking, but it could be acknowledged/cited here.

      Methods: More information on how the data was processed is needed - how were the abundance tables normalized? Which output from Humann was used for downstream analyses?

      To ensure reproducibility, please provide the scripts/code used for analyses and figures.

    1. AbstractBackground Spiders generally exhibit robust starvation resistance, with hunting spiders, represented by Heteropoda venatoria, being particularly outstanding in this regard. Given the challenges posed by climate change and habitat fragmentation, understanding how spiders adjust their physiology and behavior to adapt to the uncertainty of food resources is crucial for predicting ecosystem responses and adaptability.Results We sequenced the genome of H. venatoria and, through comparative genomic analysis, discovered significant expansions in gene families related to lipid metabolism, such as cytochrome P450 and steroid hormone biosynthesis genes. We also systematically analyzed the gene expression characteristics of H. venatoria at different starvation resistance stages and found that the fat body plays a crucial role during starvation in spiders. This study indicates that during the early stages of starvation, H. venatoria relies on glucose metabolism to meet its energy demands. In the middle stage, gene expression stabilizes, whereas in the late stage of starvation, pathways for fatty acid metabolism and protein degradation are significantly activated, and autophagy is increased, serving as a survival strategy under extreme starvation. Additionally, analysis of expanded P450 gene families revealed that H. venatoria has many duplicated CYP3 clan genes that are highly expressed in the fat body, which may help maintain a low-energy metabolic state, allowing H. venatoria to endure longer periods of starvation. We also observed that the motifs of P450 families in H. venatoria are less conserved than those in insects, which may be related to the greater polymorphism of spider genomes.Conclusions This research not only provides important genetic and transcriptomic evidence for understanding the starvation mechanisms of spiders but also offers new insights into the adaptive evolution of arthropods.

      This work has been peer reviewed in GigaScience (https://doi.org/10.1093/gigascience/giaf019), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer 2: Sandra Correa-Garhwal

      The manuscript "Genomic and transcriptomic analyses of Heteropoda venatoria reveal the expansion of P450 family for starvation resistance in spider" uses comparative genomics to study the underlying mechanisms of starvation resistance. I appreciate that the authors have produced a high-quality genome for an RTA species. The methods are sound and some interesting gene families are highlighted as key factors in starvation resistance.

      One primary concern I have relates to the study's setup and hypothesis. As currently written, the study comes across as a fishing expedition rather than a focused research project. Although the introduction is informative, it lacks a clear rationale for including this particular species. The reasoning only becomes apparent at the end of the gene family expansion and contraction section. Additionally, I am unsure if being an active hunter makes feeding more unpredictable compared to web-based prey capture. I recommend incorporating this information into the introductory paragraph to better establish the context for the analysis. While terms like "autophagy" and "energy homeostasis" are appropriate for a scientific audience, consider briefly defining them for clarity, especially if the intended audience might not be familiar with all the terminology. Although authors mention that there is no high-quality genome sequence for H. venatoria, it could be helpful to elaborate on why this is significant for understanding starvation resistance. A brief explanation of how genomic data could enhance understanding of the molecular mechanisms involved would strengthen this point. The conclusion provides a clear goal for your study, but it could be more impactful. You might want to emphasize the broader implications of your research findings for ecological conservation and biodiversity. End with a statement about the importance of understanding these mechanisms in the context of preserving ecosystems and addressing challenges posed by climate change.

      For the discussion, while the content is detailed, some parts feel slightly repetitive or could be more concise. For instance, the description of P450 gene expression could be streamlined by removing redundant mentions of their role in metabolic rate regulation. Example: In the discussion section "Interestingly, we found that some P450 families are expanded in H. venatoria, and most P450 genes are more highly expressed in the fat body than in other tissues…" This point is later reiterated in the sentence about other spider species. These ideas could be combined for efficiency. The paragraph about the phylogenetic analysis of the CYP3 clan could be shortened. While it is an interesting finding, some of the details (like the number of genes or proteins) might be better suited for the main text rather than a summary. Focusing more on the functional implications of these duplications would keep the reader engaged. Though the findings are well-explained, the broader significance could be emphasized more explicitly. For example, why is understanding these mechanisms important for the field of arachnid biology, evolutionary biology, or even practical applications (e.g., pest control, conservation)? You could add a closing sentence that ties everything together and highlights the broader relevance of the findings, such as the evolutionary or ecological importance of these adaptations in spiders.

      Other comments: Last paragraph of the introduction: When introducing Heteropoda venatoria, please spell out the species name the first time that is used. The sentence "However, these findings indicate that H. venatoria does not feed in a stable manner and often experiences periods of starvation." Does not fit the rest of the text. Finding from what study? Transcription design for starvation resistance in H. venatoria section: First sentence: What samples? confusing to start like this. Please add information about the samples. You could delete "the samples of H. venatoria were subjected to" it will read better. Are all 23 CYP# clan genes on chromosome 4 tandemly arrayed? Figure 4 - add more information about the figure. For pannel C, What do the red lines show? Grey? Numbers in the circles? While I know what they represent, other readers might not. The finding that H. venatoria chromosomes have undergone lots of chromosomal fragmentation is very interesting, and it is clearly shown on the figure. Which is why I think that more detail is needed. In this sentence "In Uloborus diversus, members of this subfamily are located on Chr5 and an unanchored scaffold." You need to specify which members. Figure 5 - Include a description of the tissues. What is Epi? Ducts? Tail?

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review): Summary:

      The authors demonstrate that two human preproprotein human mutations in the BMP4 gene cause a defect in proprotein cleavage and BMP4 mature ligand formation, leading to hypomorphic phenotypes in mouse knock-in alleles and in Xenopus embryo assays.

      Strengths:

      They provide compelling biochemical and in vivo analyses supporting their conclusions, showing the reduced processing of the proprotein and concomitant reduced mature BMP4 ligand protein from impressively mouse embryonic lysates. They perform excellent analysis of the embryo and post-natal phenotypes demonstrating the hypomorphic nature of these alleles. Interesting phenotypic differences between the S91C and E93G mutants are shown with excellent hypotheses for the differences. Their results support that BMP4 heterodimers act predominantly throughout embryogenesis whereas BMP4 homodimers play essential roles at later developmental stages.

      Weaknesses:

      (1) A control of BMP7 alone in the Xenopus assays seems important to excludeBMP7 homodimer activity in these assays.

      We and other have shown that BMP7 homodimers have weak or no activity while BMP4/7 heterodimers single at a much higher level than either BMP4 or BMP7 homodimers in Xenopus ectodermal and mesodermal cells. We have expanded the description of these published findings in the results section (lines 182-187). We have also added representative examples of experiments in which BMP4 and BMP7 alone controls are included (new Fig. S2). Since the level of activity of BMP7 + BMP4 variants is equivalent to that of BMP7 + WT BMP4, this cannot be accounted for by BMP7 homodimers.

      (2) The Discussion could be strengthened by more in-depth explanations of how BMP4 homodimer versus heterodimer signaling is supported by the results, so that readers do not have to think it all through themselves. Similarly, a discussion of why the S91C mutant has a stronger phenotype than E93G early in the Discussion would be helpful or least mention that it will be addressed later.

      We have revised the discussion as suggested by the reviewer. Please see responses to recommendations 2-4 below.

      Reviewer #1 (Recommendations for the authors):

      (1) A control of BMP7 injection alone seems missing when comparing the BMP4/7 variants. BMP4 in the embryo assays presented in Fig 1. Is it not possible that the activity observed is BMP7 homodimers, perhaps due to inhibited heterodimer formation by the BMP4 variant?

      Multiple published studies have shown that BMP7 homodimers have weak or no activity in Xenopus ectodermal and mesodermal cells, and that ½ dose of RNA encoding BMP4 and BMP7 together signals at a higher level than does a full dose of RNA encoding either BMP4 or BMP7 alone. We have expanded our description of these published findings (lines 182-187), have included additional details about RNA doses that were injected (line 156, 175, 182) and have added representative examples of experiments in which BMP4 and BMP7 controls were included in a new Figure (Fig. S2).

      (2) In reading the Discussion, I was continually thinking of the stronger phenotype of the S91C mutant compared to the E93G one, although both are discussed together throughout most of the Discussion. Only at the end of the Discussion is the stronger phenotype of S91C discussed with a compelling explanation for the stronger phenotype, not related to the phosphorylation site function. I wonder if it would be better placed earlier in Discussion or at least mentioned the difference in phenotypes that will be discussed later.

      We have moved the possible explanation of differences between Bmp4<sup>S91C</sup> and Bmp4<sup>E93G</sup> mutants to immediately follow the introductory paragraph of the results section.

      (3) Along these same lines, why is it that the E93G exhibits rather normal cleavage at E10.5? Might the mechanisms of cleavage vary in different contexts with phosphorylation-dependent cleavage not functioning at early stages of development? I believe the hypothesis is that it is cleaved due to heterodimerization with BMP7. More discussion of this excellent hypothesis should be provided with clear statements, rather than inferences, if I'm understanding this correctly. For example, I had to read 3 times the first sentence of the last paragraph on p.14 before I understood it. Better to break that sentence down and the one that follows it, so it is easier to understand.

      We have rewritten and expanded the paragraphs describing phenotypic and biochemical evidence for defective homodimer but not heterodimer signaling as suggested (lines 343-375). We have also more explicitly stated the possibility that normal cleavage of BMP4<sup>E93G</sup> in embryonic lystates may be due to a predominance of BMP4/7 heterodimers in early embryonic stages or spatiotemporal differences in phosphorylation-dependent cleavage of BMP4 homodimers (lines 369-372)

      (4) Similarly the last paragraph of the Discussion mentions that the authors provide evidence of BMP4 homodimer signaling. I agree with the authors, but I had to think through the evidence myself. Better if the authors clearly explain the evidence that points to this, as this is a very good point of

      See response to point 3, above. Thank you for these useful suggestions.

      (5) Last sentence, first paragraph on p.11 should be qualified for the E93G mutant to E13.5, since it was normal at E10.5 regarding Figure 4 results.

      Thank you for pointing this out. It has been corrected.

      (6) Skip the PC acronym, since it is only repeated once in the text and hard to remember almost 10 pages later when it is used again.

      We have corrected this.

      (7) In the Discussion, a typo in "a single intramolecular disulfide bond that stabilizes the dimer", should be 'intermolecular'.

      Thank you for catching our switch in the use of inter- and intramolecular. We have corrected this (lines 334-335).

      (8) At times the E93G mutant is referred to having early lethality, often in conjunction with S91C, while other times it is referred to as late lethality. Considering that the homozygotes die postnatally after weaning, most would consider it late lethality. In contrast S91C is indeed an early lethal.

      We have changed the wording in the introduction to state that “mice carrying Bmp4<sup>S91C</sup> or Bmp4<sup>E93G</sup> knock in mutations show embryonic or enhanced postnatal lethality, respectively,… (lines 141-143)” and have removed the word “early” from the title.

      Reviewer #2 (Public review): Summary:

      Kim et al. report that two disease mutations in proBMP4, Ser91Cys and Glu93Gly, which disrupt the Ser91 FAM20C phosphorylation site, block the activation of proBMP4 homodimers. Consequently, analysis of DMZ explants from Xenopus embryos expressing the proBMP4 S91C or E93G mutants showed reduced pSmad1 and tbxt1 expression. The block in BMP4 activity caused by the mutations could be overcome by co-expression of BMP7, suggesting that the missense mutations selectively affect the activity of BMP4 homodimers but not BMP4/7 heterodimers. The expert amphibian tissue transplant studies were extended to in vivo studies in Bmp4S91C/+ and Bmp4E93G/+ mice, demonstrating the impact of these mutations on embryonic development, particularly in female mice, in line with patient studies. Finally, studies in MEFs revealed that the mutations did not affect proBMP4 glycosylation or ER-to-Golgi transport but appeared to inhibit the furin-dependent cleavage of proBMP4 to BMP4. Based on these findings and AI (AlphaFold) modeling of proBMP4, the authors speculate that pSer91 influences access of furin to its cleavage site at Arg289AlaLysArg292.

      Strengths:

      The Xenopus and mouse studies are valuable and elegantly describe the impact of the S91C and E93G disease mutations on BMP signaling and embryonic development.

      Weaknesses:

      The interpretation of how the mutations may disturb the furin-mediated cleavage of proBMP4 is underdeveloped and does not consider all of their data. Understanding how pS91 influences the furin-dependent cleavage at Arg292 seems to be the crux of this work and thus warrants more consideration. Specifically:

      (1) Figure S1 may be significantly more informative than implied. The authors report that BMP4S91D activates pSmad1 only incrementally better than S91C and much less than WT BMP4. However, Fig. S1B does not support the conclusion on page 7 (numbering beginning with title page); "these findings suggest that phosphorylation of S91 is required to generate fully active BMP4 homodimers". The authors rightly note that the S91C change likely has manifold effects beyond inhibiting furin cleavage. The E93G change may also affect proBMP4 beyond disturbing FAM20C phosphorylation. Additional mutation analyses would strengthen the work.

      The major goal of generating and comparing the activity of the S91D mutant with S91C was to control for phosphorylation independent defects cause by the deleterious introduction of a cysteine residue, which might cause aberrant disulfide bonding. We opted to introduce S91D since “phosphomimics” can sometimes approximate the phosphorylated state. S91D has significantly higher activity than S91C (p<0.01) and has a less significant loss of activity (p<0.05) than does S91C (<p<0.0001) relative to wild type BMP4 (Fig. S1), consistent with deleterious effects of the cysteine residue and supporting a possible explanation for the more severe phenotype of S91C vs E93G mice. We have rewritten this section to clarify our interpretation (lines 165-174)and have changed our statement that our activity data “suggest the importance of phosphorylation” to a statement that they are consistent with this possibility (lines 179-180). We do not believe that further mutational analysis using activity assays in Xenopus would shed light on how or whether phosphorylation affects proteolytic activation of BMP4.

      (2) These findings in Figure S1 are potentially significant because they may inform how proBMP4 is protected from cleavage during transit through the TGN and entry into peripheral cellular compartments. Intriguing modeling studies in Figure 6 suggest that pSer91 is proximal to the furin cleavage site. Based on their presentation, pSer91 may contact Arg289, the critical P4 residue at the furin site. If so, might that suggest how pS91 may prevent furin cleavage, thus explaining why the S91D mutation inhibits processing as presented, and possibly how proBMP4 processing is delayed until transit to distal compartments (perhaps activated by a change in the endosomal microenvironment or a Ser91 phosphatase)? Have the authors considered or ruled out these possibilities? In addition to additional mutation analyses of the FAM20C site, moving the discussion of this model to an "Ideas and Speculation" subsection may be warranted.

      The model shown in Fig. 6B proposes the possibility that phosphorylation unmasks (rather than preventing) the furin cleavage motif due to the proximity of Ser91 to the cleavage site (lines 399-402). If S91D truly mimicked phosphorylation, we would predict it would facilitate processing rather than inhibiting it. We do not have data comparing cleavage of S91D relative to wild type BMP4 and have not generated knock in S91D mice to test this idea. While the reviewers questions are intriguing, they cannot be answered by mutational analysis of the FAM20C site and are beyond the scope of the current studies that sought to understand the impact of human pS91C and pE93G mutations and cell biological implications. We have moved the models to an “Ideas and Speculation” subsection as suggested (lines 377-414) since these models are meant to provoke further thought rather than provide definitive answers based on our data.

      (3) The lack of an in vitro protease assay to test the effect of the S91 mutations on furin cleavage is problematic.

      Although we routinely perform in vitro cleavage assays with recombinant furin, we don’t believe they would be informative on how S91 phosphorylation or mutation of this residue impacts cleavage since in vitro synthesized substrate used in these assays is neither dimerized not post-translationally modified, and cleavage would be tested in isolation from the endogenous trafficking environment that we propose influences cleavage.

      Reviewer #2 (Recommendations for the authors):

      (1) The impact of BMPS91A should be determined and paired with the S91D phosphomimic data to reveal if it causes proBMP4 to be cleaved prematurely and disturbs pSmad1 expression. Data for S93G should also be included.

      Our major goal in comparing the activity of S91D with S91C was to control for phosphorylation independent defects cause by the deleterious introduction of a cysteine residue in S91C, which might cause aberrant disulfide bonding. We opted to introduce S91D since “phosphomimics” can sometimes approximate the phosphorylated state. We note that S91D has significantly higher activity than S91C, consistent with deleterious effects of the cysteine residue and supporting a possible explanation for the more severe phenotype of S91C vs E93G mice. We have revised the wording of this section to clarify this. Our models predict that S91D would be cleaved more efficiently than S91C or S91A, if it really mimics the endogenous phosphorylated state, rather than being cleaved prematurely. Our biochemical analysis compares cleavage of endogenous BMP4 in wild type and mutant MEFs. Generation of S91D, S91A or S93G mutant mice to compare cleavage is beyond the scope of the current work.

      (2) Is the distance between pS91 and Arg289 close enough to form a hydrogen bond? If so, might this interaction influence furin access?

      AI modeling does not provide high probability prediction of structures surrounding the furin motif (see Fig. S7) and thus we cannot comment on whether or not these residues are close enough to form a hydrogen bond. We have revised the wording of the discussion to state “This simple model building indicates the possibility of direct contact between pSer91 and Arg289, and that phosphorylation is required for furin to access the cleavage site, although we note that predictions surrounding the furin motif represent low probability conformations (Fig. S7) (lines 399-402).”

      (3) The genotypes in Figure 2 are labeled awkwardly. Consider labeling the headers for the three subsections of panels (A-F, G-L, and M-O) differently.

      We have revised Fig. 2 to clarify that the three subsections of panels are distinct, and to emphasize that the middle subsection represents views of the right and left side of the same embryo.

      (4) The tables should be reformatted. As is, the labeling is frequently cut off, and the numbers of expected and observed progeny should both be stated to aid the reader.

      We thank the reviewer for noting the formatting errors in the tables, which we have corrected. We have also changed the tables so that normal or abnormal mendelian distributions are reported as numbers of observed/expected progeny rather than numbers/percent observed progeny.

      Reviewer #3 (Public review):

      Summary:

      The authors describe important new biochemical elements in the synthesis of a class of critical developmental signaling molecules, BMP4. They also present a highly detailed description of developmental anomalies in mice bearing known human mutations at these specific elements.

      Strengths:

      Exceptionally detailed descriptions of pathologies occurring in mutant mice. Novel findings regarding the interaction of propeptide phosphorylation and convertase cleavage, both of which will move the field forward. Provocative hypothesis regarding furin access to cleavage sites, supported by Alphafold predictions.

      Weaknesses:

      Figure 6A presents two testable models for pre-release access of furin to cleavage sites since physical separation of enzyme from substrate only occurs in one model; could immunocytochemistry resolve?

      Available reagents are not sensitive enough to detect endogenous furin and BMP4 with high resolution. Because PC/substrate interactions are transient, whereas the bulk of furin and BMP4 is distributed throughout the secretory pathway, it is not possible to co-immunolocalize furin and BMP4 in vivo at present. Studies using more advanced cell biological techniques such along with tagged proteins may enable us to test these hypotheses in the future.

      Reviewer #3 (Recommendations for the authors):

      This interesting paper presents new data on an important family of developmental signaling molecules, BMPs. Mutations at FAM20C consensus sites within BMP prodomains are known to cause birth defects. The authors have here explored differential effects of human mutations on hetero- and homodimer activity and maturation, issues that may well arise during human development. In addition to demonstrating the profound effect of these mutations on development in Xenopus and mice, the authors also show differential processing of BMP4 precursors bearing these mutations in MEF cells prepared from mutant embryos. Finally, they show that FAM20C plays a role in BMP4 prodomain processing with quite differing outcomes in homo- vs heterodimers, which they suggest is due to structural differences impacting furin access. While this latter idea remains speculative due to the lack of crystal structures (models are based on Alphafold) it is a highly promising line of work.

      The data are beautifully presented and will be of clear interest to all developmental biologists. Certain cell biology results may also extrapolate to other phosphorylated precursor molecules undergoing the interesting (and as yet unexplained) phenomenon of convertase cleavage immediately before secretion, for example, FGF23. I have only a few minor comments regarding the presentation, which is remarkably clear.

      (1) The introduction of BMP7 in the Abstract is abrupt. It should be described as a preferred dimerization partner for BMP4.

      Thank you for noting this. We have revised the first sentence of the abstract to better introduce BMP7(lines 49-50).

      (2) In Figure 1A, what is the small light green box?

      This is a small fragment released from the prodomain by the second cleavage. We have clarified this in the introduction (lines 112-114) and in the legend to Figure 1 (lines 758-759).

      (3) In the Discussion it might be relevant to mention that FAM20C propeptide is not cleaved by convertases but by S1P (Chen 2021).

      We have added this information to clarify (lines 394-396).

      (4) Figure 3, define VSD; Figure 5, Endo H removes sugars only from immature (nonsialylated) sugars, not from all chains as implied. More importantly, EndoH and PNGase remove N-linked sugars, yet Results refer only to O-linked glycosylation.

      Thank you for noting these oversights. We have defined VSD in Figure 3. We have also revised the headers for Fig. 5 and for the relevant subsection of the results to include N-linked glycosylation and note in the results that EndoH removes only immature N-linked carbohydrates (lines 301-304).

      (5) Figure 5- for clarity, I suggest it be broken up into two larger panels labeled "Embryos" and "MEFs"

      Thank you for this suggestion, we have subdivided the Figure into two panels.

      (6) Figure 6A presents two testable models for pre-release access of furin to cleavage sites since the physical separation of the enzyme from substrate only occurs in one model; could confocal immunocytochemistry resolve?

      Available reagents are not sensitive enough to detect endogenous furin and BMP4 with high resolution and PC/substrate interactions are transient whereas the bulk of both furin and BMP4 is in transit through the secretory pathway. For these reasons it is not possible to co-immunolocalize furin and BMP4 in vivo. Future studies using advanced cell biological techniques may enable us to test these hypotheses in the future.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      Chang and colleagues used tetrode recordings in behaving rats to study how learning an audiovisual discrimination task shapes multisensory interactions in the auditory cortex. They found that a significant fraction of neurons in the auditory cortex responded to visual (crossmodal) and audiovisual stimuli. Both auditory-responsive and visually-responsive neurons preferentially responded to the cue signaling the contralateral choice in the two-alternative forced choice task. Importantly, multisensory interactions were similarly specific for the congruent audiovisual pairing for the contralateral side.

      Strengths:

      The experiments were conducted in a rigorous manner. Particularly thorough are the comparisons across cohorts of rats trained in a control task, in a unisensory auditory discrimination task, and the multisensory task, while also varying the recording hemisphere and behavioral state (engaged vs. anesthesia). The resulting contrasts strengthen the authors' findings and rule out important alternative explanations. Through the comparisons, they show that the enhancements of multisensory responses in the auditory cortex are specific to the paired audiovisual stimulus and specific to contralateral choices in correct trials and thus dependent on learned associations in a task-engaged state.

      We thank Reviewer #1 for the thorough review and valuable feedback.

      Weaknesses:

      The main result is that multisensory interactions are specific for contralateral paired audiovisual stimuli, which is consistent across experiments and interpretable as a learned task-dependent effect. However, the alternative interpretation of behavioral signals is crucial to rule out, which would also be specific to contralateral, correct trials in trained animals. Although the authors focus on the first 150 ms after cue onset, some of the temporal profiles of activity suggest that choice-related activity could confound some of the results.

      We thank the reviewer for raising this important point regarding the potential influence of choice-related activity on our results. In our experimental setup, it is challenging to completely disentangle the effects of behavioral choice from multisensory interaction. However, we conducted relevant analyses to examine the influence of choice-related components on multisensory interaction.

      First, we analyzed neural responses during incorrect trials and found a significant reduction in multisensory enhancement for the A<sup>10k</sup>-V<sup>vt</sup> pairing (Fig. 4). In contrast, for the A<sup>3k</sup>-V<sup>hz</sup> pairing, there was no strong multisensory interaction during either correct (right direction) or incorrect (left direction) choices. This finding suggests that the observed multisensory interactions are strongly associated with specific cue combinations during correct task performance.

      Second, we conducted experiments with unisensory training, in which animals were trained separately on auditory and visual discriminations without explicit multisensory associations. The results demonstrated that unisensory training did not lead to the development of selective multisensory enhancement or congruent auditory-visual preferences, as observed in the multisensory training group. This indicates that the observed multisensory interactions in the auditory cortex are specific to multisensory training and cannot be attributed solely to behavioral signals or choice-related effects.

      Finally, we specifically focused on the early 0-150 ms time window after cue onset in our main analyses to minimize contributions from motor-related or decision-related activity, which typically emerge later. This time window allowed us to capture early sensory processing while reducing potential confounds.

      Together, these findings strongly suggest that the observed choice-dependent multisensory enhancement is a learned, task-dependent phenomenon that is specific to multisensory training.

      The auditory stimuli appear to be encoded by short transient activity (in line with much of what we know about the auditory system), likely with onset latencies (not reported) of 15-30 ms. Stimulus identity can be decoded (Figure 2j) apparently with an onset latency around 50-75 ms (only the difference between A and AV groups is reported) and can be decoded near perfectly for an extended time window, without a dip in decoding performance that is observed in the mean activity Figure 2e. The dynamics of the response of the example neurons presented in Figures 2c and d and the average in 2e therefore do not entirely match the population decoding profile in 2j. Population decoding uses the population activity distribution, rather than the mean, so this is not inherently problematic. It suggests however that the stimulus identity can be decoded from later (choice-related?) activity. The dynamics of the population decoding accuracy are in line with the dynamics one could expect based on choice-related activity. Also the results in Figures S2e,f suggest differences between the two learned stimuli can be in the late phase of the response, not in the early phase.

      We appreciate the reviewer’s detailed observations and questions regarding the dynamics of auditory responses and decoding profiles in our study. In our experiment, primary auditory cortex (A1) neurons exhibited short response latencies that meet the established criteria for auditory responses in A1, consistent with findings from many other studies conducted in both anesthetized and task-engaged animals. While the major responses typically occurred during the early period (0-150ms) after cue onset (see population response in Fig. 2e), individual neuronal responses in the whole population were generally dynamic, as illustrated in Figures 2c, 2d, and 3a–c. As the reviewer correctly noted, population decoding leverages the distribution of activity across neurons rather than the mean activity, which explains why the dynamics of population decoding accuracy align well with choice-related activity. This also accounts for the extended decoding window observed in Figure 2j, which does not entirely match the early population response profiles in Figure 2e.

      To address the reviewer’s suggestion that differences between the two learned stimuli might arise in the late phase of the response, we conducted a cue selectivity analysis during the 151–300 ms period after cue onset. The results, shown below, indicate that neurons maintained cue selectivity in this late phase for each modality (Supplementary Fig. 5), though the selectivity was lower than in the early phase. However, interpreting this late-phase activity remains challenging. Since A<sup>3k</sup>, V<sup>hz</sup>, and A<sup>3k</sup>-V<sup>hz</sup> were associated with the right choice, and A<sup>10k</sup>, V<sup>vt</sup>, and A<sup>10k</sup>-V<sup>vt</sup> with the left choice, it is difficult to disentangle whether the responses reflect choice, sensory features, or a combination of both.

      To further investigate, we examined multisensory interactions during the late phase, controlling for choice effects by calculating unisensory and multisensory responses within the same choice context. Our analysis revealed no evident multisensory enhancement for any auditory-visual pairing, nor significant differences between pairings—unlike the robust effects observed in the early phase (Supplementary Fig. 5). We hypothesize that early responses are predominantly sensory-driven and exhibit strong multisensory integration, whereas late responses likely reflect task-related, choice-related, or combined sensory-choice activity, where sensory-driven multisensory enhancement is less prominent. As the focus of this manuscript is on multisensory integration and cue selectivity, we prioritized a detailed analysis of the early phase, where these effects are most prominent. However, the complexity of interpreting late-phase activity remains a challenge and warrants further investigation. We cited Supplementary Fig. 5 in revised manuscript as the following:

      “This resulted in a significantly higher mean MSI for the A<sup>10k</sup>-V<sup>vt</sup> pairing compared to the A<sup>3k</sup>-V<sup>hz</sup> pairing (0.047 ± 0.124 vs. 0.003 ± 0.096; paired t-test, p < 0.001). Among audiovisual neurons, this biasing is even more pronounced (enhanced vs. inhibited: 62 vs. 2 in A<sup>10k</sup>-V<sup>vt</sup> pairing, 6 vs. 13 in A<sup>3k</sup>-V<sup>hz</sup> pairing; mean MSI: 0.119±0.105 in A<sup>10k</sup>-V<sup>vt</sup> pairing vs. 0.020±0.083 A<sup>3k</sup>-V<sup>hz</sup> pairing, paired t-test, p<0.00001) (Fig. 3f). Unlike the early period (0-150ms after cue onset), no significant differences in multisensory integration were observed during the late period (151-300ms after cue onset) (Supplementary Fig. 5).”

      First, it would help to have the same time axis across panels 2,c,d,e,j,k. Second, a careful temporal dissociation of when the central result of multisensory enhancements occurs in time would discriminate better early sensory processing-related effects versus later decision-related modulations.

      Thank you for this valuable feedback. Regarding the first point, we used a shorter time axis in Fig. 2j-k to highlight how the presence of visual cues accelerates the decoding process. This visualization choice was intended to emphasize the early differences in processing speed. For the second point, we have carefully analyzed multisensory integration across different temporal windows. The results presented in the Supplementary Fig. 5 (also see above) already address the late phase, where our data show no evidence of multisensory enhancement for any auditory-visual pairings. This distinction helps clarify that the observed multisensory effects are primarily related to early sensory processing rather than later decision-related modulations. We hope this addresses the concerns raised and appreciate the opportunity to clarify these points.

      In the abstract, the authors mention "a unique integration model", "selective multisensory enhancement for specific auditory-visual pairings", and "using this distinct integrative mechanisms". I would strongly recommend that the authors try to phrase their results more concretely, which I believe would benefit many readers, i.e. selective how (which neurons) and specific for which pairings?

      We appreciate the reviewer’s suggestion to clarify our phrasing for better accessibility. To address this, we have revised the relevant sentence in the abstract as follows:

      "This model employed selective multisensory enhancement for the auditory-visual pairing guiding the contralateral choice, which correlated with improved multisensory discrimination."

      Reviewer #2 (Public review):

      Summary

      In this study, rats were trained to discriminate auditory frequency and visual form/orientation for both unisensory and coherently presented AV stimuli. Recordings were made in the auditory cortex during behaviour and compared to those obtained in various control animals/conditions. The central finding is that AC neurons preferentially represent the contralateral-conditioned stimulus - for the main animal cohort this was a 10k tone and a vertically oriented bar. Over 1/3rd of neurons in AC were either AV/V/A+V and while a variety of multisensory neurons were recorded, the dominant response was excitation by the correctly oriented visual stimulus (interestingly this preference was absent in the visual-only neurons). Animals performing a simple version of the task in which responses were contingent on the presence of a stimulus rather than its identity showed a smaller proportion of AV stimuli and did not exhibit a preference for contralateral conditioned stimuli. The contralateral conditioned dominance was substantially less under anesthesia in the trained animals and was present in a cohort of animals trained with the reverse left/right contingency. Population decoding showed that visual cues did not increase the performance of the decoder but accelerated the rate at which it saturated. Rats trained on auditory and then visual stimuli (rather than simultaneously with A/V/AV) showed many fewer integrative neurons.

      Strengths

      There is a lot that I like about this paper - the study is well-powered with multiple groups (free choice, reversed contingency, unisensory trained, anesthesia) which provides a lot of strength to their conclusions and there are many interesting details within the paper itself. Surprisingly few studies have attempted to address whether multisensory responses in the unisensory cortex contribute to behaviour - and the main one that attempted to address this question (Lemus et al., 2010, uncited by this study) showed that while present in AC, somatosensory responses did not appear to contribute to perception. The present manuscript suggests otherwise and critically does so in the context of a task in which animals exhibit a multisensory advantage (this was lacking in Lemus et al.,). The behaviour is robust, with AV stimuli eliciting superior performance to either auditory or visual unisensory stimuli (visual were slightly worse than auditory but both were well above chance).

      We thank the reviewer for their positive evaluation of our study.

      Weaknesses

      I have a number of points that in my opinion require clarification and I have suggestions for ways in which the paper could be strengthened. In addition to these points, I admit to being slightly baffled by the response latencies; while I am not an expert in the rat, usually in the early sensory cortex auditory responses are significantly faster than visual ones (mirroring the relative first spike latencies of A1 and V1 and the different transduction mechanisms in the cochlea and retina). Yet here, the latencies look identical - if I draw a line down the pdf on the population level responses the peak of the visual and auditory is indistinguishable. This makes me wonder whether these are not sensory responses - yet, they look sensory (very tightly stimulus-locked). Are these latencies a consequence of this being AuD and not A1, or ... ? Have the authors performed movement-triggered analysis to illustrate that these responses are not related to movement out of the central port, or is it possible that both sounds and visual stimuli elicit characteristic whisking movements? Lastly, has the latency of the signals been measured (i.e. you generate and play them out synchronously, but is it possible that there is a delay on the audio channel introduced by the amp, which in turn makes it appear as if the neural signals are synchronous? If the latter were the case I wouldn't see it as a problem as many studies use a temporal offset in order to give the best chance of aligning signals in the brain, but this is such an obvious difference from what we would expect in other species that it requires some sort of explanation.

      Thank you for your insightful comments. I appreciate the opportunity to clarify these points and strengthen our manuscript. Below, I address your concerns in detail:

      We agree that auditory responses are typically faster than visual responses due to the distinct transduction mechanisms. However, in our experiment, we intentionally designed the stimulus setup to elicit auditory and visual responses within a similar time window to maximize the potential for multisensory integration. Specifically, we used pure tone sounds with a 15 ms ramp and visual stimuli generated by an LED array, which produce faster responses compared to mostly used light bars shown on a screen (see Supplementary Fig. 2a). The long ramp of the auditory stimulus slightly delayed auditory response onset, while the LED-generated bar (compared to the bar shown on the screen) elicited visual responses more quickly. This alignment likely facilitated the observed overlap in response latencies.

      Neurons’ strong spontaneous activity in freely moving animals complicates the measurement of first spike latencies. Despite that, we still can infer the latency from robust cue-evoked responses. Supplementary Fig. 2b illustrates responses from an exemplar neuron (the same neuron as shown in Fig. 2c), where the auditory response begins 9 ms earlier than the visual response. Given the 28 ms auditory response latency observed here using 15 ms-ramp auditory stimulus, this value is consistent with prior studies in the primary auditory cortex usually using 5 ms ramp pure tones, where latencies typically range from 7 to 28 ms. Across the population (n=559), auditory responses consistently reached 0.5 of the mean Z-scored response 15 ms earlier than visual responses (Supplementary Fig. 2c). The use of Gaussian smoothing in PSTHs supports the reliability of using the 0.5 threshold as an onset latency marker. We cited Supplementary Fig. 2 in the revised manuscript within the Results section (also see the following):

      “This suggests multisensory discrimination training enhances visual representation in the auditory cortex. To optimize the alignment of auditory and visual responses and reveal the greatest potential for multisensory integration, we used long-ramp pure tone auditory stimuli and quick LED-array-elicited visual stimuli (Supplementary Fig. 2). While auditory responses were still slightly earlier than visual responses, the temporal alignment was sufficient to support robust integration.”

      We measured the time at which rats left the central port and confirmed that these times occur significantly later than the neuronal responses analyzed (see Fig. 1c-d). While we acknowledge the potential influence of movements such as whiskering, facial movements, head direction changes, or body movements on neuronal responses, precise monitoring of these behaviors in freely moving animals remains a technical challenge. However, given the tightly stimulus-locked nature of the neuronal responses observed, we believe they primarily reflect sensory processing rather than movement-related activity.

      To ensure accurate synchronization of auditory and visual stimuli, we verified the latencies of our signals. The auditory and visual stimuli were generated and played out synchronously with no intentional delay introduced. The auditory amplifier used in our setup introduces minimal latency, and any such delay would have been accounted for during calibration. Importantly, even if a small delay existed, it would not undermine our findings, as many studies intentionally use temporal offsets to facilitate alignment of neural signals. Nonetheless, the temporal overlap observed here is primarily a result of our experimental design aimed at promoting multisensory integration.

      We hope these clarifications address your concerns and highlight the robustness of our findings.

      Reaction times were faster in the AV condition - it would be of interest to know whether this acceleration is sufficient to violate a race model, given the arbitrary pairing of these stimuli. This would give some insight into whether the animals are really integrating the sensory information. It would also be good to clarify whether the reaction time is the time taken to leave the center port or respond at the peripheral one.

      We appreciate your request for clarification. In our analysis, reaction time (RT) is defined as the time taken for the animal to leave the center port after cue onset. This measure was chosen because it reflects the initial decision-making process and the integration of sensory information leading to action initiation. The time taken to respond at the peripheral port, commonly referred to as movement time, was not included in our RT measure. However, movement time data is available in our dataset, and we are open to further analysis if deemed necessary.

      To determine whether the observed acceleration in RTs in the audiovisual (AV) condition reflects true multisensory integration rather than statistical facilitation, we tested for violations of the race model inequality (Miller, 1982). This approach establishes a bound for the probability of a response occurring within a given time interval under the assumption that the auditory (A) and visual (V) modalities operate independently. Specifically, we calculated cumulative distribution functions (CDFs) for the RTs in the A, V, and AV conditions (please see Author response image 1). In some rats, the AV_RTs exceeded the race model prediction at multiple time points, suggesting that the observed acceleration is not merely due to statistical facilitation but reflects true multisensory integration. Examples of these violations are shown in Panels a-b of the following figure. However, in other rats, the AV_RTs did not exceed the race model prediction, as illustrated in Author response image 1c-d.

      This variability may be attributed to task-specific factors in our experimental design. For instance, the rats were not under time pressure to respond immediately after cue onset, as the task emphasized accuracy over speed. This lack of urgency may have influenced their behavioral responses and movement patterns. The race model is typically applied to assess multisensory integration in tasks where rapid responses are critical, often under conditions that incentivize speed (e.g., time-restricted tasks). In our study, the absence of strict temporal constraints may have reduced the likelihood of observing consistent violations of the race model. Furthermore, In our multisensory discrimination task, animals should discriminate multiple cues and make a behavioral choice have introduced additional variability in the degree of integration observed across individual animals. Additionally, factors such as a decline in thirst levels and physical performance as the task progressed may have significantly contributed to the variability in our results. These considerations are important for contextualizing the race model findings and interpreting the data within the framework of our experimental design.

      Author response image 1.

      Reaction time cumulative distribution functions (CDFs) and race model evaluation. (a) CDFs of reaction times (RTs) for auditory (blue), visual (green), and audiovisual stimuli (red) during the multisensory discrimination task. The summed CDF of the auditory and visual conditions (dashed purple, CDF_Miller) represents the race model prediction under independent sensory processing. The dashed yellow line represents the CDF of reaction times predicted by the race model. According to the race model inequality, the CDF for audiovisual stimuli (CDF_AV) should always lie below or to the right of the sum of CDF_A and CDF_V. In this example, the inequality is violated at nearly t = 200 ms, where CDF_AV is above CDF_Miller. (b) Data from another animal, showing similar results. (c, d) CDFs of reaction times for two other animals. In these cases, the CDFs follow the race model inequality, with CDF_AV consistently lying below or to the right of CDF_A + CDF_V.

      The manuscript is very vague about the origin or responses - are these in AuD, A1, AuV... ? Some attempts to separate out responses if possible by laminar depth and certainly by field are necessary. It is known from other species that multisensory responses are more numerous, and show greater behavioural modulation in non-primary areas (e.g. Atilgan et al., 2018).

      Thank you for highlighting the importance of specifying the origin of the recorded responses. In the manuscript, we have detailed the implantation process in both the Methods and Results sections, indicating that the tetrode array was targeted to the primary auditory cortex. Using a micromanipulator (RWD, Shenzhen, China), the tetrode array was precisely positioned at stereotaxic coordinates 3.5–5.5 mm posterior to bregma and 6.4 mm lateral to the midline, and advanced to a depth of approximately 2–2.8 mm from the brain surface, corresponding to the primary auditory cortex. Although our recordings were aimed at A1, it is likely that some neurons from AuD and/or AuV were also included due to the anatomical proximity.

      In fact, in our unpublished data collected from AuD, we observed that over 50% of neurons responded to or were modulated by visual cues, consistent with findings from many other studies. This suggests that visual representations are more pronounced in AuD compared to A1. However, as noted in the manuscript, our primary focus was on A1, where we observed relatively fewer visual or audiovisual modulations in untrained rats.

      Regarding laminar depth, we regret that we were unable to determine the specific laminar layers of the recorded neurons in this study, a limitation primarily due to the constraints of our recording setup.

      Reviewer #3 (Public review):

      Summary:

      The manuscript by Chang et al. aims to investigate how the behavioral relevance of auditory and visual stimuli influences the way in which the primary auditory cortex encodes auditory, visual, and audiovisual information. The main result is that behavioral training induces an increase in the encoding of auditory and visual information and in multisensory enhancement that is mainly related to the choice located contralaterally with respect to the recorded hemisphere.

      Strengths:

      The manuscript reports the results of an elegant and well-planned experiment meant to investigate if the auditory cortex encodes visual information and how learning shapes visual responsiveness in the auditory cortex. Analyses are typically well done and properly address the questions raised.

      We sincerely thank the reviewer for their thoughtful and positive evaluation of our study.

      Weaknesses:

      Major

      (1) The authors apparently primarily focus their analyses of sensory-evoked responses in approximately the first 100 ms following stimulus onset. Even if I could not find an indication of which precise temporal range the authors used for analysis in the manuscript, this is the range where sensory-evoked responses are shown to occur in the manuscript figures. While this is a reasonable range for auditory evoked responses, the same cannot be said for visual responses, which commonly peak around 100-120 ms, in V1. In fact, the latency and overall shape of visual responses are quite different from typical visual responses, that are commonly shown to display a delay of up to 100 ms with respect to auditory responses. All traces that the authors show, instead, display visual responses strikingly overlapping with auditory ones, which is not in line with what one would expect based on our physiological understanding of cortical visually-evoked responses. Similarly, the fact that the onset of decoding accuracy (Figure 2j) anticipates during multisensory compared to auditory-only trials is hard to reconcile with the fact that visual responses have a later onset latency compared to auditory ones. The authors thus need to provide unequivocal evidence that the results they observe are truly visual in origin. This is especially important in view of the ever-growing literature showing that sensory cortices encode signals representing spontaneous motor actions, but also other forms of non-sensory information that can be taken prima facie to be of sensory origin. This is a problem that only now we realize has affected a lot of early literature, especially - but not only - in the field of multisensory processing. It is thus imperative that the authors provide evidence supporting the true visual nature of the activity reported during auditory and multisensory conditions, in both trained, free-choice, and anesthetized conditions. This could for example be achieved causally (e.g. via optogenetics) to provide the strongest evidence about the visual nature of the reported results, but it's up to the authors to identify a viable solution. This also applies to the enhancement of matched stimuli, that could potentially be explained in terms of spontaneous motor activity and/or pre-motor influences. In the absence of this evidence, I would discourage the author from drawing any conclusion about the visual nature of the observed activity in the auditory cortex.

      We thank the reviewers for highlighting the critical issue of validating the sensory origin of the reported responses, particularly regarding the timing of visual responses and the potential confound of motor-related activity.

      We analyzed neural responses within the first 150 ms following cue onset, as stated in the manuscript. This temporal window encompasses the peak of visual responses. The responses to visual stimuli occur predominantly within the first 100 ms after cue onset, preceding the initiation of body movements in behavioral tasks. This temporal dissociation aligns with previous studies, which demonstrate that motor-related activity in sensory cortices generally emerges later and is often associated with auditory rather than visual stimuli

      We acknowledge that auditory responses are typically faster than visual responses due to distinct transduction mechanisms. However, in our experiment, we intentionally designed the stimulus setup to elicit auditory and visual responses within a similar time window to maximize the potential for multisensory integration. Specifically, we used pure tone sounds with a 15 ms ramp and visual stimuli generated by an LED array, which produce faster responses compared to commonly used light bars shown on a screen. The long ramp of the auditory stimulus slightly delayed auditory response onset, while the LED-generated bar elicited visual responses more quickly (Supplementary Fig. 2). This alignment facilitated the observed overlap in response latencies. As we measured in neurons with robust visual response, first spike latencies is approximately 40 ms, as exemplified by a neuron with a low spontaneous firing rate and a strong, stimulus-evoked response (Supplementary Fig. 4). Across the population (n = 559 neurons), auditory responses reached 0.5 of the mean Z-scored response 15 ms earlier than visual responses on average (Supplementary Fig. 2). We cited Supplementary Fig. 4 in the Results section as follows:

      “Regarding the visual modality, 41% (80/196) of visually-responsive neurons showed a significant visual preference (Fig. 2f). The visual responses observed within the 0–150 ms window after cue onset were consistent and unlikely to result from visually evoked movement-related activity. This conclusion is supported by the early timing of the response (Fig. 2e) and exemplified by a neuron with a low spontaneous firing rate and a robust, stimulus-evoked response (Supplementary Fig. 4).”

      We acknowledge the growing body of literature suggesting that sensory cortices can encode signals related to motor actions or non-sensory factors. To address this concern, we emphasize that visual responses were present not only during behavioral tasks but also in anesthetized conditions, where motor-related signals are absent. Additionally, movement-evoked responses tend to be stereotyped and non-discriminative. In contrast, the visual responses observed in our study were highly consistent and selective to visual cue properties, further supporting their sensory origin.

      In summary, the combination of anesthetized and behavioral recordings, the temporal profile of responses, and their discriminative nature strongly support the sensory (visual) origin of the observed activity within the early response period. While the current study provides strong temporal and experimental evidence for the sensory origin of the visual responses, we agree that causal approaches, such as optogenetic silencing of visual input, could provide even stronger validation. Future work will explore these methods to further dissect the visual contributions to auditory cortical activity.

      (2) The finding that AC neurons in trained mice preferentially respond - and enhance - auditory and visual responses pertaining to the contralateral choice is interesting, but the study does not show evidence for the functional relevance of this phenomenon. As has become more and more evident over the past few years (see e.g. the literature on mouse PPC), correlated neural activity is not an indication of functional role. Therefore, in the absence of causal evidence, the functional role of the reported AC correlates should not be overstated by the authors. My opinion is that, starting from the title, the authors need to much more carefully discuss the implications of their findings.

      We fully agree that correlational data alone cannot establish causality. In light of your suggestion, we will revise the manuscript to more carefully discuss the implications of our findings, acknowledging that the preferred responses observed in AC neurons, particularly in relation to the contralateral choice, are correlational. We have updated several sentences in the manuscript to avoid overstating the functional relevance of these observations. Below are the revisions we have made:

      Abstract section

      "Importantly, many audiovisual neurons in the AC exhibited experience-dependent associations between their visual and auditory preferences, displaying a unique integration model. This model employed selective multisensory enhancement for the auditory-visual pairing guiding the contralateral choice, which correlated with improved multisensory discrimination."

      (Page 8, fourth paragraph in Results Section)

      "This aligns with findings that neurons in the AC and medial prefrontal cortex selectively preferred the tone associated with the behavioral choice contralateral to the recorded cortices during sound discrimination tasks, potentially reflecting the formation of sound-to-action associations. However, this preference represents a neural correlate, and further work is required to establish its causal link to behavioral choices."

      (rewrite 3rd paragraph in Discussion Section)

      "Consistent with prior research(10,31), most AC neurons exhibited a selective preference for cues associated with contralateral choices, regardless of the sensory modality. This suggests that AC neurons may contribute to linking sensory inputs with decision-making, although their causal role remains to be examined. "

      "These results indicate that multisensory training could drive the formation of specialized neural circuits within the auditory cortex, facilitating integrated processing of related auditory and visual information. However, further causal studies are required to confirm this hypothesis and to determine whether the auditory cortex is the primary site of these circuit modifications."

      MINOR:

      (1) The manuscript is lacking what pertains to the revised interpretation of most studies about audiovisual interactions in primary sensory cortices following the recent studies revealing that most of what was considered to be crossmodal actually reflects motor aspects. In particular, recent evidence suggests that sensory-induced spontaneous motor responses may have a surprisingly fast latency (within 40 ms; Clayton et al. 2024). Such responses might also underlie the contralaterally-tuned responses observed by the authors if one assumes that mice learn a stereotypical response that is primed by the upcoming goal-directed, learned response. Given that a full exploration of this issue would require high-speed tracking of orofacial and body motions, the authors should at least revise the discussion and the possible interpretation of their results not just on the basis of the literature, but after carefully revising the literature in view of the most recent findings, that challenge earlier interpretations of experimental results.

      Thank you for pointing out this important consideration. We have revised the discussion (paragraph 8-9) as follows:

      “There is ongoing debate about whether cross-sensory responses in sensory cortices predominantly reflect sensory inputs or are influenced by behavioral factors, such as cue-induced body movements. A recent study shows that sound-clip evoked activity in visual cortex have a behavioral rather than sensory origin and is related to stereotyped movements(48). Several studies have demonstrated sensory neurons can encode signals associated with whisking(49), running(50), pupil dilation (510 and other movements(52). In our study, the responses to visual stimuli in the auditory cortex occurred primarily within a 100 ms window following cue onset. This early timing suggests that the observed responses likely reflect direct sensory inputs, rather than being modulated by visually-evoked body or orofacial movements, which typically occur with a delay relative to sensory cue onset(53).

      A recent study by Clayton et al. (2024) demonstrated that sensory stimuli can evoke rapid motor responses, such as facial twitches, within 50 ms, mediated by subcortical pathways and modulated by descending corticofugal input(56). These motor responses provide a sensitive behavioral index of auditory processing. Although Clayton et al. did not observe visually evoked facial movements, it is plausible that visually driven motor activity occurs more frequently in freely moving animals compared to head-fixed conditions. In goal-directed tasks, such rapid motor responses might contribute to the contralaterally tuned responses observed in our study, potentially reflecting preparatory motor behaviors associated with learned responses. Consequently, some of the audiovisual integration observed in the auditory cortex may represent a combination of multisensory processing and preparatory motor activity. Comprehensive investigation of these motor influences would require high-speed tracking of orofacial and body movements. Therefore, our findings should be interpreted with this consideration in mind. Future studies should aim to systematically monitor and control eye, orofacial, and body movements to disentangle sensory-driven responses from motor-related contributions, enhancing our understanding of motor planning’s role in multisensory integration.”

      (2) The methods section is a bit lacking in details. For instance, information about the temporal window of analysis for sensory-evoked responses is lacking. Another example: for the spike sorting procedure, limited details are given about inclusion/exclusion criteria. This makes it hard to navigate the manuscript and fully understand the experimental paradigm. I would recommend critically revising and expanding the methods section.

      Thank you for raising this point. We clarified the temporal window by including additional details in the methods section, even though this information was already mentioned in the results section. Specifically, we now state:

      (Neural recordings and Analysis in methods section)

      “...These neural signals, along with trace signals representing the stimuli and session performance information, were transmitted to a PC for online observation and data storage. Neural responses were analyzed within a 0-150ms temporal window after cue onset, as this period was identified as containing the main cue-evoked responses for most neurons. This time window was selected based on the consistent and robust neural activity observed during this period.”

      We appreciate your concern regarding spike sorting procedure. To address this, we have expanded the methods section to provide more detailed information about the quality of our single-unit recordings. we have added detailed information in the text, as shown below (Analysis of electrophysiological data in methods section):

      “Initially, the recorded raw neural signals were band-pass filtered in the range of 300-6000 Hz to eliminate field potentials. A threshold criterion, set at no less than three times the standard deviation (SD) above the background noise, was applied to automatically identify spike peaks. The detected spike waveforms were then subjected to clustering using template-matching and built-in principal component analysis tool in a three-dimensional feature space. Manual curation was conducted to refine the sorting process. Each putative single unit was evaluated based on its waveform and firing patterns over time. Waveforms with inter-spike intervals of less than 2.0 ms were excluded from further analysis. Spike trains corresponding to an individual unit were aligned to the onset of the stimulus and grouped based on different cue and choice conditions. Units were included in further analysis only if their presence was stable throughout the session, and their mean firing rate exceeded 2 Hz. The reliability of auditory and visual responses for each unit was assessed, with well-isolated units typically showing the highest response reliability.”

      Reviewer #1 (Recommendations for the authors):

      (1) Some of the ordering of content in the introduction could be improved. E.g. line 49 reflects statements about the importance of sensory experience, which is the topic of the subsequent paragraph. In the discussion, line 436, there is a discussion of the same findings as line 442. These two paragraphs in general appear to discuss similar content. Similarly, the paragraph starting at line 424 and at line 451 both discuss the plasticity of multisensory responses through audiovisual experience, as well as the paragraph starting at line 475 (but now audiovisual pairing is dubbed semantic). In the discussion of how congruency/experience shapes multisensory interactions, the authors should relate their findings to those of Meijer et al. 2017 and Garner and Keller 2022 (visual cortex) about enhanced and suppressed responses and their potential role (as well as other literature such as Banks et al. 2011 in AC).

      We thank the reviewer for their detailed observations and valuable recommendations to improve the manuscript's organization. Below, we address each point:

      We deleted the sentence, "Sensory experience has been shown to shape cross-modal presentations in sensory cortices" (Line 49), as the subsequent paragraph discusses sensory experience in detail.

      To avoid repetition, we removed the sentence, "This suggests that multisensory training enhances AC's ability to process visual information" (Lines 442–443).

      Regarding the paragraph starting at Line 475, we believe its current form is appropriate, as it focuses on the influence of semantic congruence on multisensory integration, which differs from the topics discussed in the other paragraphs.

      We have cited the three papers suggested by the reviewer in the appropriate sections of the manuscript.

      (Paragraph 6 in discussion section)

      “…A study conducted on the gustatory cortex of alert rats has shown that cross-modal associative learning was linked to a dramatic increase in the prevalence of neurons responding to nongustatory stimuli (24). Moreover, in the primary visual cortex, experience-dependent interactions can arise from learned sequential associations between auditory and visual stimuli, mediated by corticocortical connections rather than simultaneous audiovisual presentations (26).”

      (Paragraph 2 in discussion section)

      “...Meijer et al. reported that congruent audiovisual stimuli evoke balanced enhancement and suppression in V1, while incongruent stimuli predominantly lead to suppression(6), mirroring our findings in AC, where multisensory integration was dependent on stimulus feature…”

      (Paragraph 2 in introduction section)

      “...Anatomical investigations reveal reciprocal nerve projections between auditory and visual cortices(4,11-15), highlighting the interconnected nature of these sensory systems. Moreover, two-photon calcium imaging in awake mice has shown that audiovisual encoding in the primary visual cortex depends on the temporal congruency of stimuli, with temporally congruent audiovisual stimuli eliciting balanced enhancement and suppression, whereas incongruent stimuli predominantly result in suppression(6).”

      (2) The finding of purely visually responsive neurons in the auditory cortex that moreover discriminate the stimuli is surprising given previous results (Iurilli et al. 2012, Morrill and Hasenstaub 2018 (only L6), Oude Lohuis et al. 2024, Atilgan et al. 2018, Chou et al. 2020). Reporting the latency of this response is interesting information about the potential pathways by which this information could reach the auditory system. Furthermore, spike isolation quality and histological verification are described in little detail. It is crucial for statements about the auditory, visual, or audiovisual response of individual neurons to substantiate the confidence level about the quality of single-unit recordings and where they were recorded. Do the authors have data to support that visual and audiovisual responses were not restricted to posteromedial tetrodes or clusters with poor quality? A discussion of finding V-responsive units in AC with respect to literature is warranted. Furthermore, the finding that also in visual trials behaviorally relevant information about the visual cue (with a bias for the contralateral choice cue) is sent to the AC is pivotal in the interpretation of the results, which as far as I note not really considered that much.

      We appreciate the reviewer’s thoughtful comments and have addressed them as follows:

      Discussion of finding choice-related V-responsive units in AC with respect to literature and potential pathways

      3rd paragraph in the Discussion section

      “Consistent with prior research(10,31), most AC neurons exhibited a selective preference for cues associated with contralateral choices, regardless of the sensory modality. This suggests that AC neurons may contribute to linking sensory inputs with decision-making, although their causal role remains to be examined. Associative learning may drive the formation of new connections between sensory and motor areas of the brain, such as cortico-cortical pathways(35). Notably, this cue-preference biasing was absent in the free-choice group. A similar bias was also reported in a previous study, where auditory discrimination learning selectively potentiated corticostriatal synapses from neurons representing either high or low frequencies associated with contralateral choices(32)…”

      6th paragraph in the Discussion section

      “Our results extend prior finding(4,47), showing that visual input not only reaches the AC but can also drive discriminative responses, particularly during task engagement. This task-specific plasticity enhances cross-modal integration, as demonstrated in other sensory systems. For example, calcium imaging studies in mice showed that a subset of multimodal neurons in visual cortex develops enhanced auditory responses to the paired auditory stimulus following coincident auditory–visual experience(25)…”

      8th paragraph in the Discussion section

      “…In our study, the responses to visual stimuli in the auditory cortex occurred primarily within a 100 ms window following cue onset, suggesting that visual information reaches the AC through rapid pathways. Potential candidates include direct or fast cross-modal inputs, such as pulvinar-mediated pathways(8) or corticocortical connections(5,54), rather than slower associative mechanisms. This early timing indicates that the observed responses were less likely modulated by visually-evoked body or orofacial movements, which typically occur with a delay relative to sensory cue onset(55).”

      Response Latency

      Regarding the latency of visually driven responses, we have included this information in our response to the second reviewer’s first weakness (please see the above). Briefly, we analyzed neural responses within a 0-150ms temporal window after cue onset, as this period captures the most consistent and robust cue-evoked responses across neurons.

      Purely Visually Responsive Neurons in A1

      We agree that the finding of visually responsive neurons in the auditory cortex may initially seem surprising. However, these neurons might not have been sensitive to target auditory cues in our task but could still respond to other sound types. Cortical neurons are known to exhibit significant plasticity during the cue discrimination tasks, as well as during passive sensory exposure. Thus, the presence of visually responsive neurons is not inconsistent with prior findings but highlights task-specific sensory tuning. We confirm that responses were not restricted to posteromedial tetrodes or low-quality clusters (see an example of a robust visually responsive neuron in supplementary Fig. 4). Histological analysis verified electrode placements across the auditory cortex.

      For spike sorting, we have added detailed information in the text, as shown below:

      “Initially, the recorded raw neural signals were band-pass filtered in the range of 300-6000 Hz to eliminate field potentials. A threshold criterion, set at no less than three times the standard deviation (SD) above the background noise, was applied to automatically identify spike peaks. The detected spike waveforms were then subjected to clustering using template-matching and built-in principal component analysis tool in a three-dimensional feature space. Manual curation was conducted to refine the sorting process. Each putative single unit was evaluated based on its waveform and firing patterns over time. Waveforms with inter-spike intervals of less than 2.0 ms were excluded from further analysis. Spike trains corresponding to an individual unit were aligned to the onset of the stimulus and grouped based on different cue and choice conditions. Units were included in further analysis only if their presence was stable throughout the session, and their mean firing rate exceeded 2 Hz. The reliability of auditory and visual responses for each unit was assessed, with well-isolated units typically showing the highest response reliability.”

      (3) In the abstract it seems that in "Additionally, AC neurons..." the connective word 'additionally' is misleading as it is mainly a rephrasing of the previous statement.

      Replaced "Additionally" with "Furthermore" to better signal elaboration and continuity.

      (4) The experiments included multisensory conflict trials - incongruent audiovisual stimuli. What was the behavior for these trials given multiple interesting studies on the neural correlates of sensory dominance (Song et al. 2017, Coen et al. 2023, Oude Lohuis et al. 2024).

      We appreciate your feedback and have addressed it by including a new figure (supplemental Fig. 8) that illustrates choice selection during incongruent audiovisual stimuli. Panel (a) shows that rats displayed confusion when exposed to mismatched stimuli, resulting in choice patterns that differed from those observed in panel (b), where consistent audiovisual stimuli were presented. To provide clarity and integrate this new figure effectively into the manuscript, we updated the results section as follows:

      “...Rats received water rewards with a 50% chance in either port when an unmatched multisensory cue was triggered. Behavioral analysis revealed that Rats displayed notable confusion in response to unmatched multisensory cues, as evidenced by their inconsistent choice patterns (supplementary Fig. 8).”

      (5) Line 47: The AC does not 'perceive' sound frequency, individual brain regions are not thought to perceive.

      e appreciate the reviewer’s observation and have revised the sentence to ensure scientific accuracy. The updated sentence in the second paragraph of the Introduction now reads:

      “Even irrelevant visual cues can affect sound discrimination in AC<sup>10</sup>.”

      (6) Line 59-63: The three questions are not completely clear to me. Both what they mean exactly and how they are different. E.g. Line 60: without specification, it is hard to understand which 'strategies' are meant by the "same or different strategies"? And Line 61: What is meant by the quotation marks for match and mismatch? I assume this is referring to learned congruency and incongruency, which appears almost the same question as number 3 (how learning affects the cortical representation).

      We have revised the three questions for improved clarity and distinction as follows:<br /> “This limits our understanding of multisensory integration in sensory cortices, particularly regarding: (1) Do neurons in sensory cortices adopt consistent integration strategies across different audiovisual pairings, or do these strategies vary depending on the pairing? (2) How does multisensory perceptual learning reshape cortical representations of audiovisual objects? (3) How does the congruence between auditory and visual features—whether they "match" or "mismatch" based on learned associations—impact neural integration?”

      (7) Is the data in Figures 1c and d only hits?

      Only correct trials are included. We add this information in the figure legend. Please see Fig. 1 legend. Also, please see below

      “c Cumulative frequency distribution of reaction time (time from cue onset to leaving the central port) for one representative rat in auditory, visual and multisensory trials (correct only). d Comparison of average reaction times across rats in auditory, visual, and multisensory trials (correct only).”

      (8) Figure S1b: Preferred frequency is binned in non-equidistant bins, neither linear nor logarithmic. It is unclear what the reason is.

      The edges of the bins for the preferred frequency were determined based on a 0.5-octave increment, starting from the smallest boundary of 8 kHz. Specifically, the bin edges were calculated as follows:

      8×2<sup>0.5</sup>=11.3 kHz;

      8×2<sup>1</sup>=16 kHz;

      8×2<sup>1.5</sup>=22.6 kHz;

      8×2<sup>2</sup>=32 kHz;

      This approach reflects the common practice of using changes in octaves to define differences between pure tone frequencies, as it aligns with the logarithmic perception of sound frequency in auditory neuroscience.

      (9) Figure S1d: why are the responses all most neurons very strongly correlated given the frequency tuning of A1 neurons? Further, the mean normalized response presented in Figure S2e does seem to indicate a stronger response for 10kHz tones than 3kHz, in conflict with the data from anesthetized rats presented in Figure S2e.

      There is no discrepancy in the data. In Figure S1d, we compared neuronal responses to 10 kHz and 3 kHz tones, demonstrating that most neurons responded well to both frequencies. This panel does not aim to illustrate frequency selectivity but rather the overall responsiveness of neurons to these tones. For detailed information on sound selectivity, readers can refer to Figures S3a-b, which show that while more neurons preferred 10 kHz tones, the proportion is lower than in neurons recorded during the multisensory discrimination task. This distinction explains the observed differences and aligns with the results presented.

      (10) Line 79: For clarity, it can be added that the multisensory trials presented are congruent trials (jointly indicated rewarded port), and perhaps that incongruent trials are discussed later in the paper.

      We believe additional clarification is unnecessary, as the designations "A<sup>3k</sup>V<sup>hz</sup>" and "A<sup>10k</sup>V<sup>vt</sup>" clearly indicate the specific combinations of auditory and visual cues presented during congruent trials. Additionally, the discussion of incongruent trials is provided later in the manuscript, as noted by the reviewer.

      (11) Line 111: the description leaves unclear that the 35% reflects the combination of units responsive to visual only and responsive to auditory or visual.

      The information is clearly presented in Figure 2b, which shows the proportions of neurons responding to auditory-only (A), visual-only (V), both auditory and visual (A, V), and audiovisual-only (VA) stimuli in a pie chart. Readers can refer to this figure for a detailed breakdown of the neuronal response categories.

      (12) Figure 2h: consider a colormap with diverging palette and equal positive and negative maximum (e.g. -0.6 to 0.6) and perhaps reiterate in the color bar legend which stimulus is preferred for which selectivity index.

      We appreciate the suggestion; however, we believe that the current colormap effectively conveys the data and the intended interpretation. The existing color bar legend already provides clear information about the selectivity index, and the stimulus preference is adequately explained in the figure caption. As such, further adjustments are not necessary.

      (13) Line 160: "a ratio of 60:20 for V<sup>vt</sup> 160 preferred vs. V<sup>hz</sup> preferred neurons." Is this supposed to add up to 100, or is this a ratio of 3:1?

      We rewrite the sentence. Please see below:

      “Similar to the auditory selectivity observed, a greater proportion of neurons favored the visual stimulus (V<sup>vt</sup>) associated with the contralateral choice, with a 3:1 ratio of V<sup>vt</sup>-preferred to V<sup>hz</sup>-preferred neurons.”

      (14) The statement in Figure 2g and line 166/167 could be supported by a statistical test (chi-square?).

      Thank you for the suggestion. However, we believe that a statistical test is not required in this case, as the patterns observed are clearly represented in Figure 2g. The qualitative differences between the groups are evident and sufficiently supported by the data.

      (15) Line 168, it is unclear in what sense 'dominant' is meant. Is audition perceived as a dominant sensory modality in a behavioral sense (e.g. Song et al. 2017), or are auditory signals the dominant sensory signal locally in the auditory cortex?

      Thank you for the clarification. To address your question, by "dominant," we are referring to the fact that auditory inputs are the most prominent and influential among the sensory signals feeding into the auditory cortex. This reflects the local dominance of auditory signals within the auditory cortex, rather than a behavioral dominance of auditory perception. We have revised the sentence as follows:

      “We propose that the auditory input, which dominates within the auditory cortex, acts as a 'teaching signal' that shapes visual processing through the selective reinforcement of specific visual pathways during associative learning.”

      (16) Line 180: "we discriminated between auditory, visual, and multisensory cues." This phrasing indicated that the SVMs were trained to discriminate sensory modalities (as is done later in the manuscript), rather than what was done: discriminate stimuli within different categories of trials.

      Thank you for your comment. We have revised the sentence for clarity. Please see the updated version below:

      “Using cross-validated support vector machine (SVM) classifiers, we examined how this pseudo-population discriminates stimulus identity within the same modality (e.g., A<sup>3k</sup> vs. A<sup>10k</sup> for auditory stimuli, V<sup>hz</sup> vs. V<sup>vt</sup> for visual stimuli, A<sup>3k</sup>V<sup>hz</sup> vs. A<sup>10k</sup>V<sup>vt</sup> for multisensory stimuli).”

      (17) Line 185: "a deeply accurate incorporation of visual processing in the auditory cortex." the phrasing is a bit excessive for a binary classification performance.

      Thank you for pointing this out. We have revised the sentence to better reflect the findings without overstating them:

      “Interestingly, AC neurons could discriminate between two visual targets with around 80% accuracy (Fig. 2j), demonstrating a meaningful incorporation of visual information into auditory cortical processing.”

      (18) Figure 3, title. An article is missing (a,an/the).

      Done. Please see below:

      Fig. 3 Auditory and visual integration in the multisensory discrimination task

      (19) Line 209, typo pvalue: p<-0.00001.

      Done (p<0.00001).

      (20) Line 209, the pattern is not weaker. The pattern is the same, but more weakly expressed.

      Thank you for your valuable feedback. We appreciate your clarification and agree that our phrasing could be improved for accuracy. The observed pattern under anesthesia is indeed the same but less strongly expressed compared to the task engagement. We have revised the sentence to better reflect this distinction:

      “A similar pattern, albeit less strongly expressed, was observed under anesthesia (Supplementary Fig. 3c-3f), suggesting that multisensory perceptual learning may induce plastic changes in AC.”

      (21) Line 211: choice-free group → free-choice group.

      Done.

      (22) Line 261: wrong → incorrect (to maintain consistent terminology).

      Done.

      (23) Line 265: why 'likely'? Are incorrect choices on the A<sup>3k</sup>-V<sup>hz</sup> trials not by definition contralateral and vice versa? Or are there other ways to have incorrect trials?

      We deleted the word of ‘likely’. Please see below:

      “…, correct choices here correspond to ipsilateral behavioral selection, while incorrect choices correspond to contralateral behavioral selection.”

      (24) Typo legend Fig 3a-c (tasks → task). (only one task performed).

      Done.

      (25) Line 400: typo: Like → like.

      Done.

      (26) Line 405: What is meant by a cohesive visual stimulus? Congruent? Rephrase.

      Done. Please see the below:

      “…layer 2/3 neurons of the primary visual cortex(7), and a congruent visual stimulus can enhance sound representation…”

      (27) Line 412: Very general statement and obviously true: depending on the task, different sensory elements need to be combined to guide adaptive behavior.

      We really appreciate the reviewer and used this sentence (see second paragraph in discussion section).

      (28) Line 428: within → between (?).

      Done.

      (29) Figure 3L is not referenced in the main text. By going through the figures and legends my understanding is that this shows that most neurons have a multisensory response that lies between 2 z-scores of the predicted response in the case of 83% of the sum of the auditory and the visual response. However, how was the 0.83 found? Empirically? Figure S3 shows a neuron that does follow a 100% summation. Perhaps the authors could quantitatively support their estimate of 83% of the A + V sum, by varying the fraction of the sum (80%, 90%, 100% etc.) and showing the distribution of the preferred fraction of the sum across neurons, or by showing the percentage of neurons that fall within 2 z-scores for each of the fractions of the sum.

      Thank you for your detailed feedback and suggestions regarding Figure 3L and the 83% multiplier.

      (1) Referencing Figure 3L:

      Figure 3L is referenced in the text. To enhance clarity, we have revised the text to explicitly highlight its relevance:

      “Specifically, as illustrated in Fig. 3k, the observed multisensory response approximated 83% of the sum of the auditory and visual responses in most cases, as quantified in Fig. 3L.”

      (2) Determination of the 0.83 Multiplier:

      The 0.83 multiplier was determined empirically by comparing observed audiovisual responses with the predicted additive responses (i.e., the sum of auditory and visual responses). For each neuron, we calculated the auditory, visual, and audiovisual responses. We then compared the observed audiovisual response with scaled sums of auditory and visual responses (Fig. 3k), expressed as fractions of the additive prediction (e.g., 0.8, 0.83, 0.9, etc.). We found that when the scaling factor was 0.83, the population-wide difference between predicted and observed multisensory responses, expressed as z-scores, was minimized. Specifically, at this value, the mean z-score across the population was approximately zero (-0.0001±1.617), indicating the smallest deviation between predicted and observed responses.

      (30) Figure 5e: how come the diagonal has 0.5 decoding accuracy within a category? Shouldn't this be high within-category accuracy? If these conditions were untested and it is an issue of the image display it would be informative to test the cross-validated performance within the category as well as a benchmark to compare the across-category performance to. Aside, it is unclear which conventions from Figure 2 are meant by the statement that conventions were the same.

      The diagonal values (~0.5 decoding accuracy) within each category reflect chance-level performance. This occurs because the decoder was trained and tested on the same category conditions in a cross-validated manner, and within-category stimulus discrimination was not the primary focus of our analysis. Specifically, the stimuli within a category shared overlapping features, leading to reduced discriminability for the decoder when distinguishing between them. Our primary objective was to assess cross-category performance rather than within-category accuracy, which may explain the observed pattern in the diagonal values.

      Regarding the reference to Figure 2, we appreciate the reviewer pointing out the ambiguity. To avoid any confusion, we have removed the sentence referencing "conventions from Figure 2" in the legend for Figure 5e, as it does not contribute meaningfully to the understanding of the results.

      (31) Line 473: "movement evoked response", what is meant by this?

      Thank the reviewer for highlighting this point. To clarify, by "movement-evoked response," we are referring to neural activity that is driven by the animal's movements, rather than by sensory inputs. This type of response is typically stereotyped, meaning that it has a consistent, repetitive pattern associated with specific movements, such as whisking, running, or other body or facial movements.

      In our study, we propose that the visually-evoked responses observed within the 150 ms time window after cue onset primarily reflect sensory inputs from the visual stimulus rather than movement-related activity. This interpretation is supported by the response timing: visual-evoked activity occurs within 100 ms of the light flash onset, a timeframe too rapid to be attributed to body or orofacial movements. Additionally, unlike stereotyped movement-evoked responses, the visual responses we observed are discriminative, varying based on specific visual features—a hallmark of sensory processing rather than motor-driven activity.

      We have revised the manuscript as follows (eighth paragraph in discussion section):

      “There is ongoing debate about whether cross-sensory responses in sensory cortices predominantly reflect sensory inputs or are influenced by behavioral factors, such as cue-induced body movements. A recent study shows that sound-clip evoked activity in visual cortex have a behavioral rather than sensory origin and is related to stereotyped movements(49). Several studies have demonstrated sensory neurons can encode signals associated with whisking(50), running(51), pupil dilation(52) and other movements(53). In our study, the responses to visual stimuli in the auditory cortex occurred primarily within a 100 ms window following cue onset. suggests that visual information reaches the AC through rapid pathways. Potential candidates include direct or fast cross-modal inputs, such as pulvinar-mediated pathways(8) or corticocortical connections(5,54), rather than slower associative mechanisms. This early timing suggests that the observed responses were less likely modulated by visually-evoked body or orofacial movements, which typically occur with a delay relative to sensory cue onset(55). ”

      (32) Line 638-642: It is stated that a two-tailed permutation test is done. The cue selectivity can be significantly positive and negative, relative to a shuffle distribution. This is excellent. But then it is stated that if the observed ROC value exceeds the top 5% of the distribution it is deemed significant, which corresponds to a one-tailed test. How were significantly negative ROC values detected with p<0.05?

      Thank you for pointing this out. We confirm that a two-tailed permutation test was indeed used to evaluate cue selectivity. In this approach, significance is determined by comparing the observed ROC value to both tails of the shuffle distribution. Specifically, if the observed ROC value exceeds the top 2.5% or falls below the bottom 2.5% of the distribution, it is considered significant at p< 0.05. This two-tailed test ensures that both significantly positive and significantly negative cue selectivity values are identified.

      To clarify this in the manuscript, we have revised the text as follows:

      “This generated a distribution of values from which we calculated the probability of our observed result. If the observed ROC value exceeds the top 2.5% of the distribution or falls below the bottom 2.5%, it was deemed significant (i.e., p < 0.05).”

      (33) Line 472: the cited paper (reference 52) actually claims that motor-related activity in the visual cortex has an onset before 100ms and thus does not support your claim that the time window precludes any confound of behaviorally mediated activity. Furthermore, that study and reference 47 show that sensory stimuli could be discriminated based on the cue-evoked body movements and are discriminative. A stronger counterargument would be that both studies show very fast auditory-evoked body movements, but only later visually-evoked body movements.

      We appreciate the reviewer’s comments. As Lohuis et al. (reference 55) demonstrated, activity in the visual cortex (V1) can reflect distinct visual, auditory, and motor-related responses, with the latter often dissociable in timing. In their findings, visually-evoked movement-related activity arises substantially later than the sensory visual response, generally beginning around 200 ms post-stimulus onset. In contrast, auditory-evoked activity in A1 occurs relatively early.

      We have revised the manuscript as follows (eighth paragraph in discussion section):

      “A recent study shows that sound-clip evoked activity in visual cortex have a behavioral rather than sensory origin and is related to stereotyped movements(49). ...This early timing suggests that the observed responses were less likely modulated by visually-evoked body or orofacial movements, which typically occur with a delay relative to sensory cue onset(55). ”

      (34) The training order (multisensory cue first) is important to briefly mention in the main text.

      We appreciate the reviewer’s suggestion and have added this information to the main text. The revised text now reads:

      “The training proceeded in two stages. In the first stage, which typically lasted 3-5 weeks, rats were trained to discriminate between two audiovisual cues. In the second stage, an additional four unisensory cues were introduced, training the rats to discriminate a total of six cues.”

      (35) Line 542: As I understand the multisensory rats were trained using the multisensory cue first, so different from the training procedure in the unisensory task rats where auditory trials were learned first.

      Thank you for pointing this out. You are correct that, in the unisensory task, rats were first trained to discriminate auditory cues, followed by visual cues. To improve clarity and avoid any confusion, we have removed the sentence "Similar to the multisensory discrimination task" from the revised text.

      (36) Line 546: Can you note on how the rats were motivated to choose both ports, or whether they did so spontaneously?

      Thank you for your insightful comment. The rats' port choice was spontaneous in this task, as there was no explicit motivation required for choosing between the ports. We have clarified this point in the text to address your concern. The revised sentence now reads:

      “They received a water reward at either port following the onset of the cue, and their port choice was spontaneous.”

      (37) It is important to mention in the main text that the population decoding is actually pseudopopulation decoding. The interpretation is sufficiently important for interpreting the results.

      Thank you for this valuable suggestion. We have revised the text to specify "pseudo-population" instead of "population" to clarify the nature of our decoding analysis. The revised text now reads:

      “Our multichannel recordings enabled us to decode sensory information from a pseudo-population of AC neurons on a single-trial basis. Using cross-validated support vector machine (SVM) classifiers, we examined how this pseudo-population discriminates between stimuli.”

      (38) The term modality selectivity for the description of the multisensory interaction is somewhat confusing. Modality selectivity suggests different responses to the visual or auditory trials. The authors could consider a different terminology emphasizing the multisensory interaction effect.

      Thank you for your insightful comment. We have replaced " modality selectivity " with " multisensory interactive index " (MSI). This term more accurately conveys a tendency for neurons to favor multisensory stimuli over individual sensory modalities (visual or auditory alone).

      (39) In Figures 3 e and g the color code is different from adjacent panels b and c and is to be deciphered from the legend. Consider changing the color coding, or highlight to the reader that the coloring in Figures 3b and c is different from the color code in panels 3 e and g.

      We appreciate the reviewer’s observation. However, we believe that a change in the color coding is not necessary. Figures 3e and 3g differentiate symbols by both shape and color, ensuring accessibility and clarity. This is clearly explained in the figure legend to guide readers effectively.

      (40) Figure S2b: was significance tested here?

      Yes, we did it.

      (41) Figure S2d: test used?

      Yes, test used.

      (42) Line 676: "as appropriate", was a normality test performed prior to statistical test selection?

      In our analysis, we assessed normality before choosing between parametric (paired t-test) and non-parametric (Wilcoxon signed-rank test) methods. We used the Shapiro-Wilk test to evaluate the normality of the data distributions. When data met the assumption of normality, we applied the paired t-test; otherwise, we used the Wilcoxon signed-rank test.

      Thank you for pointing this out. We confirm that a normality test was performed prior to the selection of the statistical test. Specifically, we used the Shapiro-Wilk test to assess whether the data distributions met the assumption of normality. Based on this assessment, we applied the paired t-test for normally distributed data and the Wilcoxon signed-rank test for non-normal data.

      To ensure clarity, we update the "Statistical Analysis" section of the manuscript with the following revised text:

      “For behavioral data, such as mean reaction time differences between unisensory and multisensory trials, cue selectivity and mean modality selectivity across different auditory-visual conditions, comparisons were performed using either the paired t-test or the Wilcoxon signed-rank test. The Shapiro-Wilk test was conducted to assess normality, with the paired t-test used for normally distributed data and the Wilcoxon signed-rank test for non-normal data.”

      (43) Line 679: incorrect, most data is actually represented as mean +- SEM.

      Thank you for pointing this out. In the Results section, we report data as mean ± SD for descriptive statistics, while in the figures, the error bars typically represent the standard error of the mean (SEM) to visually indicate variability around the mean. We have specified in each figure legend whether the error bars represent SD or SEM.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 182 - here it sounds like you mean your classifier was trained to decode the modality of the stimulus, when I think what you mean is that you decoded the stimulus contingencies using A/V/AV cues?

      Thank you for pointing out this potential misunderstanding. We would like to clarify that the classifier was trained to decode the stimulus identity (e.g., A<sup>3k</sup> vs. A<sup>10k</sup> for auditory stimuli, V<sup>hz</sup> vs. V<sup>vt</sup> for visual stimuli, and A<sup>3k</sup>V<sup>hz</sup> vs. A<sup>10k</sup>V<sup>vt</sup> for multisensory stimuli) rather than the modality of the stimulus. The goal of the analysis was to determine how well the pseudo-population of AC neurons could distinguish between individual stimuli within the same modality. We have revised the relevant text in the revised manuscript to ensure this distinction is clear. Please see the following:

      “Our multichannel recordings enabled us to decode sensory information from a pseudo-population of AC neurons on a single-trial basis. Using cross-validated support vector machine (SVM) classifiers, we examined how this pseudo-population discriminates stimulus identity (e.g.,  A<sup>3k</sup> vs. A<sup>10k</sup> for auditory stimuli, V<sup>hz</sup> vs. V<sup>vt</sup> for visual stimuli,  A<sup>3k</sup>V<sup>hz</sup> vs. A<sup>10k</sup>V<sup>vt</sup> for multisensory stimuli).”

      (2) Lines 256 - here the authors look to see whether incorrect trials diminish audiovisual integration. I would probably seek to turn the causal direction around and ask are AV neurons critical for behaviour - nevertheless, since this is only correlational the causal direction cannot be unpicked. However, the finding that contralateral responses per se do not result in enhancement is a key control. Showing that multisensory enhancement is less on error trials is a good first step to linking neural activity and perception, but I wonder if the authors could take this further however by seeking to decode choice probabilities as well as stimulus features in an attempt to get a little closer to addressing the question of whether the animals are using these responses for behaviour.

      Thank you for your comment and for highlighting the importance of understanding whether audiovisual (AV) neurons are critical for behavior. As you noted, the causal relationship between AV neural activity and behavioral outcomes cannot be directly determined in our current study due to its correlational nature. We agree that this is an important topic for future exploration. In our study, we examined how incorrect trials influence multisensory enhancement. Our findings show that multisensory enhancement is less pronounced during error trials, providing an initial link between neural activity and behavioral performance. To address your suggestion, we conducted an additional analysis comparing auditory and multisensory selectivity between correct and incorrect choice trials. As shown in Supplementary Fig. 7, both auditory and multisensory selectivity were significantly lower during incorrect trials. This result highlights the potential role of these neural responses in decision-making, suggesting they may extend beyond sensory processing to influence choice selection. We have cited this figure in the Results section as follows: ( the paragraph regarding Impact of incorrect choices on audiovisual integration):

      “Overall, these findings suggest that the multisensory perception reflected by behavioral choices (correct vs. incorrect) might be shaped by the underlying integration strength. Furthermore, our analysis revealed that incorrect choices were associated with a decline in cue selectivity, as shown in Supplementary Fig. 7.”

      We acknowledge your suggestion to decode choice probabilities alongside stimulus features as a more direct approach to exploring whether animals actively use these neural responses for behavior. Unfortunately, in the current study, the low number of incorrect trials limited our ability to perform such analyses reliably. Nonetheless, we are committed to pursuing this direction in subsequent work. We plan to use techniques such as optogenetics in future studies to causally test the role of AV neurons in driving behavior.

      (3) Figure 5E - the purple and red are indistinguishable - could you make one a solid line and keep one dashed?

      We thank the reviewer for pointing out that the purple and red lines in Figure 5E were difficult to distinguish. To address this concern, we modified the figure by making two lines solid and changing the color of one square, as suggested. These adjustments enhance visual clarity and improve the distinction between them.

      (4) The unisensory control training is a really nice addition. I'm interested to know whether behaviourally these animals experienced an advantage for audiovisual stimuli in the testing phase? This is important information to include as if they don't it is one step closer to linking audiovisual responses in AC to improved behavioural performance (and if they do, we must be suitably cautious in interpretation!).

      Thank you for raising this important point. To address this, we have plotted the behavioral results for each animal (see Author response image 2). The data indicate that performance with multisensory cues is slightly better than with the corresponding unisensory cues. However, given the small sample size (n=3) and the considerable variation in behavioral performance across individuals, we remain cautious about drawing definitive conclusions on this matter. We recognize the need for further investigation to establish a robust link between audiovisual responses in the auditory cortex and improved behavioral performance. In future studies, we plan to include a larger number of animals and more thoroughly explore this relationship to provide a comprehensive understanding.

      Author response image 2.

      (5) Line 339 - I don't think you can say this leads to binding with your current behaviour or neural responses. I would agree there is a memory trace established and a preferential linking in AC neurons.

      We thank the reviewer for raising this important point. In the revised manuscript, we have clarified that our data suggest the formation of a memory trace and preferential linking in AC neurons. The text has been updated to emphasize this distinction. Please see the revised section below (first paragraph in Discussion section).

      “Interestingly, a subset of auditory neurons not only developed visual responses but also exhibited congruence between auditory and visual selectivity. These findings suggest that multisensory perceptual training establishes a memory trace of the trained audiovisual experiences within the AC and enhances the preferential linking of auditory and visual inputs. Sensory cortices, like AC, may act as a vital bridge for communicating sensory information across different modalities.”

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Liu et al., present glmSMA, a network-regularized linear model that integrates single-cell RNA-seq data with spatial transcriptomics, enabling high-resolution mapping of cellular locations across diverse datasets. Its dual regularization framework (L1 for sparsity and generalized L2 via a graph Laplacian for spatial smoothness) demonstrates robust performance of their model and offers novel tools for spatial biology, despite some gaps in fully addressing spatial communication.

      Overall, the manuscript is commendable for its comprehensive benchmarking across different spatial omics platforms and its novel application of regularized linear models for cell mapping. I think this manuscript can be improved by addressing method assumptions, expanding the discussion on feature dependence and cell type-specific biases, and clarifying the mechanism of spatial communication.

      The conclusions of this paper are mostly well supported by data, but some aspects of model development and performance evaluation need to be clarified and extended.

      We thank the reviewer for their thoughtful comments. We will clarify the model assumptions and the feature selection process to make it more understandable. To clarify, the performance of glmSMA does not depend on cell type. For some rare cell types, the small number of cells can lead to a drop in performance. To better illustrate our results and reduce cell type-specific biases, we will shuffle and randomly sample the cell types.

      (1) What were the assumptions made behind the model? One of them could be the linear relationship between cellular gene expression and spatial location. In complex biological tissues, non-linear relationships could be present, and this would also vary across organ systems and species. Similarly, with regularization parameters, they can be tuned to balance sparsity and smoothness adequately but may not hold uniformly across different tissue types or data quality levels. The model also seems to assume independent errors with normal distribution and linear additive effects - a simplification that may overlook overdispersion or heteroscedasticity commonly observed in RNA-seq data.

      Thank you for this comment. We acknowledge that the non-linear relationships can be present in complex tissues and may not be fully captured by a linear model. 

      Our choice of a linear model was guided by an investigation of the relationship in the current datasets, which include intestinal villus, mouse brain, and fly embryo.

      There is a linear correlation between expression distance and physical distance [Nitzan et al]. Within a given anatomical structure, cells in closer proximity exhibit more similar expression patterns. In tissues where non-linear relationships are more prevalent—such as the human PDAC sample—our mapping results remain robust. We acknowledge that we have not yet tested our algorithm in highly heterogeneous regions like the liver, and we plan to include such analyses in future work if necessary. Regarding the regularization parameters, we agree that the balance between sparsity and smoothness is sensitive to tissue-specific variation and data quality. In our current implementation, we explored a range of values to find robust defaults.

      (2) The performance of glmSMA is likely sensitive to the number and quality of features used. With too few features, the model may struggle to anchor cells correctly due to insufficient discriminatory power, whereas too many features could lead to overfitting unless appropriately regularized. The manuscript briefly acknowledges this issue, but further systematic evaluation of how varying feature numbers affect mapping accuracy would strengthen the claims, particularly in settings where marker gene availability is limited. A simple way to show some of this would be testing on multiple spatial omics (imaging-based) platforms with varying panel sizes and organ systems. Related to this, based on the figures, it also seems like the performance varies by cell type. What are the factors that contribute to this? Variability in expression levels, RNA quantity/quality? Biases in the panel? Personally, I am also curious how this model can be used similarly/differently if we have a FISH-based, high-plex reference atlas. Additional explanation around these points would be helpful for the readers.

      Thank you for this thoughtful comment. The performance of our method is indeed sensitive to the number and quality of selected features. To optimize feature selection, we employed multiple strategies, including Moran’s I statistic, identification of highly variable genes, and the Seurat pipeline to detect anchor genes linking the spatial transcriptomics data with the reference atlas. The number of selected markers depends on the quality of the data. For high-quality datasets, fewer than 100 markers are typically sufficient for accurate prediction. To address this more clearly, we will revise the manuscript to include detailed descriptions of our feature selection process and demonstrate how varying the number of selected features impacts performance.

      We evaluated our method across diverse tissue types and platforms—including Slide-seq, 10x Visium, and Virtual-FISH—which represent both sequencing-based and imaging-based spatial transcriptomics technologies. Our model consistently achieved strong performance across these settings. It's worth noting that the performance of other methods, such as CellTrek [Wei et al] and novoSpaRc [Nitzan et al], also depends heavily on feature selection. In particular, performance degrades substantially when fewer features are used.

      We do not believe that the observed performance is directly influenced by cell type composition. Major cell types are typically well-defined, and rare cell types comprise only a small fraction of the dataset. For these rare populations, a single misclassification can disproportionately impact metrics like KL divergence due to small sample size. However, this does not necessarily indicate a systematic cell type–specific bias in the mapping. To mitigate this issue, we will implement shuffling and sampling procedures to reduce potential bias introduced by rare cell types.

      (3) Application 3 (spatial communication) in the graphical abstract appears relatively underdeveloped. While it is clear that the model infers spatial proximities, further explanation of how these mappings translate into insights into cell-cell communication networks would enhance the biological relevance of the findings.

      Thank you for this valuable feedback. We agree that further elaboration on the connection between spatial proximity and cell–cell communication would enhance the biological interpretation of our results. While our current model focuses on inferring spatial relationships, we may provide some cell-cell communications in the future.

      (4) What is the final resolution of the model outputs? I am assuming this is dictated by the granularity of the reference atlas and the imposed sparsity via the L1 norm, but if there are clear examples that would be good. In figures (or maybe in practice too), cells seem to be assigned to small, contiguous patches rather than pinpoint single-cell locations, which is a pragmatic compromise given the inherent limitations of current spatial transcriptomics technologies. Clarification on the precise spatial scale (e.g., pixel or micrometer resolution) and any post-mapping refinement steps would be beneficial for the users to make informed decisions on the right bioinformatic tools to use.

      Thank you for the comment. For each cell, our algorithm generates a probability vector that indicates its likely spatial assignment along with coordinate information. We will include the resolution and the number of cells assigned to each spot in future versions. In our framework, each cell is mapped to one or more spatial locations with associated probabilities. Depending on the amount of regularization through L1 and L2 norms, a cell may be localized to a small patch or distributed over a broader domain. For the 10x Visium data, we applied a repelling algorithm to enhance visualization [Wei et al]. If a cell’s original location is already occupied, it is reassigned to a nearby neighborhood to avoid overlap. The users can also see the entire regularization path by varying the penalty terms. 

      Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene expression cartography. Nature. 2019;576(7785):132-137. doi:10.1038/s41586-019-1773-3

      Wei, R. et al. (2022) ‘Spatial charting of single-cell transcriptomes in tissues’, Nature Biotechnology, 40(8), pp. 1190–1199. doi:10.1038/s41587-022-01233-1. 

      Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Thank you for recognizing our contribution. Our goal was to develop a method that achieves higher spatial resolution in mapping single-cell data compared to existing tools. We are encouraged by the results and will continue to refine the approach to improve accuracy and generalizability across platforms and tissue types.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Thank you for this comment. We believe that evaluating our method across diverse tissue types—such as the mouse cortex, human PDAC, and intestinal villus—demonstrates its robustness and broad applicability. We plan to continue expanding these evaluations to additional tissue contexts and species to further validate the method’s generalizability.

      Weakness:

      (1) Although the researchers claim that glmSMA seamlessly accommodates both sequencing-based and image-based spatial transcriptomics (ST) data, their testing primarily focused on sequencing-based ST data, such as Visium and Slide-seq. To demonstrate its versatility for spatial analysis, the authors should extend their evaluation to imaging-based spatial data.

      Thank you for the comment. We have tested our algorithm on the virtual FISH dataset from the fly embryo, which serves as an example of image-based spatial omics data. However, such datasets often contain a limited number of available genes. To address this, we will conduct additional testing on image-based data if needed. The Allen Brain Atlas provides high-quality ISH data, and we can select specific brain regions from this resource to further evaluate our algorithm if necessary [Lein et al]. Currently, we plan to focus more on the 10x Visium platform, as it supports whole-transcriptome profiling and offers a wide range of tissue samples for analysis.

      (2) The definition of "ground truth" for spatial distribution is unclear. A more detailed explanation is needed on how the "ground truth" was established for each spatial dataset and how it was utilized for comparison with the predicted distribution generated by various spatial mapping tools.

      Thank you for the comment. To clarify how ground truth is defined across different tissues, we provide the following details. Direct ground truth for cell locations is often unavailable in scRNA-seq data due to experimental constraints. To address this, we adopted alternative strategies for estimating ground truth in each dataset:

      - 10x Visium Data: We used the cell type distribution derived from spatial transcriptomics (ST) data as a proxy for ground truth. We then computed the KL divergence between this distribution and our model's predictions for performance assessment.

      - Slide-seq Data: We validated predictions by comparing the expression of marker genes between the reconstructed and original spatial data.

      - Fly Embryo Data: We used predicted cell locations from novoSpaRc as a reference for evaluating our algorithm.

      These strategies allowed us to evaluate model performance even in the absence of direct cell location data. In addition, we can apply multiple evaluation strategies within a single dataset.

      (3) In the analysis of spatial mapping results using intestinal villus tissue, only Figure 3d supports their findings. The researchers should consider adding supplemental figures illustrating the spatial distribution of single cells in comparison to the ground truth distribution to enhance the clarity and robustness of their investigation.

      Thank you for the comment. We will include additional details for this dataset in the supplementary figures. As the intestinal villus is a relatively simple tissue, most existing algorithms performed well on it. For this reason, we did not initially provide extensive details in the main text.

      (4) The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus. However, the original anatomical regions are not displayed, making it difficult to directly compare them with the predicted mapping results. Providing ground truth distributions for each tested tissue would enhance clarity and facilitate interpretation. For instance, in Figure 2a and Supplementary Figures 1 and 2, only the predicted mapping results are shown without the corresponding original spatial distribution of regions in the mouse cortex. Additionally, in Figure 3c, four anatomical regions are displayed, but it is unclear whether the figure represents the original spatial regions or those predicted by glmSMA. The authors are encouraged to clarify this by incorporating ground truth distributions for each tissue.

      Thank you for the comment. To improve visualization, we will include anatomical structures alongside the mapping results in the next version, wherever such structures are available (e.g., mouse brain cortex, human PDAC sample, etc.). Regions will be color-coded to enhance clarity and make the spatial organization easier to interpret.

      (5) The cell assignment results from the mouse hippocampus (Supplementary Figure 6) lack a corresponding ground truth distribution for comparison. DG and CA cells were evaluated solely based on the gene expression of specific marker genes. Additional analyses are needed to further validate the robustness of glmSMA's mapping performance on Slide-seq data from the mouse hippocampus.

      Thank you for the comment. The ground truth for DG and CA cells was not available. To better evaluate the model's performance, we will compute the KL divergence between the original and predicted cell type distributions, following the same approach used for the 10x Visium dataset.

      (6) The tested spatial datasets primarily consist of highly structured tissues with well-defined anatomical regions, such as the brain and intestinal villus. Anatomical regions are not distinctly separated, such as liver tissue. Further evaluation of such tissues would help determine the method's broader applicability.

      Thank you for the comment. We have already tested our algorithm on the fly embryo, where anatomical structures are not well defined or clearly separated. If needed, we can further apply glmSMA to more complex tissues such as the liver. To clarify the role of anatomical structures in our model: glmSMA does not require anatomical information as input. Instead, it leverages a distance matrix between cells to apply L2 norm regularization. Despite the absence of anatomical information, the model still demonstrates strong performance. We will include results to illustrate its effectiveness without anatomical input. Additionally, we plan to evaluate the model on tissues where anatomical regions are not clearly delineated.

      Lein, E., Hawrylycz, M., Ao, N. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). https://doi.org/10.1038/nature05453

      Reviewer #3 (Public review):

      Summary:

      The authors aim to develop glmSMA, a network-regularized linear model that accurately infers spatial gene expression patterns by integrating single-cell RNA sequencing data with spatial transcriptomics reference atlases. Their goal is to reconstruct the spatial organization of individual cells within tissues, overcoming the limitations of existing methods that either lack spatial resolution or sensitivity.

      Strengths:

      (1) Comprehensive Benchmarking:

      Compared against CellTrek and Novosparc, glmSMA consistently achieved lower Kullback-Leibler divergence (KL divergence) scores, indicating better cell assignment accuracy.

      Outperformed CellTrek in mouse cortex mapping (90% accuracy vs. CellTrek's 60%) and provided more spatially coherent distributions.

      (2) Experimental Validation with Multiple Real-World Datasets:

      The study used multiple biological systems (mouse brain, Drosophila embryo, human PDAC, intestinal villus) to demonstrate generalizability.

      Validation through correlation analyses, Pearson's coefficient, and KL divergence support the accuracy of glmSMA's predictions.

      We thank reviewer #3 for their positive feedback and thoughtful recommendations.

      Weaknesses:

      (1) The accuracy of glmSMA depends on the selection of marker genes, which might be limited by current FISH-based reference atlases.

      We agree that the accuracy of glmSMA is influenced by the selection of marker genes, and that current FISH-based reference atlases may offer a limited gene set. To address this, we incorporate multiple feature selection strategies, including highly variable genes and spatially informative genes (e.g., via Moran’s I), to optimize performance within the available gene space. As more comprehensive reference atlases become available, we expect the model’s accuracy to improve further.

      (2) glmSMA operates under the assumption that cells with similar gene expression profiles are likely to be physically close to each other in space which not be true under various heterogeneous environments.

      While this assumption effectively captures spatial continuity in many cases, we acknowledge that it may not hold across all biological contexts. To address this, we plan to refine our regularization strategy and evaluate the model's performance in heterogeneous tissue regions.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the Reviewers

      I would like to thank the reviewers for their comments and interest in the manuscript and the study.

      Reviewer #1

      1. I would assume that there are RNA-seq and/or ChIP-seq data out there produced after knockdown of one or more of these DBPs that show directional positioning.

      The directional positioning of CTCF-binding sites at chromatin interaction sites was analyzed by CRISPR experiment (Guo Y et al. Cell 2015). We found that the machine learning and statistical analysis showed the same directional bias of CTCF-binding motif sequence and RAD21-binding motif sequence at chromatin interaction sites as the experimental analysis of Guo Y et al. (lines 229-253, Figure 3b, c, d and Table 1). Since CTCF is involved in different biological functions (Braccioli L et al. Essays Biochem. 2019 ResearchGate webpage), the directional bias of binding sites may be reduced in all binding sites including those at chromatin interaction sites (lines 68-73). In our study, we investigated the DNA-binding sites of proteins using the ChIP-seq data of DNA-binding proteins and DNase-seq data. We also confirmed that the DNA-binding sites of SMC3 and RAD21, which tend to be found in chromatin loops with CTCF, also showed the same directional bias as CTCF by the computational analysis.

      __2. Figure 6 should be expanded to incorporate analysis of DBPs not overlapping CTCF/cohesin in chromatin interaction data that is important and potentially more interesting than the simple DBPs enrichment reported in the present form of the figure. __

      Following the reviewer's advice, I performed the same analysis with the DNA-binding sites that do no overlap with the DNA-binding sites of CTCF and cohesin (RAD21 and SMC3) (Fig. 6 and Supplementary Fig. 4). The result showed the same tendency in the distribution of DNA-binding sites. The height of a peak on the graph became lower for some DNA-binding proteins after removing the DNA-binding sites that overlapped with those of CTCF and cohesin. I have added the following sentence on lines 435 and 829: For the insulator-associated DBPs other than CTCF, RAD21, and SMC3, the DNA-binding sites that do not overlap with those of CTCF, RND21, and SMC3 were used to examine their distribution around interaction sites.

      3. Critically, I would like to see use of Micro-C/Hi-C data and ChIP-seq from these factors, where insulation scores around their directionally-bound sites show some sort of an effect like that presumed by the authors - and many such datasets are publicly-available and can be put to good use here.

      As suggested by the reviewer, I have added the insulator scores and boundary sites from the 4D nucleome data portal as tracks in the UCSC genome browser. The insulator scores seem to correspond to some extent to the H3K27me3 histone marks from ChIP-seq (Fig. 4a and Supplementary Fig. 3). We found that the DNA-binding sites of the insulator-associated DBPs were statistically overrepresented in the 5 kb boundary sites more than other DBPs (Fig. 4d). The direction of DNA-binding sites on the genome can be shown with different colors (e.g. red and green), but the directionality of insulator-associated DNA-binding sites is their overall tendency, and it may be difficult to notice the directionality from each binding site because the directionality may be weaker than that of CTCF, RAD21, and SMC3 as shown in Table 1 and Supplementary Table 2. We also observed the directional biases of CTCF, RAD21, and SMC3 by using Micro-C chromatin interaction data as we estimated, but the directionality was more apparent to distinguish the differences between the four directions of FR, RF, FF, and RR using CTCF-mediated ChIA-pet chromatin interaction data (lines 287 and 288).

       I found that the CTCF binding sites examined by a wet experiment in the previous study may not always overlap with the boundary sites of chromatin interactions from Micro-C assay (Guo Y et al. *Cell* 2015). The chromatin interaction data do not include all interactions due to the high sequencing cost of the assay, and include less long-range interactions due to distance bias. The number of the boundary sites may be smaller than that of CTCF binding sites acting as insulators and/or some of the CTCF binding sites may not be locate in the boundary sites. It may be difficult for the boundary location algorithm to identify a short boundary location. Due to the limitations of the chromatin interaction data, I planned to search for insulator-associated DNA-binding proteins without using chromatin interaction data in this study.
      
       I discussed other causes in lines 614-622: Another reason for the difference may be that boundary sites are more closely associated with topologically associated domains (TADs) of chromosome than are insulator sites. Boundary sites are regions identified based on the separation of numerous chromatin interactions. On the other hand, we found that the multiple DNA-binding sites of insulator-associated DNA-binding proteins were located close to each other at insulator sites and were associated with distinct nested and focal chromatin interactions, as reported by Micro-C assay. These interactions may be transient and relatively weak, such as tissue/cell type, conditional or lineage-specific interactions.
      
       Furthermore, I have added the statistical summary of the analysis in lines 372-395 as follows: Overall, among 20,837 DNA-binding sites of the 97 insulator-associated proteins found at insulator sites identified by H3K27me3 histone modification marks (type 1 insulator sites), 1,315 (6%) overlapped with 264 of 17,126 5kb long boundary sites, and 6,137 (29%) overlapped with 784 of 17,126 25kb long boundary sites in HFF cells. Among 5,205 DNA-binding sites of the 97 insulator-associated DNA-binding proteins found at insulator sites identified by H3K27me3 histone modification marks and transcribed regions (type 2 insulator sites), 383 (7%) overlapped with 74 of 17,126 5-kb long boundary sites, 1,901 (37%) overlapped with 306 of 17,126 25-kb long boundary sites. Although CTCF-binding sites separate active and repressive domains, the limited number of DNA-binding sites of insulator-associated proteins found at type 1 and 2 insulator sites overlapped boundary sites identified by chromatin interaction data. Furthermore, by analyzing the regulatory regions of genes, the DNA-binding sites of the 97 insulator-associated DNA-binding proteins were found (1) at the type 1 insulator sites (based on H3K27me3 marks) in the regulatory regions of 3,170 genes, (2) at the type 2 insulator sites (based on H3K27me3 marks and gene expression levels) in the regulatory regions of 1,044 genes, and (3) at insulator sites as boundary sites identified by chromatin interaction data in the regulatory regions of 6,275 genes. The boundary sites showed the highest number of overlaps with the DNA-binding sites. Comparing the insulator sites identified by (1) and (3), 1,212 (38%) genes have both types of insulator sites. Comparing the insulator sites between (2) and (3), 389 (37%) genes have both types of insulator sites. From the comparison of insulator and boundary sites, we found that (1) or (2) types of insulator sites overlapped or were close to boundary sites identified by chromatin interaction data.
      

      4. The suggested alternative transcripts function, also highlighted in the manuscripts abstract, is only supported by visual inspection of a few cases for several putative DBPs. I believe this is insufficient to support what looks like one of the major claims of the paper when reading the abstract, and a more quantitative and genome-wide analysis must be adopted, although the authors mention it as just an 'observation'.

      According to the reviewer's comment, I performed the genome-wide analysis of alternative transcripts where the DNA-binding sites of insulator-associated proteins are located near splicing sites. The DNA-binding sites of insulator-associated DNA-binding proteins were found within 200 bp centered on splice sites more significantly than the other DNA-binding proteins (Fig. 4e and Table 2). I have added the following sentences on lines 405 - 412: We performed the statistical test to estimate the enrichment of insulator-associated DNA-binding sites compared to the other DNA-binding proteins, and found that the insulator-associated DNA-binding sites were significantly more abundant at splice sites than the DNA-binding sites of the other proteins (Fig 4e and Table 2; Mann‒Whitney U test, p value 5. Figure 1 serves no purpose in my opinion and can be removed, while figures can generally be improved (e.g., the browser screenshots in Figs 4 and 5) for interpretability from readers outside the immediate research field.

      I believe that the Figure 1 would help researchers in other fields who are not familiar with biological phenomena and functions to understand the study. More explanation has been included in the Figures and legends of Figs. 4 and 5 to help readers outside the immediate research field understand the figures.

      6. Similarly, the text is rather convoluted at places and should be re-approached with more clarity for less specialized readers in mind.

      Reviewer #2's comments would be related to this comment. I have introduced a more detailed explanation of the method in the Results section, as shown in the responses to Reviewer #2's comments.

      Reviewer #2

      1. Introduction, line 95: CTCF appears two times, it seems redundant.

      On lines 91-93, I deleted the latter CTCF from the sentence "We examine the directional bias of DNA-binding sites of CTCF and insulator-associated DBPs, including those of known DBPs such as RAD21 and SMC3".

      2. Introduction, lines 99-103: Please stress better the novelty of the work. What is the main focus? The new identified DPBs or their binding sites? What are the "novel structural and functional roles of DBPs" mentioned?

      Although CTCF is known to be the main insulator protein in vertebrates, we found that 97 DNA-binding proteins including CTCF and cohesin are associated with insulator sites by modifying and developing a machine learning method to search for insulator-associated DNA-binding proteins. Most of the insulator-associated DNA-binding proteins showed the directional bias of DNA-binding motifs, suggesting that the directional bias is associated with the insulator.

       I have added the sentence in lines 96-99 as follows: Furthermore, statistical testing the contribution scores between the directional and non-directional DNA-binding sites of insulator-associated DBPs revealed that the directional sites contributed more significantly to the prediction of gene expression levels than the non-directional sites. I have revised the statement in lines 101-110 as follows: To validate these findings, we demonstrate that the DNA-binding sites of the identified insulator-associated DBPs are located within potential insulator sites, and some of the DNA-binding sites in the insulator site are found without the nearby DNA-binding sites of CTCF and cohesin. Homologous and heterologous insulator-insulator pairing interactions are orientation-dependent, as suggested by the insulator-pairing model based on experimental analysis in flies. Our method and analyses contribute to the identification of insulator- and chromatin-associated DNA-binding sites that influence EPIs and reveal novel functional roles and molecular mechanisms of DBPs associated with transcriptional condensation, phase separation and transcriptional regulation.
      

      3. Results, line 111: How do the SNPs come into the procedure? From the figures it seems the input is ChIP-seq peaks of DNBPs around the TSS.

      On lines 121-124, to explain the procedure for the SNP of an eQTL, I have added the sentence in the Methods: "If a DNA-binding site was located within a 100-bp region around a single-nucleotide polymorphism (SNP) of an eQTL, we assumed that the DNA-binding proteins regulated the expression of the transcript corresponding to the eQTL".

      4. Again, are those SNPs coming from the different cell lines? Or are they from individuals w.r.t some reference genome? I suggest a general restructuring of this part to let the reader understand more easily. One option could be simplifying the details here or alternatively including all the necessary details.

      On line 119, I have included the explanation of the eQTL dataset of GTEx v8 as follows: " The eQTL data were derived from the GTEx v8 dataset, after quality control, consisting of 838 donors and 17,382 samples from 52 tissues and two cell lines". On lines 681 and 865, I have added the filename of the eQTL data "(GTEx_Analysis_v8_eQTL.tar)".

      5. Figure 1: panel a and b are misleading. Is the matrix in panel a equivalent to the matrix in panel b? If not please clarify why. Maybe in b it is included the info about the SNPs? And if yes, again, what is then difference with a.

      The reviewer would mention Figure 2, not Figure 1. If so, the matrices in panels a and b in Figure 2 are equivalent. I have shown it in the figure: The same figure in panel a is rotated 90 degrees to the right. The green boxes in the matrix show the regions with the ChIP-seq peak of a DNA-binding protein overlapping with a SNP of an eQTL. I used eQTL data to associate a gene with a ChIP-seq peak that was more than 2 kb upstream and 1 kb downstream of a transcriptional start site of a gene. For each gene, the matrix was produced and the gene expression levels in cells were learned and predicted using the deep learning method. I have added the following sentences to explain the method in lines 133 - 139: Through the training, the tool learned to select the binding sites of DNA-binding proteins from ChIP-seq assays that were suitable for predicting gene expression levels in the cell types. The binding sites of a DNA-binding protein tend to be observed in common across multiple cell and tissue types. Therefore, ChIP-seq data and eQTL data in different cell and tissue types were used as input data for learning, and then the tool selected the data suitable for predicting gene expression levels in the cell types, even if the data were not obtained from the same cell types.

      6. Line 386-388: could the author investigate in more detail this observation? Does it mean that loops driven by other DBPs independent of the known CTCF/Cohesin? Could the author provide examples of chromatin structural data e.g. MicroC?

      As suggested by the reviewer, to help readers understand the observation, I have added Supplementary Fig. S4c to show the distribution of DNA-binding sites of "CTCF, RAD21, and SMC3" and "BACH2, FOS, ATF3, NFE2, and MAFK" around chromatin interaction sites. I have modified the following sentence to indicate the figure on line 501: Although a DNA-binding-site distribution pattern around chromatin interaction sites similar to those of CTCF, RAD21, and SMC3 was observed for DBPs such as BACH2, FOS, ATF3, NFE2, and MAFK, less than 1% of the DNA-binding sites of the latter set of DBPs colocalized with CTCF, RAD21, or SMC3 in a single bin (Fig. S4c).

       In Aljahani A et al. *Nature Communications* 2022, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression. Goel VY et al. *Nature Genetics* 2023 mentioned in the abstract: Microcompartments frequently connect enhancers and promoters and though loss of loop extrusion and inhibition of transcription disrupts some microcompartments, most are largely unaffected. These results suggested that chromatin loops can be driven by other DBPs independent of the known CTCF/Cohesin.
      
      I added the following sentence on lines 569-577: The depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. Furthermore, the loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.
      
       FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates (Ji D et al. *Molecular Cell* 2024). CTCF have also found to form transcriptional condensate and phase separation (Lee R et al. *Nucleic acids research* 2022). FOS was found to be an insulator-associated DNA-binding protein in this study and is potentially involved in chromatin remodeling, transcription condensation, and phase separation with the other factors such as BACH2, ATF3, NFE2 and MAFK. I have added the following sentence on line 556: FOXA1 pioneer factor functions as an initial chromatin-binding and chromatin-remodeling factor and has been reported to form biomolecular condensates.
      

      7. In general, how the presented results are related to some models of chromatin architecture, e.g. loop extrusion, in which it is integrated convergent CTCF binding sites?

      Goel VY et al. Nature Genetics 2023 identified highly nested and focal interactions through region capture Micro-C, which resemble fine-scale compartmental interactions and are termed microcompartments. In the section titled "Most microcompartments are robust to loss of loop extrusion," the researchers noted that a small proportion of interactions between CTCF and cohesin-bound sites exhibited significant reductions in strength when cohesin was depleted. In contrast, the majority of microcompartmental interactions remained largely unchanged under cohesin depletion. Our findings indicate that most P-P and E-P interactions, aside from a few CTCF and cohesin-bound enhancers and promoters, are likely facilitated by a compartmentalization mechanism that differs from loop extrusion. We suggest that nested, multiway, and focal microcompartments correspond to small, discrete A-compartments that arise through a compartmentalization process, potentially influenced by factors upstream of RNA Pol II initiation, such as transcription factors, co-factors, or active chromatin states. It follows that if active chromatin regions at microcompartment anchors exhibit selective "stickiness" with one another, they will tend to co-segregate, leading to the development of nested, focal interactions. This microphase separation, driven by preferential interactions among active loci within a block copolymer, may account for the striking interaction patterns we observe.

       The authors of the paper proposed several mechanisms potentially involved in microcompartments. These mechanisms may be involved in looping with insulator function. Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently (Hsieh TS et al. *Nature Genetics* 2022). Among the identified insulator-associated DNA-binding proteins, Maz and MyoD1 form loops without CTCF (Xiao T et al. *Proc Natl Acad Sci USA* 2021 ; Ortabozkoyun H et al. *Nature genetics* 2022 ; Wang R et al. *Nature communications* 2022). I have added the following sentences on lines 571-575: Another group reported that enhancer-promoter interactions and transcription are largely maintained upon depletion of CTCF, cohesin, WAPL or YY1. Instead, cohesin depletion decreased transcription factor binding to chromatin. Thus, cohesin may allow transcription factors to find and bind their targets more efficiently. I have included the following explanation on lines 582-584: Maz and MyoD1 among the identified insulator-associated DNA-binding proteins form loops without CTCF.
      
       As for the directionality of CTCF, if chromatin loop anchors have some structural conformation, as shown in the paper entitled "The structural basis for cohesin-CTCF-anchored loops" (Li Y et al. *Nature* 2020), directional DNA binding would occur similarly to CTCF binding sites. Moreover, cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops (Davidson IF et al. *Nature Reviews Molecular Cell Biology* 2021). Regarding loop extrusion, the 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions (Guerin TM et al. *EMBO Journal* 2024). I have added the following sentences on lines 543-547: Cohesin complexes that interact with convergent CTCF sites, that is, the N-terminus of CTCF, might be protected from WAPL, but those that interact with divergent CTCF sites, that is, the C-terminus of CTCF, might not be protected from WAPL, which could release cohesin from chromatin and thus disrupt cohesin-mediated chromatin loops. I have included the following sentences on lines 577-582: The 'loop extrusion' hypothesis is motivated by in vitro observations. The experiment in yeast, in which cohesin variants that are unable to extrude DNA loops but retain the ability to topologically entrap DNA, suggested that in vivo chromatin loops are formed independently of loop extrusion. Instead, transcription promotes loop formation and acts as an extrinsic motor that extends these loops and defines their final positions.
      
       Another model for the regulation of gene expression by insulators is the boundary-pairing (insulator-pairing) model (Bing X et al. *Elife* 2024) (Ke W et al. *Elife* 2024) (Fujioka M et al. *PLoS Genetics* 2016). Molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies. Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent. I have summarized the model on lines 559-567: Other types of chromatin regulation are also expected to be related to the structural interactions of molecules. As the boundary-pairing (insulator-pairing) model, molecules bound to insulators physically pair with their partners, either head-to-head or head-to-tail, with different degrees of specificity at the termini of TADs in flies (Fig. 7). Although the experiments do not reveal how partners find each other, the mechanism unlikely requires loop extrusion. Homologous and heterologous insulator-insulator pairing interactions are central to the architectural functions of insulators. The manner of insulator-insulator interactions is orientation-dependent.
      

      8. Do the authors think that the identified DBPs could work in that way as well?

      The boundary-pairing (insulator-pairing) model would be applied to the insulator-associated DNA-binding proteins other than CTCF and cohesin that are involved in the loop extrusion mechanism (Bing X et al. Elife 2024) (Ke W et al. Elife 2024) (Fujioka M et al. PLoS Genetics 2016).

       Liquid-liquid phase separation was shown to occur through CTCF-mediated chromatin loops and to act as an insulator (Lee, R et al. *Nucleic Acids Research* 2022). Among the identified insulator-associated DNA-binding proteins, CEBPA has been found to form hubs that colocalize with transcriptional co-activators in a native cell context, which is associated with transcriptional condensate and phase separation (Christou-Kent M et al. *Cell Reports* 2023). The proposed microcompartment mechanisms are also associated with phase separation. Thus, the same or similar mechanisms are potentially associated with the insulator function of the identified DNA-binding proteins. I have included the following information on line 554: CEBPA in the identified insulator-associated DNA-binding proteins was also reported to be involved in transcriptional condensates and phase separation.
      

      9. Also, can the authors comment about the mechanisms those newly identified DBPs mediate contacts by active processes or equilibrium processes?

      Snead WT et al. Molecular Cell 2019 mentioned that protein post-transcriptional modifications (PTMs) facilitate the control of molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin (Tang X et al. Nature Communications 2024). I found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Supplementary Fig. 2d). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation by PTMs. I have added the following explanation on lines 584-590: Furthermore, protein post-transcriptional modifications (PTMs) facilitate control over the molecular valency and strength of protein-protein interactions. O-GlcNAcylation as a PTM inhibits CTCF binding to chromatin. We found that the identified insulator-associated DNA-binding proteins tend to form a cluster at potential insulator sites (Fig. 4f and Supplementary Fig. 3c). These proteins may interact and actively regulate chromatin interactions, transcriptional condensation, and phase separation through PTMs.

      10. Can the author provide some real examples along with published structural data (e.g. the mentioned micro-C data) to show the link between protein co-presence, directional bias and contact formation?

      Structural molecular model of cohesin-CTCF-anchored loops has been published by Li Y et al. Nature 2020. The structural conformation of CTCF and cohesin in the loops would be the cause of the directional bias of CTCF binding sites, which I mentioned in lines 539 - 543 as follows: These results suggest that the directional bias of DNA-binding sites of insulator-associated DBPs may be involved in insulator function and chromatin regulation through structural interactions among DBPs, other proteins, DNAs, and RNAs. For example, the N-terminal amino acids of CTCF have been shown to interact with RAD21 in chromatin loops.

       To investigate the principles underlying the architectural functions of insulator-insulator pairing interactions, two insulators, Homie and Nhomie, flanking the *Drosophila even skipped *locus were analyzed. Pairing interactions between the transgene Homie and the eve locus are directional. The head-to-head pairing between the transgene and endogenous Homie matches the pattern of activation (Fujioka M et al. *PLoS Genetics* 2016).
      

      Reviewer #3

      Major Comments:

      1. Some of these TFs do not have specific direct binding to DNA (P300, Cohesin). Since the authors are using binding motifs in their analysis workflow, I would remove those from the analysis.

      When a protein complex binds to DNA, one protein of the complex binds to the DNA directory, and the other proteins may not bind to DNA. However, the DNA motif sequence bound by the protein may be registered as the DNA-binding motif of all the proteins in the complex. The molecular structure of the complex of CTCF and Cohesin showed that both CTCF and Cohesin bind to DNA (Li Y et al. Nature 2020). I think there is a possibility that if the molecular structure of a protein complex becomes available, the previous recognition of the DNA-binding ability of a protein may be changed. Therefore, I searched the Pfam database for 99 insulator-associated DNA-binding proteins identified in this study. I found that 97 are registered as DNA-binding proteins and/or have a known DNA-binding domain, and EP300 and SIN3A do not directory bind to DNA, which was also checked by Google search. I have added the following explanation in line 257 to indicate direct and indirect DNA-binding proteins: Among 99 insulator-associated DBPs, EP300 and SIN3A do not directory interact with DNA, and thus 97 insulator-associated DBPs directory bind to DNA. I have updated the sentence in line 20 of the Abstract as follows: We discovered 97 directional and minor nondirectional motifs in human fibroblast cells that corresponded to 23 DBPs related to insulator function, CTCF, and/or other types of chromosomal transcriptional regulation reported in previous studies.

      2. I am not sure if I understood correctly, by why do the authors consider enhancers spanning 2Mb (200 bins of 10Kb around eSNPs)? This seems wrong. Enhancers are relatively small regions (100bp to 1Kb) and only a very small subset form super enhancers.

      As the reviewer mentioned, I recognize enhancers are relatively small regions. In the paper, I intended to examine further upstream and downstream of promoter regions where enhancers are found. Therefore, I have modified the sentence in lines 929 - 931 of the Fig. 2 legend as follows: Enhancer-gene regulatory interaction regions consist of 200 bins of 10 kbp between -1 Mbp and 1 Mbp region from TSS, not including promoter.

      3. I think the H3K27me3 analysis was very good, but I would have liked to see also constitutive heterochromatin as well, so maybe repeat the analysis for H3K9me3.

      Following the reviewer's advice, I have added the ChIP-seq data of H3K9me3 as a truck of the UCSC Genome Browser. The distribution of H3K9me3 signal was different from that of H3K27me3 in some regions. I also found the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions and took some screenshots of the UCSC Genome Browser of the regions around the sites in Supplementary Fig. 3b. I have modified the following sentence on lines 974 - 976 in the legend of Fig. 4: a Distribution of histone modification marks H3K27me3 (green color) and H3K9me3 (turquoise color) and transcript levels (pink color) in upstream and downstream regions of a potential insulator site (light orange color). I have also added the following result on lines 356 - 360: The same analysis was performed using H3K9me3 marks, instead of H3K27me3 (Fig. S3b). We found that the distribution of H3K9me3 signal was different from that of H3K27me3 in some regions, and discovered the insulator-associated DNA-binding sites close to the edges of H3K9me3 regions (Fig. S3b).

      4. I was not sure I understood the analysis in Figure 6. The binding site is with 500bp of the interaction site, but micro-C interactions are at best at 1Kb resolution. They say they chose the centre of the interaction site, but we don't know exactly where there is the actual interaction. Also, it is not clear what they measure. Is it the number of binding sites of a specific or multiple DBP insulator proteins at a specific distance from this midpoint that they recover in all chromatin loops? Maybe I am missing something. This analysis was not very clear.

      The resolution of the Micro-C assay is considered to be 100 bp and above, as the human nucleome core particle contains 145 bp (and 193 bp with linker) of DNA. However, internucleosomal DNA is cleaved by endonuclease into fragments of multiples of 10 nucleotides (Pospelov VA et al. Nucleic Acids Research 1979). Highly nested focal interactions were observed (Goel VY et al. Nature Genetics 2023). Base pair resolution was reported using Micro Capture-C (Hua P et al. Nature 2021). Sub-kilobase (20 bp resolution) chromatin topology was reported using an MNase-based chromosome conformation capture (3C) approach (Aljahani A et al. Nature Communications 2022). On the other hand, Hi-C data was analyzed at 1 kb resolution. (Gu H et al. bioRxiv 2021). If the resolution of Micro-C interactions is at best at 1 kb, the binding sites of a DNA-binding protein will not show a peak around the center of the genomic locations of interaction edges. Each panel shows the number of binding sites of a specific DNA-binding protein at a specific distance from the midpoint of all chromatin interaction edges. I have modified and added the following sentences in lines 593-597: High-resolution chromatin interaction data from a Micro-C assay indicated that most of the predicted insulator-associated DBPs showed DNA-binding-site distribution peaks around chromatin interaction sites, suggesting that these DBPs are involved in chromatin interactions and that the chromatin interaction data has a high degree of resolution. Base pair resolution was reported using Micro Capture-C.

      Minor Comments:

      1. PIQ does not consider TF concentration. Other methods do that and show that TF concentration improves predictions (e.g., ____https://www.biorxiv.org/content/10.1101/2023.07.15.549134v2____or ____https://pubmed.ncbi.nlm.nih.gov/37486787____/). The authors should discuss how that would impact their results.

      The directional bias of CTCF binding sites was identified by ChIA-pet interactions of CTCF binding sites. The analysis of the contribution scores of DNA-binding sites of proteins considering the binding sites of CTCF as an insulator showed the same tendency of directional bias of CTCF binding sites. In the analysis, to remove the false-positive prediction of DNA-binding sites, I used the binding sites that overlapped with a ChIP-seq peak of the DNA-binding protein. This result suggests that the DNA-binding sites of CTCF obtained by the current analysis have sufficient quality. Therefore, if the accuracy of prediction of DNA-binding sites is improved, although the number of DNA-binding sites may be different, the overall tendency of the directionality of DNA-binding sites will not change and the results of this study will not change significantly.

       As for the first reference in the reviewer's comment, chromatin interaction data from Micro-C assay does not include all chromatin interactions in a cell or tissue, because it is expensive to cover all interactions. Therefore, it would be difficult to predict all chromatin interactions based on machine learning. As for the second reference in the reviewer's comment, pioneer factors such as FOXA are known to bind to closed chromatin regions, but transcription factors and DNA-binding proteins involved in chromatin interactions and insulators generally bind to open chromatin regions. The search for the DNA-binding motifs is not required in closed chromatin regions.
      

      2. DeepLIFT is a good approach to interpret complex structures of CNN, but is not truly explainable AI. I think the authors should acknowledge this.

      In the DeepLIFT paper, the authors explain that DeepLIFT is a method for decomposing the output prediction of a neural network on a specific input by backpropagating the contributions of all neurons in the network to every feature of the input (Shrikumar A et al. ICML 2017). DeepLIFT compares the activation of each neuron to its 'reference activation' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.

       Truly explainable AI would be able to find cause and reason, and to make choices and decisions like humans. DeepLIFT does not perform causal inferences. I did not use the term "Explainable AI" in our manuscript, but I briefly explained it in Discussion. I have added the following explanation in lines 623-628: AI (Artificial Intelligence) is considered as a black box, since the reason and cause of prediction are difficult to know. To solve this issue, tools and methods have been developed to know the reason and cause. These technologies are called Explainable AI. DeepLIFT is considered to be a tool for Explainable AI. However, DeepLIFT does not answer the reason and cause for a prediction. It calculates scores representing the contribution of the input data to the prediction.
      
       Furthermore, to improve the readability of the manuscript, I have included the following explanation in lines 159-165: we computed DeepLIFT scores of the input data (i.e., each binding site of the ChIP-seq data of DNA-binding proteins) in the deep leaning analysis on gene expression levels. DeepLIFT compares the importance of each input for predicting gene expression levels to its 'reference or background level' and assigns contribution scores according to the difference. DeepLIFT calculates a metric to measure the difference between an input and the reference of the input.
      
    1. “Tsze-kung asked, saying, ‘Is there one word which may serve as a rule of practice for all one’s life?’ The Master said, ‘Is not reciprocity such a word? What you do not want done to yourself, do not do to others.’”

      While this "golden rule" is easy to understand, I find it also runs the risk of being oversimplified or misapplied. Too often, we interpret it simply as "don't do things that make others unhappy," ignoring the diversity of personal preferences, cultural backgrounds, and practical needs. I have been in the division of projects, because I hate "being rushed", I think others also hate "rushing", resulting in the delay of the task, and ultimately everyone. It can be seen that "what you don't want" is not necessarily equivalent to the real needs of the other party. Making the Golden Rule work requires more active communication and empathy, rather than simply applying our own standards to others.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their thoughtful comments


      Reviewer #1 (Evidence, reproducibility and clarity):

      SUMMARY: The manuscript is well written, with excellent explanation and documentation of experimental approaches. All conclusions are well supported by the data. The discussion is balanced and appropriate. The data, including images and movies, are of high quality and beautifully presented. The experimental design and analysis, including quantification of parameters in the images, is rigorous. Additional rigor is provided by comparing different cell types. The rapalog and iLID dimerization strategies have been described previously, as has their use to recruit kinesin motors to membranous organelles. However, this is the first application of these strategies to recruit motors to intermediate filaments. The evidence that vimentin filaments can be redistributed locally is clear and convincing and offers appealing potential for future experimentation. The redistribution was not fully reversible in all cells, but this is not surprising given the entanglement that must result from the action of motors along the length of these long flexible polymers.

      In terms of the biology of intermediate filaments, the authors show that vimentin redistribution had negligible effect on microtubule or F-actin organization, cell area, or the number of focal adhesions. Depletion of vimentin filaments locally reduced cell stiffness. Both ER and mitochondria segregated with vimentin filaments, but not lysosomes. These findings are consistent with published reports (e.g. comparing vimentin null and wildtype cell lines), but the acute and reversible nature of the motor recruitment strategy is a more elegant experimental approach, and the selectivity of the observed effects is evidence of its specificity. It is interesting that the ER network segregated with vimentin even in the absence of RNF26. While this is not explored further, it points to the potential power of this motor recruitment strategy for future studies on intermediate filament interactions.

      • *

      The following are some major and minor issues, which should all be easy for the authors to address.

      MAJOR COMMENTS:

        • Fig. S1 shows that the Vim-mCherry-FKBP construct coassembles with endogenous vimentin, but similar data for the iLID constructs appears to be lacking. I would like to see data demonstrating the incorporation of the Vim-mCherry-SspB constructs into the vimentin filaments. This should include high magnification images of single filaments in the cytoplasm of the cells.*
      • *

      Response:

      We have included a new Figure 2D, which illustrates the incorporation of the vimentin-mCherry-SspB construct into the vimentin network stained for endogenous vimentin.

        • The authors do not discuss the density of motor recruitment along the filaments. To address this, I'd like to see images showing the extent of recruitment of motors to the filaments using the rapalog and LID strategies. This should include high magnification images of single filaments in the cytoplasm of the cells.*
      • *

      Response:

      We have included new Figure S1B,C and Figure S2A, which illustrate the recruitment of kinesin motors to vimentin filaments upon induction with rapalog or light, respectively, by using super-resolution imaging with an Airyscan microscope. The motors were stained with antibodies against GFP. These data are discussed in the text, lines 126-132 and 165-168.

        • For the experiments on vimentin and keratin organization, the authors do not explain that these proteins form distinct networks and do not coassemble. The authors should show this in the cell types examined. This should also be explained explicitly in the body of the manuscript, though the data could be placed in the supplementary data. This is important because many intermediate filaments can coassemble freely, and coassembled proteins would be expected to segregate together.*
      • *

      Response:

      To address this important comment, we have now included images of vimentin and keratin in the three studied cell types using super-resolution imaging, both for cells expressing vimentin constructs (updated Figure 5) and endogenous filament staining in untransfected cells (updated Figure S4). These images illustrate that vimentin and keratin mostly form distinct filaments in HeLa cells. However, we do observe some degree of co-assembly of vimentin and keratin in COS-7 and U2OS cells. We were really surprised by this observation as, to our knowledge, it has not been clearly documented in the literature. These data help to explain why vimentin pulling causes keratin co-clustering in COS-7 and U2OS cells. We note that in a study where kinesin-1 mediated transport of vimentin and keratin has been previously investigated by the Gelfand lab in RPE1 cells, the two networks also appear to overlap quite strongly (Robert et al, 2019, FASEB J). Since no super-resolution microscopy was performed in that study, potential co-assembly of keratin and vimentin filaments was not discussed. Colocalization and coprecipitation of vimentin and keratin have been also described by Velez-delValle et al. in epithelial cells (Sci Rep 2016). Cell type-specific co-assembly of keratin and vimentin would require more investigation, and we make no strong conclusions about it, but we think that our data illustrate the usefulness of our methodology to address the co-dependence of different types of intermediate filaments.

      MINOR COMMENTS:

        • The authors refer to selecting cells within an "optimized expression range" for their transiently expressed recombinant proteins. They should state the proportion of the cells that met this criterion in their transient transfection experiments as this is important information for other researchers that might wish to use this approach in their own studies*. Response:

      These numbers are now included in lines 137 -142 and 173-176 of the revised paper. For the FRB-FKP system, ~50% of transfected cells could be used for analysis, for the light-induced system, ~40% were in the optimal range.

        • In Fig. 1F there should be a statistical comparison between cells transfected with the Kin14 construct and control (untransfected) cells in the absence of rapalog*
      • *

      Response:

      This comparison has been added.

        • In Fig. 1G there should be a statistical comparison between cells expressing Kin14 and KIF5A in the absence of rapalog.*
      • *

      Response:

      This comparison has been added.

        • The depletion of the ER network in the cell periphery is not evident in Fig. 7B, though the perinuclear accumulation is evident. Perhaps the authors could select another example or explain to the reader what exactly to look for in these images.*
      • *

      Response:

      We note that Figure 7B is a line scan of the image shown in Figure 7A. We assume that the reviewer meant Figure 7C, which is discussed in detail below.

        • In Fig. 7C, the intensity of the mCherry declines markedly over time. This is presumably due to photobleaching but should be explained in the legend.*
      • *

      Response:

      We have now improved Figure 7 by adding additional quantifications of ER and vimentin intensity and distribution in Figures 7D and E. We also extended the corresponding text (lines 288-297), which now reads; “Using the optogenetic tool, we observed that ER sheets and matrices, but not tubules, were pulled along with vimentin, confirming their previously described direct connections (Cremer et al., 2023) (black arrows, Figure 7C; Video S5). Most of the vimentin and ER repositioning occurred within approximately 10 minutes (Figure 7C, D, Video S5). While initially this resulted in a sparser tubular ER network at the cell periphery, over time, the network became denser, with smaller polygonal structures. This effect could also be observed in the ratio of perinuclear to peripheral intensity, where a subset of ER initially follows vimentin to the perinuclear region but then redistributes again towards the cell periphery (Figure 7D). It should be noted that while photobleaching of the ER channel was negligible, there was a 40% reduction in total Vim-mCh-SspB intensity over the course of the experiment due to photobleaching (Figure 7E).”

      • *

      Reviewer #1 (Significance):

      SUMMARY: The authors show that chemical-induced and light-induced dimerization strategies can be used to recruit microtubule motors to vimentin filaments, allowing rapid and reversible experimental manipulation of vimentin filament organization either locally or globally in cells. These strategies provide an experimental approach for investigating the physical interaction of intermediate filaments with organelles and other cytoskeletal component, as well as a method for probing the role of intermediate filaments in cell mechanics, cytoskeletal dynamics, etc. This is a technical improvement over previous experimental strategies, which have relied largely on chronic manipulation such as global disassembly or genetic deletion of intermediate filaments, e.g. comparison of vimentin null and wild type cells.

      The principal weakness of this study is that it offers limited insight into intermediate filament biology. As such, it might be most appropriate for a tools or techniques section of a journal. The dimerization strategies have been reported previously, so that is not new, but the application to intermediate filaments is novel.

      • *

      Response:

      We agree that our paper is primarily of technical nature and thus would be most appropriate for the tools and techniques section of a journal. We also agree that we used motor recruitment strategies that we and others have employed previously. However, we would like to emphasize that the demonstration that the tools work very well for intermediate filaments is entirely novel, as are the observations that these tools can be used to very rapidly alter cell stiffness or probe the links between intermediate filaments and organelles. Most importantly, the intermediate filament field currently lacks rapid specific manipulation strategies, and our tools will allow revisiting many important pending questions in the field. For example, they will allow to distinguish short-term and direct effects of intermediate filaments on cell polarity, adhesion and migration from their function in signaling and gene expression. We also report some new biology, such as evidence of some degree of co-assembly of vimentin and keratin.

      AUDIENCE: This paper will be of interest to cell biologists who study cytoskeletal interactions, particularly the interaction of intermediate filaments with other cellular organelles or cytoskeletal polymers, or the role of intermediate filaments in cellular mechanics.

      REVIEWER EXPERTISE: This reviewer has expertise on the cytoskeleton, cytoskeletal dynamics, and intracellular transport including intermediate filament biology.

      __ __


      Reviewer #2 (Evidence, reproducibility and clarity):

      Summary: The manuscript presents a novel methodology for acute manipulation of vimentin intermediate filaments (IFs) using chemical genetic and optogenetic tools. By recruiting microtubule-based motors to vimentin via inducible dimerization systems, the authors achieve precise temporal and spatial control over vimentin distribution. Apart from the significant advancement in terms of methods development, key findings include:

      * Vimentin's role in organelle positioning: Mitochondria and ER are repositioned with vimentin, while lysosomes are less dependent on its organization.

      * Cytoskeletal interactions: Vimentin clustering minimally impacts actin and microtubule networks in the short term.

      * Cell stiffness: Vimentin repositioning reduces cell stiffness, indicating its significant role in cellular mechanics.

      * Cell-type-specific keratin interactions: The study highlights diverse interactions between vimentin and keratin-8 across cell lines.

      The study demonstrates methodological advancements enabling rapid vimentin manipulation and provides insights into vimentin's interactions with cellular structures.

      A major shortcoming is the unclear narrative, what do the authors want to present? This aspect requires significant attention.

      Response:

      By “unclear narrative” the reviewer meant that we should have provided a more balanced discussion of the insights that could be obtained using our new method compared to previously published literature, and we have modified our narrative accordingly.

      General Comments and Overall Assessment

      The manuscript represents an interesting contribution to the cytoskeletal field, addressing limitations of long-term perturbation methods. The tools developed are innovative, allowing controlled and reversible vimentin reorganization with minimal off-target effects. The findings are robust and provide important insights into the role of vimentin in cellular mechanics and organelle positioning.

      Strengths:

      Methodological novelty with broad applicability - this is the most exciting aspect.

      Comprehensive validation of the tools in multiple cell lines.

      Clear differentiation between vimentin's short- and long-term roles.

      Addressing gaps in understanding vimentin-organelle interactions.

      Limitations:

      * The manuscript is a little bit all over the place. While the method development is clear, the manuscript makes claims way beyond the method development. The message and narrative needs to be improved, and in the respect the whole structure needs an overhaul.

      Response:

      We have carefully modified the manuscript to avoid the impression that we make any claims that go beyond the immediate and quantifiable effects of vimentin repositioning on different cellular structures.

      * Unclear how much the differences in expression levels impact results and reproducibility.

      Response:

      Quantifications of expression levels and their discussion are included in Figures 1G-I, 2G-H, S2B and lines 137-142 and 173-176.

      * Would be good to discuss some findings that are specific to a given experimental cell line. How generalizable are these results?

      Response:

      Cell line-specific findings concerned mostly the co-displacement of keratin together with vimentin, which occurred in COS-7 and U2OS cells but in in HeLa cells. This interesting finding is discussed in the text, lines 246-269 and 375-383 (see also our answers on page 3 above and page 7 below).

      Major Comments

      Evidence and Claims:

      * While the methodological aspect is very strong the balance between presenting a novel method and presenting specific cell biological findings needs to be improved. Now it is quite unclear what the manuscript wants to present.

      * The abstract needs a complete overhaul. From reading the abstract, it is not clear what the manuscript wants to present.

      Response:

      We have modified the abstract to make it more clear that we do not make any general claims on the impact of vimentin on the interactions and functions of different organelles, but rather describe what can be directly observed after the acute displacement of vimentin and which conclusions can be made from these observations.

      Regarding the research findings there are a number of things for the authors to consider. Since the methods aspect is, in the eyes of this reviewer, in focus, I have not stringently assessed the experimental findings. Hence, the comments below are things to be considered in order to make the findings related to IF research stronger:

      • *

      * Cell-specific keratin interactions: The manuscript could benefit from some further validation of the physical interactions between vimentin and keratin-8 across different cell types.

      Response:

      We have improved the images of keratin and vimentin by using super-resolution (Airyscan) microscopy to show that they indeed form distinct filaments in HeLa cells, whereas in COS-7 and U2OS cells, where their co-displacement occurs, they can also incorporate into the same filaments. This observation was very surprising but agrees with the data published by the Gelfand lab on similarity in the distribution pattern and co-transport of vimentin and keratin in RPE1 cells (Robert et al, 2019, FASEB J). Colocalization and coprecipitation of vimentin and keratin has been also described by Velez-delValle at al. in epithelial cells (Sci Rep 2016).

      * Impact on microtubules: The disorganization of stable microtubules in cells expressing KIF5A was attributed to overexpression effects. It would be helpful to include additional controls, such as expressing KIF5A without vimentin constructs, to confirm this claim.

      Response:

      This control has been included in the new Figure S3. We note that this observation fully aligns with data published by another lab (Andreu-Carbó et al, 2024, Nat Comm).

      * ER-vimentin linkages: The observation that ER-vimentin interactions persist in RNF26 knockout cells is intriguing. The manuscript would benefit from a discussion on possible candidates for alternative linkers.

      Response:

      We have added a short discussion (lines 394-398) about the potential involvement of nesprins, such as nesprin-3, because they can connect the nuclear envelope to intermediate filaments, and might also partly participate in ER sheet-IF connections because ER and nuclear membranes are continuous and show some overlap in proteome.

      * Construct variability: Do the authors have some data on how much Expression level differences significantly affect the outcomes (e.g., incomplete recovery)?

      Response:

      We have added a figure (Figure S2B), which shows that incomplete recovery of vimentin clustering does not correlate with protein expression levels and likely depends on other factors, which could possibly be the cell cycle phase or degree of vimentin entanglement after repositioning. This point is discussed in revised text, lines 194-197.


      Reviewer #2 (Significance):

      Significance

      General Assessment: The study represents a significant technical advance in the study of cytoskeletal dynamics. The tools developed address critical limitations of traditional vimentin perturbation methods, allowing for spatiotemporally precise manipulation without long-term effects on gene expression or signaling pathways.

      Novelty:

      This is, to my knowledge, the first demonstration of reversible and acute vimentin repositioning using optogenetics. The study extends understanding of vimentin's short-term mechanical and organizational roles, distinguishing them from compensatory effects observed in knockdown models.

      Audience and Impact: The manuscript will appeal to researchers in cytoskeletal dynamics, cell mechanics, and organelle biology. The tools have broader applicability in studying other cytoskeletal systems and could inspire translational applications, such as investigating the role of vimentin in cancer or fibrosis.

      The reference list provide a relatively representative selection of articles relevant for the article. However, the authors may consider whether there could be relevant information in the relatively recent special edition of Current Opinion in Cell Biology, which focused on IFs, specially featuring vimentin https://www.sciencedirect.com/special-issue/10TFHK2QCKW

      Response:

      We thank the reviewer for this excellent suggestion, and we have included some additional references from this issue.

      Field of Expertise

      I specialize in cell biology, intermediate filaments, post-translational modifications, cytoskeletal dynamics, and advanced microscopy techniques.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary:

      This is an excellent paper describing the use of chemical and light-induced heterodimerization of microtubule-based motors to rapidly disrupt the distribution of the vimentin cytoskeletal network. Rapid clustering of vimentin did not significantly affect the microtubule or actin networks, cell spreading or focal adhesions. Other organelles were repositioned together with vimentin. Interestingly, in some cell lines, keratin networks were displaced along with vimentin while in other cells they were not.

      Major comments:

      The conclusions are well supported by the data presented and appropriate controls are included.

      Optional comments:

        • The authors should expand on why they think the plus end directed KIF5A gives such a strong localization of vimentin to the perinuclear area.* Response:

      We think that two factors can contribute to this counterintuitive effect. First, vimentin is strongly concentrated and entangled in the perinuclear region, and displacement of some vimentin filaments to the cell periphery can cause the collapse of the rest to the cell center, with kinesins being unable to pull the perinuclear network apart. Second, kinesin-1 KIF5A is a motor that strongly prefers stable, post-translationally modified microtubules, and our previous study has shown that a significant proportion of such microtubules are located with their minus ends facing towards the cell periphery (Chen et al., Elife 2016). This could contribute to the accumulation of vimentin in the cell center upon KIF5A recruitment. These considerations were added to the revised text, lines 344-347.

      • Consideration should be given to the idea that the pulling of ER and mitochondria along with the vimentin could be due to trapping of these organelles within the vimentin matrix and not necessarily due to direct interactions. Such reasoning could explain the transient localization of lysosomes with the center aggregate since lysosomes are generally not thought to significantly bind to vimentin networks.*

      Response:

      This is an excellent point, and we have included it in the revised article, lines 333-335 and 405.

      Reviewer #3 (Significance):

      This study describes some valuable tools that should be useful to cell biologists interested in determining the role of the cytoskeleton and possibly other organelles in a variety of cellular contexts. It overcomes some of the existing shortcomings of the pharmacological reagents currently available for studying intermediate filament biology and will provide a useful adjunct to other more long-term manipulations of the cytoskeleton. While much of the data presented confirm results obtained by other methods, this is a significant technical advance as it provides a short time scale, and in one instance, reversible manipulation of the cytoskeleton.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      The paper by Fournier et al. investigates the sensitivity of neural circuits to changes in intrinsic and synaptic conductances. The authors use models of the stomatogastric ganglion (STG) to compare how perturbations to intrinsic and synaptic parameters impact network robustness. Their main finding is that changes to intrinsic conductances tend to have a larger impact on network function than changes to synaptic conductances, suggesting that intrinsic parameters are more critical for maintaining circuit function.

      The paper is well-written and the results are compelling, but I have several concerns that need to be addressed to strengthen the manuscript. Specifically, I have two main concerns:

      (1) It is not clear from the paper what the mechanism is that leads to the importance of intrinsic parameters over synaptic parameters.

      (2) It is not clear how general the result is, both within the framework of the STG network and its function, and across other functions and networks. This is crucial, as the title of the paper appears very general.

      I believe these two elements are missing in the current manuscript, and addressing them would significantly strengthen the conclusions. Without a clear understanding of the mechanism, it is difficult to determine whether the results are merely anecdotal or if they depend on specific details such as how the network is trained, the particular function being studied, or the circuit itself. Additionally, understanding how general the findings are is vital, especially since the authors claim in the title that "Circuit function is more robust to changes in synaptic than intrinsic conductances," which suggests a broad applicability.

      I do not wish to discourage the authors from their interesting result, but the more we understand the mechanism and the generality of the findings, the more insightful the result will be for the neuroscience community.

      Major comments

      (1) Mechanism

      While the authors did a nice job of describing their results, they did not provide any mechanism for why synaptic parameters are more resilient to changes than intrinsic parameters. For example, from Figure 5, it seems that there is mainly a shift in the sensitivity curves. What is the source of this shift? Can something be changed in the network, the training, or the function to control it? This is just one possible way to investigate the mechanism, which is lacking in the paper.

      (2) Generality of the results within the framework of the STG circuit

      (a) The authors did show that their results extend to multiple networks with different parameters (the 100 networks). However, I am still concerned about the generality of the results with respect to the way the models were trained. Could it be that something in the training procedure makes the synaptic parameters more robust than intrinsic parameters? For example, the fact that duty cycle error is weighted as it is in the cost function (large beta) could potentially affect the parameters that are more important for yielding low error on the duty cycle.

      (b) Related to (a), I can think of a training scheme that could potentially improve the resilience of the network to perturbations in the intrinsic parameters rather than the synaptic parameters. For example, in machine learning, methods like dropout can be used to make the network find solutions that are robust to changes in parameters. Thus, in principle, the results could change if the training procedure for fitting the models were different, or by using a different optimization algorithm. It would be helpful to at least mention this limitation in the discussion.

      (3) Generality of the function

      The authors test their hypothesis based on the specific function of the STG. It would be valuable to see if their results generalize to other functions as well. For example, the authors could generate non-oscillatory activity in the STG circuit, or choose a different, artificial function, maybe with different duty cycles or network cycles. It could be that this is beyond the scope of this paper, but it would be very interesting to characterize which functions are more resilient to changes in synapses, rather than intrinsic parameters. In other words, the authors might consider testing their hypothesis on at least another 'function' and also discussing the generality of their results to other functions in the discussion.

      (4) Generality of the circuit

      The authors have studied the STG for many years and are pioneers in their approach, demonstrating that there is redundancy even in this simple circuit. This approach is insightful, but it is important to show that similar conclusions also hold for more general network architectures, and if not, why. In other words, it is not clear if their claim generalizes to other network architectures, particularly larger networks. For example, one might expect that the number of parameters (synaptic vs intrinsic) might play a role in how resilient the function is with respect to changes in the two sets of parameters. In larger models, the number of synaptic parameters grows as the square of the number of neurons, while the number of intrinsic parameters increases only linearly with the number of neurons. Could that affect the authors' conclusions when we examine larger models?

      In addition, how do the authors' conclusions depend on the "complexity" of the non-linear equations governing the intrinsic parameters? Would the same conclusions hold if the intrinsic parameters only consisted of fewer intrinsic parameters or simplified ion channels? All of these are interesting questions that the authors should at least address in the discussion.

      We thank Reviewer #1 for their valuable input. We agree with the reviewer that generality of the results may have been overstated. To address this we changed the title of the manuscript to make it more specific to rhythmic circuits and we included a sentence to this effect in the discussion. 

      (1) We were more interested in knowing which set of conductances is more robust in a population of models, rather than a mechanism. If such a mechanism exists it will be the subject of a different study.

      (2) (a) It is impossible to explore the whole parameter space of these models. Our method to find circuits will leave subsets of circuits out of the study. Our sole goal in constructing the model database was that the activities were similar but the conductances were different.  (b) Of course one could devise a cost function targeting circuits that are more or less robust to changes in one parameter. Whether those exist is a different matter. This is not what we intended to do.

      (3) For this we would need a different circuit that produces non-oscillatory activity. A normal pyloric rhythm circuit always produces oscillatory activity unless it is “crashed"either by temperature or perturbations, but even in this case because we don’t have a proper “control” activity (circuits crash in different ways) we would not be able to utilize the same approach.

      We think it is a valuable idea to perform a similar study in another small circuit with nonoscillatory (or rhythmic) activities. 

      (4) We did not explore the issue of how our results generalize to larger networks as it would be pure speculation. It could be potentially interesting to do a similar sensitivity analysis with a large network trained to perform a simple task. Our understanding is that many large trained networks are extremely sensitive to perturbations in synaptic weights, at the same time that the intrinsic properties of neurons in ANN are typically oversimplified and identical across units. 

      Reviewer #2 (Public review):

      Summary:

      This manuscript presents an important exploration of how intrinsic and synaptic conductances affect the robustness of neural circuits. This is a well-deserved question, and overall, the manuscript is written well and has a logical progression.

      The focus on intrinsic plasticity as a potentially overlooked factor in network dynamics is valuable. However, while the stomatogastric ganglion (STG) serves as a well-characterized and valuable model for studying network dynamics, its simplified structure and specific dynamics limit the generalizability of these findings to more complex systems, such as mammalian cortical microcircuits.

      Strengths:

      Clean and simple model. Simulations are carefully carried out and parameter space is searched exhaustively.

      Weaknesses:

      (1) Scope and Generalizability:

      The study's emphasis on intrinsic conductance is timely, but with its minimalistic and unique dynamics, the STG model poses challenges when attempting to generalize findings to other neural systems. This raises questions regarding the applicability of the results to more complex circuits, especially those found in mammalian brains and those where the dynamics are not necessarily oscillating. This is even more so (as the authors mention) because synaptic conductances in this study are inhibitory, and changes to their synaptic conductances are limited (as the driving force for the current is relatively low).

      (2) Challenges in Comparison:

      A significant challenge in the study is the comparison method used to evaluate the robustness of intrinsic versus synaptic perturbations. Perturbations to intrinsic conductances often drastically affect individual neurons' dynamics, as seen in Figure 1, where such changes result in single spikes or even the absence of spikes instead of the expected bursting behavior. This affects the input to downstream neurons, leading to circuit breakdowns. For a fair comparison, it would be essential to constrain the intrinsic perturbations so that each neuron remains within a particular functional range (e.g., maintaining a set number of spikes). This could be done by setting minimal behavioral criteria for neurons and testing how different perturbation limits impact circuit function.

      (3) Comparative Metrics for Perturbation:

      Another notable issue lies in the evaluation metrics for intrinsic and synaptic perturbations. Synaptic perturbations are straightforward to quantify in terms of conductance, but intrinsic perturbations involve more complexity, as changes in maximal conductance result in variable, nonlinear effects depending on the gating states of ion channels. Furthermore, synaptic perturbations focus on individual conductances, while intrinsic perturbations involve multiple conductance changes simultaneously. To improve fairness in comparison, the authors could, for example, adjust the x-axis to reflect actual changes in conductance or scale the data post hoc based on the real impact of each perturbation on conductance. For example, in Figure 6, the scale of the panels of the intrinsic (e.g., g_na-bar) is x500 larger than the synaptic conductance (a row below), but the maximal conductance for sodium hits maybe for a brief moment during every spike and than most of the time it is close to null. Moreover, changing the sodium conductance over the range of 0-250 for such a nonlinear current is, in many ways, unthinkable, did you ever measure two neurons with such a difference in the sodium conductance? So, how can we tell that the ranges of the perturbations make a meaningful comparison?

      We thank Reviewer #2 for their comments. We agree with both reviewers about scope and generalizability. We changed the title of the manuscript and included a sentence in the discussion to address this. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 63: Tau_b is tau in Fig 1B? What is the 'network period' tau_n? Both are defined in the methods, but it would be good to clarify here and also in the figure.

      This was fixed. Tau_b is the  bursting period and we indicated it in the figure. Network period means the period of the network activity. This was rewritten.  

      (2) Line 74: "maximal conductances g_i." What is i? I can imagine what you meant, but it would be good to clarify the notation.

      There are multiple different currents. Letter ‘i' is an index over the different types. It now reads as follows,

      "The activity of the network depends on the values of the maximal conductances g ̄ i, where i is an index corresponding to the different current types (Na,CaS,CaT,Kd,KCa,A,H,Leak IMI)"

      (3) Line 78: "conductances are changed by a random amount." How much is the "random amount"? In percentages? 

      We fixed this sentence. This is how it reads now, 

      "The blue trace in Figure 1C corresponds to the activity of the same model when each  of the intrinsic conductances is changed by a random amount within a range between 0  (completely removing the conductance) and twice its starting value, 2×gi, or equivalently, an increment of 100%."

      Similarly, in Line 87: "by a similar percent." Can you provide Figures 1E-F in percentages? Are the percentages the same?

      The phrase "by a similar percent.” Is misleading and unimportant. Thank you, we removed it. 

      (4) Line 113: Why did you add I_MI? Is it important for the results or for the conclusions?

      I_MI was added because the current is known to be there and it is not more or less important for the results or conclusions than any other current. 

      (5) Line 117: "We used a genetic algorithm to generate a database." Confusing. I guess you meant that you used genetic algorithms to optimize the cost function.

      Thank you for this comment. We fixed this sentence, see below. 

      “We used a genetic algorithm to optimize the cost function, and in this way generated a database of N = 100 models with different values of maximal conductances (Holland 88)."

      (6) Line 136: "The models in the database were constrained to produce solutions whose features were similar to the experimental measurements." Why are there differences in the features? Is this an optimization issue? I thought you wanted to claim that there are degenerate solutions, that is, solutions where the parameters are different, but the output is identical. Please clarify.

      The concept of degenerate solutions does not imply that the solutions are mathematically identical. In biology this means that they provide very similar functions, but do so with different underlying parameters (in this case, maximal conductances). The activity of the pyloric network is slightly different across animals, and it also changes over time within the same individual. Variation across models reflects individual variation in the biological circuit, and it is strength of our modeling approach. The function of the circuits are equally good because they produce biologically realistic patterns, although the details of the activity patterns show differences. 

      (7) Line 139: "distributed (p > 0.05)." What test did you use? N? Similarly, at Lines 218, 241, 239, etc. Please be more rigorous when reporting statistical tests.

      Thank you. We now specify the test we utilized every time we report a p value. 

      (8) Line 143: "In this case, it is not possible to identify clusters, suggesting that there are no underlying relationships between the features in the model database." The 2D plot is misleading, as the features are in 11 dimensions. Claims should be about the 11D space, not projections onto 2D. In fact, I don't think you can rule out correlations between the features based on the 2D plots. For example, shouldn't there be correlations between the on and off phases and the burst durations?

      Thank you. These sentences were confusing and were removed. We added the following sentence to the end of that paragraph.

      "Because the feature vectors are similar, their t-SNE projections do not form groups or clusters."

      (9) Related to this, I don't understand this sentence: "Even though the conductances are broadly distributed over many-fold ranges, the output of the circuits results in tight yet uncorrelated distributions.”

      This sentence is confusing and was removed. 

      (10) Line 158: Repetition of Line 152: Figure 3 shows the currentscapes of each cell in two model networks.

      We removed the second instance of the repeated sentences. 

      (11) Line 160: "yet the activity of the networks is similar." Well, they are similar, but not identical. I can also say that the current scapes are 'similar'. This should be better quantified and not left as a qualitative description.

      While this is an interesting point it will not change the results and conclusions of the present study. The network models are different since the values of their maximal conductances are distributed over wide ranges.  

      (12) Line 218: midpoint parameter? Is that b - the sharpness? Please be consistent. Regarding the mechanism (see above) - any ideas what leads to this shift in the sensitivity curves between the two types of parameters?

      Yes, we made a mistake. ‘b’ is the midpoint parameter. This was fixed in the text, thank you.

      (13) Figure 6 illustrates why synaptic parameters are more robust, but it is not quantified. Why not provide a quantitative measure for this claim? For example, calculate the colored area within the white square for each pair, for each cell, and for each model. Show that these measures can predict improved robustness for one model over another and for synaptic vs. intrinsic parameters.

      The ratio of areas of the colored and non-colored regions in the whole hyperboxes (for intrinsic and synaptic conductances) is the number reported in the y-axis of the sensitivity curves when we include all conductances (and not just a pair). 

      We computed the ratios of the colored/noncolored areas in all panels in figure 6 and now report these quantities as follows, 

      "We computed the proportions of areas of the white boxes that correspond to pyloric activity. These values for the intrinsic conductances panels are PD = 0.58, LP = 0.50, PY = 0.49, and the proportions for the synaptic conductances panels are PDPY = 0.62, P DLP = 0.87, and LPPD = 0.94. The occupied areas for synaptic conductances are larger than in the intrinsic conductances panels, consistent with our finding that the circuits’ activities are more robust to changes in synaptic conductances versus changes in intrinsic conductances."

      "As before, we computed the proportion of areas of pyloric activity within the white boxes: PD = 0.61, LP = 0.55, PY = 0.52, and the proportions for the synaptic conductances panels are PDPY = 0.88, PDLP = 0.87, and LPP D = 0.83. These results provide an intuition of the complexities of GP . Not only are these regions hard-to-impossible to characterize in one circuit, but they are also different across circuits.” 

      (14) Does the sign of the synaptic weights affect the conclusions?

      We did not explore this issue because all chemical synapses in this network are inhibitory.

      (15) Line 492: typo: deltai.

      We fixed this.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 301 - you can also add Williams and Fletcher 2019 Neuron.

      We added the reference. Thank you. 

      (2) Line 316 - this is a strange comment as these exact regions that were shown intrinsic plasticity (e.g., Losonczy, Attila, Judit K. Makara, and Jeffrey C. Magee. "Compartmentalized dendritic plasticity and input feature storage in neurons." Nature 452.7186 (2008): 436-441).

      We did not understand this comment. 

      (3) I found only one citation for the work of Turrigiano, the most relevant of which is only mentioned in the Method section. This is odd, as her work directly relates how synaptic conductance perturbation results in changes in intrinsic conductance.

      We included more references to the work of Turrigiano to provide more context. 

      "Desai, Niraj S., Lana C. Rutherford, and Gina G. Turrigiano. "Plasticity in the intrinsic excitability of cortical pyramidal neurons." Nature neuroscience 2, no. 6 (1999): 515-520.” "Desai, Niraj S., Sacha B. Nelson, and Gina G. Turrigiano. "Activity-dependent regulation of excitability in rat visual cortical neurons." Neurocomputing 26 (1999): 101-106.”

      (4) Line 329 - The list of citations is very limited regarding studies of ext/int balance which started really way before 2009. Please give some of the credit to the classics.

      We included the following additional references.

      Van Vreeswijk, Carl, and Haim Sompolinsky. "Chaos in neuronal networks with balanced excitatory and inhibitory activity." Science 274, no. 5293 (1996): 1724-1726.

      Rubin, Ran, L. F. Abbott, and Haim Sompolinsky. "Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity." Proceedings of the National Academy of Sciences 114, no. 44 (2017): E9366-E9375.

      Wang, Xiao-Jing. "Macroscopic gradients of synaptic excitation and inhibition in the neocortex." Nature reviews neuroscience 21, no. 3 (2020): 169-178.

      Lo, Chung-Chuan, Cheng-Te Wang, and Xiao-Jing Wang. "Speed-accuracy tradeoff by a control signal with balanced excitation and inhibition." Journal of Neurophysiology 114, no. 1 (2015): 650-661.

      (5) In Figure 1B, why does it say 'OFF' when the neuron is spiking?

      The label indicates the interval of time elapsed between the first spike in the PD neuron (taken as a reference), and the last spike in the burst (PD off). 

      Summary of changes to figures:

      Figure 1:

      Fixed labels indicating bursting period and burst duration.

      Figure 5:

      Added labels in panels C and D specifying the symbol corresponding to the sigmoidal parameter.

      Additional changes

      We changed the title of the manuscript as follows:

      "Rhythmic circuit function is more robust to changes in  synaptic than intrinsic conductances." We included the following sentence at the end of the Discussion Section. 

      "We believe our results will hold for other rhythmic circuits and will be relevant for similar studies in other circuits with more complex functions.”

      We realized we made a mistake with the units for maximal conductances. They were incorrectly expressed in nS (nano Siemens) in the figure labels, and correctly expressed in micro Siemens in the methods section. This was fixed and now conductances are expressed in micro Siemens consistently in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This study takes a detailed approach to understanding the effect of menopausal hormone therapy (MHT) in the brain aging of females. Neuroimaging data from the UK Biobank is used to explore brain aging and shows an unexpected effect of current MHT use and poorer brain health outcomes relative to never users. There is considerable debate about the benefits of MHT and estrogens in particular for brain health, and this analysis illustrates that the effects are certainly not straightforward and require greater consideration.

      Strengths:

      (1) The detailed approach to obtaining important information about MHT use from primary care records. Prior studies have suggested that factors such as estrogen/progestin type, route of administration, duration, and timing of use relative to menopause onset can contribute to whether MHT benefits brain health.

      (2) Consideration of type of menopause (spontaneous, or surgical) in the analysis, as well as sensitivity diagnoses to rule out the effect being driven by those with clinical conditions.

      (3) The incorporation of the brain age estimate along with hippocampal volume to address brain health.

      (4) The complex data are also well explained and interpretations are reasonable.

      (5) Limitations of the UK Biobank data are acknowledged

      We thank the reviewer for their time and the positive evaluation of our manuscript.

      Weaknesses:

      (1) Lifestyle factors are listed and the authors acknowledge group differences (at least between current users and never users of MHT). I was not able to find these analyses showing these differences.

      We highlighted and tested for group differences in lifestyle scores, and the results are shown in Table 1-3, column p-value. As highlighted in the method section (page 9): “The lifestyle score was calculated using a published formula (69), and included data on sleep, physical activity, nutrition, smoking, and alcohol consumption (see supplementary Note 3, Table S2)”. In line with reviewer 1 suggestion to the authors, we now included an additional table testing for group differences in the specific lifestyle factors constituting the lifestyle score in the supplementary materials (Table S2). Please find a more detailed response below (Recommendations for the authors, Response to Comment 1).

      (2) The distribution of women who were not menopausal was unequal across groups, and while the authors acknowledge this, one wonders to what extent this explains the observed findings.

      We agree with the reviewer that the unequal distribution of women across groups can influence the observed findings. We have made minor edits to highlight this important topic more explicitly in the discussion:

      Discussion (page 21): “Current MHT users were significantly younger than past- and never-users, and around 67 % were menopausal relative to over 80% in the past- and never-user groups. The unequal distribution of age and menopausal status across groups may have influenced the observed findings. For instance, a larger proportion of the current users might be in the perimenopausal phase, which is often associated with debilitating neurological and vasomotor symptoms (1). MHT is commonly prescribed to minimize such symptoms. Although MHT initiation during perimenopause has been associated with improved memory and hippocampal function, as well as lower AD risk later in life (15), the need for MHT might in itself be an indicator of neurological changes (71); here potentially reflected in higher BAG and lower hippocampal volumes. After the transition to menopause, symptoms might subside and some perimenopausal brain changes might revert or stabilize in the postmenopausal phase 5. Although the UK Biobank lacks detailed information on menopausal symptoms and perimenopausal staging, our results might be capturing subtle disturbances during perimenopause that later stabilize. This could explain why the largely postmenopausal groups of past MHT users and never-users present with lower GM and WM BAG than the current user group. Considering the critical window hypothesis emphasizing perimenopause as a key phase for MHT action (29,43), future longitudinal studies are crucial to clarify the interplay between neurological changes and MHT use across the menopause transition.”

      Discussion (page 25): “In addition, previous studies highlight that UK Biobank participants are considered healthier than the general population based on several lifestyle and health-related factors (89, 90). This healthy volunteer bias increases with age, likely resulting in a disproportionate number of healthier older adults. Together with the imbalance in age distributions across groups, this might explain the less apparent brain aging in the older MHT user groups. We have previously highlighted that age is negatively associated with the number of APOE ε4 carriers in the UK Biobank (21), which is indicative of survivor bias.”

      (3) While the interpretations are reasonable, and relevant theories (healthy cell & critical window) are mentioned, the discussion is missing a more zoomed-out perspective of the findings. While I appreciate wanting to limit speculation, the reader is left having to synthesize a lot of complex details on their own. A particularly difficult finding to reconcile is under what conditions these women benefit from MHT and when do they not (and why that may be).

      We thank the reviewer for this comment. As the presented data is cross-sectional and does not enable causal inference, we have refrained from a more zoomed-out interpretation of the results to avoid undue speculations. However, where applicable, we have discussed our findings in a broader context such as the effects of MHT use on the brain across the menopausal transition (discussion page 21) and the effects of MHT use on the brain in the presence and absence of bilateral oophorectomy and/or hysterectomy (discussion page 25).

      To best inform the reader about the scope of our paper, we would like to highlight the following sentences in our discussion (page 24):

      “The current work represents the most comprehensive study of detailed MHT data, APOE ε4 genotype, and several brain measures in a large population-based cohort to date. Overall, our findings do not unequivocally support general neuroprotective effects of MHT, nor do they indicate severe adverse effects of MHT use on the female brain. The results suggest subtle yet complex relationships between MHT’s and brain health, highlighting the necessity for a personalized approach to MHT use. Importantly, our analyses provide a broad view of population-based associations and are not designed to guide individual-level decisions regarding the benefits versus risks of MHT use.”

      And the conclusion (page 25): “In conclusion, our findings suggest that associations between MHT use and female brain health might vary depending on duration of use and past surgical history. Although the effect sizes were generally modest, future longitudinal studies and RCTs, particularly focused on the perimenopausal transition window, are warranted to fully understand how MHT use influences female brain health. Importantly, considering risks and benefits, decisions regarding MHT use should be made within the clinical context unique to each individual.”

      Reviewer #1 (Recommendations for the authors):

      Can the authors provide:

      (1) More information about which aspects of lifestyle factors were different between the groups, and how these factors may have contributed to the observed findings (if possible, without burying this information in the supplemental)?

      We thank the reviewer for this suggestion. We now added a table comparing lifestyle factors contained in the lifestyle score by MHT user status using t-tests (continuous variables) or χ2 tests (see Table S2). The results are referred to in the main manuscript result section under “Sample characteristics”, and the table (Table S2) is provided in the supplements not to overburden the main text, in line with input from reviewer 3.

      We updated the main text to refer to Table S2 and updated the supplementary Note 3 (page 2-3) to include the results of the comparison of the lifestyle factors contained in the lifestyle score by MHT user status.

      Methods, page 9:“The lifestyle score was calculated using a published formula (69), and included data on sleep, physical activity, nutrition, smoking, and alcohol consumption (see supplementary Note 3, Table S2).”

      Results, page 13: “Sample demographics including lifestyle score, stratified by MHT user group, surgical history among MHT users, and estrogen only MHT or combined MHT use, are summarized in Table 1, 2 and 3, respectively. MHT user group differences for each lifestyle factor contained in the lifestyle score are shown in Table S2.”

      “Note 3| Lifestyle Score

      The lifestyle score was calculated based on sleep duration, time spent watching television, current and past smoking status, alcohol consumption frequency, physical activity level (number of days per week of moderate/vigorous activity for at least 10 minutes), intake of fruits and vegetables, and intake of oily fish, beef, lamb/mutton, pork and processed meat (for details see (10)). Each unhealthy lifestyle factor was scored with 1 point (e.g., smoking), and participants points were summed to generate an unweighted score (from 0-9): the higher the lifestyle score, the unhealthier the participant’s lifestyle.

      A comparison of the lifestyle factors contained in the lifestyle score by MHT user status is presented in Table S2. In summary, we found that current MHT were more often smokers than never-users, had a higher alcohol intake than never- and past MHT users, reported the lowest fruit and vegetable intake relative to never-users and past MHT users, and stated lower moderate activity levels relative to past MHT users. Past MHT users reported higher alcohol intake than never-users, spend more time watching TV relative to never- and current-users, consumed more beef, pork, lamb/mutton, and processed meat than never-users, and reported lower vigorous activity levels relative to never-users. However, oily fish intake and fruit and vegetable intake was higher among past MHT users relative to never-and current-users. Self-reported sleep duration did not differ between MHT user groups.”

      (2) A greater description of the 2 main theories of MHT effects on the brain (healthy cell vs critical window). Can the authors also provide a more thorough explanation for how the findings fit with these theories.

      We thank the reviewer for this comment. We have described our findings in the context of the critical window hypothesis (discussion, page 21, paragraph 2), the healthy cell bias hypothesis (discussion, page 22, paragraph 3), and healthy user bias hypothesis (discussion, page 22, paragraph 4). We refrained from a more thorough explanation to avoid undue speculations.

      (3) Reflect more on what the findings may indicate as to who benefits from MHT, and why. There are some references that the authors may want to add, particularly related to recent findings from premenopausal bilateral oophortectomies that also speak to when (and for whom) MHT use might benefit.

      We thank the reviewer for this feedback. We have included additional references in the revised manuscript as follows:

      Discussion, page 23: “It is also possible that the timing between MHT use and surgery is more tightly controlled and therefore more beneficial for brain aging (43). For instance, studies suggest that MHT may mitigate the potential long-term adverse effects of bilateral oophorectomy before natural menopause on bone mineral density as well as cardiovascular, cognitive and mental health (79-81). In addition, a 2024 UK Biobank study found that ever used MHT was associated with decreased odds of Alzheimer’s disease in women with bilateral oophorectomy (82).”  

      (79) Blumel JE, Arteaga E, Vallejo MS, et al. Association of bilateral oophorectomy and menopause hormone therapy with mild cognitive impairment: the REDLINC X study. Climacteric 2022;25:195-202.

      (80) Kaunitz AM, Kapoor E, Faubion S. Treatment of Women After Bilateral Salpingo-oophorectomy Performed Prior to Natural Menopause. JAMA 2021;326:1429-1430.

      (81) Stuursma A, Lanjouw L, Idema DL, de Bock GH, Mourits MJE. Surgical Menopause and Bilateral Oophorectomy: Effect of Estrogen-Progesterone and Testosterone Replacement Therapy on Psychological Well-being and Sexual Functioning; A Systematic Literature Review. J Sex Med 2022;19:1778-1789.

      (82) Calvo N, McFall GP, Ramana S, et al. Associated risk and resilience factors of Alzheimer's disease in women with early bilateral oophorectomy: Data from the UK Biobank. J Alzheimers Dis 2024;102:119-128.

      Reviewer #2 (Public review):

      Summary:

      In this observational study, Barth et al. investigated the association between menopausal hormone therapy and brain health in middle- to older-aged women from the UK Biobank. The study evaluated detailed MHT data (never, current, or past user), duration of mHT use (age first/last used), history of hysterectomy with or without bilateral oophorectomy, APOEE4 genotype, and brain characteristics in a large, population-based sample. The researchers found that current mHT use (compared to never-users), but not past use, was associated with a modest increase in gray and white matter brain age gap (GM and WM BAG) and a decrease in hippocampal volumes. No significant association was found between the age of mHT initiation and brain measures among mHT users. Longer duration of use and older age at last MHT use post-menopause were associated with higher GM and WM BAG, larger WMH volumes, and smaller hippocampal volumes. In a sub-sample, after adjusting for multiple comparisons, no significant associations were found between detailed mHT variables (formulations, route of administration, dosage) and brain measures. The association between mHT variables and brain measures was not influenced by APOEE4 allele carrier status. Women with a history of hysterectomy with or without bilateral oophorectomy had lower GM BAG compared to those without such a history. Overall, these observational data suggest that the association between mHT use and brain health in women may vary depending on the duration of use and surgical history.

      Strengths:

      (1) The study has several strengths, including a large, population-based sample of women in the UK, and comprehensive details of demographic variables such as menopausal status, history of oophorectomy/hysterectomy, genetic risk factors for Alzheimer's disease (APOE ε4 status), age at mHT initiation, age at last use, duration of mHT, and brain imaging data (hippocampus and WMH volume).

      (2) In a sub-sample, the study accessed detailed mHT prescription data (formulations, route of administration, dosage, duration), allowing the researchers to study how these variables were associated with brain health outcomes. This level of detail is generally missing in observational studies investigating the association of mHT use with brain health.

      We thank the reviewer for their time and the positive evaluation of our manuscript.

      Weaknesses:

      (1) While the study has many strengths, it also has some weaknesses. As highlighted in an editorial by Kantarci & Manson (2023), women with symptoms such as subjective cognitive problems, sleep disturbances, and elevated vasomotor symptoms combined with sleep disturbances tend to seek mHT more frequently than those without these symptoms. The authors of this study have also indicated that the need of mHT use which might be associated with these symptoms may be indicators of preexisting neurological changes, potentially reflecting worse brain health scores, including higher BAG and lower hippocampal volume and/or higher WMH. However, among current users, how many of these women have these symptoms could not be reported in the study. Women with these vasomotor symptoms who are using mHT are more likely to stay longer in the healthcare system compared with those without these symptoms and no MHT use history. The authors noted that the UK Biobank lacks detailed information on menopausal symptoms and perimenopausal staging, limiting the study's ability to understand how these variables influence outcomes.

      We thank the reviewer for the succint synopsis of the limitations highlighted in discussion, page 21. We have now added the mentioned reference, 2023 editoral by Kantarci & Manson, to the discussion as well (see reference 71).

      Discussion (page 21): “Current MHT users were significantly younger than past- and never-users, and around 67 % were menopausal relative to over 80% in the past- and never-user groups. The unequal distribution of age and menopausal status across groups may have influenced the observed findings. For instance, a larger proportion of the current users might be in the perimenopausal phase, which is often associated with debilitating neurological and vasomotor symptoms (1). MHT is commonly prescribed to minimize such symptoms. Although MHT initiation during perimenopause has been associated with improved memory and hippocampal function, as well as lower AD risk later in life (15), the need for MHT might in itself be an indicator of neurological changes (71); here potentially reflected in higher BAG and lower hippocampal volumes. After the transition to menopause, symptoms might subside and some perimenopausal brain changes might revert or stabilize in the postmenopausal phase 5. Although the UK Biobank lacks detailed information on menopausal symptoms and perimenopausal staging, our results might be capturing subtle disturbances during perimenopause that later stabilize. This could explain why the largely postmenopausal groups of past MHT users and never-users present with lower GM and WM BAG than the current user group. Considering the critical window hypothesis emphasizing perimenopause as a key phase for MHT action (29,43), future longitudinal studies are crucial to clarify the interplay between neurological changes and MHT use across the menopause transition.”

      (2)  Earlier observational studies have reported conflicting results regarding the association between mHT use and the risk of dementia and brain health. Contrary to some observational studies, three randomized trials (WHI, KEEPS, ELITE) (Espeland et al 2013, Gleason et al 2015; Henderson et al 2016) demonstrated neither beneficial nor harmful effects of mHT (with varying doses and formulations) when initiated closer to menopause (<5 years). While strong efforts were made to run proper statistical analyses to investigate the association between mHT use and brain health, these results reflect mainly associations, but not causal relationships as also stated by the authors.

      We thank the reviewer for pointing that out.

      (3)  Furthermore, observational studies have intrinsic limitations, such as a lack of control over switching mHT doses and formulations, a lack of laboratory measures to confirm mHT use, and reliance on self-reported data, which may not always be reliable. The authors caution that these findings should not guide individual-level decisions regarding the benefits versus risks of mHT use. However, the study raises new questions that should be addressed by randomized clinical trials to investigate the varying effects of MHT on brain health and dementia risk.

      We thank the reviewer for making our efforts in providing proper disclaimers in the discussion visible.

      Reviewer #2 (Recommendations for the authors):

      (1) The study could benefit from extending these findings by adding plasma biomarkers of AD and PET imaging markers to further study the association of mHT variables with brain health.

      We agree with the reviewer that such markers would be beneficial for elucidating the association between MHT variables and brain health. Unfortunately, these markers are not readily available in the UK Biobank.

      (2) The study's reliance on a predominantly white cohort limits the generalizability of the findings to more diverse populations. This homogeneity may not capture the full spectrum of responses to MHT across different ethnic and genetic backgrounds.

      We fully agree with the reviewers statement and state this limitation in the discussion (page 25) as follows:

      “In addition to these inherent biases in aging cohorts, the ethnic background of the sample is homogeneous (> 96% white), further reducing the generalizability of the results.”

      (3) The study may benefit by editing the following information in the introduction: "In summary, WHIMS, HERS, and KEEPS mainly relied on orally administered CEE in older-aged or recently postmenopausal females." KEEPS used two routes and formulations (transdermal estradiol and oCEE, both with micronized progesterone).

      We thank the reviewer for catching this oversight. We removed the sentence to avoid ambiguities and revised the sentence specifically refering to the KEEPS study as follows:

      Introduction, page 3: “In contrast, administering oral CEE or transdermal estradiol plus micronized progesterone in recently postmenopausal females did not alter cognition in the Kronos Early Estrogen Prevention Study (KEEPS) (28).”

      (4) The study may benefit by editing the following statement in the introduction: "oral CEE use in combination with MPA seems to increase the risk for AD regardless of timing": I would suggest revising this statement, which is based on review article 29. The statement of the adverse effect of oCEE regardless of the time of start contradicts earlier randomized clinical findings. I think it is important to make a distinction between the outcomes of randomized control trials and observational studies. The WMIHS (Shumaker et al., 2003) (randomized control trial) reported that there was an increased risk of dementia for women (who were more than 10 years from the onset of menopause when the therapy was initiated) in oCEE + MPA compared to placebo. Two other long-duration randomized trials tested the effect of oral oestrogen and progesterone treatment on cognitive function in women who started treatment shortly after menopause (within 3 or 6 years) did not find evidence that treatment benefits or harms cognitive function compared with placebo (Gleason et al., 2015; Henderson et al., 2016). A short-term (4 months) randomized trial (Maki et al 2007 (Maki et al., 2007) (mentioned in ref 29) reported a potential negative effect of CEE/MPA on verbal memory in women who started HT shortly after menopause (within 3 years). The study did not investigate the risk of dementia, and the duration of use of HT was short-term.

      We thank the reviewer for this detailed input. After checking the provided references, we rephrased the sentence as follows:

      Introduction, page 4:“Although emerging evidence supports this hypothesis (30, 31), oral CEE use in combination with MPA has been found to increase the risk for memory decline regardless of timing (26, 29, 32).”

      We believe this formulation is more in line with the evidence provided by Shumaker et al. 2003, Maki et al. 2007 and the other references provided in the review paper by Maki and colleagues (mentioned in ref. 29). The reviewer further refers to Gleason et al. 2015 and Henderson et al. 2016, however both RCTs use micronized progesterone, not MPA, thereby not supporting the statement.

      (26) Shumaker SA, Legault C, Rapp SR, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 2003;289:2651-2662.

      (29) Maki PM. Critical window hypothesis of hormone therapy and cognition: a scientific update on clinical studies. Menopause 2013;20:695-709.

      (32) Maki PM, Gast MJ, Vieweg AJ, Burriss SW, Yaffe K. Hormone therapy in menopausal women with cognitive complaints: a randomized, double-blind trial. Neurology 2007;69:1322-1330.

      Reviewer #3 (Public review):

      In this study Barth et al. present results of detailed analyses of the relationships between menopausal hormone therapy (MHT), APOE ε4 genotype, and measures of anatomical brain age in women in the UK Biobank. While past studies have investigated the links between some of these variables (including works by the authors themselves), this new study adds more detailed MHT variables, surgical status, and additional brain aging measures. The UK biobank sample is large, but it is a population cohort and many of the MHT measures are self-reported (as the authors point out). However, the authors present a solid analysis of the available information which shows associations between MHT user status, length of MHT use, as well as surgical status with brain age. However, as the authors themselves state, the results do not unequivocally support the neuroprotective or adverse effect of MHT on the brain. I think this work strengthens the case for the need of better-designed longitudinal studies investigating the effect of MHT on the brain in the peri/post-menopausal stage.

      Strengths:

      (1) The authors addressed the statistical analyses rigorously. For example, multiple testing corrections, outlier removal, and sensitivity analysis were performed carefully. Ample background information is provided in the introduction allowing even individuals not familiar with the field to understand the motivation behind the work. The discussion section also does a great job of addressing open questions and limitations. Very detailed results of all statistical tests are provided either in the main text or in the supplementary information.

      We thank the reviewer for their time and the positive evaluation of our manuscript.

      Weaknesses:

      (1) For me, the biggest weakness was the presentation of the results. As many variables are involved and past studies have investigated several of these questions, it would have helped to better clarify the analysis and questions that are addressed by this study in particular and what sets this work apart from past studies. The information is present in the manuscript but better organization might have helped. For example, a figure depicting the key questions near the beginning of the manuscript would have been very helpful for me. The Tables also contain a lot of information but I wonder if there might be a way to capture the most relevant information more succinctly (either in Table format or in a figure) for the main text.

      We thank the reviewer for this comment. We do agree that with the large number of analyses it can be hard to keep an overview. We now added a Figure summarizing the main and sensitity analyses by sample.

      (2) Another concern I had was the linear models investigating the effects of these MHT variables on the brain age gap. The authors have included "age" as one of the parameters in this analysis. I wonder if adding a quadratic age factor age2 in the model might have improved the fit since many brain phenotypes tend to show quadratic brain age effects in the 40 to 80-year age range.

      We thank the reviewer for this suggestion. We have rerun the main analysis in the whole sample (model 1) with age squared as an additional covariate, and compared the gray matter brain age gap model fits using the corrected Akaike Information Criterion (AIC). All models with age squared had a better model fit than models without age squared (see Author response table 1). Hence, in the revised manuscript, we added a sensitivity analysis rerunning the model 1 with age squared to account for potential non-linear effect. The results were largely consistent. The manuscript was revised as follows to reflect the added analysis:

      Sensitivity analysis (Methods, Page 11): “To test whether the results were influenced by the inclusion of participants with ICD-10 diagnosis or by non-linear effects of age, the main analyses (models 1-2) were re-run excluding the sub-sample with diagnosed brain disorders (see supplementary Note 2) or adding age(2) as additional covariate, respectively.”

      Sensitivity analysis (Results, Page 20): “The results were consistent after removing participants with ICD-10 diagnoses known to impact the brain (see Table S9 for model 1 analyses and Table S10 for model 2 analyses), after additionally adjusting for age(2) (see Table S11), and after removing extreme values (see Table S12 for model 1 analyses).”

      Author response table 1.

      Gray matter brain age gap model selection based on corrected Akaike Information Criterion (AICc)

      Abbreviations and explanations of parameters: MHT = menopausal hormone therapy, K = number of estimated parameters for each model, AICc = the information criterion requested for each model, ΔAICc = the appropriate delta AIC component depending on the information criteria selectedModelLik = the relative likelihood of the model given the data, AICcWT = Akaike weights to indicate the level of support in favor of any given model being the most parsimonious among the candidate model sets, LL = log-likelihood of each model.

      Reviewer #3 (Recommendations for the authors):

      (1) Please note typo in Figures 2 and 3 legend "GM WM".

      We thank the reviewer for catching this typo and we changed it to BAG GM and BAG WM for all Figures for consistency.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review): 

      Summary:

      The authors examine the role of the medial prefrontal cortex (mPFC) in cognitive control, i.e. the ability to use task-relevant information and ignore irrelevant information, in the rat. According to the central-computation hypothesis, cognitive control in the brain is centralized in the mPFC and according to the local hypothesis, cognitive control is performed in task-related local neural circuits. Using the place avoidance task which involves cognitive control, it is predicted that if mPFC lesions affect learning, this would support the central computation hypothesis whereas no effect of lesions would rather support the local hypothesis. The authors thus examine the effect of mPFC lesions in learning and retention of the place avoidance task. They also look at functional interconnectivity within a large network of areas that could be activated during the task by using cytochrome oxidase, a metabolic marker. In addition, electrophysiological unit recordings of CA1 hippocampal cells are made in a subset of (lesioned or intact) animals to evaluate overdispersion, a firing property that reflects cognitive control in the hippocampus. The results indicate that mPFC lesions do not impair place avoidance learning and retention (though flexibility is altered during conflict training), do not affect cognitive control seen in hippocampal place cell activity (alternation of frame-specific firing), a measure of location-specific firing variability, in pretraining. It nevertheless has some effect on functional interconnections. The results overall support the local hypothesis. 

      Strengths:

      Straightforward hypothesis: clarification of the involvement of the mPFC in the brain is expected and achieved. Appropriate use of fully mastered methods (behavioral task, electrophysiological recordings, measure of metabolic marker cytochrome oxidase) and rigorous analysis of the data. The conclusion is strongly supported by the data. 

      Weaknesses:

      No notable weaknesses in the conception, making of the study, and data analysis. The introduction does not mention important aspects of the work, i.e. cytochrome oxidase measure and electrophysiological recordings. The study is actually richer than expected from the introduction. 

      The revised Introduction now includes:

      “We used cytochrome oxidase, a metabolic marker of baseline neuronal activity, to confirm the mPFC lesions were effective and that there are non-local network consequences despite the local lesion. We first evaluated cytochrome oxidase activity in regions known to be associated with performance in the active place avoidance task, or regions with known connectivity to the mPFC. We then evaluated covariance of activity amongst the regions in an effort to detect network consequences of the lesion.”

      Reviewer #2 (Public review): 

      Park et al. set out to test two competing hypotheses about the role of the medial prefrontal cortex (PFC) in cognitive control, the ability to use task-relevant cues and ignore taskirrelevant cues to guide behavior. The "central computation" hypothesis assumes that cognitive control relies on computations performed by the PFC, which then interacts with other brain regions to accomplish the task. Alternatively, the "local computation" hypothesis suggests that computations necessary for cognitive control are carried out by other brain regions that have been shown to be essential for cognitive control tasks, such as the dorsal hippocampus and the thalamus. If the central computation hypothesis is correct, PFC lesions should disrupt cognitive control. Alternatively, if the local computation hypothesis is correct, cognitive control would be spared after PFC lesions. The task used to assess cognitive control is the active place avoidance task in which rats must avoid a section of a rotating arena using the stationary room cues and ignoring the local olfactory cues on the rotating platform. Performance on this task has previously been shown to be disrupted by hippocampal lesions and hippocampal ensembles dynamically represent the room and arena depending on the animal's proximity to the shock zone. They found no group (lesion vs. sham) differences in the three behavioral parameters tested: distance traveled, latency to enter the shock zone, and number of shock zone entries for both the standard task and the "conflict" task in which the shock zone was rotated by 180 degrees. The only significant difference was the savings index; the lesion group entered the new shock zone more often than the sham group during the first 5 minutes of the second conflict session. This deficit was interpreted as a cognitive flexibility deficit rather than a cognitive control failure. Next, the authors compared cytochrome oxidase activity between sham and lesion groups in 14 brain regions and found that only the amygdala showed significant elevation in the lesion vs. sham group. Pairwise correlation analysis revealed a striking difference between groups, with many correlations between regions lost in the lesion group (between reuniens and hippocampus, reuniens and amygdala and a correlation between dorsal CA1 and central amygdala that appeared in the lesion group and were absent in the sham group. Finally, the authors assessed dorsal hippocampal representations of the spatial frame (arena vs. room) and found no differences between lesion and sham groups. The only difference in hippocampal activity was reduced overdispersion in the lesion group compared to the sham group on the pretraining session only and this difference disappeared after the task began. Collectively, the authors interpret their findings as supporting the local computation hypothesis; computations necessary for cognitive control occur in brain regions other than the PFC. 

      Strengths:

      (1) The data were collected in a rigorous way with experimental blinding and appropriate statistical analyses. 

      (2) Multiple approaches were used to assess differences between lesion and sham groups, including behavior, metabolic activity in multiple brain regions, and hippocampal singleunit recording. 

      Weaknesses:

      (1) Only male rats were used with no justification provided for excluding females from the sample.

      This is a weakness we acknowledge. The experiments were performed at a time when we did not have female rats in the lab.

      (2) The conceptual framework used to interpret the findings was to present two competing hypotheses with mutually exclusive predictions about the impact of PFC lesions on cognitive control. The authors then use mainly null findings as evidence in support of the local computation hypothesis. They acknowledge that some people may question the notion that the active place avoidance task indeed requires cognitive control, but then call the argument "circular" because PFC has to be involved in cognitive control. This assertion does not address the possibility that the active place avoidance task simply does not require cognitive control. 

      We beg to differ that the possibility was not addressed. Prior to making the assertion, the manuscript describes the evidence that the active place avoidance task requires cognitive control. The evidence is multifold, and includes task design, behavior, and electrophysiology; we argue that this is more evidence than has been provided for other tasks that are asserted to require cognitive control. Specifically line 417 states:

      “We have previously demonstrated cognitive control in the active place avoidance task variant we used (Fig. 1) because the rats must ignore local rotating place cues to avoid the stationary shock zone. Even when the arena does not rotate, rats distinctly learn to avoid the location of shock according to distal visual room cues and local olfactory arena cues, such that the distinct place memories can be independently manipulated using probe trials [49, 50]. When the arena rotates as in the present studies, neural manipulations that impair the place avoidance are no longer impairing when the irrelevant arena cues are hidden by shallow water [14, 15, 51, 52]. Furthermore, persistent hippocampal neural circuit changes caused by active place avoidance training are not detected when shallow water hides the irrelevant arena cues to reduce the cognitive control demand [10, 31, 33]. While these findings unequivocally demonstrate the salience of relevant stationary room cues to use for avoiding shock and irrelevant arena cues to ignore during active place avoidance, the most compelling evidence of cognitive control comes from recording hippocampal ensemble discharge. Hippocampal ensemble discharge purposefully represents current position using stationary room information when the subject is close to the stationary shock zone and alternatively represents rotating arena information when the mouse is far from the stationary shock zone [Fig. 4; 10].”

      Line 436, however, acknowledges a fact that will always be true: no matter what anyone opines - until there are universally agreed upon objective criteria, it is logically possible that active place avoidance does not require cognitive control. The revision states: Despite this evidence from task design, behavioral observations, and direct electrophysiological representational switching as required to directly demonstrate cognitive control, one might still argue that it is logically possible that the active place avoidance task does not require cognitive control and this is why the mPFC lesion did not impair place avoidance of the initial shock zone. We consider such reasoning to be unproductive because it presumes that only tasks that require an intact mPFC can be cognitive control tasks. We nonetheless acknowledge that for some, we have not provided sufficient evidence that the active place avoidance requires cognitive control.

      “We assert the evidence is compelling, and together these findings require rejecting the central-computation hypothesis that the mPFC is essential for the neural computations that are necessary for all cognitive control tasks.”

      (3) The authors did not link the CO activity with the behavioral parameters even though the CO imaging was done on a subset of the animals that ran the behavioral task nor did they make any attempt to interpret these findings in light of the two competing hypotheses posed in the introduction. Moreover, the discussion lacks any mechanistic interpretations of the findings. For example, there are no attempts to explain why amygdala activity and its correlation with dCA1 activity might be higher in the PFC lesioned group. 

      The CO study was performed to assess the effects of the lesion, as stated on line 262 “Cytochrome oxidase (CO), a sensitive metabolic marker for neuronal function [27], was used to evaluate whether lesion effects were restricted to the mPFC.” Furthermore, as a matter of fact, line 411 states “Thus, CO imaging and electrophysiological evidence identify changes in the brain beyond the directly damaged mPFC area. In particular, the dorsal hippocampus loses the inhibitory input from mPFC [45, 46] and loses the metabolic correlation with the nucleus reuniens, which is thought to be a relay between the mPFC and the dorsal hippocampus [47, 48].”

      These CO measures assess baseline metabolic function and so it would be inappropriate to correlate them with the measures of behavior. Because the lesion and control groups do not differ on most measures of behavior, a relationship to CO measures is not expected. Importantly, even if there were differences in correlations between CO activity and behavioral measures, what could they mean? The study was designed to distinguish between two hypotheses, not to determine what CO differences could mean for behavior. As such, it is not at all clear how metabolic consequences of the lesion relate to the two hypotheses being evaluated, and so we consider it inappropriate to speculate. We did examine, and now include, the correlation between lesion size and conflict behavior. The Fig. 1 legend states “Savings was not related to lesion size r = 0.009, p = 0.98. *p < 0.05.”

      (4) Publishing null results is important to avoid wasting animals, time, and money. This study's results will have a significant impact on how the field views the role of the PFC in cognitive control. Whether or not some people reject the notion that the active place avoidance task measures cognitive control, the findings are solid and can serve as a starting point for generating hypotheses about how brain networks change when deprived of PFC input. 

      We thank the reviewer for the acknowledgement.

      Reviewer #3 (Public review): 

      Summary:

      This study by Park and colleagues investigated how the medial prefrontal cortex (mPFC) influences behavior and hippocampal place cell activity during a two-frame active place avoidance task in rats. Rats learned to avoid the location of mild shock within a rotating arena, with the shock zone being defined relative to distal cues in the room. Permanent chemical lesions of the mPFC did not impair the ability to avoid the shock zone by using distal cues and ignoring proximal cues in the arena. In parallel, hippocampal place cells alternated between two spatial tuning patterns, one anchored to the distal cues and the other to the proximal cues, and this alteration was not affected by the mPFC lesion. Based on these findings, the authors argue that the mPFC is not essential for differentiating between task-relevant and irrelevant information. 

      Strengths:

      This study was built on substantial work by the Fenton lab that validated their two-frame active place avoidance task and provided sound theoretical and analytical foundations. Additionally, the effectiveness of mPFC lesions was validated by several measures, enabling the authors to base their argument on the lack of lesion effects on behavior and place cell dynamics. 

      Weaknesses:

      The authors define cognitive control as "the ability to judiciously use task-relevant information while ignoring salient concurrent information that is currently irrelevant for the task." (Lines 77-78). This definition is much simpler than the one by Miller and Cohen: "the ability to orchestrate thought and action in accordance with internal goals (Ref. 1)" and by Robbins: "processes necessary for optimal scheduling of complex sequence of behaviour." (Dalley et al., 2004, PMID: 15555683). Differentiating between task-relevant and irrelevant information is required in various behavioral tasks, such as differential learning, reversal learning, and set-shifting tasks. Previous rodent behavioral studies have shown that the integrity of the mPFC is necessary for set-shifting but not for differential or reversal learning (e.g., Enomoto et al., 2011, PMID: 21146155; Cho et al., 2015, PMID: 25754826). In the present task design, the initial training is a form of differential learning between proximal and distal cues, and the conflict training is akin to reversal learning. Therefore, the lack of lesion effects is somewhat expected. It would be interesting to test whether mPFC lesions impair set-shifting in their paradigm (e.g., the shock zone initially defined by distal cues and later by proximal cues). If the mPFC lesions do not impair this ability and associated hippocampal place dynamics, it will provide strong support for the authors' local computation hypothesis.

      Thank you for these comments. In addressing them we have provided a significant revision to the manuscript’s Introduction. While authors like those cited by the reviewer have defined cognitive control, those definitions are difficult to test rigorously, as it is almost a matter of opinion whether a subject is displaying “the ability to orchestrate thought and action in accordance with internal goals" or whether they are using "processes necessary for optimal scheduling of complex sequence of behaviour." What would such definitions of cognitive control predict about neuronal activity? We have deliberately used a simple, operational definition of cognitive control because it is physiologically testable. In the revision, starting at line 93, we have provided an excerpt from Miller and Cohen (2001) with discussion. The importance of that work is that it provides explicit neuronal criteria and a means to operationally define cognitive control. As stated on Line 118 “Accordingly, cognitive control would be at work when there is sustained neuronal network representations of task-relevant information that suppresses or gates representations of salient task-irrelevant information in accord with purposeful judicious behavior.”

      We used a R+A- task variant in which there is a stationary room-frame shock zone and task irrelevant arena-frame information. A strict correspondence to shift-shifting task design cannot be accomplished with active place avoidance because an A+R- task that requires avoiding an arena-frame shock zone in the absence of a room-frame shock zone can be accomplished trivially if the subject chooses to not move when it is in a place with no shock. However, the R+A+ task variant is readily learned, in which there is both a room-frame and an arena-frame shock zone (see cited work below). This task variant requires the subject to judiciously shift between avoiding the room-frame shock zone using stationary room information and avoiding the arena-frame shock zone using rotating arena information. This R+A+ task variant might meet the reviewer’s criteria for cognitive control. We have recorded hippocampal and entorhinal ensemble activity during the R+A+ task variant and it is very similar to the activity during the R+A- task we used. Nonetheless, future work will investigate the efect of mPFC lesion on the R+A+ task variant.

      Cited work:

      Fenton AA, Wesierska M, Kaminsky Y, Bures J (1998), Both here and there: simultaneous expression of autonomous spatial memories in rats. Proc Natl Acad Sci U S A 95:11493-11498. Kelemen E, Fenton AA (2010), Dynamic grouping of hippocampal neural activity during cognitive control of two spatial frames. PLoS Biol 8:e1000403.

      Burghardt NS, Park EH, Hen R, Fenton AA (2012), Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22:1795-1808.

      Park EH, Keeley S, Savin C, Ranck JB, Jr., Fenton AA (2019), How the Internally Organized Direction Sense Is Used to Navigate. Neuron 101:1-9.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      (1) Incorporate the cytochrome oxidase and hippocampal recordings (rationale and hypothesis) in the introduction, explaining how these aspects are relevant to the general question. 

      We have done this as requested. See lines 159-173 of the revised introduction.

      (2) Figure 1C. On Day 4-5 (conflict training) in which the shock zone was relocated 180 deg from the initial location, the behavioral tracks did not show any presence of the rat in this sector (in particular for the lesion example). Figure 4 nevertheless indicates that entrances have been made (which was expected since rats have to know that the shock zone was relocated).

      Thanks for pointing this out. The tracks are from the end of the sessions. The labels have been changed to specify which trials the tracks are from.

      (3) Figure 1C. The caption is huge as it contains the statistical analyses details. I would prefer to have these details in the text and keep the caption at a "reasonable" length. At the end of the caption (l. 190-191), it would be less confusing the keep the numbering of the training days: replace D1T1 with D2T1 and D2T9 with D3T9).

      The statistical details have been relocated to the main text and the numbering updated, as suggested, thank you.

      (4) It was not inconsiderable to show that mPFC lesion had some effects in the present task if it were only to validate the effectiveness of the lesion. This brain area has been shown to be important for planning, cognitive flexibility, etc. Indeed the authors found that the saving index was greater in sham than in mPFC rats (overdispersion in hippocampal firing was also reduced in pretraining) and interpreted this result as impaired flexibility. Would an alternative explanation be a memory deficit? I nevertheless expected that impaired flexibility in mPFC rats would be expressed in conflict trials in the form of more entrances in the zone that was initially not associated with shock (at least in the first trials of Day 4). But it appears to not be the case.

      A memory deficit is unlikely to explain the difference between the groups on the first trial of Day 5. Memory in the lesion rats was tested multiple times, specifically at the start of each trial (time to first entrance), including on the 24-h retention test, and no deficits were observed. Performance on Day 9 trial 1 is worse in the lesion group than in the controls, but it is not parsimonious to attribute this to a simple memory deficit since 24-h memory was good and similar between lesion and control rats on days 3 and 4, and memory on Day 5 was equally poor in both the lesion and control rats, as measured by time to first entrance.  

      (5) Material and methods. The injected volume of ibotenic acid should be mentioned. 

      The volume 0.2 µl was added. See line 531.

      (6) The rationale for doing the conflict training session should be indicated somewhere. 

      The rationale was provided. See lines 204-208.

      Reviewer #2 (Recommendations for the authors): 

      (1) Line 132: The text states that all sham rats improved and only 6/10 lesion rats improved is followed by a t-test, which tests the difference between means; it does not compare proportions. Also, what criterion was used to determine if an improvement was seen or not? 

      The statistical comparison is provided (now lines 230: test of proportions z = 2.3, p = 0.03). Improvement was simply numerically fewer entrances.

      (2) Line 138: This is a very long and confusing sentence. Consider revising for clarity. 

      The sentence (now line 234) was revised.

      (3) Figure 1B only includes data from 3 animals. Most published studies show the whole dataset by presenting the largest and smallest lesions. 

      Supplemental Figure S2 was added with all the lesions depicted and quantified.

      (4) Figure 1C suggestion to make the schematic shock zone line up with the shock zone shown for the tracking data. 

      Graphically, it looks better as drawn as it uses to perspective to depict a three-dimensional structure.

      (5) Methods: Clarify if the shock zone location was the same across all rats. 

      Line 570 states that the shock zone was the same for all rats.

      (6) Line 158: "Behavioral tracks" is not clear. Suggest more precise wording.

      Reworded to “Tracked room-frame positions” (now line 249)

      (7) Line 166: "effect of trial" - should this be the main effect of trial?; "interaction" - should this be "group x trial" interaction? 

      Reworded (now line 181).

      (8) Line 167: "or their interaction" is awkward in the context of the sentence. 

      Reworded (now line 182).

      (9) Line 182: Avoid talking about "trends" as if they are almost significant unless the authors suspect that they did not have sufficient statistical power to detect differences. In that case, a power analysis should be provided. 

      Removed.

      (10) Line 190: "left:...right..." is hard to follow, especially with acronyms like D1T1. Consider revising for clarity. 

      Revised (now lines 246-248).

      (11) Line 195: "effectiveness of the PFC to impair" is unnecessarily verbose. 

      Reworded (now lines 255-257).

      (12) Savings results: There is a lot of variability in the lesion group. It would be interesting to know if the extent of the lesion correlates with savings.

      Savings was not related to lesion. See line 259.

      (13) Line 300: The thalamic recording results are not reported in the results section (other than appearing in the table). Moreover, there is no detail about which thalamic nucleus these recordings are from.

      Lines 411 and 614 provides these details.  

      (14) Line 312: "no longer impair" contains a grammatical error. 

      Corrected (now line 422)

      (15) Line 325: "was not impairing" contains a grammatical error. 

      Corrected (now line 437).

      (16) Line 327: The sentence ending with "...opinion of others" seems unnecessarily confrontational. 

      Previous reviewers at other journals have maintained this position, we therefore included such a strong statement in our initial submission. However, we now revised this statement to avoid appearing confrontational.

      (17) Line 329: Sentence is awkward. Consider revising. 

      Revised (now line 443).

      (18) Line 384: The authors should disclose if there was an objective metric for determining the adequacy of the lesion. 

      The lesion assessment and quantification is better explained in the Methods under “Cytochrome oxidase activity and Nissl staining,” (lines 708-714).

      (19) Line 385: The authors should clarify how they got from 15 rats (Line 376) to 10. 

      This information is provided in the methods.

      (20) Line 390: It is not clear why skin irritation in the cage mate would prevent the rat from being tested. 

      This has been explained in the Methods under “Behavioral analysis followed by cytochrome oxidase activity” (lines 515-518).

      (21) Methods section: The authors should describe how the tracking data were acquired. Overhead camera? Tracker based on luminance or body position? What software program was used? What was the sampling rate? 

      This is now better explained in the Methods under “Active place avoidance task) (lines 538551).

      (22) Methods section: Include how fast the arena was rotating and other details about the task such as where rats were placed during the ITI. 

      Better explained in the Methods under “Active place avoidance task”.

      (23) Line 439: The recording system used (hardware & software) should be stated. 

      This is now included in the Methods (line 538).

      (24) Line 435: Though overdispersion calculation is described thoroughly, there is nothing in the paper that tells me what overdispersion means. 

      What the measure means is now described in the Methods under “Electrophysiology data analysis” (lines 646-650).

      (25) Line 561: The test used to assess effect sizes should be stated. 

      Effect sizes corresponding to the statistical tests are provided.

      Reviewer #3 (Recommendations for the authors): 

      (1) At the end of the conflict training, rats with mPFC lesions learned to avoid the new shock zone (Figure 1F, Block 16), but their place cells did not show room-preferring activity near the shock zone (Figure 4B). This observation questions whether spatial frame-specific representation is relevant for active avoidance. Can the authors clarify this point?

      This is a dynamic behavior and the hippocampal dynamics match, changing with a dynamic that is a few seconds, as we have shown in several published papers. The lack of a preference averaged over 20 minutes when the rats are avoiding both the current and former shock zones during the conflict session is pretty much what would be expected from such a coarse measurement. The important measure is the spatially-resolved measure of room versus arena preference. Figure 4B shows that in the lesion rats there is less of a frame preference during conflict, generally (consistent with poorer flexibility). However, Figure 4D quantifies the frame preference near and far from the shock zone and accordingly, there is no difference between the groups.

      (2) Related to the point above, the author might consider including panels in Figures 4C and D to show the neural activity during the pretraining and conflict training retention period. I assume p(room) will be comparable between the Near and Far segment in both sessions, but the p(room) may be higher in the Conflict training session than the Pretraining session. This would show that the mPFC lesion impairs suppressing the place cell activity encoding the old shock location. 

      Thanks for the suggestion. While we don’t think we can draw any strong conclusions from this analysis we are fine to show it. The issue is that during conflict, the rats have two perfectly reasonable representations of where there was shock, the initial location that was turned off to make the conflict, and the most recent conflict location of shock. Importantly, these recordings are during conflict retention after we turned off the shock for the retention recording (for the second time in the rat’s experience). Turning off the shock allows us to exactly match the physical conditions of pretraining, initial retention and conflict retention, which was the experimental design’s goal. However, the experiential history of the rats prior to initial retention and conflict retention cannot match, because during initial retention the rats had never experienced a changed shock zone whereas, by conflict retention, they had experienced multiple changes. Importantly, we have previously shown that mouse hippocampal ensembles represent both initial and conflict shock locations, as the animals consider their options during conflict trials (see Dvorak et al 2018, PLoS Biol 16:e2003354). Consequently, we cannot make any strong predictions about whether or not hippocampal activity during conflict retention should be room-frame preferring selectively in the vicinity of the current shock zone. As I am sure the reviewer appreciates from their own introspection, mental representations are mercifully not obliged to dictate behavior. In fact, that is what is interesting and controversial about cognitive control – it is a dynamic internal process and the innovation of our work lies in demonstrating that one cannot only rely on behavior to assess this process. Nonetheless, we did this analysis and now present it in the revised Fig. 4. During pretraining both lesion and sham groups express no particular spatially-modulated preference for either the room or the arena frame, as expected. During initial training both groups express a room-frame preference in the vicinity of the shock zone, as we initially reported. By inspection, during conflict, the sham rats express a preference for room-frame activity in the vicinity of the most recent shock zone location; this preference is weaker than what is expressed during initial retention. The lesion rats do not show this preference. These impressions are quantified in revised Fig. 4D; the comparisons within the conflict retention sessions did not reach statistical significance. We leave it to the reader to interpret what that means. Thanks for the nudge.

      (3) The significant group difference in place cell overdispersion during the pretraining phase (Figure 3C) is interesting, but some readers would appreciate additional sentences on its functional implication. Does it mean the spatial tuning of place cells was disrupted by the mPFC lesion?

      Only the reliability of spatial firing was altered, not the spatial tuning.

      (4) Although the method section described how to calculate overdispersion and SFEP, some concise, intuitive descriptions of these measures in the result section would help readers understand these results.

      Overdispersion is better explained. See lines 646-650.

      (5) I recommend adding a figure of the task performance of the rats used in the electrophysiological recording experiment and a table summarizing the number of cells recorded per animal. 

      We have included Table S2 with the cell counts and a summary of the performance for each of the rat in the electrophysiological recording experiment.

      (6) Readers would appreciate additional information on task apparatus, such as the size, appearance, and rotating speed of the arena, as well as stationary cues available in the room. 

      This is now provided in the Methods under “Active place avoidance task”.

      (7) Lines 425-416: "On the fourth day of the behavioral training, the rats had a single trial with the shock on to test retention of the training." Shouldn't it be "shock off"? 

      No the shock was on to prevent extinction learning and to increase the challenge for conflict learning.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Overall, the conclusions of the paper are mostly supported by the data but may be overstated in some cases, and some details are also missing or not easily recognizable within the figures. The provision of additional information and analyses would be valuable to the reader and may even benefit the authors' interpretation of the data.

      We thank the reviewer for the thoughtful and constructive feedback. We are pleased that the reviewer found the overall conclusions of our paper to be well supported by the data, and we appreciate the suggestions for improving figure clarity and interpretive accuracy. Below we address each point raised:

      The conclusion that DREADD expression gradually decreases after 1.5-2 years is only based on a select few of the subjects assessed; in Figure 2, it appears that only 3 hM4Di cases and 2 hM3Dq cases are assessed after the 2-year timepoint. The observed decline appears consistent within the hM4Di cases, but not for the hM3Dq cases (see Figure 2C: the AAV2.1-hSyn-hM3Dq-IRES-AcGFP line is increasing after 2 years.)

      We agree that our interpretation should be stated more cautiously, given the limited number of cases assessed beyond the two-year timepoint. In the revised manuscript, we will clarify in both the Results and Discussion that the observed decline is based on a subset of animals. We will also state that while a consistent decline was observed in hM4Di-expressing monkeys, the trajectory for hM3Dq expression was more variable—with at least one case showing increased in signal beyond two years.

      Given that individual differences may affect expression levels, it would be helpful to see additional labels on the graphs (or in the legends) indicating which subject and which region are being represented for each line and/or data point in Figure 1C, 2B, 2C, 5A, and 5B. Alternatively, for Figures 5A and B, an accompanying table listing this information would be sufficient.

      We thank the reviewer for these helpful suggestions. In response, we will revise the relevant figures as noted in the “Recommendations for the authors”, including simplifying visual encodings and improving labeling. We will also provide a supplementary table listing the animal ID and brain regions for each data point shown in the graphs.

      While the authors comment on several factors that may influence peak expression levels, including serotype, promoter, titer, tag, and DREADD type, they do not comment on the volume of injection. The range in volume used per region in this study is between 2 and 54 microliters, with larger volumes typically (but not always) being used for cortical regions like the OFC and dlPFC, and smaller volumes for subcortical regions like the amygdala and putamen. This may weaken the claim that there is no significant relationship between peak expression level and brain region, as volume may be considered a confounding variable. Additionally, because of the possibility that larger volumes of viral vectors may be more likely to induce an immune response, which the authors suggest as a potential influence on transgene expression, not including volume as a factor of interest seems to be an oversight.

      We thank the reviewer for raising this important issue. We agree that injection volume is a potentially confounding variable. In response, we will conduct an exploratory analysis including volume as an additional factor. We will also expand the Discussion to highlight the need for future systematic evaluation of injection volume, especially in relation to immune responses or transduction efficiency in different brain regions.

      The authors conclude that vectors encoding co-expressed protein tags (such as HA) led to reduced peak expression levels, relative to vectors with an IRES-GFP sequence or with no such element at all. While interesting, this finding does not necessarily seem relevant for the efficacy of long-term expression and function, given that the authors show in Figures 1 and 2 that peak expression (as indicated by a change in binding potential relative to non-displaced radioligand, or ΔBPND) appears to taper off in all or most of the constructs assessed. The authors should take care to point out that the decline in peak expression should not be confused with the decline in longitudinal expression, as this is not clear in the discussion; i.e. the subheading, "Factors influencing DREADD expression," might be better written as, "Factors influencing peak DREADD expression," and subsequent wording in this section should specify that these particular data concern peak expression only.

      We appreciate this important clarification. In response, we will revise the title to “Factors influencing peak DREADD expression levels”, and we will specify that our analysis focused on peak ΔBP<sub>ND</sub> values around 60 days post-injection. We will also explicitly distinguish these findings from the later-stage changes in expression seen in the longitudinal PET data in both the Results and Discussion sections.

      Reviewer #2 (Public review):

      Weaknesses

      This study is a meta-analysis of several experiments performed in one lab. The good side is that it combined a large amount of data that might not have been published individually; the downside is that all things were not planned and equated, creating a lot of unexplained variances in the data. This was yet judiciously used by the authors, but one might think that planned and organized multicentric experiments would provide more information and help test more parameters, including some related to inter-individual variability, and particular genetic constructs.

      We thank the reviewer for bringing this important point to our attention. We fully agree that the retrospective nature of our dataset, compiled from multiple studies conducted within a single laboratory, introduces variability due to differences in constructs, injection sites, and timelines. While this reflects the real-world constraints of long-term NHP research, we acknowledge the need for more standardized approaches. We will add a statement in the revised Discussion emphasizing that future multicenter and harmonized studies would be valuable for systematically examining specific parameters and inter-individual variability.

      Reviewer #3 (Public review):

      Minor weaknesses are related to a few instances of suboptimal phrasing, and some room for improvement in time course visualization and quantification. These would be easily addressed in a revision.

      These findings will undoubtedly have a very significant impact on the rapidly growing but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

      We thank the reviewer for the positive assessment of our manuscript and for the constructive suggestions noted in the “Recommendations for the authors”. In response, we will carefully review and revise the manuscript to improve visualization and quantification.

  4. Mar 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      __Evidence, reproducibility and clarity __

      This is a well-written manuscript that describes a thorough study of the functionality of individual residues of a central component of the ESX-3 type VII secretion system of Mycobacterium smegmatis, EccD3, in the essential role of this protein transport system in iron acquisition. Using the powerful and unbiased approach of deep mutational scanning (DMS), the authors assessed the impact of different mutations on a large number of residues of this component. This carefully executed research highlights the importance of hydrophobic residues at the center the ubiquitin-like domain, specific residues of the linker domain that connects this domain with the transmembrane domains and specific residues that connect EccD3 with the MycP3 component.

      Major comments

      Since the LOF effects in the iron-sufficient and iron-deficient condition differ less than expected, the differences of the DMS results between these two conditions should be better presented, explained and discussed: 1. The authors discuss: "Of the 270 LOF mutations seen in the iron-deficient condition, 37 (13.7%) were tolerant in the iron sufficient condition, and 39 (14.44%) had strong LOF effects but weak LOF effects in the iron sufficient condition." Do the authors mean that 39 (14.44%) had strong LOF effects in the iron-deficient condition, but weak LOF effects in the iron-sufficient condition. In turn, does this mean that the remaining mutants (71.9%) had similar LOF effects in the two conditions?

      We thank this reviewer for their comment and for highlighting a lack of clarity. We have updated the main text to more effectively communicate our point - that 270 mutants had LOF effects in the iron-deficient media. 37 of these 270 mutants were tolerant in the iron-sufficient media. 39 of these 270 mutants had strong LOF effects in iron-deficient media, but were weak LOF in iron-sufficient media. The remaining 124/270 mutants had weak LOF effects in both conditions. The larger point is that removing iron leads to stronger selection - tolerant mutants become LOF, weak LOF become strong LOF. Removing iron pushes mutants at the bounds over the limit.

      __ The diagonal shape of the scatter plot in Fig. 2C, which shows the correlation of the Enrich2 scores of all mutants in the two conditions, indicates that the growth of most mutants is affected similarly in these conditions, but in Fig. 2D lower graph, which shows only the Enrich2 scores of missense mutants, there are clear differences between the two conditions. How can this be explained?__

      We apologize for any confusion created by this presentation of our data. We hoped to highlight that while effects are largely similar across conditions, there are some differences. As communicated in our first response, 270 out of our ~2700 missense mutations had LOF effects in the iron-deficient condition. 37 of these 270 mutants were tolerant in the iron-sufficient media. 39 of these 270 mutants had strong LOF effects in iron-deficient media, but were weak LOF in iron-sufficient media. The remaining 124 mutations had weak LOF effects in both conditions.

      While Figure 2C shows this difference, it is hard to see by nature of using a scatter plot. We have added contours to highlight how our data is distributed. Our density plots in Figure 2D are meant to try to highlight these differences, where the top plot is showing the effects of all missense mutations. Negatively scored mutations represent LOF effects, mutations with scores around 0 are considered tolerant, and the extremely rare scores with positive scores have GOF effects. Our bottom plot specifically zooms into the negatively scored mutations, to show the 270 LOF mutants we discussed. Specifically, we were hoping to highlight the 39 mutations that have strong LOF effects in iron-deficient media (so the purple line scores are more negative), but weak LOF effects in iron-sufficient media (the green line scores are less negative).

      __ Regarding the authors' explanation for the observed LOF effects in the permissive condition, "This speaks to the sensitivity of next-generation sequencing compared to the strong differences observed between conditions in phenotypic growth curves." But this sensitivity does not explain the observed large LOF effects but no growth difference in the permissive condition, unless the analysis is less quantitative than expected? Could it be that there is local iron depletion in this mixed culture, causing selection pressure even in the iron-sufficient condition? Moreover, the severity of the growth defect at the time of sampling, i.e., after 24 hours of growth, is unclear. Indeed, the growth curve in Fig. 1 shows that the growth of the double mutant in iron-deficient conditions is significantly impaired at that timepoint. In the growth curve in Fig. 2B (and also slightly in Fig. 2F), however, the growth defect is less pronounced: the double mutant has a similar OD600 as the WT strain, although the error bar is larger. Is this variability between replicates also seen in the DMS analysis? In general, no statistics are shown for the DMS analysis and there is no information on the significance of the observed LOF effects. In addition, the legend should explain how many replicates the DMS data are based on.__

      We thank this reviewer for their comment and for highlighting a point of confusion. In addition to increased sensitivity in next generation sequencing compared to our growth curve experiments, our data analysis and variant scoring was performed by comparing growth rates of our mutant strains to our wild type strain. So, any effect on viability or growth rates seen by expression mutant variants will be more notable in our DMS scoring, as they are relative to wild type. In contrast, our growth curves are plotted as the raw OD600 values of each strain. We believe this difference underlies the difference seen in our heatmaps and growth rates.

      It is also a relevant and important point that our libraries are grown as mixed cultures, where there is competition over the limited iron in their growth media, as we highlight in our discussion.

      While the double mutant does show a stark growth defect at 24 hours in Figure 1 compared to the WT and complement, it grows just as well as those strains in Figure 2B. The growth defect becomes notable after 24 hours. Within this experiment, we observed variability in growth at the 24hr timepoint for the negative control strain, but also selection when compared to the positive control and library growth at later time points. We analyzed our DMS data in accordance with typical methods used in the field (see: https://doi.org/10.1186/s13059-017-1272-5). We include statistics for the DMS analysis as supplemental Figure 1. We apologize for any confusion regarding the figure caption, however in our manuscript we do point out that our library growth in Figure 2B was repeated in triplicate in the figure caption, and the samples collected during that experiment were the ones used to generate the DMS data.

      Minor comments

      1. Line and page numbering should be added to the manuscript to facilitate the reviewing process.

      We have updated our manuscript to include line and page numbering.

      __ "Knockout of the entire ESX-3 operon leads to inhibited M. smegmatis growth in a low-iron environment. When individual components of the ESX-3 system are deleted, growth is only available under impaired if the additional siderophore exochelin formyltransferase fxbA is also knocked out20." First, a reference should be added to the first sentence. Second, Siegrist et al. did not exactly show this. They showed that the fxbA/eccC3 double mutant grows slower that the fxbA single mutant. To my knowledge there is no publication showing that single esx-3 component mutants grow as WT in iron-deficient conditions. Do the authors have data demonstrating this? If true, it is surprising that mutating EccD3 has a milder phenotype compared the complete region deletion, as it is a crucial ESX-3 component.__

      We apologize for any confusion. We had the relevant reference two lines prior, and have since added it to that sentence as well.

      The reviewer is correct that Siegrest et al did not show the effects of just ESX-3 component single deletions. However, Siegrest et al. 2009 demonstrated that deleting the entire ESX-3 operon results in growth similar to the wild type strain in low-iron media. In contrast, the fxbA single knockout exhibits a notable growth defect, and the fxbA/ESX-3 double knockout has an even more severe growth defect. Following the logic that a double knockout is needed to observe a growth defect in low-iron media, Siegrest et al. 2014 demonstrated this also extends to single ESX-3 component knockouts, such as the fxbA/eccD3 double knockout strain. To ensure clarity and accuracy, I will edit the sentence to say "When individual components of the ESX-3 system are deleted, growth is significantly impaired when the additional siderophore exochelin formyltransferase fxbA is also knocked out."

      __ Reference to Table 1, should be a reference to Table S1.__

      We have updated our manuscript to correct this reference.

      __ "Our heatmaps surprisingly reveal residues where substitutions are deleterious specifically in the iron-sufficient condition" Refer here to Fig. S2.__

      We have updated our manuscript to include this reference.

      __ "In the iron-deficient condition, 6/551 (1.08%) missense mutations have a weak LOF effect, and 0 have strong effects." More clearly explain this refers to the residues of the transmembrane region.__

      We have updated our manuscript to provide more clarity.

      __ "The MycP transmembrane helix has been hypothesized to be required for ESX complex specificity, targeting MycP to associate with the correct ESX homologue." I miss a reference here. And I thought that the transmembrane domain of MycP was required for complex stability not for specificity?__

      We thank the reviewer for pointing out our missing citation, and asking us to clarify our point. I believe the literature suggests that both the protease and transmembrane domains of MycP are required for both complex stability and specificity. van Winden et al. 2016 https://doi.org/10.1128/mbio.01471-16 show that MycP5 needs to be present for secretion. The protease activity can be abolished and the ESX-5 complex can still secrete and be pulled down, as seen by BN-PAGE. van Winden et al. 2019 https://doi.org/10.1074/jbc.RA118.007090 show that truncated mutants missing either the protease domain or the transmembrane domain cannot rescue ESX-5 secretion or complex stability in a MycP knockout strain. More relevant, they attempted to rescue MycP1 and MycP5 mutants by creating chimeric proteins that either had the MycP1 protease domain and MycP5 transmembrane domain, or the MycP5 protease domain and MycP1 transmembrane domain. If the protease and transmembrane domains were required for complex stability and NOT specificity, we would see MycP5 rescue ESX-1 secretion in the MycP1 mutant strains and vice versa. We would also see the chimera proteins rescue both ESX-1 and ESX-5 secretion and complex stability. Instead, we see that neither chimera rescued ESX-1 nor ESX-5 secretion or complex stability, implying that both MycP domains are necessary.

      We will amend our paper text to reference MycP's role in complex stability instead of specificity, and soften the language: "The MycP transmembrane helix has been shown to be required for ESX complex stability, as MycP knockouts and truncated mutants abolish ESX secretion and pulldowns of the entire complex."

      __ "....role in ESX function relating to EccB3 and EccC3. In the transmembrane, ..... we" Insert "region" after "transmembrane"__

      We have updated our manuscript to include this update.

      Significance

      The study provides insight into individual residues of a central component of the ESX-3 type VII secretion system for functionality, which is useful for those studying the functioning of mycobacterial type VII secretion systems. Moreover, because this system is essential for the growth of the important pathogen M. tuberculosis, this knowledge can be used to design new anti-tuberculosis compounds that block the ESX-3 system. Although the results mainly confirm previous observations (highlighting specific residues important for the stability of ubiquitin and residues of other parts of EccD important for protein-protein interactions within the ESX-3/ESX-5 membrane complex), to my knowledge this is the first time DMS has been applied to mycobacteria. This study is therefore of interest to mycobacteriologists.


      Reviewer #2

      __Evidence, reproducibility and clarity __

      This work provides valuable insights into EccD3 function, a core component of the ESX-3 secretion system. The strength of this study lies in the development of a robust functional assay for the systematic mapping of functionally relevant amino acids in EccD3. The approach could potentially be expanded to analyze other ESX-3 components but remains limited to the ESX-3 secretion system. 1. The authors engineered an M. smegmatis knockout strain with deletions of fxbA and eccD3. Deletion of fxbA renders the exocholin iron uptake system non-functional, forcing the bacteria to rely on siderophore-mediated iron uptake under iron-limiting conditions. This process, in turn, depends on ESX-3 secretion activity, as PPE4, a known ESX-3 substrate, has been previously implicated in iron utilization in M. tuberculosis (Tufariello et al., 2016). This experimental setup links EccD3 function to a growth phenotype under iron-limiting conditions, as mutations impairing ESX-3 secretion disrupt iron utilization and mycobacterial growth. 2. By complementing the knockout strain with a library of EccD3 mutant variants, the authors systematically identify residues essential for protein-protein interactions within the ESX-3 core complex. Structural analysis corroborates the functional relevance of these residues, specifically those mediating interactions between EccD3 and other ESX-3 components, or those disrupting the hydrophobic core of the EccD3 ubiquitin-like (Ubl) domain. 3. Structural comparisons with the MycP5-bound ESX-5 complex allow the authors to predict residues within EccD3 that may interact with MycP3 during ESX-3 core complex assembly. Furthermore, comparisons with the ESX-5 hexamer suggest residues that may stabilize or drive oligomerization of the ESX-3 dimer into its putative hexameric state. These insights are significant and provide testable hypotheses for future studies. 4. The methodology is limited to ESX-3. The authors exploit the essentiality of ESX-3 for siderophore-dependent growth under iron-limiting conditions. However, this functional readout cannot be directly transferred to other ESX systems (ESX-1, ESX-2, ESX-4, ESX-5), which have distinct substrates, biological roles, and regulatory mechanisms.

      Significance

      This work provides valuable insights into EccD3 function, a core component of the ESX-3 secretion system. The strength of this study lies in the development of a robust functional assay for the systematic mapping of functionally relevant amino acids in EccD3. The approach could potentially be expanded to analyze other ESX-3 components but remains limited to the ESX-3 secretion system.

      Thank you for your thoughtful and supportive feedback. We appreciate your time and effort in reviewing our study.


      Reviewer #3

      __Evidence, reproducibility and clarity __

      The manuscript by Trinidad et al. provides a deep mutational scanning (DMS) analysis to investigate the functional roles of residues from the EccD3 subunit of the Type VII ESX-3 secretion apparatus from M. smegmatis. A previously published structure of ESX-3 from M. smegmatis by the Rosenberg group (Oren Rosenberg is also an author of this paper) is used as basis for structural interpretation of the DMS data presented in this contribution. A shortcoming of the previous structure, despite being very rich in terms of structural details, was in the lack of hexameric pore formation, which has been established more recently by structures of the related ESX-5 system.

      Technically, DMS is state-of-the art and a powerful approach to systematically scan residues of potential functional interest. Therefore, the data presented here, provide a remarkable repository for further interpretation in this contribution and by other future investigations. The experimental data have been deposited in Github enabling access by others in the future.

      Overall, the paper would benefit from an improved overall organisation. I found in part hard to extract some of the main points from the way the data are presented. In essence, two separate screens were performed, the first one focusing on the EccD3 Ubl domain and adjacent linker regions and a second one on the EccD3 TM region. I think the paper could be better structured accordingly. Tables of residues with strong effects in iron-deficient and iron-sufficient media, together with their structural annotation, would facilitate extracting main messages from this manuscript. Without going too much in detail, there is also scope for improvement of most of the structural figures. More consistency in terms of color coding with the previous paper by Powileit et al. (2019) would also help navigation.

      A potential weakness of the paper is in the limited scope of interpretation of the data in the context of the dimeric ESX-3 assembly, which is actually acknowledged by the authors. Computational AI-based methods should allow generating a complete pore model of ESX-3, which would allow interpretation of some of the data in a more functional relevant context. This would enhance the validity of the current interpretations presented.

      We acknowledge the lack of a hexameric ESX-3 structure, and would love to base our analysis on such a structure. Unfortunately, experimentally purifying and determining such a structure is beyond the scope of this manuscript. While AI-based methods are certainly exciting and helpful to make sense of mutational data, they are not able to computationally predict such large structures. The AlphaFold3 server website is commonly used for these purposes and allows predictions of up to 5000 tokens (or amino acids). An ESX-3 hexamer would be composed of 6x EccB proteins (519 AA each), 6x EccC proteins (1326 AA each), 12x EccD proteins (476 AA each), and 6x EccE proteins (310 AA each). Together, this complex would be made up of 18,642 amino acids.

      We tried using alphafold to predict an ESX-5 dimer complex, as well as reproduce the ESX-3 dimer complex, and were unable to produce these structures. Each ESX protomer is assembled correctly, as each protein within the complex makes appropriate contacts with each other. We see the EccD-dimers still form the membrane vestibule within each ESX complex. The issue is the ESX dimer complex has not assembled correctly: the EccC transmembrane helix 1 of a protomer should interact with the EccB transmembrane helix of the neighboring protomer; and, the N-terminus of EccB in one protomer should interact with the loop between the EccD transmembrane helices 10 and 11 in the neighboring protomer. Instead, Alphafold creates contacts along the EccD proteins from both complexes. We have included a "top-down" view of the ESX-5 dimer, where the periplasmic domains of EccB have been cleaved off for clarity.

      A side view:

      Here we have the ESX-3 dimer structure published by Poweleit et al. side-by-side with the ESX-3 dimer predicted by alphafold, visualized in Pmyol. The alphafold structure largely has each proteins' domains and folds properly predicted, including even the EccD3 dimer found in each ESX protomer. However, the protomers are not assembled into a dimer properly as compared to the purified ESX-3 dimer from PDB: 6umm. We included a "front" and "side view", as well as a "top down" view where the cytoplasmic domains have been hidden for visual clarity.

      The use of full names and acronyms needs to be more consistent. As an example, the terms "ubiquitin-like" and ubiquitin-like (Ubl) and UBl are used in parallel throughout the manuscript. The percentages given in various places of the paper could be reduced to integers, as they generally relate to relatively small data sets. Please express numbers with a precision, reasonable matching expected statistical significance.

      We apologize for the lack of consistency in how we referred to the ubiquitin-like domain. I originally wrote "ubiquitin-like (Ubl)" once per section (intro, results, discussion). I have edited these all to just "Ubl" after the introduction, except for figure and section titles. We have also reduced our percentages to integers.

      Some of the DMS experiments have been repeated three-fold, which should be a minimal number to allow extracting statistical significance, other experiments have only been repeated two-fold. Could this be clarified, please?

      We apologize for this oversight, and thank the reviewer for pointing this out. All experiments were done in triplicate, the exception being the site-directed mutant growth curves, which were performed in duplicate. We have repeated this experiment in triplicate in response to this point. As we repeated this experiment, mutant R134A dropped out due to technical reasons, and so we did not include it in the updated growth curves.

      Specific comments on text and figures:

      Figure 1: The EM densities shown considerably deviate from those that were shown in the original publication by Poweleit et al (2019). If there is an aim is to reinterpret the data this needs to be described in sufficient technical detail. There may be a case for this, in light of recent advances in computational AI-vased structural biology.

      We acknowledge this may be confusing and we apologize for that, as the EM density I have shown in this manuscript uses the same map we used to create the one seen in the original publication Poweleit et al 2019. There are existing crystal structures of EccB1 and the ATPase domains of EccC1 that we used to create homology models of EccB3 and EccC3 using the structure-prediction software RaptorX for the 2019 publication. These homology models were then combined with a low resolution EM density to create the model seen in the 2019 eLife paper. I did not include those homology models in this manuscript, as I did not believe those predictions were relevant to this study. I wanted to include the highest resolution and thus most accurate depiction of our ESX-3 structure.

      Introduction, statement "We made comparisons to a prior DMS on ubiquitin to increase signal-to-noise in our interpretation of the Ubl domain mutagenesis data." Could this be further explained please? I could not find anything in addition in the Methods section and elsewhere.

      __ __We apologize for the confusion!

      EccD3 Ubl domain and ubiquitin DMS dataset comparisons

      To compare the DMS data of EccD3 Ubl with that of ubiquitin, we first identified homologous residues in each structure. This was achieved by aligning the EccD3 Ubl domain with ubiquitin (PDB: 1ubq) using PyMOL and assessing the positional correspondence of side chains (e.g., ubiquitin residue I3 aligned with EccD3 residue V12). Next, we referenced missense mutation datasets to calculate the average DMS score for each residue position in both proteins. We then generated a scatter plot to compare the average missense scores for ubiquitin and EccD3 Ubl using ggplot2. Data points were color-coded according to the functional roles assigned to ubiquitin, with residues forming the hydrophobic patch and core highlighted, while all other residues were represented in grey.

      Description of "vestibule" as a core feature of the ESX-3 structure. As mentioned above, this is very much a result of the presented dimeric arrangement. In the context of a complete pore model, these features may change or even disappear.

      While we would certainly welcome an ESX-3 hexamer model to definitively determine whether this feature persists, such a model is not currently available. However, the highly homologous ESX-5 complex retains these EccD vestibules, and there is no reason to believe these features would change or disappear. Therefore, based on our interpretation of the ESX-3 dimer and ESX-5 hexamer we believe that the EccD membrane vestibule is not just an artifact of the ESX-3 dimer complex.

      It is possible that the reviewer misunderstood what we were referring to as the vestibule. We updated the language in the text to improve clarity. However the vestibule is not a consequence of ESX-3 complex dimer formation. It is an inherent feature of the ESX monomer complexes, where two EccD proteins dimerize to form said vestibule. Furthermore, there is no evidence to suggest that this feature would be lost in a hexameric state.

      Structurally, the ESX-3 dimer consists of two ESX-3 monomer complexes, each containing one EccB, one EccC, one EccE, and two EccD proteins. Therefore, each ESX-3 monomer inherently includes an EccD dimer. The presence of the EccD dimer is not exclusive to the ESX-3 dimer but is a fundamental component of each ESX-3 complex. Similarly, the ESX-5 hexamer retains the EccD dimer within each ESX-5 complex, further supporting the idea that this structural feature is conserved.

      Figure 2, panel B: Isn't right that "positive" and "negative" need to exchanged? Perhaps, there is something I misunderstood.

      We apologize for the confusion, and appreciate the reviewer pointing out this inconsistency. We have updated the manuscript to correct this.

      Figure 2, panel F: it is hard to extract the assignments from the overlaid curves.

      We apologize for a lack of clarity in how this growth curve was presented. We have included labels at the end point to show where each sample is.

      Figure 3, caption "from low (red) to white (tolerant)": for the sake of consistency, please either put the color in parentheses, or functional description. Does this statement relate to panel A or B? "All other residues are colored white". I can't see this.

      We apologize for the inconsistency, and have updated this label. We hope we have clarified the fact that the entire structure is white except for the residues we colored red.

      Results text "In contrast to ubiquitin, all hydrophobic core residues in the EccD3 Ubl domain are equally intolerant to charged residue swaps. Unsurprisingly, residues important for ubiquitin's specific degradation interactions are not sensitive to substitutions in the EccD3 Ubl domain." Does this mean that proper folding of Ubl is less critical for ESX_3 function? Please elaborate on this further.

      We apologize for any confusion. Our data shows that residues which side chains extend into the hydrophobic core of the Ubl domain are intolerant to swaps to charge residues. We hypothesize these missense mutations disrupt this hydrophobic core, and lead to destabilization of this domain. These intolerant missense mutations each have negative Enrich2 scores, implying a loss of ESX-3 function, and that proper folding of the Ubl is critical for ESX-3 function. We have updated our text to clarify this point:

      Unsurprisingly, residues important for ubiquitin function's specific interactions are not sensitive to substitutions in the EccD3 Ubl domain. There is no simple discernable preference within the Ubl domain to any side that maintains protein-protein interactions, implying that the scores are dominated by stability effects and that the Ubl domain must maintain a stable β-grasp fold for ESX-3 function.

      Figure 4, panel C: the surface does not provide residue-specific information, hence this panel is not very informative.

      We agree with the reviewer that Figure 4 panel C was not very informative, and so we have removed it from Figure 4 for the sake of brevity.

      Results text "T148 extends out from transmembrane helix 1 into a hydrophobic pocket between transmembrane helices 1, 2, and 3." Could this please be illustrated in one of the structural presentations?

      We have updated figure 5 to include a snapshot of this residue and the hydrophobic pocket it extends into, as panel E.

      Results text, last paragraph, Figure 5C-D: interpretation of the experimental ESX-3 data based on ESX-5 models is problematic, without showing proof of conservation of relevant sequence/structural features. As mentioned above, I would encourage the authors to establish a hexameric ESX-3 model and interpret the data starting from there. Extrapolation of the interpretation of data to other ESX systems, including ESX-5, would expand the scope by generalization, which however would open another chapter. The ESX-5 structure does not explain e.g. why W227 when mutated is less sensitive to iron depletion as opposed to iron being present.

      We do not believe we can use AI to predict a hexameric ESX-3 model. We will update our supplement to include a figure showing proof of conservation between the EccD3 and EccD5 sequences. We can superpose the ESX-3 dimer structure onto the ESX-5 hexamer structure, and see that this dimeric complex overlays quite well on top of an ESX-5 subcomplex. We can imagine this hexamer as a trimer of dimers, where three copies of this dimeric complex interact to form the hexamer. The superposition is not perfect and there are slight rearrangements to different helices to allow for hexamer formation, but these do not imply we cannot compare these two homologous structures.

      We have included a new structure snapshot in Figure 5, where panel D is the ESX-3 dimer (PDB: 6umm) shown as a side and top-down view. This allows for a comparison with panel C, the snapshot of the ESX-5 complex (PDB: 7np7) where in two protomers the EccB, EccC, and EccD proteins are colored the same way as ESX-3, and the other ESX-5 protomers are colored white. Note that in this hexamer, EccE is missing. We see the EccD membrane vestibule is conserved in both structures.

      Significance

      Strength and Limitations: already assessed under "Evidence, reproducibility and clarity".

      There is scope for further interpretation using experimental structural and modeling data. There is also scope for applying complementary assays for selected mutants, most likely within a lower throughput format.

      Advance: The contribution demonstrates well the power of DMS for systematic screening, in the context of Type VII secretion. The main advance is in the raw data generated and deposited.

      Audience: microbiology with a specific interest in secretion, structural biology

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript by Trinidad et al. provides a deep mutational scanning (DMS) analysis to investigate the functional roles of residues from the EccD3 subunit of the Type VII ESX-3 secretion apparatus from M. smegmatis. A previously published structure of ESX-3 from M. smegmatis by the Rosenberg group (Oren Rosenberg is also an author of this paper) is used as basis for structural interpretation of the DMS data presented in this contribution. A shortcoming of the previous structure, despite being very rich in terms of structural details, was in the lack of hexameric pore formation, which has been established more recently by structures of the related ESX-5 system.

      Technically, DMS is state-of-the art and a powerful approach to systematically scan residues of potential functional interest. Therefore, the data presented here, provide a remarkable repository for further interpretation in this contribution and by other future investigations. The experimental data have been deposited in Github enabling access by others in the future.

      Overall, the paper would benefit from an improved overall organisation. I found in part hard to extract some of the main points from the way the data are presented. In essence, two separate screens were performed, the first one focusing on the EccD3 Ubl domain and adjacent linker regions and a second one on the EccD3 TM region. I think the paper could be better structured accordingly. Tables of residues with strong effects in iron-deficient and iron-sufficient media, together with their structural annotation, would facilitate extracting main messages from this manuscript. Without going too much in detail, there is also scope for improvement of most of the structural figures. More consistency in terms of color coding with the previous paper by Powileit et al. (2019) would also help navigation.

      A potential weakness of the paper is in the limited scope of interpretation of the data in the context of the dimeric ESX-3 assembly, which is actually acknowledged by the authors. Computational AI-based methods should allow generating a complete pore model of ESX-3, which would allow interpretation of some of the data in a more functional relevant context. This would enhance the validity of the current interpretations presented.

      The use of full names and acronyms needs to be more consistent. As an example, the terms "ubiquitin-like" and ubiquitin-like (Ubl) and UBl are used in parallel throughout the manuscript. The percentages given in various places of the paper could be reduced to integers, as they generally relate to relatively small data sets. Please express numbers with a precision, reasonable matching expected statistical significance.

      Some of the DMS experiments have been repeated three-fold, which should be a minimal number to allow extracting statistical significance, other experiments have only been repeated two-fold. Could this be clarified, please?

      Specific comments on text and figures:

      Figure 1: The EM densities shown considerably deviate from those that were shown in the original publication by Poweleit et al (2019). If there is an aim is to reinterpret the data this needs to be described in sufficient technical detail. There may be a case for this, in light of recent advances in computational AI-vased structural biology.

      Introduction, statement "We made comparisons to a prior DMS on ubiquitin to increase signal-to-noise in our interpretation of the Ubl domain mutagenesis data." Could this be further explained please? I could not find anything in addition in the Methods section and elsewhere.

      Description of "vestibule" as a core feature of the ESX-3 structure. As mentioned above, this is very much a result of the presented dimeric arrangement. In the context of a complete pore model, these features may change or even disappear.

      Figure 2, panel B: Isn't right that "positive" and "negative" need to exchanged? Perhaps, there is something I misunderstood.

      Figure 2, panel F: it is hard to extract the assignments from the overlaid curves.

      Figure 3, caption "from low (red) to white (tolerant)": for the sake of consistency, please either put the color in parentheses, or functional description. Does this statement relate to panel A or B? "All other residues are colored white". I can't see this.

      Results text "In contrast to ubiquitin, all hydrophobic core residues in the EccD3 Ubl domain are equally intolerant to charged residue swaps. Unsurprisingly, residues important for ubiquitin's specific degradation interactions are not sensitive to substitutions in the EccD3 Ubl domain." Does this mean that proper folding of Ubl is less critical for ESX_3 function? Please elaborate on this further.

      Figure 4, panel C: the surface does not provide residue-specific information, hence this panel is not very informative.

      Results text "T148 extends out from transmembrane helix 1 into a hydrophobic pocket between transmembrane helices 1, 2, and 3." Could this please be illustrated in one of the structural presentations?

      Results text, last paragraph, Figure 5C-D: interpretation of the experimental ESX-3 data based on ESX-5 models is problematic, without showing proof of conservation of relevant sequence/structural features. As mentioned above, I would encourage the authors to establish a hexameric ESX-3 model and interpret the data starting from there. Extrapolation of the interpretation of data to other ESX systems, including ESX-5, would expand the scope by generalization, which however would open another chapter. The ESX-5 structure does not explain e.g. why W227 when mutated is less sensitive to iron depletion as opposed to iron being present.

      Referee cross-commenting

      I especially second the comments of referee #1, major comments, point 3 (statistical significance of the data). Addressing this point is crucial for the paper. Referee #2, significance section "The approach could potentially be expanded to analyze other ESX-3 components but remains limited to the ESX-3 secretion system." I was considering making the same point but did not at the end. Of course, ultimately, it would be great if all components of ESX-3 could be analyzed they way it was done for the EccD3 component. However, I am afraid such exercise could become quite open ended. Already by now, there is some compromise on the depth of mechanistic interpretation in light of a large data set generated.

      Significance

      Strength and Limitations: already assessed under "Evidence, reproducibility and clarity".

      There is scope for further interpretation using experimental structural and modeling data. There is also scope for applying complementary assays for selected mutants, most likely within a lower throughput format.

      Advance: The contribution demonstrates well the power of DMS for systematic screening, in the context of Type VII secretion. The main advance is in the raw data generated and deposited.

      Audience: microbiology with a specific interest in secretion, structural biology

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank you for the time you took to review our work and for your feedback! We have made only minor changes in this submission and primarily wanted to respond to the concerns raised by reviewer 1.

      Reviewer #1 (Public review): 

      Summary: 

      Fluorescence imaging has become an increasingly popular technique for monitoring neuronal activity and neurotransmitter concentrations in the living brain. However, factors such as brain motion and changes in blood flow and oxygenation can introduce significant artifacts, particularly when activitydependent signals are small. Yogesh et al. quantified these effects using GFP, an activity-independent marker, under two-photon and wide-field imaging conditions in awake behaving mice. They report significant GFP responses across various brain regions, layers, and behavioral contexts, with magnitudes comparable to those of commonly used activity sensors. These data highlight the need for robust control strategies and careful interpretation of fluorescence functional imaging data. 

      Strengths: 

      The effect of hemodynamic occlusion in two-photon imaging has been previously demonstrated in sparsely labeled neurons in V1 of anesthetized animals (see Shen and Kara et al., Nature Methods, 2012). The present study builds on these findings by imaging a substantially larger population of neurons in awake, behaving mice across multiple cortical regions, layers, and stimulus conditions. The experiments are extensive, the statistical analyses are rigorous, and the results convincingly demonstrate significant GFP responses that must be accounted for in functional imaging experiments. 

      In the revised version, the authors have provided further methodological details that were lacking in the previous version, expanded discussions regarding alternative explanations of these GFP responses as well as potential mitigation strategies. They also added a quantification of brain motion (Fig. S5) and the fraction of responsive neurons when conducting the same experiment using GCaMP6f (Fig. 3D-3F), among other additional information. 

      Weaknesses: 

      (1) The authors have now included a detailed methodology for blood vessel area quantification, where they detect blood vessels as dark holes in GFP images and measure vessel area by counting pixels below a given intensity threshold (line 437-443). However, this approach has a critical caveat: any unspecific decrease in image fluorescence will increase the number of pixels below the threshold, leading to an apparent increase in blood vessel area, even when the actual vessel size remains unchanged. As a result, this method inherently introduces a positive correlation between fluorescence decrease and vessel dilation, regardless of whether such a relationship truly exists. 

      To address this issue, I recommend labelling blood vessels with an independent marker, such as a red fluorescence dye injected into the bloodstream. This approach would allow vessel dilation to be assessed independently of GFP fluorescence -- dilation would cause opposite fluorescence changes in the green and red channels (i.e., a decrease in green due to hemodynamic occlusion and an increase in red due to the expanding vessel area). In my opinion, only when such ani-correlation is observed can one reliably infer a relationship between GFP signal changes and blood vessel dynamics. 

      Because this relationship is central to the author's conclusion regarding the nature of the observed GFP signals, including this experiment would greatly strengthen the paper's conclusion. 

      This is correct – a more convincing demonstration that blood vessels dilate or constrict anticorrelated with apparent GFP fluorescence would be a separate blood vessel marker. However, we don’t think this experiment is worth doing, as it is also not conclusive in the sense the reviewer may have in mind. The anticorrelation does not mean that occlusion drives all of the observed effect. Our main argument is instead that there is no other potential source than hemodynamic occlusion with sufficient strength that we can think of. The experiment one would want to do is block hemodynamic changes and demonstrate that the occlusion explains all of the observed changes. 

      (2) Regarding mitigation strategy, the authors advocate repeating key functional imaging experiments using GFP, and state that their aim here is to provide a control for their 2012 study (Keller et al., Neuron). Given this goal, I find it important to discuss how these new findings impact the interpretation of their 2012 results, particularly given the large GFP responses observed. 

      We are happy to discuss how the conclusions of our own work are influenced by this (see more details below), but the important response of the field should probably be to revisit the conclusions of a variety of papers published in the last two decades. This goes far beyond what we can do here. 

      For example, Keller et al. (2012) concluded that visuomotor mismatch strongly drives V1 activity (Fig. 3A in that study). However, in the present study, mismatch fails to produce any hemodynamic/GFP response (Fig. 3A, 3B, rightmost bar), and the corresponding calcium response is also the weakest among the three tested conditions (Fig. 3D). How do these findings affect their 2012 conclusions? 

      The average calcium response of L2/3 neurons to visuomotor mismatch is probably roughly similar to the average calcium response at locomotion onset (both are on the order of 1% to 5%, depending on indicator, dataset, etc.). In the Keller et al. (2012) paper, locomotion onset was about 1.5% and mismatch about 3% (see Figure 3A in that paper). What we quantify in Figure 3 of the paper here is the fraction of responsive neurons. Thus, mismatch drives strong responses in a small subset of neurons (approx. 10%), while locomotion drives a combination of a weak responses in a large fraction of the neurons (roughly 70%) and also large responses in a subset of neurons. A strong signal in a subset of neurons is what one would expect from a neuronal response, a weak signal from many neurons would be indicative of a contaminating signal. This all appears consistent. 

      Regarding influencing the conclusions of earlier work, the movement related signals described in the Keller et al. (2012) paper are probably overestimated, but are also apparent in electrophysiological recordings (Saleem et al., 2013). Thus, the locomotion responses reported in the Keller et al. (2012) paper are likely too high, but locomotion related responses in V1 are very likely real. The only conclusion we draw in the Keller et al. 2012 paper on the strength of the locomotion related responses is that they are smaller than mismatch responses (this conclusion is unaffected by hemodynamic contamination). In addition, the primary findings of the Keller et al. (2012) paper are all related to mismatch, and these conclusions are unaffected. 

      Similarly, the present study shows that GFP reveals twice as many responsive neurons as GCaMP during locomotion (Fig. 3A vs. Fig. 3D, "running"). Does this mean that their 2012 conclusions regarding locomotion-induced calcium activity need reconsideration? Given that more neurons responded with GFP than with GCaMP, the authors should clarify whether they still consider GCaMP a reliable tool for measuring brain activity during locomotion. 

      Comparisons of the fraction of significantly responsive neurons between GFP and GCaMP are not straightforward to interpret. One needs to factor in the difference in signal to noise between the two sensors. (Please note, we added the GCaMP responses here upon request of the reviewers). Note, there is nothing inherently wrong with the data, and comparisons within dataset are easily made (e.g. more grating responsive neurons than running responsive neurons in GCaMP, and vice versa with GFP). The comparison across datasets is not as straightforward as we define “responsive neurons” using a statistical test that compares response to baseline activity for each neuron. GFP labelled neurons are very bright and occlusion can easily be detected. Baseline fluorescence in GCaMP recordings is much lower and often close to or below the noise floor of the data (i.e. we only see the cells when they are active). Thus occlusion in GCaMP recordings is preferentially visible for cells that have high baseline fluorescence. Thus, in the GCaMP data we are likely underestimating the fraction of responsive neurons. 

      Regarding whether GCaMP (or any other fluorescence indicator used in vivo) is a reliable tool, we are not sure we understand. Whenever possible, fluorescence-sensor based measurements should be corrected for hemodynamic contamination – to quantify locomotion related signals this will be more difficult than e.g. for mismatch, but that does not mean it is not reliable. 

      (3) More generally, the author should discuss how functional imaging data should be interpreted going forward, given the large GFP responses reported here. Even when key experiments are repeated using GFP, it is not entirely clear how one could reliably estimate underlying neuronal activity from the observed GFP and GCaMP responses. 

      We are not sure we have a good answer to this question. The strategy for addressing this problem will depend on the specifics of the experiment, and the claims. Take the case of mismatch. Here we have strong calcium responses and no evidence of GFP responses. We would argue that this is reasonable evidence that the majority of the mismatch driven GCaMP signal is likely neuronal. For locomotion onsets, both GFP and GCaMP signals go in the same direction on average. Then one could use a response amplitude distribution comparison to conservatively exclude all neurons with a GCaMP amplitude lower than e.g. the 99th percentile of the GFP response. Etc. But we don’t think there is an easy generalizable fix for this problem.  

      For example, consider the results in Fig. 3A vs. 3D: how should one assess the relative strength of neuronal activity elicited by running, grating, or visuomotor mismatch? Does mismatch produce the strongest neuronal activity, since it is least affected by the hemodynamic/GFP confounds (Fig. 3A)? Or does mismatch actually produce the weakest neuronal activity, given that both its hemodynamic and calcium responses are the smallest? 

      See above, the reviewer may be confounding “response strength” with “fraction of responsive neurons” here. Regarding the relationship between neuronal activity and hemodynamics, it is very likely not just the average activity of all neurons, but a specific subset that drives blood vessel constriction and dilation. This would of course be a very interesting question to answer for the interpretation of hemodynamic based measurements of brain activity, like fMRI, but goes beyond the aim of the current paper.  

      In my opinion, such uncertainty makes it difficult to robustly interpret functional imaging results. Simply repeating experiments with GFP does not fully resolve this issue, as it does not provide a clear framework for quantifying the underlying neuronal activity. Does this suggest a need for a better mitigation strategy? What could these strategies be? 

      If the reviewer has a good idea - we would be all ears. We don’t have a better idea currently.  

      In my opinion, addressing these questions is critical not only for the authors' own work but also for the broader field to ensure a robust and reliable interpretation of functional imaging data. 

      We agree, having a solution to this problem would be important – we just don’t have one.  

      (4) The authors now discuss various alternative sources of the observed GFP signals. However, I feel that they often appear to dismiss these possibilities too quickly, rather than appreciating their true potential impacts (see below). 

      For example, the authors argue that brain movement cannot explain their data, as movement should only result in a decrease in observed fluorescence. However, while this might hold for x-y motion, movement in the axial (z) direction can easily lead to both fluorescence increase and decrease. Neurons are not always precisely located at the focal plane -- some are slightly above or below. Axial movement in a given direction will bring some cells into focus while moving others out of focus, leading to fluorescence changes in both directions, exactly as observed in the data (see Fig. S2). 

      The reviewer is correct that z-motion can result in an increase of apparent fluorescence (just like x-y motion can as well). On average however, just like with x-y motion, z-motion will always result in a decrease. This assumes that the user selecting regions of interest (the outlines of cells used to quantify fluorescence), will select these such that the distribution of cells selected centers on the zplane of the image. Thus, the distribution of z-location of the cell relative to the imaging plane will be some Gaussian like distribution centered on the z-plane of the image (with half the cell above the zplane and half below). Because the peak of the distribution is located on the z-plane at rest, any zmovement, up or down, will move away from the peak of the distribution (i.e. most cells will decrease in fluorescence). This is the same argument as for why x-y motion always results in decreases (assuming the user selects regions of interest centered on the location of the cells at rest).  

      Furthermore, the authors state that they discard data with 'visible' z-motion. However, subtle axial movements that escape visual detection could still cause fluorescence fluctuations on the order of a few percent, comparable to the reported signal amplitudes. 

      Correct, but as explained above, z-motion will always result in average decreases of average fluorescence as explained above.  

      Finally, the authors state that "brain movement kinematics are different in shape than the GFP responses we observe". However, this appears to contradict what they show in Fig. 2A. Specifically, the first example neuron exhibits fast GFP transients locked to running onset, with rapid kinematics closely matching the movement speed signals in Fig. S5A. These fast transients are incompatible with slower blood vessel area signals (Fig. 4), suggesting that alternative sources could contribute significantly. 

      We meant population average responses here. We have clarified this. Some of the signals we observed do indeed look like they could be driven by movement artifacts (whole brain motion, or probably more likely blood vessel dilation driven tissue distortion). We show this neuron to illustrate that this can also happen. However, to illustrate that this is a rare event we also show the entire distribution of peak amplitudes and the position in the distribution this neuron is from.  

      In sum, the possibility that alternative signal sources could significantly contribute should be taken seriously and more thoroughly discussed. 

      All possible sources (we could think of) are explicitly discussed (in roughly equal proportion). Nevertheless, the reviewer is correct that our focus here is almost exclusively on the what we think is the primary source of the problem. Given that – in my experience – this is also the one least frequently considered, I think the emphasis on – what we think is – the primary contributor is warranted.  

      (5) The authors added a quantification of brain movement (Fig. S5) and claim that they "only find detectable brain motion during locomotion onsets and not the other stimuli." However, Fig. S5 presents brain 'velocity' rather than 'displacement'. A constant (non-zero) velocity in Fig. S5 B-D indicates that the brain continues to move over time, potentially leading to significant displacement from its initial position across all conditions. While displacement in the x-y plane are corrected, similar displacement in the z direction likely occurs concurrently and cannot be easily accounted for. To assess this possibility, the authors should present absolute displacement relative to pre-stimulus frames, as displacement -- not velocity -- determines the size of movement-related fluorescence changes. 

      We use brain velocity here as a natural measure when using frame times as time bins. The problem with using a signed displacement is that if different running onsets move the brain in opposing directions, this can average out to zero. To counteract this, one can take the absolute displacement in a response window away from the position in a baseline time window. If this is done with time bins that correspond to frame times, this just becomes displacement per frame, i.e. velocity. Using absolute changes in displacement (i.e. velocity) is more sensitive than signed displacement. The responses for signed displacement are shown below (Author response image 1), but given that we are averaging signed quantities here, the average is not interpretable. 

      Author response image 1.

      Average signed brain displacement. 

      Regarding a constant drift, the reviewer might be misled by the fact that the baseline brain velocity is roughly 1 pixel per frame. The registration algorithm works in integer number of pixels only. 1 pixel per frame corresponds roughly to the noise floor of the registration algorithm. Registrations are done independently for each frame. As a consequence, the registration oscillates between a shift of 17 and 18 pixels – frame by frame – if the actual shift is somewhere between 17 and 18 pixels. This “jitter” results in a baseline brain velocity of about 1 pixel per frame. 

      (6) In line 132-133, the authors draw an analogy between the effect of hemodynamic occlusion and liquid crystal display (LCD) function. However, there are fundamental differences between the two. LCDs modulate light transmission by rotating the polarization of light, which then passes through a crossed polarizer. In contrast, hemodynamic occlusion alters light transmission by changing the number and absorbance properties of hemoglobin. Additionally, LCDs do not involve 'emission' light - backillumination travels through the liquid crystal layer only once, whereas hemodynamic occlusion affects both incoming excitation light and the emitted fluorescence. Given these fundamental differences, the LCD analogy may not be entirely appropriate. 

      The mechanism of occlusion is, as the reviewer correctly points out, different for an LCD. In both cases however, there is a variable occluder between a light source and an observer. The fact that with hemodynamic occlusion the light passes through the occluder twice (excitation and emission) does not appear to hamper the analogy to us. We have rephrased to highlight the time varying occlusion part. 

      Reviewer #2 (Public review):

      -  Approach 

      In this study, Yogesh et al. aimed at characterizing hemodynamic occlusion in two photon imaging, where its effects on signal fluctuations are underappreciated compared to that in wide field imaging and fiber photometry. The authors used activity-independent GFP fluorescence, GCaMP and GRAB sensors for various neuromodulators in two-photon and widefield imaging during a visuomotor context to evaluate the extent of hemodynamic occlusion in V1 and ACC. They found that the GFP responses were comparable in amplitude to smaller GCaMP responses, though exhibiting context-, cortical region-, and depth-specific effects. After quantifying blood vessel diameter change and surrounding GFP responses, they argued that GFP responses were highly correlated with changes in local blood vessel size. Furthermore, when imaging with GRAB sensors for different neuromodulators, they found that sensors with lower dynamic ranges such as GRAB-DA1m, GRAB-5HT1.0, and GRAB-NE1m exhibited responses most likely masked by the hemodynamic occlusion, while a sensor with larger SNR, GRAB-ACh3.0, showed much more distinguishable responses from blood vessel change. They thoroughly investigate other factors that could contribute to these signals and demonstrate hemodynamic occlusion is the primary cause. 

      -  Impact of revision 

      This is an important update to the initial submission, adding much supplemental imaging and population data that provide greater detail to the analyses and increase the confidence in the authors conclusions. 

      Specifically, inclusion of the supplemental figures 1 and 2 showing GFP expression across multiple regions and the fluorescence changes of thousands of individual neurons provides a clearer picture of how these effects are distributed across the population. Characterization of brain motion across stimulation conditions in supplemental figure 5 provides strong evidence that the fluorescence changes observed in many of the conditions are unlikely to be primarily due to brain motion associated imaging artifacts. The role of vascular area on fluorescence is further supported by addition of new analyses on vasoconstriction leading to increased fluorescence in Figures 4C1-4, complementing the prior analyses of vasodilation. 

      The expansion of the discussion on other factors that could lead to these changes is thorough and welcome. The arguments against pH playing a factor in fluorescence changes of GFP, due to insensitivity to changes in the expected pH range are reasonable, as are the other discussed potential factors. 

      With respect to the author's responses to prior critique, we agree that activity dependent hemodynamic occlusion is best investigated under awake conditions. Measurement of these dynamics under anesthesia could lead to an underestimation of their effects. Isoflurane anesthesia causes significant vasodilation and a large reduction in fluorescence intensity in non-functional mutant GRABs. This could saturate or occlude activity dependent effects. 

      - Strengths 

      This work is of broad interest to two photon imaging users and GRAB developers and users. It thoroughly quantifies the hemodynamic driven GFP response and compares it to previously published GCaMP data in a similar context, and illustrates the contribution of hemodynamic occlusion to GFP and GRAB responses by characterizing the local blood vessel diameter and fluorescence change. These findings provide important considerations for the imaging community and a sobering look at the utility of these sensors for cortical imaging. 

      Importantly, they draw clear distinctions between the temporal dynamics and amplitude of hemodynamic artifacts across cortical regions and layers. Moreover, they show context dependent (Dark versus during visual stimuli) effects on locomotion and optogenetic light-triggered hemodynamic signals. 

      The authors suggest that signal to noise ratio of an indicator likely affects the ability to separate hemodynamic response from the underlying fluorescence signal. With a new analysis (Supplemental Figure 4) They show that the relative degree of background fluorescence does not affect the size of the artifact. 

      Most of the first generation neuromodulator GRAB sensors showed relatively small responses, comparable to blood vessel changes in two photon imaging, which emphasizes a need for improved the dynamic range and response magnitude for future sensors and encourages the sensor users to consider removing hemodynamic artifacts when analyzing GRAB imaging data. 

      - Weaknesses 

      The largest weakness of the paper remains that, while they convincingly quantify hemodynamic artifacts across a range of conditions, they provide limited means of correcting for them. However they now discuss the relative utility of some hemodynamic correction methods (e.g. from Ocana-Santero et al., 2024). 

      The paper attributes the source of 'hemodynamic occlusion' primarily to blood vessel dilation, but leaves unanswered how much may be due to shifts in blood oxygenation. Figure 4 directly addresses the question of how much of the signal can be attributed to occlusion by measuring the blood vessel dilation, and has been improved by now showing positive fluorescence effects with vasoconstriction. They now also discuss the potential impact of oxygenation. 

      Along these lines, the authors carefully quantified the correlation between local blood vessel diameter and GFP response (or neuropil fluorescence vs blood vessel fluorescence with GRAB sensors). We are left to wonder to what extent does this effect depend on proximity to the vessels? Do GFP/ GRAB responses decorrelate from blood vessel activity in neurons further from vessels (refer to Figure 5A and B in Neyhart et al., Cell Reports 2024)? The authors argue that the primary impact of occlusion is from blood vessels above the plane of imaging, but without a vascular reconstruction, their evidence for this is anecdotal. 

      The choice of ACC as the frontal region provides a substantial contrast in location, brain movement, and vascular architecture as compared to V1. As the authors note, ACC is close to the superior sagittal sinus and thus is the region where the largest vascular effects are likely to occur. A less medial portion of M2 may have been a more appropriate comparison. The authors now include example imaging fields for ACC and interesting out-of-plane vascular examples in the supplementary figures that help assess these impacts. 

      -Overall Assessment 

      This paper is an important contribution to our understanding of how hemodynamic artifacts may corrupt GRAB and calcium imaging, even in two-photon imaging modes. While it would be wonderful if the authors were able to demonstrate a reliable way to correct for hemodynamic occlusion which did not rely on doing the experiments over with a non-functional sensor or fluorescent protein, the careful measurement and reporting of the effects here is, by itself, a substantial contribution to the field of neural activity imaging. It's results are of importance to anyone conducting two-photon or widefield imaging with calcium and GRAB sensors and deserves the attention of the broader neuroscience and invivo imaging community. 

      We agree with this assessment.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors aimed to investigate if hemodynamic occlusion contributes to fluorescent signals measured with two-photon microscopy. For this, they image the activity-independent fluorophore GFP in 2 different cortical areas, at different cortical depths and in different behavioral conditions. They compare the evoked fluorescent signals with those obtained with calcium sensors and neuromodulator sensors and evaluate their relationship to vessel diameter as a readout of blood flow.

      They find that GFP fluorescence transients are comparable to GCaMP6f stimuli-evoked signals in amplitude, although they are generally smaller. Yet, they are significant even at the single neuronal level. They show that GFP fluorescence transients resemble those measured with the dopamine sensor GRABDA1m and the serotonin sensor GRAB-5HT1.0 in amplitude an nature, suggesting that signals with these sensors are dominated by hemodynamic occlusion. Moreover, the authors perform similar experiments with wide-field microscopy which reveals the similarity between the two methods in generating the hemodynamic signals. Together the evidence presented calls for the development and use of high dynamic range sensors to avoid measuring signals that have another origin from the one intended to measure. In the meantime, the evidence highlights the need to control for those artifacts such as with the parallel use of activity independent fluorophores.

      Strengths:

      - Comprehensive study comparing different cortical regions in diverse behavioral settings in controlled conditions.

      - Comparison to the state-of-the-art, i.e. what has been demonstrated with wide-field microscopy.

      - Comparison to diverse activity-dependent sensors, including the widely used GCaMP.

      Comments on revisions:

      The authors have addressed my concerns well. I have no further comments.

      We agree with this assessment.  


      The following is the authors’ response to the original reviews

      The major changes to the manuscript are:

      (1) Re-wrote the discussion, going over all possible sources of the signals we describe.

      (2) We added a quantification of brain motion as Figure S5.

      (3) We added an example of blood vessel contraction as Figure 4C.

      (4) We added data on the fraction of responsive neurons when measured with GCaMP as Figures 3D-3F.

      (5) We added example imaging sites from all imaged regions as Figure S1.

      (6) We added GFP response heatmaps of all neurons as Figure S2.

      (7) We add a quantification of the relationship between GFP response amplitude and expression level Figure S4.

      A detailed point-by-point response to all reviewer concerns is provided below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Fluorescence imaging has become an increasingly popular technique for monitoring neuronal activity and neurotransmitter concentrations in the living brain. However, factors such as brain motion and changes in blood flow and oxygenation can introduce significant artifacts, particularly when activity-dependent signals are small. Yogesh et al. quantified these effects using GFP, an activity-independent marker, under two-photon and wide-field imaging conditions in awake behaving mice. They report significant GFP responses across various brain regions, layers, and behavioral contexts, with magnitudes comparable to those of commonly used activity sensors. These data highlight the need for robust control strategies and careful interpretation of fluorescence functional imaging data.

      Strengths:

      The effect of hemodynamic occlusion in two-photon imaging has been previously demonstrated in sparsely labeled neurons in V1 of anesthetized animals (see Shen and Kara et al., Nature Methods, 2012). The present study builds on these findings by imaging a substantially larger population of neurons in awake, behaving mice across multiple cortical regions, layers, and stimulus conditions. The experiments are extensive, the statistical analyses are rigorous, and the results convincingly demonstrate significant GFP responses that must be accounted for in functional imaging experiments. However, whether these GFP responses are driven by hemodynamic occlusion remains less clear, given the complexities associated with awake imaging and GFP's properties (see below).

      Weaknesses:

      (1) The authors primarily attribute the observed GFP responses to hemodynamic occlusion. While this explanation is plausible, other factors may also contribute to the observed signals. These include uncompensated brain movement (e.g., axial-direction movements), leakage of visual stimulation light into the microscope, and GFP's sensitivity to changes in intracellular pH (see e.g., Kneen and Verkman, 1998, Biophysical Journal). Although the correlation between GFP signals and blood vessel diameters supports a hemodynamic contribution, it does not rule out significant contributions from these (or other) factors. Consequently, whether GFP fluorescence can reliably quantify hemodynamic occlusion in two-photon microscopy remains uncertain.

      We concur; our data do not conclusively prove that the effect is only driven by hemodynamic occlusion. We have attempted to make this clearer in the text throughout the manuscript. In particular we have restructured the discussion to focus on this point. Regarding the specific alternatives the reviewer mentions here:

      a) Uncompensated brain motion. While this can certainly contribute, we think the effect is negligible in our interpretation for the following reasons. First, just to point out the obvious, as with all two-photon data we acquire in the lab, we only keep data with no visible z-motion (axial). Second, and more importantly, uncompensated brain motion results in a net decrease of fluorescence. As regions of interest (ROI) are selected to be centered on neurons (as opposed to be randomly selected, or next to, or above or below), movement will – on average – result in a decrease in fluorescence, as neurons are moved out of the ROIs. In the early days of awake two-photon imaging (when preps were still less stable) – we used this movement onset decrease in fluorescence as a sign that running onsets were selected correctly (i.e. with low variance). See e.g. the dip in the running onset trace at time zero in figure 3A of (Keller et al., 2012). Third, we find no evidence for any brain motion in the case of visual stimulation, while the GFP responses during locomotion and visual stimulation are of similar magnitude. We have added a quantification of brain motion (Figure S5) and a discussion of this point to the manuscript.

      b) Leakage of stimulation light. First, all light sources in the experimental room (the projector used for the mouse VR, the optogenetic stimulation light, as well as the computer monitors used to operate the microscope) are synchronized to the turnaround times of the resonant scanner of the two-photon microscope. Thus, light sources in the room are turned off for each line scan of the resonant scanner and turned on in the turnaround period. With a 12kHz scanner this results in a light cycle of 24 kHz (see Leinweber et al., 2014 for details). While the system is not perfect, we can occasionally get detectable light leak responses at the image edges (in the resonant axis as a result of the exponential off kinetics of many LEDs & lasers), these are typically 2 orders of magnitude smaller than what one would get without synchronizing, and far smaller than a single digit percentage change in GFP responses, and only detectable at the image edges. Second, while in visual cortex, dark running onsets are different from running onsets with the VR turned on (Figures 5A and B), they are indistinguishable in ACC (Figure 5C). Thus, stimulation light artefacts we can rule out.

      c) GFP’s sensitivity to changes in pH. Activity results in a decrease in neuronal intracellular pH (https://pubmed.ncbi.nlm.nih.gov/14506304/, https://pubmed.ncbi.nlm.nih.gov/24312004/) – decreasing pH decreases GFP fluorescence (https://pubmed.ncbi.nlm.nih.gov/9512054/).

      To reiterate, we don’t think hemodynamic occlusion is the only possible source to the effects we observe, but we do think it is most likely the largest.

      (2) Regardless of the underlying mechanisms driving the GFP responses, these activity-independent signals must be accounted for in functional imaging experiments. However, the present manuscript does not explore potential strategies to mitigate these effects. Exploring and demonstrating even partial mitigation strategies could have significant implications for the field.

      We concur – however, in brief, we think the only viable mitigation strategy (we are capable of), is to repeat functional imaging with GFP imaging. To unpack this: There have been numerous efforts to mitigate these hemodynamic effects using isosbestic illumination. When we started to use such strategies in the lab for widefield imaging, we thought we would calibrate the isosbestic correction using GFP recordings. The idea was that if performed correctly, an isosbestic response should look like a GFP response. Try as we may, we could not get the isosbestic responses to look like a GFP response. We suspect this is a result of the fact that none of the light sources we used were perfectly match to the isosbestic wavelength the GCaMP variants we used (not for a lack of trying, but neither lasers nor LEDs were available for purchase with exact wavelength matches). Complicating this was then also the fact that the similarity (or dissimilarity) between isosbestic and GFP responses was a function of brain region. Importantly however, just because we could not successfully apply isosbestic corrections, of course does not mean it cannot be done. Hence for the widefield experiments we then resorted to mitigating the problem by repeating the key experiments using GFP imaging (see e.g. (Heindorf and Keller, 2024)). Note, others have also argued that the best way to correct for hemodynamic artefacts is a GFP recording based correction (Valley et al., 2019). A second strategy we tried was using a second fluorophore (i.e. a red marker) in tandem with a GCaMP sensor. The problem here is that the absorption of the two differs markedly by blood and once again a correction of the GCaMP signal using the red channel was questionable at best. Thus, we think the only viable mitigation strategy we have found is GFP recordings and testing whether the postulated effects seen with calcium indicators are also present in GFP responses. This work is our attempt at a post-hoc mitigation of the problem of our own previous two-photon imaging studies.

      (3) Several methodology details are missing from the Methods section. These include: (a) signal extraction methods for two-photon imaging data (b) neuropil subtraction methods (whether they are performed and, if so, how) (c) methods used to prevent visual stimulation light from being detected by the two-photon imaging system (d) methods to measure blood vessel diameter/area in each frame. The authors should provide more details in their revision.

      Please excuse, this was an oversight. All details have been added to the methods.

      Reviewer #2 (Public Review):

      In this study, Yogesh et al. aimed at characterizing hemodynamic occlusion in two photon imaging, where its effects on signal fluctuations are underappreciated compared to that in wide field imaging and fiber photometry. The authors used activity-independent GFP fluorescence, GCaMP and GRAB sensors for various neuromodulators in two-photon and widefield imaging during a visuomotor context to evaluate the extent of hemodynamic occlusion in V1 and ACC. They found that the GFP responses were comparable in amplitude to smaller GCaMP responses, though exhibiting context-, cortical region-, and depth-specific effects. After quantifying blood vessel diameter change and surrounding GFP responses, they argued that GFP responses were highly correlated with changes in local blood vessel size. Furthermore, when imaging with GRAB sensors for different neuromodulators, they found that sensors with lower dynamic ranges such as GRAB-DA1m, GRAB5HT1.0, and GRAB-NE1m exhibited responses most likely masked by the hemodynamic occlusion, while a sensor with larger SNR, GRAB-ACh3.0, showed much more distinguishable responses from blood vessel change.

      Strengths

      This work is of broad interest to two photon imaging users and GRAB developers and users. It thoroughly quantifies the hemodynamic driven GFP response and compares it to previously published GCaMP data in a similar context, and illustrates the contribution of hemodynamic occlusion to GFP and GRAB responses by characterizing the local blood vessel diameter and fluorescence change. These findings provide important considerations for the imaging community and a sobering look at the utility of these sensors for cortical imaging.

      Importantly, they draw clear distinctions between the temporal dynamics and amplitude of hemodynamic artifacts across cortical regions and layers. Moreover, they show context dependent (Dark versus during visual stimuli) effects on locomotion and optogenetic light-triggered hemodynamic signals.

      Most of the first generation neuromodulator GRAB sensors showed relatively small responses, comparable to blood vessel changes in two photon imaging, which emphasizes a need for improved the dynamic range and response magnitude for future sensors and encourages the sensor users to consider removing hemodynamic artifacts when analyzing GRAB imaging data.

      Weaknesses

      (1) The largest weakness of the paper is that, while they convincingly quantify hemodynamic artifacts across a range of conditions, they do not quantify any methods of correcting for them. The utility of the paper could have been greatly enhanced had they tested hemodynamic correction methods (e.g. from Ocana-Santero et al., 2024) and applied them to their datasets. This would serve both to verify their findings-proving that hemodynamic correction removes the hemodynamic signal-and to act as a guide to the field for how to address the problem they highlight.

      See also our response to reviewer 1 comment 2.

      In the Ocana-Santero et al., 2024 paper they also first use GFP recordings to identify the problem. The mitigation strategy they then propose, and use, is to image a second fluorophore that emits at a different wavelength concurrently with the functional indicator. The authors then simply subtract (we think – the paper states “divisive”, but the data shown are more consistent with “subtractive” correction) the two signals to correct for hemodynamics. However, the paper does not demonstrate that the hemodynamic signals in the red channel match those in the green channel. The evidence presented that this works is at best anecdotal. In our hands this does not work (meaning the red channel does not match GFP recordings), we suspect this is a combination of crosstalk from the simultaneously recorded functional channel and the fact that hemodynamic absorption is strongly wavelength specific, or something we are doing wrong. Either way, we cannot contribute to this in the form of mitigation strategy.

      Given that the GFP responses are a function of brain area and cortical depth – it is not a stretch to postulate that they also depend on genetic cell type labelled. Thus, any GFP calibration used for correction will need to be repeated for each cell type and brain area. Once experiments are repeated using GFP (the strategy we advocate for – we don’t think there is a simpler way to do this), the “correction” is just a subtraction (or a visual comparison).

      (2) The paper attributes the source of 'hemodynamic occlusion' primarily to blood vessel dilation, but leaves unanswered how much may be due to shifts in blood oxygenation. Figure 4 directly addresses the question of how much of the signal can be attributed to occlusion by measuring the blood vessel dilation, but notably fails to reproduce any of the positive transients associated with locomotion in Figure 2. Thus, an investigation into or at least a discussion of what other factors (movement? Hb oxygenation?) may drive these distinct signals would be helpful.

      See also our response to reviewer 1 comment 1.

      We have added to Figure 4 an example of a positive transient. At running onset, superficial blood vessels in cortex tend to constrict and hence result in positive transients.

      We now also mention changes in blood oxygenation as a potential source of hemodynamic occlusion. And just to be clear, blood oxygenation (or flow) changes in absence of any fluorophore, do not lead to a two-photon signal. Just in case the reviewer was concerned about intrinsic signals – these are not detectable in two photon imaging.

      (3) Along these lines, the authors carefully quantified the correlation between local blood vessel diameter and GFP response (or neuropil fluorescence vs blood vessel fluorescence with GRAB sensors). To what extent does this effect depend on proximity to the vessels? Do GFP/ GRAB responses decorrelate from blood vessel activity in neurons further from vessels (refer to Figure 5A and B in Neyhart et al., Cell Reports 2024)?

      We indeed thought about quantifying this, but to do this properly would require having a 3d reconstruction of the blood vessel plexus above (with respect to the optical axis) the neuron of interest, as well as some knowledge of how each vessel dilates as a function of stimulus. The prime effect is likely from blood vessels that are in the 45 degrees illumination cone above the neuron (Author response image 2). Lateral proximity to a blood vessel is likely only of secondary relevance. Thus, performing such a measurement is impractical and of little benefit for others.

      Author response image 2.

      A schematic representation of the cone of illumination.

      While imaging a neuron (the spot on the imaging plane at the focus of the cone of illumination), the relevant blood vessels that primarily contribute to hemodynamic occlusion are those in the cone of illumination between the neuron and the objective lens. Blood vessels visible in the imaging plane (indicated by gray arrows), do not directly contribute to hemodynamic occlusion. Any distance dependence of hemodynamic occlusion in the observed response of a neuron to these blood vessels in the imaging plane is at best incidental.

      (4) Raw traces are shown in Figure 2 but we are never presented with the unaveraged data for locomotion of stimulus presentation times, which limits the reader's ability to independently assess variability in the data. Inclusion of heatmaps comparing event aligned GFP to GCaMP6f may be of value to the reader.

      We fear we are not sure what the reviewer means by “the unaveraged data for locomotion of stimulus presentation times”. We suspect this should read “locomotion or stimulus…”. We have added heat maps of the responses of all neurons of the data shown in Figure 1 – as Figure S2.

      (5) More detailed analysis of differences between the kinds of dynamics observed in GFP vs GCaMP6f expressing neurons could aid in identifying artifacts in otherwise clean data. The example neurons in Figure 2A hint at this as each display unique waveforms and the question of whether certain properties of their dynamics can reveal the hemodynamic rather than indicator driven nature of the signal is left open. Eg. do the decay rate and rise times differ significantly from GCaMP6f signals?

      The most informative distinction we have found is differences in peak responses (Figure 2B). Decay and rise time measurements critically depend on the identification of “events”. As a function of how selective one is with what one calls an event (e.g. easy in example 1 of Figure 2 – but more difficult in examples 2 and 3), one gets very different estimates of rise and decay times. Due to the fact that peak amplitudes are lower in GFP responses – rise and decay times will be either slower or noisier (depending on where the threshold for event detection is set).

      (6) The authors suggest that signal to noise ratio of an indicator likely affects the ability to separate hemodynamic response from the underlying fluorescence signal. Does the degree of background fluorescence affect the size of the artifact? If there was variation in background and overall expression level in the data this could potentially be used to answer this question. Could lower (or higher!) expression levels increase the effects of hemodynamic occlusion?

      There may be a misunderstanding (i.e. we might be misunderstanding the reviewer’s argument here). Our statement from the manuscript that the signal to noise ratio of an indicator matters is based on the simple consideration that hemodynamic occlusion is in the range of 0 to 2 % ΔF/F. The larger the dynamic range of the indicator, the less of a problem 2% ΔF/F are. Imagine an indicator with average responses in the 100’s of % ΔF/F - then this would be a non-problem. For indicators with a dynamic range less than 1%, a 2% artifact is a problem.

      Regarding “background” fluorescence, we are not sure what is meant here. In case the reviewer means fluorescence that comes from indicator molecules in processes (as opposed to soma) that are typically ignored (or classified as neuropil) – we are not sure how this would help. The occlusion effects are identical for both somatic and axonal or dendritic GFP (the source of the GFP fluorescence is not relevant for the occlusion effect). In case the reviewer means “baseline” fluorescence – above a noise threshold ΔF/F<sub>0</sub> should be constant independent of F<sub>0</sub> (i.e. baseline fluorescence). This also holds in the data, see Figure S4. We might be stating the trivial - the normalization of fluorescence activity as ΔF/F<sub>0</sub> has the effect that the “occluder" effect is constant for all values of all F<sub>0</sub>.

      (7) The choice of the phrase 'hemodynamic occlusion' may cause some confusion as the authors address both positive and negative responses in the GFP expressing neurons, and there may be additional contributions from changes in blood oxygenation state.

      Regarding the potential confusion with regards to terminology, occlusion can decrease or increase.

      Only under the (incorrect) assumption that occlusion is zero at baseline would this be confusing – no? If the reviewer has a suggestion for a different term, we’d be open to changing it.

      Regarding blood oxygenation – this is absolutely correct, we did not explicitly point this out in the previous version of the manuscript. Occlusion changes are driven by a combination of changes to volume and “opacity” of the blood. Oxygenation changes would be in the second category. We have clarified this in the manuscript.

      (8) The choice of ACC as the frontal region provides a substantial contrast in location, brain movement, and vascular architecture as compared to V1. As the authors note, ACC is close to the superior sagittal sinus and thus is the region where the largest vascular effects are likely to occur. The reader is left to wonder how much of the ROI may or may not have included vasculature in the ACC vs V1 recordings as the only images of the recording sites provided are for V1. We are left unable to conclude whether the differences observed between these regions are due to the presence of visible vasculature, capillary blood flow or differences in neurovasculature coupling between regions. A less medial portion of M2 may have been a more appropriate comparison. At least, inclusion of more example imaging fields for ACC in the supplementary figures would be of value.

      Both the choice of V1 and ACC were simply driven by previous experiments we had already done in these areas with calcium indicators. And we agree, the relevant axis is likely distance from midline, not AP – i.e. RSC and ACC are likely more similar, and V1 and lateral M2 more similar. We have made this point explicitly in the manuscript and have added sample fields of view as Figure S1.

      (9) In Figure 3, How do the proportions of responsive GFP neurons compare to GCaMP6f neurons?

      We have added the data for GCaMP responses.

      (10) How is variance explained calculated in Figure 4? Is this from a linear model and R^2 value? Is this variance estimate for separate predictors by using single variable models? The methods should describe the construction of the model including the design matrix and how the model was fit and if and how cross validation was run.

      This is simply a linear model (i.e. R^2) – we have added this to the methods.

      (11) Cortical depth is coarsely defined as L2/3 or L5, without numerical ranges in depth from pia.

      Layer 2/3 imaging was done at a depth of 100-250 μm from pia, and the same for layer 5 was 400-600 μm. This has been added to the methods.

      Overall Assessment:

      This paper is an important contribution to our understanding of how hemodynamic artifacts may corrupt GRAB and calcium imaging, even in two-photon imaging modes. Certain useful control experiments, such as intrinsic optical imaging in the same paradigms, were not reported, nor were any hemodynamic correction methods investigated. Thus, this limits both mechanistic conclusions and the overall utility with respect to immediate applications by end users. Nevertheless, the paper is of significant importance to anyone conducting two-photon or widefield imaging with calcium and GRAB sensors and deserves the attention of the broader neuroscience and in-vivo imaging community.

      Reviewer #3 (Public review):

      In this study, the authors aimed to investigate if hemodynamic occlusion contributes to fluorescent signals measured with two-photon microscopy. For this, they image the activity-independent fluorophore GFP in 2 different cortical areas, at different cortical depths and in different behavioral conditions. They compare the evoked fluorescent signals with those obtained with calcium sensors and neuromodulator sensors and evaluate their relationship to vessel diameter as a readout of blood flow.

      They find that GFP fluorescence transients are comparable to GCaMP6f stimuli-evoked signals in amplitude, although they are generally smaller. Yet, they are significant even at the single neuronal level. They show that GFP fluorescence transients resemble those measured with the dopamine sensor GRABDA1m and the serotonin sensor GRAB-5HT1.0 in amplitude an nature, suggesting that signals with these sensors are dominated by hemodynamic occlusion. Moreover, the authors perform similar experiments with wide-field microscopy which reveals the similarity between the two methods in generating the hemodynamic signals. Together the evidence presented calls for the development and use of high dynamic range sensors to avoid measuring signals that have another origin from the one intended to measure. In the meantime, the evidence highlights the need to control for those artifacts such as with the parallel use of activity independent fluorophores.

      Strengths:

      - Comprehensive study comparing different cortical regions in diverse behavioral settings in controlled conditions.

      - Comparison to the state-of-the-art, i.e. what has been demonstrated with wide-field microscopy.

      - Comparison to diverse activity-dependent sensors, including the widely used GCaMP.

      Weaknesses:

      (1) The kinetics of GCaMP is stereotypic. An analysis/comment on if and how the kinetics of the signals could be used to distinguish the hemodynamic occlusion artefacts from calcium signals would be useful.

      We might be misunderstanding what the reviewer means by “the kinetics of GCaMP are stereotypic”. The kinetics are clearly stereotypic if one has isolated single action potential responses in a genetically identified cell type. But data recorded in vivo looks very different, see e.g. example traces in figure 1g of (Keller et al., 2012). And these are selected example traces, the average GCaMP trace looks perhaps more like the three example traces shown in Figure 2 (this is not surprising if the GCaMP signals one records in vivo are a superposition of calcium responses and hemodynamic occlusion). All quantification of kinetics relies on identifying “events”. We cannot identify events in any meaningful way for most of the data (see e.g. examples 2 and 3 in Figure 2). The one feature we can reliably identify as differing between GCaMP and GFP responses is peak response amplitude (as quantified in Figure 2).

      (2) Is it possible that motion is affecting the signals in a certain degree? This issue is not made clear.

      See also our response to reviewer 1 comment 1. In brief, we have added a quantification of motion artefacts as Figure S5, and argue that motion artefacts could only account for locomotion onset responses (there is no detectable brain motion to visual responses) and would predict a decrease in fluorescence (not an increase).

      (3) The causal relationship with blood flow remains open. Hemodynamic occlusion seems a good candidate causing changes in GFP fluorescence, but this remains to be well addressed in further research.

      We agree – we have made this clearer in the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 2A shows three neurons with convincing GFP responses, with amplitudes often exceeding 100%. However, after seeing these data, I actually feel less convinced that these responses are related to hemodynamic occlusion. Blood vessel diameter changes by at most a few percent during behavior -- how could such small changes lead to >100% changes in GFP fluorescence?

      My guess is that these responses might instead be related to motion artifacts, particularly given the strong correlation between these responses and running speed (Figure 2A). One possible way to test this is by examining a pixelwise map of fluorescence changes (dF/F) during running vs. baseline. If hemodynamic effects are involved, one would likely see a shadow of the involved blood vessels in this map. Conversely, if motion artifacts are the primary factor, the map of dF/F should resemble the spatial gradients of the mean fluorescence image. Examining pixelwise maps of dF/F will likely provide insights regarding the nature of the GFP signals.

      The underlying assumption (“blood vessel diameter changes by at most a few percent”) might be incorrect here. (Note also, relevant is likely the cross section, not diameter.) See Figure 4A1 and B1 for quantification of example blood vessel area changes - both example vessels change area by approximately 50%. Also note, example 1 in Figure 2 is an extreme example. The example was chosen to highlight that effects can be large. To try to illustrate that this is not typical however, we also show the distribution of all neurons in Figure 2B and mark all three example cells – example 1 is at the very tail of the distribution.

      Regarding the analysis suggested, we have added examples of this for running onset to the manuscript (Figure S7). We have examples in which a blood vessel shadow is clearly visible. More typical however, is a general increase in fluorescence (on running onset) that we think is caused by blood vessels closer to the surface of the brain.

      (2) Figure 3A shows strong GFP responses during running, while visuomotor mismatch elicit virtually no GFP-responsive neurons. This finding is puzzling, as visuomotor mismatch has been shown by the same group to activate L2/3 neurons more strongly than running (see Figure 3A, Keller et al., 2012, Neuron). Stronger neuronal activation should, in theory, result in more pronounced hemodynamic effects, and therefore, a higher proportion of GFP-responsive neurons. The absence of GFP responses during visuomotor mismatch raises questions about whether GFP signals are directly linked to hemodynamic occlusion.

      An alternative explanation is that the strong GFP responses observed during running could instead be driven by motion artifacts, e.g., those associated with the increased head or body movements during running onsets. Such artifacts could explain the observed GFP responses, rather than hemodynamic occlusion.

      This might be a misunderstanding. Mismatch responses are primarily observed in mismatch neurons. These are superficial L2/3 neurons (possibly the population that in higher mammals is L2 neurons). The fact that mismatch responses are primarily observed in this superficial population is likely the reason they were discovered using two-photon calcium imaging (which tends to have a bias towards superficial neurons as the image quality is best there), and seen in much fewer neurons when using electrophysiological techniques (Saleem et al., 2013) that are biased to deeper neurons. In response to Reviewer #2, we have now also added a quantification of the fraction of neurons responsive to these stimuli when using GCaMP (Figure 3D-F). The fraction of neurons responsive to visuomotor mismatch is smaller than those responsive on locomotion or to visual stimuli.

      Thus, based on “average” responses across all cortical cell types (our L2/3 recordings here are as unbiased across all of L2/3 as possible) the response profiles (strong running onset and visual responses, and weak MM responses) are probably what one would expect in first approximation also in the blood vessel response profile. Complicating this is of course the fact that it is likely some cell type specific activity that contributes most to blood flow changes, not simply average neuronal activity.

      See response to public review comment 1 for a discussion of alternative sources, including motion artefacts.

      (3) Given the potential confound associated with brain motion, the authors might consider quantifying hemodynamic occlusion effects under more controlled conditions, such as in anesthetized animals, where brain movement is minimal. They could use drifting grating stimuli, which are known to produce wellcharacterized blood vessel and hemodynamic responses in V1. The effects of hemodynamic occlusion can then be quantified by imaging the fluorescence of an activity-independent marker. For maximal robustness, GFP should ideally be avoided, due to its known sensitivity to pH changes, as noted in the public review.

      Brain motion is negligible to visual stimuli in the awake mouse as well (Figure S5). This is likely the better control than anesthetized recordings – anesthesia has strong effects on blood pressure, heart rate, breathing, etc. all of which would introduce more confounds.

      (4) Regardless of the precise mechanism driving the observed GFP response, these activity-independent signals must be accounted for in functional imaging experiments. This applies not only to experiments using small dynamic range sensors but also to those employing 'high dynamic range' sensors like GCaMP6, which, according to the authors, exhibit responses only ~2-fold greater than those of GFP.

      In this context, the extensive GFP imaging data are highly valuable, as they could serve as a benchmark for evaluating the effectiveness of correction methods. Ideally, effective correction methods should produce minimal responses when applied to GFP imaging data. With these data at hand, I strongly encourage the authors to explore potential correction methods, as such methods could have far-reaching impact on the field.

      As discussed above, we have tested a number of such correction approaches for both widefield and two-photon imaging and could never recover a response profile that resembles the GFP response. The “correction method” we have come to favor, is repeating experiments using GFP (i.e. what we have done here).

      (5) Several correction approaches could be considered: for instance, the strong correlation between GFP responses and blood vessel diameter (as shown in Figure 4) could potentially be leveraged to predict and compensate for the activity-independent signals. Alternatively, expressing an activity-independent marker alongside the activity sensor in orthogonal spectral channels could enable simultaneous monitoring and correction of activity-independent signals. Finally, computational procedure to remove common fluctuations, measured from background or 'neuropil' regions (see, e.g., Kerlin et al., 2010, Neuron; Giovannucci et al., 2019, eLife), may help reduce the contamination in cellular ROIs. The authors could try some or all of these methods, and benchmark their effectiveness by assessing, e.g., the number of GFP responsive neurons after correction.

      Over the years we have tried many of these approaches. A correction using a second fluorophore of a different color likely fails because blood absorption is strongly wavelength dependent, making it challenging to calibrate the correction factor. Neuropil “correction” on GCaMP data, even with the best implementations, is just a common mode subtraction. The signal in the neuropil – as the name implies is just an average of many axons and dendrites in the vicinity – most of these processes are from nearby neurons making a neuropil response simply an average response of the neurons in some neighborhood. Adding the problem of hemodynamic responses (which on small scales will also influence nearby neurons and neuropil similarly) makes disentangling the two effects impossible (i.e. neuropil subtraction makes the problem worse, not better). However, just because we fail in implementing all of these methods, does not necessarily mean the method is faulty. Hence we have chosen not to comment on any such method, and simply provide the only mitigation strategy that works in our hands – record GFP responses.

      (6) Given the potential usefulness of the GFP imaging data, I encourage the authors to share these data in a public repository to facilitate the development of correction methods.

      Certainly – all of our data are always published. In the early years of the lab on an FMI repository here https://data.fmi.ch/ - more recently now on Zenodo.

      (7) As noted in the public review, several methodology details are missing. Most importantly, I could not find the description in the Methods section explaining how fluorescence signals from individual neurons were extracted from two-photon imaging data. The existing section on 'Extraction of neuronal activity' appears to cover only the wide-field analysis, with details about two-photon analysis seemingly absent.

      Please excuse the omission – this has all been added to the methods. In brief, to answer your questions:

      Were regions of interest (ROIs) for individual cells identified manually or automatically?

      We use a mixture of manual and automatic methods for our two-photon data. Based on a median filtered (spatially) version of the mean fluorescence image, we used a threshold based selection of ROIs. This was then visually inspected and manually corrected where necessary such that ROIs were at least 250 pixels and only labelled clearly identifiable neurons.

      Was fluorescence within each ROI calculated by averaging signals across pixels, or were signal de-mixing algorithms (e.g., PCA, ICA, or NMF) applied?

      We use the average fluorescence across pixels without any de-mixing algorithms here and in all our two-photon experiments. De-mixing algorithms can introduce a variety of artefacts.

      Additionally, did the authors account for and correct the contribution of surrounding neuropil?

      No neuropil correction was applied. It would also be difficult to see how this would help. If the model of hemodynamic occlusion is correct, one would expect occlusion effects to change on the length scale of blood vessels (i.e. tens to hundreds of microns). Thus, the effect of occlusion on neuropil and cells should be the similar. Neuropil “correction” is always based on the idea of removing signals that are common to both neuropil and somata, thereby complicating the interpretation of the resulting signal even further.

      Without these methodological details, it is difficult to accurately interpret the two-photon signals reported in the manuscript.

      (8) The rationale for using the average fluorescence of a ROI within the blood vessel as a proxy for blood vessel diameter is not entirely clear to me. The authors should provide a clearer justification for this approach in their revision.

      Consider a ROI placed within a blood vessel at the focus of the illumination cone (Author response image 3). Given the axial point-spread-function of two-photon imaging is in the range of 0.5 μm laterally and 3 μm axially (indicated by the bicone), emitted photons from the fluorescent tissue outside of the blood vessel but within the two-photon volume will contribute to change in fluorescence in the ROI. A change in the blood vessel volume, say an increase on dilation, would decrease the amount of emission photons reaching the objective by, one, pushing more of the fluorescent tissue outside of the two-photon volume, and two, by presenting greater hemodynamic occlusion to the photons emitted by the fluorescent tissue immediately below the vessel. Conversely, on vasoconstriction there are more emission photons at the objective.

      In line with this argument, as shown in Figure 4A1-A2, B1-B2 and C1-C2, we do find that the change in fluorescence of blood vessel ROI varies inversely with the area of the blood vessel. Of course, change in blood vessel ROI fluorescence is only a proxy for vessel size. Extracting blood vessel boundaries from individual two-photon frames was noisy and proved unreliable in the absence of specific dyes to label the vessel walls. We thus resorted to using blood vessel ROI fluorescence as a proxy for hemodynamic occlusion, and tested how much of the variance in GFP responses is explained by the change in blood vessel ROI response.

      We have added an explanation to the manuscript, as suggested.

      Author response image 3.

      Average response of ROIs placed within blood vessels co-vary with hemodynamic occlusion.

      (9) I find that the Shen et al., 2012, Nature Methods paper has gone quite far to demonstrate the effect of hemodynamic occlusion in two photon imaging. Therefore, I suggest the authors describe and cite this work not only in the discussion but also in the introduction, where they can highlight the key questions left unanswered by that study and explain how their manuscript aims to address them.

      We have added the reference and point to the work in the introduction as suggested.

      Reviewer #3 (Recommendations for the authors):

      I appreciate very much that the study is presented in a very clear manner.

      A few comments that could clarify it even further:

      (1) Fig. 1: make clear on legend if it is an average of full FOVs.

      The traces shown are the average over ROIs (neurons) – we have clarified in the figure legend as suggested.

      (2) Give a more complete definition of hemodynamic occlusion to understand the hypothesis in the relationship between blood vessel dilation and GFP fluorescence (116-119). Maybe, move the phrase from conclusion "Since blood absorbs light, hemodynamic occlusion can affect fluorescence intensity measurements" (219-220).

      Very good point – we expanded on the definition in the introduction.

      (3) For clarity, mention in the main text the method used to assess how a parameter explains the variance (126-129).

      Is implemented.

      (4) Discuss the possible relationship of the signals to neuronal activity.

      We have added this to the discussion.

      (5) Discuss if the measurements could provide any functional insights, whether they could be used to learn something about the brain.

      We have added this to the discussion.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      As to the exceptionally minor issue, namely, correction for multiple statistical tests (minor because the data and the error are presented in the text). We have now conducted one-way ANOVA to back the data displayed in Fig 4A., and Supp. Figs 19 and 21. In each case ANOVA revealed a highly significant difference among means: Dunnett’s post hoc test was then used to test each result against SBW25, with the multiple comparisons corrected for in the analysis.

      This resulted in changes to the description of the statistical analysis in the following captions:

      To Figure 4.

      Where we previously referred to paired t-tests we now state:  ANOVA revealed a highly significant difference among means [F<sub>7,16</sub> = 8.19, p < 0.001] with Dunnett’s post-hoc test adjusted for multiple comparisons showing that five genotypes (*) differ significantly (p < 0.05) from SBW25.

      To Supplementary Figure 19.

      Where we previously referred to paired t-tests we now state: ANOVA revealed a highly significant difference among means [F<sub>7,16</sub> = 16.74, p < 0.001] with Dunnett’s post-hoc test adjusted for multiple comparisons showing that three genotypes (*) differ significantly (p < 0.05) from SBW25.

      To Supplementary Figure 21.

      Where we previously referred to paired t-tests we now state:  ANOVA revealed a highly significant difference among means [F<sub>7,89</sub> = 9.97, p < 0.0001] with Dunnett’s post-hoc test adjusted for multiple comparisons showing that SBW25 ∆mreB and SBW25 ∆PFLU4921-4925 are significantly different (*) from SBW25 (p < 0.05).


      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors performed experimental evolution of MreB mutants that have a slow-growing round phenotype and studied the subsequent evolutionary trajectory using analysis tools from molecular biology. It was remarkable and interesting that they found that the original phenotype was not restored (most common in these studies) but that the round phenotype was maintained. 

      Strengths: 

      The finding that the round phenotype was maintained during evolution rather than that the original phenotype, rod-shaped cells, was recovered is interesting. The paper extensively investigates what happens during adaptation with various different techniques. Also, the extensive discussion of the findings at the end of the paper is well thought through and insighXul. 

      Weaknesses: 

      I find there are three general weaknesses: 

      (1) Although the paper states in the abstract that it emphasizes "new knowledge to be gained" it remains unclear what this concretely is. On page 4 they state 3 three research questions, these could be more extensively discussed in the abstract. Also, these questions read more like genetics questions while the paper is a lot about cell biological findings. 

      Thank you for drawing attention to the unnecessary and gratuitous nature of the last sentence of the Abstract. We are in agreement. It has been modified, and we have taken  advantage of additional word space to draw attention to the importance of the two competing (testable) hypotheses laid out in the Discussion. 

      As to new knowledge, please see the Results and particularly the Discussion. But beyond this, and as recognised by others, there is real value for cell biology in seeing how (and whether) selection can compensate for effects that are deleterious to fitness. The results will very often depart from those delivered from, for example, suppressor analyses, or bottom up engineering. 

      In the work recounted in our paper, we chose to focus – by way of proof-of principle – on the most commonly observed mutations, namely, those within pbp1A.  But beyond this gene, we detected mutations  in other components of the cell shape / division machinery whose connections are not yet understood and which are the focus of on-going investigation.  

      As to the three questions posed at the end of the Introduction, the first concerns whether selection can compensate for deleterious effects of deleting mreB (a question that pertains to evolutionary aspects); the second seeks understanding of genetic factors; the third aims to shed light on the genotype-to-phenotype map (which is where the cell biology comes into play).  Given space restrictions, we cannot see how we could usefully expand, let alone discuss, the three questions raised at the end of the Introduction in restrictive space available in the Abstract.   

      (2) It is not clear to me from the text what we already know about the restoration of MreB loss from suppressors studies (in the literature). Are there suppressor screens in the literature and which part of the findings is consistent with suppressor screens and which parts are new knowledge?  

      As stated in the Introduction, a previous study with B. subtilis (which harbours three MreB isoforms and where the isoform named “MreB” is essential for growth under normal conditions), suppressors of MreB lethality were found to occur in ponA, a class A penicillin binding protein (Kawai et al., 2009). This led to recognition that MreB plays a role in recruiting Pbp1A to the lateral cell wall. On the other hand, Patel et al. (2020) have shown that deletion of classA PBPs leads to an up-regulation of rod complex activity. Although there is a connection between rod complex and class A PBPs, a further study has shown that the two systems work semi-autonomously (Cho et al., 2016). 

      Our work confirms a connection between MreB and Pbp1A, and has shed new light on how this interaction is established by means of natural selection, which targets the integrity of cell wall. Indeed, the Rod complex and class A PBPs have complementary activities in the building of the cell wall with each of the two systems able to compensate for the other in order to maintain cell wall integrity. Please see the major part of the Discussion. In terms of specifics, the connection between mreB and pbp1A (shown by Kawai et al (2009)) is indirect because it is based on extragenic transposon insertions. In our study, the genetic connection is mechanistically demonstrated.  In addition, we capture that the evolutionary dynamics is rapid and we finally enriched understanding of the genotype-to-phenotype map.

      (3) The clarity of the figures, captions, and data quantification need to be improved.  

      Modifications have been implemented. Please see responses to specific queries listed below.

      Reviewer #2 (Public Review): 

      Yulo et al. show that deletion of MreB causes reduced fitness in P. fluorescens SBW25 and that this reduction in fitness may be primarily caused by alterations in cell volume. To understand the effect of cell volume on proliferation, they performed an evolution experiment through which they predominantly obtained mutations in pbp1A that decreased cell volume and increased viability. Furthermore, they provide evidence to propose that the pbp1A mutants may have decreased PG cross-linking which might have helped in restoring the fitness by rectifying the disorganised PG synthesis caused by the absence of MreB. Overall this is an interesting study. 

      Queries: 

      Do the small cells of mreB null background indeed have no DNA? It is not apparent from the DAPI images presented in Supplementary Figure 17. A more detailed analysis will help to support this claim. 

      It is entirely possible that small cells have no DNA, because if cell division is aberrant then division can occur prior to DNA segregation resulting in cells with no DNA. It is clear from microscopic observation that both small and large cells do not divide. It is, however, true, that we are unable to state – given our measures of DNA content – that small cells have no DNA. We have made this clear on page 13, paragraph 2.

      What happens to viability and cell morphology when pbp1A is removed in the mreB null background? If it is actually a decrease in pbp1A activity that leads to the rescue, then pbp1A- mreB- cells should have better viability, reduced cell volume and organised PG synthesis. Especially as the PG cross-linking is almost at the same level as the T362 or D484 mutant.  

      Please see fitness data in Supp. Fig. 13. Fitness of ∆mreBpbp1A is no different to that caused by a point mutation. Cells remain round.  

      What is the status of PG cross-linking in ΔmreB Δpflu4921-4925 (Line 7)? 

      This was not analysed as the focus of this experiment was PBPs. A priori, there is no obvious reason to suspect that ∆4921-25 (which lacks oprD) would be affected in PBP activity.

      What is the morphology of the cells in Line 2 and Line 5? It may be interesting to see if PG cross-linking and cell wall synthesis is also altered in the cells from these lines. 

      The focus of investigation was restricted to L1, L4 and L7. Indeed, it would be interesting to look at the mutants harbouring mutations in :sZ, but this is beyond scope of the present investigation (but is on-going). The morphology of L2 and L5 are shown in Supp. Fig. 9.

      The data presented in 4B should be quantified with appropriate input controls. 

      Band intensity has now been quantified (see new Supp. Fig .20). The controls are SBW25, SBW25∆pbp1A, SBW25 ∆mreB and SBW25 ∆mreBpbp1A as explained in the paper.

      What are the statistical analyses used in 4A and what is the significance value? 

      Our oversight. These were reported in Supp. Fig. 19, but should also have been presented in Fig. 4A. Data are means of three biological replicates. The statistical tests are comparisons between each mutant and SBW25, and assessed by paired t-tests.  

      A more rigorous statistical analysis indicating the number of replicates should be done throughout. 

      We have checked and made additions where necessary and where previously lacking. In particular, details are provided in Fig. 1E, Fig. 4A and Fig. 4B. For Fig. 4C we have produced quantitative measures of heterogeneity in new cell wall insertion. These are reported in Supp. Fig. 21 (and referred to in the text and figure caption) and show that patterns of cell wall insertion in ∆mreB are highly heterogeneous.

      Reviewer #3 (Public Review): 

      This paper addresses an understudied problem in microbiology: the evolution of bacterial cell shape. Bacterial cells can take a range of forms, among the most common being rods and spheres. The consensus view is that rods are the ancestral form and spheres the derived form. The molecular machinery governing these different shapes is fairly well understood but the evolutionary drivers responsible for the transition between rods and spheres are not. Enter Yulo et al.'s work. The authors start by noting that deletion of a highly conserved gene called MreB in the Gram-negative bacterium Pseudomonas fluorescens reduces fitness but does not kill the cell (as happens in other species like E. coli and B. subtilis) and causes cells to become spherical rather than their normal rod shape. They then ask whether evolution for 1000 generations restores the rod shape of these cells when propagated in a rich, benign medium. 

      The answer is no. The evolved lineages recovered fitness by the end of the experiment, growing just as well as the unevolved rod-shaped ancestor, but remained spherical. The authors provide an impressively detailed investigation of the genetic and molecular changes that evolved. Their leading results are: 

      (1) The loss of fitness associated with MreB deletion causes high variation in cell volume among sibling cells after cell division. 

      (2) Fitness recovery is largely driven by a single, loss-of-function point mutation that evolves within the first ~250 generations that reduces the variability in cell volume among siblings. 

      (3) The main route to restoring fitness and reducing variability involves loss of function mutations causing a reduction of TPase and peptidoglycan cross-linking, leading to a disorganized cell wall architecture characteristic of spherical cells. 

      The inferences made in this paper are on the whole well supported by the data. The authors provide a uniquely comprehensive account of how a key genetic change leads to gains in fitness and the spectrum of phenotypes that are impacted and provide insight into the molecular mechanisms underlying models of cell shape. 

      Suggested improvements and clarifications include: 

      (1) A schematic of the molecular interactions governing cell wall formation could be useful in the introduction to help orient readers less familiar with the current state of knowledge and key molecular players. 

      We understand that this would be desirable, but there are numerous recent reviews with detailed schematics that we think the interested reader would be better consulting. These are referenced in the text.

      (2) More detail on the bioinformatics approaches to assembling genomes and identifying the key compensatory mutations are needed, particularly in the methods section. This whole subject remains something of an art, with many different tools used. Specifying these tools, and the parameter settings used, will improve transparency and reproducibility, should it be needed. 

      We overlooked providing this detail, which has now been corrected by provision of more information in the Materials and Methods. In short we used Breseq, the clonal option, with default parameters. Additional analyses were conducted using Genieous. The BreSeq output files are provided https://doi.org/10.17617/3.CU5SX1 (which include all read data).

      (3) Corrections for multiple comparisons should be used and reported whenever more than one construct or strain is compared to the common ancestor, as in Supplementary Figure 19A (relative PG density of different constructs versus the SBW25 ancestor). 

      The data presented in Supp Fig 19A (and Fig 4A) do not involve multiple comparisons. In each instance the comparison is between SBW25 and each of the different mutants. A paired t-test is thus appropriate.

      (4) The authors refrain from making strong claims about the nature of selection on cell shape, perhaps because their main interest is the molecular mechanisms responsible. However, I think more can be said on the evolutionary side, along two lines. First, they have good evidence that cell volume is a trait under strong stabilizing selection, with cells of intermediate volume having the highest fitness. This is notable because there are rather few examples of stabilizing selection where the underlying mechanisms responsible are so well characterized. Second, this paper succeeds in providing an explanation for how spherical cells can readily evolve from a rod-shaped ancestor but leaves open how rods evolved in the first place. Can the authors speculate as to how the complex, coordinated system leading to rods first evolved? Or why not all cells have lost rod shape and become spherical, if it is so easy to achieve? These are important evolutionary questions that remain unaddressed. The manuscript could be improved by at least flagging these as unanswered questions deserving of further attention. 

      These are interesting points, but our capacity to comment is entirely speculative. Nonetheless, we have added an additional paragraph to the Discussion that expresses an opinion that has yet to receive attention:

      “Given the complexity of the cell wall synthesis machinery that defines rod-shape in bacteria, it is hard to imagine how rods could have evolved prior to cocci. However, the cylindrical shape offers a number of advantages. For a given biomass (or cell volume), shape determines surface area of the cell envelope, which is the smallest surface area associated with the spherical shape. As shape sets the surface/volume ratio, it also determines the ratio between supply (proportional to the surface) and demand (proportional to cell volume). From this point of view, it is more efficient to be cylindrical (Young 2006). This also holds for surface attachment and biofilm formation (Young 2006). But above all, for growing cells, the ratio between supply and demand is constant in rod shaped bacteria, whereas it decreases for cocci. This requires that spherical cells evolve complex regulatory networks capable of maintaining the correct concentration of cellular proteins despite changes in surface/volume ratio. From this point of view, rod-shaped bacteria offer opportunities to develop unsophisticated regulatory networks.”

      why not all cells have lost rod shape and become spherical.

      Please see Kevin Young’s 2006 review on the adaptive significance of cell shape

      The value of this paper stems both from the insight it provides on the underlying molecular model for cell shape and from what it reveals about some key features of the evolutionary process. The paper, as it currently stands, provides more on which to chew for the molecular side than the evolutionary side. It provides valuable insights into the molecular architecture of how cells grow and what governs their shape. The evolutionary phenomena emphasized by the authors - the importance of loss-of-function mutations in driving rapid compensatory fitness gains and that multiple genetic and molecular routes to high fitness are often available, even in the relatively short time frame of a few hundred generations - are well understood phenomena and so arguably of less broad interest. The more compelling evolutionary questions concern the nature and cause of stabilizing selection (in this case cell volume) and the evolution of complexity. The paper misses an opportunity to highlight the former and, while claiming to shed light on the latter, provides rather little useful insight. 

      Thank you for these thoughts and comments. However, we disagree that the experimental results are an overlooked opportunity to discuss stabilising selection. Stabilising selection occurs when selection favours a particular phenotype causing a reduction in underpinning population-level genetic diversity. This is not happening when selection acts on SBW25 ∆mreB leading to a restoration of fitness. Driving the response are biophysical factors, primarily the critical need to balance elongation rate with rate of septation. This occurs without any change in underlying genetic diversity.  

      Recommendations for the authors:  

      Reviewer 1 (Recommendations for the Authors): 

      Hereby my suggestion for improvement of the quantification of the data, the figures, and the text. 

      -  p 14, what is the unit of elongation rate?  

      At first mention we have made clear that the unit is given in minutes^-1

      -  p 14, please give an error bar for both p=0.85 and f=0.77, to be able to conclude they are different 

      Error on the probability p is estimated at the 95% confidence interval by the formula:1.96 , where N is the total number of cells. This has been added in the paragraph p »probability » of the Image Analysis section in the Material and Methods. 

      We also added errors on p measurement in the main text.

      -  p 14, all the % differences need an errorbar 

      The error bars and means are given in Fig 3C and 3D.

      -  Figure 1B adds units to compactness, and what does it represent? Is the cell size the estimated volume (that is mentioned in the caption)? Shouldn't the datapoints have error bars? 

      Compactness is defined in the “Image Analysis” section of the Material and Methods. It is a dimensionless parameter. The distribution of individual cell shapes / sizes are depicted in Fig 1B. Error does arise from segmentation, but the degree of variance (few pixels) is much smaller than the representations of individual cells shown.

      -  Figure 1C caption, are the 50.000 cells? 

      Correct. Figure caption has been altered.

      -  Figure 1D, first the elongation rate is described as a volume per minute, but now, looking at the units it is a rate, how is it normalized? 

      Elongation rate is explained in the Materials and Methods (see the image analysis section) and is not volume per minute. It is dV/dt = r*V (the unit of r is min^-1). Page 9 includes specific mention of the unit of r.

      -  Figure 1E, how many cells (n) per replicate? 

      Our apologies. We have corrected the figure caption that now reads:

      “Proportion of live cells in ancestral SBW25 (black bar) and ΔmreB (grey bar) based on LIVE/DEAD BacLight Bacterial Viability Kit protocol. Cells were pelleted at 2,000 x g for 2 minutes to preserve ΔmreB cell integrity. Error bars are means and standard deviation of three biological replicates (n>100).”

      -  Figure 1G, how does this compare to the wildtype 

      The volume for wild type SBW25 is 3.27µm^3 (within the “white zone”). This is mentioned in the text.

      -  Figure 2B, is this really volume, not size? And can you add microscopy images? 

      The x-axis is volume (see Materials and Methods, subsection image analysis). Images are available in Supp. Fig. 9.

      -  Figure 3A what does L1, L4 and L7 refer too? Is it correct that these same lines are picked for WT and delta_mreB 

      Thank you for pointing this out. This was an earlier nomenclature. It was shorthand for the mutants that are specified everywhere else by genotype and has now been corrected. 

      -  Figure 3c: either way write out p, so which probability, or you need a simple cartoon that is plotted. 

      The value p is the probability to proceed to the next generation and is explained in Materials and Methods  subsection image analysis.  We feel this is intuitive and does not require a cartoon. We nonetheless added a sentence to the Materials and Methods to aid clarity.

      -  Figure 4B can you add a ladder to the gel? 

      No ladder was included, but the controls provide all the necessary information. The band corresponding to PBP1A is defined by presence in SBW25, but absence in SBW25 ∆pbp1A.

      -  Figure 4c, can you improve the quantification of these images? How were these selected and how well do they represent the community? 

      We apologise for the lack of quantitative description for data presented in Fig 4C. This has now been corrected. In brief, we measured the intensity of fluorescent signal from between 10 and 14 cells and computed the mean and standard deviation of pixel intensity for each cell. To rule out possible artifacts associated with variation of the mean intensity, we calculated the ratio of the standard deviation divided by the square root of the mean. These data reveal heterogeneity in cell wall synthesis and provide strong statistical support for the claim that cell wall synthesis in ∆mreB is significantly more heterogeneous than the control. The data are provided in new Supp. Fig. 21. 

      Minor comments: 

      -  It would be interesting if the findings of this experimental evolution study could be related to comparative studies (if these have ever been executed).  

      Little is possible, but Hendrickson and Yulo published a portion of the originally posted preprint separately. We include a citation to that paper. 

      -  p 13, halfway through the page, the second paragraph lacks a conclusion, why do we care about DNA content? 

      It is a minor observation that was included by way of providing a complete description of cell phenotype.  

      -  p 17, "suggesting that ... loss-of-function", I do no not understand what this is based upon. 

      We show that the fitness of a pbp1A deletion is indistinguishable from the fitness of one of the pbp1A point mutants. This fact establishes that the point mutation had the same effects as a gene deletion thus supporting the claim that the point mutations identified during the course of the selection experiment decrease (or destroy) PBP1A function.

      -  p 25, at the top of the page: do you have a reference for the statement that a disorganized cell wall architecture is suited to the topology of spherical cells? 

      The statement is a conclusion that comes from our reasoning. It stems from the fact that it is impossible to entirely map the surface of a sphere with parallel strands.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      Evading predation is of utmost importance for most animals and camouflage is one of the predominant mechanisms. Wu et al. set out to test the hypothesis of a unique camouflage system in leafhoppers. These animals coat themselves with brochosomes, which are spherical nanostructures that are produced in the Malpighian tubules and are distributed on the cuticle after eclosion. Based on previous findings on the reflectivity properties of brochosomes, the authors provide very good evidence that these nanostructures indeed reduce the reflectivity of the animals thereby reducing predation by jumping spiders. Further, they identify four proteins, which are essential for the proper development and function of brochosomes. In RNAi experiments, the regular brochosome structure is lost, the reflectivity reduced and the respective animals are prone to increased predation. Finally, the authors provide some phylogenetic sequence analyses and speculate about the evolution of these essential genes.

      Strengths:

      The study is very comprehensive including careful optical measurements, EM and TM analysis of the nanoparticles and their production line in the malphigian tubules, in vivo predation tests, and knock-down experiments to identify essential proteins. Indeed, the results are very convincingly in line with the starting hypothesis such that the study robustly assigns a new biological function to the brochosome coating system.

      A key strength of the study is that the biological relevance of the brochosome coating is convincingly shown by an in vivo predation test using a known predator from the same habitat.

      Another major step forward is an RNAi screen, which identified four proteins, which are essential for the brochosome structure (BSMs). After respective RNAi knock-downs, the brochosomes show curious malformations that are interesting in terms of the self-assembly of these nanostructures. The optical and in vivo predation tests provide excellent support for the model that the RNAi knock-down leads to a change of brochosomes structure, which reduces reflectivity, which in turn leads to a decrease of the antipredatory effect.

      Thank you very much for your positive feedback and insightful comments on our manuscript. We are delighted that you acknowledge the efforts we have made in studying the components and functions of Brochosomal proteins. We have carefully considered your suggestions and have thoroughly revised the manuscript to address the shortcomings identified in our original submission. We hope that the revised version meets with your approval. Below, please find our detailed point-by-point responses.

      Weaknesses:

      The reduction of reflectivity by aberrant brochosomes or after ageing is only around 10%. This may seem little to have an effect in real life. On the other hand, the in vivo predation tests confirm an influence. Hence, this is not a real weakness of the study - just a note to reconsider the wording for describing the degree of reflectivity.

      Thank you for your valuable suggestions. Based on your recommendations, we have revised the manuscript accordingly. Although the absolute reduction in light reflection due to Brochosomal coverage is approximately 10%, the relative decrease in light reflection on the leafhopper's surface is nearly 30%. Specifically, in the ultraviolet region, the reflection is reduced from about 30% to 20%, and in the visible light region, it is reduced from 20% to 10%. For detailed revisions, please refer to lines 151-156 of the revised manuscript.

      The single gene knockdowns seemed to lead to a very low penetrance of malformed brochosomes (Figure Supplement 3). Judging from the overview slides, less than 1% of brochosomes may have been affected. A quantification of regular versus abnormal particles in both, wildtype and RNAi treatments would have helped to exclude that the shown aberrant brochosomes did not just reflect a putative level of "normal" background defects. Of note, the quadruple knock-down of all BSMs seemed to lead to a high penetrance (Figure 4), which was already reflected in the microtubule production line. While the data shown are convincing, a quantification might strengthen the argument.

      While the RNAi effects seemed to be very specific to brochosomes and therefore very likely specific, an off-target control for RNAi was still missing. Finding the same/similar phenotype with a non-overlapping dsRNA fragment in one off-target experiment is usually considered required and sufficient. Further, the details of the targeted sequence will help future workers on the topic.

      Thank you for your valuable suggestions. Based on your recommendations, we have synthesized dsRNA targeting two non-overlapping regions of the coding sequences for four Brochosomal structural protein genes. These dsRNAs were injected individually and in combination for each gene. Our RNAi experiments for each BSM gene demonstrated that both individual and combined injections significantly suppressed the expression of the target genes, with the combined injection yielding slightly better silencing efficiency. Statistical analysis of the SEM observations revealed that the combined injection of dsRNAs targeting two non-overlapping regions led to a 60-70% reduction in the surface area coverage of Brochosomes. Additionally, approximately 20% of the remaining Brochosomes exhibited significant morphological changes. For detailed revisions, please refer to lines 199-211 of the revised manuscript, as well as Figures 3A and 3C, and Supplementary Figures 4 and 5.

      The main weakness in the current manuscript may be the phylogenetic analysis and the model of how the genes evolved. Several aspects were not clearly or consistently stated such that I felt unsure about what the authors actually think. For instance: Are all the 4 BSMs related to each other or only BSM2 and 3? If so, not only BSM2 and 3 would be called "paralogs" but also the other BSMs. If they were all related, then a phylogenetic tree including all BSMs should be shown to visualize the relatedness (including the putative ancestral gene if that is the model of the authors). Actually, I was not sure about how the authors think about the emergence of the BSMs. Are they real orphan genes (i.e. not present outside the respective clade) or was there an ancestral gene that was duplicated and diverged to form the BSMs? Where in the phylogeny does the first of the BSMs or ancestral proteins emerge (is the gene found in Clastoptera arizonana the most ancestral one?)? Maybe, the evolution of the BSMs would have to be discussed individually for each gene as they show somewhat different patterns of emergence and loss (BSM4 present in all species, the others with different degrees of phylogenetic restriction).

      Thank you very much for your constructive feedback on our phylogenetic analysis and the modeling of gene evolution. We fully agree with your insights and acknowledge that the evolutionary analysis of BSM genes remains somewhat ambiguous. This ambiguity is primarily due to the limited research on the precise structural protein composition of Brochosomes. While proteomics studies have analyzed and discussed the structural proteins of Brochosomes, the accurate composition of these proteins is still poorly understood. In this study, we identified four BSM proteins, but given the intricate structure of Brochosomes as proteinaceous spheres, we believe there may be additional BSM genes that have not yet been identified. Moreover, despite the presence of over ten thousand species within the Cicadomorpha, only three species have genome sequences available, and fewer than a hundred species have transcriptome sequencing data. The scarcity of research on Brochosomes, as well as the limited availability of genomic and transcriptomic data, poses significant challenges for our phylogenetic analysis and understanding of BSM gene evolution.

      Based on your suggestions, we have revised the manuscript accordingly. Specifically, we have updated Figure 5C by including ten additional species from Cereopoidea, Cicadoidea, and Fulgoroidea to better illustrate that BSM genes are true orphan genes. We have also added a phylogenetic tree of BSM genes within Cicadidae in Supplementary Figure 3. Additionally, we have expanded the discussion of BSM gene evolution in the manuscript (lines 503-556). For detailed revisions, please refer to Figure 5C, Supplementary Figure 3, and lines 507-585 of the revised manuscript.

      Related to these questions I remained unsure about some details in Figure 5. On what kind of analysis is the phylogeny based? Why are some species not colored, although they are located on the same branch as colored ones? What is the measure for homology values - % identity/similarity? The homology labels for Nephotetix cincticeps and N. virescens seem to be flipped: the latter is displayed with 100% identity for all genes with all proteins while the former should actually show this. As a consequence of these uncertainties, I could not fully follow the respective discussion and model for gene evolution.

      Thank you very much for your insightful comments and suggestions. We have carefully considered your feedback and have thoroughly revised our manuscript accordingly. Specifically, we have enhanced the description of the phylogenetic analysis process to provide greater clarity and transparency, with the detailed methods now included in lines 789-798. Regarding Figure 5C, we appreciate your attention to the coloring scheme. We would like to clarify that the family Cicadellidae comprises 25 subfamilies, many of which are represented by only one species in our figure. To ensure clarity and meaningful representation, we have chosen to color only those subfamilies with more than three species, thereby avoiding visual clutter and emphasizing the most relevant taxonomic groups. Additionally, we have corrected the inverted homology labels for Nephotetix cincticeps and Nephotetix virescens to ensure the accuracy and consistency of our data presentation.

      Conclusion:

      The authors successfully tested their hypothesis in a multidisciplinary approach and convincingly assigned a new biological function to the brochosomes system. The results fully support their claims - only the quantification of the penetrance in the RNAi experiments would be helpful to strengthen the point. The author's analysis of the evolution of BSM genes remained a bit vague and I remained unsure about their respective conclusions.

      The work is a very interesting study case of the evolutionary emergence of a new system to evade predators. Based on this study, the function of the BSM genes could now be studied in other species to provide insights into putative ancestral functions. Further, studying the self-assembly of such highly regular complex nano-structures will be strongly fostered by the identification of the four key structural genes.

      Reviewer #1 (Recommendations for the authors):

      Main manuscript:

      Please consider the annotated pdf with suggestions for wording and comments at the authors' discretion:

      Thank you very much for your detailed suggestions and comments provided in the annotated PDF. We have carefully reviewed each of your points and have revised the manuscript accordingly. All changes have been highlighted in red text for your convenience. The revised manuscript with tracked changes is available for your review. We believe these revisions have improved the clarity and quality of our manuscript. Thank you again for your valuable feedback.

      Supplementary Figure 2 C:

      Y-axes:

      - label: "surface coverage in %"

      - there are different scale values for the different days (e.g. 80-105 for day 5 and 0-80 at day 25). As a comparison between days is interesting, it would help to have the same scale values for all. That would show the decrease more intuitively.

      Thank you very much for your suggestion regarding the Y-axis in Supplementary Figure 2C. We agree that using a consistent scale across all time points is essential for clear and intuitive comparison. In the revised manuscript, we have standardized the Y-axis scale for Supplementary Figure 2C to a uniform range of 0-100% for all days. This change allows for a more straightforward visualization of the decreasing trend in surface coverage over time.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors investigate the optical properties of brochosomes produced by leafhoppers. They hypothesize that brochosomes reduce light reflection on the leafhopper's body surface, aiding in predator avoidance. Their hypothesis is supported by experiments involving jumping spiders. Additionally, the authors employ a variety of techniques including micro-UV-Vis spectroscopy, electron microscopy, transcriptome and proteome analysis, and bioassays. This study is highly interesting, and the experimental data is well-organized and logically presented.

      Strengths:

      The use of brochosomes as a camouflage coating has been hypothesized since 1936 (R.B. Swain, Entomol. News 47, 264-266, 1936) with evidence demonstrated by similar synthetic brochosome systems in a number of recent studies (S. Yang, et al. Nat. Commun. 8:1285, 2017; L. Wang, et al., PNAS. 121: e2312700121, 2024). However, direct biological evidence or relevant field studies have been lacking to directly support the hypothesis that brochosomes are used for camouflage. This work provides the first biological evidence demonstrating that natural brochosomes can be used as a camouflage coating to reduce the leafhoppers' observability of their predators. The design of the experiments is novel.

      We are extremely grateful for your positive feedback and insightful comments on our manuscript. We are delighted that you have recognized the efforts we have put into our research on how brochosomes serve as a camouflage coating to reduce the detectability of leafhoppers to their predators. We have carefully considered your suggestions and have thoroughly revised the manuscript to address the shortcomings of the original version. We hope that the revised version meets with your approval. Below, please find our detailed point-by-point responses.

      Weaknesses:

      (1) The observation that brochosome coatings become sparse after 25 days in both male and female leafhoppers, resulting in increased predation by jumping spiders, is intriguing. However, since leafhoppers consistently secrete and groom brochosomes, it would be beneficial to explore why brochosomes become significantly less dense after 25 days.

      Thank you very much for your valuable suggestions. We appreciate your interest in the reduction of brochosomal density on the surface of leafhoppers after 25 days.We believe that the primary reason for the decreased density of brochosomes on the leafhopper surface after 25 days is the reduced synthesis and secretion of brochosomes. The Malpighian tubules are the main sites for brochosome synthesis. As shown in Figure 2D and Supplementary Figure 1, the thick glandular segments of the Malpighian tubules in both male and female leafhoppers begin to atrophy 15 days after reaching adulthood. This indicates a gradual decline in brochosome synthesis and secretion after day 15 of adulthood. Following your suggestion, we have revised the discussion section of the manuscript to elaborate on this observation. The detailed changes can be found in lines 474-491 of the revised manuscript.

      (2) The authors demonstrate that brochosome coatings reduce UV (specular) reflection compared to surfaces without brochosomes, which can be attributed to the rough geometry of brochosomes as discussed in the literature. However, it would be valuable to investigate whether the proteins forming the brochosomes are also UV absorbing.

      Thank you very much for your valuable suggestions. Following your advice, we have successfully expressed four BSM genes in a prokaryotic system, purified the corresponding proteins, and applied them to quartz glass surfaces. We then measured the light reflectance of the quartz glass surfaces coated with these purified proteins. The results showed that the purified BSM proteins did not exhibit better antireflective properties compared to the control GST protein. For more details, please refer to Supplementary Figure 8 in the revised manuscript.  We believe that the excellent antireflective properties of brochosomes are fundamentally due to their unique geometric shapes. The hollow pores within the brochosomes, with diameters of approximately 100 nm, are significantly smaller than most wavelengths in the visible spectrum. When light passes through these tiny pores, diffraction occurs, while light passing through the ridges of the brochosomes causes scattering. The interference between the diffracted and scattered light from these pores and ridges results in the observed extinction characteristics of brochosomes. We have incorporated these insights into the discussion section of the revised manuscript (lines 416-425 and lines 432-442 of the revised manuscript).

      (3) The experiments with jumping spiders show that brochosomes help leafhoppers avoid predators to some extent. It would be beneficial for the authors to elaborate on the exact mechanism behind this camouflage effect. Specifically, why does reduced UV reflection aid in predator avoidance? If predators are sensitive to UV light, how does the reduced UV reflectance specifically contribute to evasion?

      Thank you very much for your valuable suggestions. Based on your advice, we have included a detailed discussion on how reducing ultraviolet (UV) reflection can help insects avoid predation. The revised content can be found in lines 445-460 of the revised manuscript.

      “UV light serves as a crucial visual cue for various insect predators, enhancing foraging, navigation, mating behavior, and prey identification (Cronin & Bok, 2016; Morehouse et al., 2017; Silberglied, 1979). Predators such as birds, reptiles, and predatory arthropods often rely on UV vision to detect prey (Church et al., 1998; Li & Lim, 2005; Zou et al., 2011). However, UV reflectance from insect cuticles can disrupt camouflage, increasing the risk of detection and predation, as natural backgrounds like leaves, bark, and soil typically reflect minimal UV light (Endler, 1997; Li & Lim, 2005; Tovee, 1995). To mitigate this risk, insects often possess anti-reflective cuticular structures that reduce UV and broad-spectrum light reflectance. This strategy is widespread among insects, including cicadas, dragonflies, and butterflies, and has been shown to decrease predator detection rates (Hooper et al., 2006; Siddique et al., 2015; Zhang et al., 2006). For example, the compound eyes of moths feature hexagonal protuberances that reduce UV reflectance, aiding nocturnal concealment (Blagodatski et al., 2015; Stavenga et al., 2005). In butterflies, UV reflectance from eyespots on wings can attract predators, but reducing UV reflectance or eyespot size can lower predation risk and enhance camouflage (Chan et al., 2019; Lyytinen et al., 2004). Hence, the reflection of ultraviolet light from the insect cuticle surface increases the risk of predation by disrupting camouflage (Tovee, 1995)”

      (4) An important reference regarding the moth-eye effect is missing. Please consider including the following paper: Clapham, P. B., and M. C. Hutley. "Reduction of lens reflection by the 'Moth Eye' principle." Nature 244: 281-282 (1973).

      Thank you very much for pointing out the omission of the important reference on the “moth eye” effect. We sincerely apologize for the oversight. Based on your suggestion, we have now included the seminal paper by Clapham and Hutley (1973) in the revised manuscript. The reference has been added to both the Introduction and Discussion sections to provide a more comprehensive context for our discussion on anti-reflective structures in insects.

      (5) The introduction should be revised to accurately reflect the related contributions in literature. Specifically, the novelty of this work lies in the demonstration of the camouflage effect of brochosomes using jumping spiders, which is verified for the first time in leafhoppers. However, the proposed use of brochosome powder for camouflage was first described by R.B. Swain (R.B. Swain, Notes on the oviposition and life history of the leafhopper Oncometopta undata Fabr. (Homoptera: Cicadellidae), Entomol. News. 47: 264-266 (1936)). Recently, the antireflective and potential camouflage functions of brochosomes were further studied by Yang et al. based on synthetic brochosomes and simulated vision techniques (S. Yang, et al. "Ultra-antireflective synthetic brochosomes." Nature Communications 8: 1285 (2017)). Later, Lei et al. demonstrated the antireflective properties of natural brochosomes in 2020 (C.-W. Lei, et al., "Leafhopper wing-inspired broadband omnidirectional antireflective embroidered ball-like structure arrays using a nonlithography-based methodology." Langmuir 36: 5296-5302 (2020)). Very recently, Wang et al. successfully fabricated synthetic brochosomes with precise geometry akin to those natural ones, and further elucidated the antireflective mechanisms based on the brochosome geometry and their role in reducing the observability of leafhoppers to their predators (L. Wang et al. "Geometric design of antireflective leafhopper brochosomes." Proceedings of the National Academy of Sciences 121: e2312700121 (2024)).

      Thank you very much for your valuable suggestions regarding the revision of the introduction to accurately reflect the relevant contributions in the literature. Based on your feedback, we have thoroughly revised the introduction and added the suggested references to provide a comprehensive context for our study. The details of these revisions can be found in lines 84-94 of the revised manuscript.

      Reviewer #3 (Recommendations for the authors):

      (1) In Figure 2E, the data for Male-5d appears to be missing. Please verify and ensure all relevant data is included.

      Thank you for pointing out the issue regarding the data presentation in Figure 2E.We apologize for any confusion caused by the overlapping data points and the less conspicuous color choice for Male-5d. We have carefully reviewed the data and confirmed that all relevant data points, including Male-5d, are indeed present in the dataset. In the revised manuscript, we have adjusted the color scheme for Male-5d and Female-5d in Figure 2E to ensure that both curves are clearly distinguishable, even in areas where they overlap. This adjustment should facilitate a more accurate and convenient observation of the data trends. We appreciate your attention to detail, and we believe these revisions have improved the clarity and readability of the figure.

      (2) In Figure 6, please clarify the reflectance data in the inset. Clearly explain what the blue and light blue curves represent.

      Thank you for your suggestion regarding Figure 6.We have revised the figure to improve clarity. The light blue curve now represents the reflectance measurements of leafhoppers with higher brochosome coverage, while the dark blue curve corresponds to those with lower coverage. These changes, along with updated labels in the figure legend, ensure that the data are clearly distinguishable and easy to interpret. We appreciate your feedback and believe these revisions have enhanced the overall clarity of the figure.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Weaknesses (clarifications needed):

      (1) Experimental Design:

      The study does not mention whether the authors examined sex differences or any measures of attractiveness or hierarchy among participants (e.g., students vs. teachers). Including these variables could provide a more nuanced understanding of group dynamics.

      We are grateful to the reviewer for pointing out this valuable question. We have clarified that future studies should include sex differences or any measures of attractiveness or hierarchy among participants (e.g., students vs. teachers) (p. 27).

      “Finally, future research should investigate additional variables, including sex differences and measures of attractiveness or hierarchy among participants, such as students versus teachers.”  p. 27

      (2) fNIRS Data Acquisition:

      The authors' approach to addressing individual differences in anatomy is lacking in detail. Understanding how they identified the optimal channels for synchrony between participants would be beneficial. Was this done by averaging to find the location with the highest coherence?

      We apologize for missing some details here. We have included the following information in the fNIRS data acquisition and fNIRS data analyses to clarify the details (pp. 8 and 12).

      We employed the one-sample t-test method to assess the GNS disparity between the baseline and task sessions, identifying particular channels of interest. This analysis did not ascertain the maximum coherence level, but rather pinpointed the channel exhibiting significant divergence between the two sessions, which we designated as pertinent to the group decision-making task. Furthermore, we selected the PFC and left TPJ as our reference brain regions, guided by existing literature.

      “Two optode probe sets were used to cover each participant's prefrontal and left TPJ regions (Figure S1). The DLPFC plays a crucial role in group decision-making processes, with findings suggesting that individuals exhibiting reduced prefrontal activity were more prone to out-group exclusion and demonstrated stronger in-group preferences (Goupil et al., 2021; Jankovic, 2014; Yang et al., 2020). Similarly, the left TPJ has been previously reported to be associated with decision-making and information exchange (Freitas et al., 2019; Tindale et al., 2019).”  p. 8

      “Time-averaged GNS (also averaged across channels in each group) was compared between the baseline session (i.e., the resting phase) and the task session (from reading information to making decisions) using a series of one-sample t-tests. Here, p-values were thresholded by controlling for FDR (p < 0.05; Benjamini & Hochberg, 1995). When determining the frequency band of interest, the time-averaged GNS was also averaged across channels. After that, we analyzed the time-averaged GNS of each channel. Then, channels showing significant GNS were regarded as regions of interest and included in subsequent analyses.” p. 12

      (3) Behavioral Analysis:

      For group identification, the analysis currently uses a dichotomous approach. Introducing a regression model to capture the degree of identification could offer more granular insights into how varying levels of group identification affect collective behavior and performance.

      Thank you for your suggestion. As suggested, we have conducted the regression model to examine how varying levels of group identification affect collective performance, with the score of group identification being the independent variable and collective performance as the dependent variable (pp.9 and 15).

      “Moreover, we employed a regression model to examine how varying levels of group identification affect collective performance, using group identification scores as the independent variable and collective performance as the dependent variable.”  p.9

      “The results from the regression model highlighted a significant association between the degree of group identification and collective performance (β \= 0.45, t = 4.56, p \= 0.019).”  p.15

      (4) Single Brain Activation Analysis:

      The application of the General Linear Model (GLM) is unclear, particularly given the long block durations and absence of multiple trials. Further explanation is needed on how the GLM was implemented under these conditions.

      Thank you for your suggestion, we have added more details in this section (p.11).

      “In the GLM model analysis, HbO was the dependent variable, and the regression amount was set for different task stages (a. Reading information, b. Sharing private information, c. Discussing information, d. Decision). After that, we convolved the regression factor with the Hemodynamic Response Function (HRF) and obtained the brain activation β value of each participant in each channel at different task stages through regression analysis.’  p.11

      (5) Within-group neural Synchrony (GNS) Calculation:

      The method for calculating GNS could be improved by using mutual information instead of pairwise summation, as suggested by Xie et al. (2020) in their study on fMRI triadic hyperscanning. Additionally, the explanation of GNS calculation is inconsistent. At one point, it is mentioned that GNS was averaged across time and channels, while elsewhere, it is stated that channels with the highest GNS were selected. Clarification on this point is essential.

      We appreciate the reviewer for highlighting this inquiry. We utilized a conventional GNS calculation approach, as detailed in Line 296 of the manuscript, where the GNS was determined in pairs after the WTC computation, and then averaged. Further details regarding the second question have been provided in the article (p.12).

      (6) Placement of fNIRS Probes:

      The probes were only placed in the frontal regions, despite literature suggesting that the superior temporal sulcus (STS) and temporoparietal junction (TPJ) regions are crucial for triadic team performance. A justification for this choice or inclusion of these regions in future studies would be beneficial.

      The original manuscript clearly stated the use of two optode probe sets to encompass the prefrontal and left TPJ regions of each participant (see Figure S1, p. 8).

      (7) Interpretation of fNIRS Data:

      Given that fNIRS signals are slow, similar to BOLD signals in fMRI, the interpretation of Figure 6 raises concerns. It suggests that it takes several minutes (on the order of 4-5 minutes) for people to collaborate, which seems implausible. More context or re-evaluation of this interpretation is needed.

      The question you have pointed out is very pertinent, and we have added more explanation for this result (pp. 25-26).

      As previous studies have shown, the BOLD signal collected by fNIRS is slowly increasing compared to neuronal activity, which means that it has hysteresis (Turner et al., 1998). In social interactions such as group decision-making, the time of neural synchronization is delayed because people need to spend time increasing the number of dialogues to improve collaboration efficiency and form the same preference (Zhang et al., 2019). For example, the study of group consensus found that participants would show significant neural alignment after completing a period of dialogue (Sievers et al., 2024). In the task of cooperation, with the improvement of tacit understanding between two participants, the higher degree of neural synchronization (Cui et al., 2012). Therefore, the generation of neural synchronization depends on the interaction over a period of time. Therefore, we believe that the 4-5 minutes of collaboration time shown in Figure 6 may be related to establishing consensus and the same preference of team members, which is reflected in the dynamic time change of neural synchronization.

      Moreover, previous studies on neural synchronization during social interaction and group decision-making revealed that substantial neural synchronization occurred around 50-55 seconds into a teaching task involving prior knowledge (Liu et al., 2019) and persisted approximately 6 minutes into the discussion period (Xie et al., 2023). These results collectively validate the suitability of utilizing fNIRS signal response time in our study (pp. 25-26).

      “Our study also has demonstrated significant increases in single-brain activation, DLPFC-OFC functional connectivity, and GNS at 7, 12, and 17 minutes, respectively, following task initiation. The significant increase in these neural activities together constructs the two-in-one neural model that explains how group identification influences the collective performance we proposed. As previous studies have shown, the BOLD signal collected by fNIRS is slowly increasing compared to neuronal activity, which means that it has hysteresis (Turner et al., 1998). In social interactions such as group decision-making, the time of neural synchronization is delayed because people need to spend time increasing the number of dialogues to improve collaboration efficiency and form the same preference (Zhang et al., 2019). For example, participants would exhibit significant neural alignment, but only after they had completed a period of dialogue (Sievers et al., 2024). In the task of cooperation, with the improvement of cooperation efficiency between two participants, the higher degree of neural synchronization (Cui et al., 2012). Therefore, the generation of neural synchronization depends on the interaction over a period of time, which can affect the estimation of collaboration time. Prior research has shown that when the teaching task with prior knowledge began 50-55 seconds, significant neural synchronization could be generated between teacher and students, which meant that students and teacher achieved the same goal of learning knowledge (Liu et al., 2019). Moreover, a noteworthy increase in GNS was observed approximately 6 minutes into the group discussion period for better discussing and solving the problem (Xie et al., 2023). These findings are similar to ours. Therefore, the time points we found could reflect the dynamic time change of the neural process of team collaboration.’ pp.25-26

      Reviewer #2 (Public review):

      Weaknesses:

      The authors need to clearly articulate their hypothesis regarding why neural synchronization occurs during social interaction. For example, in line 284, it is stated that "It is plausible that neural synchronization is closely associated with group identification and collective performance...", but this is far from self-evident. Neural synchronization can occur even when people are merely watching a movie (Hasson et al., 2004), and movie-watchers are not engaged in collective behavior. There is no direct link between the IBS and collective behavior. The authors should explain why they believe inter-brain synchronization occurs in interactive settings and why they think it is related to collective behavior/performance.

      Thank you for bringing these points to our attention, we have clarified the relationship between neural synchronization and collective behavior in the Introduction section. (p.4). Moreover, in order to investigate whether neural synchronization stems from a common task or environment, we pseudo-randomized all pairs of subjects and created a null distribution consisting of 1,000 pseudo-groups, as described in Lines 311-315. This approach enabled us to eliminate neural synchronization resulting from factors other than social interaction, allowing us to identify neural patterns associated with collective performance (p.12).

      “Moreover, Ni et al. (2024) indicated that neural synchronization was linked to the strength of social-emotional communication and connections between individuals. An increase in neural synchronization has also been shown to predict the coordination and cooperation abilities of group members (Lu et al., 2023). Therefore, we hypothesize that neural synchronization may be related to group performance.” p.4

      “After that, the nonparametric permutation test was conducted on the observed interaction effects on GNS of the real group against the 1,000 permutation samples. By pseudo-randomizing the data of all participants, a null distribution of 1000 pseudo-groups was generated (e.g., time series from member 1 in group 1 were grouped with member 2 in group 2 & member 3 in group 3). The GNS of 1,000 reshuffled pseudo-groups was computed, and the GNS of the real groups was assessed by comparing it with the values generated by 1000 reshuffled pseudo-groups.” p.12

      The authors state that "GNS in the OFC was a reliable neuromarker, indicating the influence of group identification on collective performance," but this claim is too strong. Please refer to Figure 4B. Do the authors really believe that collective performance can be predicted given the correlation with the large variance shown? There is a significant discrepancy between observing a correlation between two variables and asserting that one variable is a predictive biomarker for the other.

      Thank you for your suggestion, we have revised the relevant statement (p.18).

      “Through correlation and regression model analysis, we found that in group decision-making, the increase in group identity would affect group performance by improving GNS in the OFC brain region.”  p.18

      Why are the individual answers being analyzed as collective performance (See, L-184)? Although these are performances that emerge after the group discussion, they seem to be individual performances rather than collective ones. Typically, wouldn't the result of a consensus be considered a collective performance? The authors should clarify why the individual's answer is being treated as the measure of collective performance.

      We appreciate the insightful comment provided by the reviewer. The decision to utilize individual responses as a metric of overall performance is based on several key considerations. Previous studies on various hidden profile tasks have utilized averaged individual scores to represent collective performance (e.g., Stasser et al., 1995; Wittenbaum et al., 1996; Brockner et al., 2022). Secondly, while consensus outcomes are typically regarded as collective expressions, we argue that in the context of this study, individual responses are not independent entities but rather extensions of the group decision-making process. The collective deliberation process significantly influenced individual thinking and decision-making in this study. Through group discussions, members shared perspectives, adjusted their stances, and formulated their responses based on collective insights. The responses provided by participants in this study were molded by the dynamics of group conversations, serving as an indirect measure of group performance and potentially indicating the efficacy of collective deliberations.

      Performing SPM-based mapping followed by conducting a t-test on the channels within statistically significant regions constitutes double dipping, which is not an acceptable method (Kriegeskorte et al., 2011). This issue is evident in, for example, Figures 3A and 4A.

      Please refer to the following source: https://www.nature.com/articles/nn.2303

      We have carefully reviewed the articles provided by the reviewer, and we acknowledge the concerns regarding selective analysis and double dipping in our statistical approach. To address this, we believe it is important to clarify this issue further in the Discussion section (pp.26-27).

      Our study introduces a novel perspective while utilizing conventional fNIRS-based hyperscanning analyses (Liu et al., 2019; Pärnamets et al., 2020; Reinero et al., 2021; Számadó et al., 2021; Solansky, 2011), methods that are widely endorsed within the field. In our analysis, significant channels were first identified using a one-sample t-test, followed by additional analyses including ANOVA, independent samples t-tests, and other procedures. We would like to emphasize that the statistical assumptions underlying the one-sample t-test and paired-sample t-test in our study maintain a level of independence. Moreover, to further mitigate concerns about the potential for double dipping, we employed permutation testing to validate the robustness of our results and ensure that our findings are not influenced by biases inherent in the selection of significant regions.

      We recognize the importance of rigorous statistical practices and are committed to upholding the highest standards of analysis. As such, we have revisited our methodology and included a more detailed explanation of the steps taken to avoid double dipping and ensure the integrity of our analyses in the revised manuscript.

      “Although our study has found a new perspective, the analysis method still refers to and uses the traditional fNIR-based hyperscanning analyses (Liu et al., 2019; P¨arnamets et al., 2020; Reinero et al., 2021; Számadó et al., 2021; Solansky, 2011), which is generally accepted by the majority of fNIR-based hyperscanning researchers. For example, we would first identify significant channels through a one-sample t-test and then conduct further analyses, such as ANOVA or independent samples t-tests. Selective analysis is a powerful tool and is perfectly justified whenever the results are statistically independent of the selection criterion under the null hypothesis (Kriegeskorte et al., 2019). However, it may lead to double dipping and missing information. In this study, the absence of statistically significant TPJ activation in the analyzed data led to the TPJ being ignored. In the future, it should be made explicit in the analysis, and the reliability of the results should be ensured by appropriate statistical methods (e.g., cross-validation, independent data sets, or techniques to control for selective bias).” p.26-27

      In several key analyses within this study (e.g., single-brain activation in the paragraph starting from L398, neural synchronization in the paragraph starting from L393), the TPJ is mentioned alongside the DLPFC. However, in subsequent detailed analyses, the TPJ is entirely ignored.

      We thank the reviewer for your careful review and valuable comment. TPJ is referenced in certain analyses within this paper (as detailed in paragraphs L414 and L440); however, its role remains inadequately investigated and expounded upon in subsequent more intricate analyses. This is due to the absence of statistically significant TPJ activation in the analyzed data. As pointed out by the reviewer, limitations may exist in pursuing further analyses through ROIs, a point we also have addressed in the Discussion section (p.27).

      The method for analyzing single-brain activation is unclear. Although it is mentioned that GLM (generalized linear model) was used, it is not specified what regressors were prepared, nor which regressor's β-values are reported as brain activity. Without this information, it is difficult to assess the validity of the reported results.

      We have revised the relevant description to clarify the analyses of single-brain activation (p. 11)

      While the model illustrated in Figure 7 seems to be interesting, for me, it seems not to be based on the results of this study. This is because the study did not investigate the causal relationships among the three metrics. I guess, Figure 5D might be intended to explain this, but the details of the analysis are not provided, making it unclear what is being presented.

      We regret the confusion that has arisen. Firstly, as highlighted by the reviewer, the model depicted in Figure 7 is not directly derived from the causal analysis conducted in this study. Our investigation did not directly explore the causal relationships among the three indicators; instead, we constructed a model based on correlations and potential mechanisms. In the revised manuscript, we have explicitly stated that Figure 7 represents a descriptive model (p.22).

      Regarding Figure 5D, the reviewer noted that while it may offer some explanatory value, it lacks the necessary analytical detail to elucidate the chart's significance clearly. We have clarified the details of the analysis in Figure 5 (pp.13-14). The model in Figure 5D suggested that the connection between the similarity in individual-collective performance and the correlation of brain activation, as well as whether the impact of each individual’s single-brain activation on the corresponding group’s GNS was regulated by their brain activation connectivity.

      “Finally, we employed correlation and mediation analyses to assess if brain activation connectivity could explain the connection between individuals’ single-brain activation and the related group’s GNS. We examined the connection between the similarity in individual-collective performance and the correlation of brain activation, as well as whether the impact of each individual’s single-brain activation on the corresponding group’s GNS was regulated by their brain activation connectivity. We utilized the PROCESS tool in SPSS to investigate the proposed moderation effect. Specifically, we applied Model 1 with 5000 bootstrap resamples to examine the interaction between the independent variable (i.e., single-brain activation) and the moderator (i.e., brain activation connectivity) in predicting the dependent variable (i.e., GNS). It is noteworthy that prior to analysis, all variables in the moderation model were mean-centered to reduce multicollinearity and improve the interpretability of interaction terms.”  p.13-14

      “Building on the above results, we have developed a two-in-one neural model that explains how group identification influences collective performance. This descriptive model aims to illustrate the potential interrelationships among these indicators and establish a conceptual framework to inspire forthcoming research endeavors.”  p.21

      The details of the experiment are not described at all. While I can somewhat grasp what was done abstractly, the lack of specific information makes it impossible to replicate the study.

      As suggested, we have clarified the details of the experiment in the manuscript.

      (1) As stated in the public review, the details of the experiment are not described at all and while I can somewhat grasp what was done abstractly, the lack of specific information makes it impossible to replicate the study. In points a-e below, I list the aspects that I could not fully understand, but I am not asking for direct answers to these points. Instead, please provide a detailed description of the experiment so that it can be replicated.

      Thank you for your suggestion; we have responded to each question sequentially and elaborated on the experiment specifics to ensure replicability.

      (a) Please provide more detailed information about the Group Identification Task. How much did each participant speak (was there any asymmetry in the amount of speaking, and was there any possibility that the asymmetry influenced the identification rating)? Did the three participants interact in person, or online? Are they isolated from experimenters? How was the rating conducted, what I mean is that it's a PC-based rating?

      We apologize for the lack of detail in our description of the procedures for the experiment.

      For the first question, we draw upon previous studies concerning the manipulation of group identity while controlling the content of pre-task conversations. Specifically, the high-identity group engaged in self-introductions and identified similarities among the three members, whereas the low-identity group discussed topics related to the current semester's classes (Xie et al., 2023; Yang et al., 2020). Both discussions were conducted for the same duration of three minutes, ensuring that the number of exchanges between the two groups remained comparable. There was almost no asymmetry in the amount of speaking. We also conducted a manipulation check, which confirmed the effectiveness of our identity manipulation(pp.5-6).

      Xie, E., Li, K., Gu, R., Zhang, D., & Li, X. (2023). Verbal information exchange enhances collective performance through increasing group identification. NeuroImage, 279, 120339.

      Yang, J., Zhang, H., Ni, J., De Dreu, C. K., & Ma, Y. (2020). Within-group synchronization in the prefrontal cortex associates with intergroup conflict. Nature neuroscience, 23(6), 754-760.

      “Both discussions were conducted for the same duration of three minutes, ensuring that the number of exchanges between the two groups remained comparable.”  p.5-6

      For the second question,the three participants interacted offline in a face-to-face setting, while the experimenter remained outside the laboratory (p.6).

      “The three participants conducted face-to-face offline interaction throughout the manipulation process.” p.6

      For the third question, at the beginning of the experimental task, participants were isolated from the experimenters (p.6).

      “In addition to explaining the next phase of the task and controlling the timer, experimenters would be isolated from participants.” p.6

      For the last question, the rating of group identification was conducted through a questionnaire presented on participants’ phones (p.6).

      “The questionnaire was presented on participants’ phones.” p.6

      (b) The procedures of the Main Task are also unclear. For the Reading Information (5 min): How was the information presented? PC-based or paper-based? How were the participants seated? Did they read it independently?

      We apologize for the missing details. We have included the following information in the article.

      For the first and last question, each participant would get a piece of paper, which presents the common information and private information. They read independently. (p.6)

      “Each participant would get a piece of paper, which presented the information. Participants could read independently.” p.6

      About how the participants sat, the three participants sat around a table without partitions between each other. Only in the discussion stage, they could communicate face-to-face (p.6).

      “They sat around a table without partitions between each other.” p.6

      “In this process of discussion, the participants were able to communicate face-to-face and verbally.” p.6

      (c) For Sharing Private Information: The authors stated they share text messages using Tencent Meeting. If so, how and with what devices? How was the information displayed on the screen? Were the participants even in the same room?

      Thank you for your reminder. We have added more details now (p.6). Firstly, the experimenter sent the Tencent Meeting link to the participants. After the participants entered the meeting through their mobile phones, they could text the information they wanted to share in the chat box of the meeting. They were in the same room, with Tencent Meeting recording shared information, the participants could view them at any time.

      “During the group sharing, participants entered Tencent Meeting via their mobile phones and were able to text their private information in the chat box to their group members for 5 minutes.” p.6

      (d) For Discussing Information: It's a verbal interaction. How did they interact with others? What is the distance between them? I found a very small picture in Figure 8, but that is all information about experiment settings, that is provided by the authors.

      We are sorry about the missing details. As we have explained in the article it’s a verbal communication, so participants could talk face to face in one room. We have included the following information in the article (p.6).

      “Participants were sitting and communicating around a table. The distance between adjacent participants was about 15 cm, and the distance between face-to-face participants was about 40 cm. In this process of discussion, the participants were able to communicate face-to-face and verbally.” p.6

      (e) For the Decision Process (5 min): How did they answer (What I mean is verbally, writing, or computer-based input), and how did the experimenters record these answers?

      The questions were presented on paper, so the participants could write down their answers and experimenters could count the answers on paper. We have included the following information in the article(p.7).

      “After discussion, all triads were given 5 minutes to answer the following questions (i) the probability of three suspects, 0%-100% for each suspect; (ii) the motivation and tool of crime; and (iii) deduced the entire process of crime. The three questions were presented on paper, allowing participants to write their answers directly on the same sheet. Subsequently, three independent raters used these paper questionnaires to record and calculate the scores for each group.” p.7

      (2) I find the model presented in Figure 7 to be intriguing. Understanding why inter-brain synchronization occurs and how it is supported by specific single-brain activations or intra-brain functional connectivity is indeed a critical area for researchers conducting hyperscanning studies to explore. However, the content depicted in this model is not based on the results of this study. This is because the study did not investigate the causal relationships among the three metrics. I guess, Figure 5D might be intended to explain this, but the details of the analysis are not provided, making it unclear what is being presented. Please include a detailed explanation.

      The specific answers are available on page 5 of our response letter.

      (3) The analysis of single-brain activation analysis (and probably other analyses) focuses on the period from reading to making decisions (L237). Why was this entire interval chosen for analysis? Reading does not involve social interaction. As mentioned in a previous comment, the details of the tasks are unclear, so it's difficult to understand what was actually done in the reading period. Anyway, why were these different phases combined as the focus of analysis? Please clarify the reasoning behind this choice.

      Thank you for your feedback. The decision to analyze the entire interval, spanning from reading to decision-making, was primarily made to grasp the continuum of information processing comprehensively. While reading itself lacks social interaction, it serves as the foundation for subsequent decision-making, during which participants' cognitive states and affective responses gradually evolve. Therefore, examining these two phases collectively enables a more thorough investigation into how information influences decision-making. Furthermore, considering the task details remain ambiguous, we aim to uncover the underlying cognitive and affective mechanisms through a holistic analysis.

      (4) The method for analyzing single-brain activation is unclear. Please provide a detailed description of the analysis methods.

      Thank you for your suggestion, we have added more details in the Method section (p.11).

      “In the GLM model analysis, HbO was the dependent variable, and the regression amount was set to different task stages (a. Reading information, b. Sharing private information, c. Discussion information, d. Decision). After that, we convolved the regression factor with the Hemodynamic Response Function (HRF), and obtained the brain activation β value of each participant in each channel at different task stages through regression analysis.”  p.11

      (5) In the periods of Reading Information and Sharing Private Information, there appears to be no social interaction between participants (Figure1D). However, Figure 6 shows an increase in brain activity correlation even during the first 10 minutes (it corresponds to the Reading and Sharing period). Why does inter-brain correlation (GNS, in this study) increase even though there is no interaction between participants? Please provide an explanation.

      Sharing private information fosters interactive engagement, necessitating its exchange during Tencent Meetings to facilitate sharing. Previous research suggests that heightened correlations in brain activity can be attributed to (1) intrinsic cognitive processes, wherein participants display similar cognitive and emotional responses, fostering shared cognitive processing and brain activity synchronization despite limited external interaction; (2) emotional connections, as divulging private information elicits emotional responses that can be neurally correlated among individuals; and (3) environmental influences, where shared environments and contexts prompt neural interaction among participants even in the absence of direct social engagement. These factors collectively contribute to increased brain activity correlations without active interaction. Our primary focus, however, lies in the phase characterized by significant synchronized brain activity.

      Minor Comments:

      (6) Equation 1 Explanation: There is no explanation of Equation 1. It mentions Yi as the collective score, but what constitutes the collective score Yi is not defined in the manuscript. Additionally, while "i" is referred to as an item (in Line 196), the meaning of "item" is not clear. Therefore, the meaning of this equation is not understood.

      We apologize for this confusion. We have added a description in the manuscript (p.9).

      “In Eq.1, x is the individual score, y is the collective score (y is calculated from the three per capita scores), and i stands for the group number for the item. So, x_i means the individual score of participants in the _i group, and y_i means the collective score of the _i group. _d (x, y) r_epresents the distance from the individual to the collective score.”  p.9

      (7) Equation 2 Explanation: There is no explanation for Equation 2. Please provide descriptions for all variables such as S, t, and w.

      We have clearly stated the meaning of s, t, and w in the first edition of the manuscript article (p.12).

      As shown in L291-293: Here, t denotes the time, s denotes the wavelet scale, 〈⋅〉 represents a smoothing operation in time, and W is the continuous wavelet transform (Grinsted, Moore, & Jevrejeva, 2004).

      (8) Acronyms: Please define all acronyms upon their first appearance (e.g., CFI, TLI, RMSEA in L380).

      We apologize for these mistakes, and we have added full explanations for abbreviations upon their first use (p.16).

      “The mediation model demonstrated a satisfactory fit (CFI = 0.93, TLI = 0.93, RMSEA = 0.04) (CFI-Comparative Fit Index; TLI-Tucker-Lewis index; RMSEA-Root-Mean-Square Error of Approximation), suggesting that the perceived group identification of each individual affected the alterations in single-brain activations in the DLPFC, consequently leading to variations in their performance (β<sub>a</sub> = 0.16, t = 2.20, p = 0.030; β<sub>b</sub> = 0.26, t = 3.56, p < 0.001; β<sub>c</sub> = 0.18, t = 2.34, p = 0.020) (Figure 3C).”  p.16

      (9) Hyperscanning fMRI Studies: Since there are hyperscanning fMRI studies analyzing communication among three people (e.g., Xie et al., 2020, PNAS), it would be beneficial to cite this research. pnas.org/doi/pdf/10.1073/pnas.1917407117.

      As suggested, we have cited this paper. (p.4)

      (10) Line 272; Line 275: Should these references be to Benjamini & Hochberg (1995)?

      As suggested, we have revised our citation.

      (11) Research Objectives: The authors' aim seems to be understanding the relationship between Group Identification Level (High or Low), collective performance, and inter-brain synchronization (GNS). If so, shouldn't the results shown in Figure 6 illustrate how these differ between High and Low groups?

      We are grateful to the reviewer for your insightful comment. This study aimed to investigate the impact of group identity levels on collective performance and interbrain synchronization. Our analysis primarily focused on inter-group disparities to elucidate the potential influence of varying levels of group identification on collective behavior and neural synchrony, as highlighted by the reviewer. It is important to note that the relationship between group identification levels and collective performance, as well as neural synchronization, may represent a continuous or correlational process, rather than a binary comparison between two distinct groups. Notably, we treated group identification as a continuous variable and, consequently, Figure 6 was designed to illustrate trends in the association between group identification levels and both collective performance and neural synchronization, without conducting significance tests between groups. We are confident that the depiction in Figure 6 effectively captures the evolving dynamics between group identification levels and both collective performance and neural synchronization.

      (12) Figure 6 Star-Marker: What is the star marker shown in Figure 6? Please provide an explanation.

      We apologize for this confusion. We have added this explanation to the article. (p.21)

      “The red star sign indicates that at this time point, the neural signal began to increase significantly.” p.21

      (13) Pearson's Correlation: Use "Pearson's correlation" instead of "Pearson correlation."

      Thanks for your comments, we've changed Pearson correlation to Pearson's Correlation for a total of 10 places in the original text (pp. 9,11,13, 15,16, 19,23).

      “Moreover, the Pearson’s correlation was used to examine the relationship between group identification_2 and collective performance.” p.9

      “Subsequently, we used Pearson’s correlation analyses to investigate the relationship between single-brain activation and individual performance.” p.11

      “Second, the Pearson’s correlation between GNS and collective performance was performed.” p.13

      “Following that, we analyzed Pearson’s correlations between the original HbO data in the region related to individual and collective performance, denoted as brain activation connectivity (Lu et al., 2010).” p.13

      “Subsequently, the Pearson’s correlation between the quality of information exchange and collective performance was assessed.” p.15

      “Furthermore, the results of the Pearson’s correlation indicated that groups with higher group identification were more likely to exhibit better collective performance (r \= 0.38, p \= 0.003) (Figure 2B).” p.15

      “The Pearson’s correlation and its associated analyses were based on the data from group identification_2. *p < 0.05.” p.16

      “We first extracted the HbO brain activities related to individual performance (e.g., DLPFC, CH4) and collective performance (e.g., OFC, CH21) of each group member and conducted a Pearson’s correlation between the two.” p.19

      “Subsequently, Pearson’s correlation was used to test whether individual differences in the similarity in individual-collective performance were reflected by DLPFC-OFC connectivity.” p.19

      “Pearson’s correlation showed that the higher quality of information exchange, the better collective performance (r \= 0.36, p \= 0.007) (Figure 8C).” p.23

      (14) MNI Coordinates: The MNI coordinates for each channel are listed in the supporting information. How were these coordinates measured? Were they consistent for all participants? Was MRI conducted for each participant to obtain these coordinates?

      Thank you for your reminder, we have included the necessary instructions in the revised version. First, we need to clarify that we referred to previous literature to determine the placement of the optical probe plates. Following the completion of data collection, we utilized the Vpen positioning system to accurately locate the detection light poles, ultimately obtaining the MNI positioning coordinates. These coordinates were basically consistent for each participant. (p.8)

      “For each participant, one 3 × 5 optode probe set (8 emitters and 7 detectors forming 22 measurement points with 3 cm optode separation, see Table S1 for detailed MNI coordinates) was placed over the prefrontal cortex (reference optode is placed at Fpz, following the international 10-20 system for positioning). The other 2 × 4 probe set (4 emitters and 4 detectors forming 10 measurement points with 3 cm optode separation, see Table S2 for detailed MNI coordinates) was placed over the left TPJ (reference optode is placed at T3, following the international 10-20 system for positioning). The probe sets were examined and adjusted to ensure consistency of the positions across the participants. After the completion of data collection, we utilized the Vpen positioning system to accurately locate the detection light poles, ultimately obtaining the MNI positioning coordinates.”  p.8

    1. Author response:

      Reviewer #1:

      A) The presentation of the paper must be strengthened. Inconsistencies, mislabelling, duplicated text, typos, and inappropriate colour code should be changed.

      We will revise the manuscript to correct the abovementioned issues.

      B) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).

      We will carefully review, verify claims, and correct conclusions where needed.

      C) In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas?

      We will analyse the data in Figure 7 separately for AUDp and secondary auditory cortices to test regional differences. Additionally, we will provide a table summarizing key neuronal firing properties for each area during passive recordings to clarify how activity varies across cortical subregions and developmental stages.

      D) Some analysis interpretations should be more cautious. (..) A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).

      We will address issues around lick bias including alternative explanations, such as differences in motivation or impulsivity.

      Reviewer #2:

      A) For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We will edit the discussion and clarify these points. In addition, we will adjust and extend the methodology section to clarify the rationale of our analysis.

      B) The results of the optogenetic manipulation, while very interesting, warrant a more in-depth discussion.

      We agree that the effects observed in our optogenetic manipulation warrant further discussion. We will extend on the analysis and discussion of ACx silencing.

      Reviewer #3:

      A) One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.

      We recognize the need for a more nuanced analysis for the head-fixed version of the task. We will extend the behavioral analysis and provide more details to clarify these points.

      B) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.

      We appreciate the reviewer pointing out instances where our citations may not fully support our claims. We will carefully review the relevant citations and revise them to ensure they accurately reflect the findings of the cited studies. We will update references in lines 64–66 and 72–74 to better align with the specific stimulus types and developmental timelines discussed.

      C) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions?

      We agree that pooling neurons from multiple auditory cortical regions could potentially obscure region-specific differences. However, we addressed this concern by analyzing regional differences in neuronal firing properties, as shown in Supplementary Figures S4-1 and S4-2, and Supplementary Tables 2 and 3. Additionally, we examined stimulus-related and choice-related activity across regions and found no significant differences, as presented in Supplementary Figure S4-3. Please see our response to Reviewer 1, where we further elaborate on this point.

      D) And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)

      We acknowledge that other cortical layers are also of interest and may contribute differently to auditory processing across development. Our focus on layers 5/6 was motivated by both methodological considerations and biological relevance. These layers contain many of the principal output neurons of the auditory cortex, and are therefore well positioned to influence downstream decision-making circuits. We will clarify this rationale in the revised manuscript and note the limitations of our approach.

    1. Let’s face it, very few people read the “terms and conditions,” or the “terms of use” agreements prior to installing an application (app). These agreements are legally binding, and clicking “I agree” may permit apps (the companies that own them) to access your: calendar, camera, contacts, location, microphone, phone, or storage, as well as details and information about your friends.  While some applications require certain device permissions to support functionality—for example, your camera app will most likely need to access your phone’s storage to save the photos and videos you capture—other permissions are questionable. Does a camera app really need access to your microphone? Think about the privacy implications of this decision. When downloading an app, stop and consider: Have you read the app’s terms of use? Do you know what you’re giving the app permission to access? (e.g., your camera, microphone, location information, contacts, etc.) Can you change the permissions you’ve given the app without affecting its functionality? Who gets access to the data collected through your use of the app, and how will it be used? What kind of privacy options does the app offer?

      I think there is something that needs changing beyond how we interact with EULA (End User License Agreements) when we get access to an app. Here in the US, EULAs are complex and long, which is what makes us click agree without reading. If our nation could implement functions like nations in Europe have for EULAs, we could keep them simpler and readable, which is better for the consumer. I think this is most of the real solution, fixing the EULAs themselves, not fixing how we read the EULAs.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02655

      Corresponding author(s): Thierry SOLDATI

      1. General Statements [optional]

      The emergence of powerful model organisms for infection studies accelerates discoveries in innate immunity and conserved cell-autonomous defence mechanisms. Using the genetically tractable Dictyostelium discoideum/Mycobacterium marinum infection platform, we explored the critical interplay between pathogen-induced membrane damage and host repair pathways.

      Recent findings highlight evolutionarily conserved membrane repair pathways as crucial for cellular integrity against both sterile and pathogenic insults. We previously demonstrated the involvement of ESCRT and autophagy machineries in repairing membrane damage and containing pathogenic mycobacteria within vacuoles. Crucially, we uncovered that TrafE, an evolutionarily conserved TRAF-like E3 ubiquitin ligase, coordinates these machineries to repair membrane damage, preventing cell death.

      Here, we reveal that pathogenic mycobacteria manipulate host membrane microdomain scaffolding proteins and sterols to enhance toxin activity and facilitate bacterial escape. Genetic knockout of these microdomain organizers and sterol depletion significantly reduce membrane damage and bacterial escape, effectively containing mycobacteria and increasing host resistance. The conserved roles of flotillin and sterols are confirmed in murine microglial cells, underscoring evolutionary conservation.

      These discoveries significantly advance understanding of intracellular host-pathogen interactions, offering broad implications for cellular microbiology and immunology and have already attracted wide interest at major international scientific meetings.

      Thanks to the constructive criticisms and suggestions of the referees, we were able to significantly enhance the manuscript by integrating novel experimental strategies and improving presentation and discussion of previous results that together further strengthen our evidence.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The proposed study aims to elucidate the role of membrane microdomains and associated proteins-Vacuolin A, B, and C-during the infection of Dictyostelium discoideum (Dd) amoebae by Mycobacterium marinum (Mm). The results demonstrate that Vacuolins are required for Mm virulence, and that the presence of membrane microdomains is essential for phagosome membrane damage and bacillary escape into the cytosol-key steps in establishing a successful infection and subsequent bacterial proliferation. The study is well-designed, employing methodologies with which the authors have demonstrated expertise. Overall, it is methodologically sound, and most conclusions are well-supported by the presented data. However, some points require clarification.

      We thank the referee for their positive evaluation of the scope and strengths of our manuscript. The constructive criticisms of the referees were important to guide our revisions. We are convinced that the new data now integrated further strengthen our evidence.

      Major Points:

      The study aims to link the function of Dd Vacuolins to their potnetial facilitating role in phagosome escape and overall infection by Mm. To phenocopy the effect of Vac-KO, the authors used MβCD. Strikingly, this compound had a more significant impact on phagosome escape compared to Vac-KO, which either did not affect or only mildly affected this process. This likely reflects a difference in the underlying mechanisms being studied. Vac-KO cells may lack well-organized membrane domains but could retain a similar overall membrane composition. In contrast, MβCD disrupts these domains by chelating cholesterol, thus altering both the membrane composition and the domains themselves. This may explain why EsxA partitioning is more affected by MβCD than by triple KO. Consequently, this suggests that cholesterol, rather than the mere presence of membrane domains, plays a critical role in EsxA partitioning and activity in the phagosome. And even if LLOMe activity was lower in Vac-KO cells, this might be explained by the compartment targeted, the lysosomes which membrane composition may differ from the MCV. These points should be further discussed in the discussion section.

      The referee is right on target, these are all excellent points, and we fully agree with the argumentation. If we compare EsxA to a cholesterol-dependent PFT such as SLO, the presence of sterol is an absolute requirement for pore formation, but the local concentration of sterols achieved via clustering and the organisation of lipids/sterols in microdomains "only" increases efficiency (see for example PMID: 39835825). Therefore, the respective impacts of vac-KO and CD treatment differ in "intensity", and are additive in most assays, but are not resulting from "different underlying mechanisms". The simplest and most plausible interpretation of the combined results is that EsxA requires a threshold of local concentration/clustering of sterols to act and vacuolins/flotillins is one of the means to achieve it. In other words, membrane composition inhomogeneities exist in physiological membranes, particularly sterol and sphingolipid clustering in rafts, and microdomain organisers probably regulate their size and dynamics. Without vacuolin/flotillin, these inhomogeneities persist. Only when sterol is depleted and/or redistributed, do they disappear. In brief, the local sterol concentration is the trigger for EsxA preferential partitioning and activity, and many factors besides microdomain organisers influence it.

      The second interesting point is that LLOMe is a lysosomotropic membrane damaging agent, whereas EsxA targets the MCV membrane. We have already documented that the MCV has some endo-lysosomal properties and potentially resembles most the "post-lysosomal" compartment, characterized by a mildly acidic pH (pH ~6), the presence of Rab7 and zinc, ammonium and cupper transporters, for example. Our experiments also show that LLOMe is active in the whole endo-lysosomal pathway, including these post-lysosomes (PMID: 30596802, PMID: 37070811). The exact lipid composition of the MCV and post-lysosomes is not known, but both accumulate sterols in a similar manner. Both compartments are also akin to multivesicular bodies. These data are no direct proof but are compatible with our conclusions that both LLOMe and EsxA require similar threshold of local sterol concentration and that vacuolins are a mean to achieve this.

      The presentation of these conclusions has been revised and enhanced in the discussion (for example lines 396-400 and 437-439).

      Despite these similarities between LLOMe and EsxA activities, note that the mature MCV can be distinguished from all other endo-lysosomal compartments by the use of a Flipper probe that is sensitive to lipid composition and packing (Fig. 7C, and see below). In addition, RNAseq analyses of the impact of vac-KO and sterol depletion on infected and non-infected cells also highlight the interdependence between sterol concentration and vacuolin expression (Fig. 3G, 4G and H, Fig. EV5 and 6, and see below).

      Based on this observation, in figure 2, does the D4H/filipin signal or association increase over time as the Vac signal "solidifies"? In Vac-KO cells, does the mScarlet-D4H signal change in intensity or pattern (building on fig. S1)? These insights could provide valuable information on cholesterol levels at the MCV in KO versus wild-type cells. If possible, the authors should quantify fluorescence or the frequency of signal association.

      Qualitatively, sterols, as visualised by filipin and D4H, are present at all stages of the endo-lysosomal pathway and of MCV biogenesis. Now, there are many technical difficulties linked to a quantitative assessment, and therefore, please, let me present the framework. First, despite their wide use, the exact mechanism of binding of both reporters and which pool of sterol they visualise is still a mystery. This is often expressed as "they detect the accessible pool" of sterol, whatever it is. In addition, filipin detects sterols in both leaflets (and in intra-lumenal vesicles and other lipidic structures), while D4H detects sterols only in the cytosolic leaflet, and it is not known whether both leaflets have the same concentration of sterols. It is also known that filipin signal is only indirectly proportional to the sterol quantity in a cell, as measured by other quantitative methods. One of the best examples comes from studying the cellular phenotype of Niemann-Pick Type C disease, because many publications report a strong increase of filliping staining, whereas lipidomic analyses show at best a two-fold increase in cholesterol in NPC deficient cells. Moreover, technically speaking, D4H is a live probe, and fixation leads to some loss of localisation, probably because sterols are not fixable. On the other hand, filipin is mainly used after chemical fixation, but again sterols are not fixable, and the signal is very likely restricted to the membrane of origin, but not necessarily to the microdomains.

      All this to admit that, despite numerous and rigorous tentatives, we have not been able to reliably obtain quantitative measurements of neither filipin nor D4H signals. Also, these features likely also explain why we were not able to document changes in "patterns" of signals during MCV maturation. We ask for the referee's indulgence about this. Vacuolins remain the best microdomain morphology reporters.

      We nevertheless present additional qualitative D4H and VacC colocalization images in Fig. EV1C.

      Additionally, since Vacuolins do not have a significant impact on phagosome damage or escape, the difference in intracellular growth may be indirect, as suggested in the team's previous study on Vacuolins (DOI: 10.1242/jcs.242974). The authors measured MCV pH in figure S6-could they repeat this experiment to test whether Vacuolins affect MCV maturation? This was investigated in a previous version of the pre-print (DOI: 10.1101/2021.11.16.468763), and if the results still hold, it would strengthen the hypothesis that Vacuolins promote escape by modulating membrane organization, rather than influencing phagosome maturation.

      First, we respectfully disagree that vacuolins have no impact on membrane damage, we explained above why this impact is limited, but nevertheless additive with sterol depletion in most assays, during infection and sterile damage.

      We thank the referee for their excellent knowledge of the literature. Indeed, we previously went to extreme experimental sophistication to interrogate the impact of vac-KO on endo-phagosomal maturation. We were able to demonstrate that the major impact is on the recycling of phagocytic receptors and therefore on the cytoskeleton- and motor-induced deformation of the membrane in a cup that is essential for efficient phagocytosis (but not macropinocytosis). We also demonstrated a minimal effect on maturation, on the kinetics of pH change and delivery/recycling of hydrolases, but these cell biological differences did not translate in an impact on bacteria killing and digestion. As mentioned above, the MCV shares characteristics with post-lysosomes but minimal alterations of endo-lysosomal maturation in vac-KO cells should not be responsible for the strong effect on Mm infection. In other words, we are convinced that these minimal (mainly loss-of-function) perturbations that do not impact killing of food bacteria do not lead to an increased phagosomal "ferocity" and restriction of tough mycobacteria.

      Consequently, we decided not to repeat experiments to measure the pH around wt Mm in vac-KO cells, as it is anyway only slightly and transiently acidified in wt host cells, and previous work did not reveal major differences in endolysosomal compartment pH control (PMID: 32482795). But we agree with the referee that some of the MCV maturation data presented in the previous bioRxiv version are interesting for specialists, despite the indications of extremely small alterations between wt and vac-KO host cells. These data document that in absence of vacuolins, MCV characteristics are slightly altered, but we found no indication that they are more bactericidal in vac-KO cells (Fig. EV8F-H).

      Finally, as a substantial part of this manuscript relies on microscopy and image analysis, the methods section should detail how these analyses were performed. Specifically, for figure 1f, it is unclear how the cells were segmented and fluorescence quantified-was total fluorescence per cell measured, or was an average value used? Figures 5c and 5h could be moved to the supplementary material, and the segmentation method should be explained in the methods section. Additionally, statistical analysis should be more clearly described, justifying the use of one-way or two-way ANOVA, and specifying the post-hoc tests used for group comparisons.

      We fully agree with the referee and have therefore improved the detailed description of image analyses. For example, details for cell segmentation in images originating from infection and LLOMe experiments are succinctly described in the Materials & Methods section (lines 585-588, 594-597, and 639-640), but we now also refer to a methods chapter in press that describe in detail the whole segmentation pipeline (Perret et al. 2025).

      Concerning specifically Fig. 1F, we distinguished infected or bystander cells by the presence of bacteria and quantitated the maximal fluorescence intensity for each cell. Then, we decided on an arbitrary threshold of intensity of 5,000, that corresponds to the maximal signal observed for cells in mock conditions. Then, we quantified the percentage of bystander and infected cells with a higher-than-threshold (>5,000) vacuolin signal intensity. This clarification is now added to the legend of Fig. 1F.

      The statistical analyses applied are described in more detail in each figure legend.

      Reviewer #1 (Significance (Required)):

      This study provides the first direct evidence of the importance of membrane composition and organization in the virulence of Mycobacterium marinum, particularly in facilitating phagosome damage and bacillary escape. Using the well-established model of Dictyostelium discoideum infected with M. marinum, which has frequently been predictive of Mycobacterium tuberculosis behavior within phagosomes, the authors contribute critical insights into the mechanisms of mycobacterial phagosome escape-a key step in cellular invasion and dissemination. These findings have the potential to inform strategies aimed at blocking this escape mechanism, which, as demonstrated in this study, could prevent intracellular bacterial growth.

      This work is significant for advancing our understanding of mycobacterial pathogenesis, particularly by linking membrane microdomain composition to bacterial virulence. It will be highly relevant to researchers studying mycobacteria, intracellular pathogens, and host-pathogen interactions. While the study's use of M. marinum provides valuable insights, a limitation is that these results may not fully translate to M. tuberculosis, and further testing with the latter pathogen will be essential.

      We sincerely thank the referee for their very strong appraisal of our contributions, past and present, much appreciated. We agree that the translation of our findings to Mtb and macrophages is not guaranteed ... but has turned to be surprisingly and satisfyingly consistent in the past. To our delight, a recent article in Nature Communications reports about "Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis" and clearly identified flotillin-1 as a susceptibility factor for tuberculosis (PMID: 39613754). We have introduced a sentence in the discussion that reads "Importantly and consistently with our findings, recent work has revealed flotillins as a major determinant of the fate of Mtb infection in patients, because overexpression of flotillin-1, resulting from particular allele variants, is a host susceptibility factor for Mtb infection (PMID: 39613754)." (Lines 477-480)

      I am an expert in the infection of macrophages by Mycobacterium tuberculosis, the phagosome escape mechanism, and its associated effectors. I also have expertise in microscopy and image analysis. However, I do not specialize in Dictyostelium discoideum biology.


      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      the authors of this manuscript reported that EsxA, a secreted virulent factor of Mtb or Mm, causes membrane lysis in sterol-rich micro domain. They used the Mm-infected amoeba as an infection model, and characterized the effects of microdomain in Mycobacterium-containing Vacuole (MCV) on EsxA-mediated membrane disruption. They found that disruption of the micro domain through knockout of vacuolins or sterol depletion diminished Mm-induced membrane damage and cytosolic escape. They also found that vacuolins and sterol are essential for EsxA inserting into the membranes in vitro, and flotillin knockdown and sterol depletion conferred the resistance of murine microglial cells to Mm infection. The experiments were well designed and controlled, and the data were convincing.

      We thank the referee for this snappy summary of our main findings and for the positive comment on study design.

      My major comment is that the authors need to justify the use of BV-2 cells that are murine microglial cells, instead of macrophage cell lines, which are more relevant to Mtb/Mm infection.

      We understand the referee's concerns about the host used for Mm infection. First, we would like to argue that it is very true that the detailed biological processes accompanying the infection by Mtb, Mm or in fact any other pathogen depend on the origin and status of the host cell. In the TB field, a plethora of host macrophages, from murine and human origins, primary or immortalised, alveolar or interstitial, M1 or M2 have been used through the decades. Beside a robust agreement on many processes (phagosome maturation arrest, MCV membrane damage, role of xenophagy etc...), some of the crucial outcomes, for example the susceptibility or resistance to Mtb infection and the type of host cell death, have been hotly debated and depend on the host phagocyte identity and status.

      Now, it is true that microglial cells have only rarely been used for Mtb (or Mm) research, but it does not mean that this is not relevant. First, we would like to remind the referee that TB is not only a pulmonary disease, and that among the most disastrous extra-pulmonary sites of infection is the brain, resulting in the devastating tuberculous meningitis. In fact, tuberculous meningitis is the most severe form of tuberculosis with a fatality rate of 20-50% in treated individuals (doi: https://doi.org/10.1101/2025.03.04.641394). A quick literature survey on the topic reveals over 9,000 publications, including very significant contributions, using both Mtb and Mm in animal and human models (PMID: 38745656, PMID: 38264653, PMID: 36862557, PMID: 32057291, PMID: 30645042, PMID: 29352446, PMID: 27935825, PMID: 26041993).

      We have introduced a brief mention of these arguments in the discussion (Lines 456-459).

      In addition, we have already shown that this BV-2 cell line is reliable, they are adherent, motile and constitutively phagocytic and thus do not need to be differentiated with mega-doses of PMA, or any other stimulus. They beautifully recapitulate our findings in the Dd-Mm model (PMID: 38270456, PMID: 25772333), including when used as a host phagocyte to validate anti-infective compounds that were primarily identified using the Dd-Mm platform (PMID: 29500372).

      We have introduced a brief mention of these arguments in the results section (Lines 329-334).

      We also introduced two novel experimental evidence to strengthen the link between the Dd and BV-2 model systems. First, we show using qRT-PCR that, like vacuolins, flotillin-1 is upregulated in BV-2 at 32hpi (Fig. EV9B). Excitingly, as mentioned as response to referee #1, a recent article in Nature Communications reports about "Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis" and clearly identified flotillin-1 as a susceptibility factor for tuberculosis (PMID: 39613754). We have introduced a sentence in the discussion that reads "Importantly and consistently with our findings, recent work has revealed flotillins as a major determinant of the fate of Mtb infection in patients, because overexpression of flotillin-1, resulting from particular allele variants, is a host susceptibility factor for Mtb infection (PMID: 39613754)." (Lines 477-480)

      Second, we used for the first time the LysoFlipper probe to monitor MCV lipid composition and packing during infection (Fig. 7C). These results indicate that in BV-2 cells, as in Dd, the membrane characteristics of the MCV are profoundly different from the standard endo-lysosomal compartments.

      Reviewer #2 (Significance (Required)):

      It is well known that EsxA is membrane-lytic protein playing a role in Mtb/Mm-mediated phagosomal escape. There are other studies that have indicated lipid raft or micro domains in the membrane may play a role in EsxA-mediated membrane damage. This study further confirmed that the sterol-rich micro domain on the membrane has significant influence on the EsxA-mediated membrane disruption both in vitro and in vivo. While this finding is expected, but confirmation with solid experimental evidence is welcomed. This study also identified the genes or proteins required for micro domain organization, vacuolins and flotillin, which could be a target of host-directed therapy. Overall, this study is performed well and the results are convincing.

      We thank the referee for their expert views and comments on the function of EsxA and the lipidic environment in which it is supposed to act. We agree that EsxA has been the centre of attention for decades, but we respectfully disagree that its precise mode of action is known, neither in vitro nor in vivo. First, historically, it took the best of a decade for the field to accept that Mtb was not a strictly vacuolar pathogen. And even when the escape to the cytosol became a fact, the implication of EsxA remained extremely debated. For example, a "petition" was signed and published, arguing against its direct membrane damaging activity (PMID: 28119503). We agree that cumulated evidence now converges against a canonical "pore-forming" activity, but in favour of a "membrane-disrupting" activity. On the other hand, it is true that researchers have reached a form of consensus on the role of low pH to dissociate the EsxA-B dimer, and on the importance of the "physiological" composition of the acceptor membrane (PMID: 31430698, PMID: 35271388, PMID: 17557817). We are convinced that our evidence is not merely expected and confirmatory, but represents a novel, complete, solid, biochemical in vitro, molecular and genetics in vivo demonstration of the role of sterols clustering and microdomain organisers as susceptibility factors for Mm infection in evolutionary distant phagocytes.


      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The manuscript by Bosmani, Perret et al examines the role of Dictyodistelium discoideum vacuolin proteins in the integrity of the Mycobacterium marinum vacuole membrane. The data demonstrates that loss of vacuolins, similar to sterol depletion, reduced vacuole membrane damage meaning less cytosolic escape of the pathogen and subsequently reduced bacterial replication. The authors demonstrate functional analogy in a mammalian model of infection - where flotillin plays a similar role to the vacuolins - and this is an important demonstration of the utility of the D. discoideum model. The data is well presented and clear.

      We thank the referee for this positive summary of our main findings and of the clarity of results, interpretations and working model.

      Major Comments:

      There is no evidence presented in the manuscript of "microdomains" - while I believe this is likely a true description of what is happening on the vacuole membrane there is no visualisation of this. Both the GFP-Vac vacuole staining and the filipin staining show complete coverage of the vacuole. Perhaps at the 1 hour time points this is more convincing but I think it is worth looking at more of these earlier time points and quantifying these "microdomains" - i.e. proportion of vacuole membrane that is positive for the Vacs. Is it possible to look at the GFP-Vac signal and filipin staining at the same time? And other vacuole markers too?

      We agree with the referee that microdomains are the central characters of our study. Now, we would like to argue with the referee that one has to distinguish between structural, morphological evidence for the existence of microdomains and the biochemical and genetic evidence of their functional implication.

      On the one hand, microdomains are in fact nanometer-scale and are thus under the resolution limit of most optical microscopies. We and others already documented that during phagosome maturation, vacuolin distribution is patchy, reflecting the clustering of nanometer-scale inhomogeneities, and that the coating becomes more continuous with progressing maturation. The transition we observed here for vacuolins, as microdomain organisers, from a patchy to continuous coating reflects indirectly their macroscopic coalescence. As discussed above in response to the first referee, visualisation of the underlying lipidic clusters and microdomains is for technical reasons almost undoable. One cannot fix sterols. As replied to the first referee, we have not been able to improve much on the spatial resolution of lipidic microdomains, and, despite numerous and rigorous tentatives, we have not been able to reliably obtain quantitative measurements of neither filipin nor D4H signals, nor to document changes in "patterns" of signals during MCV maturation. We nevertheless present additional qualitative D4H and VacC colocalization images Fig. EV1C.

      On the other hand, we respectfully disagree that our manuscript lacks in strong and direct evidence for the functionality of sterol-rich microdomains as susceptibility factors required for a full mycobacteria infection in evolutionary distant phagocytes.

      In addition to the evidence presented previously, we have now added a large set of RNAseq analyses of the impact of vac-KO and sterol depletion on infected and non-infected cells, which also highlight the interdependence between sterol concentration and vacuolin expression (Fig. 3G, 4G and H, Fig. EV5 and 6). Moreover, we have now used a Flipper probe sensitive to lipid composition and packing to distinguish the mature MCV from all other endo-lysosomal compartments in microglial cells (Fig. 7C). Altogether, the simplest and most plausible interpretation of our cumulated evidence is that sterol-rich microdomains are necessary for EsxA-mediated MCV damage and escape to the cytosol.

      I really like the data presented in Figure 1 that demonstrates the specific upregulation of Vacuolin C during M. marinum infection. This is an intriguing result that brings up a lot of new questions e.g. how is this regulated? In response to membrane damage? Sensed by what? Does this upregulation also hold true for flotillin in the mammalian model? (and more!) however none of these ideas are pursued in the manuscript and by the end I was wondering why this data was included in the manuscript because all of the phenotypic data uses either a VacBC or ABC mutant. The link between figure 1 and the rest of the manuscript would be aided by characterisation of a specific VacC mutant.

      We share the referee's fascination with these data showing that VacC is a specific reporter of virulent mycobacteria infection. First, VacC expression at the transcriptional level, but also at the protein accumulation level both point toward a correlation with an infection with damage-causing mycobacteria. Specifically, one can distinguish two stages, one transient upregulation of all three isoforms that becomes sustained only for VacC and only when wt Mm causes damage (as opposed to the DRD1 mutant or M. smegmatis). This is clearly presented in multiple places in the manuscript (for example lines 377-380).

      Now, how is MCV damage sensed is extremely interesting and is the focus of numerous past and on-going studies in our laboratory but is out of the scope of this article. Just to mention a few lines of research as food for thoughts, membrane damage (by EsxA and by LLOMe) triggers the recruitment of the E3 ubiquitin ligase TrafE (PMID: 37070811), and subsequently of the ESCRT and autophagy machineries (PMID: 37070811, PMID: 30596802). Upstream of TrafE, we know that decrease of membrane tension is one parameter, because transient hyperosmolar shock also recruits TrafE to endo-lysosomal compartments (PMID: 37070811). On-going experiments demonstrate that calcium leakage from endo-lysosomes and MCV is another major triggering factor.

      As mentioned above, and in more direct response to the referee's questioning, we have now included RNAseq experiments that unequivocally indicate the link between vac-KO and sterol depletion and the direct effect on reducing membrane damage, because the two conditions lead to a down-regulation of the damage-dependent transcriptomic signatures of the ESCRT and autophagy related genes (Fig. 4G-H and Fig. EV5). Moreover, it clearly establishes that sterol depletion, which decreases sterile and EsxA-mediated damage, decreases vacuolin expression in infected cells (Fig 3G). Finaly, qRT-PCR on infected BV-2 microglial cells indeed documents an up-regulation of flotillin-1, reminiscent of vacC regulation in Dd (Fig. EV9B).

      All in all, we would like to respectfully ask the editor and referee to acknowledge that the signalling pathway between damage sensing and the vacuolin responses will be the focus of future studies.

      We understand that investigating the phenotypic consequences of only a single vacC-KO might be interesting, but we would like to argue that it is superfluous. First, for intricate biological reasons, KO of single and combinations of vacuolin genes result in very qualitatively and quantitatively similar phenotypes associated to motility, phagocytosis, endosome maturation etc... (PMID: 32482795). The present study extends this remarkable phenomenon by interrogating multiple parameters, reporters and phenotypes linked to infection, some shown and some unpublished (for example Fig. EV3B and Fig. 4D-E).

      Are the MMVs positive for all three vacuolins? It would be great if you could quantify which are present together or whether there are more distinct populations that are positive for just one or all three for example.

      The referee points to an interesting mechanistic aspect. We have therefore directly assessed the colocalization of pairs of vacuolin isoforms (Fig. EV1B), which clearly indicate that every MCV is coated with two vacuolins, which therefore arithmetically implies that all three isoforms are present together and that there is no isoform-specific MCV (Fig 2B). This is potentially also corroborated by earlier studies that showed vacuolin hetero-oligomerization (PMID: 16750281), a characteristic shared by flotillins (PMID: 38985763).

      Minor Comments:

      Fig 1F - this graph is quite striking but I think the individual data points should be presented as it is unclear whether this intensity threshold is an arbitrary value or genuinely represents two different populations. Perhaps better represented as a scatter plot?

      We fuly agree with the referee and have accordingly replotted all the graphs where this improved the visualisation and contributed to the interpretation of the data. We did not change the representation in Fig. 7E and G, Fig. EV3C, because the error bar already represents the deviation of the Area Under the Curve (AUC) that was calculated for the average curves resulting from a biological triplicate of experiments.

      The bar graphs early in the manuscript should shoe the individual data points from replicates. While the presentation is clear and differences are striking I think this article explains why showing the replicate data is important: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128

      We fully agree with the referee and have accordingly replotted all the graphs where this improved the visualisation and contributed to the interpretation of the data.

      In Figure 2: F and G should include quantification, in G the arrow on the24 hpi filipin panel is not in the right location

      As mentioned in response to referee #1 and #2, qualitatively, sterols, as visualised by filipin and D4H, are present at all stages of the endo-lysosomal pathway and of MCV biogenesis. Now, there are many technical difficulties linked to a quantitative assessment, and therefore, please, let me present the framework. First, despite their wide use, the exact mechanism of binding of both reporters and which pool of sterol they visualise is still a mystery. This is often expressed as "they detect the accessible pool" of sterol, whatever it is. In addition, filipin detects sterols in both leaflets (and in intra-lumenal vesicles and other lipidic structures), while D4H detects sterols only in the cytosolic leaflet, and it is not known whether both leaflets have the same concentration of sterols. It is also known that filipin signal is only indirectly proportional to the sterol quantity in a cell, as measured by other quantitative methods. One of the best examples comes from studying the cellular phenotype of Niemann-Pick Type C disease, because many publications report a strong increase of filliping staining, whereas lipidomic analyses show at best a two-fold increase in cholesterol in NPC deficient cells. Moreover, technically speaking, D4H is a live probe, and fixation leads to some loss of localisation, probably because sterols are not fixable. On the other hand, filipin is mainly used after chemical fixation, but again sterols are not fixable, and the signal is very likely restricted to the membrane of origin, but not necessarily to the microdomains.

      We corrected the arrow localisation.

      Reviewer #3 (Significance (Required)):

      The key strength of this manuscript is the use of the Dictyostelium model to dissect host-pathogen interactions. This provides an interesting evolutionary lens to the research findings presented here and is further strengthened by the data demonstrating that these findings are relevant in a mammalian model as well. The weaknesses are articulated in my "major comments" section. The phenotypic data presented here is strong - it is clear that these vacuolin proteins are important for the intracellular success of M. marinum however the data demonstrating the mechanism for this is less clear.

      We thank the referee for this overall positive summary of our main findings and of the clarity of results, interpretations and working model. As detailed above, we respectfully disagree with the final conclusion and are pleased to note that the other two referees are more satisfied with the level of mechanistic evidence.

      I am an academic researcher who is interested in the molecular host-pathogen interactions mediated by intracellular microbial pathogens. Scientists in my research field will be a key audience for this research. Predominantly this is basic researchers but the interest will be broader than host-pathogen interactions as researchers in the membrane integrity and membrane dynamics field will be interested here.

    1. “In faith,” said Simontault, “I do not believe that you have ever been in love. If you had felt the flame like other men, you would not now be picturing to us Plato’s Republic, which may be described in writing but not be put into practice.” “Nay, I have been in love,” said Dagoucin, “and am so still, and shall continue so as long as I live. But I am in such fear lest the manifestation of this love should impair its perfection, that I shrink from declaring it even to her from whom I would fain have the like affection. I dare not even think of it lest my eyes should reveal it, for the more I keep my flame secret and hidden, the more does my pleasure increase at knowing that my love is perfect.”

      Here, Plato's "Republic" is referenced in regards to Dagoucin's statement, "...love be based on the beauty, grace, love, and favour of a woman...such love cannot long endure". Dagoucin is indicating his belief that love cannot exist if it is only based on individual parts rather than the whole, and this mimics the "Republic"'s stance on love: "I dare say that you remember, and therefore I need not remind you, that a lover, if he is worthy of the name, ought to show his love, not to some one part of that which he loves, but to the whole" ("Plato's Republic" Book V). However, Plato did not believe that love was romantic, but was the result of desire, and that this desire should be directed away from sex and towards more spiritual things that can free the soul (Kraut 30). Dagoucin's claim that "[his] love is perfect" suggests that humans subconsciously subscribe to Plato's argument that the Forms, a representation of a superior and perfect reality in which beauty is a part, are what we truly worship, not their representations in human form.

      However, Parlamente and Saffradent suggest that they find this stance of loving only concepts and ideals rather than people to be cowardly: "I have known others besides you who preferred to die rather than speak", says Parlamente, and Saffradent continues, describing worldly rather than philosophical love "I have heard much of such timid lovers, but I have never yet seen one die...I do not think that any one can die of love". This contrast in opinions suggests that Navarre, the author, understands that humans often choose to love perfect ideals, but because of her humanist leanings, which focus on the humanity of society, she is more inclined to believe that humans are capable of loving each other, even in their imperfect forms. This therefore suggests that she thinks that focusing only on perfect forms is lonely and ultimately results in death, as represented by her response that "others...preferred to die" than live free of requited love, as Dagoucin describes: "my love would not be increased any more than it could be lessened, were it not returned with equal warmth".

      Sources:

      Plato. Plato Book V-VI (excerpt). University of Notre Dame.

      Kraut, Richard. "Plato on Love." The Oxford Handbook of Plato, edited by Gail Fine, Oxford Academic, 2008, pp. 286-310.

    1. “Lord, if you be so virtuous of intelligence as you be naturally relieved to the body, you should have pity of me.

      In this quote we see that advice is being asked for. “One expert, doctor Rondibilis, replies that he should not, as any wife will be unfaithful because she is ultimately an irrational being.” I think that Pantagruel giving advice to his friend took so long because he may have been trying to figure out what to say and how to say it. His friend asks about if he should marry or not.

      “Early Modern Period: Fiction, Gargantua and Pantagruel” Primary Source. https://chnm.gmu.edu/wwh/p/83.html

    2. Now as he [the man] was just amongst them, Pantagruel said unto him, “Let me entreat you, friend, that you may be pleased to stop here a little and answer me to that which I shall ask you, and I am confident you will not think your time ill bestowed; for I have an extreme desire, according to my ability, to give you some supply in this distress wherein I see you are; because I do very much commiserate your case, which truly moves me to great pity.

      In this quote we read about when Pantagruel first meets his friend. “The astonishing intellectual scope, the formal and linguistic inventiveness, and the general ebullience of Rabelais's writings, known collectively as Gargantua and Pantagruel, embody Renaissance humanism in all its excitement and thirst for knowledge.” This quote fits this because Pantagruel wants to get to know his new friend.

      Nelson, Brian. “Rabelais: The Uses of Laughter”. Cambridge University Press. 2015. https://www.cambridge.org/core/books/abs/cambridge-introduction-to-french-literature/rabelais-the-uses-of-laughter/8C24FC8EC905FE9A3E39B31AF24339C6

    1. Author response:

      Reviewer #1 (Public Review):

      The work of Umetani et al. monitors the death of about 100,000 cells caused by lethal antibiotic treatments in a microfluidic device. They observe that the surviving bacteria are either in a dormant or in a non-dormant state prior to the antibiotic treatment. They then study the relative abundances of these different persister cells when varying the physiological state of the culture. In agreement with previous observations, they observe that late stationary phase cultures harbor a high number of dormant persister cells and that this number goes down as the culture is more exponential but remains non-zero, suggesting that cultures at the exponential phase contain different types of persister bacteria. These results were qualitatively similar in a rich and poor medium. Further characterization of the growing persister bacteria shows that they often form Lforms, have low RpoS-mcherry expression levels and grow only slightly more slowly than the non-persister bacteria. Taken together, these results draw a detailed view of persister bacteria and the way they may survive extensive antibiotic treatments. However, in order to represent a substantial advance on previous knowledge, a deeper analysis of the persister bacteria should be done.

      We thank the reviewer for suggesting the addition of more detailed analyses of persister cells. As we wrote in our response to Essential Revision 1, we now include a new section titled “Response of growing persisters to Amp exposure is heterogeneous” (Page 11-12) and present the results of the detailed analyses of single-cell dynamics of growth and cell morphology over the course of the pre-exposure, exposure, and post-exposure periods (Fig. 2D and H, Fig. 4B and D, Fig. 4 – figure supplement 1 and 2, Fig. 5B and D, Fig. 5 – figure supplement 1, Fig. 8B and D, and Figure 8 – figure supplement 1). The new results characterize differential responses to Amp treatment among growing persister cells (Fig. 4A-D, Fig. 4 – figure supplement 1, Fig. 4 – figure supplement 2A, Fig. 5A-D, and Fig. 5 – figure supplement 1), comparable division rates of MG1655 between non-surviving cells and persister cells growing prior to antibiotic treatments (Fig. 4E and Fig. 8E), except for the post-exponential phase cell populations of MF1 to Amp treatment in the LB medium and the post-exponential phase cell populations of MG1655 to Amp treatment in the M9 medium (Fig. 4 – figure supplement 2B and Fig. 5E) and the presence of persister cells to CPFX that avoid filamentation after the treatment (Fig. 8C and D, and Fig. 8 – figure supplement 1). We believe that these new analyses would provide new insights into the diverse dynamics and survival modes of antibiotic persistence at the single-cell level and represent important contributions to the field.

      Reviewer #2 (Public Review):

      The main question asked by Umenati et al. is whether persister cells to ampicillin arise preferentially from dormant, non-dividing cells or from cells that are actively growing before antibiotic exposure. The authors tracked persister cells generated from populations at different growth phases and culture media using a microfluidic device coupled to fluorescence microscopy, which is a challenge due to the low frequency of these persister cells. One of the main conclusions is that the majority of persisters arising in exponentially-growing populations originated from actively-dividing cells before the antibiotic treatment, reinforcing the idea that dormancy is not a prerequisite for persister formation. The authors made use of a fluorescent reporter monitoring RpoS activity (RpoS-mCherry fusion) and observed that RpoS levels in these persister cells were low. In the few lineages that exhibited no growth before the ampicillin treatment, RpoS levels were low as well, indicating that RpoS is not a predictive marker for persistence. By performing the same experiment with early and late stationary phase cultures, the authors observed that the proportion of persister cells that originated from dormant cells before the ampicillin treatment is significantly increased under these conditions. In the late stationary phase condition, dormant cells were expressing high levels of RpoS. The authors suggested that RpoS-mCherry proteins form aggregates which were suggested by the authors to be a characteristic of 'deep dormancy'. These cells were mostly unable to restart growth after the antibiotic removal while others with the lowest levels of RpoS tended to be persister. Confirming that these cells indeed contain protein aggregates as well as determining the physiological state of these cells appears to be crucial.

      We thank reviewer #2 for pointing out the critical issue with the RpoS-mCherry fusion that we used to quantify RpoS expression levels in single cells in the original manuscript. As explained in our reply to the comments below, we performed a suggested experiment and confirmed that the RpoS function was impaired by tagging it with mCherry. To resolve this issue, we repeated almost all the experiments using the wild-type strain MG1655 and confirmed the reproducibility of the main results (Fig. 3, Fig. 3 – figure supplement 1, and Fig. 7). Due to this change of the main strain used in this study, we removed the results on the correlation between RpoS expression and the persistence trait in the revised manuscript because it may not reflect the relationship of intact RpoS. However, we decided to still keep and show some of the results with the MF1 strain, such as the population killing curves and the survival mode analyses, because they also provide insight into the role of RpoS in antibiotic persistence. In particular, we found both beneficial and detrimental effects of RpoS on antibiotic persistence, depending on culture conditions and duration of antibiotic treatment (Fig. 1 – figure supplement 3 and Fig. 6 – figure supplement 1). Therefore, we have included these results and related discussions in the revised manuscript.

      Reviewer #3 (Public Review):

      In their manuscript, Umetani, et al. address the question of the origin of persister bacteria using single-cell approaches. Persistence refers to a physiological state where bacteria are less sensitive to antibiotherapy, although they have not acquired a resistance mutation; importantly, the concept of persistence has been refined in the past decade to distinguish it from tolerance where bacteria are only transiently insensitive. Since persister cells are very rare in growing populations (typically 1e-5 or 1e-6), it is very challenging to observe them directly. It had been proposed that individual cells surviving antibiotics are not growing at the start of the treatment, but recent studies (nicely reviewed in the introduction) where persister bacteria were observed directly do not support this link. Following a similar line, the authors nonetheless still aim at "investigating whether non-growing cells are predominantly responsible for bacterial persistence". Based on new experimental data, they claim the contrary that most surviving cells were "actively growing before drug exposure" and that their work "reveals diverse survival pathways underlying antibiotic persistence".

      We thank the reviewer for this helpful comment, which suggested to us that some revisions in our Introduction would better place our study in the context of previous understanding of antibiotic persistence. As mentioned in our response to Essential Revision 4 and the second comment of Reviewer 1's Recommendations for the authors, we have modified the Introduction to more appropriately place our study in the context of the field.

      The main strengths of the manuscript are in my opinion:

      - To report on direct observation of E. coli persisters to ampicillin (200µg/mL) in 5 different growth media (typically 20 persisters or more per condition, one condition with 12 only), which constitutes without a doubt an experimental tour de force.

      - To aim at bridging the population level and the single-cell level by measuring relevant variables for each and analyzing them jointly.

      - To demonstrate that in most conditions a large fraction of surviving cells was actively growing before drug exposure.

      In addition, although it is well-known that E. coli doesn't need to maintain its rod shape for surviving and dividing, I found very remarkable in their data the extent to which morphology can be affected in persister cells and their progeny, since this really challenges our understanding of E. coli's "lifestyle" (these swimming amoeba-like cells in Supp Video 11 are mind-blowing!).

      We are grateful to the reviewer for the articulation of the strength of this study. 

      Unfortunately, these positive aspects are counter-balanced by several shortcomings in the way experiments are analyzed and interpreted, which I explain below. Moreover, the manuscript is written in a way that makes it very hard to find important information on how experiments are done and is likely to leave the reader with an impression of confusion about what the main findings actually are.

      We thank the reviewer for pointing out these important issues regarding the original manuscript. Please see our replies below regarding how we corresponded to each specific comment to resolve the issue. To make the experimental methods and procedures more accessible and interpretable, we have added more explanations of the experimental details to the Results and Methods sections. Furthermore, since we understood that some of the confusions came from the insufficient explanation of the preculture procedures for the microfluidic experiments, we have modified the schematic illustration of the method shown in Fig. S1 in the original manuscript and moved it as the first main figure in the revised manuscript (Fig. 1C and D). We have also added an illustration that explains the cultivation procedures for the batch culture experiments as Fig.

      6A. 

      My major concerns are the following:

      (1) The main interpretation framework proposed by the authors is to assess whether cells not growing before drug exposure (so-called "dormant") are more or less likely to survive the treatment than growing ones ("non-dormant"). Fig 2A and Fig 3G show the main conclusions of the article from this perspective, that growing cells can survive the treatment and that the fraction of persisters in a given condition is not explained by the fraction of "dormant" cells, respectively. With this analysis, the authors essentially assume that "dormant" cells are of the same type in their different conditions, which ignores the progress in this field over the last decade (Balaban et al. 2019). I argue on the contrary that the observation of "diverse modes of survival in antibiotic persistence" is expected from their experimental design. In particular, the sensitivity of E. coli to beta-lactams such as ampicillin is expected to be much lower during the lag out of the stationary phase, a phenomenon which has been coined "tolerance"; hence in the Late Stationary condition, two subpopulations coexist for which different response to ampicillin is expected. I propose steps toward a more compelling interpretation of the experimental data. Should this point be taken seriously by the authors, it, unfortunately, implies a major rewriting of the article, including its title.

      We thank the reviewer for bringing to our attention the point that may have caused confusion in the original manuscript. 

      The primary purpose of this manuscript was not to assess whether non-growing cells prior to drug exposure are more or less likely to survive treatment than growing cells. Rather, we wanted to examine how different persister cell dynamics emerge at the single-cell level depending on previous cultivation history, growth media, and antibiotic types. We believe that this point is clearer in the revised manuscript with the newly added single-cell dynamics data (Fig. 2D, 2H, 4B, 4D, Fig. 4 – figure supplement 1 and 2A, Fig. 5B, 5D, Fig. 5 – figure supplement 1, Fig. 8B, 8D, and Fig. 8 – figure supplement 1). 

      We also did not mean to imply that "dormant cells" were of the same type under different conditions, as we were aware of the diversity of cellular states of non-growing cells, as well as the reduced sensitivity of cells to antibiotics during the lag out of stationary phase. We believe that one of the reasons this point may have been unclear is that in the previous version we had referred to all cells that were not growing prior to antibiotic treatment as "dormant cells", a term that is often used in a more restricted way to refer to cells under prolonged growth arrest. Therefore, in the revised manuscript, we have avoided the term "dormant cells" and instead simply referred to these as "non-growing cells". Accordingly, we have changed the title of the paper from "Observation of non-dormant persister cells reveals diverse modes of survival in antibiotic persistence" to "Observation of persister cell histories reveals diverse modes of survival in antibiotic persistence".

      To further address these points, we have improved the description of the experimental procedures for the single-cell measurements (see the reviewer's next comment as well). The nongrowing persisters of the MF1 strain found in the post-exponential phase cell populations must be of a different type than those found in the post-early and post-late stationary phase cell populations due to the experimental design. All early and late stationary phase cells were maintained in a non-growing state by flowing conditioned media prepared from the early and late stationary phase cultures until the start of the time-lapse measurements. Thus, aside from potential physiological heterogeneity, the non-growing cells prior to drug treatment are all long lagging cells. On the other hand, for the post-exponential phase condition, we maintained exponential growth conditions during the period from the start of the second pre-culture to the start of antibiotic treatment, including the period during sample preparation for time-lapse measurements. Given the exponential dilution by growth of cell populations, the non-growing persisters are unlikely to be long lagging cells (see our response to Reviewer 2's third comment  in "Recommendations for the authors"). We now describe these experimental procedures in more detail in the Results section (L161-178, L287-297). In addition, we discuss the diversity of cellular states of both non-growing and growing cells in Discussion, citing literature (L545-557).

      (2) The way the authors describe their experiments with bacteria in the stationary phase is very problematic. For instance, they write that they "sampled cells from early and late stationary phases (...) and exposed them to 200 μg/mL of Amp in both batch and single-cell cultures." For any reader in a hurry (hence skipping methods and/or supplementary figure), this leads to believe that bacteria sampled in the stationary phase were exposed to the drug right away (either by adding the drug to the stationary phase sample, or more classically by transferring cells to fresh media with antibiotics). However, it turns out that, after sampling and loading in the microfluidic device, bacteria are grown 2 h in LB (or 4 h in M9) - I don't know what to think of such a blatant omission. The names chosen for each condition should reflect their most important aspects, here "stationary" is simply not appropriate - maybe something like "post early stationary" instead. In any case, I believe that this point highlights further the misconception pointed out in 1 and implies that the average reader will be at best confused, and probably misled.

      We again thank the reviewer for pointing out the insufficient explanation of the method for the single-cell measurements and the helpful recommendation regarding our nomenclature for different conditions. As mentioned above, we now present the previous supplementary figure that schematically explains the experimental procedure as the first main figure to clarify how we prepared the cells loaded into the microfluidic device for single-cell measurements (Fig. 1C and D). Also, following the reviewer's suggestion, we now refer to the conditions as "post-exponential phase," "post-early stationary phase," and "post-late stationary phase" in the revised manuscript. 

      We included a 2-hour (or 4-hour in M9) cultivation period in fresh medium in batch cultures for measuring killing curves to make the cultivation conditions prior to antibiotic treatment as similar as possible between batch and microfluidic experiments. We have clarified the presence of preexposure cultivation of post-early stationary and post-late stationary phase cell populations in the fresh medium before treating them with antibiotics (L264-269, Fig. 6A), so that readers can more easily recognize the experimental conditions.

      (3) Figures 4 and 5 are of very minor significance, and the methodology used in Fig 4 is questionable. The authors measure the abundance of an Rpos-mCherry translational fusion because its "high expression has been suggested to predict persistence". The rationale for this (that an RpoS-mCherry fusion would be a proxy for intracellular ppGpp levels, and in turn predict persistence) has never been firmly established, and the standards used in the article where this reporter was introduced (Maisonneuve, Castro-Camargo, and Gerdes 2013) are notoriously low (which eventually led to its retraction) - I don't know what to think of the fact that the authors cite a review by this group rather than their retracted article. While transcriptional fusions of promoters regulated by RpoS have been proposed to measure its regulatory activity (Patange et al. 2018), the combination of self-regulation and complex post-translational regulation of rpoS makes the physical meaning of the reporter used here completely unclear. Moreover, this translational fusion is introduced without doing any of the necessary controls to demonstrate that the activity of RpoS is not impaired by the addition of the fluorescent protein. Fig 5 simply reports the existence of persisters to ciprofloxacin growing before the treatment. This might be a new observation but it is not unexpected given that a similar observation has been made with a similar drug, ofloxacin (Goormaghtigh and van Melderen 2019), as pointed out in the introduction. There is no further quantitative claim on this.

      We thank the reviewer for pointing out the issue of the RpoS-mCherry fusion. As we mentioned in our response to Essential Revision 2 and also to the comment from reviewer #2, we have tested the sensitivity of this fluorescent reporter strain to oxidative stress and confirmed that it is as sensitive as the rpoS strain (Fig. 1 – figure supplement 1C). Therefore, the RpoS function seems to be defective in this strain, as now explained in Results (L69-79). After confirming the problem with the RpoS-mCherry fusion, we removed all analyses and related arguments that relied on the RpoS expression level (previous Figure 4). In addition, we repeated almost all the experiments with the original MG1655 strain to confirm that the observed results are not specific to the problematic reporter strain. 

      Regarding the experiments with CPFX, we have added a more detailed analysis of single cell dynamics and found that, contrary to the reported results for ofloxacin, not all persistent cells show filamentation after drug withdrawal (Fig. 8C and D, Fig. 8 – figure supplement 1). In addition, we performed new microfluidic experiments in which we treated post-late stationary phase cells with CPFX (Fig. 3). In contrast to the Amp treatment result and the previous study that reported the persistence of post-stationary phase cell populations to ofloxacin (ref. 20), all the persisters for which we identified the pre-exposure growth traits in this condition grew normally prior to CPFX treatment. These newly added analyses and experiments clarify the significance of the CPFX experiments. 

      (4) The authors don't mention the dead volume nor the speed of media exchange in their device. Hopefully, it is short compared to the duration of the treatment; however, it is challenging to remove all antibiotics after the treatment and only 1e-3 or 1e-4 of the treatment concentration is already susceptible to affecting regrowth in fresh media. If this is described in another article, it would be worth adding a comment in the main text.

      We thank the reviewer for bringing up this important point. We have added the perfusion chamber volume and medium flow rate information in the Methods section (L809-817).   

      In the study in which two of the authors participated, the medium exchange rate across the semipermeable membrane was evaluated in a similar device with similar microchamber dimensions (ref. 26). There, we confirmed that the medium exchange was completed within 5 min, which is much shorter than the period of antibiotic treatment and post-antibiotic treatment periods for observing regrowth. We have also included this information in the main text with the reference (L58-63).

      Despite the relatively high medium exchange rate, we cannot formally exclude the possibility that a small amount of antibiotic may remain in the device, e.g. due to non-specific adsorption on the internal surface of the microchambers. In such cases, the residual antibiotics may influence the physiological states of the cells and the regrowth kinetics in the post-exposure periods, as suggested by the reviewer. However, the frequencies of persister cells in the cell populations in our single-cell measurements are comparable to those in the batch culture measurements. Therefore, the removal of antibiotic drugs in our device is at least as efficient as in the batch culture assay. To clarify this point, we have added a paragraph to the Discussion with a reference that reviews the influence of antibiotics at concentrations significantly lower than the MICs (L482-

      489).    

      (5) Fig 2A supports the main finding that a significant fraction of bacteria surviving the treatment are growing before drug exposure, but it uses a poorly chosen representation.

      - In order to compare between conditions, one would like to see the fraction of each type in the population.

      - The current representation (of a fraction of each type among surviving cells) requires a side-byside comparison with a random sample (which will practically be equivalent to the fraction of each type among killed cells) in order to be informative.

      We have changed the style of the previous Fig. 2A to show the fraction of each type in the population instead of the fraction of each type among surviving cells (Fig. 3 and Fig. 3-figure supplement 1).

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      By way of background, the Jiang lab has previously shown that loss of the type II BMP receptor Punt (Put) from intestinal progenitors (ISCs and EBs) caused them to differentiate into EBs, with a concomitant loss of ISCs (Tian and Jiang, eLife 2014). The mechanism by which this occurs was activation of Notch in Put-deficient progenitors. How Notch was upregulated in Put-deficient ISCs was not established in this prior work. In the current study, the authors test whether a very low level of Dl was responsible. But co-depletion of Dl and Put led to a similar phenotype as depletion of Put alone. This result suggested that Dl was not the mechanism. They next investigate genetic interactions between BMP signaling and Numb, an inhibitor of Notch signaling. Prior work from Bardin, Schweisguth and other labs has shown that Numb is not required for ISC self-renewal. However the authors wanted to know whether loss of both the BMP signal transducer Mad and Numb would cause ISC loss. This result was observed for RNAi depletion from progenitors and for mad, numb double mutant clones. Of note, ISC loss was observed in 40% of mad, numb double mutant clones, whereas 60% of these clones had an ISC. They then employed a two-color tracing system called RGT to look at the outcome of ISC divisions (asymmetric (ISC/EB) or symmetric (ISC/ISC or EB/EB)). Control clones had 69%, 15% and 16%, respectively, whereas mad, numb double mutant clones had much lower ISC/ISC (11%) and much higher EB/EB (37%). They conclude that loss of Numb in moderate BMP loss of function mutants increased symmetric differentiation which lead caused ISC loss. They also reported that numb<sup>15</sup> and numb<sup>4</sup> clones had a moderate but significant increase in ISC-lacking clones compared to control clones, supporting the model that Numb plays a role in ISC maintenance. Finally, they investigated the relevance of these observation during regeneration. After bleomycin treatment, there was a significant increase in ISC-lacking clones and a significant decrease in clone size in numb<sup>4</sup> and numb<sup>15</sup> clones compared to control clones. Because bleomycin treatment has been shown to cause variation in BMP ligand production, the authors interpret the numb clone under bleomycin results as demonstrating an essential role of Numb in ISC maintenance during regeneration.

      Strengths:

      (i) Most data is quantified with statistical analysis

      (ii) Experiments have appropriate controls and large numbers of samples

      (iii) Results demonstrate an important role of Numb in maintaining ISC number during regeneration and a genetic interaction between Mad and Numb during homeostasis.

      Weaknesses:

      (i) No quantification for Fig. 1

      Quantification of Fig.1 has been added. 

      (ii) The premise is a bit unclear. Under homeostasis, strong loss of BMP (Put) leads to loss of ISCs, presumably regardless of Numb level (which was not tested). But moderate loss of BMP (Mad) does not show ISC loss unless Numb is also reduced. I am confused as to why numb does not play a role in Put mutants. Did the authors test whether concomitant loss of Put and Numb leads to even more ISC loss than Put-mutation alone.

      We have tested the genetic interaction between put and numb using Put RNAi and Numb RNAi driven by esg<sup>ts</sup>. According to the results in this study and our previously published data, put mutant clone or esg<sup>ts</sup> > Put-RNAi induced a rapid loss of ISC (whin 8 days). We did not observe further enhancement of stem cell loss phenotype in Put and Numb double RNAi guts.

      (iii) I think that the use of the word "essential" is a bit strong here. Numb plays an important role but in either during homeostasis or regeneration, most numb clones or mad, numb double mutant clones still have ISCs. Therefore, I think that the authors should temper their language about the role of Numb in ISC maintenance.

      We have revised the language and changed “essential” to important”.

      Reviewer #2 (Public review):

      Summary:

      This work assesses the genetic interaction between the Bmp signaling pathway and the factor Numb, which can inhibit Notch signalling. It follows up on the previous studies of the group (Tian, Elife, 2014; Tian, PNAS, 2014) regarding BMP signaling in controlling stem cell fate decision as well as on the work of another group (Sallé, EMBO, 2017) that investigated the function of Numb on enteroendocrine fate in the midgut. This is an important study providing evidence of a Numb-mediated back up mechanism for stem cell maintenance.

      Strengths:

      (1) Experiments are consistent with these previous publications while also extending our understanding of how Numb functions in the ISC.

      (2) Provides an interesting model of a "back up" protection mechanism for ISC maintenance.

      Weaknesses:

      (1) Aspects of the experiments could be better controlled or annotated:

      (a) As they "randomly chose" the regions analyzed, it would be better to have all from a defined region (R4 or R2, for example) or to at least note the region as there are important regional differences for some aspects of midgut biology.

      Thank you for the suggestion. In fact, we conducted all the analyses in region 4, we have added statement to clarify this in the revised manuscript.

      (b) It is not clear to me why MARCM clones were induced and then flies grown at 18{degree sign}C? It would help to explain why they used this unconventional protocol.

      We kept the flies at 18°C to avoid spontaneous clone.

      (2) There are technical limitations with trying to conclude from double-knockdown experiments in the ISC lineage, such as those in Figure 1 where Dl and put are both being knocked down: depending on how fast both proteins are depleted, it may be that only one of them (put, for example) is inactivated and affects the fate decision prior to the other one (Dl) being depleted. Therefore, it is difficult to definitively conclude that the decision is independent of Dl ligand.

      In our hand, Dl-RNAi is very effective and exhibited loss of N pathway activity (as determined by the N pathway reporter Su(H)-lacZ ) after RNAi for 8 days (Fig. 1D). Therefore, the ectopic Su(H)-lacZ expression in Punt Dl double RNAi (fig. 1E) is unlikely due to residual Dl expression. Nevertheless, we have changed the statement “BMP signaling blocks ligand-independent N activity” to” Loss of BMP signaling results in ectopic N pathway activity even when Dl is depleted”

      (3) Additional quantification of many phenotypes would be desired.

      (a) It would be useful to see esg-GFP cells/total cells and not just field as the density might change (2E for example).

      We focused on R4 region for quantification where the cell density did not exhibit apparent change in different experimental groups. In addition, we have examined many guts for quantification. It is very unlikely that the difference in the esg-GFP+ cell number is caused by change in cell density.

      (b) Similarly, for 2F and 2G, it would be nice to see the % of ISC/ total cell and EB/total cell and not only per esgGFP+ cell.

      Unfortunately, we didn’t have the suggested quantification. However, we believe that quantification of the percentage of ISC or EB among all progenitor cells, as we did here, provides a meaningful measurement of the self-renewal status of each experimental group.

      (c) Fig1: There is no quantification - specifically it would be interesting to know how many esg+ are su(H)lacZ positive in Put- Dl- condition compared to WT or Put- alone. What is the n?

      Quantification of Fig.1 has been added. 

      (d) Fig2: Pros + cells are not seen in the image? Are they all DllacZ+?

      Anti-Pros and anti-E(spl)mβ-CD2 were stained in the same channel (magenta).  Pros+ exhibited “dot-like” nuclear staining while CD2 staining outlined the cell membrane of EBs. We have clarified this in the revised figure legend.

      (e) Fig3: it would be nice to have the size clone quantification instead of the distribution between groups of 2 cell 3 cells 4 cell clones.

      Because of the heterogeneity of clone size for each genotype, we chose to group clones based on their sizes ( 2, 3-6, 6-8, >8 cells) and quantified the distribution of individual groups for each genotype, which clearly showed an overall reduction in clone size for mad numb double mutant clones. We and others have used the same clone size analysis in previous studies (e.g., Tian and Jiang, eLife 2014).

      (f) How many times were experiments performed?

      All experiments were performed at least 3 times.

      (4) The authors do not comment on the reduction of clone size in DSS treatment in Figure 6K. How do they interpret this? Does it conflict with their model of Bleo vs DSS?

      Guts containing numb<sup>4</sup> clones treated with DSS exhibited a slight reduction of clone size, evident by a higher percentage of 2-cell clones and lower percentage of > 8 cell clones. This reduction is less significant in guts containing numb<sup>15</sup> clones. However, the percentage of Dl<sup>+</sup>-containing clones is similar between DSS and mock-treated guts. It is possible that ISC proliferation is lightly reduced due to numb<sup>4</sup> mutation or the genetic background of this stock.

      (5) There is probably a mistake on sentence line 314 -316 "Indeed, previous studies indicate that endogenous Numb was not undetectable by Numb antibodies that could detect Numb expression in the nervous system".

      We have modified the sentence.

      Reviewer #3 (Public review):

      Summary:

      The authors provide an in-depth analysis of the function of Numb in adult Drosophila midgut. Based on RNAi combinations and double mutant clonal analyses, they propose that Numb has a function in inhibiting Notch pathway to maintain intestinal stem cells, and is a backup mechanism with BMP pathway in maintaining midgut stem cell mediated homeostasis.

      Strengths:

      Overall, this is a carefully constructed series of experiments, and the results and statistical analyses provides believable evidence that Numb has a role, albeit weak compared to other pathways, in sustaining ISC and in promoting regeneration especially after damage by bleomycin, which may damage enterocytes and therefore disrupt BMP pathway more. The results overall support their claim.

      The data are highly coherent, and support a genetic function of Numb, in collaborating with BMP signaling, to maintain the number and proliferative function of ISCs in adult midguts. The authors used appropriate and sophisticated genetic tools of double RNAi, mutant clonal analysis and dual marker stem cell tracing approaches to ensure the results are reproducible and consistent. The statistical analyses provide confidence that the phenotypic changes are reliable albeit weaker than many other mutants previously studied.

      Weaknesses:

      In the absence of Numb itself, the midgut has a weak reduction of ISC number (Fig. 3 and 5), as well as weak albeit not statistically significant reduction of ISC clone size/proliferation. I think the authors published similar experiments with BMP pathway mutants. The mad<sup>1-2</sup> allele used here as stated below may not be very representative of other BMP pathway mutants. Therefore, it could be beneficial to compare the number of ISC number and clone sizes between other BMP experiments to provide the readers with a clearer picture of how these two pathways individually contribute (stronger/weaker effects) to the ISC number and gut homeostasis.

      Thanks for the comment. We have tested other components of BMP pathway in our previously study (Tian et al., 2014). More complete loss of BMP signaling (for example, Put clones, Put RNAi, Tkv/Sax double mutant clones or double RNAi) resulted in ISC loss regardless the status of numb, suggesting a more predominant role of BMP signaling in ISC self-renewal compared with Numb. We speculate that the weak stem cell loss phenotype associated with numb mutant clones in otherwise wild type background could be due to fluctuation of BMP signaling in homeostatic guts.

      The main weakness of this manuscript is the analysis of the BMP pathway components, especially the mad<sup>1-2</sup> allele. The mad RNAi and mad<sup>1-2</sup> alleles (P insertion) are supposed to be weak alleles and that might be suitable for genetic enhancement assays here together with numb RNAi. However, the mad<sup>1-2</sup> allele, and sometimes the mad RNAi, showed weakly increased ISC clone size. This is kind of counter-intuitive that they should have a similar ISC loss and ISC clone size reduction.

      We used mad<sup>1-2</sup> and mad RNAi here to test the genetic interaction with numb because our previous studies showed that partial loss of BMP signaling under these conditions did not cause stem cell loss, therefore, may provide a sensitized background to determine the role of Numb in ISC self-renewal. The increased proliferation of ISC/ clone size associated with mad<sup>1-2</sup> and mad RNAi is due to the fact that reduction of BMP signaling in either EC or EB non-autonomously induces stem cell proliferation. However, in mad numb double mutant clones, there was a reduction in clone size due to loss of ISC in many clones.

      A much stronger phenotype was observed when numb mutants were subject to treatment of tissue damaging agents Bleomycin, which causes damage in different ways than DSS. Bleomycin as previously shown to be causing mainly enterocyte damage, and therefore disrupt BMP signaling from ECs more likely. Therefore, this treatment together with loss of numb led to a highly significant reduction of ISC in clones and reduction of clone size/proliferation. One improvement is that it is not clear whether the authors discussed the nature of the two numb mutant alleles used in this study and the comparison to the strength of the RNAi allele. Because the phenotypes are weak and more variable, the use of specific reagents is important.

      We have included information about the two numb alleles in the “Materials and Methods”. numb<sup>15</sup> is a null allele, and the nature of numb<sup>4</sup> has not been elucidated. According to Domingos, P.M. et al., numb<sup>15</sup> induced a more severe phenotype than numb<sup>4</sup> did. Consistently, we also found that more numb<sup>15</sup> mutant clones were void of stem cell than numb<sup>4</sup> mutant clones.

      Furthermore, the use of possible activating alleles of either or both pathways to test genetic enhancement or synergistic activation will provide strong support for the claims.

      Activation of BMP (esgts>Tkv<sup>CA</sup>) alone induced stem cell tumor (Tian et al., 2014) whereas overexpression of Numb did not induce increase stem cell number although overexpression of Numb in wing discs produced phenotypes indictive of inhibition of N (our unpublished observation), making it difficult to test the synergistic effect of activating both BMP and Numb.

      Reviewer #1 (Recommendations for the authors):

      - Cartoon of RGT in Fig 4 needs to be improved. We need to know what chromosome harbors the esgts. It is not sufficient to simply put the location of the ubi-GFP and ubi-RFP (on 19A) and not show the location of other components of the RGT system.

      Thank you for the suggestion. We have revised the cartoon in Fig. 4 to include all three pairs of chromosomes and indicate where the esgts driver and UAS-RNAi are located. In addition, we have included the genotypes for all the genetic experiments in the Method section.

      - Quantification of the results in Fig. 1

      Quantification of Fig.1 has been added. 

      - The authors need to explain the premise more carefully (see above) and explain whether or not they tested put, numb double knockdowns.

      We have explained why not testing put numb double RNAi (see above).

      Reviewer #2 (Recommendations for the authors):

      The number of times the experiments have been performed would be useful to include.

      This information has been added in the figure legends.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility, and clarity)

      The manuscript by Song et al presents evidence to show that the predicted cysteine protease type 6 secretion system (T6SS) effector Cpe1 inhibits target cell growth by cleaving type II DNA Topoisomerases GyrB and ParE. The authors determined the structure of the protein complex formed by Cpe1 and its immunity protein Cpi1, which allowed them to reveal the mechanism of inhibition. Moreover, the authors identified type II DNA topoisomerases GyrB and ParE as the targets of Cpe1. Overall, the major conclusions were well supported by experimental data of high quality. The findings have expanded our appreciation of the mechanism utilized by T6SS effectors to inhibit target cell growth.

      We thank the reviewer for their positive remarks and valuable suggestions to improve this manuscript.


      Major comments

      To better establish that GyrB and ParE are the sole targets of Cpe1, the authors should express the GG mutant in target cells and determine whether these cells become resistant to Cpe1-mediated killing (inhibition). They can also determine whether co-expression of the cleavage resistant mutants suppresses the toxicity of Cpe1.

      We appreciate the reviewer’s suggestion to investigate additional substrates of Cpe1 beyond GyrB and ParE, which may not have been fully captured in our crosslinking-mass spectrometry experiments due to technical limitations or low protein abundance. To address this topic, we generated target cells heterologously expressing cleavage-resistant GyrB and ParE variants (GyrBΔG102 and ParEΔG98) that are not susceptible to Cpe1, as described in our original manuscript (Figures 3h, i). We performed both Cpe1 expression assay and competition assay to assess if expression of the cleavage-resistant variants suppresses Cpe1 toxicity (Author Response Figures 1a, b). However, we did not observe a substantial protective effect. While this outcome could suggest that GyrB and ParE are not the sole targets of Cpe1, alternative explanations are also plausible. In the Cpe1 expression assay, high levels of Cpe1 could still act on endogenous wild-type GyrB and ParE, and although we attempted to increase variant expression, precise quantification remains challenging. In the competition assay, highly active Cpe1 may have continued to target wild-type substrates throughout the experiment, potentially masking any protective effect. Additionally, reduced activity of the mutant proteins could contribute to the observed results. Finally, deletion of the global repressor H-NS in the Cpe1-producing E. coli strain may have induced other interbacterial competition mechanisms1, leading to growth inhibition independently of Cpe1. Addressing these questions comprehensively would require a more systematic investigation under a wider range of conditions. We consider this an important avenue for future studies.

      Results in Figure 7 clearly show that Cpi1 is capable of displacing ParE from Cpe1 due to higher affinity. Yet, the "competitive inhibition model" described in the last result section does not completely match what is really happening in Cpe1-mediated interbacterial competition. If Cpi1 is in the target cell, it would more likely engage the incoming Cpe1 before it can interact with ParE or GyrB, so competition does not occur in this scenario. Similarly, in the predatory cells expressing Cpe1 and Cpi1, these two proteins will form a stably protein complex, and no competition with the target will occur. The authors should reconsider their model.

      We thank the reviewer for their comments and appreciate the opportunity to clarify this point. First, we believe the reviewer is referring to Figure 5 rather than Figure 7. In our model, the primary role of immunity proteins in interbacterial competition is to neutralize cognate toxins and prevent self- or kin-intoxication. These immunity proteins exhibit high specificity and strong binding affinity toward their associated toxins, ensuring effective protection2. In predatory cells, immunity proteins are typically co-expressed with their corresponding toxins, likely enabling immediate suppression upon translation. During kin competition, immunity proteins can protect cells even after foreign toxins engage their substrates.

      Our results demonstrate that Cpi1 binds Cpe1 with higher affinity than its substrates and can displace them from pre-formed Cpe1-substrate complexes (Figures 5b-f). This aligns with the established function of immunity proteins in interbacterial competition and provides a mechanistic basis for how they confer protection, even when toxins have initially engaged their targets2. We acknowledge the reviewer’s point that in both scenarios—whether in the recipient cell or the toxin-producing cell—Cpe1 may first encounter Cpi1. However, our model underscores that Cpi1 not only binds at the substrate site but also exhibits superior affinity for Cpe1, ensuring robust protection against Cpe1-mediated toxicity.

      Minor comments

      "Intoxication" was used throughout the text numerous times to describe the activity of Cpe1. Looking in the Marriam-Webster dictionary, "Intoxication" means "a condition of being drunk". This word should be replaced with "toxicity" or some other terms in this line.

      We thank the reviewer for this comment. We acknowledge that the term "intoxication" is commonly associated with alcohol consumption, yet the Merriam-Webster dictionary also defines it as "an abnormal state that is essentially a poisoning" (https://www.merriam-webster.com/dictionary/intoxication). This definition aligns with its well-established usage in the field of interbacterial competition to describe the effects of interbacterial toxins during antagonism3-5, which we have adopted in our manuscript. However, we appreciate the reviewer’s concern and remain open to revising the terminology if deemed necessary for clarity.

      Lines 46-48, references on contact-dependent killings by these systems mentioned should cited. Ref. 9 cited does NOT cover the information at all.

      We thank the reviewer for this comment. We have revised the citation and now reference studies that specifically describe contact-dependent killing systems in the relevant sentences (Lines 45–____50)

      "characterizations" should be "characterization".

      We have now modified the sentence as requested (Line 69)

      Line 229 "Cpe1-Bpa monomers" should be " apo Cpe1-Bpa". The results cannot distinguish whether these bands are monomers or multimers.

      We appreciate the reviewer’s careful assessment of our manuscript. The results in Line 233 (Figure 3c) show the enrichment of His-tagged proteins, including crosslinked complexes and overproduced Cpe1-Bpa. Based on the molecular weight marker, the Cpe1-Bpa bands appear between 10–15 kDa, consistent with the molecular weight of Cpe1 monomers (Figure 3a). Therefore, we have labeled this band as “Cpe1-Bpa monomers” and maintained this terminology throughout the text. This designation aligns with previous studies utilizing site-specific crosslinking via Bpa incorporation6,7

      Line 283, was the mutation deletion? Substitution was used I think.

      We thank the reviewer for highlighting this point. The GyrB and ParE mutants used to confirm the cleavage sites were deletion mutants, with a single glycine removed from the predicted double-glycine motifs. We have now revised the text for clarity (Lines 285–290)

      Lines 439-444 the discussion should be extended to include other bacterial toxins that target type II DNA topoisomerases (e.g. PMID: 26299961 and PMID: 26814232).

      We appreciate the reviewer’s suggestion. The studies referenced (PMID: 26299961 and PMID: 26814232) describe FicT toxin with adenylyl transferase activity that target and post-translationally modify GyrB and ParE at their ATPase domains, highlighting a potential hotspot for topoisomerase inhibition. We have now incorporated an additional paragraph in the Discussion section to describe these findings (Lines 424–439).

      Reviewer #1 (Significance)

      The authors determined the structure of the protein complex formed by Cpe1 and its immunity protein Cpi1, which allowed them to reveal the mechanism of inhibition. Moreover, the authors identified type II DNA topoisomerases GyrB and ParE as the targets of Cpe1. Overall, the major conclusions were well supported by experimental data of high quality. The findings have expanded our appreciation of the mechanism utilized by T6SS effectors to inhibit target cell growth.

      We sincerely thank the reviewer for their positive comments and for the suggestions to improve our manuscript.

      Reviewer #2 (Evidence, reproducibility, and clarity)

      The manuscript, titled "An Interbacterial Cysteine Protease Toxin Inhibits Cell Growth by Targeting Type II DNA Topoisomerases GyrB and ParE", describes how an effector family was identified and characterized as a papain-like cysteine protease (PLCP) that negatively impacts bacterial growth in the absence of its co-encoded immunity protein. This thorough report includes (1) bioinformatic analysis of prevalence, finding this PLCP effector encoded in many gram-negative bacteria, (2) confirming conservation of catalytic active site via structural (crystallographic) analysis, as well as visualizing contacts with the immunity protein, (3) validation of results using growth studies combined with mutagenesis, (4) using a cell-based cross-linking method to pull out potential targets, which were subsequently identified via mass spectrometry, (5) validation of these results using in vitro protease assays with purified (potential) substrates, including verification of the motif recognized on the substrate(s), and cell-based phenotype analyses, and finally, (6) demonstrating competition between immunity protein and ParE substrate using an in vitro pull-down approach. Overall, this is a strong body of work with compelling conclusions that are well supported by multiple experimental approaches.

      We appreciate the reviewer for their positive comments regarding our original submission.

      Major comments

      The claims made based on the presented results are well supported, including that this PLCP effector toxin is widespread, is neutralized in a competitive mechanism by its immunity partner, and that it effectively cleaves both GyrB and ParE (subunits of bacterial type II topoisomerases) at a conserved motif, resulting in suppression of bacterial cell growth via mis-regulating chromosome segregation. No additional experiments are needed to further validate these results, and the authors are commended on the cell-based and in vitro studies to deduce very specific mechanisms and structural details.

      We appreciate the reviewer’s positive feedback.

      Minor comments

      While the writing and data presentation are extremely clear, in general I recommend the authors indicate the level(s) of replication for experiments. Figure legends generally note that mean values with standard deviations are shown, but I did not find where the number of replicates (and independent versus technical) were listed.

      We appreciate the reviewer’s suggestion. We have now revised the manuscript to specify the levels of replication (independent vs. technical) for each experiment in the figure legends, particularly in Figures 2 and 3.

      The figures are very clear, but in many instances the addition of PLCP toxin is indicated as "before" and "after"; while a modest change, I recommend altering this to some type of "-" and "+" type nomenclature rather than a time-based notation (especially as presumably both samples were treated identically, just with or without protease).

      We thank the reviewer for this helpful comment. In Figures 3 and Supplementary Figures 5, 9, we used "before" and "after" to indicate the time points for in vitro cleavage assays verifying Cpe1 cleavage. To minimize variations between reactions, the catalytic mutant Cpe1tox (Cpe1toxC362A) was used as a comparison rather than a reaction without Cpe1tox. In these assays, duplicate reaction mixtures were prepared: one was denatured immediately after preparation ("before" reaction) to serve as a baseline, while the other was incubated to allow enzymatic activity ("after" reaction). This labeling clarifies the comparison between initial and processed samples. We believe this approach clearly distinguishes the effects of Cpe1 activity and provides a reliable basis for assessing proteolysis in our assays.

      I also suggest quantifying the intensities of the gel images presented in Figure 5c, d (for example, Cpe1 intensity as a ratio to that of the ParE ATPase domain), to make the interpretation even more evident.

      We thank the reviewer for the valuable suggestion to quantify the signal intensities of the gel images presented in Figures 5c, d. We have now included the quantification results in Supplementary Figures 9e, f and have updated the respective text in the manuscript (Lines 826-828 and 1066-1087).

      Crystallographic structure: the PDB report notes some higher-than-expected RZR (RSRZ) scores; I interpret this to mean that there was strain around the catalytic site of one of the two toxins in the asymmetric unit, or that this copy was less well ordered. The RZR outliers likely arise from non-optimal weighting for geometric restraints. While no figures of electron density are presented, these modest outliers are not expected to alter the conclusions reached in the current work. One point of interest that is not addressed, however, is if any variance between the two complexes in the asymmetric unit are noted? A passage compares the current toxins to others in the larger subfamily and notes a rotation of a side chain is needed to superpose (Line 159). Can the authors please clarify around which bond this rotation is needed, and if both copies in the asymmetric unit are in the same orientation at this site?

      We appreciate the reviewer’s insightful comments.

      1. We have provided the electron density map for the RSR-Z outlier residues along with the model (Author response Figure 2a). These outlier residues are located at the loop regions of a molecule within the asymmetric unit in the crystal (Chain B). As a result, the electron density for their side chains appears to be noisier compared to residues in the well-folded regions, leading to higher RSR-Z scores. Notably, when we superimposed the models of two complexes within the asymmetric unit, the calculated RMSD value was 0.402 Å (Author response Figure 2b), indicating that the two models are structurally very similar and that these residues are properly assigned. Therefore, the RSR-Z outliers do not significantly impact the overall structure.
      2. Here, we provide a zoomed-in view of Figure 2d, highlighting the superimposed crystal structures of Cpe1 and the closely related PLCPs, ComA and LahT (Author response Figure 2c). As shown, the side chain of the catalytic cysteine residue in ComA adopts a different orientation, positioning it slightly farther from the homologous residues in Cpe1 and LahT. However, since the backbone and catalytic pockets remain structurally intact, we believe that this deviation arises due to results from crystal packing effects rather than an inherent functional distinction. We have now modified the main text (Lines 159-166) to clarify this and prevent any potential misinterpretation.

      Reviewer #2 (Significance)

      Bacteria encode numerous effectors to successfully compete in natural environments or to mediate virulence; these effectors are typically associated with type VI secretion system machinery or referred to as contact dependent inhibition systems. The current work has identified a sub-family of papain-like cysteine protease effectors that are unique by targeting type II topoisomerases. Among the actionable findings is the identification of both the specific site of interaction with the topo substrates, as well as the specific motif recognized for cleavage. This should enable the field to move forward probing for this activity with other toxins and substrates. The insights provided by the competitive neutralization mechanism also stand out as an important contribution that can be more broadly applied. Within the literature, few effector targets are identified, making the current study stand out as impactful by the well-executed experiments that directly support the conclusions.

      While the current study has strong elements of novelty and is complete, it also nicely sets up future studies for remaining open questions. For example, does the nucleotide-bound status of the ATPase domain, or other catalytic intermediate, impact the susceptibility of topoisomerases to cleavage? Is this identified motif found in other ATPase domains? Is the negative supercoiling activity unique to gyrase also impacted, or is the phenotypic mechanism of cell toxicity reliant only on chromosome segregation? What types of kinetic parameters do this class of toxins demonstrate, and does sequence variability alter this? These ideas are a testament to the intriguing study as presented, capturing the readers' curiosity for additional details that are clearly beyond the scope of the current work.

      I anticipate this work will be of interest to the broad field of microbiologists that study interbacterial communication as well as pathogenic mechanisms. While the research is largely fundamental in nature, it is wide in scope with applications to many gram-negative bacteria that inhabit a myriad of niches. The work will also be of interest to specialists in topoisomerases, as the list of toxins that target these essential enzymes is growing and the therapeutic utility of topoisomerase inhibition remains vital. My interest lies in the latter, in toxin-mediated inhibition of topoisomerase enzymes as a means to alter bacterial cell growth. While I have strong expertise in structural biology, I am lacking in expertise for mass spectrometry. I note this because this method was used for the identification of the target substrate.

      We appreciate the reviewer’s insightful discussion and interest in our study. We agree that further investigations are crucial to address the open questions posed, and we have initiated work on some of these avenues.

      For example, considering Cpe1's specificity for the ATPase domain of GyrB and ParE, we have begun examining whether Cpe1 targets other ATPase domains by searching for the consensus sequence or double glycine motifs in the sequences of ATPase domains beyond GyrB and ParE. Among the 42 E. coli ATPase domains identified by the PEC database8, we found several with double glycine residues. However, none contained the exact LHAGGKF consensus sequence identified in GyrB and ParE, which are targeted by Cpe1 (Author Response Figure 3). These findings suggest that Cpe1 is less likely to target other ATPase domains. Nonetheless, due to Cpe1’s potential tolerance of certain variations within the consensus sequence, we cannot draw a definitive conclusion without further investigation into the cleavage sites.

      Another critical open question is the impact of Cpe1-mediated cleavage on the function of GyrB and ParE. To address this topic, we have begun investigating if Cpe1 cleavage affects the ATPase activity of these proteins. As expected, our biochemical analysis has demonstrated a significant decrease in ATP hydrolysis in the presence of active Cpe1tox, but not in the presence of the catalytic mutant Cpe1toxC362A (Author response Figures 4a, b). These results confirm that the ATP-dependent activities of both GyrB and ParE are disrupted following Cpe1 cleavage9. Previous work on FicT toxin that inhibits GyrB and ParE ATPase activity through post-translational modification found that ATP-dependent activities such as DNA supercoiling, relaxation, and decatenation were inhibited10,11. Interestingly, GyrB’s relaxation of negative supercoiled DNA, which does not require ATP, was also affected to some extent. This outcome raises the question as to whether Cpe1-cleaved GyrB results in similar downstream defects. Investigating this possibility would provide valuable insights into Cpe1’s mode of action, although we feel doing so is beyond the scope of the current study. Consequently, we view this as an important area for future research.

      Finally, regarding the potential applications of Cpe1, we are interested in further investigating its enzymatic specificity and properties. In this study, we analyzed the binding kinetics between Cpe1 and its substrate (Figure 5f) and currently we are endeavoring to characterize the kinetics of Cpe1-mediated proteolysis. To better probe hydrolytic dynamics, we plan to utilize a substrate with a reporting group (such as a chromogenic or fluorogenic leaving group) to monitor cleavage over time. We could achieve this by designing a recombinant substrate based on our knowledge of Cpe1’s native substrates (GyrB and ParE) and the target sequence (“LHAGGKF”). Alternatively, a secondary reaction leading to colorimetric changes could be employed for detection. We consider this an exciting research direction and an important next step for this study.

      Overall, we are grateful for the reviewer’s recognition of the novelty and importance of our work in advancing the understanding of interbacterial toxins and their inhibitory effects on topoisomerases. We plan to further investigate the consequences of Cpe1 cleavage on GyrB and ParE and to explore Cpe1 kinetics and its mechanistic actions in more detail. This will not only deepen our understanding of bacterial toxin-mediated inhibition but may also provide critical insights into strategies for targeting type II DNA topoisomerases. The reviewer’s insightful feedback has proven invaluable in shaping our ongoing and future research directions.

      Reviewer #3 (Evidence, reproducibility, and clarity)

      Bacterial warfare in microbial communities has become illuminated by recent discoveries on molecular weapons that allow contact-dependent injection of bacterial toxins between competitors. Among the best characterized systems are the type VI secretion system (T6SS) or the contact-dependent inhibition (CDI) system (i.e. some of the T5SSs). These systems are delivering a plethora of toxins with various biochemical activities and a broad range of targets. In recent years many such toxins have been characterized and their relevance in pointing at appropriate drug targets is increasing.

      In this study the authors built on a previously published association of a family of proteins, papain-like cysteine proteases (PLCPs), with their delivery by T6SS or CDI into target bacterial cells. Whereas this observation is not particularly novel, the findings that this set of proteins, that the authors called now Cpe1, can specifically target bacterial proteins such as ParE and GyrB, so that it affects chromosome partitioning and cell division, is groundbreaking. The authors are clearly demonstrating that Cpe1 cleaves their target proteins at double glycine recognition site which is in line with previous characterization of such proteases when fused to a particular category of ABC transporters. Even more remarkably they can show using biochemical approaches that Cpi1 is a cognate immunity for CpeI, preventing its activity, not by interfering with the catalytic site, but instead with the substrate binding site. The mechanism of competitive inhibition between immunity and substrate is also substantiated by biochemical data.

      We sincerely appreciate the reviewer’s interest in and support of our study.

      Major comments

      • This is a very well conducted study which combines bacterial genetics and phenotypes with excellent biochemical evidence.

      We thank the reviewer for their positive comments.

      • There are 8 targets identified for Cpe1 and yet only two are cleaved by the enzyme. It is intriguing that FtsZ is one identified target by the pull down but not confirmed for cleavage. The authors rules this as false positive but the cell division defect associated with Cpe1 activity would be consistent here. Are there any double glycine in FtsZ that could be identified as cleavage site? Is it possible that slightly different incubation conditions may promote degradation of FtsZ?

      We appreciate the reviewer’s thoughtful comment regarding FtsZ as a potential substrate of Cpe1. This was indeed an intriguing possibility, especially given the cell division defects observed following Cpe1 intoxication. Early on in the project, we also identified FtsZ as a Cpe1 interactor in our proteomic crosslinking assays, which further fueled the hypothesis that FtsZ might be a target.

      To explore this possibility, first we examined the FtsZ protein sequence for potential Cpe1 cleavage sites and identified several double glycine motifs (Author response Figure 5a). However, none of these motifs matched the consensus sequence identified in GyrB and ParE, which is LHAGGKF, a sequence that we have shown to be critical for Cpe1 cleavage activity. In an effort to better understand if FtsZ could still be cleaved by Cpe1, we conducted additional cleavage assays under various conditions (Author response Figure 5b). We tested different incubation temperatures, including increasing the temperature to 37 °C, and extended the reaction time to overnight. However, we did not observe any cleavage of FtsZ under these conditions. Given that FtsZ undergoes significant conformational changes upon binding to GTP12, we also considered the possibility that the GTP-bound form of FtsZ might be cleaved by Cpe1. However, even under those conditions, no significant cleavage of FtsZ was detected (Author response Figure 5b). Based on these results, we do not have any evidence to support that FtsZ is a target of Cpe1. The observed cell division defects are more likely a secondary effect resulting from the cleavage of GyrB and ParE, direct targets of Cpe1 that are crucial for chromosome segregation.

      • Could it be structurally predicted whether the GG of ParE or GyrB is fitted into the catalytic site of Cpe1.

      We appreciate the reviewer’s insightful question regarding the structural prediction of the GG motif of ParE and GyrB fitting into the catalytic site of Cpe1. To address this possibility, we used Alphafold 3 to predict the interaction structure between Cpe1 and its substrates13. The resulting model of Cpe1 interacting with the ATPase domain of GyrB (GyrBATPase) is shown in Supplementary Figure 9c. As illustrated, the loop of the GyrB ATPase domain containing the consensus targeting sequence (“LHAGGKF”) fits into the catalytic site of Cpe1, with the GG motif positioned closest to the catalytic cysteine residue, which likely facilitates hydrolysis. We also attempted to model the interaction between Cpe1 and the ATPase domain of ParE. However, confidence for this model was lower (ipTM = 0.74, pTM = 0.71), possibly due to Alphafold’s preference for certain protein configurations. To gain a more accurate understanding of how Cpe1 binds and recognizes its substrates, we are currently working on co-crystallizing Cpe1tox with GyrB and ParE. This long-term project aims to provide precise structural insights into the Cpe1-substrate interaction and further elucidate the mechanism of cleavage.

      Minor comments

      • The authors described a family of proteases, PLPCs, and characterized one here called Cpe1. Not clear whether this is a generic name or one specific protein from one particular bacterial species. Indeed, it is unclear from which bacterial strain the Cpe1 protein studied here originates.

      We thank the reviewer for this comment and apologize for the lack of clarity. To provide better context, we have now revised the manuscript (Lines 136-137 and 141-145) to clearly state that the Cpe1 protein characterized in this study originates from E. coli strain ATCC 11775.

      • It may be worth to emphasize that the Cpe1 domain is found in all possible configurations as T6SS cargo and that is to be linked to VgrG, PAAR or Rhs.

      Thank you for this suggestion. We have revised the manuscript accordingly to emphasize this point (Lines 106-109).

      • Line 49 the authors could indicate that the Esx system is also known as type VII secretion system (T7SS).

      Thank you for this suggestion. We have revised the manuscript accordingly (Line 48-50).

      • Line 113 it may be better to use Proteobacteria instead of Pseudomonadota

      We have revised the manuscript (Lines 114-115) as suggested by the reviewer. It is important to note that following the recent decision by the International Committee on Systematics of Prokaryotes (ICSP) to amend the International Code of Nomenclature of Prokaryotes (ICNP) and formally recognize "phylum" under official nomenclature rules14,15, the taxonomy database used in our analysis has adopted the updated nomenclature. To ensure consistency, we followed this updated nomenclature throughout the original manuscript.

      Reviewer #3 (Significance)

      This is an excellent piece of work. The characterization of Cpe1 might look poorly novel at the start when compared to previous studies. Yet the findings go crescendo by characterizing original mechanisms of action of the cognate immunity, and by identifying the molecular target of Cpe1. This is providing real conceptual advance in the T6SS field and not just reporting yet another T6SS toxin.

      As a T6SS expert I genuinely feel that these findings are groundbreaking and could be targeted to broad audience since the possible implications of these observations for future antimicrobial drugs discovery or therapeutic approaches is highly relevant.

      We sincerely appreciate the reviewer’s positive remarks and support of our study.

      References

      1. Ishihama, A., and Shimada, T. (2021). Hierarchy of transcription factor network in Escherichia coli K-12: H-NS-mediated silencing and Anti-silencing by global regulators. FEMS Microbiol Rev 45. 10.1093/femsre/fuab032.
      2. Hersch, S.J., Manera, K., and Dong, T.G. (2020). Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 33, 108259. 10.1016/j.celrep.2020.108259.
      3. Russell, A.B., Singh, P., Brittnacher, M., Bui, N.K., Hood, R.D., Carl, M.A., Agnello, D.M., Schwarz, S., Goodlett, D.R., Vollmer, W., and Mougous, J.D. (2012). A widespread bacterial type VI secretion effector superfamily identified using a heuristic approach. Cell Host Microbe 11, 538-549. 10.1016/j.chom.2012.04.007.
      4. Jana, B., Fridman, C.M., Bosis, E., and Salomon, D. (2019). A modular effector with a DNase domain and a marker for T6SS substrates. Nat Commun 10, 3595. 10.1038/s41467-019-11546-6.
      5. Halvorsen, T.M., Schroeder, K.A., Jones, A.M., Hammarlof, D., Low, D.A., Koskiniemi, S., and Hayes, C.S. (2024). Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. PLoS Genet 20, e1011494. 10.1371/journal.pgen.1011494.
      6. Nguyen, T.T., Sabat, G., and Sussman, M.R. (2018). In vivo cross-linking supports a head-to-tail mechanism for regulation of the plant plasma membrane P-type H(+)-ATPase. J Biol Chem 293, 17095-17106. 10.1074/jbc.RA118.003528.
      7. Liu, Y., Yu, J., Wang, M., Zeng, Q., Fu, X., and Chang, Z. (2021). A high-throughput genetically directed protein crosslinking analysis reveals the physiological relevance of the ATP synthase 'inserted' state. FEBS J 288, 2989-3009. 10.1111/febs.15616.
      8. Yamazaki, Y., Niki, H., and Kato, J. (2008). Profiling of Escherichia coli Chromosome database. Methods Mol Biol 416, 385-389. 10.1007/978-1-59745-321-9_26.
      9. Reece, R.J., and Maxwell, A. (1991). DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26, 335-375. 10.3109/10409239109114072.
      10. Harms, A., Stanger, F.V., Scheu, P.D., de Jong, I.G., Goepfert, A., Glatter, T., Gerdes, K., Schirmer, T., and Dehio, C. (2015). Adenylylation of Gyrase and Topo IV by FicT Toxins Disrupts Bacterial DNA Topology. Cell Rep 12, 1497-1507. 10.1016/j.celrep.2015.07.056.
      11. Lu, C., Nakayasu, E.S., Zhang, L.Q., and Luo, Z.Q. (2016). Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Sci Signal 9, ra11. 10.1126/scisignal.aad0446.
      12. Matsui, T., Han, X., Yu, J., Yao, M., and Tanaka, I. (2014). Structural change in FtsZ Induced by intermolecular interactions between bound GTP and the T7 loop. J Biol Chem 289, 3501-3509. 10.1074/jbc.M113.514901.
      13. Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A.J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493-500. 10.1038/s41586-024-07487-w.
      14. Oren, A., Arahal, D.R., Rossello-Mora, R., Sutcliffe, I.C., and Moore, E.R.B. (2021). Emendation of Rules 5b, 8, 15 and 22 of the International Code of Nomenclature of Prokaryotes to include the rank of phylum. Int J Syst Evol Microbiol 71. 10.1099/ijsem.0.004851.
      15. Oren, A., and Garrity, G.M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol 71. 10.1099/ijsem.0.005056.
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the Reviewers

      We thank the reviewers for their evaluation of our previous submission and have responded to each point in detail below. Overall, we have revised the manuscript with the addition of several new data and corresponding figure panels that strengthen our previous conclusions and add new insights allowing us to extend the conclusions of the study. Important additions include new data showing the impact of loss of CLU on adapting to additional stressors during metabolic transitions that supports a mechanistic understanding of our omics results; by poly(dT) FISH we show that fly Clu granules indeed contain mRNAs; FRAP microscopy analysis supports that Clu1 granules have dynamic content similar to other LLPS membraneless organelles; and we have re-analysed our data to demonstrate more clearly the impact of Clu1 on translation efficiency and also the relative binding of mRNAs during translation. In addition, we provide some extra control analyses for completeness.

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript the authors study the Clustered mitochondrial proteins Clu of Drosophila melanogaster and Clu1 of Saccharomyces cerevisiae, two homologues of the mammalian protein CLUH. They show in compelling microscopy analysis that both proteins form granules. This was the case for flies fed on yeast paste after starvation and in yeast in post-diauxic phase, in respiratory media or during mitochondrial stress. They show that these granules are found in proximity to mitochondria and that they behave like liquid-liquid-phase separated condensates. They show by co-staining for P-bodies and stress granules that Clu1-granules are distinct from these RNA granules. Furthermore, they found that the formation required active translation. In the second part, they show that Clu1 interacts with ribosomal and mitochondrial proteins by BioID. The deletion of Clu1 leads to slightly impaired growth on media containing Ethanol as a carbon source. They find that nascent polypeptides of some mitochondrial precursor proteins are decreased in the deletion of Clu1 and conclude that Clu1 regulates translation of these proteins. Using RNA immunoprecipitation of Clu1-GFP in presence of cycloheximid, EDTA and puromycin. The mRNAs of nuclear-encoded mitochondrial proteins found to be interacting with Clu1 were purified in conditions when the ribosomes are intact and the RNAs showed no interaction when ribosomes were disassembled. They show in sucrose gradients that Clu1 co-migrates with polysomes independent of its distribution state or carbon source. However, when cells are grown in conditions of granule formation, then polysomes and Clu1 run less deeply into the gradient. Form these data, the authors conclude that Clu/Clu1 regulates the translation of nuclear-encoded mitochondrial proteins.

      Major comments:

      -The authors state that Clu1 is regulating translation during metabolic shifts. However, it is not clear what the real impact on mitochondrial function is. They show that there is a minor growth defect on ethanol media when CLU1 is deleted. However, if Clu1 is necessary mainly for adaptation, the phenotype will be strongest observed in conditions where cells switch carbon sources. Growth curves would be suitable in which the lag-phase of yeast cells precultured either in glucose or glycerol switched to media of different carbon sources (glucose to glycerol or glycerol to glucose) are measured. One would expect that the deletion mutant shows a longer lag-phase compared to the wild type when shifted from glucose to glycerol media.

      We agree that this is an important question, and, duly, we previously attempted to address this exactly as the reviewer described. Surprisingly, we were not able to observe any substantial differences in the duration of the lag phase between the wild-type and CLU1 knockout strains under these conditions. However, we did note that CLU1 knockout cells consistently reached stationary phase with a lower optical density when switched to ethanol media, consistent with these cells having a different metabolic efficiency during growth on ethanol media.

      To further explore the role of Clu1, we noted that several of the Clu1 mRNA interactors were mitochondrial heat shock proteins (HSPs), which are crucial for mitochondrial protein folding and import during the transition from fermentation to respiration. Hence, we hypothesised that the absence of Clu1 might lead to increased sensitivity to heat shock during the metabolic shift.

      To test this, we subjected both wild-type and CLU1 knockout cells to heat shock under three different conditions: (1) during growth on glucose-containing media (fermentation), (2) after shifting cells to media containing ethanol during the lag phase, when cells are adapting to respiration, and (3) after cells had fully adapted to ethanol and resumed growth. Interestingly, CLU1 knockout cells were more sensitive to heat shock selectively during the adaptation to respiration, which involves the translation of an extensive number of mitochondrial proteins. We think that the small difference in translation of mitochondrial HSPs becomes evident only upon additional heat shock, likely due to a deficient mitochondrial protein folding and import. These findings support our hypothesis that Clu1 is essential for optimal mitochondrial function during metabolic shifts.

      These results have been added to the manuscript and shown in Fig. S6 and described on page 9.

      -In line with this, how different is the mitochondrial proteome of the WT and the mutant? Do hits of the BioID, RIP and Punch-P experiments change at steady state or during metabolic shifts? Either proteomics of isolated mitochondria or western blots of whole cells or isolated mitochondria of WT and the deletion mutant grown in conditions of Clu1-granule formation or no granules for the hits could answer this question.

      We also considered this question during the course of the work. However, in exploratory analyses we saw no obvious differences in overall mitochondrial proteomics at steady-state which is what prompted us to look at more subtle effects on translation. Considering this further, changes in steady-state levels can be complex to interpret as they represent the combined effects of protein production and degradation. Small changes arising from altered production could be masked by compensatory changes in turnover rate. In light of this, we believe that the translational regulation differences identified in our study remain central to understanding the role of Clu1, and any downstream proteomic changes would not alter our primary conclusions.

      -The authors analyze RNAs bound in polysomes to assess translation efficiency. Translation efficiency is usually calculated by the fraction of RNA bound by ribosomes to the total RNA amount of an RNA species. Thus, doing RT-qPCR from whole cells would be necessary to assess if the occupancy of ribosomes on the transcripts is due to changes in RNA abundance or other regulatory pathways and would help to further assess what causes the observed changes.

      Thanks for this recommendation. To address this and expand our analysis to other proteins differentially translated in clu1Δ cells, we measured the mRNA steady-state levels by performing RNAseq on WT and clu1Δ strains grown under the same conditions as used for Punch-P. We then calculated the translation efficiency by dividing the nascent protein levels (Punch-P) by steady-state mRNA levels (RNAseq), as previously described for Punch-P data (PMID: 26824027). The translation efficiency for the majority of proteins with reduced translation in the clu1Δ cells by Punch-P analysis was lower. Similarly, the majority of proteins with increased translation had higher translation efficiency.

      The mRNA quantification in polysomes we originally presented in the manuscript, further showed that the decrease in translation efficiency is not caused by a simple decrease of mRNA engaged in translation and that Clu1 is regulating protein translation at the ribosome level. In contrast, for higher translated proteins, we detected an increase in mRNAs engaged in polysomes, likely underlying the increased translation. These results further support our conclusions regarding the regulatory effects of Clu1 on translation.

      These results have been added to the manuscript and shown in Fig. 7E and described on page 9.

      OPTIONAL:

      -The authors show a co-localization of Clu/Clu1 with mitochondrial fission factors and conclude that the granules appear likely near fission sites. Indeed, CLUH has been implied in the past to play a role in mitochondrial fission (Yang, H., Sibilla, C., Liu, R. et al. Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nat Commun 13, 1582 (2022). https://doi.org/10.1038/s41467-022-29071-4). Thus, are fission sites required for Clu-granule localizations? What is the role of the mitochondrial network integrity for the granule distribution? Expressing Clu-GFP/Clu1-GFP in cells depleted for the fission factors would provide information on that.

      Thanks for this suggestion. We agree that it would be interesting to know whether Clu1 granules still appear when mitochondrial fission is blocked. We tried to address this question but encountered some technical limitations. First, overexpression of Clu1-GFP via a plasmid did not replicate the endogenous Clu1 behaviour, making it necessary to delete the fission factors in the Clu1-GFP background. While crossing the Clu1-GFP strain with already available knockout strains would be straightforward, we would need access to a tetrad dissecting microscope, which unfortunately was not available to us. We also attempted PCR-based gene deletion but the sequence homology between the GFP-tagging cassette and the deletion cassettes made this very challenging. Given these limitations, and as the lab's yeast expert had already left, we were not able to pursue this experiment further and have removed these observations from our manuscript. We hope that future studies will explore this question in more detail.

      -The author assess convincingly that Clu1 interacts with ribosomes and runs with polysomal fractions. However, how it actually regulates translation is not clear. To answer this question, selective ribosomal profiling would be necessary. The authors have established conditions which would be suitable for the experiment. They could use crosslinking and sucrose cushions to IP ribosomes with Clu1-GFP bound to be used for ribosomal profiling. However, this experiment is quite time-intensive (3-4 months) and expensive, thus, an optional suggestion.

      We thank the reviewer for this suggestion. We agree that ribosome profiling could provide novel insights into the function of Clu1/Clu. While we recognise the potential of this approach, as the reviewer points out, this experiment would indeed be time- and resource-intensive. Based on our initial tests, where we included cross-linked samples (UV and formaldehyde) we anticipate that it could even take longer than the estimated 3-4 months, as the IP using cross-linked lysates was not as successful as the IP using non-cross-linked samples: we were not able to immunoprepitate Clu1 so efficiently likely to the epitope being poorly exposed to the antibody. Although we have optimised working conditions for co-immunoprecipitating Clu1 with ribosomes, performing ribosome profiling using our setup within the timeframe and resources of this study is unfortunately not currently feasible.

      Minor comments:

      Fig1: B, C, please add scale bars into the zoom ins.

      These have been added.

      Fig 2 would profit from inlets of zoom ins to visualize the distribution better.

      These have been added.

      Fig.3: Panel C does not really add much information. I would rather remove it or put it into supplements and therefore show a zoom of Panel E with a line plot showing the rings. It is not clear from the represented images where the rings are formed.

      We think some confusion has arisen from the text description. It seems that the reviewer was under the impression that Fig. 3C and 3E were intended to be showing the Clu1 rings around the mitochondria, but this was shown only in Fig. S3A. We have re-written these sentences for better clarity. To be clear, Fig. 3C is a 3D rendering of the left-hand cell in 3B (3D is a line plot of part of the right-hand cell) and 3E is a different experiment showing the formation of Clu1 granules under a different respiratory stress (galactose plus CCCP). We have also added a line plot showing Clu1-GFP and mito-mCherry fluorescence intensity to highlight the Clu1 rings around the mitochondria in Fig. S3A.

      Fig.3 panel F: Max projections are not appropriate to show colocalization as they can lead to false-positive overlaps. Just remove the max projections.

      We tried a number of different approaches to improve this analysis but, ultimately, we were not able to generate sufficiently robust data to be convincing so we decided to remove this from the manuscript. The coincidence of Clu1 granules with mitochondrial fission factors was an adjunct observation and not a major part of the story and has been discussed by others relating to fly Clu (PMID: 35332133), so removal from the current manuscript does not impact the key conclusions of the study.

      References 21 and 22 are the same.

      Thanks. This has been fixed.

      Reviewer #1 (Significance (Required)):

      This manuscript shows in a convincing way that Clu and Clu1 form RNA granules and that Clu1 interacts with ribosomes. It is written in a clear way and the figures support the conclusions drawn in the text. The finding that Clu/Clu1 is important for metabolic adaptation has not been shown in fly or yeast to my knowledge. It is in line with findings for the mammalian homologue CLUH. Thus, the findings are supported by earlier work. This study is of value for a broader audience of the basic research field, especially of the mitochondrial and RNA granule field, as it supports the idea of post-transcriptional regulation of nuclear-encoded mitochondrial protein gene expression for dynamic adaptation of mitochondrial function. The conditions when Clu granules form is studied in detail, followed up by identification of target RNAs and interaction partners. Though the interaction of Clu1 with ribosomes is shown in a compelling way, a detailed mechanism of the function of Clu/Clu1 is missing and would require more experiments. Thus, even though a detailed mechanism is missing, the study does expand on our understanding of Clu/Clu1 in regulating mitochondrial biogenesis and is therefore of high interest of the mitochondrial field.

      Expertise: mitochondria, yeast, RNA granules, mitochondrial biogenesis, next-generation sequencing, fluorescence microscopy

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript the authors use D. melanogaster and S. cerevisiae to study the role of CLUH in the translation of nuclear-encoded mitochondrial proteins. During conditions requiring aerobic respiration, CLUH forms RNA-dependent granules that localise in the proximity to mitochondria. Furthermore, the authors demonstrate that CLUH interacts with translating ribosomes to facilitate the translation of specific target mRNAs. For this, the authors use a combination of GFP-tagged CLUH models. BioID, polysome translating proteomics, RNA-IP. The authors' main conclusions are that (i) CLUH forms dynamic, membrane-less, RNA-dependent granules under conditions that demand aerobic respiration, (ii) CLUH interacts with specific mRNAs encoding metabolic factors, and (iii) CLUH interacts with the translating ribosome. The manuscript is well written and the conclusions stand in proportion to the experimental output and the results. The main concern is with regards to lack of advancement in relationship to published data.

      We appreciate the reviewer's feedback and specific comments which we respond to individually below. However, we would like to first address the point regarding "lack of advancement" and the use of the "CLUH" terminology which the reviewer uses throughout their critique. We would like to reiterate, as the reviewer states, our work focussed exclusively on yeast Clu1 and Drosophila Clu. None of our data relates to mammalian CLUH. While these proteins share substantial sequence homology, it is imprudent and scientifically unsound to assume cross-species equivalence without directly testing. Indeed, one of the central aims of our study was to characterise the molecular function of yeast Clu1, which remains almost entirely unstudied.

      We acknowledge that some of the observations contained within our study have been described by others and we have appropriately noted and cited these in context. Nevertheless, (a) independent replication is always valuable but easily criticised as lacking novelty, and (b) the majority of the work was analysing the molecular dynamics and function of yeast Clu1 which is almost completely unstudied and may help provide hypotheses for others to test for conservation in mammalian CLUH. Hence, we consider that summarising the work as 'lacking advancement' is misplaced.

      Comments:

      To this reviewer it is not clear how CLUH can regulate the translation of specific mRNAs while being bound to ribosomes, regardless of being in a diffuse or granular state. The authors suggest that under metabolically active conditions, CLUH might aggregate translating ribosomes, forming the granular structures. How CLUH though can both be bound to translating ribosomes and recruit specific mRNAs at the same time is not explained.

      It was indeed surprising to us that the data indicate that Clu1 can bind both mRNAs and ribosomes to affect translation, and we share the reviewer's curiosity about the precise mechanism of how this occurs. While we have provided novel insights into this situation, dissecting the precise molecular mechanisms is beyond the scope of the current study.

      The authors might want to discuss how changes in metabolic demands signal the aggregation of CLUH, and how CLUH can recognise its target mRNAs.

      We appreciate the reviewer's point here but as this would be pure speculation we have made only brief comments on this at the end of the Discussion.

      What was the rationale to perform the RIP or the PUNCH-P experiments only under non-challenged conditions, but not under conditions demanding aerobic respiration?

      We appreciate the reviewer's question. In fact, the Punch-P analysis was carried out on cells that had been transferred to ethanol to induce respiration. This was stated in the Methods, but we appreciate that this may have been missed so we have now clarified this in the main text (p9).

      Regarding the RIP, our initial tests showed that mRNAs encoding proteins found to interact with Clu1 by BioID were interacting with Clu1 in both fermenting and respiring conditions. Due to this consistency, it did not seem necessary to perform the RIP experiments under both metabolic conditions, so we chose to conduct the experiment under the simpler growth condition.

      If CLUH is ubiquitously bound to ribosomes, has CLUH been seen in any structural representation of the cytosolic ribosome?

      This is a good question, and we wondered the same. To our knowledge, Clu1/Clu/CLUH has not been observed in any structural studies of the ribosome, and no formal structure of any Clu family proteins has been resolved.

      Nevertheless, we would like to clarify that we do not think, or suggest in the manuscript, that Clu/Clu1 is ubiquitously bound to ribosomes. First, current evidence supports that Clu/Clu1 only regulates a specific subset of mRNAs. Second, our work, particularly the sucrose gradient experiments, shows that Clu1 interacts transiently with ribosomes, as cross-linking was required to capture the full extent of this interaction. This transient and selective interaction of Clu/Clu1 with the ribosome, together with the fact that transient interactors are often lost during ribosome purification, makes Clu/Clu1 detection in structural studies unlikely. Due to the transient interaction and dynamic localisation of Clu/Clu1, capturing Clu/Clu1 in ribosomal structures will require significant work in the future.

      Reviewer #2 (Significance (Required)):

      CLUH has been studied in various publications, showing data very similar to that presented in this manuscirpt. However, the authors provide a comprehensive analysis on both yeast and fly CLUH. The strength of the manuscript is the combination of several elegant methods and genetically modified model systems in two species to elucidate the role of CLUH during the translation of specific mRNA. In my view through, the advancement of understanding the function of CLUH is limited.

      Although the authors work in yeast and DM, the results seem applicable to other species, including humans, and thus, the presented results will be of interest in a range of researchers working in the field of metabolic regulation and gene expression.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: This study from Miller-Fleming et al. employs yeast and Drosophila as model systems to explore the function of the RNA-binding protein Clu1, which is involved in mitochondrial biogenesis. The first part of the manuscript characterizes so called "Clu1 granules", and their dependance from metabolic transitions. In particular, using yeast, they find a relocalisation of Clu1 upon starvation and several mitochondrial stress conditions. These granules are not stress granules, and are dissolved by RNAse and puromycin treatment. The second part of the study aims to understand the molecular function of the protein and its link to translation. The results confirm an evolutionary conserved role of Clu1 in binding mRNAs for mitochondrial proteins and in interacting with mitochondrial proteins, ribosomal components and polysomes. In addition, the authors claim that binding of Clu1 to RNA is enhanced when mRNAs are trapped in polysomes by treatment with cycloheximide (CHX), leading to the proposal that Clu1 binds mRNAs during active translation.

      Major comments:

      -The claim of Clu1 granule localization next to mitochondria (Figure 3) would be more convincing if any of the experiment would be quantified. Especially in the case of panel 3G in Drosophila egg chambers where there are a lot of mitochondria, one wonders whether the closeness to mitochondria is just random. Furthermore, mdv1-signal does not look very convincing, being blurry and not dotty as expected. Thus, the conclusion that Clu1 granules partially colocalization with site of fission appears premature.

      The claim that Clu/Clu1 granules are often found in close proximity to mitochondria was inferred from observations from multiple analyses from yeast (we looked at hundreds of cells in several different conditions) and flies, where it had already been demonstrated (Cox and Spradling, 2009). We agree that observations of the fly egg chambers are challenging due to the very high density of mitochondria (and other cellular components - see the new analysis of poly(A) mRNAs) in these highly active cells. These considerations motivated us to take the CLEM approach (in addition to investigating the membraneless nature), to gain a much higher resolution view of the localisation of the granules. This analysis unequivocally showed that the Clu granules were exactly juxtaposed to several mitochondria. It is noteworthy that even in the TEM images shown, there is ample cytoplasm in which the Clu granule could be located if the association with mitochondria was coincidental and all granules had mitochondria in close proximity.

      Regarding the possible coincidence of Clu1 with mitochondrial fission factors, as mentioned above for Reviewer 1, we tried a number of different approaches to improve this analysis but, ultimately, we were not able to generate sufficiently robust data to be convincing so have decided to remove this from the manuscript. Since this was an adjunct observation and not a major part of the story and has been discussed by others relating to fly Clu (PMID: 35332133), removal from the current manuscript does not impact the key conclusions of the study.

      Based on the ability of 1,6-hexanediol to dissolve the granules (Figure 4), the authors conclude that: "Clu1 foci have membraneless nature". As they correctly state in the discussion, treatment with 1,6-hexanediol can have other effects. I suggest to be more cautious with the conclusions or add additional experiments. Are the granules dynamics if using FRAP? Do they fuse?

      The inference that the Clu1 granules are membraneless organelles was not solely based on the observation that they disassemble upon 1,6-hexanediol treatment but was made in conjunction with the CLEM analysis that showed unambiguously that Clu granules are not associated with any detectable membrane, which is strong evidence that these granules are membraneless in nature. Indeed, as the reviewer mentioned, we are cautious in concluding they have been formed by liquid-liquid phase separation (LLPS) and we do acknowledge that 1,6-hexanediol can have other effects in cells. Nevertheless, following the reviewer's suggestion we have analysed Clu1 granule dynamics using FRAP, even though we are aware that FRAP is also not a definitive proof that a structure is formed by LLPS. The FRAP analysis, shown in new Figure 4C, D, revealed approximately 50% recovery over 10 min imaging timeframe. As discussed on page 13, this indicates a dynamic nature of these granules, but this dynamism can vary widely between different types of granules and even different proteins within the same granule. Further work is warranted to fully investigate the dynamic nature of Clu/Clu1 granule components.

      The experiment in which the granules are dissolved by treatment with RNAse is very interesting. However, per se this does not directly demonstrate that the granules contain mRNA. To state this the author should perform FISH experiments for example using a probe to detect poly-A.

      We thank the reviewer for this suggestion. We have performed poly(dT) FISH in egg chambers. Initial analysis showed that the fluorescence was diffuse and widely distributed, as expected for these highly active cells, but with no specific accumulation in Clu granules. Interestingly, we observed that treatment with RNase A, which we initially used to demonstrate probe specificity, revealed an enrichment of poly(A) RNAs in Clu granules. So, while treating the live egg chambers with RNase revealed that granules depend on RNA for their stability, treating fixed egg chambers revealed more directly the presence of RNAs in granules.

      These results have been added to the manuscript and shown in Fig. 5 and described on page 7.

      The authors show that puromycin prevents the granule formation before insulin addition in the fly. Are these results (upon RNAse treatment and puromycin treatment) recapitulated in the yeast system? The authors conclude that Clu1 formation depends on mRNAs being engaged in translation, but never show that the granules are site of active translation. More experiments in this direction (for example using puro-PLA of specific mRNAs) are missing and would clearly improve the manuscript.

      Thanks for this very interesting consideration. We agree that we have not formally shown that the Clu1 granules are sites of active translation. A major limitation to addressing this is that puromycin is not able to penetrate the yeast cell wall, so cannot be used for analysis of intact cells as would be needed in this case. We agree that this would be a welcome addition but is beyond the scope of the current study.

      The interactome of Clu1-neighbouring proteins (Figure 6) is interesting and a valuable addition to data in other organisms. I am wondering why the authors have not used as a control a cytosolic BirA-GFP, which would have been the right control for this experiment, especially since GFP tends to form aggregates.

      We thank the reviewer for this comment. With hindsight, we agree that a cytosolic BirA-GFP would have been a better control. However, we are confident in our results for the following reasons:

      1. The levels of GFP obtained from Clu1-GFP expression are low, and under these conditions, we observed no evidence of GFP aggregation. Even in experiments where GFP is overexpressed from a high-copy 2µ plasmid under a strong promoter, we do not detect aggregation. Aggregation is not a concern in our experimental setup.
      2. Our conclusions are not solely based on the interactome analysis (BioID) but are supported by complementary findings. Specifically, several proteins identified in the proximity to Clu1 in the BioID analysis showed reduced translation in Clu1 knockout cells, and their corresponding mRNAs were found to interact with Clu1 during translation. These complementary results from independent techniques provide strong evidence for Clu1's role and validate the findings of the interactome analysis. Given this robust and complementary dataset, having BirA as a control strain was sufficient to validate our conclusions.

      Figure 7B: The log 2 FC for the changed proteins are in many cases small, implying that the difference in translation for these proteins is not so large. For this reason, it is relevant to know how was the statistical significance calculated for these MS measurements. In the supplementary Tables and in Fig 7B, a p value is indicated and it is not clear if this is a simple p value or an adjusted p value (FDR or q value). If not shown, I recommend showing the adjusted p value, so that one can have an idea of the solidity of the data and the claim. Again, this is an important piece of evidence, since the authors base on this experiment the conclusion that Clu1 controls translation of these mRNAs.

      Thanks for this comment. We have now included the q-value in the supplementary table.

      Minor comments:

      -Figure 1: The change in Clu1 localisation in post-diauxic phase or upon changing of the medium is evident from the images shown. However, it seems that the experiment has been performed only once (the same for Figure 2). Is this the case? An important information would be to show the expression levels of Clu1-GFP in the different conditions. Does recruitment of CLU1 to granules associate to increased expression levels?

      The experiments shown in figures 1 and 2 were performed independently at least three times, as stated in the figure legends. The numbers shown are indicative values from one of the replicate experiments. This has now been added to the figure legends.

      We agree that providing the information regarding the expression levels of Clu1-GFP is important to address whether the recruitment of Clu1 to granules is associated with changes in its abundance. To this end, we have performed an additional experiment to quantify Clu1-GFP levels under the conditions where Clu1 is diffuse (log growth phase in glucose-containing media) and when Clu1 is in granules (sodium azide treatment).

      These results have been added to the manuscript and shown in Fig. S2 and described on page 4.

      Figure 2 A-B. The authors claim that the only stressor capable of inducing Clu1 granules formation alone is inhibition of complex IV activity via sodium azide treatment. Other mitochondrial stresses like CCCP treatment or OA treatment are efficient only when combined to starvation. It should be mentioned that sodium azide treatment is not only capable of inhibiting complex IV but has also uncoupling function.

      Thanks for this comment. We have now mentioned this (p4).

      Figure 2 D-E: investigation of colocalization with Bre5 would help to understand how similar the yeast Clu1 granules are compared to the mammalian CLUH granules (Pla-Martin et al., 2020).

      This is an interesting suggestion and one that we also considered, but with limited time and resources we were not able to pursue this line of inquiry as well.

      Figure 8. This figure summarizes one of the most novel pieces of data about Clu1, the interaction with mRNAs via the ribosome. The way how panel A-C are represented is however a bit misleading. The Y axis in Figure B and C has the same amplitude as the one in A. Therefore, potential differences in Clu1-RNA pull-down in presence of EDTA or puromycin cannot be assessed. It is true that in presence of CHX there is much more pulled down RNA, but one cannot judge from these panels if there is any difference between Clu1 targets and controls also in the other conditions. The graphs should be modified and statistics added.

      We appreciate the reviewer's feedback regarding the presentation of the RIP-qPCR data in Fig. 8. Based on the comments, we have revised how the results are represented, improved the normalisation of the data and added statistical analysis.

      First, it is worth clarifying that the presentation of the original charts was done specifically to highlight the huge differences between RNA-pulldown in CHX versus disrupted ribosomes. It is also important to note that these RIP experiments were performed simultaneously under identical experimental conditions, so any differences lie in the treatments applied. To improve cross-comparison between treatments we have now incorporated an additional normalisation step. We normalised the enrichment levels of each mRNA tested against the non-specific binding observed with the negative control housekeeping genes (UBC6 and TAF10). This ensures that differences in bead loss or other technical variations are accounted for.

      We now show the comparison of the six positive hits and two negative controls normalised as described above, on the same scale (Fig. 8A). We now also present the relative effects of the three conditions (CHX, EDTA, and puromycin) within the same graph for each mRNA tested (Fig. 8B). This format enables direct comparison of Clu1 target mRNA enrichment and two negative controls across treatments, which is the relevant comparison for testing the hypothesis of ribosome-dependent interactions. We have adjusted the Y-axis scaling for each mRNA, as requested by the reviewer, and added statistical comparisons. For clarity, the data shown in Fig. 8A are also represented in the panels of Fig. 8B (CHX). We have amended the text appropriately and hope that these changes improve the comparisons between treatments and more readily demonstrate that Clu1 target enrichment is lost upon ribosome disassembly, either by EDTA or by puromycin.

      In addition, RNAse treatment in panel L does not seem to have really worked.

      These samples were cross-linked prior to treatment to preserve the transient interaction of Clu1 with the ribosome, hence, the normal dramatic effect of RNase to collapse the polysomes is much less pronounced. Nevertheless, the purpose of this experiment was to monitor whether Clu1 co-migrated with ribosomes, which it does.

      The authors should cite Vornlocher et al. (PMID: 10358023), who were the first to implicate Clu1 (Tif31) with translation.

      Thank you for this prompt. We have now added a comment on this in the Discussion (page 13).

      References 21 and 22 are the same.

      Thanks. This has been fixed.

      Reviewer #3 (Significance (Required)):

      The data reported in this manuscript are valuable, because they confirm an evolutionary conserved role of Clu1 in binding mRNAs for mitochondrial proteins and regulating their translation. It is also interesting that in yeast, similar to Drosophila and mammalian cells, Clu1 can form granular structures upon metabolic rewiring. A limitation of the study is that direct experiments to support the claim that Clu1 concentrates ribosomes engaged in translation are not provided. Furthermore, it is not clear what is the functional role of the Clu1 granules, since the proximity interactome and the binding of Clu1 to the polysomes is not affected by treatments that dissolve or stimulate granule formation.

      The study is of interest to a general cell biology audience.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the editor for handling our manuscript and the reviewers for their constructive critiques. We are deeply convinced that the reviewers’ suggestions have substantially raised the quality and possible impact of our manuscript. We also like to thank the reviewers for their judgements that the subject of our manuscript is biologically and clinically significant and of high importance, and that our manuscript might help to increase focus and visibility for affected individuals.

      New text passages in the manuscript are colored in red. Below is a point-by-point response to the reviewers’ comments.

      2. Point-by-point description of the revisions

      Response to reviewer 1 comments

      Major comments

      Point 1-1

      The authors performed qRT-PCR validation for markers of differentiation and hypoxia, with a major absence of VEGF and HIF1a. The paper would be strengthened by mention of these factors, especially by qRT-PCR or Western blot.

      We thank the reviewer for the suggestion to include the bona fide hypoxia markers Vegfa and Hif1-alpha. We followed the suggestion and performed qRT-PCR on Vegfa transcripts at each tested condition (Figs. 1A,2A,3A,4A,5A,5D,5I,5N). As Hif1α is rather regulated on protein than on transcript level, we followed the advice to perform Western blots. We analyzed Hif1α protein levels on proliferating cells and quantified by normalization to actin (Figs. 1B,C and 5 B,C).

      Point 1-2

      Please provide justification of selection 0.5% as their hypoxic condition or perhaps repeat experiments in a less extreme environment to see if their conclusions still hold true.

      We admit that our approach to use 0.5% hypoxia was a drastic challenge for the cells. It should be noted, however, that physiologic oxygen levels during pregnancy at times drop to lower than 1% (Hansen et al, 2020; Ng et al, 2017). In the first place, we had used oxygen levels lower than this, because we had wanted to ensure that we can detect responses by bulk RNA-seq with a limited number of samples. As we had many conditions to compare, we did not want to use more than 3-4 samples per condition. The fact that the cells showed normal proliferation underscores the fact that 0.5% O2 per se was not so low that it would be overly stressful to the cells.

      Nevertheless, we are very grateful to the reviewer for the suggestion to include a milder hypoxic condition. We chose 2% O2, because this equals the physiological oxygen concentration shortly before the onset of cranial neural crest cell (CNCC) differentiation. We could recapitulate the phenomenon of impaired differentiation to chondrocytes, osteoblasts and smooth muscle cells at these mild hypoxic conditions, as shown by qRT-PCR and immunofluorescence of typical markers (Figs. 5D-R). Moreover, the differentiation-specific induction of the two central hypoxia-attenuated risk genes associated with orofacial clefts that we had identified by our bioinformatic analyses at 0.5% O2 (Boc and Cdo1), was still observable at 2% O2 (Figs. S6C,D). Interestingly, in some rare cases, the attenuation of induction was lost or not as drastic as in 0.5% O2.

      We are convinced that the experiments at 2% O2 strongly increased the relevance of our manuscript, because we thus detected that oxygen levels prevailing shortly before the onset of CNCC differentiation still can influence their differentiation. This leads to the conclusion that only slight decreases of intra-uterine oxygen levels indeed might interfere with correct differentiation of CNCC.

      Point 1-3

      Standard immunohistochemistry or histology of differentiated cells would strengthen the authors' claims of reduced differentiation under hypoxic conditions, e.g., Alcian blue, alk-phos or Alizarin red, and smooth muscle actin or other indicator.

      We are grateful to the reviewer for the suggestion to include stainings of cells, as these stainings visualized the drastic effects of hypoxia on the cells. We performed immunofluorescent stainings against at least one marker protein for each differentiation paradigm. At 0.5% O2, each protein signals were nearly completely absent and cell morphology was disrupted (Figs. 2E,F, 3E, 4E). At 2% O2, we detected some more protein deposition than at 0.5%. Importantly, cells had retained their normal shape at mild hypoxia (Figs. 5H,M,R, S5A).

      Point 1-4

      The authors identify a few genes that appear down-regulated in all three differentiation conditions. If it is within the scope of the study, it would strengthen the claim of these genes' function to show the effect of knock-down or knock-out for validation.

      We thank the reviewer for the suggestion of gene knock-down or knock-out in order to prove functional relevance of our findings. As this would have been too much effort and beyond the scope of our study, we rather followed the suggestion of reviewer 2 (cf. points 2-6, and 2-8) that headed to the same direction: we mined publicly available sequence data on orofacial development for gene expression or marks of active enhancers. We found robust expression of the two central hypoxia-attenuated OFC risk genes Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells with the help of a single cell RNA-seq dataset (Figs. 7C-E, S6B).

      Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are grateful for the suggestion to circumvent gene knockouts by reviewer 2, as we think these data strongly emphasized the importance of our findings.

      Point 1-5

      Another major critique lies in the initial claim that proliferation of O9-1 cells is not significantly impacted by hypoxia. In figures 1E-H, photograms of the cells cultured 24 -72 hours and quantifications of live vs dead cells are shown as evidence for this argument. However, the increased density of cells in normoxic conditions may be a confounding variable in this assay. It would be interesting for the researchers to assess the percent of dead vs alive cells between normoxic and hypoxic conditions when the plates reach equivalent densities.

      We apologize for the use of image sections from photographs with different cell densities. Of course, as demonstrated by our quantification, cell densities between 0.5% and 21% O2 in total were equal (cf. Figs. 1D,E). We therefore replaced the formerly used sections with new image sections with equal cell numbers.

      We thank the reviewer for the suggestion to examine if cell numbers influence cell death rates. We followed this advice by several approaches: first, we seeded cells at different densities, incubated them for 72 h (the same time span where a minimal difference had been detected) and performed live/dead stainings (Fig. S1B). The seeding density did not affect percentages of dead cells and the values were in the same range as in our initial experiment (Fig. 1J). Moreover, we performed TUNEL stainings of apoptotic cells at different time points to have an additional readout of cell death (Figs. 1K,L). As expected, the percentages of TUNEL-positive cells were identical between hypoxic and normoxic cells at all analyzed time points.

      We therefore concluded that hypoxia does not influence the rate of cell death of proliferating CNCC and accordingly specified our wording in the results section.

      Point 1-6

      At end of Fig 1 section authors attempt to tie phenotypes observed in a cell line in vitro to the complex biological processes. They are not comparable and in vivo models would be better suited for these types of comparisons.

      We apologize for the overconfident wording in our manuscript. Of course, our in vitro experiments cannot fully simulate the complex developmental processes taking place in vivo. We therefore changed the text to a more careful formulation. Moreover, we kept the wording in the discussion section that we cannot exclude that in the in vivo situation proliferation of CNCC is also affected by low oxygen levels because nutrients might not be available in such excess as they are in cell culture.

      Point 1-7

      Fig 2: if qRT-PCR did not show statistically different results between experimental and control groups why move on to bulk RNA seq?

      We apologize that the sentence about statistical significance was misleading. What we wanted to express is that there was only a little difference (if any at all) between differentiated cells at 0.5% O2 and proliferating cells at 0.5% O2 or 21% O2. For the sake of clarity and readability, we deleted this misleading sentence.

      Point 1-8

      Fig 5: hypoxia this intense is going to affect broad range of biological processes and genes. Finding a few genes that are affected in extreme hypoxia that are also risk genes is highly unlikely. How can the authors be assured that these overlaps are actually significant and not just by chance?

      We thank the reviewer for the suggestion to test for statistical significance. We tested significance of the overlap of respective gene sets (nsOFC vs. hyp-a; OFC vs. hyp-a) by Fisher’s exact test. We included Venn diagrams depicting the overlap and present the exact p-values (Figs. S5C,D). In each case where overlap of genes occurred, p-values indicated significance.

      Point 1-9

      Would appreciate discussion on how examination of neural crest is relevant for OFC, as most animal models of OFC demonstrate the pathogenesis in embryonic epithelium or periderm, not in the neural crest. Defects in neural crest are associated with other congenital craniofacial anomalies such as craniosynostosis or complex (Tessier) clefts, not the typical orofacial cleft. Please revise rationale of study, interpretation of data and Discussion to specifically state how neural crest cells are involved in the pathogenesis of orofacial cleft.

      We apologize for not pointing out enough the role of epithelial cells in the emergence of orofacial clefts. We revised our introduction, results and discussion sections in this regard and emphasized the role of epithelial cells. Importantly, we addressed the possible influence of the results gained in CNCC on epithelial cells by analyzing scRNA-seq data with the algorithm CellChat, as suggested by reviewer 2 (cf. point 2-8). We detected several cell communication pathways from CNCC to epithelial cells which contain components that are misexpressed upon hypoxia in our dataset (Figs. 7F-I). Therefore, during hypoxia, these pathways might influence epithelial cells and therefore indirectly cause orofacial clefts. We outlined this possible interplay in the discussion and briefly mentioned it in the abstract.

      We have not discussed more strongly the role of CNCC in the emergence of OFC in the revised manuscript, because we did not want to put even more emphasis on this matter. Numerous studies have proven the contribution of cranial neural crest tissue to the emergence of orofacial clefts. This fact is also pointed out in several review articles about orofacial clefts. In most cases, this knowledge was achieved by mouse models, because tissue-specific conditional knockouts are feasible (in contrast to genetic studies on patients), usually via deletion with the Wnt1-Cre driver. Funato et al. give an excellent (but quite old) overview of mouse models in which the neural crest-specific knockout of a gene leads to emergence of OFC and lists 17 genes for which this is the case (Funato et al, 2015). Moreover, several recent studies also report on the emergence of orofacial clefts upon neural crest-specific deletion (Forman et al, 2024; Li et al, 2025). These include genes responsible for DNA methylation (Ulschmid et al, 2024), and a study on subunits of chromatin remodeling complexes that are necessary for correct transcription of their target genes, which was conducted by our group (Gehlen-Breitbach et al, 2023).

      Minor comments

      __Point 1-10 __

      The author should replace "Final proof" in the introduction with "further evidence supporting."

      We apologize for the incorrect wording. Of course, it is highly questionable if there is such a thing as final proof in life sciences. We re-phrased the text according to the reviewer’s suggestion.

      Point 1-11

      Authors are inconsistent when referring to Figures- sometimes they capitalize (i.e. 1J) and other times they leave lower case (i.e. 1i). Needs to be consistent throughout. Figures are not numbered.

      We apologize for the inconsistency. We corrected the references to figures. Moreover, we apologize for the missing figure numbers. We also corrected this and included figure numbers.

      Point 1-12

      In figures authors would sometimes list 21% O2 first then 0.5% O2 or vice versa. (i.e. Fig on page 21 panels I, J, K). Needs to be consistent.

      We again apologize for being inconsistent. We corrected the inconsistency in Fig. 1D. Now, 21% O2 is presented before/above 0.5% O2.

      Point 1-13

      Figures on pages 28, 29, 30 panel J and page 31 panel F: there is no legend on what the scale/measurement is for the difference in expression level other than it ranges from -1 to +3.

      We thank the reviewer for the hint. We are aware that from the heatmaps we used one cannot infer relative expression rates of different genes or similar. If we would have considered expression strength of single genes, many of the gene-specific differing expression rates under the different conditions would have been hard to detect, as presentation would have been dominated by the differences in expression rates between genes. We therefore plotted gene-wise scaled expression.

      We included an explanation of the procedure in the materials and methods section.

      Point 1-14

      Will the authors please comment on the one normoxic sample in Figure 1I that did not cluster with the others? Did this meet the standards to merit exclusion as an outlier?

      We regret that the default scale of our plot of the principal component analysis is a bit misleading. This is the case because x-axis accounts for 80.3% of variance and y-axis only accounts for 6.1%. Therefore, the sample that might seem as an outlier actually met our standards. Nevertheless, we decided to keep the default scaling as is, in order not to embellish the graph (Fig. 1M).

      Point 1-15

      The authors refer to DEG as deregulated genes; while not strictly incorrect, the more standard usage is "differentially expressed genes." Please address.

      We apologize for the incorrect explanation of the acronym. Of course, this was corrected in the revised manuscript.

      Significance

      This work on neural crest cells and hypoxia are biologically and clinically significant.

      We are deeply grateful to the reviewer for considering our manuscript significant for both biologists and clinicians. We are convinced that the additional data we gathered in the course of the revision has significantly increased the importance of our work. Therefore, we once again express our gratitude to the reviewer for the valuable suggestions.

      Response to reviewer 2 comments

      Major comments

      Point 2-1

      The conclusions drawn from the experimental data are carefully formulated for the most part. One of the main concerns is that the cells were subjected to extreme hypoxic conditions, while it may be more biologically relevant to include a condition representing more mild hypoxia (e.g. 10%).

      Please refer to the response to point 1-2.

      Point 2-2

      One of the opening claims regarding severe hypoxia only mildly affecting cell proliferation is not shown clearly, since no mitotic markers have been analyzed (i.e. KI67 or PCNA staining or a simple EdU incorporation assay). Thus, the claim that they assessed cell proliferation is not very convincing, even though cell death was analyzed.

      We appreciate the reviewer’s suggestion to include a more thorough analysis of proliferation rates. We followed the advice and performed immunofluorescent stainings against Ki67 (accounting for cells in proliferative state) and phospho-histone H3 (accounting for cells undergoing mitosis). We performed this assay at different time points of culture in order to address the question if cell density might influence proliferation rates (Figs. 1F-H). Neither for Ki67 nor for pHH3 a difference was detected between 21% and 0.5% O2.

      We are convinced that these analyses strengthened our initial findings and provide strong evidence that hypoxia does not influence proliferation rates of CNCC.

      Point 2-3

      Additionally, cellular morphology of the cells could be assessed (brightfield images), since previous studies observed that hypoxia can be an inducive factor in cranial neural crest and driving EMT (Scully et al. 2016; Barriga et al. 2013).

      We thank the reviewer’s hint and followed the advice. We analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. S1C-F). As outlined in the results section, we did not detect a difference in these parameters between 21% and 0.5% O2.

      We included the second reference mentioned by the reviewer (Barriga et al, 2013) additionally to Scully et al. 2016 that had already been cited.

      Point 2-4

      Furthermore, in the RNA seq analysis of chondrogenic fate biased cells the authors draw a conclusion based on the proximity of the samples on the PCA plot, which is not very convincing. More careful analysis of the bulk RNA seq data sets they have generated for key marker genes will be more convincing (for example, a heatmap with selected genes would be a helpful representation).

      We apologize for the rash and inaccurate conclusion based on proximity on PCA plots. We are grateful to the reviewer for the suggestion to include heatmaps with selected marker genes. Following this advice, we generated heatmaps on our bulk RNA-seq data with the GO terms specific for each differentiation paradigm (Figs. S2F, S3F, S4F).

      We are convinced that these maps are perfect additions to the heatmaps of the 200 top differentially-expressed genes that already had been included in the manuscript (Figs. 2K, 3J, 4J) and helped to strengthen our findings. For chondrocytes and smooth muscle cells, the new, GO-specific heatmaps perfectly recapitulated the phenomenon of hypoxia-attenuated induction. Interestingly, for osteoblasts, about half of the induced genes were hypoxia-attenuated, while the other half was induced stronger than under normoxia. This pointed to gene-specific mechanisms of hypoxia-dependent attenuation of transcription. Moreover, it shed light on a hypoxia-evoked complete dysregulation of transcriptional induction in osteoblasts, as nearly none of the genes was induced similar to normoxia.

      __ __

      Point 2-5

      As mentioned above, a straight-forward and not time consuming experiment (given that it was assessed for a maximum of 72 hrs) would be to repeat the culture of NCCs and stain for mitotic markers, and quantify the number of positively stained cells over total cell numbers. Furthermore, it is not that demanding to add an experimental condition of less severe hypoxia in this assay.

      We thank the reviewer for the suggestion and followed the advice (cf. point 2-2). The conducted experiments straightened our results, because the initially detected slight tendency to lower cell numbers at 0.5% O2 could thus be falsified: We did not detect any difference for Ki67 and pHH3 between 0.5% and 21% O2 at any analyzed time point (Figs. 1F-H). Moreover, percentages of dead or apoptotic cells at 0.5% O2 did not vary from 21% (Figs. 1I-L, S1B). As we could not detect any difference in proliferation between 21% and 0.5% O2, we skipped the analysis of proliferating cells at 2% O2.

      Point 2-6

      Without underestimating how time consuming this would be, a major lack of experimental validation of the key genes they identify as important across all conditions may be the limitation of the study (this would be the difference between correlation and a probable underlying mechanism). This can be circumvented by more extensive reference to in situ data sets from mouse or existing data sets of single cell and spatial transcriptomics. A suggested targeted knock-down (for example with siRNA, shRNA or CRISPR) to validate a few of the key genes revealed as important could take a few months, with an estimated cost up to 5,000 euros per targeted gene and replicate.

      We thank the reviewer for the notion that targeted knockdowns are beyond the scope of our manuscript. We are deeply grateful for the reviewer’s constructive criticism and for the suggestion to analyze publicly available data sets in order to gather data depicting in vivo relevance of our identified central hypoxia-attenuated OFC risk genes Boc, Cdo1 and Actg2 (cf. point 1-4). We detected robust expression of Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells by reanalysis of a scRNA-seq dataset (Figs. 7C-E, S6B). This data comprised scRNA-seq of mouse embryonic maxillary prominence at stages E11.5 and E14.5 (Sun et al, 2023).

      Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are deeply grateful for the suggestion, as we think these data strongly emphasize the importance of our findings.

      Point 2-7

      On methods, replicates and statistics: The experimental methods and approach are described efficiently and seem reproducible. All biological and technical replicates are of a minimum of N=3 from independent experiments and statistical tests have been run in all cases.

      We thank the reviewer for the appreciation of our methodology, descriptions and statistical analyses.

      Minor points

      Point 2-8

      One of the key implications of NCCs in palate formation is interaction with orofacial epithelial cells, which the authors also mention. It may be interesting to check if any signaling pathways involved in this crosstalk are affected under hypoxic conditions in their existing data sets of bulk RNA SEQ. This can be done by using available algorithms such as CellChat (Jin et al. 2021; Jin, Plikus, and Nie 2023), which has been reported to work also in bulk RNA seq data analysis (according to GitHub). The authors could mine the literature for existing RNA sequencing data that include osteoblasts, chondrocytes and epithelial cells (Ozekin, O'Rourke, and Bates 2023; Piña et al. 2023).

      We are very grateful to the reviewer for this suggestion. Moreover, we like to thank the reviewer for mentioning exemplary references. We followed the advice by the methodology lined out in results and materials and methods sections: we applied the CellChat algorithm on a scRNA-seq dataset (Pina et al, 2023; Sun et al., 2023) to identify pathways containing components that are hypoxia-attenuated (and associated with a risk for OFC) in our bulk RNA-seq dataset (Figs. 7F-I). We did not use the datasets the reviewer had suggested, because the data were not available for us or the file format was not well-suited for the analysis with CellChat. Importantly, the dataset from Sun et al. has the following advantages over the suggested references: the complete maxillary prominence was used (instead of palatal shelves only), and different time points were included. Thus, we were able to follow the expression of genes of interest at different developmental stages before the onset of differentiation and after (Figs. 7C-E and S6B). By our approach, we identified several OFC-related pathways that contain hypoxia-attenuated components such as BMP and FGF signaling and deposition of collagen and fibronectin (Figs. 7F-I). Importantly, the named pathways (and others) send outgoing communication patterns to epithelial cells. Therefore, hypoxia-attenuated gene induction in CNCC could influence epithelial cells via these pathways.

      We believe that the use of the CellChat algorithm has brought a deeper understanding of how hypoxia can have indirect consequences on the important topic of epithelial cells and thus could also evoke OFC. We therefore once again like to express our gratitude to the reviewer.

      Point 2-9

      Additionally, another process that may be affected is EMT (epithelial-to-mesenchymal-transition) and is possible to assess by re-analysis of bulk RNA-seq data while focusing on key genes implicated in this process (i.e. E-cadherin, vimentin, EpCAM, Snail, Twist, PRRX1).

      We thank the reviewer for the advice. We followed the advice and analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. S1C-F) (cf. point 2-3). As we did not detect any differences between 21% and 0.5% O2, and because the cells we used for our analyses represent mesenchymal cells, i.e. cells that had already undergone EMT, we did not re-analyze our dataset with the focus on EMT.

      Point 2-10

      Lastly, when the authors report on the significantly up- or down-regulated genes, it may be interesting to categorize them by ligands, receptors, intracellular molecules and transcription factors (and use separate plots to visualize them). While a big focus of the manuscript are down-regulated genes, less emphasis was given in upregulated genes (other than the response to hypoxia gene module).

      We thank the reviewer for the advice. Following this advice, we categorized genes according to Panther protein classes "intercellular signal molecule" (PC00207), "transmembrane signal receptor" (PC00197) and "gene-specific transcriptional regulator" (PC00264) and depicted the results with violin plots (Fig. S5B). We could not analyze intracellular molecules, because this protein class does not exist in the Panther database. We had not focused on the genes with stronger induction in hypoxic condition, because the number of genes was low in each differentiation paradigm (7 in chondrocytes, less than 30 in osteoblasts, none in smooth muscle cells) and the transcriptional changes were mostly not as drastic as for the attenuated genes. In order to achieve a broader overview of deregulated processes, we now included GO term analyses of genes downregulated during the differentiation regimes both at 21% and 0.5% O2 (Figs. S2D,E, S3D,E, S4D,E).

      Point 2-11

      The authors are referencing extensively and accurately existing studies in the field and the manuscript is exceptionally well-written, with only a few points of limited clarity or increased complexity. Such an example is when the authors refer to OFC risk genes, because it is not clearly stated how the referenced studies reached their conclusions (for example, are they mouse studies, do they involve mutants, are any of these studies based on GWAS on human cohorts). This matter would significantly improve the flow of the text and highlight the importance of the study and their findings.

      We would like to thank the reviewer very much for the appreciation of our scientific writing. We apologize for not explaining exactly how our OFC risk gene lists had been curated. We included this information for both non-syndromic and other OFC risk genes at the respective sites in the results section. Moreover, we included the Human Phenotype Ontology terms that had been used in the search in the materials and methods section.

      We thank the reviewer for this suggestion, as we agree that this information significantly highlights the importance of our findings.

      Point 2-12

      The figures could be redesigned to be more intuitive to interpret. For example, using violin plots and heatmaps, as discussed, and including references or re-analysis/re-use of existing spatial transcriptomics and in situs for marker genes.

      In all cases where there is a comparison of gene expression levels, violin plots would be a better representation of up- and down-regulated genes (i.e. selected genes from Fig1K, comparison of gene expression between normoxic and hypoxic NCCs, Fig 2G when analyzing chondrogenesis and the respective analysis for osteoblasts and smooth muscle cells, as well as when comparing the three fate-biasing conditions to identify common genes that are misregulated).

      We thank the reviewer for the advice and for the appreciation of the usage of heatmaps (Figs. 2K, 3J, 4J, 6F). Unfortunately, as the number of biological replicates is only three to four, the visualization of gene expression data from our bulk RNA-seq data with violin plots was not intuitive. We therefore retained the heatmaps rather than choosing bar graphs, because they are much clearer when presenting expression data of several to many genes. We included violin plots whenever possible due to high numbers of data points (Figs. S1C, S1D, S1E, S1F, S5B). Moreover, we added additional heatmaps to depict transcriptional changes of genes associated with GO terms with the various differentiation regimes (Figs. S2F, S3F, S4F). Unfortunately, we did not detect the three central hypoxia-attenuated genes in spatial transcriptomics data on craniofacial development. But we used scRNA-seq data of different stages of orofacial mouse tissue where we could identify expression of Boc and Cdo1 (cf. points 1-4 and 2-6). These data helped, together with other in vivo data to gain evidence for the in vivo function of Boc and Cdo1 during CNCC differentiation and helped to dismiss Actg2 as another central player.

      Significance

      Several pieces of evidence have pointed to hypoxia as an environmental factor contributing to congenital orofacial clefts, ranging from studies in mouse to observations in human. The authors are doing an excellent job in putting this information together and the question they are trying to answer is of high importance, given the prevalence of such congenital syndromes.

      We are deeply grateful to the reviewer for the appreciation of our work and for classifying our research topic as highly important.

      In terms of the methods and model employed, there are some limitations, related to the choice of a mouse cell line over one from human, the severe hypoxia induced (over a more mild), and the conditions of directed differentiation not allowing for simultaneous examination of more complex lineage transitions. The methods as a whole are not that up-to-date, given the single cell and multiplexed transcriptomic advances the last couple of decades, advanced bioinformatics that could be used in combination with in vitro lineage tracing methods.

      We thank the reviewer for the honest evaluation of our methods, especially for the constructive suggestions that were given to address our hypotheses with more up-to-date methods and at milder hypoxic conditions. As outlined above, we followed the advice and re-analyzed existing scRNA-seq datasets (cf. points 2-6 and 2-8) and checked our central hypotheses at milder hypoxic conditions (cf. response to point 1-3).

      We are deeply convinced that both significantly increased the biological relevance of our results, because we thus (1) gathered evidence for the in vivo function of Boc and Cdo1 and (2) were able to show that the phenomenon of hypoxia-attenuated gene induction still holds true at biologically relevant hypoxic conditions.

      The audience this work will reach are neural crest experts, developmental biologists, and potentially clinical doctors. The general public outreach of such a paper is also diverse, as more focus and visibility is required for the individuals affected by those syndromes and their families.

      We thank the reviewer for the judgement that our manuscript will not only reach neural crest experts, but also developmental biologists in general and potentially also clinicians. We are very much pleased that the reviewer shares our opinion that affected individuals should be more in the focus of public attention. We like to express our gratitude for the judgement that our manuscript might help to increase focus and visibility for them.

      References

      Barriga EH, Maxwell PH, Reyes AE, Mayor R (2013) The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. The Journal of cell biology 201: 759-776, 10.1083/jcb.201212100.

      Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA (2024) PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. Elife 13, 10.7554/eLife.98531.

      Funato N, Nakamura M, Yanagisawa H (2015) Molecular basis of cleft palates in mice. World journal of biological chemistry 6: 121-138, 10.4331/wjbc.v6.i3.121.

      Gehlen-Breitbach S, Schmid T, Fröb F, Rodrian G, Weider M, Wegner M, Gölz L (2023) The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development. International Journal of Oral Science 15: 16, 10.1038/s41368-023-00222-7.

      Hansen JM, Jones DP, Harris C (2020) The Redox Theory of Development. Antioxid Redox Signal 32: 715-740, 10.1089/ars.2019.7976.

      Li D, Tian Y, Vona B, Yu X, Lin J, Ma L, Lou S, Li X, Zhu G, Wang Y et al (2025) A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Hum Mol Genet 34: 392-401, 10.1093/hmg/ddae188.

      Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y (2017) In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update 24: 15-34, 10.1093/humupd/dmx028.

      Pina JO, Raju R, Roth DM, Winchester EW, Chattaraj P, Kidwai F, Faucz FR, Iben J, Mitra A, Campbell K et al (2023) Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis. Nature communications 14: 5687, 10.1038/s41467-023-41349-9.

      Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q (2023) Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 50: 676-687, 10.1016/j.jgg.2023.02.008.

      Ulschmid CM, Sun MR, Jabbarpour CR, Steward AC, Rivera-González KS, Cao J, Martin AA, Barnes M, Wicklund L, Madrid A et al (2024) Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice. Proc Natl Acad Sci U S A 121: e2317668121, 10.1073/pnas.2317668121.

    2. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the editor for handling our manuscript and the reviewers for their constructive critiques. We are deeply convinced that the reviewers’ suggestions have substantially raised the quality and possible impact of our manuscript. We also like to thank the reviewers for their judgements that the subject of our manuscript is biologically and clinically significant and of high importance, and that our manuscript might help to increase focus and visibility for affected individuals.

      New text passages in the manuscript are colored in red. Below is a point-by-point response to the reviewers’ comments.

      2. Point-by-point description of the revisions

      Response to reviewer 1 comments

      Major comments


      Point 1-1

      The authors performed qRT-PCR validation for markers of differentiation and hypoxia, with a major absence of VEGF and HIF1a. The paper would be strengthened by mention of these factors, especially by qRT-PCR or Western blot.

      We thank the reviewer for the suggestion to include the bona fide hypoxia markers Vegfa and Hif1-alpha. We followed the suggestion and performed qRT-PCR on Vegfa transcripts at each tested condition (Figs. 1A,2A,3A,4A,5A,5D,5I,5N). As Hif1α is rather regulated on protein than on transcript level, we followed the advice to perform Western blots. We analyzed Hif1α protein levels on proliferating cells and quantified by normalization to actin (Figs. 1B,C and 5 B,C).

      Point 1-2

      Please provide justification of selection 0.5% as their hypoxic condition or perhaps repeat experiments in a less extreme environment to see if their conclusions still hold true.

      We admit that our approach to use 0.5% hypoxia was a drastic challenge for the cells. It should be noted, however, that physiologic oxygen levels during pregnancy at times drop to lower than 1% (Hansen et al, 2020; Ng et al, 2017). In the first place, we had used oxygen levels lower than this, because we had wanted to ensure that we can detect responses by bulk RNA-seq with a limited number of samples. As we had many conditions to compare, we did not want to use more than 3-4 samples per condition. The fact that the cells showed normal proliferation underscores the fact that 0.5% O2 per se was not so low that it would be overly stressful to the cells.

      Nevertheless, we are very grateful to the reviewer for the suggestion to include a milder hypoxic condition. We chose 2% O2, because this equals the physiological oxygen concentration shortly before the onset of cranial neural crest cell (CNCC) differentiation. We could recapitulate the phenomenon of impaired differentiation to chondrocytes, osteoblasts and smooth muscle cells at these mild hypoxic conditions, as shown by qRT-PCR and immunofluorescence of typical markers (Figs. 5D-R). Moreover, the differentiation-specific induction of the two central hypoxia-attenuated risk genes associated with orofacial clefts that we had identified by our bioinformatic analyses at 0.5% O2 (Boc and Cdo1), was still observable at 2% O2 (Figs. EV6C,D). Interestingly, in some rare cases, the attenuation of induction was lost or not as drastic as in 0.5% O2.

      We are convinced that the experiments at 2% O2 strongly increased the relevance of our manuscript, because we thus detected that oxygen levels prevailing shortly before the onset of CNCC differentiation still can influence their differentiation. This leads to the conclusion that only slight decreases of intra-uterine oxygen levels indeed might interfere with correct differentiation of CNCC.

      Point 1-3

      Standard immunohistochemistry or histology of differentiated cells would strengthen the authors' claims of reduced differentiation under hypoxic conditions, e.g., Alcian blue, alk-phos or Alizarin red, and smooth muscle actin or other indicator.

      We are grateful to the reviewer for the suggestion to include stainings of cells, as these stainings visualized the drastic effects of hypoxia on the cells. We performed immunofluorescent stainings against at least one marker protein for each differentiation paradigm. At 0.5% O2, each protein signals were nearly completely absent and cell morphology was disrupted (Figs. 2E,F, 3E, 4E). At 2% O2, we detected some more protein deposition than at 0.5%. Importantly, cells had retained their normal shape at mild hypoxia (Figs. 5H,M,R, EV5A).

      Point 1-4

      The authors identify a few genes that appear down-regulated in all three differentiation conditions. If it is within the scope of the study, it would strengthen the claim of these genes' function to show the effect of knock-down or knock-out for validation.

      We thank the reviewer for the suggestion of gene knock-down or knock-out in order to prove functional relevance of our findings. As this would have been too much effort and beyond the scope of our study, we rather followed the suggestion of reviewer 2 (cf. points 2-6, and 2-8) that headed to the same direction: we mined publicly available sequence data on orofacial development for gene expression or marks of active enhancers. We found robust expression of the two central hypoxia-attenuated OFC risk genes Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells with the help of a single cell RNA-seq dataset (Figs. 7C-E, EV6B).

      Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are grateful for the suggestion to circumvent gene knockouts by reviewer 2, as we think these data strongly emphasized the importance of our findings.

      Point 1-5

      Another major critique lies in the initial claim that proliferation of O9-1 cells is not significantly impacted by hypoxia. In figures 1E-H, photograms of the cells cultured 24 -72 hours and quantifications of live vs dead cells are shown as evidence for this argument. However, the increased density of cells in normoxic conditions may be a confounding variable in this assay. It would be interesting for the researchers to assess the percent of dead vs alive cells between normoxic and hypoxic conditions when the plates reach equivalent densities.

      We apologize for the use of image sections from photographs with different cell densities. Of course, as demonstrated by our quantification, cell densities between 0.5% and 21% O2 in total were equal (cf. Figs. 1D,E). We therefore replaced the formerly used sections with new image sections with equal cell numbers.

      We thank the reviewer for the suggestion to examine if cell numbers influence cell death rates. We followed this advice by several approaches: first, we seeded cells at different densities, incubated them for 72 h (the same time span where a minimal difference had been detected) and performed live/dead stainings (Fig. EV1B). The seeding density did not affect percentages of dead cells and the values were in the same range as in our initial experiment (Fig. 1J). Moreover, we performed TUNEL stainings of apoptotic cells at different time points to have an additional readout of cell death (Figs. 1K,L). As expected, the percentages of TUNEL-positive cells were identical between hypoxic and normoxic cells at all analyzed time points.

      We therefore concluded that hypoxia does not influence the rate of cell death of proliferating CNCC and accordingly specified our wording in the results section.

      Point 1-6

      At end of Fig 1 section authors attempt to tie phenotypes observed in a cell line in vitro to the complex biological processes. They are not comparable and in vivo models would be better suited for these types of comparisons.

      We apologize for the overconfident wording in our manuscript. Of course, our in vitro experiments cannot fully simulate the complex developmental processes taking place in vivo. We therefore changed the text to a more careful formulation. Moreover, we kept the wording in the discussion section that we cannot exclude that in the in vivo situation proliferation of CNCC is also affected by low oxygen levels because nutrients might not be available in such excess as they are in cell culture.


      Point 1-7

      Fig 2: if qRT-PCR did not show statistically different results between experimental and control groups why move on to bulk RNA seq?

      We apologize that the sentence about statistical significance was misleading. What we wanted to express is that there was only a little difference (if any at all) between differentiated cells at 0.5% O2 and proliferating cells at 0.5% O2 or 21% O2. For the sake of clarity and readability, we deleted this misleading sentence.

      Point 1-8

      Fig 5: hypoxia this intense is going to affect broad range of biological processes and genes. Finding a few genes that are affected in extreme hypoxia that are also risk genes is highly unlikely. How can the authors be assured that these overlaps are actually significant and not just by chance?

      We thank the reviewer for the suggestion to test for statistical significance. We tested significance of the overlap of respective gene sets (nsOFC vs. hyp-a; OFC vs. hyp-a) by Fisher’s exact test. We included Venn diagrams depicting the overlap and present the exact p-values (Figs. EV5C,D). In each case where overlap of genes occurred, p-values indicated significance.

      Point 1-9

      Would appreciate discussion on how examination of neural crest is relevant for OFC, as most animal models of OFC demonstrate the pathogenesis in embryonic epithelium or periderm, not in the neural crest. Defects in neural crest are associated with other congenital craniofacial anomalies such as craniosynostosis or complex (Tessier) clefts, not the typical orofacial cleft. Please revise rationale of study, interpretation of data and Discussion to specifically state how neural crest cells are involved in the pathogenesis of orofacial cleft.

      We apologize for not pointing out enough the role of epithelial cells in the emergence of orofacial clefts. We revised our introduction, results and discussion sections in this regard and emphasized the role of epithelial cells. Importantly, we addressed the possible influence of the results gained in CNCC on epithelial cells by analyzing scRNA-seq data with the algorithm CellChat, as suggested by reviewer 2 (cf. point 2-8). We detected several cell communication pathways from CNCC to epithelial cells which contain components that are misexpressed upon hypoxia in our dataset (Figs. 7F-I). Therefore, during hypoxia, these pathways might influence epithelial cells and therefore indirectly cause orofacial clefts. We outlined this possible interplay in the discussion and briefly mentioned it in the abstract.

      We have not discussed more strongly the role of CNCC in the emergence of OFC in the revised manuscript, because we did not want to put even more emphasis on this matter. Numerous studies have proven the contribution of cranial neural crest tissue to the emergence of orofacial clefts. This fact is also pointed out in several review articles about orofacial clefts. In most cases, this knowledge was achieved by mouse models, because tissue-specific conditional knockouts are feasible (in contrast to genetic studies on patients), usually via deletion with the Wnt1-Cre driver. Funato et al. give an excellent (but quite old) overview of mouse models in which the neural crest-specific knockout of a gene leads to emergence of OFC and lists 17 genes for which this is the case (Funato et al, 2015). Moreover, several recent studies also report on the emergence of orofacial clefts upon neural crest-specific deletion (Forman et al, 2024; Li et al, 2025). These include genes responsible for DNA methylation (Ulschmid et al, 2024), and a study on subunits of chromatin remodeling complexes that are necessary for correct transcription of their target genes, which was conducted by our group (Gehlen-Breitbach et al, 2023).

      Minor comments

      __Point 1-10 __

      The author should replace "Final proof" in the introduction with "further evidence supporting."

      We apologize for the incorrect wording. Of course, it is highly questionable if there is such a thing as final proof in life sciences. We re-phrased the text according to the reviewer’s suggestion.

      Point 1-11

      Authors are inconsistent when referring to Figures- sometimes they capitalize (i.e. 1J) and other times they leave lower case (i.e. 1i). Needs to be consistent throughout. Figures are not numbered.

      We apologize for the inconsistency. We corrected the references to figures. Moreover, we apologize for the missing figure numbers. We also corrected this and included figure numbers.

      Point 1-12

      In figures authors would sometimes list 21% O2 first then 0.5% O2 or vice versa. (i.e. Fig on page 21 panels I, J, K). Needs to be consistent.

      We again apologize for being inconsistent. We corrected the inconsistency in Fig. 1D. Now, 21% O2 is presented before/above 0.5% O2.

      Point 1-13

      Figures on pages 28, 29, 30 panel J and page 31 panel F: there is no legend on what the scale/measurement is for the difference in expression level other than it ranges from -1 to +3.

      We thank the reviewer for the hint. We are aware that from the heatmaps we used one cannot infer relative expression rates of different genes or similar. If we would have considered expression strength of single genes, many of the gene-specific differing expression rates under the different conditions would have been hard to detect, as presentation would have been dominated by the differences in expression rates between genes. We therefore plotted gene-wise scaled expression.

      We included an explanation of the procedure in the materials and methods section.

      Point 1-14

      Will the authors please comment on the one normoxic sample in Figure 1I that did not cluster with the others? Did this meet the standards to merit exclusion as an outlier?

      We regret that the default scale of our plot of the principal component analysis is a bit misleading. This is the case because x-axis accounts for 80.3% of variance and y-axis only accounts for 6.1%. Therefore, the sample that might seem as an outlier actually met our standards. Nevertheless, we decided to keep the default scaling as is, in order not to embellish the graph (Fig. 1M).

      Point 1-15

      The authors refer to DEG as deregulated genes; while not strictly incorrect, the more standard usage is "differentially expressed genes." Please address.

      We apologize for the incorrect explanation of the acronym. Of course, this was corrected in the revised manuscript.

      Significance

      This work on neural crest cells and hypoxia are biologically and clinically significant.

      We are deeply grateful to the reviewer for considering our manuscript significant for both biologists and clinicians. We are convinced that the additional data we gathered in the course of the revision has significantly increased the importance of our work. Therefore, we once again express our gratitude to the reviewer for the valuable suggestions.

      Response to reviewer 2 comments

      Major comments


      Point 2-1

      The conclusions drawn from the experimental data are carefully formulated for the most part. One of the main concerns is that the cells were subjected to extreme hypoxic conditions, while it may be more biologically relevant to include a condition representing more mild hypoxia (e.g. 10%).

      Please refer to the response to point 1-2.

      Point 2-2

      One of the opening claims regarding severe hypoxia only mildly affecting cell proliferation is not shown clearly, since no mitotic markers have been analyzed (i.e. KI67 or PCNA staining or a simple EdU incorporation assay). Thus, the claim that they assessed cell proliferation is not very convincing, even though cell death was analyzed.

      We appreciate the reviewer’s suggestion to include a more thorough analysis of proliferation rates. We followed the advice and performed immunofluorescent stainings against Ki67 (accounting for cells in proliferative state) and phospho-histone H3 (accounting for cells undergoing mitosis). We performed this assay at different time points of culture in order to address the question if cell density might influence proliferation rates (Figs. 1F-H). Neither for Ki67 nor for pHH3 a difference was detected between 21% and 0.5% O2.

      We are convinced that these analyses strengthened our initial findings and provide strong evidence that hypoxia does not influence proliferation rates of CNCC.

      Point 2-3

      Additionally, cellular morphology of the cells could be assessed (brightfield images), since previous studies observed that hypoxia can be an inducive factor in cranial neural crest and driving EMT (Scully et al. 2016; Barriga et al. 2013).


      We thank the reviewer’s hint and followed the advice. We analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. EV1C-F). As outlined in the results section, we did not detect a difference in these parameters between 21% and 0.5% O2.

      We included the second reference mentioned by the reviewer (Barriga et al, 2013) additionally to Scully et al. 2016 that had already been cited.

      Point 2-4

      Furthermore, in the RNA seq analysis of chondrogenic fate biased cells the authors draw a conclusion based on the proximity of the samples on the PCA plot, which is not very convincing. More careful analysis of the bulk RNA seq data sets they have generated for key marker genes will be more convincing (for example, a heatmap with selected genes would be a helpful representation).

      We apologize for the rash and inaccurate conclusion based on proximity on PCA plots. We are grateful to the reviewer for the suggestion to include heatmaps with selected marker genes. Following this advice, we generated heatmaps on our bulk RNA-seq data with the GO terms specific for each differentiation paradigm (Figs. EV2F, EV3F, EV4F).

      We are convinced that these maps are perfect additions to the heatmaps of the 200 top differentially-expressed genes that already had been included in the manuscript (Figs. 2K, 3J, 4J) and helped to strengthen our findings. For chondrocytes and smooth muscle cells, the new, GO-specific heatmaps perfectly recapitulated the phenomenon of hypoxia-attenuated induction. Interestingly, for osteoblasts, about half of the induced genes were hypoxia-attenuated, while the other half was induced stronger than under normoxia. This pointed to gene-specific mechanisms of hypoxia-dependent attenuation of transcription. Moreover, it shed light on a hypoxia-evoked complete dysregulation of transcriptional induction in osteoblasts, as nearly none of the genes was induced similar to normoxia.

      __ __


      Point 2-5

      As mentioned above, a straight-forward and not time consuming experiment (given that it was assessed for a maximum of 72 hrs) would be to repeat the culture of NCCs and stain for mitotic markers, and quantify the number of positively stained cells over total cell numbers. Furthermore, it is not that demanding to add an experimental condition of less severe hypoxia in this assay.

      We thank the reviewer for the suggestion and followed the advice (cf. point 2-2). The conducted experiments straightened our results, because the initially detected slight tendency to lower cell numbers at 0.5% O2 could thus be falsified: We did not detect any difference for Ki67 and pHH3 between 0.5% and 21% O2 at any analyzed time point (Figs. 1F-H). Moreover, percentages of dead or apoptotic cells at 0.5% O2 did not vary from 21% (Figs. 1I-L, EV1B). As we could not detect any difference in proliferation between 21% and 0.5% O2, we skipped the analysis of proliferating cells at 2% O2.

      Point 2-6

      Without underestimating how time consuming this would be, a major lack of experimental validation of the key genes they identify as important across all conditions may be the limitation of the study (this would be the difference between correlation and a probable underlying mechanism). This can be circumvented by more extensive reference to in situ data sets from mouse or existing data sets of single cell and spatial transcriptomics. A suggested targeted knock-down (for example with siRNA, shRNA or CRISPR) to validate a few of the key genes revealed as important could take a few months, with an estimated cost up to 5,000 euros per targeted gene and replicate.

      We thank the reviewer for the notion that targeted knockdowns are beyond the scope of our manuscript. We are deeply grateful for the reviewer’s constructive criticism and for the suggestion to analyze publicly available data sets in order to gather data depicting in vivo relevance of our identified central hypoxia-attenuated OFC risk genes Boc, Cdo1 and Actg2 (cf. point 1-4). We detected robust expression of Boc and Cdo1 during human craniofacial development (Fig. 7A) and we identified enhancers that are active in embryonic craniofacial mouse tissue (Fig. 7B). Moreover, we detected expression of both genes during murine craniofacial development in undifferentiated mesenchymal cells, osteoblasts, chondrocytes and smooth muscle cells by reanalysis of a scRNA-seq dataset (Figs. 7C-E, EV6B). This data comprised scRNA-seq of mouse embryonic maxillary prominence at stages E11.5 and E14.5 (Sun et al, 2023).

      Thus, we found evidence for the in vivo relevance of Boc and Cdo1 and could rule out a possible important role of Actg2, the third gene we had identified. We therefore are deeply grateful for the suggestion, as we think these data strongly emphasize the importance of our findings.

      Point 2-7

      On methods, replicates and statistics: The experimental methods and approach are described efficiently and seem reproducible. All biological and technical replicates are of a minimum of N=3 from independent experiments and statistical tests have been run in all cases.


      We thank the reviewer for the appreciation of our methodology, descriptions and statistical analyses.

      Minor points

      Point 2-8

      One of the key implications of NCCs in palate formation is interaction with orofacial epithelial cells, which the authors also mention. It may be interesting to check if any signaling pathways involved in this crosstalk are affected under hypoxic conditions in their existing data sets of bulk RNA SEQ. This can be done by using available algorithms such as CellChat (Jin et al. 2021; Jin, Plikus, and Nie 2023), which has been reported to work also in bulk RNA seq data analysis (according to GitHub). The authors could mine the literature for existing RNA sequencing data that include osteoblasts, chondrocytes and epithelial cells (Ozekin, O'Rourke, and Bates 2023; Piña et al. 2023).

      We are very grateful to the reviewer for this suggestion. Moreover, we like to thank the reviewer for mentioning exemplary references. We followed the advice by the methodology lined out in results and materials and methods sections: we applied the CellChat algorithm on a scRNA-seq dataset (Pina et al, 2023; Sun et al., 2023) to identify pathways containing components that are hypoxia-attenuated (and associated with a risk for OFC) in our bulk RNA-seq dataset (Figs. 7F-I). We did not use the datasets the reviewer had suggested, because the data were not available for us or the file format was not well-suited for the analysis with CellChat. Importantly, the dataset from Sun et al. has the following advantages over the suggested references: the complete maxillary prominence was used (instead of palatal shelves only), and different time points were included. Thus, we were able to follow the expression of genes of interest at different developmental stages before the onset of differentiation and after (Figs. 7C-E and EV6B). By our approach, we identified several OFC-related pathways that contain hypoxia-attenuated components such as BMP and FGF signaling and deposition of collagen and fibronectin (Figs. 7F-I). Importantly, the named pathways (and others) send outgoing communication patterns to epithelial cells. Therefore, hypoxia-attenuated gene induction in CNCC could influence epithelial cells via these pathways.

      We believe that the use of the CellChat algorithm has brought a deeper understanding of how hypoxia can have indirect consequences on the important topic of epithelial cells and thus could also evoke OFC. We therefore once again like to express our gratitude to the reviewer.

      Point 2-9

      Additionally, another process that may be affected is EMT (epithelial-to-mesenchymal-transition) and is possible to assess by re-analysis of bulk RNA-seq data while focusing on key genes implicated in this process (i.e. E-cadherin, vimentin, EpCAM, Snail, Twist, PRRX1).

      We thank the reviewer for the advice. We followed the advice and analyzed cellular morphology by the parameters cell length, total number of pseudopodia, number of filopodia and number of lobopodia (Figs. EV1C-F) (cf. point 2-3). As we did not detect any differences between 21% and 0.5% O2, and because the cells we used for our analyses represent mesenchymal cells, i.e. cells that had already undergone EMT, we did not re-analyze our dataset with the focus on EMT.

      Point 2-10

      Lastly, when the authors report on the significantly up- or down-regulated genes, it may be interesting to categorize them by ligands, receptors, intracellular molecules and transcription factors (and use separate plots to visualize them). While a big focus of the manuscript are down-regulated genes, less emphasis was given in upregulated genes (other than the response to hypoxia gene module).

      We thank the reviewer for the advice. Following this advice, we categorized genes according to Panther protein classes "intercellular signal molecule" (PC00207), "transmembrane signal receptor" (PC00197) and "gene-specific transcriptional regulator" (PC00264) and depicted the results with violin plots (Fig. EV5B). We could not analyze intracellular molecules, because this protein class does not exist in the Panther database. We had not focused on the genes with stronger induction in hypoxic condition, because the number of genes was low in each differentiation paradigm (7 in chondrocytes, less than 30 in osteoblasts, none in smooth muscle cells) and the transcriptional changes were mostly not as drastic as for the attenuated genes. In order to achieve a broader overview of deregulated processes, we now included GO term analyses of genes downregulated during the differentiation regimes both at 21% and 0.5% O2 (Figs. EV2D,E, EV3D,E, EV4D,E).

      Point 2-11

      The authors are referencing extensively and accurately existing studies in the field and the manuscript is exceptionally well-written, with only a few points of limited clarity or increased complexity. Such an example is when the authors refer to OFC risk genes, because it is not clearly stated how the referenced studies reached their conclusions (for example, are they mouse studies, do they involve mutants, are any of these studies based on GWAS on human cohorts). This matter would significantly improve the flow of the text and highlight the importance of the study and their findings.

      We would like to thank the reviewer very much for the appreciation of our scientific writing. We apologize for not explaining exactly how our OFC risk gene lists had been curated. We included this information for both non-syndromic and other OFC risk genes at the respective sites in the results section. Moreover, we included the Human Phenotype Ontology terms that had been used in the search in the materials and methods section.

      We thank the reviewer for this suggestion, as we agree that this information significantly highlights the importance of our findings.

      Point 2-12

      The figures could be redesigned to be more intuitive to interpret. For example, using violin plots and heatmaps, as discussed, and including references or re-analysis/re-use of existing spatial transcriptomics and in situs for marker genes.

      In all cases where there is a comparison of gene expression levels, violin plots would be a better representation of up- and down-regulated genes (i.e. selected genes from Fig1K, comparison of gene expression between normoxic and hypoxic NCCs, Fig 2G when analyzing chondrogenesis and the respective analysis for osteoblasts and smooth muscle cells, as well as when comparing the three fate-biasing conditions to identify common genes that are misregulated).

      We thank the reviewer for the advice and for the appreciation of the usage of heatmaps (Figs. 2K, 3J, 4J, 6F). Unfortunately, as the number of biological replicates is only three to four, the visualization of gene expression data from our bulk RNA-seq data with violin plots was not intuitive. We therefore retained the heatmaps rather than choosing bar graphs, because they are much clearer when presenting expression data of several to many genes. We included violin plots whenever possible due to high numbers of data points (Figs. EV1C, EV1D, EV1E, EV1F, EV5B). Moreover, we added additional heatmaps to depict transcriptional changes of genes associated with GO terms with the various differentiation regimes (Figs. EV2F, EV3F, EV4F). Unfortunately, we did not detect the three central hypoxia-attenuated genes in spatial transcriptomics data on craniofacial development. But we used scRNA-seq data of different stages of orofacial mouse tissue where we could identify expression of Boc and Cdo1 (cf. points 1-4 and 2-6). These data helped, together with other in vivo data to gain evidence for the in vivo function of Boc and Cdo1 during CNCC differentiation and helped to dismiss Actg2 as another central player.

      Significance

      Several pieces of evidence have pointed to hypoxia as an environmental factor contributing to congenital orofacial clefts, ranging from studies in mouse to observations in human. The authors are doing an excellent job in putting this information together and the question they are trying to answer is of high importance, given the prevalence of such congenital syndromes.

      We are deeply grateful to the reviewer for the appreciation of our work and for classifying our research topic as highly important.

      In terms of the methods and model employed, there are some limitations, related to the choice of a mouse cell line over one from human, the severe hypoxia induced (over a more mild), and the conditions of directed differentiation not allowing for simultaneous examination of more complex lineage transitions. The methods as a whole are not that up-to-date, given the single cell and multiplexed transcriptomic advances the last couple of decades, advanced bioinformatics that could be used in combination with in vitro lineage tracing methods.

      We thank the reviewer for the honest evaluation of our methods, especially for the constructive suggestions that were given to address our hypotheses with more up-to-date methods and at milder hypoxic conditions. As outlined above, we followed the advice and re-analyzed existing scRNA-seq datasets (cf. points 2-6 and 2-8) and checked our central hypotheses at milder hypoxic conditions (cf. response to point 1-3).

      We are deeply convinced that both significantly increased the biological relevance of our results, because we thus (1) gathered evidence for the in vivo function of Boc and Cdo1 and (2) were able to show that the phenomenon of hypoxia-attenuated gene induction still holds true at biologically relevant hypoxic conditions.

      The audience this work will reach are neural crest experts, developmental biologists, and potentially clinical doctors. The general public outreach of such a paper is also diverse, as more focus and visibility is required for the individuals affected by those syndromes and their families.

      We thank the reviewer for the judgement that our manuscript will not only reach neural crest experts, but also developmental biologists in general and potentially also clinicians. We are very much pleased that the reviewer shares our opinion that affected individuals should be more in the focus of public attention. We like to express our gratitude for the judgement that our manuscript might help to increase focus and visibility for them.

      References


      Barriga EH, Maxwell PH, Reyes AE, Mayor R (2013) The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. The Journal of cell biology 201: 759-776, 10.1083/jcb.201212100.

      Forman TE, Sajek MP, Larson ED, Mukherjee N, Fantauzzo KA (2024) PDGFRα signaling regulates Srsf3 transcript binding to affect PI3K signaling and endosomal trafficking. Elife 13, 10.7554/eLife.98531.

      Funato N, Nakamura M, Yanagisawa H (2015) Molecular basis of cleft palates in mice. World journal of biological chemistry 6: 121-138, 10.4331/wjbc.v6.i3.121.

      Gehlen-Breitbach S, Schmid T, Fröb F, Rodrian G, Weider M, Wegner M, Gölz L (2023) The Tip60/Ep400 chromatin remodeling complex impacts basic cellular functions in cranial neural crest-derived tissue during early orofacial development. International Journal of Oral Science 15: 16, 10.1038/s41368-023-00222-7.

      Hansen JM, Jones DP, Harris C (2020) The Redox Theory of Development. Antioxid Redox Signal 32: 715-740, 10.1089/ars.2019.7976.

      Li D, Tian Y, Vona B, Yu X, Lin J, Ma L, Lou S, Li X, Zhu G, Wang Y et al (2025) A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration. Hum Mol Genet 34: 392-401, 10.1093/hmg/ddae188.

      Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y (2017) In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update 24: 15-34, 10.1093/humupd/dmx028.

      Pina JO, Raju R, Roth DM, Winchester EW, Chattaraj P, Kidwai F, Faucz FR, Iben J, Mitra A, Campbell K et al (2023) Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis. Nature communications 14: 5687, 10.1038/s41467-023-41349-9.

      Sun J, Lin Y, Ha N, Zhang J, Wang W, Wang X, Bian Q (2023) Single-cell RNA-Seq reveals transcriptional regulatory networks directing the development of mouse maxillary prominence. J Genet Genomics 50: 676-687, 10.1016/j.jgg.2023.02.008.

      Ulschmid CM, Sun MR, Jabbarpour CR, Steward AC, Rivera-González KS, Cao J, Martin AA, Barnes M, Wicklund L, Madrid A et al (2024) Disruption of DNA methylation-mediated cranial neural crest proliferation and differentiation causes orofacial clefts in mice. Proc Natl Acad Sci U S A 121: e2317668121, 10.1073/pnas.2317668121.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We are disappointed that the reviewers do not acknowledge that our data constitute a major step forward for the field. We will prepare a revised version that takes care of the remaining small issues concerning the technical descriptions and a detailed response to the current round of comments. We will also add a summary of the major new findings of our study.


      The following is the authors’ response to the original reviews.

      We appreciate the time of the reviewers and their detailed comments, which have helped to improve the manuscript.

      Our study presents the largest systematic dataset so far on the evolution of sex-biased gene expression in animals. It is also the first that explores the patterns of individual variation in sex-biased gene expression and the SBI is an entirely new procedure to directly visulize these variance patterns in an intuitive way.

      Also, we should like to point out that our study contradicts recent conclusions that had suggested that a substantial set of sex-biased genes has conserved functions between humans and mice and that mice can therefore be informative for gender-specific medicine studies. Our data suggest that only a very small set of genes are conserved in their sex-biased expression between mice and humans in more than one organ.

      In the revised version we have made the following major updates:

      - added a rate comparison of gene regulation turnover between sex-biased and non-sex-biased genes

      - added additional statistics to the variance comparisons and selection tests

      - added a regulatory module analysis that shows that much of the gene turnover happens within modules

      - added a mosaic pattern analysis that shows the individual complexity of sex-biased patterns

      - extended introduction and discussion

      Reviewer #1 (Public Review):<br /> The authors describe a comprehensive analysis of sex-biased expression across multiple tissues and species of mouse. Their results are broadly consistent with previous work, and their methods are robust, as the large volume of work in this area has converged toward a standardized approach.

      I have a few quibbles with the findings, and the main novelty here is the rapid evolution of sex-biased expression over shorter evolutionary intervals than previously documented, although this is not statistically supported. The other main findings, detailed below, are somewhat overstated.

      (1) In the introduction, the authors conflate gametic sex, which is indeed largely binary (with small sperm, large eggs, no intermediate gametic form, and no overlap in size) with somatic sexual dimorphism, which can be bimodal (though sometimes is even more complicated), with a large variance in either sex and generally with a great deal of overlap between males and females. A good appraisal of this distinction is at . This distinction in gene expression has been recognized for at least 20 years, with observations that sex-biased expression in the soma is far less than in the gonad.

      For example, the authors frame their work with the following statement:

      "The different organs show a large individual variation in sex-biased gene expression, making it impossible to classify individuals in simple binary terms. Hence, the seemingly strong conservation of binary sex-states does not find an equivalent underpinning when one looks at the gene-expression makeup of the sexes"

      The authors use this conflation to set up a straw man argument, perhaps in part due to recent political discussions on this topic. They seem to be implying one of two things. a) That previous studies of sex-biased expression of the soma claim a binary classification. I know of no such claim, and many have clearly shown quite the opposite, particularly studies of intra-sexual variation, which are common - see https://doi.org/10.1093/molbev/msx293, https://doi.org/10.1371/journal.pgen.1003697, https://doi.org/10.1111/mec.14408, https://doi.org/10.1111/mec.13919, https://doi.org/10.1111/j.1558-5646.2010.01106.x for just a few examples. Or b) They are the first to observe this non-binary pattern for the soma, but again, many have observed this. For example, many have noted that reproductive or gonad transcriptome data cluster first by sex, but somatic tissue clusters first by species or tissue, then by sex (https://doi.org/10.1073/pnas.1501339112, https://doi.org/10.7554/eLife.67485)

      Figure 4 illustrates the conceptual difference between bimodal and binary sexual conceptions. This figure makes it clear that males and females have different means, but in all cases the distributions are bimodal.

      I would suggest that the authors heavily revise the paper with this more nuanced understanding of the literature and sex differences in their paper, and place their findings in the context of previous work.

      We are sorry that our introduction seems to have been too short to make our points sufficiently clear. Of course, overlapping somatic variation has been shown for morphological characters, but we were aiming to assess this at the sex-biased transcriptome level. Previous studies looking at sex-biased genes were usually limited by the techniques that were available at their times, resulting in a focus on gonads in most studies and almost all have too few individuals included to study within-group variation. We detail this below for the papers that are mentioned by the referee. In view of this, we cite them now as examples for the prevalent focus on gonadal comparisons in most studies. Only Scharmann et al. 2021 on plant leaf dimorphism is indeed relevant for our study with respect to its general findings and we make now extensive reference to it. In addition, we have generally modified the introduction and substantially extended the discussion to make our points clear.

      Snell-Rood 2010: the paper focuses on sex-specific morphological structures in beetles. It samples six somatic tissues for four individuals each of each class. Analysis is done via microarray hybridizations. While categorial differences were traced, variability between individuals was not discussed. By today´s standards, microarrays have anyway too much technical variability to even consider such a discussion.

      Pointer et al. 2013: this paper studies three sexual phenotypes in a bird species, females, dominant males and subordinate males. Tissues include telencephalon, spleen and left gonad. The focus of the analysis is on the gonads, since only few sex-biased genes were found in spleen and brain (according to suppl. Table S1, 0 for the spleen and 2 for the brain). No inferences could be made on somatic variation.

      Harrison 2015: this paper focuses on gonads plus spleen in six bird species with between 2-6 individuals for each sex collected. In the spleen, only one female biased gene and no male biased gene was detected. Hence, the data do not allow to infer patterns of somatic variation.

      Dean et al. 2016: this paper compares four categories of fish caught around nests, with four to seven individuals per category. Only gonads were analyzed, hence no inferences could be made about somatic variability between individuals.

      Cardoso et al. 2017: this paper test categories of fish with alternative reproductive tactics based on brain transcriptomes. While it uses 9-10 individuals per category, it uses pools for sequencing with two pools per category. This does not allow to make any inference on individual variation.

      Todd et al 2017: this paper focuses on three categories of a fish species, females and dominant and sneaker males. It uses brain and gonads as samples with five individuals each for each category. For the brain, more different genes were found between the two types of males, rather than between females and males (3 and 9 respectively). The paper focuses on individual gene descriptions and does not mention somatic variation.

      Scharmann 2021: the paper focuses on 10 species of plants with sexually dimorphic leafs. 5-6 individuals were sampled per sex. The major finding is that sex-biased gene expression does not correlate with the degree of sexual dimorphism of the leafes. The study shows also a fast evolution of sex-biased expression and states that signatures of adaptive evolution are weak. But it does not discuss variance patterns within populations.

      (2) The authors also claim that "sexual conflict is one of the major drivers of evolutionary divergence already at the early species divergence level." However, making the connection between sex-biased genes and sexual conflict remains fraught. Although it is tempting to use sex-biased gene expression (or any form of phenotypic dimorphism) as an indicator of sexual conflict, resolved or not, as many have pointed out, one needs measures of sex-specific selection, ideally fitness, to make this case (https://doi.org/10.1086/595841, 10.1101/cshperspect.a017632). In many cases, sexual dimorphism can arise in one sex only without conflict (e.g. 10.1098/rspb.2010.2220). As such, sex-biased genes alone are not sufficient to discriminate between ongoing and resolved conflict.

      We imply sexual conflict as a driver of genomic divergence patterns in a similar way as it has been done by many authors before (e.g. Mank 2017a, Price et al. 2023, Tosto et al. 2023). While we fully appreciate the point of the referee, we do not really see where we deviate from the standard wording that is used in the context of genomic data. In such data, it is of course usually assumed that they represent solved conflicts (Figure 1D in Cox and Calsbeek) where selection differentials would not be measurable anyway. (Please note also that the phylogenetic approach used in Oliver and Monteiro 2010 becomes rather problematic in view of introgressive hybridization patterns in butterflies), We have extended the discussion to address this.

      (3) To make the case that sex-biased genes are under selection, the authors report alpha values in Figure 3B. Alpha value comparisons like this over large numbers of genes often have high variance. Are any of the values for male- female- and un-biased genes significantly different from one another? This is needed to make the claim of positive selection.

      Sorry, we had accidentally not included the statistics in the final version of the figure. We have added this now in the supplementary table but have also generally changed the statistical approach and the design of the figure.

      Reviewer #2 (Public Review):

      The manuscript by Xie and colleagues presents transcriptomic experiments that measure gene expression in eight different tissues taken from adult female and male mice from four species. These data are used to make inferences regarding the evolution of sex-biased gene expression across these taxa. The experimental methods and data analysis are appropriate; however, most of the conclusions drawn in the manuscript have either been previously reported in the literature or are not fully supported by the data.

      We are not aware of any study that has analyzed somatic sex-biased expression in such a large and taxonomically well resolved closely related taxa of animals. Only the study by Scharman et al. 2021 on plant leaves comes close to it, but even this did not specifically analyze the intragroup variation aspects. Of course, some of our results confirm previous conclusions, but we should still like to point out that they go far beyond them.

      There are two ways the manuscript could be modified to better strengthen the conclusions.

      First, some of the observed differences in gene expression have very little to no effect on other phenotypes, and are not relevant to medicine or fitness. Selectively neutral gene expression differences have been inferred in previous studies, and consistent with that work, sex-biased and between-species expression differences in this study may also be enriched for selectively neutral expression differences. This idea is supported by the analysis of expression variance, which indicates that genes that show sex-biased expression also tend to show more inter-individual variation. This perspective is also supported by the MK analysis of molecular evolution, which suggests that positive selection is more prevalent among genes that are sex-biased in both mus and dom, and genes that switch sex-biased expression are under less selection at the level of both protein-coding sequence and gene expression.

      We have now revisited these points by additional statistical analysis of the variance patterns and an extended discussion under the heading "Neutral or adaptive?". 

      As an aside, I was confused by (line 176): "implying that the enhanced positive selection pressure is triggered by their status of being sex-biased in either taxon." - don't the MK values suggest an excess of positive selection on genes that are sex-biased in both taxa?

      There are different sets of genes that are sex-biased in these two taxa - hence this observation is actually a strong argument for selection on these genes. We have changed the correspondiung text to make this clearer.

      Without an estimate of the proportion of differentially expressed genes that might be relevant for broader physiological or organismal phenotypes, it is difficult to assess the accuracy and relevance of the manuscript's conclusions. One (crude) approach would be to analyze subsets of genes stratified by the magnitude of expression differences; while there is a weak relationship between expression differences and fitness effects, on average large gene expression differences are more likely to affect additional phenotypes than small expression differences.

      We agree that it remains a challenge to show functional effects for the sex-biased genes. The argument that they should have a function is laid out above (and stated in many reviews on the topic). To use the expression level as a proxy of function does not seem justified, given the current literature. For example, genes that are highly conected in modules are not necessrily highly expressed (e.g. transcription factors). Also, genes may be highly expressed in a rare cell type of an organ and have an important funtion there, but this would not show up across the RNA of the whole organ. The most direct functional relationship between sex-biased expression and phenotype comes from the human data in Naqvi et al. 2019 - which we had cited.

      Another perspective would be to compare the within-species variance to the between-species variance to identify genes with an excess of the latter relative to the former (similar logic to an MK test of amino acid substitutions).

      Such an analysis was actually our intial motivation for this study. However, the new (and surprising!) result is that the status of being sex-biased shows such a high turnover that not many genes are left per organ where one could even try to make such a test. However, we have extended the variance analysis with reciprocal gene sets (as we had done it for the MK test) and extended the discussion on the topic, including citation of our prior work on these questions.

      Second, the analysis could be more informative if it distinguished between genes that are expressed across multiple tissues in both sexes that may show greater expression in one sex than the other, versus genes with specialized function expressed solely in (usually) reproductive tissues of one sex (e.g. ovary-specific genes). One approach to quantify this distinction would be metrics like those used defined by [Yanai I, et al. 2005. Genome-wide midrange transcription profiles reveal expression-level relationships in human tissue specification. Bioinformatics 21:650-659.] These approaches can be used to separate out groups of genes by the extent to which they are expressed in both sexes versus genes that are primarily expressed in sex-specific tissue such as testes or ovaries. This more fine-grained analysis would also potentially inform the section describing the evolution/conservation of sex-biased expression: I expect there must be genes with conserved expression specifically in ovaries or testes (these are ancient animal structures!) but these may have been excluded by the requirement that genes be sex-biased and expressed in at least two organs.

      Given that our study focuses on somatic sex-biased genes, we refrain from a comparative analysis of genes that are only expressed in the sex-organs in this paper. With respect to sharing of sex-biased gene expresssion between the somatic tissues, we show in Figure 8 that there are only very few of them (8 female-biased and 3 male-biased). A separate statistical treatment is not possible for this small set of genes.

      There are at least three examples of statements in the discussion that at the moment misinterpret the experimental results.

      The discussion frames the results in the context of sexual selection and sexually antagonistic selection, but these concepts are not synonymous. Sexual selection can shape phenotypes that are specific to one sex, causing no antagonism; and fitness differences between males and females resulting from sexually antagonistic variation in somatic phenotypes may not be acted on by sexual selection. Furthermore, the conditions promoting and consequence of both kinds of selection can be different, so they should be treated separately for the purposes of this discussion.

      We cannot make such a distinction for gene expression patterns - and we are not aware that this was done before in the literature (except gene expression was directly linked to a morphological structure). We have updated this discussion accordingly.

      The discussion claims that "Our data show that sex-biased gene expression evolves extremely fast" but a comparison or expectation for the rate of evolution is not provided. Many other studies have used comparative transcriptomics to estimate rates of gene expression evolution between species, including mice; are the results here substantially and significantly different from those previous studies? Furthermore, the experimental design does not distinguish between those gene expression phenotypes that are fixed between species as compared to those that are polymorphic within one or more species which prevents straightforward interpretation of differences in gene expression as interspecific differences.

      Our statement was in relation to the comparison between somatic and gondadal gene turnover, as well as the comparison to humans. We have now included an additional analysis for a direct comparison with non-sex-biased genes in the same populations (Figure 2B). Note that gene expression variances cannot get fixed anyway, they can only become different in average and magnitude.

      The conclusion that "Our results show that most of the genetic underpinnings of sex differences show no long-term evolutionary stability, which is in strong contrast to the perceived evolutionary stability of two sexes" - seems beyond the scope of this study. This manuscript does not address the genetic underpinnings of sex differences (this would involve eQTL or the like), rather it looks at sex differences in gene expression phenotypes.

      This comes back to the points discussed above about the validity to infer function from sex-biased expression. We have updated the text to clarify this.

      Simply addressing the question of phenotypic evolutionary stability would be more informative if genes expressed specifically in reproductive tissues were separated from somatic sex-biased genes to determine if they show similar patterns of expression evolution.

      Our study is generally focused on somatic gene expression. The comparison with reproductive tissues serves merely as a reference. Since they are of course very different tissues, they should not be compared with each other in the same way. We have now specifically addressed this point in the discussion.

      Reviewer #3 (Public Review):

      This manuscript reports some interesting and important patterns. The results on sex-bias in different tissues and across four taxa would benefit from alternative (or additional) presentation styles. In my view, the most important results are with respect to alpha (fraction of beneficial amino acid changes) in relation to sex-bias (though the authors have made this as a somewhat minor point in this version).

      The part that the authors emphasize I don't find very interesting (i.e., the sexes have overlapping expression profiles in many nongonadal tissues), nor do I believe they have the appropriate data necessary to convincingly demonstrate this (which would require multiple measures from the same individual).

      This is the first study that reports such overlaps and we show that this is not always the case (e.g. liver and kidney data in mice). We are not aware of any preditions of how such patterns would look like and how they would evolve - why should such a new finding not be interesting? Concerning the appropriateness of the data we do not agree with the point the referee makes - see response below.

      This study reports several interesting patterns with respect to sex differences in gene expression across organs of four mice taxa. An alternative presentation of the data would yield a clearer and more convincing case that the patterns the authors claim are legitimate.

      I recommend that the authors clarify what qualifies as "sex-bias".

      This is defined by the statistical criteria that we have applied, following the general standard of papers on this topic.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) "However, already Darwin has pointed out that the phenotypes of the sexes should evolve fast". I think the authors mean that Darwin was quick to point out that sex-specific phenotypes evolve quickly".

      We have modified this text part.

      (2) Non-gonadal is more often referred to as somatic. I would encourage the authors to use this more common term for accessibility.

      We have adopted this term

      (3) Figure 5 is interesting, however, it is difficult to know whether the decreased bimodality in humans compared to mice is biological or technical due to the differences in the underlying data. For example, the mouse samples tightly controlled age and environmental conditions within each species. It is not possible to do that with human samples, and there are very good reasons to think that these factors will affect variance in both sexes.

      Yes, this is certainly true and we know this also from other comparative data between mice and humans. Still, this is human reality vs mouse artificialness. We pick this now up in the discussion.

      (4) Line 273. The large numbers of cells needed for single-cell analysis require that most studies pool multiple samples, however these pools are helpful in themselves. This approach was used by https://doi.org/10.1093/evlett/qrad013 to quantify the degree of sex-bias within cell types across multiple tissues and to compare how bulk and single-cell sex-bias measures compare. Sex-bias in some somatic cell types was very high, even when bulk sex-bias in those tissues was not. This suggests that the bulk data the authors use in this study may in fact obscure the pattern of sex-bias.

      Yes, we agree, and this is exactly how we did the analysis and interpretation, based on the cited paper.

      (5)- Line 379 "Total RNAs were" should be "Total RNA was"

      Corrected

      References cited in this review and which should be included in the manuscript :

      Sam L Sharpe, Andrew P Anderson, Idelle Cooper, Timothy Y James, Alexandra E Kralick, Hans Lindahl, Sara E Lipshutz, J F McLaughlin, Banu Subramaniam, Alicia Roth Weigel, A Kelsey Lewis, Sex and Biology: Broader Impacts Beyond the Binary, Integrative, and Comparative Biology, Volume 63, Issue 4, October 2023, Pages 960-967.

      Included

      Masculinization of Gene Expression Is Associated with Exaggeration of Male Sexual Dimorphism Pointer MA, Harrison PW, Wright AE, Mank JE (2013) Masculinization of Gene Expression Is Associated with Exaggeration of Male Sexual Dimorphism. PLOS Genetics 9(8): e1003697.

      Included

      Erica V Todd, Hui Liu, Melissa S Lamm, Jodi T Thomas, Kim Rutherford, Kelly C Thompson, John R Godwin, Neil J Gemmell, Female Mimicry by Sneaker Males Has a Transcriptomic Signature in Both the Brain and the Gonad in a Sex-Changing Fish, Molecular Biology and Evolution, Volume 35, Issue 1, January 2018, Pages 225-241.

      Included

      Cardoso SD, Gonçalves D, Goesmann A, Canário AVM, Oliveira RF. Temporal variation in brain transcriptome is associated with the expression of female mimicry as a sequential male alternative reproductive tactic in fish. Mol Ecol. 2018; 27: 789-803.

      Included

      Dean, R., Wright, A.E., Marsh-Rollo, S.E., Nugent, B.M., Alonzo, S.H. and Mank, J.E. (2017), Sperm competition shapes gene expression and sequence evolution in the ocellated wrasse. Mol Ecol, 26: 505-518.

      Included

      Emilie C. Snell‐Rood, Amy Cash, Mira V. Han, Teiya Kijimoto, Justen Andrews, Armin P. Moczek, DEVELOPMENTAL DECOUPLING OF ALTERNATIVE PHENOTYPES: INSIGHTS FROM THE TRANSCRIPTOMES OF HORN‐POLYPHENIC BEETLES, Evolution, Volume 65, Issue 1, 1 January 2011.

      Not included, since its technical approach is not really comparable

      Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE (2015) Sexual selection drives evolution and rapid turnover of male gene expression. Proceedings of the National Academy of Sciences, USA 112: 4393-4398.

      Included

      Mathias Scharmann, Anthony G Rebelo, John R Pannell (2021) High rates of evolution preceded shifts to sex-biased gene expression in Leucadendron, the most sexually dimorphic angiosperms eLife 10:e67485.

      Included

      Sexually Antagonistic Selection, Sexual Dimorphism, and the Resolution of Intralocus Sexual Conflict. Robert M. Cox and Ryan Calsbeek , The American Naturalist 2009 173:2, 176-187.

      Included

      Ingleby FC, Flis I, Morrow EH. Sex-biased gene expression and sexual conflict throughout development. Cold Spring Harb Perspect Biol. 2014 Nov 6;7(1):a017632.

      Included

      Oliver JC, Monteiro A 2011. On the origins of sexual dimorphism in butterflies. Proc Biol Sci 278: 1981-1988.

      Included

      Iulia Darolti, Judith E Mank, Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism, Evolution Letters, Volume 7, Issue 3, June 2023, Pages 148-156.

      Included

      Reviewer #2 (Recommendations For The Authors):

      I am concerned the smoothed density plots in Figure 4 may be providing a misleading sense of the distributions since each distribution is inferred from only 9 values. A boxplot might better represent the data to the reader.

      Boxplots with 9 values are much more difficult to interpret for a reader, this is the very reason why one tends to smoothen them. In this way, they also become similar to the standard plots that are used for showing morphological variation between the sexes. Note that the original data are availble for the individual values, if these are of special interest in some cases. In addition, our new “mosaic” analysis (Figure 6) provides another presentation for readers.

      Line 235: "the overall numbers are lower" I assume this is the number of genes included in the analyses, but this should be explicitly stated.

      Clarified in the text

      The analysis of gene expression from different brain regions in control individuals from the Alzheimer's study (line 273) suffers from low power and it is not clear to me how much taking samples from different brain regions eliminates the issue of different cell types within a sample (the stated motivation for this analysis). While I support publishing negative results, this section does not feel like it adds much to the manuscript and could be cut in my opinion.

      This is actually a study on single cell types, differentiating each of them. We are sorry that the text was apparently unclear about this. Given that there are studies that show the importance of looking at single cell data, we still think that is a suitable analysis. We have updated the text to make it clearer.

      It might be useful to separate out X-linked genes from autosomal genes to see if they show consistent patterns with regard to sex-bias.

      We have added this information in suppl. Table S2 and include some description in the text.

      Reviewer #3 (Recommendations For The Authors):

      Comments follow the order of the Results section:

      (1) The latter half of this line in the Methods is too vague to be helpful: "We have explored a range of cutoffs and found that a sex-bias ratio of 1.25-fold difference of MEDIAN expression values combined with a Wilcoxon rank sum test and Benjamini-Hochberg FDR correction (using FDR <0.1 as cutoff) (Benjamini & Hochberg, 1995) yields the best compromise between sensitivity and specificity". What precisely is meant by "the best compromise between sensitivity and specificity"?

      We explain now that this was based on pre-tests with comparing randomized with actual data. However, we agree that this is in the end a subjective decision, but there is no single standard used in the literature, especially when somatic organs are included. We consider our criteria as rather stringent.

      (2) The 1.25 number for sex bias is, ultimately, an arbitrary cut-off. It is common in this literature to choose some arbitrary level and, in this sense, the authors are following common practice. The choice of 1.25 should be stated in the main text as it is a lower (but not reasonable) value than has been used in many other papers.

      It is not only the cutoff, but also the Wilcoxon test and FDR correction that defines the threshold. See also comment above.

      (3) In truth, dimorphism is continuous rather than discrete (i.e, greater or less than 1.25 fold different). Thus, where possible it would be useful to present results in a fashion that allows readers to see the continuous range of ratios rather than having to worry about whether the patterns are due to the rather arbitrary choices of how genes were binned into sex-bias categories.

      It is necessary to work with cutoffs in such cases - and this is the usual practice for any such paper. But we provide now in Figure 1 Figure supplement 1 plots with the female/male ratio distributions.

      a) Number of genes that are female- / male-biased. I would like to be able to see a version of Figure 1 showing the full distribution of TPM ratios rather than bar graphs of the numbers of (arbitrarily defined) female- and male-biased genes. This will be, of course, a larger figure (a full distribution rather than 2 bars for each species for each organ) and so could be relegated to Supplementary Material (assuming the message of that figure is the same as the current Figure 1).

      This is a very unusual request, given that no other paper has done this either. It would indeed result in a non-managable figure size, or many separate figures that would be difficult to scrutinize. Note that there would be one plot of two (female and male) TPM distributions for each sex-biased gene in each organ and each taxon, leading to hundreds of thousands of plots. We think that by providing the general distributions as plots (see above), and the original data as supplements is sufficient.

      b) Turnover of genes with sex bias. This important issue is addressed in Figure 2. First, it is not precisely clear what "percentages of sums of shared genes for any pairwise comparison" in Figure 2 legend means and no further detail is given in the Methods; this must be made clearer or the info in Figure 2 is meaningless. Regardless, this approach again relies heavily on the arbitrary criterion of defining sex-bias. Thus, I would like to see correlation plots of the log(TPM ratio) between taxa as done in the classic multispecies fly paper of Zhang et al. 2007. In Figure 2 it is quite clear that male-biased genes evolve with respect to sex bias more rapidly than female-biased genes.

      We have provided a better explanation of this analysis. Note that the Zhang et al. 2007 paper was not focussing on somatic expression and covers a much broader evolutionary spectrum. Hence, the results are not comparable. Also, we doubt that it would be so helpful to generate a huge figure with all these plots.

      (4) Is there a simpler explanation for the results in the "Variance patterns" section? The total variance for any variable can be decomposed into the variance within and among "groups". If we use "sex" as the group, then there are genes - labelled sex-biased genes - that were identified as such, in essence, because they have high among-group variance. Given that we then know a priori at the start of this section of sex-biased genes have high among-group variance, is it at all surprising that they have higher total variance than the unbiased genes (which we know a priori have low among-group variance)? Perhaps I misunderstood the point of this section. Maybe it would be more meaningful to examine the WITHIN-SEX variance (averaged across the two sexes) instead.

      We did calculate IQR/median (“normalized variance”) with the nine mice for each gene and each sex in each organ, hence sex is not a variance factor in this calculation. The algorithm steps are outlined in suppl. Table S17. We have now also added a variance calculation for reciprocal gene sets and added an extended discussion of these results.

      (5) Analysis of alpha for sex-biased genes. This was the most interesting part of this manuscript to me.

      (a) More information about what SNVs were used is required.

      i. Were only sites where SPR was fixed used? (If not, how was polarization done?)

      ii. Were sites only considered diverged if they were fixed for different bases in DOM and MUS? (If not, what was the criteria?)

      iii. Using, say, DOM as the focal species, a site must be polymorphic in DOM. But did its status (polymorphic/fixed) in MUS matter?

      We have added a more detailed description on this in the Methods section. For the direct answers of the three questions: (i) yes; (ii) yes; (iii) no, considering that DOM and MUS are two subspecies of Mus musculus separating recently, a variant might occur before separating and there might be gene flow between them.

      (b) A particularly interesting part of the analysis is the investigation of alpha for genes that are NOT sex-biased in one taxa but are sex-biased in the other. At the moment (as I understand it), alpha is only calculated for these genes in the taxa where they are NOT sex-biased (and this alpha value can be compared to the alpha of sex-biased genes and of unbiased genes in that taxa). I would like to see both sets of genes (set 1: those sex-biased in MUS and not in DOM; set 2: those sex-biased DOM and not in MUS) analyzed in each of the 2 species, with results presented in a 2x2 table.

      By definition of these categories, these genes are sex-biased in the respective other taxon, hence the values are already in the table. They are named as “reciprocal”.

      (c) No confidence intervals are given for the alpha values, despite the legend of Figure 3 referring to them.

      These were accidentally omitted - we now included the full table in suppl. Table S6; Figure 3 was modified to show violin plots of the bootstrap distributions

      The author's creation and use of a "sex-bias index" (SBI). My greatest skepticism of this manuscript is with respect to the value of their manufactured index, SBI. Of course, it is possible to create such an index but does this literature really need this index or does this just add to the "clutter" in the literature for this field? Is it helping to illuminate important patterns? This index is presumably some attempt to quantify how "male-like" or "female-like" overall expression is for a given individual (for a given organ). It is calculated as SBI = (MEDIAN of all female-biased tpm) - (MEDIAN of all male-biased tpm).

      (6) A main result that comes from this is that the sexes tend to overlap for these values for most nongonad tissues but are clearly distinct for gonadal tissues. I do not think this result would come as a surprise to almost anyone and I'm far from convinced that this metric is a good way to quantify that point. Let's consider testes vs. ovaries. Compared to non-gonadal tissues, I am reasonably certain that not only are there many more genes that are classified as "sex-biased" in gonads but also the magnitude of sex-bias among these genes is typically much greater than it is for the so-called sex-biased genes in nongonadal tissue (density plots requested in #3a would make this clear). In other words, males and females are, on average, very different with respect to expression in gonads so even allowing for variation within each sex will still result in a clear separation of all individuals of the two sexes. In contrast, males and females are, on average, much less different in, say, heart so when we consider the variation within each sex, there is overlap. One could imagine a variety of different metrics which could be used to make this point. The merits of "SBI" are unclear. It is a novel metric and its properties are poorly understood. (A simple alternative would be looking at individual scores along the axis separating mean/median males and females; almost certainly, for gonads, this would be very similar to PC scores for PC1.)

      As throughout the text, we use gonadal comparisons only as general reference, not as the main result. The main result that we are stressing is the fast turnover of these patterns, including from binary to overlapping for kidney and liver in mouse. We consider this as a new finding. If it comes "not to a surprise to anyone", isn´t it great that one does not have to guess anymore but has finally real data on this?

      We have now also added a mosaic analysis to show that the SBI can be used as summary measure in different presentations.

      The use of a single PC axis is no good alternative, since it throws away the information from the other axis.

      We have now included an explicit discussion on the usefulness of the SBI.

      (7) For simplicity, let's assume all males are identical and all females are identical. Let's imagine that heart and kidney have the exact same set of sex-biased genes. There are 20 female-biased genes; they all happen to be identical in expression level (within tissue) and look like this:

      Female TPM Male TPM TPM ratio (F:M)

      Heart 4 2 2

      Kidney 40 20 2

      And there are 20 male-biased genes that look like this:

      Female TPM Male TPM TPM ratio (F:M)

      Heart 1 3 1/3

      Kidney 10 30 1/3

      Most people would describe these two tissues as equally sex-biased.

      However, the SBIs would be:

      Female SBI Male SBI Sex difference (F - M)

      Heart 4-1 = 3 2 - 3 = -1 4

      Kidney 40-10 =30 20-30 = -10 40

      Is it a desirable property that by this metric these two tissues have wildly different SBI values for each sex as well as for the difference between sexes? (At the very least, shouldn't you make readers aware of these strange properties of SBI so they can decide how much value they put into them?)

      Actually, in this example the simple ratio between the expression levels has a strange property, since it does not reflect a much higher expression of the relevant genes in the kidney. The SBI is actually more suitable for making such cases clear. Of course, this is under the assumption that expression level has a meaning for the phenotype, but this is the general assumption for all RNA-Seq experiment comparisons.

      (8) With respect to Figure 4, why do females often have mean SBI values close to zero or even negative (e.g., kidney, mammary glands)? Is this simply because the female-biased genes tend to have lower TPM than the male-biased genes? It seems that the value zero for this metric is really not very biologically meaningful because this metric is a difference of two things that are not necessarily expected to be equal.

      This is the extra information about the expression levels that is gained via the SBI values (see comment above). However, we noticed that people can get confused about this. We have now added a re-scaling step to focus completely on the variance information in these plots.

      (9) Interpreting variances. A substantial fraction of the latter half of the manuscript focuses on interpreting variances among individual samples. This is problematic because there is no replication within individuals (i.e.., "repeatability"), thus it is impossible to infer the extent of observed variance among individuals of a given group (e.g., among females) is due to true biological differences among individuals or is simply due to noise (i.e., "measurement error" in the broad sense). Is the larger variance for mammary glands than liver or gonads just due to measurement error? What is the evidence?

      This point was of course a major issue during the times where microarrays were used for transcriptome studies. However, the first systematic RNA-Seq studies showed already that the technical replicability is so high, that technical replicates are not required. In fact, practically all RNA-Seq studies are done without technical replicates for this reason.

      (10) Because I have little confidence in the SBI metric (#7-8) and in interpreting within sex variances (#9), I found little value in the human results and how SBI distributions (and degree of overlap between sexes) compare between humans and mice.

      We disagree - the current published status is that there are thousands of sex-biased gene in humans and this has implications for gender-specific medicine (Oliva et al. 2020). Our results show a much more nuanced picture in this respect.

      (11) I found even less value in the single-cell data. It too suffers from the issues above. Further, as the authors more or less state, the data are too limited to say much of value here. It is impossible to tell to what extent the results are simply due to data limitations.

      We have pointed out that it is still valuable to have them. They are good enough to exclude the possibility that only a small set of cells drives the overall pattern across an organ. We have further clarified this in the text.

      (12) The code for data analysis should be posted on GitHub or some other repository.

      The code for the sex-biased gene detection and analysis has been posted on GitHub (see Code availability in the manuscript).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public reviews:

      Reviewer #1:

      Weaknesses:

      As this paper only uses anatomical analyses, no functional interpretations of cell function are tested.

      The aim of this paper was to describe the ultrastructural organization of compound eyes in the extremely small wasp Megaphragma viggianii. The authors successfully achieved this aim and provided an incredibly detailed description of all cell types with respect to their location, volume, and dimensions. As this is the first of its kind, the results cannot easily be compared with previous work. The findings are likely to be an important reference for future work that uses similar techniques to reconstruct the eyes of other insect species. The FIB-SEM method used is being used increasingly often in structural studies of insect sensory organs and brains and this work demonstrates the utility of this method.

      We thank you for your high assessment of our work. Unfortunately, it is hard to test our functional interpretations and check them with electrophysiological methods due to the extremely small size of the animal. Studies on three-dimensional ultrastructural datasets obtained using vEM have just started to appear, and we hope that a lot of data will become available for comparison in the nearest future.

      Reviewer #2:

      Thank you for your work and for your high assessment of our manuscript.

      Reviewer #3:

      Weaknesses:

      The claim that the large dorsal part of the eye is the dorsal rim area (DRA), supported by anatomical data on rhabdomere geometry and connectomics in authors' earlier work, would eventually greatly benefit from additional evidence, obtained by immunocytochemical staining, that could also reveal a putative substrate for colour vision. The cell nuclei that are located in the optical path in the DRA crystalline cone have only a putative optical function, which may be either similar to pore canals in hymenopteran DRA cornea (scattering) or to photoreceptor nuclei in camera-type eyes (focussing), both explanations being mutually exclusive.

      We thank the Reviewer for high assessment of our study and for detailed analysis of our manuscript. Your comments and recommendations are very valued and helped us to improve the text. We understand that immunocytochemical methods could improve our findings and supply additional evidence, but there is no technical possibility for this in present. Megaphragma is a very complicated model organism for such methods. We are currently working on the optimization of the protocol for staining, which is needed because of the high level of autoluminescence and because of insufficient penetration of dyes into the samples.

      Recommendations for the authors:

      Reviewer #1:

      I do not have any major concerns about the content of the paper.

      There are some minor spelling and grammatical errors throughout the text but these can be identified most readily using a spelling/grammar check.

      We have revised the text, checked the spelling, and fixed the grammatical errors throughout the text.

      I suggest consistency when referring to the capitalization of the term 'non-DRA' as it is sometimes 'Non-DRA' in the text.

      We have fixed the term “non-DRA” throughout the text. Thank you.

      Also, check carefully the spelling of headings in the tables as there are a few mistakes in Table 1 and 5 in particular.

      The grammar errors have been fixed.

      Figure 7 legend: an explanation of the abbreviation RPC should be added.

      We have done so.

      Reviewer #2:

      (1) The paper presents the data in great detail, however, since this is the first time the technique has been applied to get whole insect eyes, even if on a small insect, it would be worth outlining in the methods section what innovations in the staining/ scanning or sample preparation allowed these improvements and a roadmap for extending this method to larger insects if possible.

      The whole method, including sample preparation, staining, and scanning, was described in our previous paper (Polilov et al., 2021), where it was presented in every detail. Due to the complicated methodology we suppose that it is not necessary to include all the stages of the technique in the present paper, and thus described it more briefly.

      (2) The optical modelling needs a statement in the discussion providing a disclaimer on parameters like sensitivity, anatomical measurements can provide limits and some measure, but the inherent optics are also key and it is worth qualifying these as only estimates and measurements that give a sense of the variation in morphology, only coupled with optical and potentially neural measurements could one confirm the true sensitivity and acceptance angle.

      In the absence of experimental data or precise computational models of Megaphragma vision, we try to discuss rather carefully the functions of structures based on their morphology, ultrastructure, first-order visual connectome, and analogies with other species. This is reflected in the methods and those sections of our paper that contain functional interpretations.

      Reviewer #3

      (1) The finding that the CNS neurons are enucleated, while the compound eye contains cell nuclei, deserves another word. I would confidentially say that the optical demands of a miniaturized compound eye (the minimal size of the optics due to diffraction, the rhabdomere size, and the minimal thickness of optically insulating granules) are such that further cellular miniaturization is not possible, and the minimal sizes even render the cells that build the eye sufficiently large to accommodate cell nuclei. This is in my opinion a parsimonious explanation, yet speculative and I leave it up to you to embrace it or not.

      We agree with the Reviewer and understand the limiting factors and the optical demands of a miniaturized compound eye. According to our data, nuclei occupy a considerable volume in the eye (in the cells of compound eye there are more nuclei than in the whole brain), and on average the cell volume is larger than in Trichogramma, which is minute, but larger than Megaphragma. But as the Reviewer rightly assumed, it is speculative; therefore, we would like to avoid it.

      (2) Our current understanding of DRA optics and function is limited and I claim that your interpretation of the cell nuclei in the DRA dioptrical apparatuses is inappropriate. Please consider a few articles on hymenopteran DRA, starting with the one below and the citing literature:

      Meyer, E.P., Labhart, T. Pore canals in the cornea of a functionally specialized area of the honey bee's compound eye. Cell Tissue Res. 216, 491-501 (1981). https://doi.org/10.1007/BF00238646

      Honebyee DRA has a milky appearance under a stereomicroscope and can be discerned from the outside. This is due to pore canals in the cornea. I happen to be studying this exact structure and its function right now. I found that the result of those canals is not so much the extended receptor acceptance angles, but rather a minimized light gain. This is counterintuitive, but think of the following. The DRA photoreceptors must encode the limited range of polarization contrasts with a maximal working dynamic range (= voltage) of the photoreceptors, which results in a very steep stimulus-response curve.

      Physiologically such a curve is due to very high transduction gain and a high cell input resistance. In most of the retina, small contrasts are transcoded by LMC neurons, but DRA receptors are long visual fibres and must do the job themselves. The skylight intensity (especially antisolar, where the polarized pattern is maximal) varies little during the day. Hence, the DRA receptors work almost at a fixed intensity range. In order to prevent receptor saturation and keep steep contrast coding, the corneal lenses in DRA have a built-in diffusor ring, which diminishes the light influx. Unfortunately, I have yet to publish this and I may be wrong, of course. But if I look into your data, I see consistently smaller corneal lenses and crystalline cones in the DRA, plus the cell nuclei obstructing the incident light. I think this is similar to the optics of honeybee DRA.

      You do not support your claim that the nuclei additionally focus light by optical calculations, but cite literature on camera-type eyes, which is not OK.

      In any case, I think it is fair to limit the discussion by saying that the nuclei may have an optical role. Further evidence from hymenopteran and vertebrate literature is controversial. “so that the nuclei act as extra collecting lenses, as was reported for rod cells of nocturnal vertebrates (Solovei et al., 2009; Błaszczak et al., 2014)” - please consider omitting this.

      We thank the Reviewer for this piece of advice. And we have rewritten the text, to omit the comparison with vertebrates, but left the citation as an illustration of the fact that nuclei could perform the optical role.

      “Since the nuclei in DRA and non-DRA ommatidia are arranged differently in cone cells, we suggest that the nuclei of the cone cells of DRA ommatidia in M. viggianii perform some optical role, facilitating the specialization of this group of ommatidia. The optical function for nuclei was described for rod cells of nocturnal vertebrates, where chromatin inside the cell nucleus has a direct effect on light propagation (Solovei et al., 2009; Błaszczak et al., 2014; Feodorova et al., 2020).”

      (3) Please consider comparing the structure and function of ectopic receptors with the eyelet in Drosophila (i.e. https://doi.org/10.1523/JNEUROSCI.22-21-09255.2002 )

      We thank the Reviewer for this advice and have included the comparison fragment into the text:

      “The position of ePR, their morphology and synaptic targets look similar to the eyelet (extraretinal photoreceptor cluster) discovered in Drosophila (Helfrich-Förster et al., 2002). Eyelets are remnants of the larval photoreceptors, Bolwig’s organs in Drosophila (Hofbauer, Buchner, 1989). Unlike Drosophila, Trichogrammatidae are egg parasitoids and their central nervous system differentiation is shifted to the late larva and even early pupa (Makarova et al., 2022). According to the available data on the embryonic development of Trichogrammatidae, no photoreceptors cells were found during the larval stages (Ivanova-Kazas, 1954, 1961).”

      According to this, the analogy question remains open.

      (4) Minor remarks:

      “but also to trace the pathways that connect the analyzer with the brain.” - I find the word analyzer a bit stretched here; sure, the DRA is polarization analyzer, but if the main retina was monochromatic, it would only be a detector, not an analyzer.

      The sentence was changed according to the Reviewer’s advice.

      Table I: thikness -> thickness, wigth -> width

      We have fixed these misprints.

      “The cross-section of Non-DRA ommatidia has a strongly spherical shape” - perhaps circular, not spherical. And not necessary to say “strongly”

      The spelling was changed according to the Reviewer’s advice.

      “which can be rarely visualized in the cell's projections not far from the basement membrane.” - I'd suggest saying “which are nearly absent in retinula axons”

      The spelling was changed according to the Reviewer’s advice.

      “The pigment granules of the retinula cells have an elongated nearly oval shape” - please consider replacing 'elongated nearly oval' with 'prolate' (try googling for “prolate” or “oblate spheroids”; the adjective describes precisely what you wanted to say)

      We thank the Reviewer for this piece of advice but prefer to leave our original phrasing, because it is more readily understandable.

      “The results of our morphological analysis of all ommatidia in Megaphragma are consistent with the light-polarization related features in Hymenoptera and other insects” - please add citations, see my comment on the DRA above.

      We have added the citations according to the Reviewer’s advice.

      “The group of short PRs (R1-R6)” - please consider renaming into “short visual fibre photoreceptors” (as opposed to “long visual fibre PRs”; hence SVFs and LVFs). This naming is quite common.

      The naming was changed according to the Reviewer’s advice.

      “The total rhabdom shortening in M. viggianii ommatidia probably favors polarization and absolute sensitivity,” - please see comments on DRA. Wide rhabdom means also a wider acceptance angle.

      Shortening of DRA rhabdoms does not result in their widening compared to other rhabdoms, so it is difficult to say how this may be related to sensitivity. The comments on DRA given earlier have been taken into account.

      “Ommatidia located across the diagonal area of the eye are more sensitive to light” - I don't understand what is diagonal area.

      We have deleted the sentence.

      “Estimated optical sensitivity of the eyes very close to those reported for diurnal hymenopterans with apposition eyes (Greiner et al., 2004; Gutiérrez et al., 2024) and possess around 0.19 {plus minus} 0.04 μm2 sr. M. viggianii have reasonably huge values of acceptance angle Δρ, and thus should result in a low spatial resolution” - please correct English here. “eyes IS very close”, “should result in a low”

      The grammatical errors were fixed.

      Table 6 legend: “SPC - secondary pigment cells.” -> “SPC – secondary pigment cells.”

      Citation “(Makarova et al., 2025).” - probably 2015

      The typos were fixed.

      Methods, FIB-SEM: I can't understand the sentence “The volumetric data of lenses and cones, some linear measurements (lens thickness, cone length, cone width, curvature radius) and to visualize the complete 3D-model of eye we use (measure or reconstruct) the elements from another eye (left).”

      The sentence is a continuation of the previous one. We have rewritten it as follows to clarify the meaning and move it to the 3D reconstruction section:

      “The right eye, on which the reconstruction was performed, has several damaged regions from milling (see Appendix 1С), which hinder the complete reconstructions of lenses and cones on a few ommatidia. According to this, for the volumetric data on lenses and cones, some linear measurements (lens thickness, cone length, cone width, curvature radius), we use (measure or reconstruct) the corresponding elements from the other (left) eye.”

      “The cells of single interfacet bristles were not reconstructed, because of damaging on right eye and worst quality of section on the left.” - please change to “The cells of the single interfacet bristle were not reconstructed, because of damage to the right eye and inferior quality of the sections of the left eye.”

      The text has been changed as follows:

      “The cells of single interfacet bristles were not reconstructed, because of the damage present in the right eye and because of the generally lower quality of this region on the left eye.”

      “Morphometry. Each ommatidia was” -> “Morphometry. Each ommatidium was”

      The grammatical error has been fixed.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Major comments

      Unfortunately the major conclusions of the article are not well supported by the provided data. Including:

      1. That interhemispheric remodelling occurs in non-mammalian amniotes. It would not surprise me that this may be the case, however, the major evidence for this is a series of horizontal insets that do not evidence this point well. There are broad morphological changes during development that can change the proportions and regionalisation of tissue, and therefore the IHF becoming apparently smaller as development progresses (qualitatively, in single sectioning planes, and without clear n numbers) may easily be explained by sutble differences in sectioning planes, or, for example, more caudal territories of the brain expanding at faster rates than the rostral territories. Quantification of the ratio between the IHF and total midline length across ages and between species may go some way to helping to clarify the degree of potential midline remodelling. Very high quality live imaging of the process would be the definitive way to evidence the claim, although I appreciate this is highly technically difficult and may not be possible. A key opportunity seems to be missed in the Satb2 knockout geckoes, where midline remodelling is purported to not occur. This is shown only qualitatively in a single plane of sectioning and again is not convincing. If the IHF length in these animals was quantified to be longer than wildtype at a comparable age, this would help to evidence the claim that remodelling occurs in these species.

      Our responses

      We take seriously the critique that the series of horizontal section images in the figures do not sufficiently substantiate our claim that interhemispheric remodeling occurs in non-mammalian amniotes. To address this, we plan to create a simplified atlas composed of adjacent sections of various wild-type amniotes as well as Satb2-knockout geckos.

      Additionally, in response to the suggestion that the IHF (interhemispheric fissure) should be quantified relative to the total midline length across developmental stages and species, we note that Figure 1 already presents such an analysis. Specifically, we have quantified changes in the midline collagen content using Principal Component Analysis (PCA) in Satb2 Crispants in geckos(FigureS4). However, if necessary, we also plan to perform a similar analysis on wild-type soft-shelled turtles at developmental stages before and after interhemispheric remodeling.

      That similar cell types contribute to remodelling in non-mammalian amniotes as mice/eutherian mammals. The microphotographs presented are not of very high quality, and it is often difficult to be convinced that the data is showing the strong claims made in the paper. For instance the "MZG-like cells" may in fact be astrocytes or another cell type as it is hard to visualise morphology, and the "intercalation of GFP-positive radial glial fibres" is very unclear from the photos. The colocalization of MMPsense with laminin positive cells is very hard to appreciate from the figure, and again not quantified. Similarly, there is a claim that there was degeneration of laminin-positive leptomeninges during astroglial intercalation, which is an active process that is difficult to infer from a single microphotograph. From the data, I can appreciate that some of the similar broad categories of cell types that exist at the mouse midline (glia, radial glia) are also present in non-mammalian amniote midlines, but it is difficult to be convinced of much more than this from the data presented.

      Our responses

      We take seriously the critique that the degeneration of Laminin-positive leptomeninges close to astroglial components is not accepted and that the evidence for glial fiber intercalation is insufficient.

      Verifying the degeneration of Laminin-positive leptomeninges is highly challenging. However, we have recently developed a method to visualize collagen in the pia mater using μCT and a CHP probe (3Helix Inc.). Preliminary experiments have already revealed pan-collagen deposition in the midline of the telencephalon (with lower amounts in the fusion region) and degeneration of the collagen composing the pia mater. We plan to incorporate these findings into the revised manuscript.


      That the gecko RPC and CPC connect distinct parts of the brain (rostral and caudal). These tracer injections lacked visualisation of the deposition site to confirm specificity, as well as appropriate quantification. Importantly, the absence of axons in the CPC following the rostral dye deposition (and vice versa) was not shown, which is essential to make the claim that these commissures carry axons from specific parts of the brain. The alternative hypothesis is that all axons are intermixed and traverse both commissures, independent of brain area of origin, which is not at all tested or disproved by the data presented.

      Our responses

      Thank you for the valuable critique suggestion. To support our claim that the pallial commissure in geckos consists of axons derived from specific brain regions, we should carefully eliminate the possibility that all axons are intermixed and cross both RPC and CPC regardless of brain region.

      To address this, we are planning additional experiments and will include a schematic diagram clearly indicating the labeling sites.


      Overall, the major conclusions of the study are not well supported by the data. A major effort to quantify phenomena and/or dramatically soften conclusions would be needed in order to make the conclusions well supported.

      Our responses

      We will thoroughly reconsider our conclusions and make significant efforts to revise the manuscript.

      Minor comments

      1. The n numbers are not always clearly reported

      Our responses

      We plan to address the clarification of quantitative data and the exact number of replicates.

      At times important points reference reviews or articles that do not support the statements as well as the most important primary articles might.

      Our responses

      We plan to carefully review the manuscript and, in addition to citing the most important primary papers, revise any descriptions that are not sufficiently supported by the cited reviews or articles, as per the suggestions.

      Figures showing the entire section that insets were taken from would help to convince that sectioning planes were equivalent, and also show the deposition site of neurovue experiments.

      Our response

      We will add a schematic showing the locations labeled in NeuroVue and additional experiments as a similar point made in Major comment 3.

      The fibre direction of GFAP+ fibres in figure 6 is confusing - It seems from the labelling on the figures as if red is used for the WT condition in mouse, but for the Satb2del condition in Gecko? If this is the case, then it would appear that the fibres are more specifically oriented in the del condition in mice, but in the WT condition of geckoes? There are several instances of this where clearer description and labelling would help the reader to interpret the results.

      Our response

      We plan to add clarification and indication of the direction of GFAP+ fibers in Figure 6 to make it easier to understand.

      Reviewer #1 (Significance (Required)):

      This study attempts to address a highly significant, novel and important question, that, if well achieved, would be publishable at a high degree of interest and impact to the basic research fields of brain development and evolution. Unfortunately the major conclusions made by the study are stronger than the data provided is able to evidence, and I remain unconvinced by many of them.

      Our responses

      We take seriously the suggestion that the major claims made by this study are excessive and so strong that they cannot be proven with the data provided. We will revise the manuscript as necessary.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      The authors provide a comparative analysis of interhemispheric (IHF) remodeling and its potential role in the generation of commissural axons. Based on histological material from mice, chickens, turtles, and geckos, the IHF remodeling of the midline is divided in two events: caudal and rostral. It is suggested that the rostral event is a preliminary step to the crossing of commissural axons, as it is characteristic of eutherian mammals with a corpus callosum (CC). However, the authors describe similar histologic features in other amniotes during development, particularly reptiles. This is in contrast with the case of the chick, which does not show signs of IHF remodeling nor a rostral pallial commissure. Additionally, deficient transgenic mice and geckos illustrate a potential role of Satb2 in rostral IHF remodeling and subsequent commissural formation. Whereas the topic and the conclusions of the analysis are interesting and provide new knowledge to the evo-devo field, several issues should be addressed prior to publication, such as data precision and presentation to support the main statements in the manuscript.

      Major comments:

      ____-A central point of this article is the splitting of the IHF into rostral and caudal events. The authors suggest that each one can be regulated differentially, and they attribute the rostral remodeling as a step prior to corpus callosum (CC) formation, in contrast to the caudal remodeling. In my opinion, these two events are not sufficiently characterized either in the figures or the manuscript. It is necessary to better describe these two processes that the authors mention. For instance, the authors could add or re-organize information in Figures 1-3 to include wide-field images showing the whole septum from rostral to caudal, and representative dorsoventral sections at important stages (with insets pointing at specific features). Otherwise, a table summarizing the rostral and caudal events would also be helpful to the reader.

      Our responses

      We take the suggestion seriously that the distinction between rostral and caudal remodeling may not be clear, especially regarding rostral remodeling, which is prior to the stage of corpus callosum (CC) formation, in contrast to caudal remodeling. Specifically, we plan to add or restructure the information from Figures 1 to 3 by including wide-field images that show the entire septum from rostral to caudal, as well as representative sagittal sections along the dorsal-ventral axis at key stages, with insets highlighting specific features. These will be added to the Supplementary data. Additionally, a table summarizing the events in both the rostral and caudal regions will also be created and included in the revised manuscript.

      When the authors refer to the reptilian rostral pallial commissure (RPC) and caudal pallial commissure (CPC), are these the same structures as the pallial commissure and anterior commissure described by Lanuza and Halpern (1997), Butler and Hodos (2005) and Puelles et al. (2019)? It is necessary to clarify the nomenclature, given that they are providing data from several species. Also, structures with the same names among species may not be truly homologous. A simple atlas with some horizontal and transverse planes highlighting anatomical landmarks and important structures (commissural tracts in this case) of the non-mammalian species would be extremely useful for the reader.

      Our responses

      As suggested by the reviewer, we are considering to provide a more detailed definition of the nomenclature of the pallial commissure in the revised manuscript, specifically in the introduction. Additionally, as mentioned earlier, we plan to create a simplified atlas with several horizontal and transverse sections, emphasizing anatomical landmarks and important structures (in this case, the commissural pathways) in species other than mammals.

      ____I wonder if the authors tested Fgf8 as marker on any of their sauropsidian tissue samples, as this gene has a known role in murine MZG development, which is required for IHF remodeling (Gobius et al. 2016, already cited in the manuscript). It would be beneficial to test this marker for the study, and if positive, it would open the possibility of designing loss-of-function experiments in avian or reptilian development models to identify mechanisms common to eutherians and support the statements of this work.

      Our responses

      We plan to verify the gene expression necessary for mouse MZG development and IHF remodeling, including Fgf8, DCC, and MMP2, through immunohistochemical staining as suggested.

      It would be really interesting to provide a more elaborate discussion on whether authors consider the sauropsidian IHF as a homologous process to eutherian IHF, and the reptilian RPC as an homologous of the CC.

      Our responses

      Since 3 out of the 4 reviewers consider IHF remodeling in sauropods to be homologous to that in placental mammals, we plan to further emphasize this claim in the revised manuscript. Additionally, we will expand on the discussion regarding whether the process of RPC formation in reptiles is considered homologous to that of the corpus callosum, and I will approach this from the context of character identity mechanisms claimed by Dr. Günter Wagner.

      Data and methods are presented in such a way that, in principle, they could be reproduced. Authors should indicate the number of animals/replicates of each species used in each experiment.


      Our responses

      As suggested, we plan to provide more detailed descriptions of the methods to ensure reproducibility. This will include adding the number of samples and trial repetitions for each animal species used in the experiments, including those for the additional experiments, in the revised manuscript.


      Minor comments:

      In the results section, paragraph 2, line 3: "We detected the accumulation of GFAP-positive cells and phosphorylated vimentin (Ser55) -positive mitotic radial glia in the IHF and telencephalic hinge in developing turtles, geckoes and chicks (Figure 2A)". Figure 2A shows sections from the four analyzed species labeled with radial glia markers at the end of the IHF remodeling. It would be beneficial to have analogous sections at several time points (perhaps before or after the process) to compare and show more clearly the accumulation of glial cells at that location.

      Our responses

      We have prepared serial sections before and after the developmental stages when interhemispheric remodeling occurs, in order to compare and more clearly show the accumulation of glial cells at their respective locations in mice, geckos, and soft-shelled turtles. I plan to add these results to Figure 2A in the revised manuscript.

      The article will improve its quality by adding more comparative information in the introduction about the analyzed sauropsidian structures (rostral pallial commissure and caudal pallial commissure), their relations with the pallial and anterior commissures, the structures/cells connected by them, and homologies previously proposed.

      Our responses

      We will add comparative information regarding the brain structures in sauropod, including the rostral and caudal pallial commissures and their relationship to the pallial commissure and anterior commissure, and the structures they connect, such as pyramidal cells, along with previously proposed homologies. This information will be included in the introduction and summarized in a table.


      In Figure 1 panels A-D, there is a lot of disparity in brain sizes and scales both between sections of the same species and between species. Placing the insets next to their source images is very necessary for clarity.


      Our responses

      As mentioned earlier, I will create a simplified atlas using adjacent sections and continuous μCT tomography images. Additionally, I will adjust the placement of the inset images in the revised manuscript to more visually accessible positions, improving their visibility.

      In the results section, paragraph 2, line 11: "In addition, it was suggested that astroglial intercalation occurs in conjunction with the aforementioned regression of the IHF from st.21 to st.26 in the developing turtle (Figure 2C)." In Figure 2C, all images are at different scales,

      which makes it very hard to properly compare between stages.

      Our responses

      By creating inset images based on the low-magnification images in the upper panel, we will enhance the visibility of GFAP intercalation. Additionally, we will improve the visibility in the revised manuscript by adding scale bars, referencing the simplified atlas in the figure legends, and standardizing the tissue specimen scale. we also plan to correct any typographical errors in the figures.

      In Figure 2D, the authors show the presence of MMP around the leptomeninges, suggesting MMP-mediated degradation. In the images, MMP labeling is revealed in dark blue, which is largely invisible against the black background. Colors should be used properly to allow visualization of this MMP labeling.

      Our responses

      In Figure 2D, we will reconsider the selection of pseudo-colors and use cyan to represent MMPsense.

      In Figure 4, it would really help if the authors provided wide-field images and DAPI counterstaining of the anterograde and retrograde tracings, to provide anatomical landmarks that help readers to identify the midline and understand the orientation of images.


      Our responses

      In addition to the previously mentioned schematic diagram of the gecko's pallial commissure and the additional experiments, we plan to include wide-field images along with forward and retrograde tracing using Hoechst counterstaining.

      In Figure 5B, I understand that the images in the red and blue squares correspond to brain areas in the squares in A. However, some confusion remains, especially with the image in B, which does not seem to be at the same angle as in the diagram representation. This makes it difficult to understand the results.

      Our responses

      According to the comment, we will revise the design of the Figure 5B to be more easily understand, and modify the scheme to match the angle of sections with actual figures.

      In Figure 6D, to better visualize defects in the RPC formation, the asterisk in the middle of the deficient structure needs to be replaced with a more lateral arrow pointing to the malformation.


      Our responses

      To better visualize the absence of RPC formation in Figure 6D, we will replace the asterisk in the center of the missing structure with a horizontal arrow indicating the malformation.

      In Figure S5, violin plots in panel C do not correspond with data in A and B. This needs correction or clarification.

      Our responses

      In Figure S5, the inconsistency between the violin plot in panel C and the data in panels A and B is a clear error, and we will correct this in the revised manuscript.

      In the article, a section appears solely to explain spatial transcriptomics results in a chick coronal section. The conclusion of this experiment is that three markers associated with midline remodeling are present in chick, suggesting that interhemispheric remodeling is conserved between mouse and chick. As these are complementary results and are not deeply analyzed in this manuscript, I think it would be better to summarize these findings in a dedicated paragraph and transfer some of the key images from Figure S2 to one of the main figures. Other problems with Figure S2: color contrast between clusters in the tSNE projection in B is very poor, should be enhanced; color intensity in FeaturePlots of panels D-F is too weak, and it seems that there is not really much expression at all in any cluster for any of these genes.

      Our responses

      In the revised manuscript, we will move some of the key images from Figure S2 to Main Figure 3 to demonstrate that the three markers related to midline remodeling are also present in chickens, showing that interhemispheric remodeling is conserved between mice and chickens. Additionally, we will enhance the contrast between clusters in the tSNE projection of the FeaturePlots in S2B and D-F by increasing the pseudo-color intensity or adjusting the intensity levels to emphasize the color contrast, and incorporate this updated figure into the revised manuscript.

      Reviewer #2 (Significance (Required)):

      The authors identify in the developing brain of sauropsids an event similar to IHF remodeling in eutherians, and suggest a causal relation between the rostral IHF remodeling and the formation of the pallial commissure in reptilian brains. This implies a potential homology between the pallial commissure and the corpus callosum of placental mammals. If this is the intention of the authors, this conclusion should be addressed explicitly and at length in the Discussion section. Whereas the results and conclusions described in the manuscript will be valuable in the field, the data presented in the manuscript needs quite some improvement, particularly for some of the images in the previously mentioned figures. Otherwise, the original data cannot be properly judged and may set reasonable doubt to readers.

      Advance: The findings described in this report are new to my knowledge. The description of the IHF remodeling event prior to corpus callosum development in mice has been published (Gobius et al. 2016, Cell Reports), but not in other mammalian branches or non-mammalian vertebrates. For this reason, the data in this report should be very convincing and better presented.

      Audience: This research will be interesting for a specialized and basic research audience, particularly for researchers in the evo-devo fields.

      My expertise: neuroanatomy, development, evolution, brain, cerebral cortex

      Our responses

      Thank you for your positive feedback on the novelty and high evaluation of identifying phenomena in reptilian development that resemble interhemispheric fissure (IHF) remodeling in placental mammals and demonstrating a causal relationship between rostral IHF remodeling and the formation of the reptilian pallial commissure. we will incorporate the concept of the potential homology between the corpus callosum in placental mammals and the brain commissures in reptiles into the revised manuscript, reflecting this in the context of character Identity mechanisms claimed by Dr. Günter Wagner. This will be clearly and thoroughly discussed in the discussion section. Additionally, we sincerely appreciate the constructive comment about the room for significant improvement, particularly in some of the figures, and we will address these points in the revised manuscript.


      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Conserved interhemispheric morphogenesis in amniotes preceded the evolution

      of the corpus callosum. Noji Kaneko et al., 2025

      The CC is formed exclusively in placental mammals. In other amniotes species, the communication of the two hemispheres is mediated by other structures such as the anterior commissure or the hippocampal commissure. The authors perform anatomical comparisons between species to conclude that interhemispheric fissure remodeling, a prior developmental step for CC formation, is highly conserved in non-mammalian amniotes, such as reptiles and birds. They suggest that might have contributed to the evolution of eutherian-specific CC formation. In an attempt to test their hypothesis, the authors investigate the role of Satb2 in interhemispheric fissure remodeling. They show IH fissure defects in both mice and geckoes. This is a nice manuscript that bridges a gap in the current understanding of CC formation. The study is mostly anatomical and directed at a specialized community.

      Our response

      We appreciate for positive comments on the manuscript.

      I suggest some changes that might contribute to improving the manuscript.

      Main

      1. Much of the most important conclusions are extracted from the anatomical observation of the dynamics of IHF closure and the emergence of the Hinge. It is very clear that the researchers are specialists in the field but for a broader audience, the images they provide are not always easy to interpret. It takes a lot of effort to visualize the anatomical data they use for their conclusions. As an example, perhaps the authors can find ways to explain how to identify the hinge specifically. It is very clear what the hinge is in the schemes (drawings)but forms one picture to the other at different developmental stages neither in the same animal species nor from different species. In Figure 1, it is difficult to see how the hinge in the mouse is similar (i.e. the same structure) to the hinge in the Gecko and chick. Moreover, in panels C , chick brain sections are shown at much greater magnification than the gecko, and thus is very difficult. In addition, in the manuscript text, the authors refer to sequential sectioning, but only one image for each stage is shown. They can show more images in supplementary Figures, otr they can just explain that they show the relevant images of the sectioning. As another example, in Fig2A, in the text, the authors explain that they detect the same specific glial components, but the images show very different co-localizations and distributions. In Figures 1 and 3, there are lines indicating Dorsal to ventral. This refers to the sectioning but in reality, what the sections are illustrating is the anterior-to-posterior differences in the IHF. maybe they can clarify it, because at quick sight it can be confusing.

      Our responses

      We sincerely appreciate the feedback regarding the interpretation of images that show the dynamics of interhemispheric remodeling and the emergence of the hinge, which is central to the most important conclusions of this study, as it may not always be easy to interpret. In the revised manuscript, we plan to address this by making the following revisions. For example, to clarify how the hinge corresponds across different species, we will create a simplified atlas to explain that the sections from the main figure are at the same level within the continuous slices.

      The authors have to revise the manuscript text to be more precise. For example, In the result section quote "To address whether the interhemispheric remodeling in non-mammalian amniotes is dependent on midline glial activities, we next examined the expression of several glial markers in the reptilian and avian midline regions". the anatomical comparison does not address the role of glial.

      Our responses

      Thank you for your feedback. I will correct the expression "midline glial activities" to "midline glial components" and incorporate this more accurate terminology into the revised manuscript.


      As an option to increase the relevance of their work, the authors might want to consider to describe in more detail and moving the results of the RNAseq and the analysis of the Stab2 mutants to the main figures.


      Our responses

      Thank you for your feedback. we will move the RNAseq results and the analysis of Satb2 mutants to the main figures and will describe them in more detail to enhance the relevance of the study. Specifically, we plan to separate Figure 6A-C as independent figures and add Supplementary Figure 5, corresponding to mice and geckos, to the main figures in the revised manuscript.


      Minor:

      Please indicate the length of the scale bars in the figure legends, and not only in the figure panels Fig5. Indicate the animal model in the panel Perhaps they can draw a model of the different mechanisms of caudal and anterior remodeling.


      Our responses

      Thank you for your feedback. I plan to revise the figure legend for Figure 5 by clearly indicating the scale bar length and increasing the font size, as well as including the information in each panel. Additionally, I will add a graphical abstract that illustrates the different mechanisms of caudal and rostral remodeling to enhance visual comprehension.


      Reviewer #3 (Significance (Required)):

      The study addresses a gap in knowledge from an evolutionary perspective. It provides novel hypotheses and an innovative framework for the understanding of cortical development and evolution. however, most of the conclusions are inferred from anatomical observations and the experimental testing of the hypothesis (Mutants and RNAseq analysis) are minor part of the study that could be further developed. The study is interesting for investigators with expertise in brain development and evolution but requires familiarity with comparative anatomy and even then it is difficult to go through the work.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Overall, this is a well-written manuscript focusing on the evolution of mid-line interhemispheric fusion related to corpus callosum development and evolution from amniotes to eutherian species. The authors also demonstrated that Satb2 plays a critical role in interhemispheric remodeling, which is essential for corpus callosum development. This is a nicely organized and interesting study and the data are compelling. The following are suggestions for improvement, mostly for clarity:

      Minor comments:

      1. Figure 1A: While the E14 and E17 horizontal sections are informative, the addition of the E12 horizontal section does not provide further information. It would be better to place the inset and the whole image side by side, rather than having them far apart across the whole figure. For Figures 1C-D, is it possible to include horizontal sections for chick at

      E14 and Gecko at 45 dpo, as shown in the subsequent images?

      Our responses

      In Figure 1A, we will replace the current figure with a new one that visually enhances the comparison by placing the inset and the full image side by side. we will also add new horizontal sections of the whole image for chicken E14 and gecko 45 dpo, obtained from μCT tomography images and HE staining, to improve visibility between the images.


      When comparing across species it is sometimes helpful to use a standard staging system so that different developmentally staged tissue can be compared. A timeline of how embryonic day or dpo equates to stage might be helpful.

      Our response

      To clarify the developmental stages, I plan to incorporate a time scale into the graphical abstract in the revised manuscript.


      Figure 2B: It is difficult to discern the perspective without a full, lower power section of Gecko at 45 dpo. Adding a full image with an inset would be helpful. In Figure 1C, it would be helpful to define the magnified area by placing a box on the low magnification image.

      Our responses

      We plan to add a low-magnification μCT tomography image or HE-stained whole image of the gecko at 45 dpo in the revised manuscript. As for Figure 1C, it has already been included in the preprint.


      Figures 3B-E: Include the staining methods used for these sections.

      Our response

      We plan to add a note specifying that the image is stained with HE.


      Figure 4B: Add a low magnification image with an inset. The current image is a bit confusing as it is unclear what is being shown.

      Our responses

      We plan to add a low-magnification image showing the entire section and use an inset to indicate the positional relationship of the section's plane in a schematic diagram.

      Figures 6A-E: It would be helpful to denote the genotype as Satb2+/- or heterozygous, rather than Satb2 WT/del, which can be confusing. Ensure consistency in genotyping notation throughout all figures. It is noted that some are CRISPR knockdown and could be denoted as such.

      Our responses

      For CRISPR knockdown, I will adopt the term "CRISPANT" in the revised manuscript. This terminology will be used consistently throughout all figures to avoid confusion in genotype notation.


      Reviewer #4 (Significance (Required)):

      The corpus callosum evolved only in eutherian mammals and its development relies critically on an earlier developmental process known as interhemispheric remodeling. Nomura and colleagues investigate the evolution of these processes and identify that interhemispheric remodeling occurs in reptiles and birds and was therefore already present in the common ancestor of amniotes. This highly conserved developmental process likley evolved early and provided a substrates for major commissures to form throughout evolution.

      3.____Description of the revisions that have already been incorporated in the transferred manuscript.

      Currently we do not incorporate the revision in the transferred manuscript.


      __ Description of analyses that authors prefer not to carry out__

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Major

      That similar cell types contribute to remodelling in non-mammalian amniotes as mice/eutherian mammals. The microphotographs presented are not of very high quality, and it is often difficult to be convinced that the data is showing the strong claims made in the paper. For instance the "MZG-like cells" may in fact be astrocytes or another cell type as it is hard to visualise morphology, and the "intercalation of GFP-positive radial glial fibres" is very unclear from the photos. The colocalization of MMPsense with laminin positive cells is very hard to appreciate from the figure, and again not quantified. Similarly, there is a claim that there was degeneration of laminin-positive leptomeninges during astroglial intercalation, which is an active process that is difficult to infer from a single microphotograph. From the data, I can appreciate that some of the similar broad categories of cell types that exist at the mouse midline____ ____(glia, radial glia) are also present in non-mammalian amniote midlines, but it is difficult to be convinced of much more than this from the data presented.

      Our responses

      We are confident that this paper provides sufficient evidence that cell types similar to those in non-mammalian amniotes, mice, and placental mammals contribute to interhemispheric remodeling and that glial fiber intercalation occurs. This point is also supported by other reviewers.

      In the present study, we have not conducted the MMPsense experiments with the aim of showing the co-localization of MMPsense and laminin-positive cells or pia mater. Contrary to the reviewer's claim, it is important that the non-continuous regions of MMPsense and laminin-positive areas (pia mater), which are extracellular components, are adjacent to each other. Unfortunately, establishing a quantification system using MMPsense is practically impossible.

      Major

      The implication that Satb2 expression at the midline is necessary for appropriate interhemispheric remodeling. Alternative hypotheses for an inappropriately remodeled midline upon whole-brain Satb2 knockout is that it is not dependent on expression at the midline region. Rather, it could be that, for example, the appropriately timed interaction between ingrowing callosal axons and the midline territory is needed for the timely differentiation and/or behavior of midline cells. Other alternatives include that the lack of axonal midline crossing changes the morphology of the midline territory, including potentially "unfusing" the midline. Given the high prevalence of midline remodelling defects concomitant with callosal agenesis referred to be the authors in the literature, it seems like these alternatives would be worth considering. Indeed, the only article the authors reference in their statement that "several studies implicated that agenesis of CC in Satb2-deficient mice is also associated with defects in midline fusion" is an article where Satb2 was knocked out specifically in the cortex and hippocampus. This result is difficult to interpret, as some Emx1 promotors do label some of the midline territory, however the point stands that it is difficult to interpret solely that Satb2 action at the midline is responsible for the effects. I understand that this is a hard question to investigate, so I would suggest allusion to the alternative hypotheses/interpretations as the main priority when interpreting the data.

      Our responses

      This study does not aim to demonstrate the detailed molecular function of Satb2 in the developmental processes of the corpus callosum or pallial commissure. We plan to clearly state this point in the revised manuscript and focus on the findings obtained as a result. Based on the histological relationships, we will classify interhemispheric remodeling and consider adding a section in the Discussion to identify the common character identity mechanisms underlying the development of the pallial commissure and corpus callosum. This addition will help provide a more detailed understanding of the remodeling mechanisms. As is well known, discussions of homology are complex, and we understand that providing concrete evidence is even more challenging. When discussing homology, we will emphasize that it must be handled cautiously, and that discussions on molecular features and homology will rely heavily on future research. As an alternative, we plan to position the results of Satb2 Crispants in mice and geckos as evidence of the disruption of character identity mechanisms. By incorporating this perspective into the revised manuscript, we believe it will deepen our understanding of the role of Satb2 and its molecular mechanisms.

      Reviewer4

      Minor comment 7. There is very valuable data in the supplementary figures. As suggestion is to incorporate Supp. figures S1, S2 and S5 in the main figures.

      Our responses

      Due to space constraints, we plan to move only Supplementary Figure S5 to the supplementary section, and Figures S1 and S2 will not be included in the main figures of the revised manuscript.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      The authors provide a comparative analysis of interhemispheric (IHF) remodeling and its potential role in the generation of commissural axons. Based on histological material from mice, chickens, turtles, and geckos, the IHF remodeling of the midline is divided in two events: caudal and rostral. It is suggested that the rostral event is a preliminary step to the crossing of commissural axons, as it is characteristic of eutherian mammals with a corpus callosum (CC). However, the authors describe similar histologic features in other amniotes during development, particularly reptiles. This is in contrast with the case of the chick, which does not show signs of IHF remodeling nor a rostral pallial commissure. Additionally, deficient transgenic mice and geckos illustrate a potential role of Satb2 in rostral IHF remodeling and subsequent commissural formation. Whereas the topic and the conclusions of the analysis are interesting and provide new knowledge to the evo-devo field, several issues should be addressed prior to publication, such as data precision and presentation to support the main statements in the manuscript.

      Major comments:

      • A central point of this article is the splitting of the IHF into rostral and caudal events. The authors suggest that each one can be regulated differentially, and they attribute the rostral remodeling as a step prior to corpus callosum (CC) formation, in contrast to the caudal remodeling. In my opinion, these two events are not sufficiently characterized either in the figures or the manuscript. It is necessary to better describe these two processes that the authors mention. For instance, the authors could add or re-organize information in Figures 1-3 to include wide-field images showing the whole septum from rostral to caudal, and representative dorsoventral sections at important stages (with insets pointing at specific features). Otherwise, a table summarizing the rostral and caudal events would also be helpful to the reader.
      • When the authors refer to the reptilian rostral pallial commissure (RPC) and caudal pallial commissure (CPC), are these the same structures as the pallial commissure and anterior commissure described by Lanuza and Halpern (1997), Butler and Hodos (2005) and Puelles et al. (2019)? It is necessary to clarify the nomenclature, given that they are providing data from several species. Also, structures with the same names among species may not be truly homologous. A simple atlas with some horizontal and transverse planes highlighting anatomical landmarks and important structures (commissural tracts in this case) of the non-mammalian species would be extremely useful for the reader.
      • I wonder if the authors tested Fgf8 as marker on any of their sauropsidian tissue samples, as this gene has a known role in murine MZG development, which is required for IHF remodeling (Gobius et al. 2016, already cited in the manuscript). It would be beneficial to test this marker for the study, and if positive, it would open the possibility of designing loss-of-function experiments in avian or reptilian development models to identify mechanisms common to eutherians and support the statements of this work
      • It would be really interesting to provide a more elaborate discussion on whether authors consider the sauropsidian IHF as a homologous process to eutherian IHF, and the reptilian RPC as an homologous of the CC.
      • Data and methods are presented in such a way that, in principle, they could be reproduced. Authors should indicate the number of animals/replicates of each species used in each experiment.

      Minor comments:

      • In the results section, paragraph 2, line 3: "We detected the accumulation of GFAP-positive cells and phosphorylated vimentin (Ser55) -positive mitotic radial glia in the IHF and telencephalic hinge in developing turtles, geckoes and chicks (Figure 2A)". Figure 2A shows sections from the four analyzed species labeled with radial glia markers at the end of the IHF remodeling. It would be beneficial to have analogous sections at several time points (perhaps before or after the process) to compare and show more clearly the accumulation of glial cells at that location.
      • The article will improve its quality by adding more comparative information in the introduction about the analyzed sauropsidian structures (rostral pallial commissure and caudal pallial commissure), their relations with the pallial and anterior commissures, the structures/cells connected by them, and homologies previously proposed.
      • In Figure 1 panels A-D, there is a lot of disparity in brain sizes and scales both between sections of the same species and between species. Placing the insets next to their source images is very necessary for clarity.
      • In the results section, paragraph 2, line 11: "In addition, it was suggested that astroglial intercalation occurs in conjunction with the aforementioned regression of the IHF from st.21 to st.26 in the developing turtle (Figure 2C)." In Figure 2C, all images are at different scales, which makes it very hard to properly compare between stages.
      • In Figure 2D, the authors show the presence of MMP around the leptomeninges, suggesting MMP-mediated degradation. In the images, MMP labeling is revealed in dark blue, which is largely invisible against the black background. Colors should be used properly to allow visualization of this MMP labeling.
      • In Figure 4, it would really help if the authors provided wide-field images and DAPI counterstaining of the anterograde and retrograde tracings, to provide anatomical landmarks that help readers to identify the midline and understand the orientation of images.
      • In Figure 5B, I understand that the images in the red and blue squares correspond to brain areas in the squares in A. However, some confusion remains, especially with the image in B, which does not seem to be at the same angle as in the diagram representation. This makes it difficult to understand the results.
      • In Figure 6D, to better visualize defects in the RPC formation, the asterisk in the middle of the deficient structure needs to be replaced with a more lateral arrow pointing to the malformation.
      • In Figure S5, violin plots in panel C do not correspond with data in A and B. This needs correction or clarification.
      • In the article, a section appears solely to explain spatial transcriptomics results in a chick coronal section. The conclusion of this experiment is that three markers associated with midline remodeling are present in chick, suggesting that interhemispheric remodeling is conserved between mouse and chick. As these are complementary results and are not deeply analyzed in this manuscript, I think it would be better to summarize these findings in a dedicated paragraph and transfer some of the key images from Figure S2 to one of the main figures. Other problems with Figure S2: color contrast between clusters in the tSNE projection in B is very poor, should be enhanced; color intensity in FeaturePlots of panels D-F is too weak, and it seems that there is not really much expression at all in any cluster for any of these genes.

      Significance

      The authors identify in the developing brain of sauropsids an event similar to IHF remodeling in eutherians, and suggest a causal relation between the rostral IHF remodeling and the formation of the pallial commissure in reptilian brains. This implies a potential homology between the pallial commissure and the corpus callosum of placental mammals. If this is the intention of the authors, this conclusion should be addressed explicitly and at length in the Discussion section. Whereas the results and conclusions described in the manuscript will be valuable in the field, the data presented in the manuscript needs quite some improvement, particularly for some of the images in the previously mentioned figures. Otherwise, the original data cannot be properly judged and may set reasonable doubt to readers.

      Advance: The findings described in this report are new to my knowledge. The description of the IHF remodeling event prior to corpus callosum development in mice has been published (Gobius et al. 2016, Cell Reports), but not in other mammalian branches or non-mammalian vertebrates. For this reason, the data in this report should be very convincing and better presented.

      Audience: This research will be interesting for a specialized and basic research audience, particularly for researchers in the evo-devo fields.

      My expertise: neuroanatomy, development, evolution, brain, cerebral cortex

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      We thank the reviewer for his valuable input and careful assessment, which have significantly improved the clarity and rigor of our manuscript.

      Summary:

      Mazer & Yovel 2025 dissect the inverse problem of how echolocators in groups manage to navigate their surroundings despite intense jamming using computational simulations.

      The authors show that despite the 'noisy' sensory environments that echolocating groups present, agents can still access some amount of echo-related information and use it to navigate their local environment. It is known that echolocating bats have strong small and large-scale spatial memory that plays an important role for individuals. The results from this paper also point to the potential importance of an even lower-level, short-term role of memory in the form of echo 'integration' across multiple calls, despite the unpredictability of echo detection in groups. The paper generates a useful basis to think about the mechanisms in echolocating groups for experimental investigations too.

      Strengths:

      (1) The paper builds on biologically well-motivated and parametrised 2D acoustics and sensory simulation setup to investigate the various key parameters of interest

      (2) The 'null-model' of echolocators not being able to tell apart objects & conspecifics while echolocating still shows agents successfully emerge from groups - even though the probability of emergence drops severely in comparison to cognitively more 'capable' agents. This is nonetheless an important result showing the direction-of-arrival of a sound itself is the 'minimum' set of ingredients needed for echolocators navigating their environment.

      (3) The results generate an important basis in unraveling how agents may navigate in sensorially noisy environments with a lot of irrelevant and very few relevant cues.

      (4) The 2D simulation framework is simple and computationally tractable enough to perform multiple runs to investigate many variables - while also remaining true to the aim of the investigation.

      Weaknesses:

      There are a few places in the paper that can be misunderstood or don't provide complete details. Here is a selection:

      (1) Line 61: '... studies have focused on movement algorithms while overlooking the sensory challenges involved' : This statement does not match the recent state of the literature. While the previous models may have had the assumption that all neighbours can be detected, there are models that specifically study the role of limited interaction arising from a potential inability to track all neighbours due to occlusion, and the effect of responding to only one/few neighbours at a time e.g. Bode et al. 2011 R. Soc. Interface, Rosenthal et al. 2015 PNAS, Jhawar et al. 2020 Nature Physics.

      We appreciate the reviewer's comment and the relevant references. We have revised the manuscript accordingly to clarify the distinction between studies that incorporate limited interactions and those that explicitly analyze sensory constraints and interference. We have refined our statement to acknowledge these contributions while maintaining our focus on sensory challenges beyond limited neighbor detection, such as signal degradation, occlusion effects, and multimodal sensory integration (see lines 61-64):

      While collective movement has been extensively studied in various species, including insect swarming, fish schooling, and bird murmuration (Pitcher, Partridge and Wardle, 1976; Partridge, 1982; Strandburg-Peshkin et al., 2013; Pearce et al., 2014; Rosenthal, Twomey, Hartnett, Wu, Couzin, et al., 2015; Bastien and Romanczuk, 2020; Davidson et al., 2021; Aidan, Bleichman and Ayali, 2024), as well as in swarm robotics agents performing tasks such as coordinated navigation and maze-solving (Faria Dias et al., 2021; Youssefi and Rouhani, 2021; Cheraghi, Shahzad and Graffi, 2022), most studies have focused on movement algorithms , often assuming full detection of neighbors (Parrish and Edelstein-Keshet, 1999; Couzin et al., 2002, 2005; Sumpter et al., 2008; Nagy et al., 2010; Bialek et al., 2012; Gautrais et al., 2012; Attanasi et al., 2014). Some models have incorporated limited interaction rules where individuals respond to one or a few neighbors due to sensory constraints (Bode, Franks and Wood, 2011; Jhawar et al., 2020). However, fewer studies explicitly examine how sensory interference, occlusion, and noise shape decision-making in collective systems (Rosenthal et al., 2015).

      (2) The word 'interference' is used loosely places (Line 89: '...took all interference signals...', Line 319: 'spatial interference') - this is confusing as it is not clear whether the authors refer to interference in the physics/acoustics sense, or broadly speaking as a synonym for reflections and/or jamming.

      To improve clarity, we have revised the manuscript to distinguish between different types of interference:

      · Acoustic interference (jamming): Overlapping calls that completely obscure echo detection, preventing bats from perceiving necessary environmental cues.

      · Acoustic interference (masking): Partial reduction in signal clarity due to competing calls.

      · Spatial interference: Physical obstruction by conspecifics affecting movement and navigation.

      We have updated the manuscript to use these terms consistently and explicitly define them in relevant sections (see lines 87-94 and 329-330). This distinction ensures that the reader can differentiate between interference as an acoustic phenomenon and its broader implications in navigation.

      (3) The paper discusses original results without reference to how they were obtained or what was done. The lack of detail here must be considered while interpreting the Discussion e.g. Line 302 ('our model suggests...increasing the call-rate..' - no clear mention of how/where call-rate was varied) & Line 323 '..no benefit beyond a certain level..' - also no clear mention of how/where call-level was manipulated in the simulations.

      All tested parameters, including call rate dynamics and call intensity variations, are detailed in the Methods section and Tables 1 and 2. Specifically:

      · Call Rate Variation: The Inter-Pulse Interval (IPI) was modeled based on documented echolocation behavior, decreasing from 100 msec during the search phase to 35 msec (~28 calls per second) at the end of the approach phase, and to 5 msec (200 calls per second) during the final buzz (see Table 2). This natural variation in call rate was not manually manipulated in the model but emerged from the simulated bat behavior.

      · Call Intensity Variation: The tested call intensity levels (100, 110, 120, 130 dB SPL) are presented in Table 1 under the “Call Level” parameter. The effect of increasing call intensity was analyzed in relation to exit probability, jamming probability, and collision rate. This is now explicitly referenced in the Discussion.

      We have revised the manuscript to explicitly reference these aspects in the Results and Discussion sections.

      Reviewer #2 (Public review):

      We are grateful for the reviewer’s insightful feedback, which has helped us clarify key aspects of our research and strengthen our conclusions.

      This manuscript describes a detailed model of bats flying together through a fixed geometry. The model considers elements that are faithful to both bat biosonar production and reception and the acoustics governing how sound moves in the air and interacts with obstacles. The model also incorporates behavioral patterns observed in bats, like one-dimensional feature following and temporal integration of cognitive maps. From a simulation study of the model and comparison of the results with the literature, the authors gain insight into how often bats may experience destructive interference of their acoustic signals and those of their peers, and how much such interference may actually negatively affect the groups' ability to navigate effectively. The authors use generalized linear models to test the significance of the effects they observe.

      In terms of its strengths, the work relies on a thoughtful and detailed model that faithfully incorporates salient features, such as acoustic elements like the filter for a biological receiver and temporal aggregation as a kind of memory in the system. At the same time, the authors' abstract features are complicating without being expected to give additional insights, as can be seen in the choice of a two-dimensional rather than three-dimensional system. I thought that the level of abstraction in the model was perfect, enough to demonstrate their results without needless details. The results are compelling and interesting, and the authors do a great job discussing them in the context of the biological literature.

      The most notable weakness I found in this work was that some aspects of the model were not entirely clear to me.

      For example, the directionality of the bat's sonar call in relation to its velocity. Are these the same?

      For simplicity, in our model, the head is aligned with the body, therefore the direction of the echolocation beam is the same as the direction of the flight.

      Moreover, call directionality (directivity) is not directly influenced by velocity. Instead, directionality is estimated using the piston model, as described in the Methods section. The directionality is based on the emission frequency and is thus primarily linked to the behavioral phases of the bat, with frequency shifts occurring as the bat transitions from search to approach to buzz phases. During the approach phase, the bat emits calls with higher frequencies, resulting in increased directionality. This is supported by the literature (Jakobsen and Surlykke, 2010; Jakobsen, Brinkløv and Surlykke, 2013). This phase is also associated with a natural reduction in flight speed, which is a well-documented behavioral adaptation in echolocating bats (Jakobsen et al., 2024).

      To clarify this in the manuscript, we have updated the text to explicitly state that directionality follows phase-dependent frequency changes rather than being a direct function of velocity, see lines 460-465.

      If so, what is the difference between phi_target and phi_tx in the model equations?

      represents the angle between the bat and the reflected object (target).

      the angle [rad], between the masking bat and target (from the transmitter’s perspective)

      refers to the angle between the transmitting conspecific and the receiving focal bat, from the transmitter’s point of view.

      represents the angle between the receiving bat and the transmitting bat, from the receiver’s point of view.

      These definitions have been explicitly stated in the revised manuscript to prevent any ambiguity (lines 467-468). Additionally, a Supplementary figure demonstrating the geometrical relations has been added to the manuscript.

      Author response image 1.

      What is a bat's response to colliding with a conspecific (rather than a wall)?

      In nature, minor collisions between bats are common and typically do not result in significant disruptions to flight (Boerma et al., 2019; Roy et al., 2019; Goldstein et al., 2024).Given this, our model does not explicitly simulate the physical impact of a collision event. Instead, during the collision event the bat keeps decreasing its velocity and changing its flight direction until the distance between bats is above the threshold (0.4 m). We assume that the primary cost of such interactions arises from the effort required to avoid collisions, rather than from the collision itself. This assumption aligns with observations of bat behavior in dense flight environments, where individuals prioritize collision avoidance rather than modeling post-collision dynamics.

      From the statistical side, it was not clear if replicate simulations were performed. If they were, which I believe is the right way due to stochasticity in the model, how many replicates were used, and are the standard errors referred to throughout the paper between individuals in the same simulation or between independent simulations, or both?

      The number of repetitions for each scenario is detailed in Table 1, but we included it in a more prominent location in the text for clarity. Specifically, we now state (Lines 274-275):

      "The number of repetitions for each scenario was as follows: 1 bat: 240; 2 bats: 120; 5 bats: 48; 10 bats: 24; 20 bats: 12; 40 bats: 12; 100 bats: 6."

      Regarding the reported standard errors, they are calculated across all individuals within each scenario, without distinguishing between different simulation trials.

      We clarified in the revised text (Lines 534-535 in Statistical Analysis)

      Overall, I found these weaknesses to be superficial and easily remedied by the authors. The authors presented well-reasoned arguments that were supported by their results, and which were used to demonstrate how call interference impacts the collective's roost exit as measured by several variables. As the authors highlight, I think this work is valuable to individuals interested in bat biology and behavior, as well as to applications in engineered multi-agent systems like robotic swarms.

      Reviewer #3 (Public review):

      We sincerely appreciate the reviewer’s thoughtful comments and the time invested in evaluating our work, which have greatly contributed to refining our study.

      We would like to note that in general, our model often simplifies some of the bats’ abilities, under the assumption that if the simulated bats manage to perform this difficult task with simpler mechanisms, real better adapted bats will probably perform even better. This thought strategy will be repeated in several of the answers below.

      Summary:

      The authors describe a model to mimic bat echolocation behavior and flight under high-density conditions and conclude that the problem of acoustic jamming is less severe than previously thought, conflating the success of their simulations (as described in the manuscript) with hard evidence for what real bats are actually doing. The authors base their model on two species of bats that fly at "high densities" (defined by the authors as colony sizes from tens to tens of thousands of individuals and densities of up to 33.3 bats/m2), Pipistrellus kuhli and Rhinopoma microphyllum. This work fits into the broader discussion of bat sensorimotor strategies during collective flight, and simulations are important to try to understand bat behavior, especially given a lack of empirical data. However, I have major concerns about the assumptions of the parameters used for the simulation, which significantly impact both the results of the simulation and the conclusions that can be made from the data. These details are elaborated upon below, along with key recommendations the authors should consider to guide the refinement of the model.

      Strengths:

      This paper carries out a simulation of bat behavior in dense swarms as a way to explain how jamming does not pose a problem in dense groups. Simulations are important when we lack empirical data. The simulation aims to model two different species with different echolocation signals, which is very important when trying to model echolocation behavior. The analyses are fairly systematic in testing all ranges of parameters used and discussing the differential results.

      Weaknesses:

      The justification for how the different foraging phase call types were chosen for different object detection distances in the simulation is unclear. Do these distances match those recorded from empirical studies, and if so, are they identical for both species used in the simulation?

      The distances at which bats transition between echolocation phases are identical for both species in our model (see Table 2). These distances are based on well-documented empirical studies of bat hunting and obstacle avoidance behavior (Griffin, Webster and Michael, 1958; Simmons and Kick, 1983; Schnitzler et al., 1987; Kalko, 1995; Hiryu et al., 2008; Vanderelst and Peremans, 2018). These references provide extensive evidence that insectivorous bats systematically adjust their echolocation calls in response to object proximity, following the characteristic phases of search, approach, and buzz.

      To improve clarity, we have updated the text to explicitly state that the phase transition distances are empirically grounded and apply equally to both modeled species (lines 430-447).

      What reasoning do the authors have for a bat using the same call characteristics to detect a cave wall as they would for detecting a small insect?

      In echolocating bats, call parameters are primarily shaped by the target distance and echo strength. Accordingly, there is little difference in call structure between prey capture and obstacles-related maneuvers, aside from intensity adjustments based on target strength (Hagino et al., 2007; Hiryu et al., 2008; Surlykke, Ghose and Moss, 2009; Kothari et al., 2014). In our study, due to the dense cave environment, the bats are found to operate in the approach phase nearly all the time, which is consistent with natural cave emergence, where they are navigating through a cluttered environment rather than engaging in open-space search. For one of the species (Rhinopoma M.), we also have empirical recordings of individuals flying under similar conditions (Goldstein et al., 2024). Our model was designed to remain as simple as possible while relying on conservative assumptions that may underestimate bat performance. If, in reality, bats fine-tune their echolocation calls even earlier or more precisely during navigation than assumed, our model would still conservatively reflect their actual capabilities.

      We actually used logarithmically frequency modulated (FM) chirps, generated using the MATLAB built-in function chirp(t, f0, t1, f1, 'logarithmic'). This method aligns with the nonlinear FM characteristics of Pipistrellus kuhlii (PK) and Rhinopoma microphyllum (RM) and provides a realistic approximation of their echolocation signals. We acknowledge that this was not sufficiently emphasized in the original text, and we have now explicitly highlighted this in the revised version to ensure clarity (sell Lines 447-449 in Methods).

      The two species modeled have different calls. In particular, the bandwidth varies by a factor of 10, meaning the species' sonars will have different spatial resolutions. Range resolution is about 10x better for PK compared to RM, but the authors appear to use the same thresholds for "correct detection" for both, which doesn't seem appropriate.

      The detection process in our model is based on Saillant’s method using a filter bank, as detailed in the paper (Saillant et al., 1993; Neretti et al., 2003; Sanderson et al., 2003). This approach inherently incorporates the advantages of a wider bandwidth, meaning that the differences in range resolution between the species are already accounted for within the signal-processing framework. Thus, there is no need to explicitly adjust the model parameters for bandwidth variations, as these effects emerge from the applied method.

      Also, the authors did not mention incorporating/correcting for/exploiting Doppler, which leads me to assume they did not model it.

      The reviewer is correct. To maintain model simplicity, we did not incorporate the Doppler effect or its impact on echolocation. The exclusion of Doppler effects was based on the assumption that while Doppler shifts can influence frequency perception, their impact on jamming and overall navigation performance is minor within the modelled context.

      The maximal Doppler shifts expected for the bats in this scenario are of ~ 1kHz. These shifts would be applied variably across signals due to the semi-random relative velocities between bats, leading to a mixed effect on frequency changes. This variability would likely result in an overall reduction in jamming rather than exacerbating it, aligning with our previous statement that our model may overestimate the severity of acoustic interference. Such Doppler shifts would result in errors of 2-4 cm in localization (i.e., 200-400 micro-seconds) (Boonman, Parsons and Jones, 2003). 

      We have now explicitly highlighted this in the revised version (see Lines 468-470).

      The success of the simulation may very well be due to variation in the calls of the bats, which ironically enough demonstrates the importance of a jamming avoidance response in dense flight. This explains why the performance of the simulation falls when bats are not able to distinguish their own echoes from other signals. For example, in Figure C2, there are calls that are labeled as conspecific calls and have markedly shorter durations and wider bandwidths than others. These three phases for call types used by the authors may be responsible for some (or most) of the performance of the model since the correlation between different call types is unlikely to exceed the detection threshold. But it turns out this variation in and of itself is what a jamming avoidance response may consist of. So, in essence, the authors are incorporating a jamming avoidance response into their simulation.

      We fully agree that the natural variations in call design between the phases contribute significantly to interference reduction (see our discussion in a previous paper in Mazar & Yovel, 2020). However, we emphasize that this cannot be classified as a Jamming Avoidance Response (JAR). In our model, bats respond only to the physical presence of objects and not to the acoustic environment or interference itself. There is no active or adaptive adjustment of call design to minimize jamming beyond the natural phase-dependent variations in call structure. Therefore, while variation in call types does inherently reduce interference, this effect emerges passively from the modeled behavior rather than as an intentional strategy to avoid jamming.

      The authors claim that integration over multiple pings (though I was not able to determine the specifics of this integration algorithm) reduces the masking problem. Indeed, it should: if you have two chances at detection, you've effectively increased your SNR by 3dB.

      The reviewer is correct. Indeed, integration over multiple calls improves signal-to-noise ratio (SNR), effectively increasing it by approximately 3 dB per doubling of observations. The specifics of the integration algorithm are detailed in the Methods section, where we describe how sensory information is aggregated across multiple time steps to enhance detection reliability.

      They also claim - although it is almost an afterthought - that integration dramatically reduces the degradation caused by false echoes. This also makes sense: from one ping to the next, the bat's own echo delays will correlate extremely well with the bat's flight path. Echo delays due to conspecifics will jump around kind of randomly. However, the main concern is regarding the time interval and number of pings of the integration, especially in the context of the bat's flight speed. The authors say that a 1s integration interval (5-10 pings) dramatically reduces jamming probability and echo confusion. This number of pings isn't very high, and it occurs over a time interval during which the bat has moved 5-10m. This distance is large compared to the 0.4m distance-to-obstacle that triggers an evasive maneuver from the bat, so integration should produce a latency in navigation that significantly hinders the ability to avoid obstacles. Can the authors provide statistics that describe this latency, and discussion about why it doesn't seem to be a problem?

      As described in the Methods section, the bat’s collision avoidance response does not solely rely on the integration process. Instead, the model incorporates real-time echoes from the last calls, which are used independently of the integration process for immediate obstacle avoidance maneuvers. This ensures that bats can react to nearby obstacles without being hindered by the integration latency. The slower integration on the other hand is used for clustering, outlier removal and estimation wall directions to support the pathfinding process, as illustrated in Supplementary Figure 1.

      Additionally, our model assumes that bats store the physical positions of echoes in an allocentric coordinate system (x-y). The integration occurs after transforming these detections from a local relative reference frame to a global spatial representation. This allows for stable environmental mapping while maintaining responsiveness to immediate changes in the bat’s surroundings.

      See lines 518-523 in the revied version.

      The authors are using a 2D simulation, but this very much simplifies the challenge of a 3D navigation task, and there is an explanation as to why this is appropriate. Bat densities and bat behavior are discussed per unit area when realistically it should be per unit volume. In fact, the authors reference studies to justify the densities used in the simulation, but these studies were done in a 3D world. If the authors have justification for why it is realistic to model a 3D world in a 2D simulation, I encourage them to provide references justifying this approach.

      We acknowledge that this is a simplification; however, from an echolocation perspective, a 2D framework represents a worst-case scenario in terms of bat densities and maneuverability:

      · Higher Effective Density: A 2D model forces all bats into a single plane rather than distributing them through a 3D volume, increasing the likelihood of overlap in calls and echoes and making jamming more severe. As described in the text: the average distance to the nearest bat in our simulation is 0.27m (with 100 bats), whereas reported distances in very dense colonies are 0.5m, as observed in Myotis grisescens and Tadarida brasiliensis (Fujioka et al., 2021; Sabol and Hudson, 1995; Betke et al., 2008; Gillam et al, 2010)

      · Reduced Maneuverability: In 3D space, bats can use vertical movement to avoid obstacles and conspecifics. A 2D constraint eliminates this degree of freedom, increasing collision risk and limiting escape options.

      Thus, our 2D model provides a conservative difficult test case, ensuring that our findings are valid under conditions where jamming and collision risks are maximized. Additionally, the 2D framework is computationally efficient, allowing us to perform multiple simulation runs to explore a broad parameter space and systematically test the impact of different variables.

      To address the reviewer’s concern, we have clarified this justification in the revised text and will provide supporting references where applicable: (see Methods lines 407-412)

      The focus on "masking" (which appears to be just in-band noise), especially relative to the problem of misassigned echoes, is concerning. If the bat calls are all the same waveform (downsweep linear FM of some duration, I assume - it's not clear from the text), false echoes would be a major problem. Masking, as the authors define it, just reduces SNR. This reduction is something like sqrt(N), where N is the number of conspecifics whose echoes are audible to the bat, so this allows the detection threshold to be set lower, increasing the probability that a bat's echo will exceed a detection threshold. False echoes present a very different problem. They do not reduce SNR per se, but rather they cause spurious threshold excursions (N of them!) that the bat cannot help but interpret as obstacle detection. I would argue that in dense groups the mis-assignment problem is much more important than the SNR problem.

      There is substantial literature supporting the assumption that bats can recognize their own echoes and distinguish them from conspecific signals (Schnitzler and Bioscience, 2001‏; Kazial, Burnett and Masters, 2001; Burnett and Masters, 2002; Kazial, Kenny and Burnett, 2008; Chili, Xian and Moss, 2009; Yovel et al., 2009; Beetz and Hechavarría, 2022). However, we acknowledge that false echoes may present a major challenge in dense groups. To address this, we explicitly tested the impact of the self-echo identification assumption in our study see Results Figure 4: The impact of confusion on performance, and lines 345-355 in the Discussion.

      Furthermore, we examined a full confusion scenario, where all reflected echoes from conspecifics were misinterpreted as obstacle reflections (i.e., 100% confusion). Our results show that this significantly degrades navigation performance, supporting the argument that echo misassignment is a critical issue. However, we also explored a simple mitigation strategy based on temporal integration with outlier rejection, which provided some improvement in performance. This suggests that real bats may possess additional mechanisms to enhance self-echo identification and reduce false detections. See lines XX in the manuscript for further discussion.

      The criteria set for flight behavior (lines 393-406) are not justified with any empirical evidence of the flight behavior of wild bats in collective flight. How did the authors determine the avoidance distances? Also, what is the justification for the time limit of 15 seconds to emerge from the opening? Instead of an exit probability, why not instead use a time criterion, similar to "How long does it take X% of bats to exit?"

      While we acknowledge that wild bats may employ more complex behaviors for collision avoidance, we chose to implement a simplified decision-making rule in our model to maintain computational tractability.

      The avoidance distances (1.5 m from walls and 0.4 m from other bats) were selected as internal parameters to ensure coherent flight trajectories while maintaining a reasonable collision rate. These distances provide a balance between maneuverability and stability, preventing erratic flight patterns while still enabling effective obstacle avoidance. In the revised paper, we have added supplementary figures illustrating the effect of model parameters on performance, specifically focusing on the avoidance distance.

      The 15-second exit limit was determined as described in the text (Lines 403-404): “A 15-second window was chosen because it is approximately twice the average exit time for 40 bats and allows for a second corrective maneuver if needed.” In other words, it allowed each bat to circle the ‘cave’ twice to exit even in the most crowded environment. This threshold was set to keep simulation time reasonable while allowing sufficient time for most bats to exit successfully.

      We acknowledge that the alternative approach suggested by the reviewer—measuring the time taken for a certain percentage of bats to exit—is also valid. However, in our model, some outlier bats fail to exit and continue flying for many minutes, Such simulations would lead to excessive simulation times making it difficult to generate repetitions and not teaching us much – they usually resulted from the bat slightly missing the opening (see video S1. Our chosen approach ensures practical runtime constraints while still capturing relevant performance metrics.

      What is the empirical justification for the 1-10 calls used for integration?

      The "average exit time for 40 bats" is also confusing and not well explained. Was this determined empirically? From the simulation? If the latter, what are the conditions? Does it include masking, no masking, or which species?

      Previous studies have demonstrated that bats integrate acoustic information received sequentially over several echolocation calls (2-15), effectively constructing an auditory scene in complex environments (Ulanovsky and Moss, 2008; Chili, Xian and Moss, 2009; Moss and Surlykke, 2010; Yovel and Ulanovsky, 2017; Salles, Diebold and Moss, 2020). Additionally, bats are known to produce echolocation sound groups when spatiotemporal localization demands are high (Kothari et al., 2014). Studies have documented call sequences ranging from 2 to 15 grouped calls (Moss et al., 2010), and it has been hypothesized that grouping facilitates echo segregation.

      We did not use a single integration window - we tested integration sizes between 1 and 10 calls and presented the results in Figure 3A. This range was chosen based on prior empirical findings and to explore how different levels of temporal aggregation impact navigation performance. Indeed, the results showed that the performance levels between 5-10 calls integration window (Figure 3A)

      Regarding the average exit time for 40 bats, this value was determined from our simulations, where it represents the mean time for successful exits under standard conditions with masking.

      We have revised the text to clarify these details see, lines 466.

      References:

      Aidan, Y., Bleichman, I. and Ayali, A. (2024) ‘Pausing to swarm: locust intermittent motion is instrumental for swarming-related visual processing’, Biology letters, 20(2), p. 20230468. Available at: https://doi.org/10.1098/rsbl.2023.0468.

      Attanasi, A. et al. (2014) ‘Collective Behaviour without Collective Order in Wild Swarms of Midges’. Edited by T. Vicsek, 10(7). Available at: https://doi.org/10.1371/journal.pcbi.1003697.

      Bastien, R. and Romanczuk, P. (2020) ‘A model of collective behavior based purely on vision’, Science Advances, 6(6). Available at: https://doi.org/10.1126/sciadv.aay0792.

      Beetz, M.J. and Hechavarría, J.C. (2022) ‘Neural Processing of Naturalistic Echolocation Signals in Bats’, Frontiers in Neural Circuits, 16, p. 899370. Available at: https://doi.org/10.3389/FNCIR.2022.899370/BIBTEX.

      Betke, M. et al. (2008) ‘Thermal Imaging Reveals Significantly Smaller Brazilian Free-Tailed Bat Colonies Than Previously Estimated’, Journal of Mammalogy, 89(1), pp. 18–24. Available at: https://doi.org/10.1644/07-MAMM-A-011.1.

      Bialek, W. et al. (2012) ‘Statistical mechanics for natural flocks of birds’, Proceedings of the National Academy of Sciences, 109(13), pp. 4786–4791. Available at: https://doi.org/10.1073/PNAS.1118633109.

      Bode, N.W.F., Franks, D.W. and Wood, A.J. (2011) ‘Limited interactions in flocks: Relating model simulations to empirical data’, Journal of the Royal Society Interface, 8(55), pp. 301–304. Available at: https://doi.org/10.1098/RSIF.2010.0397.

      Boerma, D.B. et al. (2019) ‘Wings as inertial appendages: How bats recover from aerial stumbles’, Journal of Experimental Biology, 222(20). Available at: https://doi.org/10.1242/JEB.204255/VIDEO-3.

      Boonman, A.M., Parsons, S. and Jones, G. (2003) ‘The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses’, The Journal of the Acoustical Society of America, 113(1), p. 617. Available at: https://doi.org/10.1121/1.1528175.

      Burnett, S.C. and Masters, W.M. (2002) ‘Identifying Bats Using Computerized Analysis and Artificial Neural Networks’, North American Symposium on Bat Research, 9.

      Cheraghi, A.R., Shahzad, S. and Graffi, K. (2022) ‘Past, Present, and Future of Swarm Robotics’, in Lecture Notes in Networks and Systems. Available at: https://doi.org/10.1007/978-3-030-82199-9_13.

      Chili, C., Xian, W. and Moss, C.F. (2009) ‘Adaptive echolocation behavior in bats for the analysis of auditory scenes’, Journal of Experimental Biology, 212(9), pp. 1392–1404. Available at: https://doi.org/10.1242/jeb.027045.

      Couzin, I.D. et al. (2002) ‘Collective Memory and Spatial Sorting in Animal Groups’, Journal of Theoretical Biology, 218(1), pp. 1–11. Available at: https://doi.org/10.1006/jtbi.2002.3065.

      Couzin, I.D. et al. (2005) ‘Effective leadership and decision-making in animal groups on the move’, Nature, 433(7025), pp. 513–516. Available at: https://doi.org/10.1038/nature03236.

      Davidson, J.D. et al. (2021) ‘Collective detection based on visual information in animal groups’, Journal of the Royal Society, 18(180), p. 2021.02.18.431380. Available at: https://doi.org/10.1098/rsif.2021.0142.

      Faria Dias, P.G. et al. (2021) ‘Swarm robotics: A perspective on the latest reviewed concepts and applications’, Sensors. Available at: https://doi.org/10.3390/s21062062.

      Fujioka, E. et al. (2021) ‘Three-Dimensional Trajectory Construction and Observation of Group Behavior of Wild Bats During Cave Emergence’, Journal of Robotics and Mechatronics, 33(3), pp. 556–563. Available at: https://doi.org/10.20965/jrm.2021.p0556.

      Gautrais, J. et al. (2012) ‘Deciphering Interactions in Moving Animal Groups’, PLOS Computational Biology, 8(9), p. e1002678. Available at: https://doi.org/10.1371/JOURNAL.PCBI.1002678.

      Gillam, E.H. et al. (2010) ‘Echolocation behavior of Brazilian free-tailed bats during dense emergence flights’, Journal of Mammalogy, 91(4), pp. 967–975. Available at: https://doi.org/10.1644/09-MAMM-A-302.1.

      Goldstein, A. et al. (2024) ‘Collective Sensing – On-Board Recordings Reveal How Bats Maneuver Under Severe 4 Acoustic Interference’, Under Review, pp. 1–25.

      Griffin, D.R., Webster, F.A. and Michael, C.R. (1958) ‘THE ECHOLOCATION OF FLYING INSECTS BY BATS ANIMAL BEHAVIOUR , Viii , 3-4’.

      Hagino, T. et al. (2007) ‘Adaptive SONAR sounds by echolocating bats’, International Symposium on Underwater Technology, UT 2007 - International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, pp. 647–651. Available at: https://doi.org/10.1109/UT.2007.370829.

      Hiryu, S. et al. (2008) ‘Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field’, The Journal of the Acoustical Society of America, 124(2), pp. EL51–EL56. Available at: https://doi.org/10.1121/1.2947629.

      Jakobsen, L. et al. (2024) ‘Velocity as an overlooked driver in the echolocation behavior of aerial hawking vespertilionid bats’. Available at: https://doi.org/10.1016/j.cub.2024.12.042.

      Jakobsen, L., Brinkløv, S. and Surlykke, A. (2013) ‘Intensity and directionality of bat echolocation signals’, Frontiers in Physiology, 4 APR(April), pp. 1–9. Available at: https://doi.org/10.3389/fphys.2013.00089.

      Jakobsen, L. and Surlykke, A. (2010) ‘Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit’, 107(31). Available at: https://doi.org/10.1073/pnas.1006630107.

      Jhawar, J. et al. (2020) ‘Noise-induced schooling of fish’, Nature Physics 2020 16:4, 16(4), pp. 488–493. Available at: https://doi.org/10.1038/s41567-020-0787-y.

      Kalko, E.K. V. (1995) ‘Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchirptera)’, Animal Behaviour, 50(4), pp. 861–880.

      Kazial, K.A., Burnett, S.C. and Masters, W.M. (2001) ‘ Individual and Group Variation in Echolocation Calls of Big Brown Bats, Eptesicus Fuscus (Chiroptera: Vespertilionidae) ’, Journal of Mammalogy, 82(2), pp. 339–351. Available at: https://doi.org/10.1644/1545-1542(2001)082<0339:iagvie>2.0.co;2.

      Kazial, K.A., Kenny, T.L. and Burnett, S.C. (2008) ‘Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls’, Ethology, 114(5), pp. 469–478. Available at: https://doi.org/10.1111/j.1439-0310.2008.01483.x.

      Kothari, N.B. et al. (2014) ‘Timing matters: Sonar call groups facilitate target localization in bats’, Frontiers in Physiology, 5 MAY. Available at: https://doi.org/10.3389/fphys.2014.00168.

      Moss, C.F. and Surlykke, A. (2010) ‘Probing the natural scene by echolocation in bats’, Frontiers in Behavioral Neuroscience. Available at: https://doi.org/10.3389/fnbeh.2010.00033.

      Nagy, M. et al. (2010) ‘Hierarchical group dynamics in pigeon flocks’, Nature 2010 464:7290, 464(7290), pp. 890–893. Available at: https://doi.org/10.1038/nature08891.

      Neretti, N. et al. (2003) ‘Time-frequency model for echo-delay resolution in wideband biosonar’, The Journal of the Acoustical Society of America, 113(4), pp. 2137–2145. Available at: https://doi.org/10.1121/1.1554693.

      Parrish, J.K. and Edelstein-Keshet, L. (1999) ‘Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation’, Science, 284(5411), pp. 99–101. Available at: https://doi.org/10.1126/SCIENCE.284.5411.99.

      Partridge, B.L. (1982) ‘The Structure and Function of Fish Schools’, 246(6), pp. 114–123. Available at: https://doi.org/10.2307/24966618.

      Pearce, D.J.G. et al. (2014) ‘Role of projection in the control of bird flocks’, Proceedings of the National Academy of Sciences of the United States of America, 111(29), pp. 10422–10426. Available at: https://doi.org/10.1073/pnas.1402202111.

      Pitcher, T.J., Partridge, B.L. and Wardle, C.S. (1976) ‘A blind fish can school’, Science, 194(4268), pp. 963–965. Available at: https://doi.org/10.1126/science.982056.

      Rosenthal, S.B., Twomey, C.R., Hartnett, A.T., Wu, H.S., Couzin, I.D., et al. (2015) ‘Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion’, Proceedings of the National Academy of Sciences of the United States of America, 112(15), pp. 4690–4695. Available at: https://doi.org/10.1073/pnas.1420068112.

      Rosenthal, S.B., Twomey, C.R., Hartnett, A.T., Wu, H.S. and Couzin, I.D. (2015) ‘Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion’, Proceedings of the National Academy of Sciences of the United States of America, 112(15), pp. 4690–4695. Available at: https://doi.org/10.1073/PNAS.1420068112/-/DCSUPPLEMENTAL/PNAS.1420068112.SAPP.PDF.

      Roy, S. et al. (2019) ‘Extracting interactions between flying bat pairs using model-free methods’, Entropy, 21(1). Available at: https://doi.org/10.3390/e21010042.

      Sabol, B.M. and Hudson, M.K. (1995) ‘Technique using thermal infrared-imaging for estimating populations of gray bats’, Journal of Mammalogy, 76(4). Available at: https://doi.org/10.2307/1382618.

      Saillant, P.A. et al. (1993) ‘A computational model of echo processing and acoustic imaging in frequency- modulated echolocating bats: The spectrogram correlation and transformation receiver’, The Journal of the Acoustical Society of America, 94(5). Available at: https://doi.org/10.1121/1.407353.

      Salles, A., Diebold, C.A. and Moss, C.F. (2020) ‘Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion’, Proceedings of the National Academy of Sciences of the United States of America, 117(46), pp. 29229–29238. Available at: https://doi.org/10.1073/PNAS.2011719117/SUPPL_FILE/PNAS.2011719117.SAPP.PDF.

      Sanderson, M.I. et al. (2003) ‘Evaluation of an auditory model for echo delay accuracy in wideband biosonar’, The Journal of the Acoustical Society of America, 114(3), pp. 1648–1659. Available at: https://doi.org/10.1121/1.1598195.

      Schnitzler, H., Bioscience, E.K.- and 2001‏, undefined (no date) ‘Echolocation by insect-eating bats: we define four distinct functional groups of bats and find differences in signal structure that correlate with the typical echolocation ‏’, academic.oup.com‏HU Schnitzler, EKV Kalko‏Bioscience, 2001‏•academic.oup.com‏ [Preprint]. Available at: https://academic.oup.com/bioscience/article-abstract/51/7/557/268230 (Accessed: 17 March 2025).

      Schnitzler, H.-U. et al. (1987) ‘The echolocation and hunting behavior of the bat,Pipistrellus kuhli’, Journal of Comparative Physiology A, 161(2), pp. 267–274. Available at: https://doi.org/10.1007/BF00615246.

      Simmons, J.A. and Kick, S.A. (1983) ‘Interception of Flying Insects by Bats’, Neuroethology and Behavioral Physiology, pp. 267–279. Available at: https://doi.org/10.1007/978-3-642-69271-0_20.

      Strandburg-Peshkin, A. et al. (2013) ‘Visual sensory networks and effective information transfer in animal groups’, Current Biology. Cell Press. Available at: https://doi.org/10.1016/j.cub.2013.07.059.

      Sumpter, D.J.T. et al. (2008) ‘Consensus Decision Making by Fish’, Current Biology, 18(22), pp. 1773–1777. Available at: https://doi.org/10.1016/J.CUB.2008.09.064.

      Surlykke, A., Ghose, K. and Moss, C.F. (2009) ‘Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus’, Journal of Experimental Biology, 212(7), pp. 1011–1020. Available at: https://doi.org/10.1242/JEB.024620.

      Theriault, D.H. et al. (no date) ‘Reconstruction and analysis of 3D trajectories of Brazilian free-tailed bats in flight‏’, cs-web.bu.edu‏ [Preprint]. Available at: https://cs-web.bu.edu/faculty/betke/papers/2010-027-3d-bat-trajectories.pdf (Accessed: 4 May 2023).

      Ulanovsky, N. and Moss, C.F. (2008) ‘What the bat’s voice tells the bat’s brain’, Proceedings of the National Academy of Sciences of the United States of America, 105(25), pp. 8491–8498. Available at: https://doi.org/10.1073/pnas.0703550105.

      Vanderelst, D. and Peremans, H. (2018) ‘Modeling bat prey capture in echolocating bats : The feasibility of reactive pursuit’, Journal of theoretical biology, 456, pp. 305–314.

      Youssefi, K.A.R. and Rouhani, M. (2021) ‘Swarm intelligence based robotic search in unknown maze-like environments’, Expert Systems with Applications, 178. Available at: https://doi.org/10.1016/j.eswa.2021.114907.

      Yovel, Y. et al. (2009) ‘The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls’, PLoS Computational Biology, 5(6). Available at: https://doi.org/10.1371/journal.pcbi.1000400.

      Yovel, Y. and Ulanovsky, N. (2017) ‘Bat Navigation’, The Curated Reference Collection in Neuroscience and Biobehavioral Psychology, pp. 333–345. Available at: https://doi.org/10.1016/B978-0-12-809324-5.21031-6.

    1. I may have gotten stuck in a bias and gotten used to not passing to you. I am opento passing to you more often. Let’s work on passing more often during practice andexhibition games, so we can build more skills and trust with each other. I think in doingthat, we’ll get a better sense of how we can work together come game time

      Patrick has some self realization and compromise for the conversation. He proposes a possible solution with positive words such as build, trust, and work together (Let's Rumble).

    Annotators

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:  

      Reviewer #1 (Public Review):

      Strengths:

      The manuscript utilizes a previously reported misfolding-prone reporter to assess its behaviour in ER in different cell line models. They make two interesting observations:

      (1) Upon prolonged incubation, the reporter accumulates in nuclear aggregates.

      (2) The aggregates are cleared during mitosis. They further provide some insight into the role of chaperones and ER stressors in aggregate clearance. These observations provide a starting point for addressing the role of mitosis in aggregate clearance. Needless to say, going ahead understanding the impact of aggregate clearance on cell division will be equally important.

      Weaknesses:

      The study almost entirely relies on an imaging approach to address the issue of aggregate clearance. A complementary biochemical approach would be more insightful. The intriguing observations pertaining to aggregates in the nucleus and their clearance during mitosis lack mechanistic understanding. The issue pertaining to the functional relevance of aggregation clearance or its lack thereof has not been addressed. Experiments addressing these issues would be a terrific addition to this manuscript.

      We have performed protein blotting and proteomics to characterize ER-FlucDM-eGFP expressing cells. We have also provided evidence to support the role of ER reorganization in regulating aggregate clearance. Our proteomic analysis provided a global view of the cellular state of cells expressing ER-FlucDM-eGFP, which potentially revealed functional relevance of ER-FlucDM-eGFP. Details are explained in the following comments. 

      Reviewer #2 (Public Review):

      Summary:

      The authors provide an interesting observation that ER-targeted excess misfolded proteins localize to the nucleus within membrane-entrapped vesicles for further quality control during cell division. This is useful information indicating transient nuclear compartmentalization as a quality control strategy for misfolded ER proteins in mitotic cells, although endogenous substrates of this pathway are yet to be identified.

      Strengths:

      This microscopy-based study reports unique membrane-based compartments of ERtargeted misfolded proteins within the nucleus. Quarantining aggregating proteins in membrane-less compartments is a widely accepted protein quality control mechanism. This work highlights the importance of membrane-bound quarantining strategies for aggregating proteins. These observations open up multiple questions on proteostasis biology. How do these membrane-bound bodies enter the nucleus? How are the singlelayer membranes formed? How exactly are these membrane-bound aggregates degraded? Are similar membrane-bound nuclear deposits present in post-mitotic cells that are relevant in age-related proteostasis diseases? Etc. Thus, the observations reported here are potentially interesting.

      Weaknesses:

      This study, like many other studies, used a set of model misfolding-prone proteins to uncover the interesting nuclear-compartment-based quality control of ER proteins. The endogenous ER-proteins that reach a similar stage of overdose of misfolding during ER stress remain unknown.

      We have included a previous study that showed accumulation of BiP aggregates in the nucleus upon overexpression of BiP (Morris et al., 1997; DOI: 10.1074/jbc.272.7.4327) in the discussion (Line 299).

      The mechanism of disaggregation of membrane-trapped misfolded proteins is unclear. Do these come out of the membrane traps? The authors report a few vesicles in living cells. This may suggest that membrane-untrapped proteins are disaggregated while trapped proteins remain aggregates within membranes.

      We initially made mStayGold-Sec61β to image the ER structures and ER-FlucDM-eGFP aggregates. However, we could not obtain convincing time-lapse images to show the release of ER-FlucDM-eGFP aggregates from the ER membrane as there are abundant ER structures present close to the aggregates during mitosis, preventing the differentiation of the membrane encapsulating aggregates from the ER structures. 

      The authors figure out the involvement of proteasome and Hsp70 during the disaggregation process. However, the detailed mechanisms including the ubiquitin ligases are not identified. Also, is the protein ubiquitinated at this stage?

      We performed cycloheximide chase experiments in cells released from the G2/M and found that ER-FlucDM-eGFP protein level did not fluctuate significantly when cells progressed through mitosis and cytokinesis. Thus, we did not consider protein ubiquitination and degradation of ER-FlucDM-eGFP as a major mechanism for its clearance. We have included this observation in the results (Figure S7A; Line 266) and in the discussion (Line 324) of the revised manuscript.

      This paper suffers from a lack of cellular biochemistry. Western blots confirming the solubility and insolubility of the misfolded proteins are required. This will also help to calculate the specific activity of luciferase more accurately than estimating the fluorescence intensities of soluble and aggregated/compartmentalized proteins. 

      We performed solubility test in cells expressing ER-FlucDM-eGFP and detected insoluble ERFlucDM-eGFP after heat stress (Figure S1E; Line 102). We have also performed protein blotting to detect ER-FlucDM-eGFP to normalize the luciferase activity (Line 609). We have updated the method section for luciferase measurement (Line 494).   

      Microscopy suggested the dissolution of the membrane-based compartments and probably disaggregation of the protein. This data should be substantiated using Western blots. Degradation can only be confirmed by Western blots. The authors should try time course experiments to correlate with microscopy data. Cycloheximide chase experiments will be useful.

      We performed cycloheximide chase experiments in cells released from the G2/M and found that ER-FlucDM-eGFP protein level did not fluctuate significantly when cells progressed through mitosis and cytokinesis (Figure S7A to S7C). Also, live-cell imaging of cells released from the G2/M indicated no significant change of total fluorescence intensity of ER-FlucDMeGFP (Figure S7D). Thus, we do not think that protein degradation of ER-FlucDM-eGFP is the major mechanism for its clearance. 

      The cell models express the ER-targeted misfolded proteins constitutively that may already reprogram the proteostasis. The authors may try one experiment with inducible overexpression.

      We have re-transduced fresh MCF10A cells with lentiviral particles to induce expression of ER-FlucDM-eGFP. The aggregates started to form after 24 h post-transduction. We made similar observations as described in the manuscript (e.g. aggregate clearance) two days after re-transduction.

      It is clear that a saturating dose of ER-targeted misfolded proteins activates the pathway.

      The authors performed a few RT-PCR experiments to indicate the proteostasis-sensitivity.

      Proteome-based experiments will be better to substantiate proteostasis saturation.

      We have performed proteomic analysis in cells expressing ER-FlucDM-eGFP and observed up-regulation of multiple proteins involved in the ER stress response, indicating that cells expressing ER-FlucDM-eGFP experience proteostatic stress (Figure S4A; Line 179).  

      The authors should immunostain the nuclear compartments for other ER-membrane resident proteins that span either the bilayer or a single layer. The data may be discussed.

      We have co-expressed ER-FlucDM-mCherry and mStayGold-Sec61β and detected mStayGold- Sec61β around ER-FlucDM-mCherry aggregates (Figure 1B).  

      All microscopy figures should include control cells with similarly aggregating proteins or without aggregates as appropriate. For example, is the nuclear-targeted FlucDM-EGFP similarly entrapped? A control experiment will be interesting. Expression of control proteins should be estimated by western blots.

      We targeted FlucDM-eGFP to the nucleus by expressing NLS-FlucDM-eGFP (Figure S1A). We found that the nuclear FlucDM-eGFP did not co-localize with the ER-FlucDM-mCherry aggregates (Figure S1B; Line 96). We have also determined the expression levels of NLSFlucDM-eGFP and ER-FlucDM-mCherry (Figure S1C and S1D).

      There are few more points that may be out of the scope of the manuscript. For example, how do these compartments enter the nucleus? Whether similar entry mechanisms/events are ever reported? What do the authors speculate? Also, the bilayer membrane becomes a single layer. This is potentially interesting and should be discussed with probable mechanisms. Also, do these nuclear compartments interfere with transcription and thereby deregulate cell division? What about post-mitotic cells? Similar deposits may be potentially toxic in the absence of cell division. All these may be discussed.

      Thank you for interesting suggestions for our study. We speculated that ER-FlucDM-eGFP aggregates may derive from the invagination of the inner nuclear membrane given that the aggregates are in close proximity to the inner nuclear membrane in interpase cells (Line 299). We have included a previous study that reported a similar aggregate upon BiP overexpression (Morris et al., 1997; DOI: 10.1074/jbc.272.7.4327; Line 300). Our proteomic analysis showed that cells expressing ER-FlucDM-eGFP have several up-regulated proteins related to cell cycle regulation (Figure S4A; Line 346).  

      Reviewer #3 (Public Review):

      Summary:

      This paper describes a new mechanism of clearance of protein aggregates occurring during mitosis.

      The authors have observed that animal cells can clear misfolded aggregated proteins at the end of mitosis. The images and data gathered are solid, convincing, and statistically significant. However, there is a lack of insight into the underlying mechanism. They show the involvement of the ER, ATPase-dependent, BiP chaperone, and the requirement of Cdk1 inactivation (a hallmark of mitotic exit) in the process. They also show that the mechanism seems to be independent of the APC/C complex (anaphase-promoting complex). Several points need to be clarified regarding the mechanism that clears the aggregates during mitosis:

      • What happens in the cell substructure during mitosis to explain the recruitment of BiP towards the aggregates, which seem to be relocated to the cytoplasm surrounded by the ER membrane.

      We have included images to show that BiP co-localizes with ER-FlucDM-eGFP aggregates in interphase cells (Figure S5C). We think that BiP participates in the formation of ER-FlucDMeGFP during interphase instead of getting recruited to the aggregates during mitosis.  

      • How the changes in the cell substructure during mitosis explain the relocation of protein aggregates during mitosis.

      We provided evidence to show that clearance of ER-FlucDM-eGFP aggregates involves the ER remodeling process. We depleted ER membrane fusion proteins ATL2 and ATL3 to perturb the distribution of ER sheets or tubules and found that cells were defective in clearing the aggregates (Figure 7A and B; Line 278). 

      • Why BiP seems to be the main player of this mechanism and not the cyto Hsp70 first described to be involved in protein disaggregation.

      In our proteomic analysis, we found that BiP (HSPA5) but not other Hsp70 family members were up-regulated in cells expressing ER-FlucDM-eGFP (Line 352; Figure S4A). This explains why BiP is the main player of the ER-FlucDM-eGFP aggregate clearance.  

      Strengths:

      Experimental data showing clearance of protein aggregates during mitosis is solid, statistically significant, and very interesting.

      Weaknesses:

      Weak mechanistic insight to explain the process of protein disaggregation, particularly the interconnection between what happens in the cell substructure during mitosis to trigger and drive clearance of protein aggregates.

      In our revised manuscript, we now provided evidence to show that ER-FlucDM-eGFP aggregate clearance involved remodeling of the ER structures during mitotic exit. This is added as a new Figure 7 in the revised manuscript and is described in the result section (Line 278) and in the discussion section (Line 323). We believe that this addition has provided mechanistic insights into ER-FlucDM-eGFP aggregate clearance.

      Recommendations for the authors:

      Reviewing Editor comments:

      I have read these reviews in detail and would like to recommend that the authors perform the experiments according to the reviewers' suggestions, as well as provide the appropriate controls raised by the reviewers.

      I think there are not that many requests and they all seem very reasonable and easily doable. I would recommend that the authors carry out the suggested experiments to develop a stronger story where the evidence transitions from being incomplete presently to a "more complete" standard.

      We have addressed questions raised by three reviewers and updated our manuscript (labeled in red in the main text).

      Reviewer #1 (Recommendations For The Authors):

      The manuscript makes exciting observations about the accumulation of reporter protein aggregates in the nucleus and its clearance during mitosis. It also provides some insight into the role of chaperons in aggregate clearance. These observations provide a good platform to perform in-depth analysis of the underlying mechanism and its functional relevance which perhaps the authors will plan over the long term. However, the below suggestions will help improve the current version of the manuscript:

      (1) Although it is assumed that the aggregates are cleared by the protein degradation mechanism, clear evidence supporting this assumption in the author's experiments is lacking and needs to be provided. Is it possible that mitosis induces disassembly of these aggregates instead of degradation?

      We performed two experiments to verify whether ER-FlucDM-eGFP aggregates are cleared by the protein degradation mechanism. In the first experiment, we treated cells expressing ER-FlucDM-eGFP released from the G2/M boundary with cycloheximide (CHX) and found that ER-FlucDM-eGFP did not decrease in protein abundance in cells progressing through mitosis (Figure S7A to S7C). In the second experiment, we measured the intensity of ERFlucDM-eGFP in early dividing cells and late dividing cells after release from the G2/M boundary and found that there was no significant difference between early and late dividing cells (Figure S7D). Thus, we concluded that protein degradation of ER-FlucDM-eGFP is not the primary mechanism of its clearance during cell division (Line 324). Furthermore, we included new data to show that the ER-FlucDM-eGFP aggregate clearance depends on ER reorganization during cell division, so mitotic exit induces disassembly of the aggregates instead of protein degradation.

      (2) It is intriguing that the aggregates are nuclear. Is the nuclear localization mediated by localization to ER? A time course analysis would reveal this and would provide credence to the idea that the reporter was originally expressed in the ER. It is currently unclear if the reporter ever gets expressed in ER.

      We showed that in interphase cells, ER-FlucDM-eGFP co-localizes with mStayGold-Sec61β, which labels the ER structures (Figure 1B). So, ER-FlucDM-eGFP is expressed and present in the ER network and invaginates into the inner nuclear membrane as aggregates. We attempted to image ER-FlucDM-eGFP for its formation; however it was technically challenging as the aggregates appeared very small and not too visible after clearance under our microscopy system.  

      (3) It would be expected that the persistence of these aggregates would impact cell division and cellular health. An experiment addressing this hypothesis would be very useful in establishing the functional relevance of this observation in the context of the current study.

      We have performed proteomic analysis on cell expressing ER-FlucDM-eGFP and found that multiple proteins involved in the ER stress response were up-regulated (Figure S4A). Additionally, proteins related to cell cycle regulation were up-regulated upon expression of ER-FlucDM-eGFP (Figure S4A). The increase of these proteins may indicate a perturbed cellular health (Line 344). 

      (4) A recent report (PMID: 34467852) identified the role of ER tubules in controlling the size of certain misfolded condensates. Would specific ER substructures affect the nuclear localization and/or clearance of the FlucDM aggregates? This is tied to point#2 and would provide insights into the connection between ER and the nuclear aggregates.

      Thank you for your suggestions. We perturbed the ER remodeling process by knocking down ATL2 and ATL3, which are ER membrane fusion proteins, and found that clearance of ER-FlucDM-eGFP aggregates was affected (Figure 7A and B). Hence, perturbation of the distribution of ER tubules and ER sheets affects ER-FlucDM-eGFP aggregate clearance. We have also added the recent paper about ER tubule size in regulating the sizes of misfolded condensates in the discussion (Line 321)

      Reviewer #2 (Recommendations For The Authors):

      I expect that the images indicate z-sections. Should be indicated in legends as applicable.

      We have indicated whether the images are Z-stack or single Z-slices in the figure legends.  

      Small point: the control region (outside inclusion) that was bleached in 2c may be clearly indicated. 

      We have added the explanation in the figure legend of Figure 2C.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This study by Zimyanin et al. examines the role of the C. elegans chromokinesin KLP-19 in the formation and architecture of the anaphase central spindle in C. elegans zygotes. Through a combination of electron and light microscopy, along with RNAi-mediated perturbations, the authors propose that KLP-19 influences central spindle stiffness by regulating microtubule dynamics.

      In Figure 5, the effect of KLP-19 depletion on central spindle microtubules appears unconvincing. The FRAP results show no significant difference with or without KLP-19, and overall microtubule density does not consistently respond to its depletion. Additionally, the double klp-19; gpr-1/2 (RNAi) condition does not exhibit a strong increase in microtubule density, though a statistical test is missing for this condition. Furthermore, the spd-1; gpr-1/2 double depletion produces a similar increase in microtubule density to most klp-19 depletion conditions, suggesting that the effect cannot be solely attributed to the absence of KLP-19.

      Figure 5A shows that depletion of KLP-19 leads to an increase in tubulin signal in the spindle midzone. The reviewer is correct, that there are differences in the microtubule density between KLP-19 depletion alone and KLP-19 + GPR-1/2 depletion. While depletion of KLP-19 alone leads to a significant increase, co-depletion of GPR-1/2 and KLP-19 leads to a slight, but not significant increase. Along this line, we have added Supplementary Table 1 that contains all p-Values for the different conditions for Figure 5A. However, depletion of GPR-1/2 alone does not affect the microtubule density in the midzone, arguing that changes in pulling forces do not affect the microtubule density in the midzone. It is possible, that the double RNAi leads to a decrease in efficiency and thus a reduced effect on microtubule intensity. We will demonstrate the RNAi efficiency by western blot. Another possibility is that there are some feedback mechanisms that responds to presence/ absence of pulling forces and some of our data (not from this manuscript) hints in this direction, but we have not yet worked out the details of this. We are planning to publish this in a follow up publication.

      • *

      In response to the spd-1 + gpr-1/2 (RNAi), the reviewer is correct, that the microtubule density in the midzone is not significantly different from klp-19 (RNAi) conditions and we think it is interesting to note that spd-1 + gpr-1/2 (RNAi) leads to an increased microtubule density in the midzone. This could be, as above mentioned caused by some feedback mechanisms that responds to pulling forces, or also due to some functions of SPD-1 that affects microtubules in the midzone. Interestingly, our data also shows that metaphase spindles are significantly shorter in the absence of SPD-1 in comparison to spindles in control embryos, suggesting that SPD-1 plays a role in regulating microtubules or force transmission. We are currently working on understanding SPD-1's role in this process.

      • *

      We also agree that there is no significant effect on the microtubule turn-over as shown in Figure 5B and we have stated this in the text. Our data does show a trend to a decreased turn-over, but the difference is not significant. This could be due to the low sample number.

      • *

      Overall, we think our data, the light microscopy and even more so the EM data does show a clear effect on midzone microtubules.

      • *

      The use of hcp-6 depletion to argue that KLP-19 depletion affects central spindle elongation independently of stretched chromatin is problematic. hcp-6 encodes a component of the Condensin II complex in C. elegans, and its depletion leads to chromatin decompaction rather than the stretched, dense chromatin observed in the midzone during anaphase in klp-19 (RNAi) embryos. These conditions are not equivalent and do not effectively rule out the possibility that chromatin stretching contributes to the observed phenotype.

      We agree with the reviewer that the HCP-6 experiments do not entirely rule out effects from lagging chromosomes. Proving that the reduced spindle and chromosome separation is not due to lagging chromosomes is challenging. Most of the depletions that lead to lagging chromosomes are based on defective kinetochore microtubule connections, such as depletion of KNL-1, NDC-80 or CLS-2 (CLASP). In C. elegans, this leads to the mass of Chromosomes staying behind in anaphase and increased spindle pole separation, which is not comparable to KLP-19 depletion. Perturbations that do not affect kinetochore microtubules but still lead to lagging chromosomes are often targeting cohesin or condensin. Ultimately none of these conditions are directly comparable.

      A probably better way to test this would be to deplete KLP-19 only after metaphase to prevent its effect on chromosome alignment. However, this is currently not possible as the time window is about 1 minute or less. We currently do not have the tools to conduct this type of experiment. As other reviewers also criticized this experiment and its significance for the paper, we have removed this entirely and have added the following part to the discussion about the potential effect of lagging chromosomes:

      " *We can not unambiguously rule out that failure to properly align chromosomes and the resulting lagging chromosomal material could also lead to some of the observed effects on spindle dynamics, such as slow chromosome segregation and pole separation rates as well as preventing spindle rupture in absence of SPD-1. However, several observations argue in favor of KLP-19 actively changing the midzone cytoskeleton network and thus affecting spindle dynamics. *

      Most of the protein depletions in C. elegans that lead to lagging chromosomes are based on defective kinetochore microtubule connections, such as depletion of CeCENP-A, CeCENP-C, KNL-1 or NDC-80 (70-72). This mostly leads to the Chromosome mass staying behind in anaphase and increased spindle pole separation (70-72), which is not comparable to KLP-19 depletion. Perturbations that do not affect kinetochore microtubules but still lead to lagging chromosomes are often targeting cohesin or condensin, which depletion leads to chromatin decompaction (73-74) rather than the stretched, dense chromatin as observed in the midzone during anaphase in klp-19 (RNAi) embryos. Ultimately none of these conditions are directly comparable, making it difficult to completely rule out an effect of lagging chromosomes. A better way to test this would be to deplete KLP-19 only after metaphase to prevent its effect on chromosome alignment. However, this is currently not possible as the time window is about 1 minute or less and we do not have the tools to conduct this type of experiment.

      *Based on our results we hypothesize that the observed spindle dynamics in absence of KLP-19 are not only caused by lagging chromosomes. Instead, KLP-19 RNAi results in a global rearrangement of the spindle and leads to a significant reduction of the spindle size, microtubule overlap, growth rate, and stability. Furthermore, the increase of microtubule interactions after klp-19 (RNAi) could also contribute to lagging of chromosomes and exacerbation of fragmented extrachromosomal material." *

      Additionally, the authors report that KLP-19 influences astral microtubule dynamics (Figure 5E), yet in Figure 3E, they show that KLP-19 localizes exclusively to kinetochores and spindle microtubules, excluding astral microtubules and spindle poles. How do they reconcile this apparent contradiction?

      We think that KLP-19 localizes also to astral Microtubules. Our KLP-19 GFP CRISPR line is very dim and this makes it hard to see. We are proposing to use a TIRF approach to image KLP-19 GFP on the C. elegans cortex, which we will include in the revised version. In addition, in support of our hypothesis of KLP-19 binding to astral Microtubules as well we would like to note that there is a PhD thesis available from Jack Martin in Josana Rodriguez Sanchez's Lab in Newcastle (LINK, will lead to a download of the thesis! ) that has reported KLP-19s localization to cortical Microtubules in C. elegans. In this thesis the author also reports an effect on astral microtubule growth.

      Figure legends lack consistency and do not adhere to standard C. elegans nomenclature conventions (e.g., protein names should not be capitalized, and genetic perturbations should be italicized). Standardizing these elements would improve clarity and readability.

      We have checked our figure legend and to our best knowledge the legends adhere to the C. elegans nomenclature. All RNAi conditions are lower case italicized and Protein names are capitalized as it is standard in other C. elegans publications. We have however noticed some variation in our Figures, i.e. EB-2 instead of EBP-2 and have corrected this in all figures.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Zimyanin et al, Chromokinesin Klp-19 regulates microtubule overlap and dynamics during anaphase in C. elegans.

      The authors used a myriad of techniques, including confocal live-cell imaging, 2-photon microscopy, second harmonic generation imaging, FRAP, microfluidic-coupled TIRF, EM-tomography, to study spindle midzone assembly dynamics in C. elegans one-cell stage embryos. In particular, they illuminated the role of kinesin-4 KLP-19 in maintaining proper midzone length and organization. Inhibition of KLP-19 results in longer more stable midzones, implying KLP-19 functions in depolymerizing microtubules.

      Indeed, much of the results in the current study are consistent with previously published results elsewhere. Nevertheless, the current work represents a tour-de-force showcase of diverse and state-of-the-art technology application to address spindle assembly dynamics. How KLP-19 functions to define microtubule length at the midzone is still not known. But the current work, with diverse and solid data, serves to highlight where future work should focus.

      Minor comments:

      Fig 3E / There is an unusual diagonal line bisecting the embryo. Visually this does not affect viewing of the His::GFP and KLP-19::GFP signals. However, when these signals are quantified and normalized (as in Fig 3F), the diagonal bisect displaying different background signal may impact the measurements.

      We are very sorry about this line in the images. The line is due to a defect in the camera chip of the spinning disc. We will acquire new images for this Figure using our new spinning disc microscope.

      Fig 4B / While the kymographs clearly show KLP-19::GFP motility on microtubules, they also show that the majority of KLP(-::GFP do not move. Perhaps some quantification and discussion of this result is appropriate?

      The reviewer is correct that only a small fraction small fraction of molecules, maybe ~10%, moves. We will add this quantification to the paper and discussion. This could be due to several reasons: Many of the non-moving particles are not visibly colocalized with microtubules, which could mean they are sticking non-specifically to the surface (or sticking to small tubulin aggregates that aren't long enough to support movement). In addition, as this experiment is done in a lysate it is hard to interpret if the immobile KLP-19 is not moving because other proteins are bound along the microtubule blocking its way or if the KLP-19 requires some activation (i.e. phosphorylations) to become mobiles. We think this could be very interesting and will follow up on this in the future.

      • *

      Reviewer #2 (Significance (Required)):

      Indeed, much of the results in the current study are consistent with previously published results elsewhere. Nevertheless, the current work represents a tour-de-force showcase of diverse and state-of-the-art technology application to address spindle assembly dynamics. How KLP-19 functions to define microtubule length at the midzone is still not known. But the current work, with diverse and solid data, serves to highlight where future work should focus.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The anaphase spindle midzone is an essential structure for cell division. It consists of antiparallel overlapping microtubules organized by the antiparallel microtubule bundler PRC1, molecular motors and other regulatory proteins. This manuscript investigates the role of KLP-19 (C. elegans ortholog of human kinesin-4 KIF4A) and SPD-1 (C. elegans ortholog of PRC1) for spindle midzone organization in the C. elegans embryo and its relevance for proper spindle function. Advanced fluorescence microscopy, 3D electron tomography, and a fluorescence microscopy-based single molecule assay in embryo lysate are used in a unique combination. The authors confirm several aspects of PRC1 and KIF4A function in anaphase, as reported in previous work, mostly in human cells and Drosophila embryos and also in C. elegans embryos. Measurements are mostly very quantitative and to a high quality standard. The main difference to previous conclusions is that here, the authors propose that KLP-19 does not interact with SPD-1, in contrast to what has been established for other animal kinesin-4s and PRC1, and instead localizes to the spindle midzone independently of PRC1 by a mechanism that remains unknown. The authors provide evidence that KLP-19 nevertheless controls microtubule overlap length as in other species and that it produces outward forces sliding midzone microtubules apart a movement that SPD-1 counteracts (presumably by friction). The manuscript presents a rich resource of carefully measured quantitative structural and dynamic C. elegans anaphase spindle data.

      Major comments:

      Key conclusions convincing?

      (1) The key conclusions that the length of the central anaphase spindle microtubule overlap remains constant as the C.elegans spindle elongates (Fig. 1), that PRC1 indeed localizes quite precisely to these overlaps as previously assumed based on its in vitro (purified protein) behavior (Fig. 3B) and that the kinesin-4 KLP-19 controls overlap length as in other species (Fig. 3B) are all convincingly shown. What's missing are quantitative KLP-19 together with microtubule polarity profiles in the presence and absence of SPD-1, leaving it unclear to which extent this kinesin localizes to microtubule overlaps in the two situations. Such data seem crucial, given the authors' claim that KLP-19 localizes to the midzone and that this localization of KLP-19 is mostly unaffected by the absence of SPD-1.

      If we understand this correctly the reviewer is asking for second harmonic imaging (SHG) together with imaging of KLP-19 GFP. This is currently not possible due to the way this imaging must be done (2-photon of GFP-Tubulin followed by the SHG). The only thing we can do is provide KLP-19 GFP profiles for control and SPD-1 depleted embryos. We can also use the line co-expressing SPD-1 Halo-tag and KLP-19 GFP to plot their respective localizations in control conditions. We are happy to provide such plots. Generally, we see KLP-19 going to the midzone in absence of SPD-1 and the SHG data does show that the overlap is increased. If KLP-19 specifically localizes to microtubule overlap (rather to i.e. microtubule ends) can currently not be distinguished in the spindle midzone. In vitro data from other labs and our in vitro assay suggests that KLP-19 does not specifically bind to antiparallel overlaps but rather microtubules in general.

      (2) 'Normalized KLP-19 intensities' are used to demonstrate that the total amount of this kinesin localizing to the spindle midzone does not depend on the presence of SPD-1 (Fig. 3F). Given that this claim represents a major novelty of the study, the efficiency of the SPD-1 knock-down should be documented, ideally by western blot and fluorescence microscopy.

      We agree with the reviewer and will provide western blots.

      (3) The authors show convincingly that the kinesin KLP-19 contributes to outward microtubule sliding (and can contribute to spindle rupture in the absence of SPD-1) (Fig. 2), which is interesting and in line with the author's main claim.

      (4) The interaction between KIF4a and PRC1 is well established in other species and has been clearly demonstrated both in cells and in vitro (with purified proteins). The authors claim that this concept does not apply to the C. elegans orthologs. To show 'in vitro' (outside of the spindle) that the C. elegans homologs KLP-19 and SPD-1 do not interact, the authors use a novel microfluidic fluorescence-based single-molecule assay in lysate (Fig. 4). Although very original, these experiments do not reach the biochemical standard of previous experiments with purified proteins without appropriate controls. Given that the lysate setup is fairly novel, it's advisable to present at least one positive control demonstrating that interactions between soluble proteins can indeed be detected using this assay. It would also be useful to show the absence of interaction between KLP-19 and SPD-1 by a more conventional method like co-IP, again with a positive control, to support the authors' claim. Eventually, experiments with purified proteins will have to unequivocally demonstrate whether KLP-19 and SPD-1 indeed do not interact - something which appears, however, to be beyond the scope of this study. Without additional experimental proof, the authors may want to indicate that these results are of more preliminary nature.

      *We agree with the reviewer, and we will conduct co-IPs of SPD-1 and KLP-19. We will also add CYK-4 as a positive control as previous publications have shown the interaction of CYK-4 with SPD-1. We are now generating lines co-expressing CYK-4 GFP and SPD-1 Halo-tag for the co-IP experiments. *

      (5) Unfortunately, the authors do not propose an alternative mechanism for KLP-19 localization to the midzone in SPD-1 depleted embryos, limiting the conceptual advance. Does KLP-19 bind directly to antiparallel microtubules, for example in the assay presented in Fig. 4 (where signs of microtubule crosslinking are shown for SPD-1)? If not, how would it accumulate in the midzone (if it does) in the C. elegans embryo anaphase spindle? The authors do also not propose a mechanism explaining why central antiparallel microtubule overlap length does not change as the spindle elongates in anaphase. Moreover, there is no discussion regarding the potential mechanism leading to KLP-19 controlling microtubule dynamics globally instead of locally where the motor accumulates, indicating limitations in mechanistic insight.

      *We agree with the reviewer and will add these points to the discussion. *

      *To address some of the points: *

      *How does KLP-19 end up in the midzone? : Our data shows that localization of KLP-19 does depend on AIR-2 and BUB-1 as previously reported. However, those proteins primarily affect the formation of the midzone. The in vitro assay does not suggest that KLP-19 has a preference for overlaps, unlike SPD-1, but rather binds microtubules in general. One possible mechanism of midzone localization could be microtubule end-tagging, as has been suggested for PRC1 (SPD-1 homolog). This could lead to an accumulation of KLP-19 in the midzone. *

      Why does the central overlap stay constant? : This can be explained by constant microtubule growth at the plus-ends why maintaining the overlap length. Alternatively, this could be explained by some (sophisticated) rearrangements of microtubules that ensure the overlap length stays the same. Generally, this is a very interesting question, as each of this scenario still requires that the overlap length is tightly regulated. Our data suggests that this is correlated with microtubule length in the midzone, as KLP-19 depletion leads to longer microtubules and overlap. This suggests that the regulation of microtubule dynamics might be an important factor in this process. We will add this to the discussion.

      • *

      Potential mechanism leading to KLP-19 controlling microtubule dynamics globally: We think that KLP-19 localizes to spindle and astral microtubules and regulates the dynamics on all of those, leading to a global regulation. By increasing it's concentration locally, microtubule dynamics can be regulated in the midzone. We will add data showing the localization of KLP-19 to astral microtubules.

      Claims justified/preliminary and clearly presented?

      The observation that the spindle length remains constant throughout anaphase in C. elegans is based on elegant, but unconventional fluorescence microscopy data (Fig. 1A & B). It would be helpful to add images of SHG and two-photon microscopy to help the reader understand the graphs. Measurements are presented based on distances between the poles. It is unclear why the distances between 15-20 µm were chosen and how they translate to anaphase progression. Can measurements be carried out across the entire duration of cell division to demonstrate that the overlap's 'constant length' property is unique to anaphase? (This could demonstrate already in Fig. 1 that the method in principle is capable of measuring different overlap lengths.)

      We agree with the reviewer and have moved the SHG images from supplementary Fig. 6 to the main Figure 1A for better visibility. In addition, we have added a plot as an inset in (now) Figure 1B and C explanation of how the used spindle pole distances related to the progression through anaphase. Unfortunately, we can only acquire a single timepoint and not a live movie during the SHG.

      Even though the manuscript contains an impressive amount of data, it appears to be lengthy, the motivation for several experiments is not clearly described, and the order of data presentation can probably be improved. For example, it is unclear why SPD-1 profiles are presented late and why KLP-19 profiles are missing - one would expect to see them early on as an essential characterization of the system under study. The motivation of the paragraph investigating the relation of KLP-19 and SPD-1 to HCP-6 is especially unclear (more than 1 page of text describing supplementary material).

      We will go through our text again and will revise the order of presented experiments. As stated above, we have removed the HCP-6 data.

      The absence of interaction between KLP-19 and SPD-1 is not demonstrated to the same quality standard as the presence of interaction between the orthologs in the literature, which should at least be mentioned.

      Additional experiments essential to support the claims of the paper?

      KLP-19 profiles in the presence and absence of SPD-1 seem to be essential.

      We agree with the reviewer and will add this.

      A co-IP of KLP-19 and SPD-1 (including positive control) to prove that the proteins are not interacting would help to support the claim.

      We agree with the reviewer and will add this

      Data and methods presented so that they can be reproduced? Yes.

      Experiments adequately replicated and statistical analysis adequate? Yes.

      Minor comments:

      Generating cellular electron tomography data is very laborious. It is a pity that no raw data is provided; for example, a slice of a reconstructed tomogram or a video of whole volumes without segmentation would be an informative addition and allow assessment of the data quality.

      We agree with the reviewer and will add movies of the raw electron microscopy data.

      The clear evidence for direct interaction between PRC1 and kinesin-4 in other species should be correctly acknowledged throughout the text.

      We agree with the reviewer and have corrected this

      The average (mean or median?) values and STDs reported in the text do not appear to match those in Fig. 1D.

      *We thank the reviewer for pointing this out and have corrected the figure. The violin lot showed the mean and percentiles, we have now changed the plot to show mean and STD. *

      • *

      The kymograph of spd-1 RNAi in Fig. 2A seems stretched, and the size based on the scale bar does not fit the values stated in the text.

      We thank the reviewer for pointing this out and have corrected the figure.

      The figure numbering, as stated in the text, does not seem to agree with those in Supplementary Figure 8.

      *We thank the reviewer for pointing this out and have corrected the text. *

      Page numbers and/or line numbers and figure numbers on the figures would help the reader to navigate the manuscript more easily.

      We agree with the reviewer and have added this.

      Reviewer #3 (Significance (Required)):

      The manuscript is a rich resource of quantitative measurements of C.elegans' structural and dynamic spindle properties, using advanced light microscopy and 3D electron microscopy imaging. In large parts, the work confirms previous conclusions of the function of PRC1 and kinesin-4 in the anaphase spindle, but also reports some interesting differences, namely that the C.elegans proteins differ from their orthologs in that they do not interact with each other, raising the question of how the kinesin-4 KLP-19 localizes to the central spindle in this organism. This work is of interest for researchers studying cell division, and specifically spindle architecture, dynamics, and function.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Overall I found the approach taken by the authors to be clear and convincing. It is striking that the conclusions are similar to those obtained in a recent study using a different computational approach (finite state controllers), and lends confidence to the conclusions about the existence of an optimal memory duration. There are a few questions that could be expanded on in future studies:

      (1) Spatial encoding requirements

      The manuscript contrasts the approach taken here (reinforcement learning in a gridworld) with strategies that involve a "spatial map" such as infotaxis. However, the gridworld navigation algorithm has an implicit allocentric representation, since movement can be in one of four allocentric directions (up, down, left, right), and wind direction is defined in these coordinates. Future studies might ask if an agent can learn the strategy without a known wind direction if it can only go left/right/forward/back/turn (in egocentric coordinates). In discussing possible algorithms, and the features of this one, it might be helpful to distinguish (1) those that rely only on egocentric computations (run and tumble), (2) those that rely on a single direction cue such as wind direction, (3) those that rely on allocentric representations of direction, and (4) those that rely on a full spatial map of the environment.

      We agree that the question of what orientation skills are needed to implement an algorithm is interesting. We remark that our agents do not use allocentric directions in the sense of north, east, west and east relative to e.g. fixed landmarks in the environment. Instead, directions are defined relative to the mean wind, which is assumed fixed and known. (In our first answer to reviewers we used “north east south west relative to mean wind”, which may have caused confusion – but in the manuscript we only use upwind downwind and crosswind).

      (2) Recovery strategy on losing the plume

      The authors explore several recovery strategies upon losing the plume, including backtracking, circling, and learned strategies, finding that a learned strategy is optimal. As insects show a variety of recovery strategies that can depend on the model of locomotion, it would be interesting in the future to explore under which conditions various recovery strategies are optimal and whether they can predict the strategies of real animals in different environments.

      Agreed, it will be interesting to study systematically the emergence of distinct recovery strategies and compare to living organisms.

      (3) Is there a minimal representation of odor for efficient navigation?

      The authors suggest that the number of olfactory states could potentially be reduced to reduce computational cost. They show that reducing the number of olfactory states to 1 dramatically reduces performance. In the future it would be interesting to identify optimal internal representations of odor for navigation and to compare these to those found in real olfactory systems. Does the optimal number of odor and void states depend on the spatial structure of the turbulence as explored in Figure 5?

      We agree that minimal odor representations are an intriguing question. While tabular Q learning cannot derive optimal odor representations systematically, one could expand on the approach we have taken here and provide more comparisons. It will be interesting to follow this approach in a future study.

      Reviewer #2 (Public review):

      Summary:

      The authors investigate the problem of olfactory search in turbulent environments using artificial agents trained using tabular Q-learning, a simple and interpretable reinforcement learning (RL) algorithm. The agents are trained solely on odor stimuli, without access to spatial information or prior knowledge about the odor plume's shape. This approach makes the emergent control strategy more biologically plausible for animals navigating exclusively using olfactory signals. The learned strategies show parallels to observed animal behaviors, such as upwind surging and crosswind casting. The approach generalizes well to different environments and effectively handles the intermittency of turbulent odors.

      Strengths:

      * The use of numerical simulations to generate realistic turbulent fluid dynamics sets this paper apart from studies that rely on idealized or static plumes.

      * A key innovation is the introduction of a small set of interpretable olfactory states based on moving averages of odor intensity and sparsity, coupled with an adaptive temporal memory.

      * The paper provides a thorough analysis of different recovery strategies when an agent loses the odor trail, offering insights into the trade-offs between various approaches.

      * The authors provide a comprehensive performance analysis of their algorithm across a range of environments and recovery strategies, demonstrating the versatility of the approach.

      * Finally, the authors list an interesting set of real-world experiments based on their findings, that might invite interest from experimentalists across multiple species.

      Weaknesses:

      * Using tabular Q-learning is both a strength and a limitation. It's simple and interpretable, making it easier to analyze the learned strategies, but the discrete action space seems somewhat unnatural. In real-world biological systems, actions (like movement) are continuous rather than discrete. Additionally, the ground-frame actions may not map naturally to how animals navigate odor plumes (e.g. insects often navigate based on their own egocentric frame).

      We agree with the reviewer, and will look forward to study this problem further to make it suitable for meaningful comparisons with animal behavior.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The authors have addressed my major concerns and I support publication of this interesting manuscript. A couple of small suggestions:

      (1) In discussing performance in different environments (line 328-362) it might be easier to read if you referred to the environments by descriptive names rather than numbers.

      Thank you for the suggestion, which we implemented

      (2) Line 371: measurements of flow speed depend on antennae in insects. Insects can measure local speed and direct of flow using antennae, e.g. Bell and Kramer, 1979, Suver et al. 2019. Okubo et al. 2020,

      Thank you for the references

      (3) line 448: "Similarly, an odor detection elicits upwind surges that can last several seconds" maybe "Similarly, an odor detection elicits upwind surges that can outlast the odor by several seconds"?

      Thank you for the suggestion

      Reviewer #2 (Recommendations for the authors):

      I commend the authors for their revisions in response to reviewer feedback.

      While I appreciate that the manuscript is now accompanied by code and data, I must note that the accompanying code-repository lacks proper instructions for use and is likely incomplete (e.g. where is the main function one should run to run your simulations? How should one train? How should one recreate the results? Which data files go where?).

      For examples of high-quality code-release, please see the documentation for these RL-for-neuroscience code repositories (from previously published papers):

      https://github.com/ryzhang1/Inductive_bias

      https://github.com/BruntonUWBio/plumetracknets

      The accompanying data does provide snapshots from their turbulent plume simulations, which should be valuable for future research.

      Thank you for the suggestions for how to improve clarity of the code. The way we designed the repository is to serve both the purpose of developing the code as well as sharing. This is because we are going to build up on this work to proceed further. Nothing is missing in the repository (we know it because it is what we actually use).

      We do plan to create a more user-friendly version of the code, hopefully this will be ready in the next few months, but it wont be immediate as we are aiming to also integrate other aspects of the work we are currently doing in the Lab. The Brunton repository is very well organized, thanks for the pointer.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Overall I found the approach taken by the authors to be clear and convincing. It is striking that the conclusions are similar to those obtained in a recent study using a different computational approach (finite state controllers), and lend confidence to the conclusions about the existence of an optimal memory duration. There are a few points or questions that could be addressed in greater detail in a revision:

      (1) Discussion of spatial encoding

      The manuscript contrasts the approach taken here (reinforcement learning in a grid world) with strategies that involve a "spatial map" such as infotaxis. The authors note that their algorithm contains "no spatial information." However, I wonder if further degrees of spatial encoding might be delineated to better facilitate comparisons with biological navigation algorithms. For example, the gridworld navigation algorithm seems to have an implicit allocentric representation, since movement can be in one of four allocentric directions (up, down, left, right). I assume this is how the agent learns to move upwind in the absence of an explicit wind direction signal. However, not all biological organisms likely have this allocentric representation. Can the agent learn the strategy without wind direction if it can only go left/right/forward/back/turn (in egocentric coordinates)? In discussing possible algorithms, and the features of this one, it might be helpful to distinguish<br /> (1) those that rely only on egocentric computations (run and tumble),<br /> (2) those that rely on a single direction cue such as wind direction,<br /> (3) those that rely on allocentric representations of direction, and<br /> (4) those that rely on a full spatial map of the environment.

      As Referee 1 points out, even if the algorithm does not require a map of space, the agent is still required to tell apart directions relative to the wind direction which is assumed known. Indeed, although in the manuscript we labeled actions allocentrically as “ up down left and right”, the source is always placed in the same location, hence “left” corresponds to upwind; “right” to downwind and “up” and “down” to crosswind right and left. Thus in fact directions are relative to the mean wind, which is therefore assumed known. We have better clarified the spatial encoding required to implement these strategies, and re-labeled the directions as upwind, downwind, crosswind-right and crosswind-left.

      In reality, animals cannot measure the mean flow, but rather the local flow speed e.g. with antennas for insects, with whiskers for rodents and with the lateral line for marine organisms. Further work is needed to address how local flow measures enable navigation using Q learning.

      (2) Recovery strategy on losing the plume

      While the approach to encoding odor dynamics seems highly principled and reaches appealingly intuitive conclusions, the approach to modeling the recovery strategy seems to be more ad hoc. Early in the paper, the recovery strategy is defined to be path integration back to the point at which odor was lost, while later in the paper, the authors explore Brownian motion and a learned recovery based on multiple "void" states. Since the learned strategy works best, why not first consider learned strategies, and explore how lack of odor must be encoded or whether there is an optimal division of void states that leads to the best recovery strategies? Also, although the authors state that the learned recovery strategies resemble casting, only minimal data are shown to support this. A deeper statistical analysis of the learned recovery strategies would facilitate comparison to those observed in biology.

      We thank Referee 1 for their remarks and suggestion to give the learned recovery a more prominent role and better characterize it. We agree that what is done in the void state is definitely key to turbulent navigation. In the revised manuscript, we have further substantiated the statistics of the learned recovery by repeating training 20 times and comparing the trajectories in the void (Figure 3 figure supplement 3, new Table 1). We believe however that starting with the heuristic recovery is clearer because it allows to introduce the concept of recovery more clearly. Indeed, the learned “recovery” is so flexible that it ends up mixing recovery (crosswind motion) to aspects of exploitation (surge): we defer a more in-depth analysis that disentangles these two aspects elsewhere. Also, we added a whole new comparison with other biologically inspired recoveries both in the native environment and for generalization (Figure 3 and 5).

      (3) Is there a minimal representation of odor for efficient navigation?

      The authors suggest (line 280) that the number of olfactory states could potentially be reduced to reduce computational cost. This raises the question of whether there is a maximally efficient representation of odors and blanks sufficient for effective navigation. The authors choose to represent odor by 15 states that allow the agent to discriminate different spatial regimes of the stimulus, and later introduce additional void states that allow the agent to learn a recovery strategy. Can the number of states be reduced or does this lead to loss of performance? Does the optimal number of odor and void states depend on the spatial structure of the turbulence as explored in Figure 5?

      We thank the referee for their comment. Q learning defines the olfactory states prior to training and does not allow a systematic optimization of odor representation for the task. We can however compare different definitions of the olfactory states, for example based on the same features but different discretizations. We added a comparison with a drastically reduced number of non-empty olfactory states to just 1, i.e. if the odor is above threshold at any time within the memory, the agent is in the non-void olfactory state, otherwise it is in the void state. This drastic reduction in the number of olfactory states results in less positional information and degrades performance (Figure 5 figure supplement 5).

      The number of void states is already minimal: we chose 50 void states because this matches the time agents typically remain in the void (less than 50 void states results in no convergence and more than 50 introduces states that are rarely visited).

      One may instead resort to deep Q-learning or to recurrent neural networks, which however do not provide answers as for what are the features or olfactory states that drive behavior (see discussion in manuscript and questions below).

      Reviewer #2 (Public review):

      Summary:

      The authors investigate the problem of olfactory search in turbulent environments using artificial agents trained using tabular Q-learning, a simple and interpretable reinforcement learning (RL) algorithm. The agents are trained solely on odor stimuli, without access to spatial information or prior knowledge about the odor plume's shape. This approach makes the emergent control strategy more biologically plausible for animals navigating exclusively using olfactory signals. The learned strategies show parallels to observed animal behaviors, such as upwind surging and crosswind casting. The approach generalizes well to different environments and effectively handles the intermittency of turbulent odors.

      Strengths:

      (1) The use of numerical simulations to generate realistic turbulent fluid dynamics sets this paper apart from studies that rely on idealized or static plumes.

      (2) A key innovation is the introduction of a small set of interpretable olfactory states based on moving averages of odor intensity and sparsity, coupled with an adaptive temporal memory.

      (3) The paper provides a thorough analysis of different recovery strategies when an agent loses the odor trail, offering insights into the trade-offs between various approaches.

      (4) The authors provide a comprehensive performance analysis of their algorithm across a range of environments and recovery strategies, demonstrating the versatility of the approach.

      (5) Finally, the authors list an interesting set of real-world experiments based on their findings, that might invite interest from experimentalists across multiple species.

      Weaknesses:

      (1) The inclusion of Brownian motion as a recovery strategy, seems odd since it doesn't closely match natural animal behavior, where circling (e.g. flies) or zigzagging (ants' "sector search") could have been more realistic.

      We agree that Brownian motion may not be biologically plausible -- we used it as a simple benchmark. We clarified this point, and re-trained our algorithm with adaptive memory using circling and zigzaging (cast and surge) recoveries. The learned recovery outperforms all heuristic recoveries (Figure 3D, metrics G). Circling ranks second, and achieves these good results by further decreasing the probability of failure and paying slightly in speed. When tested in the non-native environments 2 to 6, the learned recovery performs best in environments 2, 5 and 6 i.e. from long range more relevant to flying insects; whereas circling generalizes best in odor rich environments 3 and 4, representative of closer range and close to the substrate (Figure 5B, metrics G). In the new environments, similar to the native environment, circling favors convergence (Figure 5B, metrics f<sup>+</sup>) over speed (Figure 5B, metrics g<sup>+</sup> and τ<sub>min</sub>/τ), which is particularly deleterious at large distance.

      (2) Using tabular Q-learning is both a strength and a limitation. It's simple and interpretable, making it easier to analyze the learned strategies, but the discrete action space seems somewhat unnatural. In real-world biological systems, actions (like movement) are continuous rather than discrete. Additionally, the ground-frame actions may not map naturally to how animals navigate odor plumes (e.g. insects often navigate based on their own egocentric frame).

      We agree with the reviewer that animal locomotion does not look like a series of discrete displacements on a checkerboard. However, to overcome this limitation, one has to first focus on a specific system to define actions in a way that best adheres to a species’ motor controls. Moreover, these actions are likely continuous, which makes reinforcement learning notoriously more complex. While we agree that more realistic models are definitely needed for a comparison with real systems, this remains outside the scope of the current work. We have added a remark to clarify this limitation.

      (3) The lack of accompanying code is a major drawback since nowadays open access to data and code is becoming a standard in computational research. Given that the turbulent fluid simulation is a key element that differentiates this paper, the absence of simulation and analysis code limits the study's reproducibility.

      We have published the code and the datasets at

      - code: https://github.com/Akatsuki96/qNav

      - datasets: https://zenodo.org/records/14655992

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 59-69: In comparing the results here to other approaches (especially the Verano and Singh papers), it would also be helpful to clarify which of these include an explicit representation of the wind direction. My understanding is that both the Singh and Verano approaches include an explicit representation of wind direction. In Singh wind direction is one of the observations that inputs to the agent, while in Verano, the actions are defined relative to the wind direction. In the current paper, my understanding is that there is no explicitly defined wind direction, but because movement directions are encoded allocentrically, the agent is able to learn the upwind direction from the structure of the plume- is this correct? I think this information would be helpful to spell out and also to address whether an agent without any allocentric direction sense can learn the task.

      Thank you for the comment. In our algorithm the directions are defined relative to the mean wind, which is assumed known, as in Verano et al. As far as we understand, Singh et al provide the instantaneous, egocentric wind velocities as part of the input.

      (1) Line 105: "several properties of odor stimuli depend on the distance from the source" might cite Boie...Victor 2018, Ackles...Schaefer, 2021, Nag...van Breugel 2024.

      Thank you for the suggestions - we have added these references

      (2) Line 130: "we first define a finite set of olfactory states" might be helpful to the reader to state what you chose in this paragraph rather than further down.

      We have slightly modified the incipit of the paragraph. We first declare we are setting out to craft the olfactory states, then define the challenges, finally we define the olfactory states.

      (3) Line 267: "Note that the learned recovery strategy resembles casting behavior observed in flying insects" Might note that insects seem to deploy a range of recovery strategies depending on locomotor mode and environment. For example, flying flies circle and sink when odor is lost in windless environments (Stupski and van Breugel 2024).

      Thank you for your comment. We have included the reference and we now added comparisons to results using circling and cast & surge recovery strategies.

      (4) Line 289: "from positions beyond the source, the learned strategy is unable to recover the plume as it mostly casts sideways, with little to no downwind action" This is curious as many insects show a downwind bias in the absence of odor that helps them locate the plumes in the first place (e.g. Wolf and Wehner, 2000, Alvarez-Salvado et al. 2018). Is it possible that the agent could learn a downwind bias in the absence of odor if given larger environments or a longer time to learn?

      The reviewer is absolutely correct – Downwind motion is not observed in the recovery simply because the agent rarely overshoots the source. Hence overall optimization for that condition is washed out by the statistics. We believe downwind motion will emerge if an agent needs to avoid overshooting the source – we do not have conclusive results yet but are planning to introduce such flexibility in a further work. We added this remark and refs.

      (5) Line 377-391: testing these ideas in living systems. Interestingly, Kathman..Nagel 2024 (bioRxiv) shows exactly the property predicted here and in Verano in fruit flies- an odor memory that outlasts the stimulus by a duration of several seconds, appropriate for filling in "blanks." Relatedly, Alvarez-Salvado et al. 2018 showed that fly upwind running reflected a temporal integration of odor information over ~10s, sufficient to avoid responding to blanks as loss of odor.

      Indeed, we believe this is the most direct connection between algorithms and experiments. We are excited to discuss with our colleagues and pursue a more direct comparison with animal behavior. We were aware of the references and forgot to cite them, thank you for your careful reading of our work !

      Reviewer #2 (Recommendations for the authors):

      Suggestions

      (1) The paper does not clearly specify which type of animals (e.g., flying insects, terrestrial mammals) the model is meant to approximate or not approximate. The authors should consider clarifying how these simulations are suited to be a general model across varied olfactory navigators. Further, it isn't clear how low/high the intermittency studied in this model is compared to what different animals actually encounter. (Minor: The Figure 4 occupancy circles visualization could be simplified).

      Environment 1 represents the lower layers of a moderately turbulent boundary layer. Search occurs on a horizontal plane ~half meter from the ground. The agent is trained at distances of about 10 meters and also tested on longer distances  ~ 17 meters (environment 6), lower heights ~1cm from the ground (environments 3-4), lower Reynolds number (environment 5) and higher threshold of detection (environment 2 and 4). Thus Environments 1,2,5 and 6 are representative of conditions encountered by flying organisms (or pelagic in water), and Environments 3 and 4 of searches near the substrate, potentially involved in terrestrial navigation (benthic in water). Even near the substrate, we use odor dispersed in the fluid, and not odor attached to the substrate (relevant to trail tracking).

      Also note that we pick Schmidt number Sc = 1 and this is appropriate for odors in air but not in water. However, we expect a weak dependence on the Schmidt number as the Batchelor and Kolmogorov scales are below the size of the source and we are interested in the large scale statistics Falkovich et al., 2001; Celani et al., 2014; Duplat et al., 2010.

      Intermittency contours are shown in Fig 1C, they are highest along the centerline, and decay away from the centerline, so that even within the plume detecting odor is relatively rare. Only a thin region near the centerline has intermittency larger than 66%; the outer and most critical bin of the plume has intermittency under 33%; in the furthest point on the centerline intermittency is <10%. For reference, experimental values in the atmospheric boundary layer report intermittency 25% to 20% at 2 to 15m from the source along the centerline (Murlis and Jones, 1981).

      We have more clearly labeled the contours in Fig 1C and added these remarks.

      We included these remarks and added a whole table with matching to real conditions within the different environments.

      (2) Could some biological examples and references be added to support that backtracking is a biologically plausible mechanism?

      Backtracking was observed e.g. in ants displaced in unfamiliar environments (Wystrach et al, P Roy Soc B, 280,  2013), in tsetse flies executing reverse turns uncorrelated to wind, which bring them back towards the location where they last detected odor (Torr, Phys Entom, 13, 1988, Gibson & Brady Phys Entom 10, 1985) and in coackroaches upon loss of contact with the plume (Willis et al, J. Exp. Biol. 211, 2008). It is also used in computational models of olfactory navigation (Park et al, Plos Comput Biol, 12:e1004682, 2016).

      (3) Hand-crafted features can be both a strength and a limitation. On the one hand, they offer interpretability, which is crucial when trying to model biological systems. On the other hand, they may limit the generality of the model. A more thorough discussion of this paper's limitations should address this.

      (4) The authors mention the possibility of feature engineering or using recurrent neural networks, but a more concrete discussion of these alternatives and their potential advantages/disadvantages would be beneficial. It should be noted that the hand-engineered features in this manuscript are quite similar to what the model of Singh et al suggests emerges in their trained RNNs.

      Merged answer to points 3 and 4.

      We agree with the reviewer that hand-crafted features are both a strength and a limitation in terms of performance and generality. This was a deliberate choice aimed at stripping the algorithm bare of implicit components, both in terms of features and in terms of memory. Even with these simple features, our model performs well in navigating across different signals, consistent with our previous results showing that these features are a “good” surrogate for positional information.

      To search for the most effective temporal features, one may consider a more systematic hand crafting, scaling up our approach. In this case one would first define many features of the odor trace; rank groups of features for their accuracy in regression against distance; train Q learning with the most promising group of features and rank again. Note however that this approach will be cumbersome because multiple factors will have to be systematically varied: the regression algorithm; the discretization of the features and the memory.

      Alternatively, to eliminate hand crafting altogether and seek better performance or generalization, one may consider replacing these hand-crafted features and the tabular Q-learning approach with recurrent neural networks or with finite state controllers. On the flip side, neither of these algorithms will directly provide the most effective features or the best memory, because these properties are hidden within the parameters that are optimized for. So extra work is needed to interrogate the algorithms and extract these information. For example, in Singh et al, the principal components of the hidden states in trained agents correlate with head direction, odor concentration and time since last odor encounter. More work is needed to move beyond correlations and establish more systematically what are the features that drive behavior in the RNN.

      We have added these points to the discussion.

      (5) Minor: the title of the paper doesn't immediately signal its focus on recovery strategies and their interplay with memory in the context of olfactory navigation. Given the many other papers using a similar RL approach, this might help the authors position this paper better.

      We agree with the referee and have modified the title to reflect this.

      (6) Minor: L 331: "because turbulent odor plumes constantly switch on and off" -- the signal received rather than the plume itself is switching on and off.

      Thank you for the suggestion, we implemented it.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Li et al. investigates the metabolism-independent role of nuclear IDH1 in chromatin state reprogramming during erythropoiesis. The authors describe accumulation and redistribution of histone H3K79me3, and downregulation of SIRT1, as a cause for dyserythropoiesis observed due to IDH1 deficiency. The authors studied the consequences of IDH1 knockdown, and targeted knockout of nuclear IDH1, in normal human erythroid cells derived from hematopoietic stem and progenitor cells and HUDEP2 cells respectively. They further correlate some of the observations such as nuclear localization of IDH1 and aberrant localization of histone modifications in MDS and AML patient samples harboring IDH1 mutations. These observations are intriguing from a mechanistic perspective and they hold therapeutic significance, however there are major concerns that make the inferences presented in the manuscript less convincing.

      (1) The authors show the presence of nuclear IDH1 both by cell fractionation and IF, and employ an efficient strategy to knock out nuclear IDH1 (knockout IDH1/ Sg-IDH1 and rescue with the NES tagged IDH1/ Sg-NES-IDH1 that does not enter the nucleus) in HUDEP2 cells. However, some important controls are missing.

      A) In Figure 3C, for IDH1 staining, Sg-IDH1 knockout control is missing.

      Thanks for the reviewer’s suggestion. We have complemented the staining of Sg-IDH1 knockout cells, and made corresponding revision in Figure 3C in the revised manuscript.

      B) Wild-type IDH1 rescue control (ie., IDH1 without NES tag) is missing to gauge the maximum rescue that is possible with this system.

      Thanks for the reviewer’s suggestion. We have overexpressed wild-type IDH1 in the IDH1-deficient HUDEP2 cell line and detected the phenotype. The results are presented in Supplementary Figure 9 in the revised manuscript. As shown in Supplementary Figure 9A, IDH1 deficiency resulted in reduced cell number in HUDEP2 cells, a phenotype that was rescued by overexpression of wild-type IDH1 but not by NES-IDH1. Given IDH1's well-established role in redox homeostasis through catalyzing isocitrate to α-KG conversion, we hypothesized that both wild-type IDH1 and NES-IDH1 overexpression would significantly restore α-KG levels compared to the IDH1-deficient group. Supplementary Figure 9B demonstrates that IDH1 depletion resulted in a dramatic decrease in α-KG levels, whereas overexpression of either wild-type IDH1 or NES-IDH1 almost completely restored α-KG levels, as anticipated. These results suggest that wild-type IDH1 overexpression can restore metabolic regulatory functions as effectively as NES-IDH1 overexpression. To investigate whether apoptosis contributes to the impaired cell expansion caused by IDH1 deficiency, we performed Annexin V/PI staining to quantify apoptotic cells. As shown in Supplementary Figure 9C and D, flow cytometry analysis revealed no significant changes in apoptosis rates following either IDH1 depletion or ectopic expression of wild-type IDH1 or NES-IDH1 in IDH1 deficient HUDEP2 cells.

      Flow cytometric analysis demonstrated that IDH1 deficiency triggered S-phase accumulation at day 8, indicative of cell cycle arrest. Whereas ectopic expression of wild-type IDH1 significantly rescued this cell cycle defect, overexpression of NES-IDH1 failed to ameliorate the S-phase accumulation phenotype induced by IDH1 depletion, as presented in Supplementary Figure 9E and F. Although NES-IDH1 overexpression rescued metabolic regulatory function defect, it failed to alleviate the cell cycle arrest induced by IDH1 deficiency. In contrast, wild-type IDH1 overexpression fully restored normal cell cycle progression. This functional dichotomy demonstrates that nuclear-localized IDH1 executes critical roles distinct from its cytoplasmic counterpart, and overexpression of wild-type IDH1 could efficient restore the functional impairment induced by depletion of nuclear localized IDH1.

      (2) Considering the nuclear knockout of IDH1 (Sg-NES-IDH1 referenced in the previous point) is a key experimental system that the authors have employed to delineate non-metabolic functions of IDH1 in human erythropoiesis, some critical experiments are lacking to make convincing inferences.

      A) The authors rely on IF to show the nuclear deletion of Sg-NES-IDH1 HUDEP2 cells. As mentioned earlier since a knockout control is missing in IF experiments, a cellular fractionation experiment (similar to what is shown in Figure 2F) is required to convincingly show the nuclear deletion in these cells.

      We sincerely thank the reviewer for raising this critical point. As suggested, we have performed additional IF experiments and cellular fractionation experiments to comprehensively address the subcellular localization of IDH1.

      The results of IF staining were shown in Figure 3C of the revised manuscript. In Control HUDEP2 cells, endogenous IDH1 was detected in both the cytoplasm and nucleus. This dual localization may reflect its dynamic roles in cytoplasmic metabolic processes and potential nuclear functions under specific conditions. In Sg-IDH1 cells (IDH1 knockout), IDH1 signal was undetectable, confirming efficient depletion of the protein. In Sg-NES-IDH1 cells (overexpressing NES-IDH1 in IDH1 deficient cells), IDH1 predominantly accumulated in the cytoplasm, consistent with the disruption of its nuclear export signal. The dual localization of IDH1 that was determined by IF staining experiment were then further confirmed by cellular fractionation assays, as shown in Figure 3D.

      B) Since the authors attribute nuclear localization to a lack of metabolic/enzymatic functions, it is important to show the status of ROS and alpha-KG in the Sg-NES-IDH1 in comparison to control, wild type rescue, and knockout HUDEP2 cells. The authors observe an increase of ROS and a decrease of alpha-KG upon IDH1 knockdown. If nuclear IDH1 is not involved in metabolic functions, is there only a minimal or no impact of the nuclear knockout of IDH1 on ROS and alpha-KG, in comparison to complete knockout? These studies are lacking.

      We appreciate the insightful suggestions of the reviewers and agree that the detection of ROS and alpha-KG is useful for the demonstration of the non-canonical function of IDH1. We examined alpha-KG concentrations in control, IDH1 knockout and nuclear IDH1 knockout HUDEP2 cell lines. The results showed a significant decrease in alpha-KG content after complete knockout of IDH1, whereas there was no significant change in nuclear knockout IDH1 (Supplementary Figure 9B). As to the detection of ROS level, the commercial ROS assay kits that we can get are detected using PE (Excitation: 565nm; Emission: 575nm) and FITC (Excitation: 488nm; Emission: 518nm) channels in flow cytometry. We constructed HUDEP2 cell lines of Sg-IDH1 and Sg-NES-IDH1 to express green fluorescent protein (Excitation: 488nm; Emission: 507nm) and Kusabira Orange fluorescent protein (Excitation: 500nm; Emission: 561nm) by themselves. Unfortunately, due to the spectral overlap of the fluorescence channels, we were unable to detect the changes in ROS levels in these HUDEP2 cell lines using the available commercial kit.

      (3) The authors report abnormal nuclear phenotype in IDH1 deficient erythroid cells. It is not clear what parameters are used here to define and quantify abnormal nuclei. Based on the cytospins (eg., Figure 1A, 3D) many multinucleated cells are seen in both shIDH1 and Sg-NES-IDH1 erythroid cells, compared to control cells. Importantly, this phenotype and enucleation defects are not rescued by the administration of alpha-KG (Figures 1E, F). The authors study these nuclei with electron microscopy and report increased euchromatin in Figure 4B. However, there is no discussion or quantification of polyploidy/multinucleation in the IDH1 deficient cells, despite their increased presence in the cytospins.

      A) PI staining followed by cell cycle FACS will be helpful in gauging the extent of polyploidy in IDH1 deficient cells and could add to the discussions of the defects related to abnormal nuclei.

      We appreciate the reviewer’s insightful suggestion. Since PI dye is detected using the PE channel (Excitation: 565nm; Emission: 575nm) of the flow cytometer and the HUDEP2 cell line expresses Kusabira orange fluorescent protein (Excitation: 500nm; Emission: 561nm), we were unable to use PI staining to detect the cell cycle. Edu staining is another commonly used method to determine cell cycle progression, and we performed Edu staining followed by flow cytometry analysis on Control, Sg-IDH1 and Sg-NES-IDH1 HUDEP2 cells, respectively. The results showed that complete knockdown of IDH1 resulted in S-phase block and increased polyploidy in HUDEP2 cells on day 8 of erythroid differentiation, and overexpression of IDH1-NES did not reverse this phenotype (Supplemental Figure 9E-F). Moreover, we have added a discussion of abnormal nuclei being associated with impaired erythropoiesis.

      B) For electron microscopy quantification in Figures 4B and C, how the quantification was done and the labelling of the y-axis (% of euchromatin and heterochromatin) in Figure 4 C is not clear and is confusingly presented. The details on how the quantification was done and a clear label (y-axis in Figure 4C) for the quantification are needed.

      Thanks for the reviewer's suggestion. In this study, we calculated the area of nuclear, heterochromatin and euchromatin by using Image J software. We addressed the quantification strategy in the section of Supplementary methods of the revised Supplementary file. In addition, the y-axis label in Figure 4C was changed to “the area percentage of euchromatin and heterochromatin’’.

      C) As mentioned earlier, what parameters were used to define and quantify abnormal nuclei (e.g. Figure 1A) needs to be discussed clearly. The red arrows in Figure 1A all point to bi/multinucleated cells. If this is the case, this needs to be made clear.

      We thank the reviewer for their suggestion. In our present study, nuclear malformations were defined as cells exhibiting binucleation or multinucleation based on cytospin analysis. A minimum of 300 cells per group were evaluated, and the proportion of aberrant nuclei was calculated as (number of abnormal cells / total counted cells) × 100%.

      (4) The authors mention that their previous study (reference #22) showed that ROS scavengers did not rescue dyseythropoiesis in shIDH1 cells. However, in this referenced study they did report that vitamin C, a ROS scavenger, partially rescued enucleation in IDH1 deficient cells and completely suppressed abnormal nuclei in both control and IDH1 deficient cells, in addition to restoring redox homeostasis by scavenging reactive oxygen species in shIDH1 erythroid cells. In the current study, the authors used ROS scavengers GSH and NAC in shIDH1 erythroid cells and showed that they do not rescue abnormal nuclei phenotype and enucleation defects. The differences between the results in their previous study with vitamin C vs GSH and NAC in the context of IDH1 deficiency need to be discussed.

      We appreciate the reviewer’s insightful observation. The apparent discrepancy between the effects of vitamin C (VC) in our previous study and glutathione (GSH)/N-acetylcysteine (NAC) in the current work can be attributed to divergent molecular mechanisms beyond ROS scavenging. A growing body of evidence has identified vitamin C as a multifunctional regulator. In addition to acting as an antioxidant maintaining redox homeostasis, VC also acts as a critical epigenetic modulator. VC have been identified as a cofactor for α-ketoglutarate (α-KG)-dependent dioxygenases, including TET2, which catalyzes 5-methylcytosine (5mC) oxidation to 5-hydroxymethylcytosine (5hmC) [1,2]. Structural studies confirm its direct interaction with TET2’s catalytic domain to enhance enzymatic activity in vitro [3]. The biological significance of the epigenetic modulation induced by vitamin C is illustrated by its ability to improve the generation of induced pluripotent stem cells and to induce a blastocyst-like state in mouse embryonic stem cells by promoting demethylation of H3K9 and 5mC, respectively [4,5]. In contrast, GSH and NAC are canonical ROS scavengers lacking intrinsic epigenetic-modifying activity. While they effectively neutralize oxidative stress (as validated by reduced ROS levels in our current data, Supplemental Figure 7), their inability to rescue nuclear abnormalities or enucleation defects in IDH1 deficient cells suggests that IDH1 deficiency-driven dyserythropoiesis is not solely ROS-dependent.

      References:

      (1) Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 20138;500(7461): 222-226.

      (2) Minor EA, Court BL, Young JI, Wang G. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J Biol Chem. 2013;288(19): 13669-13674.

      (3) Yin R, Mao S, Zhao B, Chong Z, Yang Y, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc. 2013;135(28):10396-10403.

      (4) Esteban MA, Wang T, Qin B, Yang J, Qin D, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010;6(1):71-79.

      (5) Chung T, Brena RM, Kolle G, Grimmond SM, Berman BP, et al. Vitamin C promotes widespread yet specific DNA demethylation of the epigenome in human embryonic stem cells. Stem Cells. 2010;28(10):1848-1855.

      (5) The authors describe an increase in euchromatin as the consequential abnormal nuclei phenotype in shIDH1 erythroid cells. However, in their RNA-seq, they observe an almost equal number of genes that are up and down-regulated in shIDH1 cells compared to control cells. If possible, an RNA-Seq in nuclear knockout Sg-NES-IDH1 erythroid cells in comparison with knockout and wild-type cells will be helpful to tease out whether a specific absence of IDH1 in the nucleus (ie., lack of metabolic functions of IDH) impacts gene expression differently.

      Thanks for the reviewer's suggestion. ATAC-seq showed an increase in chromatin accessibility after IDH1 deletion, but the number of up-regulated genes was slightly larger than that of down-regulated genes, which may be caused by the metabolic changes affected by IDH1 deletion. In order to explore the effect of chromatin accessibility changes on gene expression after IDH1 deletion, we analyzed the changes in differential gene expression at the differential ATAC peak region (as shown in Author response image 1), and the results showed that the gene expression at the ATAC peak region with increased chromatin accessibility was significantly up-regulated. This may explain the regulation of chromatin accessibility on gene expression.

      Author response image 1.

      Box plots of gene expression differences of differential ATAC peaks located in promoter for the signal increasing and decreasing groups.

      (6) In Figure 8, the authors show data related to SIRT1's role in mediating non-metabolic, chromatin-associated functions of IDH1.

      A) The authors show that SIRT1 inhibition leads to a rescue of enucleation and abnormal nuclei. However, whether this rescues the progression through the late stages of terminal differentiation and the euchromatin/heterochromatin ratio is not clear.

      Thanks for the reviewer's suggestion. As shown in Supplementary Figure 14 and 15 in the revised Supplementary Data, our data showed that both the treatment of SRT1720 on normal erythroid cells and treatment of IDH1-deficient erythroid cells with SIRT1 inhibitor both have no effect on the terminal differentiation.

      (7) In Figure 4 and Supplemental Figure 8, the authors show the accumulation and altered cellular localization of H3K79me3, H3K9me3, and H3K27me2, and the lack of accumulation of other three histone modifications they tested (H3K4me3, H3K35me4, and H3K36me2) in shIDH1 cells. They also show the accumulation and altered localization of the specific histone marks in Sg-NES-IDH1 HUDEP2 cells.

      A) To aid better comparison of these histone modifications, it will be helpful to show the cell fractionation data of the three histone modifications that did not accumulate (H3K4me3, H3K35me4, and H3K36me2), similar to what was shown in Figure 4E for H3K79me3, H3K9me3, and H3K27me2).

      We appreciate the reviewer’s insightful suggestion. We collected erythroblasts on day 15 of differentiation from cord blood-derived CD34<sup>+</sup> hematopoietic stem cells to erythroid lineage and performed ChIP assay. As shown in Author response image 2, the results showed that the concentration of bound DNA of H3K9me3, H3K27me2 and H3K79me3 was too low to meet the sequencing quality requirement, which was consistent with that of WB. In addition, we tried to perform ChIP-seq for H3K79me3, and the results showed that there was no marked peak signal.

      Author response image 2.

      ChIP-seq analysis show that there was no marked peak signal of H3K79me3 on D15. (A) Quality control of ChIP assay for H3K9me3, H3K27me2, and H3K79me3. (B) Representative peaks chart image showed normalized ChIP signal of H3K79me3 at gene body regions. (C) Heatmaps displayed normalized ChIP signal of H3K79me3 at gene body regions. The window represents ±1.5 kb regions from the gene body. TES, transcriptional end site; TSS, transcriptional start site.

      C) Among the three histone marks that are dysregulated in IDH1 deficient cells (H3K79me3, H3K9me3, and H3K27me2), the authors show via ChIP-seq (Fig5) that H3K79me3 is the critical factor. However, the ChIP-seq data shown here lacks many details and this makes it hard to interpret the data. For example, in Figure 5A, they do not mention which samples the data shown correspond to (are these differential peaks in shIDH1 compared to shLuc cells?). There is also no mention of how many replicates were used for the ChIP seq studies.

      We thank the reviewer for pointing this out. We apologize for not clearly describing the ChIP-seq data for H3K9me3, H3K27me2 and H3K79me3 and we have revised them in the corresponding paragraphs. Since H3 proteins gradually translocate from the nucleus to the cytoplasm starting at day 11 (late Baso-E/Ploy-E) of erythroid lineage differentiation, we performed ChIP-seq for H3K9me3, H3K27me2 and H3K79me3 only for the shIDH1 group, and set up three independent biological replicates for each of them.

      Reviewer #2 (Public Review):

      Li and colleagues investigate the enzymatic activity-independent function of IDH1 in regulating erythropoiesis. This manuscript reveals that IDH1 deficiency in the nucleus leads to the redistribution of histone marks (especially H3K79me3) and chromatin state reprogramming. Their findings suggest a non-typical localization and function of the metabolic enzyme, providing new insights for further studies into the non-metabolic roles of metabolic enzymes. However, there are still some issues that need addressing:

      (1) Could the authors show the RNA and protein expression levels (without fractionation) of IDH1 on different days throughout the human CD34+ erythroid differentiation?

      We sincerely appreciate the reviewer’s constructive feedback. To address this point, we have now systematically quantified IDH1 expression dynamics across erythropoiesis stages using qRT-PCR and Western blot analyses. As quantified in Supplementary fige 1, IDH1 expression exhibited a progressive upregulation during early erythropoiesis and subsequently stabilized throughout terminal differentiation.

      (2) Even though the human CD34+ erythroid differentiation protocol was published and cited in the manuscript, it would be helpful to specify which erythroid stages correspond to cells on days 7, 9, 11, 13, and 15.

      We sincerely thank the reviewer for raising this important methodological consideration. Our research group has previously established a robust platform for staged human erythropoiesis characterization using cord blood-derived CD34<sup>+</sup> hematopoietic stem cells (HSCs) [6-9]. This standardized protocol enables high-purity isolation and functional analysis of erythroblasts at defined differentiation stages.

      Thanks for the reviewer’s suggestion. Our previous work (Jingping Hu et.al, Blood 2013. Xu Han et.al, Blood 2017.Yaomei Wang et.al, Blood 2021.) have isolation and functional characterization of human erythroblasts at distinct stages by using Cord blood. These works illustrated that using cord blood-derived hematopoietic stem cells and purification each stage of human erythrocytes can facilitate a comprehensive cellular and molecular characterization.

      Following isolation from cord blood, CD34<sup>+</sup> cells were cultured in a serum-free medium and induced to undergo erythroid differentiation using our standardized protocol. The process of erythropoiesis was comprised of 2 phases. During the early phase (day 0 to day 6), hematopoietic stem progenitor cells expanded and differentiated into erythroid progenitors, including BFU-E and CFU-E cells.

      During terminal erythroid maturation (day 7 to day 15), CFU-E cells progressively transitioned through defined erythroblast stages, as validated by daily cytospin morphology and expression of band 3/α4 integrin. The stage-specific composition was quantitatively characterized as follows:

      Author response table 1.

      The composition of erythroblast during terminal stage erythropoiesis.

      This differentiation progression from proerythroblasts (Pro-E) through basophilic (Baso-E), polychromatic (Poly-E), to orthochromatic erythroblasts (Ortho-E) recapitulates physiological human erythropoiesis, confirming the validity of our differentiation system for mechanistic studies.

      Reference:

      (6) Li J, Hale J, Bhagia P, Xue F, Chen L, et al. Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood. 2014;124(24):3636-3645.

      (7) Hu J, Liu J, Xue F, Halverson G, Reid M, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246-3253.

      (8) Wang Y, Li W, Schulz VP, Zhao H, Qu X, et al. Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood. 2021;138(17):1615-1627.

      (9) Li M, Liu D, Xue F, Zhang H, Yang Q, et al. Stage-specific dual function: EZH2 regulates human erythropoiesis by eliciting histone and non-histone methylation. Haematologica. 2023;108(9):2487-2502.

      (3) It is important to mention on which day the lentiviral knockdown of IDH1 was performed. Will the phenotype differ if the knockdown is performed in early vs. late erythropoiesis? In Figures 1C and 1D, on which day do the authors begin the knockdown of IDH1 and administer NAC and GSH treatments?

      We sincerely appreciate the reviewer’s inquiry regarding the experimental timeline. The day of getting CD34<sup>+</sup> cells was recorded as day 0. Lentivirus of IDH1-shRNA and Luciferase -shRNA was transduced in human CD34<sup>+</sup> at day 2. Puromycin selection was initiated 24h post-transduction to eliminate non-transduced cells. IDH1-KD cells were then selected for 3 days. The knock down deficiency of IDH1 was determined on day 7. NAC or GSH was added to culture medium and replenished every 2 days.

      (4) While the cell phenotype of IDH1 deficiency is quite dramatic, yielding cells with larger nuclei and multi-nuclei, the authors only attribute this phenotype to defects in chromatin condensation. Is it possible that IDH1-knockdown cells also exhibit primary defects in mitosis/cytokinesis (not just secondary to the nuclear condensation defect)?), given the function of H3K79Me in cell cycle regulation?

      We appreciate the reviewer’s insightful suggestion. We performed Edu based cell cycle analysis on Control, Sg-IDH1 and Sg-NES-IDH1 HUDEP2 cells, respectively. The results showed that IDH1 deficiency resulted in S-phase block and increased polyploidy in HUDEP2 cells on day 8 of erythroid differentiation. NES-IDH1 overexpression failed to rescue these defects, indicating nuclear IDH1 depletion as the primary driving factor (Figure 3E,F). Recent studies have established a clear link between cell cycle arrest and nuclear malformation. Chromosome mis-segregation, nuclear lamina disruption, mechanical stress on the nuclear envelope, and nucleolar dysfunction all contribute to nuclear abnormalities that trigger cell cycle checkpoints [10,11]. Based on all these findings, it reasonable for us to speculate that the cell cycle defect in IDH1 deficient cells might caused by the nuclear malfunction.

      Reference:

      (10) Hong T, Hogger AC, Wang D, Pan Q, Gansel J, et al. Cell Death Discov. CDK4/6 inhibition initiates cell cycle arrest by nuclear translocation of RB and induces a multistep molecular response. 2024;10(1):453.

      (11) Hervé S, Scelfo A, Marchisio GB, Grison M, Vaidžiulytė K, et al. Chromosome mis-segregation triggers cell cycle arrest through a mechanosensitive nuclear envelope checkpoint. Nat Cell Biol. 2025;27(1):73-86. 

      (5) Why are there two bands of Histone H3 in Figure 4A?

      We sincerely appreciate the reviewer's insightful observation regarding the dual bands of Histone H3 in our original Figure 4A. Upon rigorous investigation, we identified that the observed doublet pattern likely originated from the inter-batch variability of the original commercial antibody. To conclusively resolve this technical artifact, we have procured a new lot of Histone H3 antibody and repeated the western blot experimental under optimized conditions, and the results demonstrates a single band of H3.

      (6) Displaying a heatmap and profile plots in Figure 5A between control and IDH1-deficient cells will help illustrate changes in H3K79me3 density in the nucleus after IDH1 knockdown.

      Thank you for your suggestion. As presented in Author response image 2, we performed ChIP assays on erythroblasts collected at day 15. However, the concentration of H3K79me3-bound DNA was insufficient to meet the quality threshold required for reliable sequencing. Consequently, we are unable to generate the requested heatmap and profile plots due to limitations in data integrity from this experimental condition.

      Reviewer #3 (Public Review):

      Li, Zhang, Wu, and colleagues describe a new role for nuclear IDH1 in erythroid differentiation independent from its enzymatic function. IDH1 depletion results in a terminal erythroid differentiation defect with polychromatic and orthochromatic erythroblasts showing abnormal nuclei, nuclear condensation defects, and an increased proportion of euchromatin, as well as enucleation defects. Using ChIP-seq for the histone modifications H3K79me3, H3K27me2, and H3K9me3, as well as ATAC-seq and RNA-seq in primary CD34-derived erythroblasts, the authors elucidate SIRT1 as a key dysregulated gene that is upregulated upon IDH1 knockdown. They furthermore show that chemical inhibition of SIRT1 partially rescues the abnormal nuclear morphology and enucleation defect during IDH1-deficient erythroid differentiation. The phenotype of delayed erythroid maturation and enucleation upon IDH1 shRNA-mediated knockdown was described in the group's previous co-authored study (PMID: 33535038). The authors' new hypothesis of an enzyme- and metabolism-independent role of IDH1 in this process is currently not supported by conclusive experimental evidence as discussed in more detail further below. On the other hand, while the dependency of IDH1 mutant cells on NAD+, as well as cell survival benefit upon SIRT1 inhibition, has already been shown (see, e.g, PMID: 26678339, PMID: 32710757), previous studies focused on cancer cell lines and did not look at a developmental differentiation process, which makes this study interesting.

      (1) The central hypothesis that IDH1 has a role independent of its enzymatic function is interesting but not supported by the experiments. One of the author's supporting arguments for their claim is that alpha-ketoglutarate (aKG) does not rescue the IDH1 phenotype of reduced enucleation. However, in the group's previous co-authored study (PMID: 33535038), they show that when IDH1 is knocked down, the addition of aKG even exacerbates the reduced enucleation phenotype, which could indicate that aKG catalysis by cytoplasmic IDH1 enzyme is important during terminal erythroid differentiation. A definitive experiment to test the requirement of IDH1's enzymatic function in erythropoiesis would be to knock down/out IDH1 and re-express an IDH1 catalytic site mutant. The authors perform an interesting genetic manipulation in HUDEP-2 cells to address a nucleus-specific role of IDH1 through CRISPR/Cas-mediated IDH1 knockout followed by overexpression of an IDH1 construct containing a nuclear export signal. However, this system is only used to show nuclear abnormalities and (not quantified) accumulation of H3K79me3 upon nuclear exclusion of IDH1. Otherwise, a global IDH1 shRNA knockdown approach is employed, which will affect both forms of IDH1, cytoplasmic and nuclear. In this system and even the NES-IDH1 system, an enzymatic role of IDH1 cannot be excluded because (1) shRNA selection takes several days, prohibiting the assessment of direct effects of IDH1 loss of function (only a degron approach could address this if IDH1's half-life is short), and (2) metabolic activity of this part of the TCA cycle in the nucleus has recently been demonstrated (PMID: 36044572), and thus even a nuclear role of IDH1 could be linked to its enzymatic function, which makes it a challenging task to separate two functions if they exist.

      We appreciate the reviewer’s emphasis on rigorously distinguishing between enzymatic and enzymatic independent roles of IDH1. In our revised manuscript, we have removed all assertions of a "metabolism-independent" mechanism. Instead, we focus on demonstrating that nuclear-localized IDH1 contributes to chromatin state regulation during terminal erythropoiesis (e.g., H3K79me3 accumulation). While we acknowledge that nuclear IDH1’s enzymatic activity may still play a role [12], our data emphasize its spatial association with chromatin remodeling. We now explicitly state that nuclear IDH1’s function may involve both enzymatic and structural roles, and further studies are required to dissect these mechanisms.

      Reference:

      (12) Kafkia E, Andres-Pons A, Ganter K, Seiler M, Smith TS, et al.Operation of a TCA cycle subnetwork in the mammalian nucleus. Sci Adv. 2022;8(35):eabq5206.

      (2) It is not clear how the enrichment of H3K9me3, a prominent marker of heterochromatin, upon IDH1 knockdown in the primary erythroid culture (Figure 4), goes along with a 2-3-fold increase in euchromatin. Furthermore, in the immunofluorescence (IF) experiments presented in Figure 4Db, it seems that H3K9me3 levels decrease in intensity (the signal seems more diffuse), which seems to contrast the ChIP-seq data. It would be interesting to test for localization of other heterochromatin marks such as HP1gamma. As a related point, it is not clear at what stage of erythroid differentiation the ATAC-seq was performed upon luciferase- and IDH1-shRNA-mediated knockdown shown in Figure 6. If it was done at a similar stage (Day 15) as the electron microscopy in Figure 4B, then the authors should explain the discrepancy between the vast increase in euchromatin and the rather small increase in ATAC-seq signal upon IDH1 knockdown.

      Thank you for raising this important point. We agree that while H3K9me3 and H3K27me2 modifications are detectable in the nucleus, their functional association with chromatin in this context remains unclear. Our ChIP-seq data did not reveal distinct enrichment peaks for H3K9me3 or H3K27me2 (unlike the well-defined H3K79me3 peaks), suggesting that these marks may not be stably bound to specific chromatin regions under the experimental conditions tested. However, we acknowledge that the absence of clear peaks in our dataset does not definitively rule out chromatin interactions, as technical limitations or transient binding dynamics could influence these results. To avoid over-interpretation, we have removed speculative statements about the chromatin-unbound status of H3K9me3 and H3K27me2 from the revised manuscript. This revision aligns with our broader effort to present conclusions strictly supported by the current data while highlighting open questions for future investigation.

      (3)The subcellular localization of IDH1, in particular its presence on chromatin, is not convincing in light of histone H3 being enriched in the cytoplasm on the same Western blot. H3 would be expected to be mostly localized to the chromatin fraction (see, e.g., PMID: 31408165 that the authors cite). The same issue is seen in Figure 4A.

      We sincerely appreciate the reviewer's insightful comment regarding the subcellular distribution of histone H3 in our study. We agree that histone H3 is classically associated with chromatin-bound fractions, and its cytoplasmic enrichment in our Western blot analyses appears counterintuitive at first glance. However, this observation is fully consistent with the unique biology of terminal erythroid differentiation, which involves drastic nuclear remodeling and histone release - a hallmark of terminal stage erythropoiesis. Terminal erythroid differentiation is characterized by progressive nuclear condensation, chromatin compaction, and eventual enucleation. During this phase, global chromatin reorganization leads to the active eviction of histones from the condensed nucleus into the cytoplasm. This process has been extensively documented in erythroid cells, with studies demonstrating cytoplasmic accumulation of histones H3 and H4 as a direct consequence of nuclear envelope breakdown and chromatin decondensation preceding enucleation [13-16]. Our experiments specifically analyzed terminal-stage polychromatic and orthochromatic erythroblasts. At this stage, histone releasing into the cytoplasm is a dominant biological event, explaining the pronounced cytoplasmic H3 signal in our subcellular fractionation assays.

      In summary, the cytoplasmic enrichment of histone H3 in our data aligns with established principles of erythroid biology and reinforces the physiological relevance of our findings. We thank the reviewer for raising this critical point, which allowed us to better articulate the unique aspects of our experimental system.

      Reference:

      (13) Hattangadi SM, Martinez-Morilla S, Patterson HC, Shi J, Burke K, et al. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood. 2014;124(12):1931-1940.

      (14) Zhao B, Mei Y, Schipma MJ, Roth EW, Bleher R, et al. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell. 2016;36(5): 498-510.

      (15) Zhao B, Liu H, Mei Y, Liu Y, Han X, et al. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes. Cancer Med. 2019;8(3):1169-1174. 

      (16) Zhen R, Moo C, Zhao Z, Chen M, Feng H, et al.  Wdr26 regulates nuclear condensation in developing erythroblasts. Blood. 2020;135(3):208-219.

      (4) This manuscript will highly benefit from more precise and complete explanations of the experiments performed, the material and methods used, and the results presented. At times, the wording is confusing. As an example, one of the "Key points" is described as "Dyserythropoiesis is caused by downregulation of SIRT1 induced by H3K79me3 accumulation." It should probably read "upregulation of SIRT1".

      We sincerely thank the reviewer for highlighting the need for improved clarity in our experimental descriptions and textual precision. We fully agree that rigorous wording is essential to accurately convey scientific findings. Specific modifications have been made and are highlighted in Track Changes mode in the resubmitted manuscript.

      The reviewer correctly identified an inconsistency in the original phrasing of one key finding. The sentence in question ("Dyserythropoiesis is caused by downregulation of SIRT1 induced by H3K79me3 accumulation") has been revised to:"Dyserythropoiesis is caused by the upregulation of SIRT1 mediated through H3K79me3 accumulation." This correction aligns with our experimental data showing that H3K79me3 elevation promotes SIRT1 transcriptional activation. We apologize for this oversight and have verified the consistency of all regulatory claims in the text.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) It will be helpful to mention/introduce the cells used for the study at the beginning of the results section. For example, for Figure 1A neither the figure legend nor the results text includes information on the cells used.

      Thanks for the reviewer’s suggestion. The detail information of the cells that were used in our study have been provided in the revised manuscript.

      (2) Important details for many figures are lacking. For example, in Figure 5, there is no mention of the replicates for ChIP-Seq studies. Also, the criteria used for quantifications of abnormal nuclei, % euchromatin vs heterochromatin, the numbers of biological replicates, and how many fields/cells were used for these quantifications are missing.

      We thank the reviewer for emphasizing the importance of methodological transparency. It has been revised accordingly. The ChIP-Seq data in Figure 5 was generated from three independent biological replicates to ensure reproducibility. In this study, Image J software was used to calculate the area of nuclear, heterochromatin/euchromatin and to quantify the percentage of euchromatin and heterochromatin. A minimum of 300 cells per group were evaluated, and the proportion of aberrant nuclei was calculated as (number of abnormal cells / total counted cells) × 100%.

      (3) It will be helpful if supplemental data are ordered according to how they are discussed in the text. Currently, the order of the supplemental data is hard to keep track of eg., the results section starts describing supplemental Figure 1, then the text jumps to supplemental Figure 5 followed by Supplemental Figure 3 (and so on).

      Thanks for the reviewer’s suggestion. It has been revised accordingly.

      (4) Overall, there are many incomplete sentences and typos throughout the manuscript including some of the figures e.g. on page 10 the sentence "Since the generation of erythroid with abnormal nucleus and reduction of mature red blood cells caused by IDH1 absence are notable characteristics of MDS and AML." is incomplete. On page 11, it reads "Histone post-modifications". This needs to be either histone modifications or histone post-translational modifications. In Figure 4C, the y-axis title is hard to understand "% of euchromatin and heterochromatin". Overall, the document needs to be proofread and revised carefully.

      Thanks for the reviewer’s suggestion. We have made revision accordingly in the revised manuscript. The sentence "Since the generation of erythroid with abnormal nucleus and reduction of mature red blood cells caused by IDH1 absence are notable characteristics of MDS and AML." has been revised to “The production of erythrocytes with abnormal nuclei and the reduction of mature erythrocytes due to IDH1 deletion are prominent features of MDS and AML.”  “% of euchromatin and heterochromatin” has been modified to “Area ratio of euchromatin to heterochromatin”.

      Reviewer #3 (Recommendations For The Authors):

      The following critique points aim to help the authors to improve their manuscript:

      (1) The authors reason (p. 10) that because mutant IDH1 has been shown to result in altered chromatin organization, this could be the case in their system, too. However, mutant IDH1 has an ascribed metabolic consequence, the generation of 2-HG, which further weakens the author's argument for an enzymatically independent role of IDH1 in their system. The same is true for the author's observation in Supplementary Figure 9B that in IDH1-mutant AML/MDS samples, H3K79me3 colocalized with the IDH1 mutants in the nucleus. Again, this speaks in favor of IDH1's role being linked to metabolism. The authors could re-write this manuscript, not so much emphasizing the separation of function between different subcellular forms of IDH1 but rather focusing on the chromatin changes and how they could be linked to the actual phenotype, the nuclear condensation and enucleation defect - if so, addressing the surprising finding of enrichment of both active and repressive chromatin marks will be important.

      Thanks for the reviewer’s suggestion. We agree with the reviewers and editors all the data we present in the current are not robust enough to rigorously distinguish between enzymatic and enzymatic-independent roles of IDH1. In our revised manuscript, we have removed all assertions of a "metabolism-independent" mechanism. Instead, we focus on demonstrating that nuclear-localized IDH1 contributes to chromatin state regulation during terminal erythropoiesis (e.g., H3K79me3 accumulation).

      (2) How come so many genes were downregulated by RNA-seq (about an equal number as upregulated genes) but not more open by ATAC-seq? The authors should discuss this result.

      Thanks for the reviewer's suggestion. ATAC-seq showed an increase in chromatin accessibility after IDH1 deletion, but the number of up-regulated genes was slightly larger than that of down-regulated genes, which may be caused by the metabolic changes affected by IDH1 deletion. In order to explore the effect of chromatin accessibility changes on gene expression after IDH1 deletion, we analyzed the changes in differential gene expression at the differential ATAC peak region (as shown in the figure below), and the results showed that the gene expression at the ATAC peak region with increased chromatin accessibility was significantly up-regulated. This may explain the regulation of chromatin accessibility on gene expression.

      (3) For the ChIP-seq analyses of H3K79me3, H3K27me2, and H3K9me3, the authors should not just show genome-wide data but also several example gene tracks to demonstrate the differential abundance of peaks in control versus IDH1 knockdown. Furthermore, the heatmap shown in Figure 5A should include broader regions spanning the gene bodies, to visualize the intergenic H3K27me2 and H3K9me3 peaks. Expression could very well be regulated from these intergenic regions as they could bear enhancer regions. ChIP-seq for H3K27Ac in the same setting would be very useful to identify those enhancers.

      Thanks for the reviewer’s suggestion. It has been revised accordingly. We reanalyzed the ChIP-seq peak signal of H3K79me3, H3K27me2 and H3K9me3 in a wider region (±5Kb) at gene body, and the results showed that the H3K27me2 and H3K9me3 peak signals did not change significantly. Since H3K79me3 showed a higher peak signal and was mainly enriched in the promoter region, our subsequent analysis focusing on the impact of H3K79me3 accumulation on chromatin accessibility and gene expression might be more valuable.

      Author response image 3.

      ChIP-seq analysis show that the peak signal of H3K79me3,H3K27me2 and H3K9me3. (A) Heatmaps displayed normalized ChIP signal of H3K9me3, H3K27me2, and H3K79me3 at gene body regions. The window represents ±5 kb regions from the gene body. TES, transcriptional end site; TSS, transcriptional start site. (B) Representative peaks chart image showed normalized ChIP signal of H3K9me3, H3K27me2, and H3K79me3 at gene body regions.

      (4) The absent or very mild delay (also no significance visible in the quantification plots) in the generation of orthochromatic erythroblasts on Day 13 upon IDH1 shRNA knockdown as per a4-integrin/Band3 flow cytometry does not correspond to the already quite prominent number of multinucleated cells at that stage seen by cytospin/Giemsa staining. Why do the authors think this is the case? Cytospin/Giemsa staining might be the better method to quantify this phenotype and the authors should quantify the cells at different stages in at least 100 cells from non-overlapping cytospin images.

      Thanks for the reviewer’s suggestion. We have supplemented the cytpspin assay and the results were presented in Supplemental Figure 4.

      (5) The pull-down assay in Figure 7E does not show a specific binding of H3K79me3 to the SIRT1 promoter. Rather, there is just more H3K79me3 in the nucleus, thus leading to generally increased binding. The authors should show that H3K79me3 does not bind more just everywhere but to specific loci. The ChIP-seq data mention only categories but don't show any gene lists that could hint at the specificity of H3K79me3 binding at genes that would promote nuclear abnormalities and enucleation defects.

      We thank the reviewer for pointing this out. The GSEA results of H3K79me3 peak showed enrichment of chromatin related biological processes, and the list of associated genes is shown Figure 7B. In addition, we also displayed the changes in H3K79me3 peak signals, ATAC peak signals, and gene expression at gene loci of three chromatin-associated genes (SIRT1, KMT5A and NUCKS1).

      (6) P. 12: "Representatively, gene expression levels and ATAC peak signals at SIRT1 locus were elevated in IDH1-shRNA group and were accompanied by enrichment of H3K9me3 (Figure 7F)." Figure 7F does not show an enrichment of H3K9me3, but if the authors found such, they should explain how this modification correlates with the activation of gene expression.

      Thank you for bringing this issue to our attention. We sincerely apologize for the mistake in the description of Figure 7F on page 12. We have already corrected this error in the revised manuscript.

      (7) Related to the mild phenotype by flow cytometry on Day 13, are the "3 independent biological replicates" from culturing and differentiating CD34 cells from 3 different donors? If all are from the same donor, experiments from at least a second donor should be performed to generalize the results.

      In our current study, CD34<sup>+</sup> cells were derived from different donors. 

      (8) If the images in Supplementary Figure 4 are only the indicated cell type, then it is not clear how the data were quantified since only some cells in each image are pointed at and others do not seem to have as large nuclei. There is also no explanation in the legend what the colors mean (nuclei were presumably stained with DAPI, not clear what the cytoplasm stain is - GPA?).

      We thank the reviewer for pointing this out. We have revised the manuscript accordingly. Specifically, the nuclei was stained with DAPI and the color was blue. The cell membrane was stained with GPA and the color was red. This staining method allows for clear visualization of the cell structure and helps to better understand the localization of the proteins of interest.

      (9) It is not clear to this reviewer whether Figure 4F is a quantification of the Western Blot or of the IF data.

      Figure 4F is a quantification of the Western Blot experiment.

      (10) The authors sometimes do not describe experiments well, e.g., "treatment of IDH1-deficient erythroid cells with IDH1-EX527" (p. 13). EX-527 is a SIRT1 inhibitor, which the authors only explicitly mention later in that paragraph. It is unclear to this reviewer, why the authors call it IDH1-EX527.

      Thank you for pointing out the unclear description in our manuscript. We apologize for the confusion caused by the unclear statement. We have revised the manuscript accordingly. The compound EX-527 is a SIRT1 inhibitor, and we have corrected the description to simply "EX-527" in the revised manuscript.

      (11) The end of the introduction needs revising to be more concise; the last paragraph on p. 4 ("Recently, the decreased expression of IDH1...") partially should be integrated with the previous paragraph, and partially is repeated in the last paragraph (top paragraph on p. 5). The last sentence on p. 4, "These findings strongly suggest that aberrant expression of IDH1 is also an important factor in the pathogenesis of AML and MDS.", should rather read "increased expression of IDH1", to distinguish it from mutant IDH1 (mutant IDH1 is also aberrantly expressed IDH1).

      We appreciated the reviewer for the helpful suggestion. Considering that the inclusion of this paragraph did not provide a valuable contribution to the formulation of the scientific question, we have removed it after careful consideration, and the revised manuscript is generally more logically smooth.

      (12) Abstract and last sentence of the introduction: "innovative perspective" should be re-worded, as the authors present data, not a perspective. Maybe could use "evidence".

      Thanks for the reviewer’s suggestion. It has been revised accordingly.

      (13) "IDH1-mut AML/MDS" on p. 11. The authors should provide more information about these AML/MDS samples. The legend contains no information about them/their mutational status. How many samples did the authors look at? Do these cells contain mutations other than IDH1?

      Thanks for the reviewer’s suggestion. The detail information of these AML/MDS samples are provide in supplemental table 1. In our current study, we collected ten AML/MDS samples and the majority of the samples only contain IDH1 mutations at different sites.

      (14) The statement, "Taken together, these results indicated that IDH1 deficiency reshaped chromatin states and subsequently altered gene expression pattern, especially for genes regulated by H3K79me3, which was the mechanism underlying roles of IDH1 in modulation of terminal erythropoiesis." (p. 10), is not correct at that point in the manuscript as the authors have not yet introduced the RNA-seq data.

      Thanks for the reviewer’s suggestion. The statement has been revised to “Taken together, these results indicated that IDH1 deficiency reshaped chromatin states by altering the abundance and distribution of H3K79me3, which was the mechanism underlying roles of IDH1 in modulation of terminal erythropoiesis”.

      (15) For easier readability, the authors should present the data in order. For example, the supplemental data for IDH shRNA and siRNA should be presented together and not in Supplementary Figures 1 and 5. Supplementary Figure 3 is mentioned after Supplementary Figure 1, but before Supplementary Figure 2 - again, all data need to be presented in subsequent figures to be viewed together.

      Thank you for your suggestion regarding the order of data presentation. We have reorganized the figures in the manuscript to improve readability. We apologize for any confusion caused by the previous arrangement and hope that the revised version meets your expectations.

    1. Author response:

      Reviewer #1:

      The manuscript Xu et al. explores the regulation of the microtubule minus end protein CAMSAP2 localization to the Golgi by the Serine/threonine-protein kinase MARK2 (PAR1, PAR1B). The authors utilize immunofluorescence and biochemical approaches to demonstrate that MARK2 is localized at the Golgi apparatus via its spacer domain. They show that depletion of this protein alters Golgi morphology and diminishes CAMSAP2 localization to the Golgi apparatus. The authors combine mass spectroscopy and immunoprecipitation to show that CAMSAP2 is phosphorylated at S835 by MARK2, and that this phosphorylation regulates localization of CAMSAP2 at Golgi membranes. Further, the authors identify USO1 (p115) as the Golgi resident protein mediating CAMSAP2 recruitment to the Golgi apparatus following S835 phosphorylation. The authors would need to address the following queries to support their conclusions.

      We sincerely thank the reviewer for their valuable time and effort in evaluating our manuscript. We deeply appreciate the constructive feedback and insightful suggestions, which have been instrumental in improving the quality and clarity of our study. We have carefully considered all the comments and have made the necessary revisions to address the concerns raised.

      Major Comments 

      (1) Dynamic localization of CAMSAP2 during Golgi reorientation

      - The authors use fixed wound edges assays and co-localization analysis to describe changes in CAMSAP2 positioning during Golgi reorientation in response to polarizing cues (a free wound edge in this case). In Figure 1C, they present a graphical representation of quantified immunofluorescence images, using color coding to to describe the three states of Golgi reorientation in response to a wound (green, blue, red indicating non-polarised, partial and complete Golgi reorientation, respectively). They then use these 'colour coded' classifications to quantitate CAMSAP2/GM130 co-localization.It is unclear why the authors have not just used representative immunofluorescence images in the main figures. Transparent, color overlays could be placed over the cells in the representative images to indicate which of the three described states each cell is currently exhibiting. However, for clarity, I would recommend changing the color coded 'states' to a descriptor rather than a color. i.e. Figure 1D x axis labels should be 'complete' and 'partial', instead of 'red' and 'blue'. 

      Thank you for this insightful suggestion. We have added representative immunofluorescence images with transparent color overlay to indicate the three Golgi orientation states. These images are included in Supplementary Figure 2B-C, providing a clear visual reference for the quantitative data. Additionally, we have revised the x-axis labels in Figure 1E from "Red" and "Blue" to "Complete" and "Partial" to ensure clarity and consistency with the descriptive terminology in the text. These changes are described in the Results section (page 7, lines 15-19) and the figure legend (page 29, lines 27-29).

      We believe these updates improve the clarity and accessibility of our figures and hope they address the reviewer’s concerns.

      - note- figure 2 F-G, is semi quantitative, why did the authors not just measure Golgi angle using the nucleus and Golgi distribution?

      We appreciate the reviewer’s comment on this point. Following the recommendation, we have performed an additional analysis measuring Golgi orientation angles based on the nucleus-Golgi distribution. This quantitative approach complements our initial semi-quantitative analysis and provides a more precise assessment of Golgi orientation during cell migration.

      The new data have been incorporated into Supplementary Figure 1F-H. These results clearly demonstrate the consistency between the quantitative and semi-quantitative methods, further validating our findings and highlighting the dynamic changes in Golgi orientation during cell migration. These changes are described in the Results section (page 6, lines 24-31).

      - While it is established that the Golgi is dispersed during reorientation in wound edge migration, the Golgi apparatus also becomes dispersed/less condensed prior to cell division. As the authors have used fixed images - how are they sure that the Golgi morphology or CAMSAP2 localization in 'blue cells' are indicative of Golgi reorientation and not division? Live imaging of cells expressing CAMSAP2, and an additional Golgi marker could be used to demonstrate that the described changes in Golgi morphology and CAMSAP2 localization are occurring during the rear-to-front transition of the Golgi.

      Thank you for raising this important question. To address this concern, we carefully examined the nuclear morphology of dispersed Golgi cells and found no evidence of mitotic features, indicating that these cells are not undergoing division (Figure 1A, Supplemental Figure 2A). Furthermore, during the scratch wound assay, we use 2% serum to culture the cells, which helps minimize the impact of cell division. This analysis has been added to the Results section (page7, lines 19-22 in the revised manuscript).

      Additionally, we conducted live-cell imaging, as suggested, using cells expressing a Golgi marker. This approach confirmed that Golgi dispersion occurs transiently during reorientation in cell migration. The new live-cell imaging data have been incorporated into Supplementary Figure 2A, and the corresponding description has been updated in the Results section (page 7, lines 2-5).

      Finally, considering that overexpression of CAMSAP2 can lead to artifactually condensed Golgi structures, we used endogenous staining to observe CAMSAP2 localization at different stages of migration. These observations provide a clearer understanding of CAMSAP2 dynamics during Golgi reorientation and are now presented in revised Figure 1A-B. This information has been described in the Results section (page 7, lines 5-10).

      We hope these additions and clarifications address the reviewer’s concerns. Once again, we are deeply grateful for this constructive feedback, which has greatly improved the robustness of our study.

      (2) MARK2 localization to the Golgi apparatus

      - The authors investigated the positioning of endogenous MARK2 via immunofluorescence staining, and exogenous flag-tagged MARK2 in a KO background. The description of the protocol required to visualize Golgi localization of MARK2 is inconsistent between the results and methods text. The results text reads as through the 2% serum incubation occurs as a blocking step following fixation. Conversely, the methods section describes the 2% serum incubation as occurring just prior to fixation as a form of serum starvation. The authors need to clarify which of these protocols is correct. Further, whilst I can appreciate that the mechanistic understanding of why serum starvation is required for MARK2 Golgi localization is beyond the scope of the current work, the authors should at a minimum speculate in the discussion as to why they think it might occur.

      We sincerely thank the reviewer for the constructive feedback on the localization of MARK2 at the Golgi. Due to the complexity and variability of this phenomenon, we decided to remove the related data from the current manuscript to maintain the rigor of our study. However, we have included a discussion of this phenomenon in the Discussion section (page 13, lines 31-39 and page 14, 1-6in the revised manuscript) and plan to further investigate it in future studies.

      The localization of MARK2 at the Golgi was initially observed in experiments following serum starvation, where cells were fixed and stained (The data is not displayed). This observation was supported by the loss of Golgi localization in MARK2 knockdown cells, indicating the specificity of the antibody (The data is not displayed). However, this phenomenon was not consistently observed across all cells, likely due to its transient nature.We speculate that the localization of MARK2 to the Golgi depends on its activity and post-translational modifications. For example, phosphorylation at T595 has been reported to regulate the translocation of MARK2 from the plasma membrane to the cytoplasm (Hurov et al., 2004). Serum starvation might induce modifications or conformational changes in MARK2, leading to its temporary Golgi localization. Additionally, we hypothesize that this localization may coincide with specific Golgi dynamics, such as the transition from dispersed to ribbon-like structures during cell migration.

      We also acknowledge the inconsistency in the Results and Methods sections regarding serum starvation. We confirm that serum starvation was performed prior to fixation as an experimental condition, rather than as a blocking step in immunostaining. This clarification has been incorporated into the revised Methods section (page 24, lines 11-12).

      We hope this clarification, along with our planned future studies, adequately addresses the reviewer’s concerns. Once again, we deeply appreciate the reviewer’s valuable comments, which have provided important insights for our ongoing work. References:

      Hurov, J.B., Watkins, J.L., and Piwnica-Worms, H. (2004). Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14 (8): 736-741.

      - The authors should strengthen their findings by using validated tools/methods consistent with previous publications. i.e. Waterman lab has published two MARK2 constructs- Apple and eGFP tagged versions (doi.org/10.1016/j.cub.2022.04.088), and the localization of MARK2 in U2Os cells (using the same antibody (Anti- MARK2 C-terminal, ABCAM Cat# ab136872). The authors should (1) image the cells live using eGFP-tagged MARK2 during serum starvation to show the dynamics of this localization, (2) image U2Os cells using the abcam ab136872 antibody +/- 2% serum starve. Two MARK2 antibodies are listed in Table 2. Does abcam (ab133724) show a similar localisation?

      - The Golgi localization of MARK2 occurs in the absence of the T structural domain, but not when full length MARK2 is expressed. The authors conclude the T- domain is likely inhibitory. When combined with the requirement for serum starvation for this interaction to occur, the authors should clarify the physiological relevance of these observations.

      We sincerely thank the reviewer for their valuable suggestions regarding the use of tools and methods and the physiological relevance of MARK2 localization to the Golgi. Regarding the question of how MARK2 itself localizes to the Golgi, we are currently unable to fully elucidate the underlying mechanism. Therefore, we have removed the discussion of MARK2’s Golgi localization from the manuscript to ensure scientific accuracy. However, Below, we provide our detailed response as soon as possible:

      First, regarding the suggestion to use tools and methods developed by the Waterman lab to strengthen our findings, we have carefully evaluated their applicability. In our live-cell imaging experiments, we found that full-length MARK2 does not stably localize to the Golgi, even under serum starvation conditions. However, truncated MARK2 mutants lacking the Tail (T) domain exhibit robust Golgi localization. Furthermore, our immunofluorescence staining results indicate that the Spacer domain is the minimal region required for MARK2 localization at the Golgi. Based on these findings, we believe that live-cell imaging of EGFP-tagged full-length MARK2 may not effectively reveal the dynamics of its Golgi localization. However, we plan to focus on the truncated constructs in future studies to better explore the mechanisms underlying MARK2's dynamic behavior. 

      Regarding the use of the ab136872 antibody to stain U2OS cells with and without serum starvation, we note that the protocol described by the Waterman lab involves pre-fixation and permeabilization steps, which are not compatible with live-cell imaging. Additionally, we observed that MARK2 Golgi localization appears to be condition-dependent and may coincide with specific Golgi dynamics, such as transitions from dispersed stacks to intact ribbon structures. These events are likely brief and challenging to capture consistently. Nevertheless, we recognize the value of this experimental design and plan to adapt the staining conditions in future work to validate our results further. As for the ab133724 antibody listed in Table 2, we clarify that it has only been validated for Western blotting in our study and does not yield reliable results in immunofluorescence experiments. For this reason, all immunofluorescence staining in this study relied exclusively on ab136872. This distinction has been clarified in the revised Table 2 .

      Regarding the hypothesis that the Tail domain of MARK2 is inhibitory, our observations showed that truncated MARK2 mutants lacking the T domain stably localized to the Golgi, whereas fulllength MARK2 did not. Literature evidence supports this hypothesis, as studies on the yeast homolog Kin2 indicate that the C-terminal region (including the Tail domain) binds to the Nterminal catalytic domain to inhibit kinase activity (Elbert et al., 2005). We speculate that serum starvation disrupts this intramolecular interaction, relieving the inhibition by the T domain, activating MARK2, and promoting its localization to the Golgi. Moreover, we hypothesize that the transient nature of MARK2 localization to the Golgi may be related to specific Golgi remodeling processes, such as the transition from dispersed stacks to intact ribbon structures during cell migration or polarity establishment. 

      References:

      Elbert, M., Rossi, G., and Brennwald, P. (2005). The yeast par-1 homologs kin1 and kin2 show genetic and physical interactions with components of the exocytic machinery. Mol Biol Cell 16 (2): 532-549.

      (3) Phosphorylation of CAMSAP2 by MARK2

      - The authors examined the effects of MARK2 phosphorylation of CAMSAP2 on Golgi architecture through expression of WT-CAMSAP2 and two CAMSAP2 S835 mutants in CAMSAP2 KO cells. They find that CAMSAP2 S835A (non-phosphorylatable) was less capable of rescuing Golgi morphology than CAMSAP2 S835D (phosphomimetic). Golgi area has been measured to demonstrate this phenomenon. Representative immunofluorescence images in Fig. 4D appear to indicate that this is the case. However, quantification in Fig. 4E does not show significance between HA-CAMSAP2 and HA-CAMSAP2A that would support the initial claim. The authors could analyze other aspects of Golgi morphology (e.g. number of Golgi fragments, degree of dispersal around the nucleus) to capture the clear structural defects demonstrated in HACAMSAP2A cells.

      We sincerely thank the reviewer for their valuable feedback and for pointing out potential areas of improvement in our analysis of Golgi morphology. We apologize for any misunderstanding caused by our description of the results in Figure 4E.

      The quantification indeed shows a significant difference between HA-CAMSAP2 and HACAMSAP2A in terms of Golgi area, as indicated in the figure by the statistical annotations (pvalue provided in the legend). To ensure clarity, we have revised the figure legend (page 32, lines 19-23 in the revised manuscript) to explicitly describe the statistical significance, and the method used for quantification.

      Because the quantification indeed shows a significant difference between HA-CAMSAP2 and HA-CAMSAP2A in terms of Golgi area, and to maintain consistency throughout the manuscript, we did not further analyze other aspects of Golgi morphology.

      We hope this clarification, along with the additional analyses, will address the reviewer’s concerns. Once again, we are deeply grateful for these constructive comments, which have helped us improve the quality and robustness of our study.

      - Wound edge assays are used to capture the difference in Golgi reorientation towards the leading edge between CAMSAP2 S835A and CAMSAP2 S835D. However, these studies lack comparison to WT-CAMSAP2 that would support the role of phosphorylated CAMSAP2 in reorienting the Golgi in this context.

      We sincerely thank the reviewer for their insightful suggestion. In response, we have added a comparison between CAMSAP2 S835A/D and WT-CAMSAP2, in addition to HT1080 and MARK2 KO cells, to better evaluate the role of phosphorylated CAMSAP2 in Golgi reorientation.

      The results, now shown in Figure 5A-C, indicate that in the absence of MARK2, there is no significant difference in Golgi reorientation between WT-CAMSAP2 and CAMSAP2 S835A. This observation supports the conclusion that MARK2-mediated phosphorylation of CAMSAP2 at S835 is essential for effective Golgi reorientation.

      To enhance clarity, we have updated the corresponding Results section (page 9, lines 37-40 and page 10, line 1 in the revised manuscript) to describe this additional comparison. We believe this analysis strengthens our findings and provides a clearer understanding of the role of phosphorylated CAMSAP2 in Golgi dynamics.

      We hope this additional data addresses the reviewer’s concerns. Once again, we are grateful for the constructive feedback, which has helped improve the clarity and robustness of our study.

      (4) Identification of CAMSAP2 interaction partners

      - Quantification of interaction ability between CAMSAP2 and CG-NAP, CLASP2, or USO1 in Fig. 5D, 5F and 5J respectively, lack WT-CAMSAP2 comparisons.

      We sincerely thank the reviewer for their valuable suggestion. In response, we have included WT-CAMSAP2 data in the quantification of interaction ability between CAMSAP2 and CG-NAP, CLASP2, and USO1. These results, now shown in revised Figures 5 D-G and Figures 6 C-D, provide a direct comparison that further validates the differential interaction abilities of CAMSAP2 mutants.

      The inclusion of WT-CAMSAP2 allows us to better contextualize the effects of specific mutations on CAMSAP2 interactions and strengthens our conclusions regarding the role of these interactions in Golgi dynamics.

      We hope this addition addresses the reviewer’s concerns and enhances the clarity and robustness of our study. We deeply appreciate the constructive feedback, which has been instrumental in improving our manuscript.

      - The CG-NAP immunoblot presented in Fig. 5C shows that the protein is 310 kDa, which is the incorrect molecular weight. CG-NAP (AKAP450) should appear at around 450 kDa. Further, no CG-NAP antibody is included in Table 2 - Information of Antibodies. The authors need to explain this discrepancy.

      We sincerely apologize for the lack of clarity in our annotation and description, which may have caused confusion regarding the CG-NAP immunoblot presented in Figure 5C (Figure 5D in the revised manuscript). To clarify, CG-NAP (AKAP450) is indeed a 450 kDa protein, and the marker at 310 kDa represents the molecular weight marker’s upper limit, above which CG-NAP is observed. This has been clarified in the figure legend (page 33, lines 21-23 in the revised manuscript).

      Regarding the CG-NAP antibody, it was custom-made and purified in our laboratory. Polyclonal antisera against CG-NAP, designated as αEE, were generated by immunizing rabbits with GSTfused fragments of CG-NAP (aa 423–542). This antibody has been validated extensively in our previous research, demonstrating its specificity and reliability (Wang et al., 2017). The details of the antibody preparation are included in the footnote of Table 2 for reference.

      We hope this clarification, along with the additional context regarding the antibody validation, resolves the reviewer’s concerns. We are deeply grateful for the reviewer’s attention to detail, which has helped us improve the clarity and rigor of our manuscript.

      References:

      Wang, J., Xu, H., Jiang, Y., Takahashi, M., Takeichi, M., and Meng, W. (2017). CAMSAP3dependent microtubule dynamics regulates Golgi assembly in epithelial cells. Journal of genetics and genomics = Yi chuan xue bao 44 (1): 39-49.

      Minor Comments

      - Authors should change immunofluorescence images to colorblind friendly colors. The current presentation of merged overlays makes it really difficult to interpret- I would strongly encourage inverted or at a minimum greyscale individual images of key proteins of interest.

      We sincerely thank the reviewer for their valuable suggestion regarding the presentation of immunofluorescence images. In response, we have converted the images in Figure 1C to greyscale individual images for each key protein of interest. This adjustment ensures that the figures are more accessible and interpretable, including for readers with color vision deficiencies.

      We hope this modification addresses the reviewer’s concern and improves the clarity of our data presentation. We are grateful for the constructive feedback, which has helped us enhance the overall quality of our figures.

      - On p. 8 text should be amended to 'Previous literature has documented MARK2's localization to the microtubules, microtubule-organizing center (MTOC), focal adhesions..'

      We sincerely thank the reviewer for their comment regarding the text on page 8. Considering the reasoning provided in response to question 2, where we clarified that MARK2's Golgi localization is not fully understood, we have decided to remove this section from the manuscript to maintain the accuracy and rigor of our study.

      We appreciate the reviewer’s attention to detail and constructive feedback, which has helped us improve the clarity and focus of our manuscript. 

      - In Fig.1A scale bars are not shown on individual channel images of CAMSAP or GM130

      We sincerely thank the reviewer for pointing out the omission of scale bars in the individual channel images of CAMSAP and GM130 in Figure 1A (Figure 1C in the revised manuscript). In response, we have added a scale bar (5 μm) to the CAMSAP2 channel, as shown in the revised Figure 1C. These updates have been described in the figure legend (page 29, line 21).

      We hope this modification addresses the reviewer’s concern and improves the accuracy and clarity of our figure presentation. We greatly appreciate the reviewer’s constructive feedback, which has helped enhance the quality of our manuscript.

      - In Fig. 1B the title should be amended to 'Colocalization of CAMSAP2/GM130'

      We sincerely thank the reviewer for their suggestion to amend the title in Figure 1B (Figure 1D in the revised manuscript). In response, we have updated the title to "Colocalization of CAMSAP2/GM130," as shown in the revised Figure 1D.

      We hope this modification addresses the reviewer’s concern and improves the clarity and accuracy of the figure. We greatly appreciate the reviewer’s valuable feedback, which has helped us refine the presentation of our results.

      - In Fig. 2F, 5A, and Sup Fig 3C scale bars have been presented vertically

      We sincerely thank the reviewer for pointing out the issue with the vertical orientation of scale bars in Figures 2F (Figure 2D in the revised manuscript), 5A, and Supplementary Figure 3C. In response, we have modified the scale bars in revised Figures 2D and 5A to a horizontal orientation for improved consistency and clarity. Additionally, Supplementary Figure 3C has been removed from the revised manuscript.

      We hope these adjustments address the reviewer’s concerns and enhance the overall presentation quality of the figures. We greatly appreciate the reviewer’s constructive feedback, which has helped us refine our manuscript.

      - Panels are not correctly aligned, and images are not evenly spaced or sized in multiple figures - Fig. 2F, 4D, Sup Fig. 1F, Sup Fig. 2C, Sup Fig. 3E, Sup Fig. 4C

      We sincerely thank the reviewer for pointing out the misalignment and uneven spacing or sizing of panels in multiple figures, including Figures 2F, 4D, Supplementary Figures 1F, 2C, 3E, and 4C (Figure 2D, 4D, Supplementary Figures 1F, 2C, and 3H in the revised manuscript.

      Supplementary Figure 3E was removed from our manuscript). In response, we have standardized the spacing and sizing of all panels throughout the manuscript to ensure consistency and improve visual clarity.

      We hope this modification addresses the reviewer’s concerns and enhances the overall presentation quality of our figures. We greatly appreciate the reviewer’s constructive feedback, which has helped us improve the organization and professionalism of our manuscript.

      - An uncolored additional data point is present in Fig. 3F

      We sincerely thank the reviewer for pointing out the presence of an uncolored additional data point in Figure 3F. In response, we have removed this data point from the revised figure to ensure accuracy and clarity.

      We hope this adjustment resolves the reviewer’s concern and improves the overall quality of the figure. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us refine our manuscript.

      - In Fig. 3A 'GAMSAP2/GM130' in the vertical axis label should be amended to 'CAMSAP2/GM130'

      We sincerely thank the reviewer for pointing out the error in the vertical axis label of Figure 3A. In response, we have corrected "GAMSAP2/GM130" to "CAMSAP2/GM130," as shown in the revised Figure 3I.

      We hope this correction resolves the reviewer’s concern and improves the accuracy of our figure. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us refine our manuscript.

      - In Fig 5A the green label should be amended to 'GFP-CAMSAP2' instead of 'GFP'

      We sincerely apologize for the confusion caused by our labeling in Figure 5A. To clarify, the green label “GFP” refers to the antibody used, while “GFP-CAMSAP2” is indicated at the top of the figure to specify the construct being analyzed.

      We hope this explanation resolves the misunderstanding and provides clarity regarding the labeling in Figure 5A. We greatly appreciate the reviewer’s feedback, which has allowed us to address this issue and improve the precision of our figure annotations.

      - The repeated use of contractions throughout the manuscript was distracting, I would strongly encourage removing these.

      We sincerely thank the reviewer for pointing out the distracting use of contractions in the manuscript. In response, we have removed and replaced all contractions with their full forms to improve the clarity and formal tone of the text.

      We hope this modification addresses the reviewer’s concern and enhances the readability and professionalism of our manuscript. We greatly appreciate the reviewer’s constructive feedback, which has helped us refine the quality of our writing.

      Reviewer #2: 

      Summary  

      This work by the Meng lab investigates the role of the proteins MARK2 and CAMSAP2 in the Golgi reorientation during cell polarisation and migration. They identified that both proteins interact together and that MARK2 phosphorylates CAMSAP2 on the residue S835. They show that the phosphorylation affects the localisation of CAMSAP2 at the Golgi apparatus and in turn influences the Golgi structure itself. Using the TurboID experimental approach, the author identified the USO1 protein as a protein that binds differentially to CAMSAP2 when it is itself phosphorylated at residue 835. Dissecting the molecular mechanisms controlling Golgi polarisation during cell migration is a highly complex but fundamental issue in cell biology and the author may have identified one important key step in this process. However, although the authors have made a genuine iconographic effort to help the reader understand their point of view, the data presented in this study appear sometimes fragile, lacking rigour in the analysis or over-interpreted. Additional analyses need to be conducted to strengthen this study and elevate it to the level it deserves.

      We sincerely thank the reviewer for their thoughtful evaluation and recognition of our study's significance in understanding Golgi reorientation during cell migration. We appreciate the constructive feedback regarding data robustness, clarity, and interpretation. In response, we have conducted additional analyses, revised data presentation, and ensured cautious interpretation throughout the manuscript. These changes aim to address the reviewer’s concerns comprehensively and strengthen the scientific rigor of our study.

      Major comments

      In order to conclude as they do about the putative role of USO1, the authors need to perform a siRNA/CRISPR of USO1 to validate its role in anchoring CAMSAP2 to the Golgi apparatus in a MARK2 phosphorylation-dependent manner. In other words, does depletion of USO1 affect the recruitment of CAMSAP2 to the Golgi apparatus?

      We sincerely thank the reviewer for their insightful suggestion regarding the role of USO1 in anchoring CAMSAP2 to the Golgi apparatus. In response, we performed USO1 knockdown using siRNA and quantified the Pearson correlation coefficient of CAMSAP2 and GM130 colocalization in control and USO1-knockdown cells.

      The results show that CAMSAP2 localization to the Golgi is significantly reduced in USO1knockdown cells, confirming that USO1 plays a critical role in recruiting CAMSAP2 to the Golgi apparatus. These results are now presented in Figures 6 E–G, and corresponding updates have been incorporated into the Results section (page 10, lines 36-37 in the revised manuscript).

      We hope this additional experiment addresses the reviewer’s concern and strengthens our conclusions regarding the role of USO1. We are grateful for the reviewer’s constructive feedback, which has greatly improved the robustness of our study.  

      It is not clear from this study exactly when and where MARK2 phosphorylates CAMSAP2. What is the result of overexpression of the two proteins in their respective localisation to the Golgi apparatus? As binding between CAMSAP2 and MARK2 appears robust in the immunoprecipitation assay, this should be readily investigated. 

      We sincerely thank the reviewer for their insightful comments and questions. To address the role of MARK2 in regulating CAMSAP2 localization to the Golgi apparatus, we overexpressed GFPMARK2 in cells and compared its effects on CAMSAP2 localization to the Golgi with control cells overexpressing GFP alone. Our results show that CAMSAP2 localization to the Golgi is significantly increased in GFP-MARK2-overexpressing cells, as shown in Supplementary Figures 3C and 3E. Corresponding updates have been incorporated into the Results section (page 8, lines 25-27 in the revised manuscript).

      Regarding the question of how MARK2 itself localizes to the Golgi, we are currently unable to fully elucidate the underlying mechanism. Therefore, we have removed the discussion of MARK2’s Golgi localization from the manuscript to ensure scientific accuracy. Consequently, we have not conducted experiments to assess the effects of CAMSAP2 overexpression on MARK2’s localization to the Golgi.

      We hope this explanation clarifies the reviewer’s concerns. We are grateful for the reviewer’s constructive feedback, which has guided us in improving the clarity and focus of our study.

      To strengthen their results, can the author map the interaction domains between CAMSAP2 and MARK2? The authors have at their disposal all the constructs necessary for this dissection.

      We sincerely thank the reviewer for their insightful suggestion to map the interaction domains between CAMSAP2 and MARK2. In response, we performed immunoprecipitation experiments using truncated constructs of CAMSAP2. Our results reveal that MARK2 interacts specifically with the C-terminus (1149F) of CAMSAP2, as shown in Supplementary Figures 3A and 3B. Corresponding updates have been incorporated into the Results section (page 7, lines 41-42 and page 8, line 1 in the revised manuscript).

      We hope this additional analysis addresses the reviewer’s suggestion and further strengthens our conclusions. We greatly appreciate the reviewer’s constructive feedback, which has helped improve the depth of our study.

      Minor comments

      Sup-fig1  

      H: It is not clear if the polarisation experiment has been repeated three times (as it should) and pooled or is just the result of one experiment?

      We sincerely apologize for the lack of clarity regarding the experimental details for Supplementary Figure 1H. To clarify, the polarization experiment was repeated three times, and the results were pooled to generate the data presented. We have updated the figure legend for Supplementary Figure 1H to explicitly state this information (page 35, lines 27-29 in the revised manuscript).

      We hope this clarification resolves the reviewer’s concern. We greatly appreciate the reviewer’s careful review and constructive feedback, which have helped us improve the accuracy and transparency of our manuscript.

      Sup-fig2  

      C: "Immunofluorescence staining plots" formula used in the legend is not clear. Which condition is presented in the panel, parental HT1080 or CAMSAP2 KO cells?  

      We thank the reviewer for pointing out the lack of clarity regarding the conditions presented in Supplementary Figure 2C. To clarify, the immunofluorescence staining plots shown in this panel are from parental HT1080 cells. We have updated the figure legend to include this information (page 36, line 14 in the revised manuscript).

      We hope this clarification resolves the reviewer’s concern and improves the transparency of our data presentation. We greatly appreciate the reviewer’s feedback, which has helped us refine the manuscript.

      Figure 1  

      D: In the plot, the colour of the points for the "red cells" are red but the one for the "blue cells" are green, this is confusing.

      E: Once again, the colour choice is confusing as blue cells (t=0.5h) are quantified using red dots and red cells (t=2h) quantified using green dots. The t=0h condition should be quantified as well and added to the graph.  

      F: Representative CAMSAP2 immunofluorescence pictures for the three time points should be provided in addition to the drawings.  

      We thank the reviewer for their valuable comments regarding Figure 1D (revised Figure 1E), Figure 1E (revised Figure 1B), and Figure 1F (revised Supplementary Figure 2C).

      - Figure 1D (revised Figure 1E): we have modified the x-axis labels and adjusted the color scheme of the data points to ensure consistency and avoid confusion.

      - Figure 1E (revised Figure 1B): we have updated the x-axis and included the quantification of the t=0h condition, which has been added to the graph.

      - Figure 1F (revised Supplementary Figure 2C): we have provided representative immunofluorescence images of CAMSAP2 for the three-time points to complement the schematic drawings.

      We hope these revisions address the reviewer’s concerns and improve the clarity and completeness of our data presentation. We greatly appreciate the reviewer’s constructive feedback, which has significantly contributed to enhancing our manuscript.

      Figure 2  

      A: No methodology in the material and methods is provided for this analysis.  

      B: Can the authors be more precise regarding the source of the CAMSAP2 interactants? Can the author provide the citation of the publication describing the CAMSAP2-MARK2 interaction?  

      D: Genotyping for the MARK2 KO cell line should be provided the same way it was provided for the CAMSAP2 cell line in Sup-fig1. "MARK2 was enriched around the Golgi apparatus in a  significant proportion of HT1080 cells": which proportion of the cells?  

      F: The time point of fixation is missing  

      G: It is not clear if the polarisation experiment has been repeated three times (as it should) and pooled or is just the result of one experiment?  

      We thank the reviewer for their detailed comments and suggestions regarding Figure 2. Below, we provide clarifications and outline the modifications made:

      - Figure 2A: The methodology for this analysis has been added to section 5.14 (Data statistics). Specifically, we have stated: “GO analysis of proteins was plotted using https://www.bioinformatics.com.cn, an online platform for data analysis and visualization” (page 26 lines 5-6 in the revised manuscript).

      - Figure 2B: The CAMSAP2 interactants were derived from the study by Wu et al., 2016, which provides the source of these interactants. The interaction between CAMSAP2 and MARK2 is referenced from Zhou et al., 2020. These citations have been added to the relevant sections of the manuscript (page 30, lines 10-11 and 13-14).

      - Figure 2D (removed in the revised manuscript): Genotyping for the MARK2 KO cell line has been provided in the same format as for the CAMSAP2 KO cell line in Figure 2G. Additionally, as the MARK2 Golgi localization discussion cannot yet be fully elucidated, we have removed this portion from the manuscript.

      - Figure 2F (revised Figure 2D): The time point of fixation, which occurred 2 hours after the scratch wound assay, has been added to the figure legend (page 30, lines 15-16).

      - Figure 2G (revised Figure 2E-F): The polarization experiment was repeated three times, and the results were pooled. This information has been included in the figure legend (page 30, lines 26 and 29).

      We hope these updates address the reviewer’s concerns and improve the clarity and completeness of the manuscript. We are grateful for the reviewer’s constructive feedback, which has greatly enhanced the rigor of our study. References:

      Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.

      Sup-fig3  

      E: Although colocalisation between CAMSAP2 and MARK2 is clear in your serum conditions in HT1080 and RPE1 cells, the deletion domain analysis appears weak and insufficient to implicate the role of the spacer domain. This part should be deleted or strengthened, but the data do not satisfactorily support your conclusion as it stands.  

      We sincerely thank the reviewer for their critical comments regarding the deletion domain analysis of MARK2 and its role in colocalization with CAMSAP2. As the current data do not satisfactorily support our conclusions, we have removed all related content on MARK2 and the deletion domain analysis from the manuscript to maintain scientific rigor.

      We appreciate the reviewer’s valuable feedback, which has helped us refine and improve the quality and focus of our study.

      Figure 3  

      A: Can the reduced CAMSAP2 Golgi localisation phenotype be rescued by the overexpression of MARK2 cDNA in the MARK2 KO cells?  

      F: Presence of a white dot on the HT1080 plot  

      G: The composition of the homogenization buffer is not indicated in the material and methods  

      We thank the reviewer for their valuable comments and suggestions regarding Figure 3. Below, we detail the modifications made:

      - Figure 3A: To address whether the reduced CAMSAP2 Golgi localization phenotype can be rescued, we overexpressed MARK2 cDNA in MARK2 KO cells. Our results show that overexpression of MARK2 successfully rescues the reduced CAMSAP2 localization to the Golgi, as demonstrated in Supplementary Figures 3C and 3E (page 8, lines 5-7).

      - Figure 3F: We have removed the white dot on the HT1080 plot to ensure clarity and accuracy.

      - Figure 3G: The composition of the homogenization buffer used in the experiment has been added to the Materials and Methods section for completeness (page 24, lines 34-41 and page 25, lines 1-10).

      We hope these revisions address the reviewer’s concerns and enhance the clarity and rigor of our study. We are grateful for the reviewer’s constructive feedback, which has significantly improved the quality of our manuscript.

      Figure 4  

      B: Quantification of the effect of the S835A mutation should be provided  

      D: Top left panel: Why Ha antibody stains Golgi structure in absence of Ha-CAMSAP2 transfection ? IF the Ha antibody has unspecific affinity towards the Golgi apparatus, may be it is not the good tag to use in this assay?  

      E: The number of cells studied should be standardized. 119 cells were analyzed in the CAMSAP KO vs only 35 cells in the CAMSAP2 KO (HA-CAMSAP2-S835D) conditions. This could introduce strong bias to the analysis. Furthermore the CAMSAP2 S835A seems to provide a certain level of rescue. It would be interesting to see what is the result of the T test between the HT1080 and HA-CAMSAP S835A conditions.  

      We thank the reviewer for their thoughtful comments and suggestions regarding Figure 4. Below, we detail the revisions and clarifications made:

      - Figure 4B: The S835A mutation renders CAMSAP2 non-phosphorylatable by MARK2. This conclusion is based on our experimental observations and previously reported mechanisms.

      - Figure 4D: The HA antibody does not exhibit non-specific affinity toward the Golgi apparatus. The observed labeling in the top left panel was due to an error in our annotation. We have corrected the label, replacing "HA" with "CAMSAP2" to accurately reflect the experimental conditions.

      - Figure 4E: To standardize the number of cells analyzed across conditions, we reduced the number of CAMSAP2 KO cells analyzed to 50 and balanced the sample sizes for comparison. Additionally, we performed a t-test between the HT1080 and HACAMSAP2 S835A conditions. The results support that CAMSAP2 S835A provides partial rescue, as reflected in the updated analysis (page 32, lines 19-23).

      We hope these revisions address the reviewer’s concerns and improve the accuracy and reliability of our results. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the quality of our study.

      Figure 6  

      6A: The wound position should be indicated on the picture.  

      6B: Given that microtubule labelling is present on the vast majority of the cell surface, this type of quantification provides very little information using conventional light microscopy and should not be used to conclude any change in the microtubule network using Pearson's coefficient.  The text describing the figure 6A and 6B needs re written as I do not understand what the author want to say. "In cells located before the wound edge..." : I do not understand how a cell could be located before the wound edge. Which figure corresponds to the trailing edge of the wounding?

      We thank the reviewer for their valuable comments on Figure 6A (revised Supplementary Figure 6E) and Figure 6B (revised Supplementary Figure 6F). Below, we detail the modifications made:

      - Figure 6A (revised Supplementary Figure 6E), we have added arrows to indicate the wound position, providing clearer guidance for interpreting the image.

      - Figure 6B (revised Supplementary Figure 6F), we revised our quantification method based on the approach used in literature (Wu et al., 2016). Specifically, we analyzed the relationship between microtubules and the Golgi apparatus in cells at the leading edge of the wound. The x-axis represents the distance from the Golgi center, while the y-axis shows the normalized radial fluorescence intensity of microtubules and the Golgi apparatus.

      Additionally, we revised the accompanying text for clarity and accuracy. The original description:

      “In cells located before the wound edge, the Golgi apparatus maintained a ribbon-like shape, with a higher density of microtubules. In contrast, at the trailing edge of the wounding, the Golgi apparatus appeared more as stacks around the nucleus, with fewer microtubules”  was replaced with:

      “Finally, to comprehensively understand the dynamics between non-centrosomal microtubules and the Golgi apparatus during Golgi reorientation, we conducted cell wound-healing experiments (Supplementary Figure 6 E-F). Our observations revealed notable changes in the Golgi apparatus and microtubule network distribution in relation to the wounding. These findings corroborate our earlier results and suggest a highly dynamic interaction between the Golgi apparatus and microtubules during Golgi reorientation” (Revised manuscript page 11 lines 3-10).

      We hope these changes address the reviewer’s concerns and improve the clarity and robustness of our study. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the presentation and interpretation of our data. References:

      Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.

      Reviewer #3:  

      Summary  

      In this study, Xu et al. analyzed the wound healing process of HT1080 cells to elucidate the molecular mechanisms by which the Golgi apparatus exhibits transient dispersion before reorienting to the wound edge in the compact assembly structure. They focused on the role of the microtubule minus-end binding protein CAMSAP2, which mediates the linkage between microtubules and the Golgi membrane. At first, they noticed that CAMSAP2 transiently lost Golgi colocalization during the initial phase of the wound healing process. They further found that the cell polarity-regulating kinase MARK2 binds and phosphorylates S835 of CAMSAP2, thereby enhancing the interaction between CAMSAP2 and the Golgi protein Uso1. Together with the phenotypes of CAMSAP2, MARK2, and Uso1 KO cells, these authors argue that the MARK2dependent phosphorylation of CAMSAP2 plays an important role in the reassembly and reorientation of the Golgi apparatus after a transient dispersion observed during the wound healing process.

      We sincerely thank the reviewer for their thoughtful summary of our study and constructive feedback. Your comments have been invaluable in refining our research and enhancing the clarity and impact of our manuscript.

      Major comments

      (1) The premise of this study was that during the wound healing process, the Golgi apparatus exhibits transient dispersion before reorientation to the front of the nucleus.  

      In the first place, this claim has not been well established in previous studies or this paper. Therefore, the authors should present a proof of this claim in a clearer manner.  

      To introduce this cellular event, the authors cite several papers in the introduction (page 4) and the results (page 6) sections. However, many papers cited are review articles, and some of them do not describe this change in the Golgi assembly structure before reorientation. Only two original articles discussed this phenomenon (Bisel et al. 2008 and Wu et al. 2016), and direct evidence was provided by only one paper (Wu et al. 2016) in which changes in the Golgi apparatus in wound-healing RPE1 cells were recorded by live imaging (Fig.7A in Wu et al. 2016).

      Furthermore, it should be noted that this previous paper demonstrated that depletion of CAMSAP2 inhibits Golgi dispersion. Obviously, this conclusion is inconsistent with their statement to introduce this study (page4) that ‟This emphasizes CAMSAP2's role in sustaining Golgi integrity during critical cellular events like migration." In addition, it also contradicts the authors' model of the present paper (Fig. 6E), which argued that disruption of the Golgi association of CAMSAP2 facilitates the Golgi dispersion.  

      We sincerely thank the reviewer for their detailed comments and for providing us with the opportunity to clarify the premise and conclusions of our study. Below, we address the main concerns raised:

      First, to provide direct evidence of Golgi apparatus changes during the wound-healing process, we conducted live-cell imaging experiments. Our observations, presented in revised Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus exhibits a transient dispersion state before reorienting toward the leading edge of the nucleus during migration.

      Regarding the interpretation of previous studies, we acknowledge the reviewer’s concerns about the citation of review articles. To address this, we have revisited the literature and clarified that the phenomenon of Golgi dispersion during reorientation has been directly demonstrated in Wu et al (Wu et al., 2016), where live imaging of wound-healing RPE1 cells showed this dynamic behavior. Furthermore, we note that in Wu et al paper explicitly demonstrates that CAMSAP2 depletion promotes Golgi dispersion, contrary to the reviewer’s interpretation that "depletion of CAMSAP2 inhibits Golgi dispersion."

      Our model focuses on the role of CAMSAP2 in restoring the Golgi from a transiently dispersed structure back to an intact ribbon-like structure during reorientation. Specifically, we propose that during this process, the disruption of CAMSAP2’s association with the Golgi affects this restoration, rather than directly promoting Golgi dispersion as suggested by the reviewer. We believe this distinction aligns with our data and the existing literature.

      To strengthen the background of our study, we have revised the introduction and results sections (page 6, lines 6-13 and page 7, lines 1-17) to minimize reliance on review articles and have provided more explicit citations to original research papers. We hope this addresses the reviewer’s concern about the sufficiency of the cited literature.

      We trust these clarifications and revisions resolve the reviewer’s concerns and enhance the robustness of our study. Once again, we are grateful for the reviewer’s constructive feedback, which has greatly helped refine our manuscript. References:

      Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.

      The authors did not provide experimental data for this temporal change in the Golgi assembly structures during the wound-healing process of HT1080 that they analyzed. They only provide an illustration of wound-healing cells (Fig.1F), in which cells are qualitatively discriminated and colored based on the Golgi states, without indicating the experimental basis of the discrimination.

      According to their ambiguous descriptions in the text (page7), the reader can speculate that Fig. 1F is illustrated based on the images in Supplementary Fig. 2C. However, because of the low quality and presentation style of these data, it is impossible to recognize the assembly structures of the Golgi apparatus in wound-edge cells.  

      If the authors hope to establish this premise claim for the present paper, they should provide their own data corresponding to the present Supplementary Fig. 2C in more clarity and present qualitative data verifying this claim, as Wu et al. did in Fig. 7A in their paper.

      We sincerely thank the reviewer for their constructive feedback and the opportunity to address the concern regarding the lack of experimental data supporting the temporal changes in Golgi assembly during the wound-healing process.

      To establish this premise, we conducted live-cell imaging experiments to observe the dynamic changes in the Golgi apparatus during directed cell migration. Our data, now presented in Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus undergoes a transient dispersed state before reorganizing into an intact structure. These findings provide direct experimental evidence supporting our claim.

      In addition, we have revised the data originally presented in Supplementary Figure 2C and enhanced its quality and presentation style. This supplementary figure now includes clearer images and annotations to better illustrate the Golgi assembly structures in wound-edge cells. The improved data presentation aligns with the standards set by Wu et al reported (Wu et al., 2016) and provides qualitative support for our observations.

      We hope these additions and revisions address the reviewer’s concerns and strengthen the scientific rigor and clarity of our manuscript. We are grateful for the reviewer’s valuable suggestions, which have significantly improved the quality of our study. References:

      Wu, J., de Heus, C., Liu, Q., Bouchet, B.P., Noordstra, I., Jiang, K., Hua, S., Martin, M., Yang, C., Grigoriev, I., et al. (2016). Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 39 (1): 44-60.

      (2) In Fig.1A-D, the authors claim that CAMSAP2 dissociates from the Golgi apparatus in cells "that have not yet completed Golgi reorientation and exhibit a transitional Golgi structure, characterized by relative dispersion and loss of polarity (page7)." However, I these analyses, they do not analyze the initial stage (0.5h after wound addition) of cells facing the wound edge, as they do in Supplementary Fig. 2C. Instead, they analyze cells separated from the wound edge at 2 h after wound addition when the wound-edge cells complete their polarization. These data are highly misleading because there is no evidence that the cells separated from the wound edge are really in the transitional state before polarization.  

      In this regard, Fig. 1E shows the analysis of the wound-edge cells at 0.5 and 2 h after the addition of wound, which provides suitable data to verify the authors' claim. However, the corresponding legend indicates that these statistical data are based on the illustration in Fig. 1F, which is probably based on highly ambiguous data in Supplementary Fig. 2C (see above).  

      Taken together, I strongly recommend the authors to remove Fig.1A-D. Instead, they should include the improved figure corresponding to the present Supplementary Fig.2C and present its statistical analysis similar to the present Fig.1E for this claim.

      We sincerely thank the reviewer for their constructive feedback and recommendations. Below, we address the concerns raised regarding Figure 1A-D and Supplementary Figure 2C.

      To provide stronger evidence for the transitional state of the Golgi apparatus during reorientation and the dynamic regulation of CAMSAP2 localization, we conducted live-cell imaging experiments. These results, now presented in Supplementary Figure 2A, clearly demonstrate that the Golgi apparatus undergoes a transitional state characterized by dispersion before reorienting toward the leading edge.

      Additionally, we analyzed fixed wound-edge cells at different time points during directed migration to observe CAMSAP2’s colocalization with the Golgi apparatus. The results, shown in Figures 1A and 1B, reveal dynamic changes in CAMSAP2 localization, confirm its regulation during Golgi reorientation, and include a corresponding statistical analysis (page 7, lines 1-17).

      These updates ensure that our claims are supported by robust and unambiguous data.

      We hope these revisions address the reviewer’s concerns and provide clear and reliable evidence for the transitional state of the Golgi apparatus and CAMSAP2’s dynamic regulation. We are grateful for the reviewer’s constructive suggestions, which have greatly improved the quality and focus of our manuscript.

      (3) In Supplementary Fig. 5 and Fig. 4, the authors claim that MARK2 phosphorylates S835 of CAMSAP2.  

      There are many issues to be addressed. Otherwise, the above claim cannot be assumed to be reliable.  

      First, the descriptions (in the text and method sections) and figures (Supplementary Fig.5) concerning the in vitro kinase assay and subsequent phosphoproteomic analysis are too immature and contain many errors.  

      Legend to Supplementary Fig. 5 is too immature for comprehension. It should be completely rewritten in a more comprehensive manner. The figure in Supplementary Fig. 5C is also too immature for understanding. They simply paste raw mass spectrometric data without any modification for presentation.  

      We sincerely apologize for the lack of clarity and inaccuracies in the original descriptions and figure legends for the in vitro kinase assay and phosphoproteomic analysis. We greatly appreciate the reviewer’s detailed comments, which have allowed us to address these issues comprehensively.

      To improve clarity and accuracy, we have rewritten the figure legend for the original Supplementary Figure 5 (now Supplementary Figure 4) as follows:

      (A): CBB staining of a gel with GFP-CAMSAP2, GST, and GST-MARK2. GFP-CAMSAP2 was expressed in Sf9 cells and purified. GST and GST-MARK2 were expressed in E. coli and purified.

      (B): Western blot analysis of an in vitro kinase assay. GST or GST-MARK2 was incubated with GFP-CAMSAP2 in kinase buffer (50 mM Tris-HCl pH 7.5, 12.5 mM MgCl2, 1 mM DTT, 400 μM ATP) at 30°C for 30 minutes. Reactions were stopped by boiling in the loading buffer.

      (C): Detection of phosphorylation at S835 in CAMSAP2 by mass spectrometry. The observed mass increases in b4, b5, b6, b7, b8, b10, b11, and b12 fragments indicate phosphorylation at Ser835.

      (D): Kinase assay samples analyzed using Phos-tag SDS-PAGE. HEK293 cells were cotransfected with the indicated plasmids. Band shifts of CAMSAP2 mutants were examined via western blot. Phos-tag was used in SDS-PAGE, and arrowheads indicate the shifted bands caused by phosphorylation.

      To address the reviewer’s concern about Supplementary Figure 5C, we have reformatted the mass spectrometry data to improve readability and presentation quality. The revised figure includes clearer annotations and graphical representations of the mass spectrometric evidence for phosphorylation at S835.

      We believe these updates enhance the comprehensibility and reliability of our data, providing robust support for our claim that MARK2 phosphorylates CAMSAP2 at S835. We hope these

      revisions address the reviewer’s concerns and demonstrate our commitment to improving the quality of our manuscript.

      The readers cannot understand how the authors purified GFP-CAMSAP2 for the kinase assay.

      The method section incorrectly states that the product was purified using Ni-resin.  

      We thank the reviewer for their comment regarding the purification of GFP-CAMSAP2 for the kinase assay. We would like to clarify that GFP-CAMSAP2 carries a His-tag, which allows for purification using Ni-resin, as described in the Methods section (page 23, Lines 32-40). Therefore, the description in the Methods section is correct.

      To avoid any potential misunderstanding, we have revised the Methods section to provide more detailed and precise descriptions of the purification process. Specifically, GFP-CAMSAP2 was cloned into the pOCC6_pOEM1-N-HIS6-EGFP vector, which includes a His-tag, and was expressed in Sf9 cells. The His-GFP-CAMSAP2 protein was purified using Ni-resin chromatography. Relevant details have been added to the Methods section (page 21, Lines 34-36:

      “CAMSAP2 was cloned into the pOCC6_pOEM1-N-HIS6-EGFP vector expressed in Sf9, purified as His-GFP-CAMSAP2.”; page 23, Lines 32-33: “His-GFP-CAMSAP2 was cotransfected with bacmids into Sf9 cells to generate the passage 1 (P1) virus.”).

      We hope these clarifications and revisions address the reviewer’s concern and improve the comprehensibility of our experimental details. We appreciate the reviewer’s feedback, which has helped us refine the manuscript.

      In this relation, GST and GST-MARK2 are described as having been purified from Sf9 insect cells in the text section (page9) and legend to Supplementary Fig. 5, but from E. coli in the method section. Which is correct?  

      We thank the reviewer for pointing out the inconsistencies in the descriptions regarding the source of GST and GST-MARK2. To clarify, both GST and GST-MARK2 were purified from E. coli, as stated in the Methods section (page 23, Lines 26-31). We have corrected the erroneous descriptions in the main text (page 8, Lines 35-36) and the legend to Supplementary Figure 4 to ensure consistency.

      Additionally, we have updated the legend for Supplementary Figure 4A to state the sources of each protein explicitly:

      “GFP-CAMSAP2 were expressed in Sf9 cells and purified. GST and GST-MARK2 were expressed in E. coli and purified.” (page 38, Lines 2-3)

      These revisions ensure that the experimental details are accurate and consistent across the manuscript, eliminating any potential confusion. We appreciate the reviewer’s careful review and constructive feedback, which have helped us improve the clarity and reliability of our study.

      Because the phosphoproteomic data (Supplementary Fig. 5C) are not provided clearly, the experimental data for Fig.4A, in which possible CAMSAP2 phosphorylation sites are illustrated, are completely unknown. For me, it is highly strange that only the serine residues are listed in Fig. 4A.

      We sincerely thank the reviewer for raising this important point regarding Figure 4A and the phosphoproteomic data in Supplementary Figure 5C.

      - Phosphorylation Sites in Figure 4A

      The phosphorylation sites illustrated in Figure 4A are derived from our analysis of the original mass spectrometry data. These sites were included based on their high confidence scores and data reliability. Importantly, only serine residues met the stringent criteria for inclusion, as no threonine or tyrosine residues had sufficient evidence for phosphorylation. To clarify this, we have updated the figure legend for Figure 4A (page 32, Lines3-7).

      - Improvements to Supplementary Figure 5C (Supplementary Figure 4D in the revised manuscript)

      To enhance transparency and clarity, we have reformatted Supplementary Figure 4D to include clearer annotations. The revised figure highlights the phosphopeptides used to identify the phosphorylation sites and provides a more comprehensive presentation of the mass spectrometry data. To clarify this, we have updated the figure legend for Supplementary Figure 4D (page 38, Lines 11-13).

      - Data Availability

      We will follow the journal’s guidelines by uploading the raw mass spectrometry data to the required public database upon manuscript acceptance. This ensures that the data are accessible and reproducible in compliance with journal standards.

      We hope these clarifications and updates address the reviewer’s concerns and improve the reliability and comprehensibility of our data presentation. We greatly appreciate the reviewer’s constructive feedback, which has helped us enhance the rigor and clarity of our manuscript.

      Considering the crude nature of the GST-MARK2 sample used for the in vitro kinase assay (Supplementary Fig. 5A), it is unclear whether MARK2 is responsible for all phosphorylation sites on CAMSAP2 detected in the phosphoproteomic analysis. Furthermore, if GFP-CAMSAP2 was purified from Sf9 insect cells, these sites might have been phosphorylated before incubation for the in vitro kinase assay. The authors should address these issues by including a negative control using the kinase-dead mutant of MARK2 in their in vitro kinase assay.

      We sincerely thank the reviewer for raising these important points regarding the potential prephosphorylation of GFP-CAMSAP2 and the role of MARK2 in the phosphorylation sites detected in our analysis.

      To address the possibility that GFP-CAMSAP2 may have been pre-phosphorylated during its expression in Sf9 insect cells, we conducted an in vitro comparison. Specifically, we compared the band shifts observed in GST-MARK2 + GFP-CAMSAP2 versus GST + GFP-CAMSAP2 under identical conditions. As shown in Supplementary Figure 4B, the GST-MARK2 + GFP-CAMSAP2 group exhibited a clear upward band shift compared to the GST + GFP-CAMSAP2 group, indicating additional phosphorylation events induced by MARK2.

      Regarding the inclusion of a kinase-dead MARK2 mutant as a negative control, we acknowledge this as a valuable suggestion for further confirming the specificity of MARK2 in phosphorylating CAMSAP2. While this experiment is not currently included, we plan to conduct it in our future studies to strengthen our findings.

      We hope this clarification and the provided evidence address the reviewer’s concerns. We are grateful for this constructive feedback, which has helped us critically evaluate and refine our experimental approach.

      (4) In Supplementary Fig.6A-C and Fig.5A-B, the authors claim that the phosphorylation of CAMSAP2 S835 is required for restoring the reduced reorientation of the Golgi in wound-healing cells and the delay in wound closure observed in MARK2 KO cells.  

      If the aforementioned claim is adequately supported by experimental data, it indicates that the defects in Golgi repolarization and wound closure in MARK2 KO cells can be mainly attributed to the reduced phosphorylation of S835 of CAMSAP2 in HT1080. Considering the presence of many well-known substrates of MARK2 for regulating cell polarity, this claim is highly striking.  

      However, to strongly support this conclusion, the authors should first perform a rescue experiment using MARK2 KO cells exogenously expressing MARK2. This step is essential for determining whether the defects observed in MARK2 KO cells are caused by the loss of MARK2 expression, but not by other artificial effects that were accidentally raised during the generation of the present MARK2 KO clone.  

      We sincerely thank the reviewer for their insightful suggestion regarding the rescue experiment to confirm that the defects observed in MARK2 KO cells are specifically caused by the loss of MARK2 expression.

      To address this, we performed a rescue experiment in MARK2 KO HT1080 cells by exogenously expressing GFP-MARK2. Our results, presented in Supplementary Figures 3C-E, demonstrate that GFP-MARK2 expression successfully restores the localization of CAMSAP2 on the Golgi apparatus in MARK2 KO cells.

      These findings strongly support the conclusion that the defects in Golgi architecture and CAMSAP2 Golgi localization are directly attributable to the loss of MARK2 expression, rather than any artificial effects potentially introduced during the generation of the MARK2 KO clone.

      We hope these additional experimental results address the reviewer’s concerns and provide robust evidence for the role of MARK2 in regulating Golgi reorientation and wound closure. We are grateful for the reviewer’s constructive feedback, which has significantly improved the rigor and clarity of our study.

      In addition, to evaluate the impact of the rescue effect of CAMSAP2, the authors should include the data of wild-type HT1080 and MARK2 KO cells in Fig. 5B to reliably demonstrate the aforementioned claim.  

      We thank the reviewer for their valuable suggestion to include data from wild-type HT1080 and MARK2 KO cells in Figure 5A-C to better evaluate the rescue effects of CAMSAP2.

      In response, we have incorporated data from wild-type HT1080 and MARK2 KO cells into Figure 5A-C. These additions provide a comprehensive comparison and further demonstrate the impact of CAMSAP2-S835A and CAMSAP2-S835D on Golgi reorientation relative to the wild-type and MARK2 KO conditions.

      These changes are reflected in Figures 5A-C.

      We hope these updates address the reviewer’s concerns and strengthen the reliability of our conclusions. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the robustness of our study.

      Principally, before checking the rescue effects in MARK2 KO cells, the authors should examine the rescue activity of the CAMSAP2 S835 mutants in restoring the reduced reorientation of the Golgi in wound-healing cells and the delay in wound closure observed in CAMSAP2 KO cells (Supplementary Fig.1F-H and Supplementary Fig.2A, B). These experiments are more essential experiments to substantiate the authors' claim.

      We thank the reviewer for their insightful suggestion to examine the rescue activity of CAMSAP2 S835 mutants in CAMSAP2 KO cells to further substantiate our claims.

      In Figure 4D-F, we observed significant differences between CAMSAP2 S835 mutants in their ability to restore Golgi structure and localization, indicating functional differences between these mutants. To better reflect the regulatory role of MARK2-mediated phosphorylation of CAMSAP2, we performed scratch wound-healing experiments in MARK2 KO cells by establishing stable cell lines expressing CAMSAP2 S835 mutants. These experiments allowed us to assess Golgi reorientation during wound healing and are presented in Figure 5A-C.

      We also attempted to generate stable cell lines expressing GFP-CAMSAP2 and its mutants in CAMSAP2 KO cells. Unfortunately, these cells consistently failed to survive, preventing successful construction of the cell lines.

      We hope these experiments and explanations address the reviewer’s concerns. We are grateful for the reviewer’s constructive feedback, which has helped us refine and improve our study.

      (5) The data presented in Fig. 6A and B are not sufficient to support the authors' notion that "our observation revealed notable changes in the Golgi apparatus and microtubule network distribution in relation to the wounding. (page 11)"  

      Fig. 6A, which includes only a single-cell image in each panel, does not demonstrate the general state of microtubules and the Golgi in the wound-edge cells. The reader cannot even know the migration direction of each cell.  

      Fig.6 B are not suitable to quantitatively support the authors' claim. The authors should find a way to quantitatively estimate the microtubule density around the Golgi and the shape and compactness of the Golgi in each cell facing the wound, not estimating the colocalization of microtubules and the Golgi, as in the present Fig. 6B.  

      We sincerely apologize for the confusion caused by our unclear descriptions and presentation.

      Here, we clarify the purpose and improvements made to address the reviewer’s concerns. In this study, we primarily aimed to observe the relationship between microtubules and the Golgi apparatus in cells at the leading edge of the wound during directed migration. In Figure 6A (now Supplementary Figure 6E), the images represent cells located at the wound edge at different time points. To improve clarity, we have added arrows indicating the migration direction and updated the figure legend to describe these details (page 40 lines 13-14).

      To better quantify the relationship between microtubules and the Golgi apparatus, we revised our analysis by referring to the quantitative method used in Figure 3F of the paper Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Specifically, we performed a radial analysis of fluorescence intensity in cells at the wound edge, measuring the distance from the Golgi center (x-axis) and the normalized radial fluorescence intensity of microtubules and the Golgi (y-axis). These results are now presented in Supplementary Figure 6E and 6F.

      We hope these improvements address the reviewer’s concerns and provide stronger evidence for the changes in the Golgi apparatus and microtubule network distribution in relation to wound healing. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the clarity and rigor of our study.

      The legends to Fig. 6A and B indicate that they compared immunofluorescent staining of cells at the edge of the wound after 0.5h and 2 h of migration. However, the authors state in the text that they compared "the cells located before the wound" and "the cells at the trailing edge of the wounding (page 11)."Although this description is highly ambiguous and misleading, if they compared the wound-edge cells and the cells separated from the wound edge at 2 h after cell migration here, they should improve the experimental design as I pointed out in the 2nd major comment.  

      We thank the reviewer for their detailed feedback regarding the experimental design and the need to clarify our descriptions. We have addressed these concerns as follows:

      - Clarification of descriptions:

      We recognize that the previous description in the text regarding "the cells located before the wound" and "the cells at the trailing edge of the wounding" was ambiguous and potentially misleading. We have revised this text to accurately describe the experimental design. Specifically, we compared cells at the leading edge of the wound at different time points (0.5h and 2h post-migration). These corrections are reflected in figure legends (Supplementary Figure 6E and 6F ) and the Results section (page 11,lines 3-8).

      - Improved experimental design:

      To better support our conclusions, we performed live-cell imaging to observe the dynamic changes in the Golgi apparatus during directed migration. As shown in Supplementary Figure 2A, our results confirm that the Golgi apparatus undergoes a transient dispersed state before reorganizing into an intact structure.

      Additionally, we performed fixed-cell staining at different time points to analyze the colocalization of CAMSAP2 with the Golgi apparatus in cells at the leading edge of the wound. The colocalization analysis, presented in Figures 1A-C, further demonstrates the dynamic regulation of CAMSAP2 during Golgi reorientation.

      We hope these updates address the reviewer’s concerns and provide a clearer and more robust foundation for our conclusions. We are grateful for the reviewer’s constructive feedback, which has greatly enhanced the clarity and rigor of our study.

      Minor comments  

      (1) In Fig. 2 and Supplementary Fig. 3, the authors claim that MARK2 is enriched around the Golgi. However, this claim was based on immunofluorescent images of single cells and single-line scans.  

      It is better to present the statistical data for Pearson's coefficient as shown in Figs. 1D and E. To demonstrateMARK2 enrichment around Golgi, but not localization in Golgi, the authors should find a way to quantify the specific enrichment of MARK2 signals in the Golgi region.  

      We thank the reviewer for raising this important point regarding the enrichment of MARK2 around the Golgi apparatus. Upon further consideration, we acknowledge that our current data do not provide sufficient evidence to fully elucidate the mechanism of MARK2 localization to the Golgi.

      To maintain the scientific rigor of our study, we have removed this claim and the corresponding content from the manuscript, including original Figures 2 and Supplementary Figure 3 that specifically discuss MARK2 enrichment. These changes do not affect the primary conclusions of the study, which focus on the role of MARK2-mediated phosphorylation of CAMSAP2.

      We hope this clarification addresses the reviewer’s concerns. In the future, we plan to investigate the precise mechanism of MARK2 localization using additional experimental approaches. We are grateful for the reviewer’s constructive feedback, which has helped us refine the scope and focus of our manuscript.

      (2) In Fig. 3 and Supplementary Fig. 4, the authors report that CAMSAP2 localization on the Golgi is reduced in cells lacking MARK2.  

      Essentially, the present results support this claim. However, the authors should analyze the Golgi localization of CAMASP2 with the same quantification parameter because they used Pearson's coefficient in Fig. 1D, E and Supplementary Fig.4D but Mander's coefficient in Fig. 3C and Fig.4F.  

      We thank the reviewer for their insightful comment regarding the consistency of quantification parameters used in our analysis of CAMSAP2 localization on the Golgi apparatus.

      To address this concern, we have revised Figure 3C to use Pearson’s coefficient for consistency with Figure 1D, 1E (Figure 1B and 1E in the revised manuscript), and Supplementary Figure 4D (Supplementary Figure 3I in the revised manuscript). This ensures uniformity in the quantification parameters across these analyses.

      For Figure 4F, we have retained Mander’s coefficient, as it accounts for variability in expression levels due to overexpression in individual cells. We believe this approach provides a more accurate reflection of CAMSAP2 localization under the experimental conditions shown in Figure 4F.

      We hope these adjustments clarify our analysis and address the reviewer’s concerns. We greatly appreciate the reviewer’s constructive feedback, which has helped improve the consistency and accuracy of our study.

      (3) In Fig.4D-F, the authors claim that S835 phosphorylation of CAMSAP2 is essential for its localization to the Golgi apparatus and for restoring the Golgi dispersion induced by CAMASAP2 depletion.  

      Fig.4E indicates that the S835A mutant of CAMSAP2 significantly restores the compact assembly of the Golgi apparatus, and the differences in the rescue activities of the wild type, S835A, and S835D are rather small. These data contradict the authors' conclusions regarding the pivotal role of MARK2-mediated phosphorylation at the S835 site of CAMSAP2 in maintaining the Golgi architecture (page 9). The authors should remove the phrase "MARK2-mediated" from the sentence unless addressing the aforementioned issues (see 3rd major comment) and describe the role of S835 phosphorylation in more subdued tone.  

      We thank the reviewer for their constructive feedback regarding the conclusions drawn about the role of MARK2-mediated phosphorylation of CAMSAP2 at S835.

      In response, we have revised the relevant sentence to reflect a more nuanced interpretation of the data. Specifically, the original statement:

      “These observations indicate that the phosphorylation of serine 835 in CAMSAP2 is essential for its proper localization to the Golgi apparatus.”

      has been updated to:

      “These observations indicate that MARK2 phosphorylation of serine at position 835 of CAMSAP2 affects the localization of CAMSAP2 on the Golgi and regulates Golgi structure” (page 9, Lines 27-29).

      We hope this modification addresses the reviewer’s concerns. We are grateful for the feedback, which has helped us refine our conclusions and enhance the clarity of our manuscript.

      (4) In Figs. 5I, J and Supplementary Fig.7A-E, the authors claim that the S835 phosphorylationdependent interaction of CAMSAP2 with Uso1 is essential for its localization to the Golgi apparatus.  

      This claim was made based on immunofluorescent images of single cells and single-line scans, and was not sufficiently verified (Supplementary Fig.7B, C). Because this is a crucial claim for the present paper, the authors should present statistical data for Pearson's coefficient, as shown in Fig. 1D and E, to quantitatively estimate the Golgi localization of CAMSAP2.  

      We thank the reviewer for their suggestion to present statistical data using Pearson's coefficient for a more robust quantification of the Golgi localization of CAMSAP2.

      In response, we have revised the statistical analysis for Supplementary Figures 7B-C (Revised Figures 6F and 6G) to use Pearson's coefficient. This change ensures consistency with the quantification methods used in Figures 1D and 1E (Revised Figures 1B and 1E), allowing for a more standardized evaluation of CAMSAP2’s localization to the Golgi apparatus.

      We hope this modification addresses the reviewer’s concerns and strengthens the quantitative support for our claims. We are grateful for the reviewer’s constructive feedback, which has helped improve the rigor of our study.

      (5) The signal intensities of the immunofluorescent data in Fig. 4D, Fig. 5A, Sup-Fig. 3C and E, and Sup-Fig. 7S are very weak for readers to clearly estimate the authors' claims. They should be improved appropriately.  

      We thank the reviewer for highlighting the need to improve the clarity of the immunofluorescent data presented in several figures.

      In response, we have enhanced the signal intensities in Figures 4D, 5A, and Supplementary Figure 7D (Revised Supplementary Figure 6A) to make the signals clearer for readers, while ensuring that the adjustments do not alter the integrity of the original data. Supplementary Figures 3C and 3E was remove from our manuscript.

      Additionally, to improve consistency and readability across the manuscript, we have standardized the quantification methods for similar analyses:

      For CAMSAP2 localization to the Golgi, Pearson's coefficient has been used throughout the manuscript. Figure 3C has been updated to use Pearson's coefficient for consistency.

      For Golgi state analysis in wound-edge cells, we have used the Golgi position relative to the nucleus as a uniform metric. This has been applied to Supplementary Figures 1F and 1G, Figures 2D and 2E, and Figures 5A and 5B.

      We hope these adjustments address the reviewer’s concerns and improve the clarity and consistency of our study. We greatly appreciate the reviewer’s constructive feedback, which has significantly enhanced the quality of our manuscript.

      (6) As indicated above, the authors frequently change the parameters or methods for quantifying the same phenomena (for example, the localization of CAMSAP on the Golgi and Golgi state in wound edge cells) in each figure. This is highly confusing. They should unify them.  

      We thank the reviewer for their valuable feedback regarding the inconsistency in quantification methods across the manuscript.

      To address this concern, we have carefully reviewed the entire manuscript and standardized the methods used for quantifying similar phenomena:

      - CAMSAP2 localization on the Golgi: 

      Pearson's coefficient is now consistently used throughout the manuscript. For example, Figure 3C has been updated to use Pearson's coefficient to align with other figures, such as Figures 1B and 1E.

      - Golgi state in wound-edge cells: 

      The Golgi state is now uniformly measured based on the position of the Golgi relative to the nucleus. This method has been applied to Supplementary Figures 1F and 1G, Figures 2D and 2E, and Figures 5A and 5B.

      We believe these changes significantly improve the clarity and consistency of the manuscript, ensuring that readers can easily interpret the data. We are grateful for the reviewer’s constructive feedback, which has greatly helped us enhance the quality and rigor of our study.

      (7) The legends frequently fail to clearly indicate the number of independent experiments on which each statistical analysis was based.  

      We thank the reviewer for highlighting the need to clearly indicate the number of independent experiments for each statistical analysis.

      In response, we have carefully reviewed the entire manuscript and updated the figure legends to include the number of independent experiments for every statistical analysis. This ensures transparency and allows readers to better evaluate the reliability of the data.

      We hope these updates address the reviewer’s concerns and improve the clarity and rigor of the manuscript. We appreciate the reviewer’s constructive feedback, which has helped us enhance the quality of our work.

      (8) Supplemental Figs. 4E and 4F are not cited in the text.  

      We thank the reviewer for pointing out that Supplemental Figures 4E and 4F were not cited in the text.

      To address this, we have updated the manuscript to cite these figures (Revised Figures 2H and 2I) in the appropriate section (page 8, lines 1-5).

      “the absence of MARK2 can also influence the orientation of the Golgi apparatus during cell wound healing and cause a delay in wound closure (Figure 2 D-I and Figure 3 D).”

      We hope this revision resolves the reviewer’s concern and improves the clarity and completeness of the manuscript. We appreciate the reviewer’s feedback, which has helped us refine our work.

      (9) The data in Fig. 3 analyzed MARK2 knockout cells (not knockdown cells). The caption should be corrected.  

      We thank the reviewer for pointing out the incorrect use of "knockdown" in the caption of Figure 3.

      To address this, we have revised the title of Figure 3 from:

      “MARK2 knockdown reduces CAMSAP2 localization on the Golgi apparatus.”

      to:

      “MARK2 affects CAMSAP2 localization on the Golgi apparatus.”

      This updated caption reflects the inclusion of both MARK2 knockout and knockdown cell lines analyzed in Figure 3.

      We hope this correction resolves the reviewer’s concern and ensures the accuracy of our manuscript. We greatly appreciate the reviewer’s attention to detail, which has helped us improve the clarity and consistency of our work.

      (10) The present caption in Fig. 6 disagrees with the content of the figure.  

      We thank the reviewer for pointing out the inconsistency between the caption and the content of Figure 6.

      To address this issue, we have revised the content of Figure 6 to ensure it aligns accurately with the caption. The updated figure now reflects the description provided in the caption, eliminating any discrepancies and improving clarity for the readers.

      We appreciate the reviewer’s constructive feedback, which has helped us enhance the accuracy and presentation of our manuscript.

      (11) What do "CS" indicate in Fig. 4B and Supplementary Fig. 5D? The style used to indicate point mutants of CAMSAP2 should be unified. 835A or S835A?  

      We thank the reviewer for pointing out the inconsistency in the naming of CAMSAP2 mutants.

      To address this, we have revised all relevant figures and text to use the consistent format "S835A" and "S589A" for CAMSAP2 mutants. Specifically, in Figure 4B and Supplementary Figure 5D (now Supplementary Figure 4C), we have replaced the abbreviation "CS2" with "CAMSAP2" and updated the mutant names from "835A" and "589A" to "S835A" and "S589A," respectively. We hope these updates resolve the reviewer’s concerns and ensure clarity and consistency throughout the manuscript. We are grateful for the reviewer’s attention to detail, which has helped us improve the quality of our work.

      (12) Uso1 is not a Golgi matrix protein.  

      We thank the reviewer for pointing out the incorrect description of Uso1 as a Golgi matrix protein.

      In response, we have revised the manuscript to replace all references to “USO1 as a Golgi matrix protein” with “USO1 as a Golgi-associated protein.” This correction ensures that the terminology used in the manuscript is accurate and consistent with current scientific understanding.

      We appreciate the reviewer’s attention to detail, which has helped us improve the accuracy and quality of our manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      There has been intense controversy over the generality of Hamilton's inclusive fitness rule for how evolution works on social behaviors. All generally agree that relatedness can be a game changer, for example allowing for otherwise unselectable altruistic behaviors when c < rb, where c is the fitness cost to the altruism, b is the fitness benefit to another, and r their relatedness. Many complications have been successfully incorporated into the theory, including different reproductive values and viscous population structures.

      The controversy has centered on another dimension; Hamilton's original model was for additive fitness, but how does his result hold when fitnesses are non-additive? One approach has been not to worry about a general result but just find results for particular cases. A consistent finding is that the results depend on the frequency of the social allele - non-additivity causes frequency dependence that was absent in Hamilton's approach. Two other approaches derive from Queller via the Price equation. Queller 1 is to find forms like Hamilton's rule, but with additional terms that deal with non-additive interaction, each with an r-like population structure variable multiplied by a b-like fitness effect (Queller 1985). Queller 2 redefines the fitness effects c and b as partial regressions of the actor's and recipient's genes on fitness. This leaves Hamilton's rule intact, just with new definitions of c and b that depend on frequency.

      Queller 2 is the version that has been most adopted by the inclusive fitness community along with assertions that Hamilton's rule in completely general. In this paper, van Veelen argues that Queller 1 is the correct approach. He derives a general form that Queller only hinted at. He does so within a more rigorous framework that puts both Price's equation and Hamilton's rule on firmer statistical ground. Within that framework, the Queller 2 approach is seen to be a statistical misspecification - it employs a model without interaction in cases that actually do have interaction. If we accept that this is a fatal flaw, the original version of Hamilton's rule is limited to linear fitness models, which might not be common.

      Strengths:

      While the approach is not entirely new, this paper provides a more rigorous approach and a more general result. It shows that both Queller 1 and Queller 2 are identities and give accurate results, because both are derived from the Price equation, which is an identity. So why prefer Queller 1? It identifies the misspecification issue with the Queller 2 approach and points out its consequences. For example, it will not give the minimum squared differences between the model and data. It does not separate the behavioral effects of the individuals from the population state (b and c become dependent on r and the population frequency).

      The paper also shows how the same problems can apply to non-social traits. Epistasis is the non-additivity of effects of two genes within the individual. (So one wonders why have we not had a similarly fierce controversy over how we should treat epistasis?)

      The paper is clearly written. Though somewhat repetitive, particularly in the long supplement, most of that repetition has the purpose of underscoring how the same points apply equally to a variety of different models.<br /> Finally, this may be a big step towards reconciliation in the inclusive fitness wars. Van Veelen has been one of the harshest critics of inclusive fitness, and now he is proposing a version of it.

      Weaknesses:

      van Veelen argues that the field essentially abandoned the Queller 1 approach after its publication. I think this is putting it too strongly - there have been a number of theoretical studies that incorporate extra terms with higher-order relatednesses. It is probably accurate to say that there has been relative neglect. But perhaps this is partly due to a perception that this approach is difficult to apply.

      The model in this paper is quite elegant and helps clarify conceptual issues, but I wonder how practical it will turn out to be. In terms of modeling complicated cases, I suspect most practitioners will continue doing what they have been doing, for example using population genetics or adaptive dynamics, without worrying about neatly separating out a series of terms multiplying fitness coefficients and population structure coefficients.

      For empirical studies, it is going to be hard to even try to estimate all those additional parameters. In reality, even the standard Hamilton's rule is rarely tested by trying to estimate all its parameters. Instead, it is commonly tested more indirectly, for example by comparative tests of the importance of relatedness. That of course would not distinguish between additive and non-additive models that both depend on relatedness, but it does test the core idea of kin selection. It will be interesting to see if van Veelen's approach stimulates new ways of exploring the real world.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript reconsiders the "general form" of Hamilton's rule, in which "benefit" and "cost" are defined as regression coefficients. It points out that there is no reason to insist on Hamilton's rule of the form -c+br>0, and that, in fact, arbitrarily many terms (i.e. higher-order regression coefficients) can be added to Hamilton's rule to reflect nonlinear interactions. Furthermore, it argues that insisting on a rule of the form -c+br>0 can result in conditions that are true but meaningless and that statistical considerations should be employed to determine which form of Hamilton's rule is meaningful for a given dataset or model.

      Strengths:

      The point is an important one. While it is not entirely novel-the idea of adding extra terms to Hamilton's rule has arisen sporadically (Queller 1985, 2011; Fletcher & Zwick 2006; van Veelen et al. 2017)--it is very useful to have a systematic treatment of this point. I think the manuscript can make an important contribution by helping to clarify a number of debates in the literature. I particularly appreciate the heterozygote advantage example in the SI.

      Weaknesses:

      Although the mathematical analysis is rigorously done and I largely agree with the conclusions, I feel there are some issues regarding terminology, some regarding the state of the field, and the practice of statistics that need to be clarified if the manuscript is truly to resolve the outstanding issues of the field. Otherwise, I worry that it will in some ways add to the confusion.

      (1) The "generalized" Price equation: I agree that the equations labeled (PE.C) and (GPE.C) are different in a subtle yet meaningful way. But I do not see any way in which (GPE.C) is more general than (PE.C). That is, I cannot envision any circumstance in which (GPE.C) applies but (PE.C) does not. A term other than "generalized" should be used.

      (2) Regression vs covariance forms of the Price equation

      I think the author uses "generalized" in reference to what Price called the "regression form" of his equation. But to almost everyone in the field, the "Price Equation" refers to the covariance form. For this reason, it is very confusing when the manuscript refers to the regression form as simply "the Price Equation".

      As an example, in the box on p. 15, the manuscript states "The Price equation can be generalized, in the sense that one can write a variety of Price-like equations for a variety of possible true models, that may have generated the data." But it is not the Price equation (covariance form) that is being generalized here. It is only the regression that Price used that is being generalized.

      To be consistent with the field, I suggest the term "Price Equation" be used only to refer to the covariance form unless it is otherwise specified as in "regression form of the Price equation".

      (3) Sample covariance: The author refers to the covariance in the Price equation as "sample covariance". This is not correct, since sample covariance has a denominator of N-1 rather than N (Bessel's correction). The correct term, when summing over an entire population, is "population covariance". Price (1972) was clear about this: "In this paper we will be concerned with population functions and make no use of sample functions". This point is elaborated on by Frank (2012), in the subsection "Interpretation of Covariance".

      Of course, the difference is negligible when the population is large. However, the author applies the covariance formula to populations as small as N=2, for which the correction factor is significant.

      The author objects to using the term "population covariance" (SI, pp. 8-9) on the grounds that it might be misleading if the covariance, regression coefficients, etc. are used for inference because in this case, what is being inferred is not a population statistic but an underlying relationship. However, I am not convinced that statistical inference is or should be the primary use of the Price equation (see next point). At any rate, avoiding potential confusion is not a sufficient reason to use incorrect terminology.

      Relatedly, I suggest avoiding using E for the second term in the Price equation, since (as the ms points out), it is not the expectation of any random variable. It is a population mean. There is no reason not to use something like Avg or bar notation to indicate population mean. Price (1972) uses "ave" for average.

      I should add, however, that the distinction between population statistics vs sample statistics goes away for regression coefficients (e.g. b, c, and r in Hamilton's rule) since in this case, Bessel's correction cancels out.

      (4) Descriptive vs. inferential statistics

      When discussing the statistical quantities in the Price Equation, the author appears to treat them all as inferential statistics. That is, he takes the position that the population data are all generated by some probabilistic model and that the goal of computing the statistical quantities in the Price Equation is to correctly infer this model.

      It is worth pointing out that those who argue in favor of the Price Equation do not see it this way: "it is a mistake to assume that it must be the evolutionary theorist, writing out covariances, who is performing the equivalent of a statistical analysis." (Gardner, West, and Wild, 2011); "Neither data nor inferences are considered here" (Rousset 2015). From what I can tell, to the supporters of the Price equation and the regression form of Hamilton's rule, the statistical quantities involved are either population-level *descriptive* statistics (in an empirical context), or else are statistics of random variables (in a stochastic modeling context).

      In short, the manuscript seems to argue that Price equation users are performing statistical inference incorrectly, whereas the users insist that they are not doing statistical inference at all.

      The problem (and here I think the author would agree with me) arises when users of the Price equation go on to make predictive or causal claims that would require the kind of statistical analysis they claim not to be doing. Claims of the form "Hamilton's rule predicts.." or use of terms like "benefit" and "cost" suggest that one has inferred a predictive or causal relationship in the given data, while somehow bypassing the entire theory of statistical inference.

      There is also a third way to use the Price equation which is entirely unobjectionable: as a way to express the relationship between individual-level fitness and population-level gene frequency change in a form that is convenient for further algebraic manipulation. I suspect that this is actually the most common use of the Price equation in practice.

      For a paper that aims to clarify these thorny concepts in the literature, I think it is worth pointing out these different interpretations of statistical quantities in the Price equation (descriptive statistics vs inferential statistics vs algebraic manipulation). One can then critique the conclusions that are inappropriately drawn from the Price equation, which would require rigorous statistical inference to draw. Without these clarifications, supporters of the Price equation will again argue that this manuscript has misunderstood the purpose of the equation and that they never claimed to do inference in the first place.

      (5) "True" models

      Even if one accepts that the statistical quantities in the Price equation are inferential in nature, the author appears to go a step further by asserting that, even in empirical populations, there is a specific "true" model which it is our goal to infer. This assumption manifests at many points in the SI when the author refers to the "true model" or "true, underlying population structure" in the context of an empirical population.

      I do not think it is necessary or appropriate, in empirical contexts, to posit the existence of a Platonic "true" model that is generating the data. Real populations are not governed by mathematical models. Moreover, the goal of statistical inference is not to determine the "true model" for given data but to say whether a given statistical model is justified based on this data. Fitting a linear model, for example, does not rule out the possibility there may be higher-order interactions - it just means we do not have a statistical basis to infer these higher-order interactions from the data (say, because their p-scores are insignificant), and so we leave them out.

      What we can say is that if we apply the statistical model to data generated by a probabilistic model, and if these models match, then as the number of observations grows to infinity, the estimators in the statistical model converge to the parameters of the data-generating one. But this is a mathematical statement, not a statement about real-world populations.

      A resolution I suggest to points 3, 4, and 5 above is:<br /> *A priori, the statistical quantities in the Price Equation are descriptive statistics, pertaining only to the specific population data given.<br /> *If one wishes to impute any predictive power, generalizability, or causal meaning to these statistics, all the standard considerations of inferential statistics apply. In particular, one must choose a statistical model that is justified based on the given data. In this case, one is not guaranteed to obtain the standard (linear) Hamilton's rule and may obtain any of an infinite family of rules.<br /> *If one uses a model that is not justified based on the given data, the results will still be correct for the given population data but will lack any meaning or generalizability beyond that.<br /> *In particular, if one considers data generated by a probabilistic model, and applies a statistical model that does not match the data-generating one, the results will be misleading, and will not generalize beyond the randomly generated realization one uses.

      Of course, the author may propose a different resolution to points 3-5, but they should be resolved somehow. Otherwise, the terminology in the manuscript will be incorrect and the ms will not resolve confusion in the field.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      Cell metabolism exhibits a well-known behavior in fast-growing cells, which employ seemingly wasteful fermentation to generate energy even in the presence of sufficient environmental oxygen. This phenomenon is known as Overflow Metabolism or the Warburg effect in cancer. It is present in a wide range of organisms, from bacteria and fungi to mammalian cells.

      In this work, starting with a metabolic network for Escherichia coli based on sets of carbon sources, and using a corresponding coarse-grained model, the author applies some well-based approximations from the literature and algebraic manipulations. These are used to successfully explain the origins of Overflow Metabolism, both qualitatively and quantitatively, by comparing the results with E. coli experimental data.

      By modeling the proteome energy efficiencies for respiration and fermentation, the study shows that these parameters are dependent on the carbon source quality constants K_i (p.115 and 116). It is demonstrated that as the environment becomes richer, the optimal solution for proteome energy efficiency shifts from respiration to fermentation. This shift occurs at a critical parameter value K_A(C).

      This counter intuitive results qualitatively explains Overflow Metabolism.

      Quantitative agreement is achieved through the analysis of the heterogeneity of the metabolic status within a cell population. By introducing heterogeneity, the critical growth rate is assumed to follow a Gaussian distribution over the cell population, resulting in accordance with experimental data for E. coli. Overflow metabolism is explained by considering optimal protein allocation and cell heterogeneity.

      The obtained model is extensively tested through perturbations: 1) Introduction of overexpression of useless proteins; 2) Studying energy dissipation; 3) Analysis of the impact of translation inhibition with different sub-lethal doses of chloramphenicol on Escherichia coli; 4) Alteration of nutrient categories of carbon sources using pyruvate. All model perturbations results are corroborated by E. coli experimental results.

      Strengths:

      In this work, the author effectively uses modeling techniques typical of Physics to address complex problems in Biology, demonstrating the potential of interdisciplinary approaches to yield novel insights. The use of Escherichia coli as a model organism ensures that the assumptions and approximations are well-supported in existing literature. The model is convincingly constructed and aligns well with experimental data, lending credibility to the findings. In this version, the extension of results from bacteria to yeast and cancer is substantiated by a literature base, suggesting that these findings may have broad implications for understanding diverse biological systems.

      We appreciate the reviewer’s exceptionally positive comments. The manuscript has been significantly improved thanks to the reviewer’s insightful suggestions.

      Weaknesses:

      The author explores the generalization of their results from bacteria to cancer cells and yeast, adapting the metabolic network and coarse-grained model accordingly. In previous version this generalization was not completely supported by references and data from the literature. This drawback, however, has been treated in this current version, where the authors discuss in much more detail and give references supporting this generalization.

      We appreciate the reviewer’s recognition of our revisions and the insightful suggestions provided in the previous round, which have greatly strengthened our manuscript.

      Reviewer #2 (Public Review):

      In this version of manuscript, the author clarified many details and rewrote some sections. This substantially improved the readability of the paper. I also recognized that the author spent substantial efforts in the Appendix to answer the potential questions.

      We thank the reviewer for the positive comments and the suggestions to improve our manuscript.

      Unfortunately, I am not currently convinced by the theory proposed in this paper. In the next section, I will first recap the logic of the author and explain why I am not convinced. Although the theory fits many experimental results, other theories on overflow metabolism are also supported by experiments. Hence, I do not think based on experimental data we could rule in or rule out different theories.

      We thank the reviewer for both the critical and constructive comments. 

      Regarding the comments on the comparison between theoretical and experimental results, we would like to first emphasize that no prior theory has resolved the conflict arising from the proteome efficiencies measured in E. coli and eukaryotic cells. Specifically, prevalent explanations (Basan et al., Nature 528, 99–104 (2015); Chen and Nielsen, PNAS 116, 17592–17597 (2019)) hold that overflow metabolism results from proteome efficiency in fermentation consistently being higher than that in respiration. While it was observed in E. coli that proteome efficiency in fermentation exceeds that in respiration when cells were cultured in lactose at saturated concentrations (Basan et al., Nature 528, 99-104 (2015)), more recent findings (Shen et al., Nature Chemical Biology 20, 1123–1132 (2024)) show that the measured proteome efficiency in respiration is actually higher than in fermentation for many yeast and cancer cells, despite the presence of aerobic glycolytic fermentation flux. To the best of our knowledge, no prior theory has explained these contradictory experimental results. Notably, our theory resolves this conflict and quantitatively explains both sets of experimental observations (Basan et al., Nature 528, 99-104 (2015); Shen et al., Nature Chemical Biology 20, 1123–1132 (2024)) by incorporating cell heterogeneity and optimizing cell growth rate through protein allocation. 

      Furthermore, rather than merely fitting the experimental results, as explained in Appendices 6.2, 8.1-8.2 and summarized in Appendix-tables 1-3, nearly all model parameters important for our theoretical predictions for E. coli were derived from in vivo and in vitro biochemical data reported in the experimental literature. For comparisons between model predictions and experimental results for yeast and cancer cells (Shen et al., Nature Chemical Biology 20, 1123–1132 (2024)), we intentionally derived Eq. 6 to ensure an unbiased comparison.

      Finally, in response to the reviewer’s suggestion, we have revised the expressions in our manuscript to present the differences between our theory and previous theories in a more modest style. 

      Recap: To explain the origin of overflow metabolism, the author uses the following logic:

      (1) There is a substantial variability of single-cell growth rate

      (2) The flux (J_r^E) and (J_f^E) are coupled with growth rate by Eq. 3

      (3) Since growth rate varies from cells to cells, flux (J_r^E) and (J_f^E) also varies (4) The variabilities of above fluxes in above create threshold-analog relation, and hence overflow metabolism.

      We thank the reviewer for the clear summary. We apologize for not explaining some points clearly enough in the previous version of our manuscript, which may have led to misunderstandings. We have now revised the relevant content in the manuscript to clarify our reasoning. Specifically, we have applied the following logic in our explanation:

      (a) The solution for the optimal growth strategy of a cell under a given nutrient condition is a binary choice between respiration and fermentation, driven by comparing their proteome efficiencies (ε<sub>r</sub> and ε<sub>f</sub> ).

      (b) Under nutrient-poor conditions, the nutrient quality (κ<sub>A</sub>) is low, resulting in the proteome efficiency of respiration being higher than that of fermentation (i.e., ε<sub>r</sub> > ε<sub>f</sub>), so the cell exclusively uses respiration.  

      (c) In rich media (with high κ<sub>A</sub>), the proteome efficiency of fermentation increases more rapidly and surpasses that of respiration (i.e., ε<sub>f</sub> > ε<sub>r</sub> ), hence the cell switches to fermentation.  

      (d) Heterogeneity is introduced: variability in the κ<sub>cat</sub> of catalytic enzymes from cell to cell. This leads to heterogeneity (variability) in ε<sub>r</sub> and ε<sub>f</sub> within a population of cells under the same nutrient condition.  

      (e) The critical value of nutrient quality for the switching point (, where ε<sub>r</sub>= ε<sub>f</sub> ) changes from a single point to a distribution due to cell heterogeneity. This results in a distribution of the critical growth rate λ<sub>C</sub> (defined as ) within the cell population.

      (f) The change in culturing conditions (with a highly diverse range of κ<sub>A</sub>) and heterogeneity in the critical growth rate λ<sub>C</sub> (a distribution of values) result in the threshold-analog relation of overflow metabolism at the cell population level.

      Steps (a)-(c) were applied to qualitatively explain the origin of overflow metabolism, while steps (d)-(f) were further used to quantitatively explain the threshold-analog relation observed in the data on overflow metabolism.

      Regarding the reviewer’s recap, which seems to have involved some misunderstandings, we first emphasize that the major change in cell growth rate for the threshold-analog relation of overflow metabolism—particularly as it pertains to logic steps (1), (3) and (4)—is driven by the highly varied range of nutrient quality (κ<sub>A</sub>) in the culturing conditions, rather than by heterogeneity between cells. For the batch culture data, the nutrient type of the carbon source differs significantly (e.g., Fig.1 in Basan et al., Nature 528, 99-104 (2015), wild-type strains). In contrast, for the chemostat data, the concentration of the carbon source varies greatly due to the highly varied dilution rate (e.g., Table 7 in Holms, FEMS Microbiology Reviews 19, 85-116 (1996)). Both of these factors related to nutrient conditions are the major causes of the changes in cell growth rate in the threshold-analog relation. 

      Second, Eq. 3, as mentioned in logic step (2), represents a constraint between the fluxes ( and ) and the growth rate (λ) for a single nutrient condition (with a given value of κ<sub>A</sub> ideally) rather than for varied nutrient conditions. For a single cell in each nutrient condition, the optimal growth strategy is binary, between respiration and fermentation. 

      Finally, for the threshold-analog relation of overflow metabolism, the switch from respiration to fermentation is caused by the increased nutrient quality in the culturing conditions, rather than by cell heterogeneity as indicated in logic step (4). Upon nutrient upshifts, the proteome efficiency of fermentation surpasses that of respiration, causing the optimal growth strategy for the cell to switch from respiration to fermentation. The role of cell heterogeneity is to transform the growth rate-dependent fermentation flux in overflow metabolism from a digital response to a threshold-analog relation under varying nutrient conditions.

      My opinion:

      The logic step (2) and (3) have caveats. The variability of growth rate has large components of cellular noise and external noise. Therefore, variability of growth rate is far from 100% correlated with variability of flux (J_r^E) and (J_f^E) at the single-cell level. Single-cell growth rate is a complex, multivariate functional, including (Jr^E) and (J_f^E) but also many other variables. My feeling is the correlation could be too low to support the logic here.

      One example: ribosomal concentration is known to be an important factor of growth rate in bulk culture. However, the "growth law" from bulk culture cannot directly translate into the growth law at single-cell level [Ref1,2]. This is likely due to other factors (such as cell aging, other muti-stability of cellular states) are involved.

      Therefore, I think using Eq.3 to invert the distribution of growth rate into the distribution of (Jr^E) and (J_f^E) is inapplicable, due to the potentially low correlation at single-cell level. It may show partial correlations, but may not be strong enough to support the claim and create fermentation at macroscopic scale.

      Overall, if we track the logic flow, this theory implies overflow metabolism is originated from variability of k_cat of catalytic enzymes from cells to cells. That is, the author proposed that overflow metabolism happens macroscopically as if it is some "aberrant activation of fermentation pathway" at the single-cell level, due to some unknown partially correlation from growth rate variability.

      We thank the reviewer for raising these questions and for the insights. We apologize for any lack of clarity in the previous version of our manuscript that may have caused misunderstandings. We have revised the manuscript to address all points, and below are our responses to the questions, some of which seem to involve misunderstandings. 

      First, in our theory, the qualitative behavior of overflow metabolism—where cells use respiration under nutrient-poor conditions (low growth rate) and fermentation in rich media (high growth rate)—does not arise from variability between cells, as the reviewer seems to have interpreted. Instead, it originates from growth optimization through optimal protein allocation under significantly different nutrient conditions. Specifically, the proteome efficiency of fermentation is lower than that of respiration (i.e. ε<sub>f</sub> < ε<sub>r</sub>) under nutrient-poor conditions, making respiration the optimal strategy in this case. However, in rich media, the proteome efficiency of fermentation surpasses that of respiration (i.e. ε<sub>f</sub> < ε<sub>r</sub>), leading the cell to switch to fermentation for growth optimization. To implement the optimal strategy, as clarified in the revised manuscript and discussed in Appendix 2.4, a cell should sense and compare the proteome efficiencies between respiration and fermentation, choosing the pathway with the higher efficiency, rather than sensing the growth rate, which can fluctuate due to stochasticity. Regarding the role of cell heterogeneity in overflow metabolism, as discussed in our previous response, it is twofold: first, it quantitatively illustrates the threshold-analog response of growth rate-dependent fermentation flux, which would otherwise be a digital response without heterogeneity during growth optimization; second, it enables us to resolve the paradox in proteome efficiencies observed in E. coli and eukaryotic cells, as raised by Shen et al. (Shen et al., Nature Chemical Biology 20, 1123–1132 (2024)). 

      Second, regarding logic step (2) in the recap, the reviewer thought we had coupled the growth rate (λ) with the respiration and fermentation fluxes ( and ) through Eq. 3, and used Eq. 3 to invert the distribution of growth rate into the distribution of respiration and fermentation fluxes. We need to clarify that Eq. 3 represents the constraint between the fluxes and the growth rate under a single nutrient condition, rather than describing the relation between growth rate and the fluxes ( and ) under varied nutrient conditions. In a given nutrient condition (with a fixed value of κ<sub>A</sub>), without considering optimal protein allocation, the cell growth rate varies with the fluxes according to Eq.3 by adjusting the proteome allocation between respiration and fermentation (ϕ<sub>r</sub> and ϕ<sub>f</sub>). However, once growth optimization is applied, the optimal protein allocation strategy for a cell is limited to either pure respiration (with ϕ<sub>f</sub> =0 and ) or pure fermentation (with ϕ<sub>r</sub> =0 and ), depending on the nutrient condition (or the value of κ<sub>A</sub>). Furthermore, under varying nutrient conditions (with different values of κ<sub>A</sub>), both proteome efficiencies of respiration and fermentation (ε<sub>r</sub> and (ε<sub>f</sub>) change with nutrient quality κ<sub>A</sub> (see Eq. 4). Thus, Eq. 3 does not describe the relation between growth rate (λ) and the fluxes ( and ) under nutrient variations.

      Thirdly, regarding reviewer’s concerns on logic step (3) in the recap, as well as the example where ribosome concentration does not correlate well with cell growth rate at the single-cell level, we fully agree with reviewer that, due to factors such as stochasticity and cell cycle status, the growth rate fluctuates constantly for each cell. Consequently, it would not be fully correlated with cell parameters such as ribosome concentration or respiration/fermentation flux. We apologize for our oversight in not discussing suboptimal growth conditions in the previous version of the manuscript. In response, we have added a paragraph to the discussion section and a new Appendix 2.4, titled “Dependence of the model on optimization principles,” to address these issues in detail. Specifically, recent experimental studies (Dai et al., Nature microbiology 2, 16231 (2017); Li et al., Nature microbiology 3, 939–947 (2018)) show that the inactive portion of ribosomes (i.e., ribosomes not bound to mRNAs) can vary under different culturing conditions. The reviewer also pointed out that ribosome concentration does not correlate well with cell growth rate at single-cell level. In this regard, we have cited Pavlou et al. (Pavlou et al., Nature Communications 16, 285 (2025)) instead of the references provided by the reviewer (Ref1 and Ref2), with our rationale outlined in the final section of the author response. These findings (Dai et al, (2017); Li et al., (2018); Pavlou et al., (2025)) suggest that ribosome allocation may be suboptimal under many culturing conditions, likely as cells prepare for potential environmental changes (Li et al., Nature microbiology 3, 939–947 (2018)). However, since our model's predictions regarding the binary choice between respiration and fermentation are based solely on comparing proteome efficiency between these two pathways, the optimal growth principle in our model can be relaxed. Specifically, efficient protein allocation is required only for enzymes rather than ribosomes, allowing our model to remain applicable under suboptimal growth conditions. Furthermore, protein allocation via the ribosome occurs at the single-cell level rather than at the population level. The strong linear correlation between ribosomal concentration and growth rate at the population level under nutrient variations suggests that each cell optimizes its protein allocation individually. Therefore, the principle of growth optimization still applies to individual cells, although factors like stochasticity, nutrient variation preparations, and differences in cell cycle stages may complicate this relationship, resulting in only a rough linear correlation between ribosome concentration and growth rate at the single-cell level (with with R<sup>2</sup> = 0.64 reported in Pavlou et al., (2025)). 

      Lastly, regarding the reviewer concerns about the heterogeneity of fermentation and respiration at macroscopic scale, we first clarify in the second paragraph of this response that the primary driving force for cells to switch from respiration to fermentation in the context of overflow metabolism is the increased nutrient quality under varying culturing conditions, which causes the proteome efficiency of fermentation to surpass that of respiration. Under nutrient-poor conditions, our model predicts that all cells use respiration, and therefore no heterogeneity for the phenotype of respiration and fermentation arises in these conditions. However, in a richer medium, particularly one that does not provide optimal conditions but allows for an intermediate growth rate, our model predicts that some cells opt for fermentation while others continue with respiration due to cell heterogeneity (with ε<sub>f</sub> > ε<sub>r</sub> for some cells engaging in fermentation and ε<sub>r</sub> > ε<sub>f</sub> for the other cells engaging in respiration within the same medium). Both of these predictions have been validated in isogenic singlecell experiments with E. coli (Nikolic et al., BMC Microbiology 13, 258 (2013)) and S. cerevisiae (Bagamery et al., Current Biology 30, 4563–4578 (2020)). The single-cell experiments by Nikolic et al. with E. coli in a rich medium of intermediate growth rate clearly show a bimodal distribution in the expression of genes related to overflow metabolism (see Fig. 5 in Nikolic et al., BMC Microbiology 13, 258 (2013)), where one subpopulation suggests purely fermentation, while the other suggests purely respiration. In contrast, in a medium with lower nutrient concentration (and consequently lower nutrient quality), only the respirative population exists (see Fig. 5 in Nikolic et al., BMC Microbiology 13, 258 (2013)). These experimental results from E. coli (Nikolic et al., BMC Microbiology 13, 258 (2013)) are fully consistent with our model predictions. Similarly, the single-cell experiments with S. cerevisiae by Bagamery et al. clearly identified two subpopulations of cells with respect to fermentation and respiration in a rich medium, which also align well with our model predictions regarding heterogeneity in fermentation and respiration within a cell population in the same medium.

      Compared with other theories, this theory does not involve any regulatory mechanism and can be regarded as a "neutral theory". I am looking forward to seeing single cell experiments in the future to provide evidences about this theory.

      We thank the reviewer for raising these questions and for the valuable insights. Regarding the regulatory mechanism, we have now added a paragraph in the discussion section of our manuscript and Appendix 2.4 to address this point. Specifically, our model predicts that a cell can implement the optimal strategy by directly sensing and comparing the proteome efficiencies of respiration and fermentation, choosing the pathway with the higher efficiency. At the gene regulatory level, a growing body of evidence suggests that the cAMP-CRP system plays an important role in sensing and executing the optimal strategy between respiration and fermentation (Basan et al., Nature 528, 99-104 (2015); Towbin et al., Nature Communications 8, 14123 (2017); Valgepea et al., BMC Systems Biology 4, 166 (2010); Wehrens et al., Cell Reports 42, 113284 (2023)). However, it has also been suggested that the cAMP-CRP system alone is insufficient, and additional regulators may need to be identified to fully elucidate this mechanism (Basan et al., Nature 528, 99-104 (2015); Valgepea et al., BMC Systems Biology 4, 166 (2010)). 

      Regarding the single-cell experiments that provide evidence for this theory, we have shown in the previous paragraphs of this response that the heterogeneity between respiration and fermentation, as predicted by our model for isogenic cells within the same culturing condition, has been fully validated by single-cell experiments with E. coli (Fig. 5 from Nikolic et al., BMC Microbiology 13, 258 (2013)) and S. cerevisiae (Fig. 1 and the graphical abstract from Bagamery et al., Current Biology 30, 4563–4578 (2020)). We have now revised the discussion section of our manuscript to make this point clearer.

      [Ref1] https://www.biorxiv.org/content/10.1101/2024.04.19.590370v2

      [Ref2] https://www.biorxiv.org/content/10.1101/2024.10.08.617237v2

      We thank the reviewer for providing insightful references. Regarding the two specific references, Ref1 directly addresses the deviation in the linear relationship between growth rate and ribosome concentration (“growth law”) at the single-cell level. However, since the authors of Ref1 determined the rRNA abundance in each cell by aligning sequencing reads to the genome, this method inevitably introduces a substantial amount of measurement noise. As a result, we chose not to cite or discuss this preprint in our manuscript. Ref2 appears to pertain to a different topic, which we suspect may be a copy/paste error. Based on the reviewer’s description and the references in Ref1, we believe the correct Ref2 should be Pavlou et al., Nature Communications 16, 285 (2025) (with the biorxiv preprint link: https://www.biorxiv.org/content/10.1101/2024.04.26.591328v1). In this reference, it is stated that the relationship between ribosome concentration and growth rate only roughly aligns with the “growth law” at the single-cell level (with R<sup>2</sup> = 0.64), exhibiting a certain degree of deviation. We have now cited and incorporated the findings of Pavlou et al. (Pavlou et al., Nature Communications 16, 285 (2025)) in both the discussion section of our manuscript and Appendix 2.4. Overall, we agree with Pavlou et al.’s experimental results, which suggest that ribosome concentration does not exhibit a strong linear correlation with cell growth rate at the single-cell level. However, we remain somewhat uncertain about the extent of this deviation, as Pavlou et al.’s experimental setup involved alternating nutrients between acetate and glucose, and the lapse of five generations may not have been long enough for the growth to be considered balanced. Furthermore, as observed in Supplementary Movie 1 of Pavlou et al., some of the experimental cells appeared to experience growth limitations due to squeezing pressure from the pipe wall of the mother machine, which could further increase the deviation from the “growth law” at the single-cell level.  

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have no specific comments for the authors related to this last version of the paper. I believe the authors have properly improved the previous version of the manuscript.

      Response: We thank the reviewer for the highly positive comments and for recognizing the improvements made in the revised version of our manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan (Response to Reviewers)

      1. General Statements [optional]

      Response: We are pleased the reviewers appreciate the power of this novel proteomics methodology that allowed us to uncover new depths on the complexity of the ribosome ubiquitination code in response to stress. We also appreciate that the reviewers think that this is a “very timely” study and “interesting to a broad audience” that can change the models of translation control currently adopted in the field. Characterizing complex cellular processes is critical to advance scientific knowledge and our work is the first of its kind using targeted proteomics methods to unveil the integrated complexity of ribosome ubiquitin signals in eukaryotic systems. We also appreciate the fairness of the comments received and below we offer a comprehensive revision plan substantially addressing the main points raised by the reviewers. According to the reviewers’ suggestions, we will also expand our studies to two additional E3 ligases (Mag2 and Not4) known to ubiquitinate ribosomes, which will create an even more complete perspective of ubiquitin roles in translation regulation.

      2. Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The authors present a potentially powerful proteomics platform using parallel reaction monitoring (PRM) to quantitatively profile ribosomal protein (RP) ubiquitylation, with a focus on yeast under hydrogen peroxide (H₂O₂) stress. This approach robustly identifies both known and novel RP modifications, including basal ubiquitylation events previously undetected, and identifies Hel2-dependent mechanisms. The data support the conclusion that RPs are regulated by a multifaceted ubiquitin code, establishing a good foundation for the study.

      However, the study's focus shifts in a manner that introduces several limitations. Following the rigorous PRM-based analyses, the reliance on Western blotting without replication or quantification (e.g., single-experiment data in Figs. 3-5) significantly weakens the evidence. Experimental design becomes inconsistent, with variable combinations of stressors (H₂O₂, MMS, 4-NQO) and genetic backgrounds (WT, hel2Δ, rad6Δ) that preclude systematic comparisons. For instance, Fig. 3C/E and Fig. 4 omit critical controls (e.g., MMS in Fig. 4, rad6Δ in Fig. 3E), while Fig. 5 conflates distinct variables by comparing H₂O₂-treated rad6Δ with MMS-treated hel2Δ-a design that obscures causal relationships. Furthermore, Fig. 3F highlights that 4-NQO and MMS elicit divergent responses in hel2Δ, undermining the rationale for using these stressors interchangeably. These inconsistencies culminate in a fragmented narrative; attempts to link ISR activation or ribosome stalling to RP ubiquitylation become impossible, leaving the primary takeaway as "stress responses are complex" rather than advancing mechanistic insight.

              __Response: __We appreciate the evaluation of our work and that the power of our proteomics method established a good foundation for the study. We also understand the reviewer’s concerns and we will detail below a plan to enhance quantification and increase systematic comparisons. The experiments presented here were conducted with biological replicates, but in several instances, we focused on presence and absence of bands, or their pattern (mono vs poly-ub) because of the semi-quantitative nature of immunoblots. We will revise the figures and present their quantification and statistical analyses. In additional, we did not intend to use these stressors interchangeably, but instead, to use select conditions to highlight the complexity the stress response. In particular, we followed up with H2O2 *versus* 4-NQO because both chemicals are considered sources of oxidative stress. Even though it is unfeasible to compare every single stress condition in every strain background, in the revised version, we will include additional controls to increase the cohesion of the narrative, and expand the comparison between MMS, H2O2, and 4-NQO, as suggested. Details below.
      

      To strengthen the work, the following revisions are essential:

      R1.1. Repeat and quantify immunoblots: All Western blotting data require biological replicates and statistical analysis to support claims.

              __Response: __As requested, we will display quantification and statistical analysis of the suggested and new immunoblots that will be conducted during the revision period.
      

      R1.3. Remove non-parallel comparisons: The mRNA expression analysis in Fig. 5, which compares dissimilar conditions (e.g., rad6Δ + H₂O₂ vs. hel2Δ + MMS), should be omitted or redesigned to enable direct, strain- and stressor-matched contrasts.

              __Response: __We will follow the reviewers’ suggestion and redesign the analysis to increase consistency and prioritize data under identical conditions. To increase confidence in the mRNA data analysis, we intend to perform follow up experiments and analyze protein abundance of *ARG proteins* and *CTT1 *under different conditions. The remaining data using non-parallel comparisons will be moved to supplemental material and de-emphasized in the final version of the manuscript.
      

      R1.4. Standardize experimental variables: Restructure the study to maintain identical genetic backgrounds and stressors across all figures, enabling systematic interrogation of enzyme- or stress-specific effects on the ubiquitin code.

              __Response: __To ensure a better comparison across strains and conditions, we will re-run several experiments and focus on our main stress conditions. Specifically:
      
      • 3D: We plan to re-run this experiment and include MMS

      • 3E: We plan to perform the same panel of experiments in rad6D ,and display WT data as main figure.

      • 4A-B: We plan to perform translation output (HPG incorporation) experiments with MMS as suggested

      • 4C: We plan to re-run blots for p-eIF2a under MMS for improved comparison.

      Reviewer #1 (Significance (Required)):

      The authors present a potentially powerful proteomics platform using parallel reaction monitoring (PRM) to quantitatively profile ribosomal protein (RP) ubiquitylation, with a focus on yeast under hydrogen peroxide (H₂O₂) stress. This approach robustly identifies both known and novel RP modifications, including basal ubiquitylation events previously undetected, and identifies Hel2-dependent mechanisms. The data support the conclusion that RPs are regulated by a multifaceted ubiquitin code, establishing a good foundation for the study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this manuscript the authors use a new target proteomics approach to quantify site-specific ubiquitin modification across the ribosome before and after oxidative stress. Then they validate their findings following in particular ubiquitination of Rps20 and Rps3 and extend their analysis to different forms of oxidative stress. Finally they question the relevance of two known actors of ribosome ubiquitination, Hel2 and Rad6. It is not easy to summarize the observations because in fact the major finding is that the patterns of ribosome ubiquitination occur in a stresser and enyzme specific manner (even when considering only oxidative stress). However, the complexity revealed by this study is very relevant for the field, because it underlies that the ubiquitination code of ribosomes is not easy to interpret with regard to translation dynamics and responses to stress or players involved. It suggests that some of the models that have generally been adopted probably need to be amended or completed. I am not a proteomics expert, so I cannot comment on the validity of the new proteomics approach, of whether the methods are appropriately described to reproduce the experiments. However, for the follow up experiments, the results following Rps20 and Rps3 ubiquitination are well performed, nicely controlled and are appropriately interpreted.

      Maybe what one can regret is that the authors have limited their analysis to the study of Hel2 and Rad6, and not included other enyzmes that have already been associated with regulation of ribosome ubiquitination, to get a more complete picture. It may not take that much time to test more mutants, but of course there is the risk that rather than enable to make a working model it might make things even more complex.

              __Response: __We value the positive evaluation of our work. We also appreciate the notion that it meaningfully expands the knowledge on the complexity of the ribosome ubiquitination code, challenges the current models of translation control, and conducted well-performed, and nicely controlled experiments. To address the main concern of the reviewer, we will expand our work by studying two additional enzymes involved in ribosome ubiquitination (Mag2 and Not4) and provide a more comprehensive picture of this integrated system. Specifically, we will generate yeast strains deleted for *MAG2* and *NOT4*, and evaluate their impact in ribosome ubiquitination under our main conditions of stress. We will investigate the role of these additional E3s in translation output (HPG incorporation), and in inducing the integrated stress response via phosphorylated eIF2α and Gcn4 expression. Additional follow up experiments will be performed according to our initial results.
      

      Reviewer #2 (Significance (Required)):

      In recent years, regulation of translation elongation dynamics has emerged as a much more relevant site of control of gene expression that previously envisonned. The ribosome has emerged as a hub for control of stress responses. Therefore this study is certainly very timely and interesting for a broad audience. However, it does fall short of giving any simple picture, and maybe the only point one can question is whether it is interesting to publish a manuscript that concludes that regulation is complicated, without really being able to provide any kind of suggestive model.

      My feeling is nevertheless that it will impact how scientists in the field design their experiments and what they will conclude. It will certainly also drive new experiments and approaches, and lead to investigations on how all the different players in regulation of ribosome modification talk to each other and signal to signaling pathways.

              __Response: __We appreciate the comments and the balanced view that studies like ours will still be impactful and contribute to a number of fields in multiple and meaningful ways. With the new experiments proposed here, and used of additional mutants and strains, we intend to propose and provide a more unified model that explain this complex and dynamic relationship.
      

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Recent studies have shown that the ubiquitination of uS3 (Rps3) is crucial for the quality control of nonfunctional rRNA, specifically in the process known as 18S noncoding RNA degradation (NRD). Additionally, the ubiquitination of uS10 (Rps20) plays a significant role in ribosome-associated quality control (RQC). However, the dynamics of ribosome ubiquitination in response to oxidative stress are not yet fully understood.

      In this study, the authors developed a targeted proteomics method to quantify the dynamics of ribosome ubiquitination in response to oxidative stress, both relatively and stoichiometrically. They identified 11 ribosomal sites that exhibited increased ubiquitin modification after exposure to hydrogen peroxide (H2O2). This included two known targets: uS10 and uS3 (of Hel2), which recognize collided ribosomes and initiate the processes of 18S NRD and translation quality control (RQC). Using isotope-labeled peptides, the researchers demonstrated that these modifications are non-stoichiometric and display significant variability among different peptides.

      Furthermore, the authors explored how specific enzymes in the ubiquitin system affect these modifications and their impact on global translation regulation. They found that uS3 (Rps3) and uS10 (Rps20) were modified differently by various stressors, which in turn influenced the Integrated Stress Response (ISR). The authors suggest that different types of stressors alter the pattern of ubiquitinated ribosomes, with Rad6 and Hel2 potentially competing for specific subpopulations of ribosomes.

      Overall, this study emphasizes the complexity of the ubiquitin ribosomal code. However, further experiments are necessary to validate these findings before publication.

      Major Comments:

      I consider the additional experiments essential to support the claims of the paper.

      R3.1. To understand the roles of ribosome ubiquitination at the specific sites, the authors must perform stressor-specific suppression of global translation, as demonstrated in Figures 4 and 5. This should include the uS10-K6R/K8R and uS3-K212R mutants.

              __Response: __We understand the importance of the suggested experiment. We have already requested and kindly received strains expressing these mutations, which will reduce the time required to successfully address this point. We will perform our translation and ISR assays such as the one referred by the reviewer in Figs. 4A-C and 5E, and results will determine the role of individual ribosome ubiquitination sites in translation control.
      

      R3.2. It is crucial to ensure that experiments are adequately replicated and that statistical analysis is thorough, with precise quantification. For a more accurate comparison between wild-type (WT) and Hel2 deletion mutants regarding ribosome ubiquitination, the authors should quantify the ubiquitinated ribosomes in both WT and Hel2 mutants under stress conditions. This quantification should be conducted on the same blot, using diluted control samples. Similarly, in Figures 3F and 4C, for an accurate comparison between WT and Hel2 or Rad6 deletion mutants, the authors should quantify the ubiquitinated ribosomes across these conditions. Again, this quantification should be performed on the same blot with the dilution of control samples.

              __Response: __As was also requested by reviewer 1 and discussed above (point R1.1), we will conduct quantification and display statistical analyses for our immunoblots. In addition, we will re-run the aforementioned experiments to improve quantification following the reviewers’ request (same gel & diluted control samples).
      

      Reviewer #3 (Significance (Required)):

      • General assessment:

      Recent studies reveal that the ubiquitination of uS3 (Rps3) is essential for the quality control of nonfunctional rRNA (18S NRD), while the ubiquitination of uS10 (Rps20) plays a crucial role in ribosome-associated quality control (RQC). However, the dynamics of ribosome ubiquitination in response to oxidative stress remain unclear.

      • Advance:

      In this study, the authors developed a targeted proteomics method to quantify ribosome ubiquitination dynamics in response to oxidative stress, both relatively and stoichiometrically. By utilizing isotope-labeled peptides, they demonstrated that these modifications are non-stoichiometric and exhibit significant variability across different peptides. They identified 11 ribosomal sites that showed increased ubiquitin modification following H2O2 exposure, including two known targets of Hel2, which recognize collided ribosomes and induce translation quality control (RQC).

      • Audience: This information will be of interest to a specialized audience in the fields of translation, ribosome function, quality control, ubiquitination, and proteostasis.

      • The field: Translation, ribosome function, quality control, ubiquitination, and proteostasis.

      __ Response:__ We appreciate that our work will be valuable to a number of fields in protein dynamics and that our method advances the field by measuring ribosome ubiquitination relatively and stoichiometrically in response to stress.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Response: All requested changes require experiments and data analyses, and a complete revision plan is delineated above in section #2.

      • *

      4. Description of analyses that authors prefer not to carry out

      • *

      R1.2. Leverage the PRM platform: Apply the established quantitative proteomics approach to validate or extend findings in Fig. 3 (e.g., RAD6-dependent ubiquitylation), ensuring methodological consistency.

              __Response: __Although we understand the interest on the proposed result for consistency, this is the only requested experiment that we do not intend to conduct. Because of the lack of overall ubiquitination of ribosomal proteins in *rad6**D* in response to H2O2 (e.g., Silva et al., 2015, Simoes et al., 2022), we believe that this PRM experiment in unlikely to produce meaningful insight on the ubiquitination code. In this context, we expected that sites regulated by Hel2 will be the ones largely modified in rad6*D *and we followed up on them via immunoblot. Moreover, this experiment would not be time or cost-effective, and resources and efforts could be used to strengthen other important areas of the manuscript, such as including the E3’s Mag2 and Not4 into our work.
      
    1. Reviewer #1 (Public review):

      Summary:

      The authors present results and analysis of an experiment studying the genetic architecture of phenology in two geographically and genetically distinct populations of switchgrass when grown in 8 common gardens spanning a wide range of latitudes. They focused primarily on two measures of phenology - the green-up date in the spring, and the date of flowering. They observed generally positive correlations of flowering date across the latitudinal gradient, but negative correlations between northern and southern (i.e. Texas) green-up dates. They use GWAS and multivariate meta-analysis methods to identify and study candidate genetic loci controlling these traits and how their effect sizes vary across these gardens. They conclude that much of the genetic architecture is garden-specific, but find some evidence for photoperiod and rainfall effects on the locus effect sizes.

      Strengths:

      The strengths of the study are in the large scale and quality of the field trials, the observation of negative correlations among genotypes across the latitudinal gradient, and the importance of the central questions: Can we predict how genetic architecture will change when populations are moved to new environments? Can we breed for more/less sensitivity to environmental cues?

      Weaknesses:

      I have tried hard to understand the concept of the GxWeather analysis presented here, but still do not see how it tests for interactions between weather and genetic effects on phenology. I may just not understand it correctly, but if so, then I think more clarity in the logical model would help - maybe a figure explaining how this approach can detect genotype-weather interactions. Also, since this is a proposal for a new approach to detecting gene-environment effects, simulations would be useful to show power and false positive rates, or other ways of validating the results. The QTL validation provided is not very convincing because the same trials and the same ways of calculating weather values are used again, so it's not really independent validation, plus the QTL intervals are so large overlap between QTL and GWAS is not very strong evidence.

      The term "GxWeather" is never directly defined, but based on its pairing with "GxE" on page 5, I assumed it means an interaction between genotypes (either plant lines or genotypes at SNPs) and weather variables, such that different genotypes alter phenology differently as a response to a specific change in weather. For example, some genotypes might initiate green-up once daylengths reach 12 hours, but others require 14 hours. Alternatively (equivalently), an SNP might have an effect on greenup at 12 hours (among plants that are otherwise physiologically ready to trigger greenup on March 21, only those with a genotype trigger), while no effect on greenup with daylengths of 14 hours (e.g., if plants aren't physiologically ready to greenup until June when daylengths are beyond 14 hours, both aa and AA genotypes will greenup at the same time, assuming this locus doesn't affect physiological maturity).

      Either way, GxE and (I assume) GxWeather are typically tested in one of two ways. Either genotype effects are compared among environments (which differ in their mean value for weather variables) and GxWeather would be inferred if environments with similar weather have similar genotype effects. Or a model is fit with an environmental (maybe weather?) variable as a covariate and the genotype:environment interaction is measured as a change of slope between genotypes. Basically, the former uses effect size estimates across environments that differ in mean for weather, while the latter uses variation in weather within an experiment to find GxWeather effects.

      However, the analytical approach here seems to combine these in a non-intuitive way and I don't think it can discover the desired patterns. As I understand from the methods, weather-related variables are first extracted for each genotype in each trial based on their green-up or flowering date, so within each trial each genotype "sees" a different value for this weather variable. For example, "daylength 14 days before green-up" is used as a weather variable. The correlation between these extracted genotype-specific weather variables across the 8 trials is then measured and used as a candidate mixture component for the among-trial covariance in mash. The weight assigned to these weather-related covariance matrices is then interpreted as evidence of genotype-by-weather interactions. However, the correlation among genotypes between these weather variables does not measure the similarity in the weather itself across trials. Daylengths at green-up are very different in MO than SD, but the correlation in this variable among genotypes is high. Basically, the correlation/covariance statistic is mean-centered in each trial, so it loses information about the mean differences among trials. Instead, the covariance statistic focuses on the within-trial variation in weather. But the SNP effects are not estimated using this within-trial variation, they're main effects of the SNP averaged over the within-trial weather variation. Thus it is not clear to me that the interpretation of these mash weights is valid. I could see mash used to compare GxWeather effects modeled in each trial (using the 2nd GxE approach above), but that would be a different analysis. As is, mash is used to compare SNP main effects across trials, so it seems to me this comparison should be based on the average weather differences among trials.

      A further issue with this analysis is that the weather variables don't take into account the sequence of weather events. If one genotype flowers after the 1st rain event and the second flowers after the 2nd rain event, they can get the same value for the cumulative rainfall 7d variable, but the lack of response after the 1st rain event is the key diagnostic for GxWeather. There's also the issue of circularity. Since weather values are defined based on observed phenology dates, they're effectively caused by the phenology dates. So then asking if they are associated with phenology is a bit circular. Also, it takes a couple of weeks after flowering is triggered developmentally before flowers open, so the < 2-week lags don't really make developmental sense.

      Thus, I don't think this sentence in the abstract is a valid interpretation of the analysis: "in the Gulf subpopulation, 65% of genetic effects on the timing of vegetative growth covary with day length 14 days prior to green-up date, and 33% of genetic effects on the timing of flowering covary with cumulative rainfall in the week prior to flowering". There's nothing in this analysis that compares the genetic effects under 12h days to genetic effects under 14h days (as an example), or genetic effects with no rainfall prior to flowering to genetic effects with high rainfall prior to flowering. I think the only valid conclusion is: "65% of SNPs for green-up have a GxE pattern that mirrors the similarity in relationships between green-up and day length among trials." However I don't know how to interpret that statement in terms of the overall goals of the paper.

      Next, I am confused about the framing in the abstract and the introduction of the GxE within and between subpopulations. The statement: "the key expectation that different genetic subpopulations, and even different genomic regions, have likely evolved distinct patterns of GxE" needs justification or clarification. The response to an environmental factor (ie plasticity) is a trait that can evolve between populations. This happens through the changing frequencies of alleles that cause different responses. But this doesn't necessarily mean that patterns of GxE are changing. GxE is the variance in plasticity. When traits are polygenic, population means can change a lot with little change in variance within each population. Most local adaptation literature is focused on changes in mean trait values or mean plasticities between populations, not changes in the variance of trait values or plasticities within populations. Focusing on the goal of this paper, differences in environmental or weather responses between the populations are interesting (Figure 1). However the comparisons of GxE between populations and with the combined population are hard to interpret. GxE within a population means that that population is not fixed for this component of plasticity, meaning that it likely hasn't been strongly locally selected. Doesn't this mean that in the context of comparing the two populations, loci with GxE within populations are less interesting than loci fixed for different values between populations? Also, if there is GxE in the Gulf population, by definition it is also present in the "Both" population. Not finding it there is just a power issue. If individuals in the two subpopulations never cross, the variance across the "Both" population isn't relevant in nature, it's an artificial construct of this experimental design. I wonder if there is confusion about the term "genetic" in GxE and as used in the first paragraph of the intro ("Genetic responses" and "Genetic sensitivity"). These sentences would be most clear if the "genetic" term referred to the mechanistic actions of gene products. But the rest of the paper is about genetic variation, ie the different effects of different alleles at a locus. I don't think this latter definition is what these first uses intend, which is confusing.

      Note that the cited paper (26) is not relevant to this discussion about GxE patterns. This paper discusses the precision of estimating sub-group-specific genetic effects. With respect to the current paper, reference 26 shows that you might get more accurate measures of the SNP effects in the Gulf population using the full "Both" population dataset because i) the sample size is larger, and ii) as long as the true effects are not that different between populations. That paper is not focused on whether effect size variation is caused by evolution but on the technical question of whether GxG or GxE impacts the precision of within-group effect size estimates. The implication of paper 26 is that comparing SNP effects estimated in the "Both" population among gardens might be more powerful for detecting GxE than using only Gulf samples, even if there is some difference in SNP effects among populations. But if there magnitudes (or directions) of SNP effects change a lot among populations (ie not just changes in allele frequency), then modeling the populations separately will be more accurate.

    1. Overview There are three related problems at the intersection of philosophy and science that are fundamental to our understanding of our relationship to the natural world: the mind–body problem, the free will problem, and the nature–nurture problem. It seems that most people, even those without much knowledge of science or philosophy, have opinions about the answers to these questions that come simply from observing the world we live in. Our feelings about our relationship with the physical and biological world often seem incomplete. We are in control of our actions in some ways, but at the mercy of our bodies in others; it feels obvious that our consciousness is some kind of creation of our physical brains, at the same time we sense that our awareness must go beyond just the physical. This incomplete knowledge of our relationship with nature leaves us fascinated and a little obsessed, like a cat that climbs into a paper bag and then out again, over and over, mystified every time by a relationship between inner and outer that it can see but can’t quite understand. It may seem obvious that we are born with certain characteristics while others are acquired, and yet of the three great questions about humans’ relationship with the natural world, only nature–nurture gets referred to as a “debate.” In the history of psychology, no other question has caused so much controversy and offense: We are so concerned with nature–nurture because our very sense of moral character seems to depend on it. The problem is, most human characteristics aren’t usually as clear-cut as, for example height or instrument-mastery, affirming our nature–nurture expectations strongly one way or the other. In fact, even the great violinist might have some inborn qualities—perfect pitch, or long, nimble fingers—that support and reward his hard work. And the basketball player might have eaten a diet while growing up that promoted her genetic tendency for being tall. When we think about our own qualities, they seem under our control in some respects, yet beyond our control in others. And often the traits that don’t seem to have an obvious cause are the ones that concern us the most and are far more personally significant. What about how much we drink or worry? What about our honesty, or religiosity, or sexual orientation? They all come from that uncertain zone, neither fixed by nature nor totally under our own control.

      The nature-nurture problem highlets just how compelx traaits liek personality habits don't fit neatly into either category.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewer and the editor for carefully reading our manuscript, and acknowledging the strength of combining quantitative analysis with semi-naturalistic experiments on mice social behavior. Please find below our response to both the public review and the recommendation to the authors. As a summary, we have included additional figures and texts such as 

      - a new Results subsection “Choosing timescales for analysis ” (page 6)

      - a new Materials and Methods subsection “Maximum entropy model with triplet interactions” (page 17)

      - new supplementary figures, which have current labels of:

      - Figure 2 - figure supplement 5

      - Figure 2 - figure supplement 6

      - Figure 2 - figure supplement 7

      - Figure 4 - figure supplement 1

      - Figure 4 - figure supplement 2    

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      In this manuscript, Chen et al. investigate the statistical structure of social interactions among mice living together in the ECO-Hab. They use maximum entropy models (MEM) from statistical physics that include individual preferences and pair-wise interactions among mice to describe their collective behavior. They also use this model to track the evolution of these preferences and interactions across time and in one group of mice injected with TIMP-1, an enzyme regulating synaptic plasticity. The main result is that they can explain group behavior (the probability of being together in one compartment) by a MEM that only includes pair-wise interactions. Moreover, the impact of TIMP-1 is to increase the variance of the couplings J_ij, the preference for the compartment containing food, as well as the dissatisfaction triplet index (DTI). 

      Strengths: 

      The ECO-Hab is a really nice system to ask questions about the sociability of mice and to tease apart sociability from individual preference. Moreover, combining the ECO-Hab with the use of MEM is a powerful and elegant approach that can help statistically characterize complex interactions between groups of mice -- an important question that requires fine quantitative analysis. 

      Weaknesses: 

      However, there is a risk in interpreting these models. In my view, several of the comparisons established in the current study would require finer and more in-depth analysis to be able to establish firmer conclusions (see below). Also, the current study, which closely resembles previous work by Shemesh et al., finds a different result but does not provide the same quantitative model comparison included there, nor a conclusive explanation of why their results are different. In total, I felt that some of the results required more solid statistical testing and that some of the conclusions of the paper were not entirely justified. In particular, the results from TIMP-1 require proper interaction tests (group x drug) which I couldn't find. This is particularly important when the control group has a smaller N than the drug groups.  

      We would like to thank the reviewer and the editor for carefully reading our manuscript, and acknowledging the strength of combining quantitative analysis with semi-naturalistic experiments on mice social behavior. Thanks to the reviewer’s suggestion, we have improved our manuscript by 

      (1) A proper comparison with Shemesh et al., especially to include maximum entropy models with triplet interactions. We show that triplet models overfit even given the entire 10 day dataset, which limits our study to look at pairwise interactions.

      (2) Results on cross-validation for both triplet interaction models and pairwise interaction models, completed on aggregates of various length of days. This analysis showed that pairwise models overfit for single-day data, and led us to learn pairwise models only on 5day aggregation of data. We have updated the manuscript (both the text and the figures) to present these results.

      (3) New results that subsample the drug groups to the same size as the control group. The conclusions about TIMP-1 treated mice hordes hold when we compare groups of the same size. 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors): 

      (1) COMPARISON WITH PREVIOUS WORK. The comparison with the cited previous work of Shemesh et al. 2013 rests novelty to the use of ME models in characterizing social interactions between groups of mice as well as sheds doubts on the main claim of the manuscript, namely that second-order correlations are sufficient to describe the joint distribution of occupancies of all mice (in particular triplets; there is no quantification of the variance explained by model in panel Fig. 2D). In my view, to make the claim "These results show that pairwise interaction among mice are sufficient to assess the observed collective behavior", the authors should compare models with 2nd and 3rd order interactions and quantify how much of the total correlation can be explained by pair-wise interactions, triplet interactions, and so on. Without a proper model comparison, it is unclear how the authors can make such a claim. One thing observed by Shemesh et al. is that, on average, J_ij are negative. This does not seem to be the case in the current study and the authors should discuss why. 

      Finally, the explanation provided in the Discussion about this discrepancy (spatial resolution and different group size) are not completely satisfactory. With more animals, one would imagine that the impact of higher order correlations would increase (and not decrease) as the number of terms of 3rd, 4th, ... order will be very big. I would also think that the same could be true for the spatial scale: assessing interactions with a coarser spatial grid (whole cages in the case of the ECO-Hab) would allow for simultaneous interactions among more mice to happen compared with a situation in which the spatial grid is so small that only a few animals can fit in each subdivision. 

      We thank the reviewer for the recommendation. In the updated version of the manuscript, we explicitly learn the triplet interaction model. We show that because the number of mice in our experiment is much larger than Shemesh et al., a triplet model runs into the problem of overfitting.

      In particular, we found that the test set likelihood increases monotonically when the L2 regularization strength increases, which corresponds to a suppression of the triplet interaction strength (see additional supplementary figure, now Figure 2 - figure supplement 5). More specifically, for the range of regularization strength (β<sub>G</sub>) we tested (10<sup>-1</sup> < β<sub>G</sub> < 10<sup>1</sup>), the maximum test set likelihood is achieved at β<sub>G</sub> = 10<sup>1</sup>, which corresponds to . Notice that those learned triplet interactions are very close to zero. This means we should select a model with pairwise interactions over a model with triplet interactions.

      We have added the above reasoning in page 5, line 166-169 of the Results section with the sentence “Moreover, models with triplet interactions show signs of overfitting under crossvalidation, which is mitigated when the triplet interactions are suppressed close to zero using L2 regularization”,  a new subsection “Maximum entropy model with triplet interactions” in Materials and Methods (page 16-17, line 548 - 563) to describe the protocols of learning and crossvalidation for these triplet interaction models. 

      Furthermore, we extended the discussion about the difference between Shemesh et al. and our results in the Discussion section. In addition to the difference of spatial scales (chamber vs. location in the chamber), and the difference of group size and its impact on data analysis (N = 15 in our largest cohort and N = 4 in theirs), we added a discussion about the difference of experimental arena, which in Eco-HAB contains connected chambers that mimic the naturalistic environment, and in Shemesh et al. contains a single chamber. The change in the text is on page 12, between line 390 and line 394.

      We thank the reviewers for pointing out that the mean 2nd order interaction in Shemesh et al. is negative. One possibility is that the labeled areas in Shemesh et al. are much smaller than in our Eco-HAB setup, which could suggest that mice do have the space to stay in the same area, which will lead to a negative mean 2nd order interaction.

      (2) ASSESSMENT OF THE TEMPORAL EVOLUTION OF THE INTERACTIONS. The analysis of the stability of the social structure is not conclusive. First, I don't think the authors can conclude that "These results suggest that the structure of social interactions in a cohort as a whole is consistent across all days." If anything is preserved, they would be the statistics of that structure but not the structure itself (i.e., there is no evidence for that). The comparison of the stability of the mean <h\_i> and the mean <J\_ik> would also require a statistical test to be able to state that "Delta h_i changed more strongly from day to day (Fig. 3D, top panel) relative to the interaction measured as the Jij's." The same is true for the assessment of the TIMP: the differences found in the variability in J_ij and in the mean and variance of the h_i's, look noisy and would require a proper statistical test. The traces look quite variable across days in the control condition, so assessing differences may be difficult. Finally, it would be good to know if the variability in individual J_ij is because they truly vary from day to day or because estimating them within one day is difficult (statistical error). If the reason is the latter, one could decrease the temporal resolution to 2-3 days and see whether the estimated J_ijs are more stable. Perhaps, also for that reason, the summed interaction strength J_i is also more stable, simply because it aggregates more data and has a smaller statistical error. 

      We thank the reviewer for pointing out the necessity of assessing the temporal evolution of the interactions. The problem of shorter data duration leads to more noise in the estimation, together with the reviewer’s Comment 4 about the risk of overfitting, led us to add a new Results subsection “Choosing timescales for analysis” (page 6, line 171 to line 189). Specifically, we assess whether the pairwise maximum entropy model overfits using data from _K-_day aggregates, by computing the log-likelihood of both the training sets and the test sets,which is chosen to be 1 hour from the 6 hour data window of each day. We found that for single day data, the pairwise maximum entropy model overfits. In contrast, for data with aggregates of more or equal to 4 days of data, the pairwise model does not overfit. This new result is supported by an additional supplementary figure, now Figure 2 - figure supplement 6.

      To be consistent with later approaches in the manuscript where we consider the effects of TIMP1, we choose the analysis windows to be data aggregates from 5 days. This means for the experiment that collects a total of 10 days of data, there are only two time points, thus a study of the temporal evolution is limited to comparison between the first 5 days and the last 5 days of the experiment. We describe these results in the Results subsection “Stability of sociability over time” (page 6, line 190 - 220). An additional supplementary figure, now Figure 2 - figure supplement 7, shows in details the comparison of the inferred interaction strength J and the chamber preference between the first 5 days and the last 5 days for the 4 cohorts of male C57BL6/J mice, which shows the inferred interactions have a consistent variability across first and last 5 days, and across all cohorts. The small value of Pearsons’ correlation coefficient shows that the exact structure (pairspecific J<sub>ij</sub>) is not stable. At the end of the Results subsection “Stability of sociability over time”, we explicitly say that “This implies that the maximum entropy model does not infer a social structure that is stable over time.”

      (3) EFFECT OF TIMP-1. The reported effects of TIMP-1 on the variance of the J_ij seem very small and possibly caused by a few outlier J_ijs (perhaps from one or two animals) which

      are not present in the control group which seems to have fewer animals (N = 9 minus two mice that died after the surgery vs. N = 14 in the drug group), so the lack of a significant difference in the sigma[J_ij] could simply be due to a smaller N (a test for the interaction group x drug was not done). 

      The clearest effect of TIMP-1 seems to be a change in place preference (h_i) and not the interaction terms (J_ij) (Fig. 3F bottom). But this could be explained by a number of factors that have nothing to do with sociability such as that recovery from surgery makes them eat more/less. The fact that it seems to be present, as recognized by the authors, in the control group with no TIMP-1 and that this effect was not observed in the female group F1, puts into question the specificity and reproducibility of the result. 

      Finally, the effect of TIMP-1 in the DTI would require more statistics (testing the interaction group x drug). The fact that the control group has fewer animals (N = 9 vs. 15 and 13 in the drug groups), and that there is a weaker trend in the DTI of the control group to start high and then decrease, makes this test necessary.  

      Now, after we select a proper timescale to learn the pairwise maximum entropy model, we update the manuscript to present results only on 5-day aggregation of data (see updated Figure 3, updated supplementary figures, Figure 3 - figure supplement 1 and 2). For the variance of the J<sub>ij</sub>, the F-test between different 5-day aggregates before and after TIMP for the male drug group now shows a nonsignificant p-value after applying the Bonferroni correction. For the female drug group, the difference of the J<sub>ij</sub> variance is still significant. 

      To test the effect of different group size on DTI, we subsampled the drug groups by 1) subsampling the inferred interactions learned from the original N = 15 or N = 13 data, or 2) subsampling the mice colocalization data and then inferring the pairwise interactions.  In both cases, the resulting DTI for the subsampled drug group still exhibits the same global pattern as before, i.e. after TIMP-1 injection, DTI significantly increases, which after 5 days falls back to the baseline level. The results are supported by two additional supplementary figures, Figure 4 - figure supplement 1 and 2. This result is referred to in the text in the Results subsection “Impaired neuronal plasticity in the PL affects the structure of social interactions” (page 10, line 333 - 336): “Notably, the difference of the DTI is not due to the control group M4 has less mice, as subsampling both on the level of the inferred interactions (Figure 4 - figure supplement 1) and on the level of the mice locations (Figure 4 - figure supplement 2) give the same DTI for cohorts M1 and F1.”

      (4) MODEL COMPARISON. Any quantitative measure of "goodness" of the model , (i.e., comparison of the predictions of the model with triplet frequency as well as the distribution of p(K)) should be cross-validated. In particular, Fig. S2 needs to be cross-validated for the goodness of fit to be properly quantified. Is the analysis shown in Fig. 3F crossvalidated? Because otherwise, there is an expected increase in the likelihood simply explained by an increase in the number of parameters of the model (i.e., adding the J_ij's). 

      As discussed in our responses to Comment 1 and 2, we have added results about cross-validation in the new supplementary figures, Figure 2 – figure supplement 5 and 6 , for which we computed the test-set and training-set likelihood for maximum entropy models with pairwise interactions and also for models with triplet interactions. Figure 2 - figure supplement 6 shows the pairwise model does not overfit when we consider the aggregated data from more or equal to 4 days. 

      (5) EFFECT OF SLEEP. The comparison of p(K) between the data and the model requires a bit more investigation: the model underestimates instances in which almost all mice were in the same compartment (i.e., for K >= 13. p(K)_data >> p(K)_MEM; btw where is the pairwise point p(15) in Fig. 2E and Fig. S4?). Could this be because there were still short periods during the dark cycle in which all mice were asleep in one of the cages? As explained by the authors, sleep introduces very strong higher order correlations between animals as they like sleeping altogether. Knowing whether removing light periods was enough to remove this "sleep contamination" or not, would be important in order to interpret discrepancies between the pairwise model and the data. 

      Figure 2E shows that the pairwise maximum entropy model (in black) overestimates the data (in blue circles) for P(K) at large K (and not underestimates). In the data, we never observe all 15 mice being in the same box; hence P<sub>data</sub>(15) = 0, and does not show up in the log-scaled figure (same for Figure 2 - figure supplement 3). A possible explanation for the pairwise model overestimating P(K) at large K is that the finite-sized box limits the total number of mice that are comfortably staying in the same box. It can also be due to the fact that the number of time points at which K >= 13 is small and hence causes an underestimation due to finite data. We have added this interpretation of the discrepancy of P(K) to Section “Pairwise interaction model explains the statistics of social behavior” in page 6, line 160. 

      We thank the Reviewer for raising the point of “sleep contamination”. Indeed, Eco-HAB data, as do data from other 24h-testing behavioral systems, demonstrate distinct differences in activity levels during the light and dark phases of the light-dark cycle (Rydzanicz et al., EMBO Mol. Med., 2024). During the light phases, mice primarily sleep and, as noted, they huddle, so many individuals within the cohort tend to remain in close proximity for extended periods. We acknowledge that including such periods in the analysis could potentially introduce confounding effects to the model due to limited movement and interactions, and this is why we decided not to use this data. However, during the dark phases, mice are highly active, with individuals rarely staying in the same compartment for long periods. Specifically, in the dark phases, while there are occasional instances where a few mice may remain in the same compartment for over 1 hour, the majority exhibit considerable mobility, actively exploring and transitioning between compartments. We see no compelling reason to exclude these periods from our analysis, as such activity aligns with the natural behavioral repertoire of the mice and provides robust data for our model. Furthermore, it is well-established that mammals, including nocturnal species such as mice, are most active shortly after waking, typically at the onset of their active phase (i.e., the beginning of the dark phase). To ensure a conservative approach, we specifically analyzed the first 6 hours of the dark phase when the cumulative number of box visits is at its peak, indicating heightened activity levels. In our view, this period offers an optimal window for studying natural behaviors, including social interactions.

      Additionally, prior studies using the Eco-HAB system have consistently demonstrated that mice engage in social interactions both within the compartments and in the connecting tubes during the dark phase (Puścian et al., eLife, 2016, Winiarski et al. in press). Given this evidence and the observed behavioral dynamics in our data, the likelihood of mice being asleep during the analyzed periods of the dark phase is very low.

      We hope this clarification addresses the reviewer’s concerns and highlights the rationale underpinning our analysis choices. Thank you for raising this important point, which allowed us to provide additional context for our approach.

      (6) COMPARTMENT PREFERENCES. The differences between p(K) across compartments also would require a bit more attention: of a MEM with non-spatially dependent pair-wise interactions shows differences across compartments, it must be because of the terms h_{i,r} terms which contain a compartment index, right? Wouldn't this imply that the independence model, which always underrepresents data events with large K, already contains the difference in goodness of fit between compartments (1, 3) and (2, 4)? In the plots, it does not look like the goodness of the independent model depends on the compartment (the authors could compare directly the models' predictions between compartments). Moreover, when looking at Fig. 2C, it does not look like the value of h_{i,r} in compartments (1,3) is higher than in (2,4) (if anything, it would be the other way around). How can this be explained? It would be good to know if the difference across compartments comes from differences in the empirical p(K) or in the models' prediction? If the difference is in the data p(K), could it be that the compartments 2-4 showing higher p(K=15) (i.e., larger difference with the pairwise MEM prediction) are those chosen by mice to sleep during the light cycle? If not, what could explain these differences across compartments? Could the presence of food and water explain this difference? 

      The reviewer is correct, in the pairwise MEM, the difference across compartments enter in the box preference h<sub>ir</sub>. Greater h<sub>ir</sub> means compartment r is more attractive to mouse i. Because box 2 and 4 contain food and water, we expect that mice are more attracted to box 2 and 4, and this is what we see in Figure 2C, bottom subpanels. To reduce the number of parameters to look at, we introduce an index Δh<sub>i</sub> = h<sub>i2</sub> + h<sub>i4</sub> - h<sub>i1</sub> - h<sub>i3</sub>. This index Δh<sub>i</sub> is found to be mostly positive (see updated Figure 3C), which makes sense because mice are attracted to food and water. 

      Next we analyze the difference of P(K) across compartments (Figure 2 - figure supplement 3). There is already a difference in the P(K) calculated from empirical data. For example, P(K) in compartment 2 has a maximum at K = 5 while P(K) in compartment 1 has a maximum at K = 3

      One interesting observation is that it seems from Figure 2 - figure supplement 3 that the pairwise model explains P(K) in compartment 1 and compartment 3 better than in compartment 2 and in compartment 4. In compartment 2 and 4, the pairwise MEM overestimates P(K) for large K. An alternative MEM could include compartment-specific interaction strength, but it will also introduce 315 new parameters for a mice cohort with size N = 15.

      MINOR

      (1) A more quantitative comparison between in-cohort sociability and couplings J_ij as œwell as mean rates and parameters h_i is required. The matrices in Fig. 2C do look similar. So it is not clear how the comparison between these values is contributing to characterizing the correlation structure of the data. 

      The comparison between in-cohort sociability and coupling J<sub>ij</sub> is given by supplementary Figure 2 - figure supplement 2.  The key point for the model with the learned J<sub>ij</sub> reproducing the in-cohort sociability is given by Figure 2 - figure supplement 1.

      (2) Analysis of "in-state" probability is not explained. To me, it wasn't obvious what Fig. S5 is showing. I was assuming that this analysis was comparing the prediction of the MEM about the position of each animal at each time point, given its preference (h), pairwise interactions (J_ij), and the position of all other animals and the true position of the animal. But it seems like it is comparing the shape of the distribution of this prob across time between the data and the model (I guess the data had to be temporally binned in coarser temporal periods to yield prob values other than 0s and 1s). Also, not clear whether this analysis was done for each compartment separately and then averaged. This needs explanation. 

      The in-state probability is comparing the prediction of the MEM about the position of each animal at each time point, given its preference (h), pairwise interactions (J<sub>ij</sub>), and the position of all other animals and the true position of the animal. To achieve values between 0s and 1s, we bin the data temporally according to the model-predicted in-state probability. 

      We have added the explanation of in-state probability on page 6, line 163-166. We have also improved the description of in-state probability in Materials and Methods (subsection “Comparing in-state probability between model prediction and data”, line 493 - 503, page 15), and added a pointer from the main text to it. 

      (3) Looks like Fig. S3 is not cited in the text. 

      We added a pointer to Fig. S3 (now Figure 2 - figure supplement 2) in line 154. 

      (4) The authors say that "TIMP-1 release from the TIMP-1-loaded nanoparticles diminishes after 5 days." Does that mean from the day of the injection (4-5 days before the "After Day 1") or five days after reintroduced in the ECO-Hab? 

      It means five days after the mice were re-introduced in the ECO-Hab. We have updated the text in Results/Effects of impairing neuronal plasticity in the PL on subterritory preferences and sociability (the end of the first paragraph of this subsection) to 

      “The choice of five-day aggregated data for analysis is in line both with the proper timescales needed for the pairwise maximum entropy model to not overfit, and with the literature that TIMP-1 release from the TIMP-1-loaded nanoparticles is stable for 7-10 days after injection (Chaturvedi et al., 2014)  (i.e. 2-5 days after the mice are reintroduced to Eco-HAB).” (line 272 - 276, page 9)

      (5) In Methods, the authors should report the final N of each of the three groups. 

      The number of final N is reported in Table 1 (page 13). In the updated version, we have added a pointer to Table 1 in Materials and Methods/Animals, and in Materials and Methods/Exclude inactive and dead mice from analysis. We have also expanded the caption of Table 1 to clarify the difference between final N and initial N, and added a pointer to Materials and Methods/Exclude inactive and dead mice from analysis.

    1. Note: This response was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Dear Review Commons editorial team,

      Thank you for coordinating the thorough and careful review of our manuscript. We are especially grateful to the four anonymous reviewers for recognizing the value of our work and for their constructive suggestions on how to improve it.

      We are encouraged by the positive reception of our main conclusions on the robustness of adaptation to DNA replication stress and its relevance to multiple fields. All reviewers provided insightful comments, with reviewers #2 and #4 emphasizing that further experimental validation of the hypothesized role of reduced dNTPs in alleviating fitness during constitutive DNA replication stress would strengthen the paper. While the precise molecular mechanisms underlying this suppression are not the primary focus of this manuscript, we are eager to perform additional experiments based on the reviewers’ suggestions.

      Below, we present a detailed revision plan in the form of a point-by-point response to their comments.

      Reviewer #1 (Evidence, reproducibility and clarity):

      This study investigates the compensatory evolutionary response of Saccharomyces cerevisiae to DNA replication stress, focusing on the influence of genotype-environment interactions (GXE). The authors used a range of experimental conditions with varying nutrient levels to assess evolutionary outcomes under replication stress. Their genomic analysis reveals that while glucose levels affect initial adaptation rates, the genetics of adaptation remain robust across all nutritional environments. The research offers new insights into the adaptability of S. cerevisiae, emphasizing the role of the nutritional environment in evolutionary processes related to DNA replication stress. It identifies recurrent advantageous mutations under different macronutrient availabilities and uncovers a novel role for the RNA polymerase II mediator complex in adaptation to replication stress. Overall, this well-designed study adds to the growing recognition of the complexity and robustness of evolutionary responses to environmental stressors. It provides strong evidence that compensatory evolution to replication stress is robust across varying nutritional conditions. It both challenges and reinforces previous findings regarding the resilience of the yeast genetic interaction network to environmental perturbations. The detailed analysis of specific compensatory mutations and their fitness impacts across different conditions offers valuable insights into adaptive dynamics over 1000 generations, contributing a clear empirical framework for understanding how replication-associated stress shapes evolutionary outcomes in diverse environments.

      Based on the analysis:

      1) The conclusions are generally well-supported by the presented data. The evolution experiments and genomic analyses are robust and provide convincing evidence for the study's main claims. The authors took steps to eliminate bias, such as maintaining an adequate Ne, which, if not done, could have compromised their conclusions by affecting genetic drift and limiting the population's access to beneficial mutations.

      2) The figures are well-designed and easy to understand.

      3) The methodology is well-described and appears reproducible. The authors provide sufficient details on experimental procedures. Experimental replication is adequate, with multiple evolutionary lines.

      4) They also made efforts to validate their observations, such as the validation of mutations, the prediction of interactions in the Med14 structure, and its potential implication in gene regulation, as well as the analysis of the cumulative fitness benefit and the reconstruction of the quadruple mutant.

      There are, however, a few results that would benefit from further clarification:

      1) The experimental design is strong, offering a diverse range of conditions. However, the high glucose condition (8%) stands out as significantly different from the neutral 2% condition, both in range and margin, compared to the low glucose conditions (0.25-0.5%). While this mainly affects growth profiles and evolvability in the early generations, a brief explanation in the discussion would strengthen the conclusions. Specifically, addressing:

      1. a) The rationale behind selecting these particular glucose concentrations.

      2. b) How other glucose concentrations might influence the outcomes. Providing this additional context would enhance the reader's understanding of the experimental setup and its potential implications, while also offering insights into the broader applicability of the findings and possible directions for future research.

      We thank the reviewer for pointing out the need to clarify the rationale behind the glucose concentrations used in our study, an aspect we agree should have been better explained. In response, we have added the following text detailing the chosen conditions and their established effects on cellular metabolism.

      Line 67: “Glucose is the most abundant monosaccharide in nature, and represents the preferred source of energy for most cells.”

      Line 110: “...we grew WT and ctf4Δ cells in varying glucose concentrations to induce distinct physiological states. Low glucose levels (0.25% and 0.5%) induce caloric restriction and ultimately glucose starvation (Lin et al 2000, Smith et al. 2009). These conditions elicit increased respiration (Lin et al., 2002), sirtuins expression (Guarente, 2013), autophagy (Bagherniya et al. 2018), DNA repair (Heydari et al., 2007), and reduced recombination at the ribosomal DNA locus (Riesen and Morgan, 2009) ultimately extending lifespan in several organisms (Kapahi et al., 2016). In contrast, standard laboratory conditions typically use 2% glucose, promoting a rapid proliferation environment to which strains have been adapted since laboratory domestication (Lindergren, 1949). Finally, elevated glucose concentrations (such as 8%) result in higher ethanol production (Lin et al., 2012) and reactive oxygen species (ROS) levels (Maslanka et al., 2017).

      2) In the discussion section, a more explicit comparison with similar studies in other model organisms would help contextualize the findings within the broader field of evolutionary biology. While the results appear robust, it would be beneficial to explore how they align with or contrast to previous studies on DNA damage, particularly in bacteria or highly complex eukaryotes.

      We appreciate this suggestion to better contextualize our findings within the broader literature, as it provides an opportunity to highlight the unique aspects of our work. While many studies have explored how environmental factors shape fitness landscapes and influence evolutionary strategies, to our knowledge, only a few have addressed this in the context of compensatory evolution, where cells must recover fitness lost due to intracellular perturbations. To address this point, we have added a discussion of additional examples involving other model organisms, highlighting their difference with the question asked in this work.

      Line 34: “Genotype-by-environment (GxE) interactions are well-documented. For example, several studies on E. coli have demonstrated how different environments influence fitness and epistatic interactions among adaptive mutations in the Lenski Long-Term Evolution Experiment (Ostrowski et al., 2005, 2008; Flynn et al., 2012; Hall et al., 2019). Adaptive mutations in viral genomes similarly exhibit variable fitness effects across different hosts (Lalic and Elena, 2012; Cervera, 2016). Furthermore, interactions between mutations in the Plasmodium falciparum dihydrofolate reductase gene have been shown to predict distinct patterns of resistance to antimalarial drugs (Ogbunugafor et al., 2016). However, the role of environmental factors in shaping evolution within the context of compensatory adaptation, when fitness defects primarily arise from intracellular perturbations, remains much less explored.”

      However, if the reviewer have particular additional studies in mind, we welcome further suggestions to include in the final manuscript.

      Minor comments:

      1) The presentation of data in the figures is clear and informative. However, some figure legends could benefit from more detailed explanations. For example, although the statistical tests used are mentioned in the methods section, it would be helpful to also include them in the figure legends, such as in legend 1acde, as well as in all other figures.

      We are now reporting the statistical test used for each comparison also in figure legends.

      2) In terms of broader conclusions, here are a few suggestions, though they are, of course, optional:

      a) The study could benefit from exploring the potential trade-offs of adaptive mutations in the hypothetical return to environments without replication stress, at least theoretically. This would provide a more comprehensive understanding of the evolutionary constraints.

      We thank the reviewer for the suggestion, we had performed the measurements but did not comment on them explicitly. We are now commenting on them as follows:

      Line 310: “In the WT background, all mutations were nearly neutral, with only minimal deleterious or advantageous effects on fitness depending on glucose concentrations (Fig S4A).”

      Line 468: “The nearly neutral effects on fitness of the core adaptive mutations in WT suggest that they are likely to persist even after the initial replication stress is resolved.”

      b) A brief discussion of the potential limitations of using lab strains versus wild isolates of S. cerevisiae would offer valuable context for the generalizability of the findings.

      This is an excellent point. While addressing it fully would warrant a separate manuscript, we provide our comments here, along with similar observations raised by this and other reviewers, as follows:

      Line 450: “How generalizable are our conclusions about the reproducibility of evolutionary repair to DNA replication stress across other organisms, species, or replication challenges? While dedicated future studies are needed to fully address these important questions, several lines of evidence are encouraging. A recent report demonstrated that the identity of suppressor mutations of lethal alleles was conserved when introduced into highly divergent wild yeast isolates (Paltenghi and van Leeuwen, 2024). Similarly, earlier work showed that even ploidy, which significantly alters the target size for loss- and gain-of-function mutations, affected only the identity of the genes targeted by selection, while the broader cellular modules involved remained consistent (Fumasoni and Murray, 2021). Moreover, divergent organisms experiencing different types of DNA replication stress exhibit some of the adaptive responses described here. For example, the yeast genus Hanseniaspora, which lacks the Pol32 subunit of the replisome, has also been reported to have lost the DNA damage checkpoint (Steenwyk et al., 2019). Human Ewing sarcoma cells carrying the fusion oncogene EWS-FLI1 frequently exhibit adaptive amplification of the cohesin subunit RAD21 (Su et al., 2021). Together, these findings suggest that while the specific details of DNA replication perturbations and the genomic features of organisms may shape the precise targets of compensatory evolution, the overarching principles and cellular modules affected are broadly conserved.”

      Furthermore, we plan to search a recently published database of variants found in natural isolates of S. cerevisiae to assess whether similar evolutionary processes to those described in this study may have occurred in wild strains.

      c) It would be valuable to present the differences in ploidy in the context of other studies, such as the nutrient-limitation hypothesis (e.g., 'The Evolutionary Advantage of Haploid Versus Diploid Microbes in Nutrient-Poor Environments' by Bessho, 2015), since, as previously demonstrated by the authors of this article that is being reviewed, ploidy may influence the evolutionary trajectories of DNA repair.

      d) Interrelating these three terms: nutrient-limitation, ploidy, and DNA repair could be an interesting avenue to explore in the discussion.

      In response to comments c and d, we have now commented on the intersection between ploidy and other types of DNA perturbation in the paragraph starting in line 491 (see response above)

      3) Specific details:

      a) Line 116: To improve clarity, it would be beneficial to refer to the figure right after the statement: 'However, their relative fitness improved compared to the WT reference as the initial glucose levels (Figure X).'

      b) Line 404: The statement about antibiotics and cancer progression is somewhat brief here; it might be helpful to provide more context on why this mechanism influences these processes (here or before).

      c) Line 418: "were re-suspended in water containing zymolyase (Zymo Research, Irvine, CA, US, 0.025 μ/μL), incubated at". Something is missing in the units.

      d) Line 459: "and G2 phases for each genotype was estimated by deriving the the relative cell distribution". The article "the" is repeated.

      e) 1a: The x-axis ticks appear misaligned, which makes it difficult to interpret the boxplots. For example, at 0.25, the tick is closer to the orange boxplot than to the black one. In contrast, at 2%, the tick seems well-centered."

      f) Figure 3 could benefit from a general legend at the top regarding the colors, as finding it in 2c was not intuitively easy.

      The typos and suggestions raised in points 3a-f have now been corrected in the manuscript.

      g) I didn't review the code on GitHub.

      Reviewer #1 (Significance):

      The main strength of the study is that it shows robustness of compensatory evolution across varying nutrient conditions. The study adds to the growing body of literature on DNA replication stress and evolutionary adaptation by showing that compensatory evolution can occur regardless of nutrient availability. This fundamental finding challenges prior assumptions that nutrient conditions significantly alter evolutionary outcomes, contributing to a more nuanced understanding of how cells respond to stress. Furthermore, the discovery of the RNA polymerase II mediator complex's role in this process is particularly novel and opens new lines of investigation.

      Advance in the field: The results advance our understanding of evolutionary biology, particularly in the context of DNA replication stress and compensatory evolution. The study demonstrates that evolutionary repair mechanisms are predictable, even under variable environmental conditions, which has key implications for evolutionary biology and therapeutic applications.

      Audience:

      This paper will be of interest to a specialized audience in evolutionary biology, genomics, and cell biology, particularly those interested in DNA replication stress and adaptive evolution. Researchers studying stress responses in model organisms, such as S. cerevisiae, will find the findings valuable, as will those working in applied fields where stress adaptation is a critical factor (e.g., industrial yeast fermentation, drug development, disease resistance, cancer research, or aging studies).

      Expertise:

      Evolutionary biology, genomic analysis, and cellular stress responses, with a particular focus on experimental evolution under DNA damage stress in Saccharomyces cerevisiae. Recently graduated and beginner reviewer.

      Reviewer #2 (Evidence, reproducibility and clarity):

      The paper addresses the effect of sugar availability in shaping compensatory evolution. The first observation of the paper is that cell physiology changes by modulating glucose availability also in strains that come with defective DNA replication (ctf4-null previously studied by the authors). An intriguing result is that ctf4-null grows comparatively better in low concentrations of glucose. This is hypothesized to be a consequence of both the decrease in dNTPs in low glucose, which causes slow down of fork progression, and/or reduced fork collapse at rDNA locus. Hence, wild types and ctf4-null show an opposite trend: in the mutant, the lowest concentration of glucose is the least affected by the mutation; in wild type, the highest concentration is the least affected. Adaptation rate is inversely related with the initial fitness. The effect on physiology and adaptation rate is a starting point for asking the key question: are evolutionary trajectories influnced by the growth conditions? The answer is negative: evolution experiments show the very same core of genetic changes at all sugar concentrations. The result is apparently at odds with previous publications, and the authors conclude that, in this particular setting, availability of carbon sources plays a minor role compared to impaired DNA replication. The different rates of adaptation in WT and mutant is rather explained by the initial fitness at the different glucose concentrations, which, as mentioned, is opposite in WT and ctf4-null mutants. The paper also reports a new mutation in MED14, component of the transcription mediator complex, which rescues the lack of Ctf4 activity. The study is interesting and asks a relevant question. The experiments are well executed and convincing, but the paper can be strengthened by testing some of the hypotheses which are put forward.

      Main points

      1- The raw data for evolutionary dynamics (Figure S2C) are fitted with the power law suggested by Wiser and Lenski, and return different values of the parameter 'b'. The authors say that the result depends greatly on the initial conditions ("due to the varying initial fitness of ctf4Δ cells across different glucose environments, they display an opposite trend to WT"). Around the initial values, however, the curves are non-monotonic, especially for low glucose availability. Both for WT and ctf4-null there is an initial drop in fitness, after which fitness increases. If one would neglect this initial dynamics, the value of the parameter 'b' would likely be different.

      The non-monotonic trend in fitness highlighted by the reviewer is likely due to technical factors: Fitness at Generation 0 was measured with high precision in a low-throughput manner early in the project. In contrast, fitness from Generation 100 to 1000 was measured later in the study in a high-throughput fashion, necessitated by the large number of competitions conducted (96 wells × 4 time points × 6 replicates = 2304 assays). This difference in methodologies may have introduced a slight offset when the datasets were combined at Generation 100. Following the reviewer’s suggestion, we have excluded the data point at Generation 100 responsible for this non-monotonic behavior and re-fitted the curves. While this adjustment has caused minor changes in the parameter ‘b’, the qualitative trends, particularly the opposing trends between WT and ctf4Δ as glucose increases, remain consistent (Figure_rev_only 1). To ensure transparency, we have retained all recorded fitness values in the original figure for reference.

      In general, one can question whether curves with this shape are best fitted by the power law proposed by Wiser and Lenski. For example, for the WT 0.25% glucose the linear fit gives a better R2 (why do the authors show the linear fit anyway?). This impression is further reinforced by the observation that Wiser and Lenski fit dynamics that last 50.000 generation, here the curves last 1/50th of it. In conclusion, I would question whether the parameter 'b' is a solid measurement of 'rate of adaptation'. Also, normalizations makes it difficult to appreciate the result shown in Figure 2B. I think the authors should look for a different way to show the different trend in adaptation dynamics for different glucose concentrations between wild types and mutants. For example, they could move Figure S2C in the main text to stress the result shown in Figure 2C, which already shows the difference between WT and mutant. This is especially true if what Figure 2C shows is (evo-anc)/evo. This is not fully clear to me: in the legend it refers to the delta, in the label of the y-axis I read that this is a percentage.

      We thank the reviewer for prompting us to clarify our methods for reporting fitness changes over time. The fitness values are reported, throughout the paper, as a percentage change relative to the reference WT strain. The gain in fitness during evolution (reported as Δ) represents the difference between the evolved strain (evo%) and the ancestral strain (anc%), calculated as Δ = evo% - anc%. This represents the absolute gain, rather than the relative gain. This value is still reported as a percentage as it’s the same scale and unit as the two values being subtracted. We have included additional details to clarify this aspect in the figure legend.

      “(C) Absolute fitness gains (Δ) at generation 1000 for evolved WT (upper panel, black) and ctf4Δ (lower panel, orange) populations. Box plots show median, IQR, and whiskers extending to 1.5×IQR, with individual data points beyond whiskers considered outliers. Absolute fitness gains were calculated by subtracting the ancestral relative fitness from the relative fitness of the evolved (Δ = evo% - anc%), both calculated as percentages relative to the same reference strain in the same glucose concentration.”

      To conclude: the data show a different trend between wild types and mutants, which is interesting. Fitting it with the power law seems to be neither required nor appropriate. I suggest the authors to show the WT vs mutant pattern differently.

      We followed the reviewer’s suggestion and moved Figure S2C, which depicts the detailed fitness trajectories over time, into the main manuscript as Figure 2D. We agree that presenting these trajectories alongside the absolute fitness gains (now in Figure S2C) provides a more intuitive and effective depiction of the evolutionary dynamics of WT and ctf4Δ strains without relying solely on the power-law fit. Additionally, we quantified the mean adaptation rate, calculated as the absolute fitness gain (Δ) divided by the total number of generations (now Figure 2B). While no individual method definitively captures the adaptation rates across the experiment, these complementary analyses consistently highlight the same trends noted by the reviewer. We have re-written the main text as follows:

      Line 171: “By generation 1000, both WT and ctf4Δ evolved lines achieved, on average, slightly higher fitness in low glucose compared to high glucose conditions (Fig S2B). However, due to the varying initial fitness of ctf4Δ cells across different glucose environments, they recovered the same extent of the original defect (Fig S2C). ctf4Δ lines displayed an opposite trend to WT, with increasing absolute fitness throughout the experiment as glucose concentration rose (Fig S2B vs S2D). The differint absolute fitness gains over the same number of generations highlight distinct mean adaptation rates (Fig 2B). These differences are evident when examining the evolutionary dynamics of the evolved lines over time (Fig 2C). Additionally, we approximated the fitness trajectories using the power law function (Fig 2C, dashed purple lines), previously proposed to describe long-term evolutionary dynamics in constant environments (Wiser et al., 2013). The parameter b in this formula determines the curve's steepness, and can be used to quantify the global adaptation rate over generations (Fig S2E). Collectively, these analyses demonstrate that, unlike WT cells, ctf4Δ lines adapt faster in the presence of high glucose. This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”

      Overall, these results demonstrate that cells can recover from fitness defects caused by constitutive DNA replication stress regardless of the glucose environment. However, adaptation rates under DNA replication stress exhibit opposing trends compared to WT cells, with faster adaptation yielding greater fitness gains in higher glucose conditions.”

      2- In Figure S2C, the individual trajectories for WT at 2% glucose are strangely variable. In this case, plotting the average does not make too much sense. This result is strange, since this is the default condition, where cells are grown without any change of sugar concentration. Can the authors give any rationale? Are there other available results to replace those published in Figure S2C?

      We agree with the reviewer that the individual trajectories for WT at 2% glucose are intriguing. However, we do not find these results necessarily “strange” as they could be explained by the following rationale: WT cells have been cultivated in 2% glucose since the 1950s, likely fixing most beneficial mutations for this condition. When many isogenic strains are evolved in parallel, (a) some lines show no improvement due to the scarcity of available beneficial mutations, (b) others exhibit slight decreases in fitness due to genetic drift fixing deleterious mutations, and (c) a few lines discover rare beneficial mutations, leading to fitness increases. In contrast, other conditions represent “newer” environments with larger mutational target sizes, resulting in more consistent outcomes.

      Prompted by the reviewer’s comment, we look for other studies reporting detailed fitness measurements of evolved WT strains in standard laboratory media. We downloaded and plotted the fitness data from Johnson et al. 2021, where authors studied the evolution of WT strains over 10.000 generations. Interestingly, we see that in the early phase of the evolution (generations 500-1400) evolved lines show similar levels of variability in fitness as the one reported in our study (Figure_rev_only 2). Of note is that in Johnson et al. 2021 most of the adaptive mutations alleviate the toxicity of the ade2-1 allele. In our WT strain the gene was preemptively restored, furter reducing the target size for adaptation in YPD.

      We believe it is important to report these measurements and decided to leave the original data, with the appropriate quantifications of variability, in Figure 2.

      3- The molecular explanation given for the rescue of ctf4-null proposes a very relevant role for dNTPs downregulation. Particularly, both for Irx1 and med14-H919P, the authors propose that this happens via Rnr1 downregulation. At this stage, this is only a hypothesis. The molecular verification of the central role of Rnr1 downregulation would make the conclusion much stronger. For example, a preliminary test would imply that duplicating RNR1 in ctf4-null irx1-null and/or ctf4-null med14-H919P would revert the rescue. Any other experiment addressing this point would be useful to improve the paper.

      We agree that the experiment suggested by the reviewer, or similar tests, would substantiate our hypotheses and strengthen the paper. Specifically, we plan to perturb dNTP production in both ctf4Δ ixr1Δ and ctf4Δ med14-H919P mutants through genetic manipulation of known factors involved in dNTP synthesis. We will then compare the resulting fitness to the expectations based on our hypotheses: reduced fitness benefits of the double mutants upon increasing dNTP levels and/or increased fitness in ctf4Δ mutants by decreasing dNTP levels through alternative mechanisms.

      4- The authors propose from Figure S4B that the rescue of ixr1-null is less evident at low sugar concentration since both conditions trigger a reduction of dNTPs. I think this is interesting, since it would provide a link between glucose concentration and evolutionary trajectories to adaptation, which is what the authors wanted to study. In particular, one would predict that 0.25% glucose would see less ixr1-null than the other glucose conditions. I could not (was not able to) confute this hypothesis from the data shown in the paper. Likewise, for med14-H919P. If the authors have not tested it, it would be worth trying.

      We had reported the appearance and frequency of all ‘core adaptive mutations’ (Figure S6C) but did not explicitly test the likelihood of their appearance under different glucose conditions. Following the reviewer’s suggestion, we have now performed χ2 tests (on the presence or absence of mutations) and ANOVA tests (on their mean frequency) to determine whether any mutation is particularly enriched or depleted in a given glucose environment. At first glance, the results do not support the hypothesis proposed by the reviewer. However, we note that although ixr1 mutants are less beneficial in low glucose than in high glucose, they still confer an 8% fitness advantage, which is likely sufficient to drive clones to fixation. We believe the reviewer’s reasoning is correct but is potentially masked by the still elevated fitness advantage of ixr1 in low glucose.

      To better convey the results of this analysis, we have included a visual representation of the presence and frequency of the mutations in Figure 6A, and the results of the χ2 and ANOVA tests in Supplementary File 5. We also comment on the analysis as follows:

      Line 314: “Similarly, we did not detect differences in the frequency of occurrence (χ2 tests) or average fractions (ANOVA test) achieved by the mutations in the populations evolved under different glucose environments (Fig 6A, Fig S4C and Supplementary File 5. The presence of all mutations in the final evolved lines correlated with their fitness benefits, suggesting how their selection in all glucose conditions was mostly dictated by their relative fitness benefits, rather than the environment (Fig 6A).”

      5- The combination of the four genetic adaptation (Fig 6B) would benefit from an experimental verification to show that the different solutions are not mutually exclusive. This is not obvious: if more than one solution acts by reducing dNTPs, maybe their combined effect is less strong than what measured theoretically. The authors could derive some clones at the end of the experiment and Sanger sequencing some of the four genes, to confirm the co-presence of some of them in the same cell.

      The co-occurrence of nearly every combination of the four core adaptive mutations we identified can be inferred from their relative frequencies, as revealed by deep whole-genome sequencing of the evolved populations (Fig. S4C). In these data, we observe populations carrying each pairwise combination of mutations at frequencies exceeding 50%, implying their coexistence. Moreover, many combinations of mutations approach or reach fixation. A particularly striking example is ctf4Δ Population 11, evolved in 8% glucose, where all core adaptive mutations are present at 100% frequency. These findings provide robust evidence that the different adaptive solutions are not mutually exclusive and can coexist within the same genetic background.

      Nevertheless, we agree that experimentally verifying the compatibility and fitness of the four genetic adaptations described in Figure 6B (now Fig 6C) would further strengthen our conclusions. To this end, we plan to reconstruct all combinations of mutations observed at high frequency in the final evolved populations. We will then measure their fitness and compare it to that of the evolved populations, as well as to the theoretical expectations based on additivity currently presented in Figure 6C.

      Minor points

      Figures

      • S4B: in the legend it should be explained that it is compared to ctf4D

      We now report how the values were obtained in the figure legend:

      (D = |anc%|-|reconstraucted%|)

      -2A: the color code is not fully clear to me: what does green and blue indicate? higher and lower than 2%?

      We apogise for not having included an explicit description of the color code in Figure 2A. Throughout the paper blue refers to glucose starvation (light blue for 0,25%, dark blue for 0,5%), while green refers to glucose abundance (light blue for 2%, dark blue for 8%). We now include a detailed description of the color code when it first appears (Fig 1B) and make sure is properly reported in all figure legends.

      • S3A: the authors should show the statistical difference between WT and ctf4-null, which is mentioned as non-existent in p.6

      The p value is now represented in Fig S3A

      Text

      • RNR1 is not really the gene with the highest score in Figure 5D, not even close: can you give a rationale for pin-pointing it (see also main point 3)?

      The reviewer is correct. Perturbations of the mediator complex, which regulate the expression of most of RNA PolII transcripts, is expected to result in changes in the expression of a large set of genes. However, our focus on dNTPs and RNR1 is based on the following rationale:

      1. Gene Ontology Enrichment Analysis: The downregulated genes in our dataset are enriched for the 'nucleotide metabolism' term, which includes pathways critical for dNTP production and directly linked to DNA replication and repair.

      2. Role of RNR1: Among the downregulated genes, RNR1 stands out as it encodes the major subunit of ribonucleotide reductase, the rate-limiting enzyme in dNTP synthesis. This enzyme is essential for DNA replication, and cells experiencing constitutive DNA replication stress, as in our system, are particularly sensitive to changes in dNTP levels.

      To make this rationale more explicit to the reader, we are adding the following sentence in the discussion:

      Line 404: “Nucleotide metabolism, particularly ribonucleotide reductase, is essential for dNTP production. Given the role of dNTPs in regulating DNA replication and repair, the advantage of med14-H919P mutants in the ctf4Δ background may stem from reduced dNTP levels caused by the perturbed TID domain."

      In addition, following the reviewers’ suggestions, we are conducting additional experiments to investigate the role of med14-H919P mutants in enhancing fitness under conditions of constitutive DNA replication stress (See response to reviewer #4). We anticipate that the final revised manuscript will offer further insights into the role of dNTPs or present alternative explanations for the observed phenomena.

      • The med14-H919P mutation is observed in 22/48 wells. I guess the authors checked already: are some of these wells close to each other in the plate?

      Correct. We took significant precautions in our experimental design to prevent cross-contamination, as outlined in the Materials and Methods section. Specifically, rows of ctf4Δ samples were alternated with rows of WT samples. Daily dilutions were then performed row by row using a 12 channels pipette. This approach ensured that any potential carry-over of cells would result in them being placed in wells containing a different genotype, where they would be eliminated by the consistent use of genotype-specific drugs.

      As a result of these measures, we do not observe any distinct pattern of core genetic adaptation corresponding to the plate layout (Figure_rev_only 3). The only exception are mutations in IXR1, which appear in all ctf4Δ strains (albeit with different alleles, see supplementary File 3). Moreover, we reasoned that if a highly fit strain had invaded other wells, all the pre-existing mutations from its lineage would have been detected in those wells. However, apart from the recurrent ixr1 and rad9 mutations, which are also strongly adaptive, we find no evidence of shared mutations in wells carrying the med14-H919P allele (Figure_rev_only 4).

      • Compensatory evolution of ctf4-null in 2% glucose is the experiment published by Fumasoni and Murray in eLife. In that paper, there is no trace of mutations in MED14. I think the authors should comment on this (different method for detecting putative compensatory mutations?).

      We also noticed the absence of MED14 mutations in the eLife study by Fumasoni and Murray and find this discrepancy intriguing. One possible explanation lies in methodological differences. Our current study employed an improved version of the mutational analysis pipeline. However, we have not yet reanalyzed the original data from the previous study to determine whether MED14 mutations were present but undetected.

      Interestingly, in the current study, we observed that in 2% glucose, MED14 mutations arose in only 3 out of 12 populations, a frequency lower than in other glucose conditions (Figure S6C). Assuming a similar frequency occurred in the 8 populations evolved in 2% glucose by Fumasoni and Murray (2020), one would expect only 2 populations to carry the mutation. This number falls below the threshold required for our algorithm to detect statistically significant parallelism.

      Additionally, two significant experimental differences may also contribute to the observed discrepancy. First, the culture volumes and vessels differed: 10 mL cultures in tubes were used previously, whereas 1.5 mL cultures in 96-well plates were used in the current study.

      • I may be mistaken, but Szamecz et al do not actually investigate whether different conditions result in different evolutionary trajectories (i.e., different genetics), and so their results may not be at odds with those presented here.

      The reviewer is correct that Szamecz et al. do not explicitly test whether different conditions result in different evolutionary trajectories. However, in the section titled “Compensatory Evolution Generates Diverse Growth Phenotypes across Environments,” they examine how lines evolved in 2% YPD perform across various environments. They report how in roughly 50% of the cases tested, evolved lines showed either no improvement or even some lower fitness than the ancestor (Figure 5A).

      While this could be explained by the accumulation of detrimental non-adaptive mutations in specific contexts, it likely implies that the adaptive strategies compensating for the original mutation in one environment do not confer similar benefits in other environments. This observation contrasts with our findings in Figure 6D, where we demonstrate that the main adaptive strategies provide a consistent benefit across diverse environments, including those with glucose, nitrogen, or phosphate abundance or starvation.

      We have now modified the introduction, results and discussion to avoid misleading interpretations:

      Line 42: “Szamecz and colleagues examined the evolutionary trajectories of 180 haploid yeast gene deletions over 400 generations (Szamecz et al., 2014). They found that, while fitness recovery occurred in the environment where evolution took place, the evolved lines often showed no improvement over their ancestors in other environments. This suggests that compensatory mutations beneficial in one environment often fail to restore fitness in others.”

      Line 327: “A previous study in yeast showed how evolved lines which compensate for detrimental defects of gene deletions in standard laboratory conditions often failed to show fitness benefits compared to their ancestor when tested in other environments (Szamecz et al., 2014). We thus investigated the extent to which the core genetic adaptation to DNA replication stress was beneficial under alternative nutrient conditions.”

      Line 422: “What could explain the discrepancies between our results, and previous studies on evolutionary repair highlighting the role of the environment in shaping evolutionary trajectories (Filteau et al., 2015), and the heterogeneous behavior of evolved lines in various environments (Szamecz et al., 2014)?”

      typos

      p.18, line 564 preformed -> performed

      1. 6 line 189 with a strongly skew -> with a strong skew ?

      Typos are now corrected in the main text

      Reviewer #2 (Significance):

      This is a well-done paper that could be of interest for the community of evolutionary biologists, scientists working on metabolism and cell division. It addresses an interesting problem, how metabolism affects compensatory evolution. Among the strengths: experiments are well done, the results are novel, the cross-talk between metabolism and evolutionary repair is intriguing. Among the weaknesses, the fact that the molecular explanations for the observations are only hypothesized and not tested experimentally. This is where the authors could improve the manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity):

      This paper combines phenotypic and genomic data from an experimental evolution study in yeast to assess how repeatable evolution is in response to DNA replication stress. Importantly, the authors ask whether genotype by environment interactions influence repeatability of their evolved lines. To this end, the authors have constructed an elegant highly-replicated experiment in which two yeast genotypes (WT and CTF4 KO) were evolved under a variety of glucose levels for 1,000 generations. Recurrent mutations are found across many replicates, suggesting that repeatability is robust to GxE interactions. Of course, the authors correctly identify that these results are dependent on many particulars, as is always the case in biology, but provide a comprehensive discussion to accompany their results. I do not have any major comments to give, but simply some suggestions and points of clarification.

      Major comments: N/A

      Minor comments:

      L19: I found the definition for compensatory evolution/mutations to be somewhat vague in the introduction (and subsequently throughout the text). It's clear that this was written for a more medical/physiological audience, but without a more explicit explanation of compensatory evolution/mutations, it became difficult to properly weigh some claims/discussions made by the authors later on. Do you define compensatory mutations as those which completely recover WT function/fitness, or are simply of opposite effect to the altered genotype? Others define "compensatory evolution" as simply any epistastically interacting amino acid substitutions (Ivankov et al, 2014). It would be nice to see more explicitly defined.

      We thank the reviewer for highlighting the need for a precise definition of compensatory evolution and compensatory mutations. We recognize that the literature encompasses multiple definitions, including the one cited by the reviewer, which emphasizes compensatory mutations within the context of structural biology. This particular definition, prevalent in molecular evolution, was introduced by Kimura (Kimura, 1985) and is frequently used to explain the co-occurrence of amino acid mutations within a protein. These mutations offset each other’s defects, restoring or maintaining protein function. Here, however, we are using an older and broader definition of compensatory mutation, first introduced by Wright (Wright, 1964, 1977, 1982) and frequently used in evolutionary genomics (e.g., Moore et al., 2000; Szamecz et al., 2014; Rajon and Mazel, 2013; Eckartt et al., 2024). This definition includes any mutation in the rest of the genome that compensates (fully or partially) for another mutation's detrimental effects on fitness.

      We have now included this definition in the introduction:

      Line 19: “Compensatory evolution is a process by which cells mitigate the negative fitness effects of persistent perturbations in cellular processes across generations. This adaptation occurs through spontaneously arising compensatory mutations anywhere in the genome (Wright, 1964, 1977, 1982) that partially or fully alleviate the negative fitness effects of perturbations (Moore et al., 2000). The successive accumulation of compensatory mutations over evolutionary timescales progressively repair the cellular defects, ultimately restoring fitness.”

      Line 361: “Our findings demonstrate that while glucose availability significantly affects the physiology and adaptation speed of cells under replication stress, it does not alter the fundamental genome-wide compensatory mutations that drive fitness recovery and evolutionary repair.”

      Along these lines, I would have liked to see a more direct comparison/discussion of the degree to which deletion lines recovered. I can see from Fig 2E and Fig S2B that fitness increased quite a bit; would it not be possible to include a figure on the degree of compensation (basically relative fitness of evolved deletion lines - relative fitness of ancestral deletion lines)?

      If the reviewer is suggesting calculating the difference between the evolved and ancestor fitness, the data is already in Figure S2B and S2D, defined as ‘Absolute fitness gains Δ’ and calculated as Δ = evo% - anc%.

      If instead is suggesting to plot the fitness of evolved deletion lines (Y axis) against the relative fitness of ancestral deletion lines (X axis), we have now produced the plot is Figure S2F.

      To better understand the extent of the fitness recovery in Ctf4 strains, we have also calculated and plotted the ‘relative fitness gain’ calculated as |evo%| / |anc%| *100 (Figure S2C)

      We are now commenting on these comparisons in the following paragraph:

      Line 171: “By generation 1000, both WT and ctf4Δ evolved lines achieved, on average, slightly higher fitness in low glucose compared to high glucose conditions (Fig S2B). However, due to the varying initial fitness of ctf4Δ cells across different glucose environments, they recovered the same extenct of the original defect (Fig S2C), displaying an opposite trend to WT, with increasing absolute fitness throughout the experiment as glucose concentration rose (Fig S2B vs S2D). The differint absolute fitness gains over the same number of generations highlight distinct mean adaptation rates (Fig 2B). These differences are evident when examining the evolutionary dynamics of the evolved lines over time (Fig 2C). Additionally, we approximated the fitness trajectories using the power law function (Fig 2C, dashed purple lines), previously proposed to describe long-term evolutionary dynamics in constant environments (Wiser et al., 2013). The parameter b in this formula determines the curve's steepness, and can be used to quantify the global fitness change over generations (Fig S2E). Collectively, these analyses demonstrate that, unlike WT cells, ctf4Δ lines adapt faster in the presence of high glucose. This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”

      L57: Another minor nitpick that just comes down to semantics. When discussing "96 parallel populations", it invokes a higher sense of replication than is actually present in the study. I would rephrase this to something along the lines of "12 replicate populations across 8 treatments under conditions of [...]".

      We changed the sentence as follows:

      Line 66: “We evolved 96 parallel populations of budding yeast, organized into 12 replicate lines, across four conditions of glucose availability (from starvation to abundance) with or without replication stress.”

      L185-187: The wording here needs to be clarified. Be explicit in that are examine the ratio (or count) of synonymous to non-synonymous mutations here, otherwise the interpretations appears to be direct contradiction to the (as written) results. Only after viewing the supplemental figure was I able to figure out what exactly was meant here.

      We changed the sentence as follows:

      Line 212: “We found no significant differences in the numbers of synonymous mutations detected in evolved populations in WT and ctf4∆ populations (Fig. S3A). These results support the hypothesis that replication stress in ctf4∆ lines favors the retention of beneficial mutations, rather than simply increasing the overall mutation rate.”

      L349-350: The authors observe higher rates of adaptation in deletion lines than WT lines, and discuss this in adequate detail. Although not explicitly mentioned, this is consistent with a diminishing returns epistasis model (that could be beneficial to discuss, but is not necessary), which has been implicated in modulating the degree of repeatability observed along evolutionary trajectories (Wünsche et al. 2017). Although definitely not required for this already very nice manuscript, I think it would be very rewarding if the authors were to eventually analyze fine-scale dynamics of phenotypic and genomic adaptation to mine for these putative interactions and their influence on repeatability.

      We agree with the reviewer on how our results align with a model of diminishing returns epistasis. This pattern is apparent not only between ctf4Δ and WT lines but also among ctf4Δ lines evolved in different glucose conditions. This phenomenon likely arises from the interaction of various adaptive mutations, which we aim to explore further in a dedicated manuscript. However, until we do so, we prefer to refer generally to a pattern of declining adaptability. To explicit this trend we have now included Fig S2F and commented on it in the manuscript:

      Line 181: “This evidence aligns with the declining adaptability observed in other studies (Moore et al., 2000; Kryazhimskiy et al., 2014; Couce & Tenaillon, 2015), where low-fitness strains consistently adapt faster than their more fit counterparts (Fig S2F).”

      Line 388: "Our results are consistent with declining adaptability, as evidenced by the reduced rates of adaptation observed both between ctf4Δ and WT lines and among ctf4Δ lines evolved in different glucose conditions (Fig S2F)"

      Reviewer #3 (Significance):

      It is clear to me that a great deal of time and care has been put into this study and the preparation of this manuscript. The science and analyses are appropriate to answer the questions at hand, and it bodes well that whenever I had a question pop up while reading, they were typically answered immediately after. I think that this manuscript will be broadly relevant to both biologists both evolutionary and clinical, and was written in a way to be accessible to both.

      As someone with an expertise in repeatable evolution, I felt most excited by the observation of so many parallel substitutions at a single amino acid across deletion lines. As the authors rightfully point out in the results and discussion, it's likely that this degree of robustness is highly dependent on the particular mechanism of disruption that cells experience. The authors then go above and beyond to functionally validate the putative molecular mechanisms of (repeatable) adaptation in this system. While it may not always be possible to accomplish in non-model organisms, such multi-modal approaches will be crucial to advance the field of repeatable evolution.

      Reviewer #4 (Evidence, reproducibility and clarity):

      The authors investigated the effects of DNA replication stress on adaptation in different nutrient availabilities by passaging wild-type and ctf4Δ Saccharomyces cerevisiae in media with varying levels of glucose over ~1000 generations. The ctf4Δ strain experiences increased DNA replication stress due to the deletion of a non-essential replication fork protein. The authors found differences in evolution between wild-type and ctf4Δ yeast, which held across different growth media. This study identified a compensatory single amino acid variant in Med14, a protein in the mediator complex of RNA polymerase II, that was specifically selected in ctf4Δ strains. The authors conclude that while environmental nutrient availability has implications for cell fitness and physiology, adaptation is largely independent and instead dependent on genetic background. The data provide excellent support for the key aspects of the models, although some details are (to me) overstated.

      Major comments:

      • A ctf4Δ mutant strain was used to investigate the effects of replication stress. Why was this mutant chosen instead of other deletions that cause different types of replication stress?

      We appreciate the opportunity to clarify our rationale for choosing the ctf4Δ mutant. The following are the main reasons why we believe ctf4Δ strains represent an ideal tool to study a global perturbation of the DNA replication program over evolutionary timescales:

      1. General replication stress: The absence of Ctf4 perturbs replication fork progression, leading to a spectrum of replication stress-related phenotypes, including DNA damage sensitivity, single-stranded DNA gaps, reversed forks (Abe et al., 2018; Fumasoni et al., 2015), checkpoint activation (Poli et al., 2012), cell cycle delays (Miles and Formosa, 1992), increased recombination (Alvaro et al., 2007), and chromosome instability (Kouprina et al., 1992). This broad disruption makes it an excellent model for observing global perturbations in replication processes. In contrast, other mutants typically affect specific enzymatic (e.g., POL32 and RRM3) or signaling (e.g., MRC1) functions, making them better suited to address specific questions.
      2. Constitutive stress: Unlike drug-induced stress (e.g., Hydroxyurea; Krakoff et al., 1968) or conditional depletion systems (e.g., GAL1-POLε; Zhang et al., 2022), which cells can easily circumvent through single mutations, ctf4Δ enforces persistent replication stress. Its deletion cannot be complemented by a single mutation, ensuring a robust and consistent stress environment for evolutionary studies.

      We have now modified the main text to convey these advantages in a concise form:

      Line 91: “In the absence of Ctf4, cells exhibit multiple defects commonly associated with DNA replication stress, such as single-stranded DNA gaps and altered replication forks (Fumasoni et al., 2015), leading to basal cell cycle checkpoint activation (Poli et al., 2012). These defects result in severe and persistent growth impairments, cell cycle delays, elevated nucleotides pools and chromosome instability (Miles and Formosa, 1992; Kouprina et al., 1992; Poli at al., 2012), making ctf4Δ mutants an ideal model for studying the cellular consequences of general and constitutive replication stress over evolutionary time.”

      It's not clear from the study that the effects are generalizable to other forms of replication stress.

      As with any method to induce DNA replication stress (including commonly used drugs like HU) each approach inevitably affects replication in a specific manner. Testing the broader applicability of our conclusions would require evolving additional strains with different replisome perturbations. For instance, mutations in ELG1 and CTF18 (affecting the alternative Replication Factor C), POL30 (affecting the sliding clamp PCNA), POL32 (affecting Polε), RRM3 (protective helicase) and (MRC1 (coordinating leading strand activities and signalling to the checkpoint) would have to be taken into account. Furthermore, specific mutant alleles of Ctf4 that disrupt interactions with particular binding partners (Such as ctf4–4E and ctf4–3E, perturbing the interaction with the CMG helicase and accessory factors respectively) will be highly informative on which specific aspects of the replication stress generated by the lack of Ctf4 each adaptive mutation alleviate.

      However, accommodating such extensive variability would inflate the sample size to an extent that will become unfeasible within the experimental design focused on capturing parallel evolution over a nutrient gradient (the primary focus of this study). We agree that this is an important question and intend to address it comprehensively in a dedicated future study.

      • The authors could be clearer that a (the?) cause of the ctf4∆ fitness defect is spurious upregulation of RNR1. I don't think it is mentioned until the Discussion, but it is highly relevant to Fig 4, and to the adaptations one would expect from ctf4∆.

      We thank the reviewer for the opportunity to clarify this aspect. We do not think that the fitness defects of ctf4∆ cells stem solely from the spurious upregulation of RNR1. However, we believe that a major aspect of the evolutionary adaptation is aimed at decreasing dNTP levels, potentially through different mechanisms. We are now mentionig increased dNTPs as major phenotype of ctf4∆ and commenting on the hypothesis more clearly in the discussion.

      Line 93: “These defects result in severe and persistent growth impairments, cell cycle delays, elevated nucleotides pools and chromosome instability (Miles and Formosa, 1992; Kouprina et al., 1992; Poli at al., 2012)”

      Line 409: “This condition will, in turn, be detrimental when proliferation rates are high (as in WT in high glucose) but beneficial under constitutive DNA replication stress (ctf4Δ), where cells experience spurious upregulation of dNTP production (Poli et al., 2012; Davidson et al., 2012).

      • In Figure 1E, there is a very large spread in the relative fitness at 2% and 8% glucose, but this was not commented on. Is this heteroscedasticity expected?

      The observed heteroscedasticity is expected. Our competition assays tend to exhibit increased variability when a strain approaches very low fitness levels. Specifically, as one strain nears extinction by the third day of competition, its abundance is estimated based on a much smaller number of events in the flow cytometer. Furthermore, we noticed a small number of reference cells carrying pACT1-yCerulean not showing strong fluorescence in 8% glucose. The nature of this effect is uncertain, and possibly linked to metabolism-linked changes in the cytoplasm. The combination of these two phenomena amplifies the impact of noise inherent to the methodology, leading to increased variability across replicates.

      Nontheless, the overall decreasing fitness trend across glucose conditions, combined with the statistical significance observed between high and low glucose levels, collectively convey a roboust phenotype

      • The med14-H919P mutant was highly selected in ctf4Δ strains, independent of glucose availability. Is this variant found in any natural yeast strains (i.e., are there environments that select for this variant)? Also, if this variant is found in natural strains, does it co-occur with other mutations that could affect DNA replication?

      We agree that this is an intriguing question. To address it, we plan to explore existing databases of variants identified in S. cerevisiae natural isolates. Specifically, we will investigate whether the med14-H919P mutation is present in these strains, identify any potential environmental factors that may select for it, and assess whether it co-occurs with other mutations that could influence DNA replication processes.

      • The statement on lines 271-273 is not particularly well-supported. The analysis of the Warfield data suggest that reduced expression of RNR1 could be causal, but the data don't go as far as showing how the med14 mutation is advantageous in ctf4∆. Further experimentation would be necessary to support the possibilities that the authors discuss.

      The sentence the reviewer refers to is: “Overall, these results show how an amino acid substitution in the Med14 subunit of the mediator complex, putatively affecting transcription, is strongly selected, and advantageous, in the presence of constitutive DNA replication stress.” We are unsure which aspect of the statement is seen as unsupported. The mutation's strong selection in ctf4∆ is demonstrated in Figures 5A, 6A, and S4C, while its advantageous nature is supported by Figures 5B and S4B. Regarding the mechanism, we have been cautious with our phrasing, describing its effect on transcription as "putative" (Line 272) and suggesting that our observations “are compatible with” reduced dNTP availability in med14-H919P cells due to RNR1 downregulation (Line 361).

      The main focus of this study is to explore how nutrient availability influences evolutionary dynamics and compensatory adaptation in cells lacking Ctf4. We believe the identification of a novel selected allele (Fig. 5A) and confirmation of its benefit across glucose conditions (Fig. 5B) serves as an excellent complement to the primary conclusions (present in the title). We invite the reviewer to consider that the molecular basis of such a phenotype is not mentioned in our abstract, as we believe that its precise characterization would require a dedicated study on Med14.

      Nonetheless, we are encouraged by the reviewer’s interest in this newly identified compensatory mutant (also noted by Reviewer #2), and we are eager to perform further experiments to better understand the biological processes affected by this mutation. We plan to extend our work as follows:

      Based on known phenotypes associated with perturbations of Med14, we propose the following novel hypotheses regarding the mechanism by which med14-H919P alleviates ctf4Δ defects:

      1. Decreased replication-transcription conflicts: Conflicts between the transcription machinery and replication forks are known to cause fragile sites, leading to increased chromosome breaks and genomic instability (Garcia-Muse and Aguilera, 2016). A general reduction in PolII transcription during replication, resulting from perturbations of the mediator complex, could reduce these conflicts and mitigate the fitness defects observed in ctf4Δ cells.
      2. Increased cohesin loading: We have demonstrated that amplification of the cohesin loader SCC2 is beneficial in the absence of Ctf4. Recent findings (Mattingly et al., 2022) indicate that the mediator complex recruits SCC2 to PolII-transcribed genes. The med14-H919P mutation may enhance the fitness of ctf4Δ cells by facilitating cohesin loading during DNA replication.
      3. Decreased dNTP levels: As discussed in the manuscript, perturbations of Med14 subunits in the mediator complex reduce the expression of genes, including those associated with nucleotide metabolism. Notably, these include RNR1, the major subunit of ribonucleotide reductase. The med14-H919P mutation could benefit the ctf4Δ background by counteracting the reported spurious increase in dNTPs, which affects replication fork speed (Poli et al., 2012).

      We plan to distinguish between these hypotheses using the following approaches. First, the proposed mechanisms underlying Hypotheses 1 and 3 suggest that med14-H919P is a loss-of-function mutation, while Hypothesis 2 implies a gain-of-function effect. Testing the impact of a heterozygous med14-H919P allele in a homozygous ctf4Δ strain will allow us to differentiate between these two categories of mechanisms. Additionally, we aim to investigate the molecular process affected by the med14-H919P allele by analyzing its genetic interactions with genes involved in replication-transcription conflicts, cohesin loading, and dNTP production (See also response to reviewer #2).

      We believe that the results of these experiments will provide further insights on the mechanism of suppression exerted by med14-H919P in the presence of constitutive DNA replication stress, without diverting the reader from the main message of the paper.

      • The authors comment that the med14-H919P mutant could have implications for the stability of Med14, based on computational modelling. Verifying the stability of the med14-H919P in vivo would strengthen this discussion.

      We believe that in vivo and in vitro structural studies investigating the effect of this mutation on the stability and function of the Mediator complex are beyond the scope of this manuscript. These investigations would be more appropriately addressed in future, dedicated studies focused on these specific aspects.

      • In the discussion, the authors propose that the context of the perturbation may influence the robustness of adaptation. A more detailed explanation of this point (including a discussion of the findings of other similar studies investigating different conditions) would be helpful to further bolster this section.

      We are now supporting this concept more explicitly by commenting on other studies as follows:

      Line 429: “Third, the environment’s influence on compensatory evolution may depend on the specific cellular module perturbed and its genetic interactions with other modules that are significantly influenced by environmental conditions. For example, the actin cytoskeleton, which must rapidly respond to extracellular stimuli, is likely to be more directly influenced by environmental factors (Filateau et al., 2015) compared to the DNA replication machinery, which operates within the nucleus and is relatively insulated from such changes. Supporting this idea, a study examining mutants’ fitness across diverse environments found that conditions such as different carbon sources or TOR inhibition, similar to those used in this study, primarily affected genes involved in vesicle trafficking, transcription, protein metabolism, and cell polarity. In contrast, genes associated with genome maintenance, as well as their epistatic interactions, were largely unaffected (Costanzo et al., 2021)”.

      In addition, to further substantiate this hypothesis, we plan to re-analyze published datasets on fitness and epistatic interactions among genes in various environments, testing whether specific cellular modules are more prone to changes following shifts in nutrient conditions.

      Minor comments: - Competitions were performed between ctf4Δ strains and a constructed strain with yCerulean integrated at ACT1. Is the fitness of the fluorescent strain comparable to the ancestral wild-type strain (i.e., in a competition between the ancestral WT and the fluorescent strain, does either have an advantage)?

      We noticed a slight disadvantage of the reference strain compare to WT, likely due to the costs of the extra fluorescence reporter. However, the disadvantage is minimal, ranging from -0.5 to -2.5 depending on the glucose environment (raw measurments are reported supplementary file 1, sheet 5). To take this into account, all fitness reported in figures are normalized for the WT value measured in the same environment line 613: “Relative fitness of the ancestral WT strain was used to normalize fitness across conditions.​​”

      • In Figure 3, the legends for panels B and C appear to be swapped. Discussion of Figure 3 on pages 6 and 7 appear to reference the wrong panels.

      We are unsure about this typo. Main text and figure legend seem to refer to the appropriate panels, 3B for mutation fractions and 3C for mutation counts. Perhaps the organization of the panels with B being under A instead of on its right confounds the reader?

      • In Figure 4A and B, having the same colour scale between both heatmaps is misleading, as the scales are different. Consider having the same scale across both heatmaps so that enrichments are visually comparable.

      Following the reviewer’s suggestion we have have chosen a uniform heatmap to visually represent GO terms enrichment in WT and ctf4∆ genetic backgrounds.

      • In Figure 4C, having a legend in the figure for node size would be helpful to understand the actual number of populations with mutations in each gene.

      A legend for node size has now being added next to Figure 4C.

      Reviewer #4 (Significance):

      In this study, a high-throughput evolution experiment uncovered the effects of genetic background on the development of adaptive mutations. The authors were able to identify a single amino acid variant of Med14 (med14-H919P) that was positively selected in ctf4Δ. Furthermore, they demonstrated the causality of med14-H919P in conferring a fitness advantage in ctf4Δ. The novelty of this mechanistic finding opens future avenues of investigation regarding the interaction network of the mediator complex in conditions of DNA replication stress. A limitation of the study is that only one mechanism of replication stress was assessed (ctf4Δ). Other gene mutations that cause replication stress would be interesting to assess and would provide a more thorough investigation of the effects of DNA replication factors on evolvability. This work will be of interest to researchers in the population genetics and genotype-by-environment fields, as it suggests the robustness of evolvability to environmental factors in the specific condition of DNA replication stress. As discussed by the authors, this finding differs from other works that have linked environmental conditions to adaptive evolution to different conditions, and is concordant with work that indicates the robustness of genetic interactions to environmental stresses. Furthermore, the identification of the highly-selected med14-H919P variant will be of interest to the DNA replication field. There is the potential for future work investigating the role of Med14 in mediating the response to DNA replication stress in both yeast and mammalian cell contexts, since the authors note that there are links between altered mediator complex regulation and cancers. Although I suspect that the very different regulation of RNR in mammalian cells makes it unlikely that the kind of upregulation of dNTP pools seen in ctf4∆ would be induced by replication stress in mammalian cells.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: 

      The authors investigated causal inference in the visual domain through a set of carefully designed experiments, and sound statistical analysis. They suggest the early visual system has a crucial contribution to computations supporting causal inference. 

      Strengths: 

      I believe the authors target an important problem (causal inference) with carefully chosen tools and methods. Their analysis rightly implies the specialization of visual routines for causal inference and the crucial contribution of early visual systems to perform this computation. I believe this is a novel contribution and their data and analysis are in the right direction. 

      Weaknesses: 

      In my humble opinion, a few aspects deserve more attention: 

      (1) Causal inference (or causal detection) in the brain should be quite fundamental and quite important for human cognition/perception. Thus, the underlying computation and neural substrate might not be limited to the visual system (I don't mean the authors did claim that). In fact, to the best of my knowledge, multisensory integration is one of the best-studied perceptual phenomena that has been conceptualized as a causal inference problem.

      Assuming the causal inference in those studies (Shams 2012; Shams and Beierholm 2022;

      Kording et al. 2007; Aller and Noppeney 2018; Cao et al. 2019) (and many more e.g., by Shams and colleagues), and the current study might share some attributes, one expects some findings in those domains are transferable (at least to some degree) here as well. Most importantly, underlying neural correlates that have been suggested based on animal studies and invasive recording that has been already studied, might be relevant here as well.

      Perhaps the most relevant one is the recent work from the Harris group on mice (Coen et al. 2021). I should emphasize, that I don't claim they are necessarily relevant, but they can be relevant given their common roots in the problem of causal inference in the brain. This is a critical topic that the authors may want to discuss in their manuscript. 

      We thank the reviewer. We addressed this point of the public review in our reply to the reviewer’s suggestions (and add it here again for convenience). The literature on the role of occipital, parietal and frontal brain areas in causal inference is also addressed in the response to point 3 of the public review.

      “We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the movement occurred autonomously). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      (2) If I understood correctly, the authors are arguing pro a mere bottom-up contribution of early sensory areas for causal inference (for instance, when they wrote "the specialization of visual routines for the perception of causality at the level of individual motion directions raises the possibility that this function is located surprisingly early in the visual system *as opposed to a higher-level visual computation*."). Certainly, as the authors suggested, early sensory areas have a crucial contribution, however, it may not be limited to that. Recent studies progressively suggest perception as an active process that also weighs in strongly, the topdown cognitive contributions. For instance, the most simple cases of perception have been conceptualized along this line (Martin, Solms, and Sterzer 2021) and even some visual illusion (Safavi and Dayan 2022), and other extensions (Kay et al. 2023). Thus, I believe it would be helpful to extend the discussion on the top-down and cognitive contributions of causal inference (of course that can also be hinted at, based on recent developments). Even adaptation, which is central in this study can be influenced by top-down factors (Keller et al. 2017). I believe, based on other work of Rolfs and colleagues, this is also aligned with their overall perspective on vision.  

      Indeed, we assessed bottom-up contributions to the perception of a causal relation. We agree with the reviewer that in more complex situations, for instance, in the presence of contextual influences or additional auditory signals, the perception of a causal relation may not be limited to bottom-up vision. While we had acknowledged this in the original manuscript (see excerpts below), we now make it even more explicit:

      “[…] we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997).”

      “[…] Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role.”

      “[…] Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiology subserving causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”

      However, there is also ample evidence that the perception of a simple causal relation—as we studied it in our experiments—escapes top-down cognitive influences. The perception of causality in launching events is described as automatic and irresistible, meaning that participants have the spontaneous impression of a causal relation, and participants typically do not voluntarily switch between a causal and a noncausal percept. This irresistibility has led several authors to discuss a modular organization underlying the detection of such events (Michotte, 1963; Scholl & Tremoulet, 2000). This view is further supported by a study that experimentally manipulated the contingencies between the movement of the two discs (Schlottmann & Shanks, 1992). In one condition the authors created a launching event where the second disc’s movement was perfectly correlated with a color change, but only sometimes coincided with the first disc’s movement offset. Nevertheless, participants reported seeing that the first disc caused the movement of second disc (regardless of the stronger statistical relationship with the color change). However, when asked to make conscious causal judgments, participants were aware of the color change as the true cause of the second disc’s motion—therefore recognizing its more reliable correlation. This study strongly suggests that perceived and judged causality (i.e., cognitive causal inference) can be dissociated (Schlottmann & Shanks, 1992). We have added this reference in the revised manuscript. Overall, we argue that our study focused on a visual routine that could be implemented in a simple bottom-up fashion, but we acknowledge throughout the manuscript, that in a more complex situation (e.g., integrating information from other sensory domains) the implementation could be realized in a more distributed fashion including top-down influences as in multisensory integration. However, it is important to stress that these potential top-down influences would be automatic and should not be confused with voluntary cognitive influences.

      “Note, however, that perceived causality can be distinguished from judged causality (Schlottmann & Shanks, 1992). Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      (3) The authors rightly implicate the neural substrate of causal inference in the early sensory system. Given their study is pure psychophysics, a more elaborate discussion based on other studies that used brain measurements is needed (in my opinion) to put into perspective this conclusion. In particular, as I mentioned in the first point, the authors mainly discuss the potential neural substrate of early vision, however much has been done about the role of higher-tier cortical areas in causal inference e.g., see (Cao et al. 2019; Coen et al. 2021). 

      In the revised manuscript, we addressed the limitations of a purely psychophysical approach and acknowledged alternative implementations in the Discussion section.

      “Note that, while the present findings demonstrate direction-selectivity, it remains unclear where exactly that visual routine is located. As pointed out, it is also possible that the visual routine is located higher up in the visual system (or distributed across multiple levels) and is only using a directional-selective population response as input.”

      Moreover, we cite also the two suggested papers when referring to the role of cortical areas in causal inference (Cao et al, 2019; Coen et al., 2023):

      “Neurophysiological studies support the view of distributed neural processing underlying sensory causal interactions with the visual system playing a major role. Imaging studies in particular revealed a network for the perception of causality that is also involved in action observation (Blakemore et al., 2003; Fonlupt, 2003; Fugelsang et al., 2005; Roser et al., 2005). The fact that visual adaptation of causality occurs in a retinotopic reference frame emphazises the role of retinotopically organized areas within that network (e.g., V5 and the superior temporal sulcus). Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions, and also stressing that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions). The neurophysiological underpinnings in causal inference further extend the candidate cortical areas that might contibute to the detection of causal relations, emphasizing the role of the frontal cortex for the flexible integration of multisensory representations (Cao et al., 2019; Coen et al., 2023).”

      There were many areas in this manuscript that I liked: clever questions, experimental design, and statistical analysis.

      Thank you so much.

      Reviewer #1 (Recommendations for the authors):

      I congratulate the authors again on their manuscript and hope they will find my review helpful. Most of my notes are suggestions to the authors, and I hope will help them to improve the manuscript. None are intended to devalue their (interesting) work. 

      We would like to thank the reviewer for their thoughtful and encouraging comments.

      In the following, I use pX-lY template to refer to a particular page number, say page number X (pX), and line number, say line number Y (lY). 

      Major concerns and suggestions 

      - I would suggest simplifying the abstract and significance statement or putting more background in it. It's hard (at least for me) to understand if one is not familiar with the task used in this study. 

      We followed the reviewer’s suggestion and added more background in the beginning of the abstract. 

      We made the following changes:

      “Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e., the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e., a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature-similarity of the adaptor and the test event. We show that negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speed. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.”

      - The authors highlight the importance of studying causal inference and understanding the underlying mechanisms by probing adaptation, however, their introduction justifying that is, in my humble opinion, quite short. Perhaps in the cited paper, this is discussed extensively, but I'd suggest providing some elaboration in the manuscript. Otherwise, the study would be very specific to certain visual phenomena, rather than general mechanisms.  

      We have carefully considered the reviewer’s set of comments and concerns (e.g., the role of top-down influences, the contributions of the frontal cortex, and illustration of the computational level). They all appear to share the theme that the reviewer looks at our study from the perspective of Bayesian inference. We conducted the current study in the tradition of classical phenomena in the field of the perception of causality (in the tradition of Michotte, 1963 and as reviewed in Scholl & Tremoulet, 2000) which aims to uncover the relevant visual parameters and rules for detecting causal relations in the visual domain. Indeed, we think that a causal inference perspective promises a lot of new insights into the mechanisms underlying the classical phenomena described for the perception of causality. In the revised manuscript, we discuss therefore causal inference and how it relates to the current study. We now emphasize that in our study, a) we used visual adaptation to reveal the bottom-up processes that allow for the detection of a causal interaction in the visual domain, b) that the perception of causality also integrates signals from other domains (which we do not study here), and c) that the neural substrates underlying the perception of causality might be best described by a distributed network. By discussing Bayesian causal inference, we point out promising avenues for future research that may bridge the fields of the perception of causality and Bayesian causal inference. However, we also emphasize that perceived causality and judged causality can be dissociated (Schlottmann & Shanks, 1992).

      We added the following discussion:

      “We used visual adaptation to carve out a bottom-up visual routine for detecting causal interactions in form of launching events. However, we know that more complex behaviors of perceiving causal relations can result from integrating information across space (e.g., in causal capture; Scholl & Nakayama, 2002), across time (postdictive influence; Choi & Scholl, 2006), and across sensory modalities (Sekuler, Sekuler, & Lau, 1997). Bayesian causal inference has been particularly successful as a normative framework to account for multisensory integration (Körding et al., 2007; Shams & Beierholm, 2022). In that framework, the evidence for a common-cause hypothesis is competing with the evidence for an independent-causes hypothesis (Shams & Beierholm, 2022). The task in our experiments could be similarly formulated as two competing hypotheses for the second disc’s movement (i.e., the movement was caused by the first disc vs. the second disc did not move). This framework also emphasizes the distributed nature of the neural implementation for solving such inferences, showing the contributions of parietal and frontal areas in addition to sensory processing (for review see Shams & Beierholm, 2022). Moreover, even visual adaptation to contrast in mouse primary visual cortex is influenced by top-down factors such as behavioral relevance— suggesting a complex implementation of the observed adaptation results (Keller et al. 2017). The present experiments, however, presented purely visual events that do not require an integration across processing domains. Thus, the outcome of our suggested visual routine can provide initial evidence from within the visual system for a causal relation in the environment that may then be integrated with signals from other domains (e.g., auditory signals). Determining exactly how the perception of causality relates to mechanisms of causal inference and the neural implementation thereof is an exciting avenue for future research. Note, however, that perceived causality can be distinguished from judged causality: Even when participants are aware that a third variable (e.g., a color change) is the best predictor of the movement of the second disc in launching events, they still perceive the first disc as causing the movement of the second disc (Schlottmann & Shanks, 1992).”

      - I'd suggest, at the outset, already set the context, that your study of causal inference in the brain is specifically targeting the visual domain, if you like, in the discussion connect it  better to general ideas about causal inference in the brain (like the works by Ladan Shams and colleagues). 

      We would like to thank the reviewer for this comment. We followed the reviewer’s suggestion and made clear from the beginning that this paper is about the detection of causal relations in the visual domain. In the revised manuscript we write:

      “Here, we will study the mechanisms underlying the computations of causal interactions in the visual domain by capitalizing on visual adaptation of causality (Kominsky & Scholl, 2020; Rolfs et al., 2013). Adaptation is a powerful behavioral tool for discovering and dissecting a visual mechanism (Kohn, 2007; Webster, 2015) that provides an intriguing testing ground for the perceptual roots of causality.”

      As described in our reply to the previous comment, we now also discussed the ideas about causal inference.

      - To better illustrate the implication of your study on the computational level, I'd suggest putting it in the context of recent approaches to perception (point 2 of my public review). I think this is also aligned with the comment of Reviewer#3 on your line 32 (recommendation for authors).  

      In the revised manuscript, we now discuss the role of top-down influences in causal inference when addressing point 2 of the reviewer’s public review.

      Minor concerns and suggestions 

      - On p2-l3, I'd suggest providing a few examples for generalized and or specialized visual routines (given the importance of the abstract). I only got it halfway through the introduction. 

      We thank the reviewer for highlighting the need to better introduce the concept of a visual routine. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system. At the same time, the concept leaves space with respect to the extent to which the mechanism further involves mid- and higher-level processes. In the revised manuscript, we now refer to Ullman (1987) who introduced the concept of a visual routine—the idea of a modular operation that sequentially processes spatial and feature information. Moreover, we refer to the concept of attentional sprites (Cavanagh, Labianca, & Thornton, 2001)—attention-based visual routines that allow the visual system to semi-independently handle complex visual tasks (e.g., identifying biological motion).

      We add the following footnote to the introduction:

      “We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”

      In the abstract we now write:

      “Here, we determined for visual interactions whether generalized (i.e., feature-invariant) or specialized (i.e., feature-selective) visual routines underlie the perception of causality.”

      - On p4-l31, I'd suggest mentioning the Matlab version. I have experienced differences across different versions of Matlab (minor but still ...). 

      We added the Matlab Version.

      - On p6-l46 OSF-link is missing (that contains data and code). 

      Thank you. We made the OSF repository public and added the link to the revised manuscript.

      We added the following information to the revised manuscript.

      “The data analysis code has been deposited at the Open Science Framework and is publicly available https://osf.io/x947m/.”

      Reviewer #2 (Public Review):

      This paper seeks to determine whether the human visual system's sensitivity to causal interactions is tuned to specific parameters of a causal launching event, using visual adaptation methods. The three parameters the authors investigate in this paper are the direction of motion in the event, the speed of the objects in the event, and the surface features or identity of the objects in the event (in particular, having two objects of different colors). The key method, visual adaptation to causal launching, has now been demonstrated by at least three separate groups and seems to be a robust phenomenon. Adaptation is a strong indicator of a visual process that is tuned to a specific feature of the environment, in this case launching interactions. Whereas other studies have focused on retinotopically specific adaptation (i.e., whether the adaptation effect is restricted to the same test location on the retina as the adaptation stream was presented to), this one focuses on feature specificity. 

      The first experiment replicates the adaptation effect for launching events as well as the lack of adaptation event for a minimally different non-causal 'slip' event. However, it also finds that the adaptation effect does not work for launching events that do not have a direction of motion more than 30 degrees from the direction of the test event. The interpretation is that the system that is being adapted is sensitive to the direction of this event, which is an interesting and somewhat puzzling result given the methods used in previous studies, which have used random directions of motion for both adaptation and test events. 

      The obvious interpretation would be that past studies have simply adapted to launching in every direction, but that in itself says something about the nature of this direction-specificity: it is not working through opposed detectors. For example, in something like the waterfall illusion adaptation effect, where extended exposure to downward motion leads to illusory upward motion on neutral-motion stimuli, the effect simply doesn't work if motion in two opposed directions is shown (i.e., you don't see illusory motion in both directions, you just see nothing). The fact that adaptation to launching in multiple directions doesn't seem to cancel out the adaptation effect in past work raises interesting questions about how directionality is being coded in the underlying process. 

      We would like to thank the reviewer for that thoughtful comment. We added the described implication to the manuscript:

      “While the present study demonstrates direction-selectivity for the detection of launches, previous adaptation protocols demonstrated successful adaptation using adaptors with random motion direction (Rolfs et al., 2013; Kominsky & Scholl, 2020). These results therefore suggest independent direction-specific routines, in which adaptation to launches in one direction does not counteract an adaptation to launches in the opposite direction (as for example in opponent color coding).”

      In addition, one limitation of the current method is that it's not clear whether the motion direction-specificity is also itself retinotopically-specific, that is, if one retinotopic location were adapted to launching in one direction and a different retinotopic location adapted to launching in the opposite direction, would each test location show the adaptation effect only for events in the direction presented at that location? 

      This is an interesting idea! Because previous adaptation studies consistently showed retinotopic adaptation of causality, we would not expect to find transfer of directional tuning for launches to other locations. We agree that the suggested experiment on testing the reference frame of directional specificity constitutes an interesting future test of our findings.

      The second experiment tests whether the adaptation effect is similarly sensitive to differences in speed. The short answer is no; adaptation events at one speed affect test events at another. Furthermore, this is not surprising given that Kominsky & Scholl (2020) showed adaptation transfer between events with differences in speeds of the individual objects in the event (whereas all events in this experiment used symmetrical speeds). This experiment is still novel and it establishes that the speed-insensitivity of these adaptation effects is fairly general, but I would certainly have been surprised if it had turned out any other way. 

      We thank the reviewer for highlighting the link to an experiment reported in Kominsky & Scholl (2020). We report the finding of that experiment now in the revised manuscript.

      We added the following paragraph in the discussion:

      “For instance, we demonstrated a transfer of adaptation across speed for symmetrical speed ratios. This result complements a previous finding that reported that the adaptation to triggering events (with an asymmetric speed ratio of 1:3) resulted in significant retinotopic adaptation of ambiguous (launching) test events of different speed ratios (i.e., test events with a speed ratio of 1:1 and of 1:3; Kominsky & Scholl, 2020).”

      The third experiment tests color (as a marker of object identity), and pits it against motion direction. The results demonstrate that adaptation to red-launching-green generates an adaptation effect for green-launching-red, provided they are moving in roughly the same direction, which provides a nice internal replication of Experiment 1 in addition to showing that the adaptation effect is not sensitive to object identity. This result forms an interesting contrast with the infant causal perception literature. Multiple papers (starting with Leslie & Keeble, 1987) have found that 6-8-month-old infants are sensitive to reversals in causal roles exactly like the ones used in this experiment. The success of adaptation transfer suggests, very clearly, that this sensitivity is not based only on perceptual processing, or at least not on the same processing that we access with this adaptation procedure. It implies that infants may be going beyond the underlying perceptual processes and inferring genuine causal content. This is also not the first time the adaptation paradigm has diverged from infant findings: Kominsky & Scholl (2020) found a divergence with the object speed differences as well, as infants categorize these events based on whether the speed ratio (agent:patient) is physically plausible (Kominsky et al., 2017), while the adaptation effect transfers from physically implausible events to physically plausible ones. This only goes to show that these adaptation effects don't exhaustively capture the mechanisms of early-emerging causal event representation. 

      We would like to thank the reviewer for highlighting the similarities (and differences) to the seminal study by Leslie and Keeble (1987). We included a discussion with respect to that paper in the revised manuscript. Indeed, that study showed a recovery from habituation to launches after reversal of the launching events. In their study, the reversal condition resulted in a change of two aspects, 1) motion direction and 2) a change of what color is linked to either cause (i.e., agent) or effect (i.e, patient). Our study, based on visual adaptation in adults, suggests that switching the two colors is not necessary for a recovery from the habituation, provided the motion direction is reversed. Importantly, the reversal of the motion direction only affected the perception of causality after adapting to launches (but not to slip events), which is consistent with Leslie and Keeble’s (1987) finding that the effect of a reversal is contingent on habituation/adaptation to a causal relationship (and is not observed for non-causal delayed launches). Based on our findings, we predict that switching colors without changing the event’s motion direction would not result in a recovery from habituation. Obviously, for infants, color may play a more important role for establishing an object identity than it does for adults, which could explain potential differences. We also agree with the reviewer’s point that the adaptation protocol might tap into different mechanisms than revealed by habituation studies in infants (e.g, Kominsky et al., 2017 vs. Kominsky & Scholl, 2020). 

      We revised the manuscript accordingly when discussing the role of direction selectivity in our study:

      “Habituation studies in six-months-old infants also demonstrated that the reversal of a launch resulted in a recovery from habituation to launches (while a non-causal control condition of delayed-launches did not; Leslie & Keeble, 1987). In their study, the reversal of motion direction was accompanied by a reversal of the color assignment to the cause-effectrelationship. In contrast, our findings suggest, that in adults color does not play a major role in the detection of a launch. Future studies should further delineate similarities and differences obtained from adaptation studies in adults and habituation studies in children (e.g., Kominsky et al., 2017; Kominsky & Scholl, 2020).”

      One overarching point about the analyses to take into consideration: The authors use a Bayesian psychometric curve-fitting approach to estimate a point of subjective equality (PSE) in different blocks for each individual participant based on a model with strong priors about the shape of the function and its asymptotic endpoints, and this PSE is the primary DV across all of the studies. As discussed in Kominsky & Scholl (2020), this approach has certain limitations, notably that it can generate nonsensical PSEs when confronted with relatively extreme response patterns. The authors mentioned that this happened once in Experiment 3 and that a participant had to be replaced. An alternate approach is simply to measure the proportion of 'pass' reports overall to determine if there is an adaptation effect. I don't think this alternate analysis strategy would greatly change the results of this particular experiment, but it is robust against this kind of self-selection for effects that fit in the bounds specified by the model, and may therefore be worth including in a supplemental section or as part of the repository to better capture the individual variability in this effect. 

      We largely agree with these points. Indeed, we adopted the non-parametric analysis for a recent series of experiments in which the psychometric curves were more variable (Ohl & Rolfs, Vision Sciences Society Meeting 2024). In the present study, however, the model fits were very convincing. In Figures S1, S2 and S3 we show the model fits for each individual observer and condition on top of the mean proportion of launch reports. The inferential statistics based on the points of subjective equality, therefore, allowed us to report our findings very concisely.

      In general, this paper adds further evidence for something like a 'launching' detector in the visual system, but beyond that, it specifies some interesting questions for future work about how exactly such a detector might function. 

      We thank the reviewer for this positive overall assessment.

      Reviewer #2 (Recommendations for the authors):

      Generally, the paper is great. The questions I raised in the public review don't need to be answered at this time, but they're exciting directions for future work. 

      We would like to thank the reviewer for the encouraging comments and thoughtful ideas on how to improve the manuscript.

      I would have liked to see a little more description of the model parameters in the text of the paper itself just so readers know what assumptions are going into the PSE estimation. 

      We followed the reviewer’s suggestion and added more information regarding the parameter space (i.e., ranges of possible parameters of the logistic model) that we used for obtaining the model fits. 

      Specifically, we added the following information in the manuscript:

      “For model fitting, we constrained the range of possible estimates for each parameter of the logistic model. The lower asymptote for the proportion of reported launches was constrained to be in the range 0–0.75, and the upper asymptote in the range 0.25–1. The intercept of the logistic model was constrained to be in the range 1–15, and the slope was constrained to be in the range –20 to –1.”

      The models provided very good fits as can be appreciated by the fits per individual and experimental condition which we provide in response to the public comments. Please note, that all data and analysis scripts are available at the Open Science Framework (https://osf.io/x947m/).

      I also have a recommendation about Figure 1b: Color-code "Feature A", "Feature B", and "Feature C" and match those colors with the object identity/speed/direction text. I get what the figure is trying to convey but to a naive reader there's a lot going on and it's hard to interpret. 

      We followed the reviewer’s suggestion and revised the visualization accordingly.

      If you have space, figures showing the adaptation and corresponding test events for each experimental manipulation would also be great, particularly since the naming scheme of the conditions is (necessarily) not entirely consistent across experiments. It would be a lot of little figures, I know, but to people who haven't spent as long staring at these displays as we have, they're hard to envision based on description alone. 

      We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.

      Reviewer #3 (Public Review):

      We thank the reviewer for their thoughtful comments, which we carefully addressed to improve the revised manuscript. 

      Summary: 

      This paper presents evidence from three behavioral experiments that causal impressions of "launching events", in which one object is perceived to cause another object to move, depending on motion direction-selective processing. Specifically, the work uses an adaptation paradigm (Rolfs et al., 2013), presenting repetitive patterns of events matching certain features to a single retinal location, then measuring subsequent perceptual reports of a test display in which the degree of overlap between two discs was varied, and participants could respond "launch" or "pass". The three experiments report results of adapting to motion direction, motion speed, and "object identity", and examine how the psychometric curves for causal reports shift in these conditions depending on the similarity of the adapter and test. While causality reports in the test display were selective for motion direction (Experiment 1), they were not selective for adapter-test speed differences (Experiment 2) nor for changes in object identity induced via color swap (Experiment 3). These results support the notion that causal perception is computed (in part) at relatively early stages of sensory processing, possibly even independently of or prior to computations of object identity. 

      Strengths: 

      The setup of the research question and hypotheses is exceptional. The experiments are carefully performed (appropriate equipment, and careful control of eye movements). The slip adaptor is a really nice control condition and effectively mitigates the need to control motion direction with a drifting grating or similar. Participants were measured with sufficient precision, and a power curve analysis was conducted to determine the sample size. Data analysis and statistical quantification are appropriate. Data and analysis code are shared on publication, in keeping with open science principles. The paper is concise and well-written. 

      Weaknesses: 

      The biggest uncertainty I have in interpreting the results is the relationship between the task and the assumption that the results tell us about causality impressions. The experimental logic assumes that "pass" reports are always non-causal impressions and "launch" reports are always causal impressions. This logic is inherited from Rolfs et al (2013) and Kominsky & Scholl (2020), who assert rather than measure this. However, other evidence suggests that this assumption might not be solid (Bechlivanidis et al., 2019). Specifically, "[our experiments] reveal strong causal impressions upon first encounter with collision-like sequences that the literature typically labels "non-causal"" (Bechlivanidis et al., 2019) -- including a condition that is similar to the current "pass". It is therefore possible that participants' "pass" reports could also involve causal experiences. 

      We agree with the reviewer that our study assumes that the launch-pass dichotomy can be mapped onto a dimension of causal to non-causal impressions. Please note that the choice for this launch-pass task format was intentional. We consider it an advantage that subjects do not have to report causal vs non-causal impressions directly, as it allows us to avoid the oftencriticized decision biases that come with asking participants about their causal impression (Joynson, 1971; for a discussion see Choi & Scholl, 2006). This comes obviously at the cost that participants did not directly report their causal impression in our experiments. There is however evidence that increasing overlap between the discs monotonically decreases the causal impression when directly asking participants to report their causal impression (Scholl & Nakayama, 2004). We believe, therefore, that the assumption of mapping between launchesto-passes and causal-to-noncausal is well-justified. At the same time, the expressed concern emphasizes the need to develop further, possibly implicit measure for causal impressions (see Völter & Huber, 2021).

      However, as pointed out by the reviewer, a recent paper demonstrated that on first encounter participants can have impressions in response to a pass event that are different from clearly non-causal impressions (Bechlivanidis et al., 2019). As demonstrated in the same paper, displaying a canonical launch decreased the impression of causality when seeing pass events in subsequent trials. In our study, participants completed an entire training session before running the main experiments. It is therefore reasonable to expect that participants observed passes as non-causal events given the presence of clear causal references. Nevertheless, we now acknowledge this concern directly in the revised manuscript.

      We added the following paragraph to the discussion:

      “In our study, we assessed causal perception by asking observers to report whether they observed a launch or a pass in events of varying ambiguity. This method assumes that launches and passes can be mapped onto a dimension that ranges from causal to non-causal impressions. It has been questioned whether pass events are a natural representative of noncausal events: Observers often report high impressions of causality upon first exposure to pass events, which then decreased after seeing a canonical launch (Bechlivanidis, Schlottmann, & Lagnado, 2019). In our study, therefore, participants completed a separate session that included canonical launches before starting the main experiment.”

      Furthermore, since the only report options are "launch" or "pass", it is also possible that "launch" reports are not indications of "I experienced a causal event" but rather "I did not experience a pass event". It seems possible to me that different adaptation transfer effects (e.g. selectivity to motion direction, speed, or color-swapping) change the way that participants interpret the task, or the uncertainty of their impression. For example, it could be that adaptation increases the likelihood of experiencing a "pass" event in a direction-selective manner, without changing causal impressions. Increases of "pass" impressions (or at least, uncertainty around what was experienced) would produce a leftward shift in the PSE as reported in Experiment 1, but this does not necessarily mean that experiences of causal events changed. Thus, changes in the PSEs between the conditions in the different experiments may not directly reflect changes in causal impressions. I would like the authors to clarify the extent to which these concerns call their conclusions into question. 

      Indeed, PSE shifts are subject to cognitive influences and can even be voluntarily shifted (Morgan et al., 2012). We believe that decision biases (e.g., reporting the presence of launch before adaptation vs. reporting the absence of a pass after the adaptation) are unlikely to explain the high specificity of aftereffects observed in the current study. While such aftereffects are very typical of visual processing (Webster, 2015), it is unclear how a mechanism that increase the likelihood of perceiving a pass could account for the retinotopy of adaptation to launches (Rolfs et al., 2013) or the recently reported selective transfer of adaptation for only some causal categories (Kominsky et al., 2020). The latter authors revealed a transfer of adaptation from triggering to launching, but not from entraining events to launching. Based on these arguments, we decided to not include this point in the revised manuscript.

      Leaving these concerns aside, I am also left wondering about the functional significance of these specialised mechanisms. Why would direction matter but speed and object identity not? Surely object identity, in particular, should be relevant to real-world interpretations and inputs of these visual routines? Is color simply too weak an identity? 

      We agree that it would be beneficial to have mechanisms in place that are specific for certain object identities. Overall, our results fit very well to established claims that only spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000). We have now explicitly listed these references again in the revised manuscript. It is important to note, that an understanding of a causal relation could suffice to track identity information based purely on spatiotemporal contingencies, neglecting distinguishing surface features.

      We revised the manuscript and state:

      “Our findings therefore provide additional support for the claim that an event’s spatiotemporal parameters mediate the perception of causality (Michotte, 1963; Leslie, 1984; Scholl & Tremoulet, 2000).”

      Moreover, we think our findings of directional selectivity have functional relevance. First, direction-selective detection of collisions allows for an adaptation that occurs separately for each direction. That means that the visual system can calibrate these visual routines for detecting causal interactions in response to real-world statistics that reflect differences in directions. For instance, due to gravity, objects will simply fall to the ground. Causal relation such as launches are likely to be more frequent in horizontal directions, along a stable ground. Second, we think that causal visual events are action-relevant, that is, acting on (potentially) causal events promises an advantage (e.g., avoiding a collision, or quickly catching an object that has been pushed away). The faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available in the first stages of visual processing. Visual routines that are based on these direction-selective motion signals promise to enable such fast computations. Please note, however, that while our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is quite possible that the visual routine is located higher up in the visual system, relying on a direction-selective population response as input.

      We added these points to the discussion of the functional relevance: 

      “We suggest that at least two functional benefits result from a specialized visual routine for detecting causality. First, a direction-selective detection of launches allows adaptation to occur separately for each direction. That means that the visual system can automatically calibrate the sensitivity of these visual routines in response to real-world statistics. For instance, while falling objects drop vertically towards the ground, causal relations such as launches are common in horizontal directions moving along a stable ground. Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”

      Reviewer #3 (Recommendations for the authors):

      - The concept of "visual routines" is used without introduction; for a general-interest audience it might be good to include a definition and reference(s) (e.g. Ullman.). 

      Thank you very much for highlighting that point. We have chosen the term visual routine to emphasize that we locate the part of the mechanism that is affected by the adaptation in our experiments in the visual system, but at the same time it leaves space regarding the extent to which the mechanism further involves mid- and higher-level processes. The term thus has a clear reference to a visual routine by Ullman (1987). We have now addressed what we mean by visual routine, and we also included the reference in the revised manuscript.

      We add the following footnote to the introduction:

      “We use the term visual routine here to highlight that our adaptation experiments can reveal a causality detection mechanism that resides in the visual system. At the same time, calling it a routine emphasizes similarities with a local, semi-independent operation (e.g., the recognition of familiar motion patterns; see also Ullman, 1987; Cavanagh, Labianca, & Thornton, 2001) that can engage mid- and higher-level processes (e.g., during causal capture, Scholl & Nakayama, 2002; or multisensory integration, Körding et al., 2007).”

      - I would appreciate slightly more description of the phenomenology of the WW adaptors: is this Michotte's "entraining" event? Does it look like one disc shunts the other?  

      The stimulus differs from Michotte's entrainment event in both spatiotemporal parameters and phenomenology. We added videos for the launch, pass and slip events as Supplementary Material.

      Moreover, we described the slip event in the methods section:

      “In two additional sessions, we presented slip events as adaptors to control that the adaptation was specific for the impression of causality in the launching events. Slip events are designed to match the launching events in as many physical properties as possible while producing a very different, non-causal phenomenology. In slip events, the first peripheral disc also moves towards a stationary disc. In contrast to launching events, however, the first disc passes the stationary disc and stops only when it is adjacent to the opposite edge of the stationary disc. While slip events do not elicit a causal impression, they have the same number of objects and motion onsets, the same motion direction and speed, as well as the same spatial area of the event as launches.”

      In the revised manuscript, we added also more information on the slip event in the beginning of the results section. Importantly, the stimulus typically produces the impression of two independent movements and thus serves as a non-causal control condition in our study. Only anecdotally, some observers (not involved in this study) who saw the stimulus spontaneously described their phenomenology of seeing a slip event as a double step or a discus throw.

      We added the following description to the results section:

      “Moreover, we compared the visual adaptation to launches to a (non-causal) control condition in which we presented slip events as adaptor. In a slip event, the initially moving disc passes completely over the stationary disc, stops immediately on the other side, and then the initially stationary disc begins to move in the same direction without delay. Thus, the two movements are presented consecutively without a temporal gap. This stimulus typically produces the impression of two independent (non-causal) movements.”

      - In general more illustrations of the different conditions (similar to Figure 1c but for the different experimental conditions and adaptors) might be helpful for skim readers.  

      We followed the reviewer’s recommendation and added a visualization of the adaptor and the test events for the different experiments in Figure 2.

      - Were the luminances of the red and green balls in experiment 3 matched? Were participants checked for color anomalous vision?  

      Yes, we checked for color anomalous vision using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016). We added that information to the manuscript. The red and green discs were not matched for luminance. We measured the luminance after the experiment (21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc). Please note, that the differences in luminance should not pose a problem for the interpretation of the results, as we see a transfer of the adaptation across the two different colors.

      We added the following information to the manuscript:

      “The red and green discs were not matched for luminance. Measurements obtained after the experiments yielded a luminance of 21 cd/m<sup>2</sup> for the green disc and 6 cd/m<sup>2</sup> for the red disc.”

      “All observers had normal or corrected-to-normal vision and color vision as assessed using the color test Tafeln zur Prüfung des Farbensinnes/Farbensehens (Kuchenbecker & Broschmann, 2016).”

      - Relationship of this work to the paper by Arnold et al., (2015). That paper suggested that some effects of adaptation of launching events could be explained by an adaptation of object shape, not by causality per se. It is superficially difficult to see how one could explain the present results from the perspective of object "squishiness" -- why would this be direction selective? In other words, the present results taken at face value call the "squishiness" explanation into question. The authors could consider an explanation to reconcile these findings in their discussion. 

      Indeed, the paper by Arnold and colleagues (2014) suggested that a contact-launch adaptor could lead to a squishiness aftereffect—arguing that the object elasticity changed in response to the adaptation.  Importantly, the same study found an object-centered adaptation effect rather than a retinotopic adaptation effect. However, the retinotopic nature of the negative aftereffect as used in our study has been repeatedly replicated (for instance Kominsky & Scholl, 2020). Thus, the divergent results of Arnold and colleagues may have resulted from differences in the task (i.e., observers had to judge whether they perceived a soft vs. hard bounce), or the stimuli (i.e., bounces of a disc and a wedge, and the discs moving on a circular trajectory). It would be important to replicate these results first and then determine whether their squishiness effect would be direction-selective as well. We now acknowledge the study by Arnold and colleagues in the discussion:

      “The adaptation of causality is spatially specific to the retinotopic coordinates of the adapting stimulus (Kominsky & Scholl, 2020; Rolfs et al., 2013; for an object-centered elasiticity aftereffect using a related stimulus on a circular motion path, see Arnold et al., 2015), suggesting that the detection of causal interactions is implemented locally in visual space.”

      - Line 32: "showing that a specialized visual routine for launching events exists even within separate motion direction channels". This doesn't necessarily mean the routine is within each separate direction channel, only that the output of the mechanism depends on the population response over motion direction. The critical motion computation could be quite high level -- e.g. global pattern motion in MST. Please clarify the claim. 

      We agree with the reviewer, that it is also possible that critical parts of the visual routine could simply use the aggregated population response over motion direction at higher-levels of processing. We acknowledge this possibility in the discussion of the functional relevance of the proposed mechanism and when suggesting that a distributed brain network may contribute to the perception of causality.

      We would like to highlight the following two revised paragraphs.

      “[…] Second, we think that causal visual events are action-relevant, and the faster we can detect such causal interactions, the faster we can react to them. Direction-selective motion signals are available very early on in the visual system. Visual routines that are based on these direction-selective motion signals may enable faster detection. While our present findings demonstrate direction-selectivity, they do not pinpoint where exactly that visual routine is located. It is possible that the visual routine is located higher up in the visual system (or distributed across multiple levels), relying on a direction-selective population response as input.”

      Moreover, when discussing the neurophysiological literature we write:

      “Interestingly, single cell recordings in area F5 of the primate brain revealed that motor areas are contributing to the perception of causality (Caggiano et al., 2016; Rolfs, 2016), emphasizing the distributed nature of the computations underlying causal interactions. This finding also stresses that the detection, and the prediction, of causality is essential for processes outside purely sensory systems (e.g., for understanding other’s actions, for navigating, and for avoiding collisions).”

      -  p. 10 line 30: typo "particual".  

      Done.

      -  p. 10 line 37: "This findings rules out (...)" should be singular "This finding rules out (...)". 

      Done.

      -  Spelling error throughout: "underly" should be "underlie". 

      Done.

      -  p.11 line 29: "emerges fast and automatic" should be "automatically". 

      Done.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor co-receptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.

      Thank you for your suggestion. In the Materials and Methods, we mention how we selected the target region and evaluated potential off-target sites by Exonerate and CHOPCHOP. Neither of these methods found potential off-target sites with a more-than-17-nt alignment identity. Therefore, we assumed no off-target effect in our Orco KO. Furthermore, we did not find any developmental differences between WT and KO caterpillars when these were reared on leaf discs in Petri dishes (Fig S4). We will further highlight this information on the off-target evaluation in the Results section of our revised manuscript.

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orco-expressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      Thank you for pointing this out. The figure shows only a qualitative comparison between WT and KO and we did not aim to determine the total number of Orco positive neurons in the maxillary palps or antennae of WT and KO caterpillars, but please see our previous work for the neuron numbers in the caterpillar antennae (Wang et al., 2023). We did indeed find more than one neuron in the maxillary palps, but as these were in very different image planes it was not possible to visualize them together. However, we will add a few sentences in the Results and Discussion section to explain the results of the maxillary palp Orco staining.

      (3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      Thank you for pointing this out. The four glomeruli in Figure 1G and 1H are not strictly corresponding. We circled these glomeruli to highlight them, as they are the best visualized and clearly shown in this view. In this study, we only counted the number of glomeruli in both WT and KO, however, we did not clarify which glomeruli are missing in the KO caterpillar brain. We will further explain this in the figure legend.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      Thank you for your suggestion. We do agree with your suggestion, and we will consider moving this part to the supplementary information. Regarding larval olfactory response, we unfortunately failed to record any spikes using single sensillum recordings due to the difficult nature of the preparation; however, we do believe that this would be an interesting avenue for further research.

      (5) Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      Thank you for pointing this out. The sentence is “We compared the behaviors of both WT and Orco KO caterpillars in response to clean air, a healthy plant and a caterpillar-infested plant”. We tested these three stimuli in two comparisons: healthy plant vs no plant, infested plant vs no plant. The two comparisons are shown in Figure 3C separately. We will aim to describe this more clearly in the revised version of the manuscript.

      (6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      Thank you for pointing this out. We did not make a comparison between the data of Figures 3A and 3E since the two experiments were not conducted at the same time due to the limited space in our BioSafety Ⅲ greenhouse. We do agree that the weight decrease in Figure 3E is partly due to the reduced caterpillar growth shown in Figure 3A. However, we are confident that the additional decrease in caterpillar weight shown in Figure 3E is mainly driven by the presence of disarmed parasitoids. To be specific, the average weight in Figure 3A is 0.4544 g for WT and 0.4230 g for KO, KO weight is 93.1% of WT caterpillars. While in Figure 3E, the average weight is 0.4273 g for WT and 0.3637 g for KO, KO weight is 85.1% of WT caterpillars. We will discuss this interaction between caterpillar growth and the effect of the parasitoid attacks more extensively in the revised version of the manuscript.

      (7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      We are happy that you highlight this point. When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasps (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      Thank you for the suggestion. We assume you mean Figure 4D/4E instead of Figure 4B. In Figure 4B, many of the identified chemical compounds are essentially plant volatiles, especially those from caterpillar frass and caterpillar spit. In Figure 4D/4E, most of the tested chemicals are derived from plants. We did include several ITCs in the butterfly EAG tests shown in figure 2A/B, however because the butterfly antennae did not respond strongly to ITCs, we did not include ITCs in the subsequent larval behavioural tests. Instead, the tested chemicals in Figure 4D/4E either elicit high EAG responses of butterflies or have been identified as significant by VIP scores in the chemical analyses. We will add this explanation to the revised version of our manuscript.

      (9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).

      We will add more detailed descriptions for the setup and method in the Materials and Methods.

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

      Thank you for pointing this out. We used both clean filter paper and clean filter paper with 10 μL paraffin oil as negative controls, but we did not find a significant difference between the two controls. Therefore, in the EAG results of Figure 2A/2B, we presented paraffin oil as one of the tested chemicals. We will re-run our statistical tests with paraffin oil as negative control, although we do not expect any major differences to the previous tests.

      Reviewer #2 (Public review):

      Summary:

      This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.

      Strengths:

      This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.

      Weaknesses:

      (1) I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.

      We do agree with your comment that both mechanisms may be at work in nature, and we do address this in the Discussion section. In our study, we did find that wildtype caterpillars were more efficient in locating their food source and did grow faster on full plants than knockout caterpillars. This faster growth will enable wildtype caterpillars to more quickly outgrow the life-stages most vulnerable to the parasitoids (L1 and L2). The olfactory system therefore supports the escape from parasitoids indirectly by enhancing feeding efficiency directly.

      In addition, we show in our Y-tube experiments that WT caterpillars were able to avoid plant where conspecifics are under the attack by parasitiods (Figure 3D). Therefore, we speculate that WT caterpillars make use of volatiles from the plant or from conspecifics via their spit or faeces to avoid plants or leaves potentially attracting natural enemies. Knockout caterpillars are unable to use these volatile danger cues and therefore do not avoid plants or leaves that are most attractive to their natural enemies, making KO caterpillars more susceptible and leading to more natural enemy harassment. Through this, olfaction also directly impacts the ability of a caterpillar to find an enemy-free feeding site.

      We think that olfaction supports the enemy avoidance of caterpillars via both these mechanisms, although at different time scales. Unfortunately, our analysis was not detailed enough to discern the relative importance of the two mechanisms we found. However, we feel that this would be an interesting avenue for further research. Moreover, we will sharpen our discussion on the potential importance of the two different mechanisms in the revised version of this manuscript.

      (2) My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).

      We will revise the sample size in the text to make it clearer.

      (3) I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.

      Thank you for pointing this out. We will provide more detailed test statistics in the main text and in the supplementary materials of the revised version of the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Summary:

      This paper describes molecular dynamics simulations (MDS) of the dynamics of two T-cell receptors (TCRs) bound to the same major histocompatibility complex molecule loaded with the same peptide (pMHC). The two TCRs (A6 and B7) bind to the pMHC with similar affinity and kinetics, but employ different residue contacts. The main purpose of the study is to quantify via MDS the differences in the inter- and intra-molecular motions of these complexes, with a specific focus on what the authors describe as catch-bond behavior between the TCRs and pMHC, which could explain how T-cells can discriminate between different peptides in the presence of weak separating force.

      Strengths:

      The authors present extensive simulation data that indicates that, in both complexes, the number of high-occupancy interdomain contacts initially increases with applied load, which is generally consistent with the authors’ conclusion that both complexes exhibit catch-bond behavior, although to different extents. In this way, the paper somewhat expands our understanding of peptide discrimination by T-cells.

      a. The reviewer makes thoughtful assessment of our manuscript. While our manuscript is meant to be a “short” contribution, our significant new finding is that even for TCRs targeting the same pMHC, having similar structures, and leading to similar functional outcomes in conventional assays, their response to applied load can be different. This supports out recent experimental work where TCRs targeting the same pMHC differed in their catch bond characteristics, and importantly, in their response to limiting copy numbers of pMHCs on the antigen-presenting cell (Akitsu et al., Sci. Adv., 2024).

      Weaknesses:

      While generally well supported by data, the conclusions would nevertheless benefit from a more concise presentation of information in the figures, as well as from suggesting experimentally testable predictions.

      b. We have updated all figures for clear and streamlined presentation. We have also created four figure supplements to cover more details.

      Regarding testable predictions, an important prediction is that B7 TCR would exhibit a weaker catch bond behavior than A6 (line 297–298). This is a nontrivial prediction because the two TCRs targeting the same pMHC have similar structures and are functionally similar in conventional assays. This prediction can be tested by singlemolecule optical tweezers experiments. Based on our recent experiments Akitsu et al., Sci. Adv. (2024), we also predict that A6 and B7 TCRs will differ in their ability to respond to cases when the number of pMHC molecules presented are limited. Details of how they would differ require further investigation, which is beyond the scope of the present work (line 314-319).

      Another testable prediction for the conservation of the basic allostery mechanism is to test the Cβ FG-loop deletion mutant located at the hinge region of the β chain, where the deletion severely impairs the catch bond formation (line 261–264).

      Reviewer 2:

      In this work, Chang-Gonzalez and coworkers follow up on an earlier study on the force-dependence of peptide recognition by a T-cell receptor using all-atom molecular dynamics simulations. In this study, they compare the results of pulling on a TCR-pMHC complex between two different TCRs with the same peptide. A goal of the paper is to determine whether the newly studied B7 TCR has the same load-dependent behavior mechanism shown in the earlier study for A6 TCR. The primary result is that while the unloaded interaction strength is similar, A6 exhibits more force stabilization.

      This is a detailed study, and establishing the difference between these two systems with and without applied force may establish them as a good reference setup for others who want to study mechanobiological processes if the data were made available, and could give additional molecular details for T-Cell-specialists. As written, the paper contains an overwhelming amount of details and it is difficult (for me) to ascertain which parts to focus on and which results point to the overall take-away messages they wish to convey.

      R2-a. As mentioned above and as the reviewer correctly pointed out, the condensed appearance of this manuscript arose largely because we intended it to be a Research Advances article as a short follow up study of our previous paper on A6 TCR published in eLife. Most of the analysis scripts for the A6 TCR study are already available on Github. For the present manuscript, we have created a separate Github repository containing sample simulation systems and scripts for the B7 TCR.

      Regarding the focus issue, it is in part due to the complex nature of the problem, which required simulations under different conditions and multi-faceted analyses. We believe the extensive updates to the figures and texts make clearer and improved presentation. But we note that even in the earlier version, the reviewer pointed out the main take-away message well: “The primary result is that while the unloaded interaction strength is similar, A6 exhibits more force stabilization.

      Detailed comments:

      (1) In Table 1 - are the values of the extension column the deviation from the average length at zero force (that is what I would term extension) or is it the distance between anchor points (which is what I would assume based on the large values. If the latter, I suggest changing the heading, and then also reporting the average extension with an asterisk indicating no extensional restraints were applied for B7-0, or just listing 0 load in the load column. Standard deviation in this value can also be reported. If it is an extension as I would define it, then I think B7-0 should indicate extension = 0+/- something. The distance between anchor points could also be labeled in Figure 1A.

      R2-b. “Extension” is the distance between anchor points that the reviewer is referring to (blue spheres at the ends of the added strands in Figure 1A). While its meaning should be clear in the section “Laddered extensions” in “MD simulation protocol” (line 357–390), in a strict sense, we agree that using it for the end-to-end distance can be confusing. However, since we have already used it in our previous two papers (Hwang et al., PNAS 2020 and Chang-Gonzalez et al., eLife, 2024), we prefer to keep it for consistency. Instead, in the caption of Table 1, we explained its meaning, and also explicitly labeled it in Figure 1A, as the reviewer suggested.

      Please also note that the no-load case B7<sup>0</sup> was performed by separately building a TCR-pMHC complex without added linkers (line 352), and holding the distal part of pMHC (the α3 domain) with weak harmonic restraints (line 406–408). Thus, no extension can be assigned to B7<sup>0</sup>. We added a brief explanation about holding the MHC α3 domain for B7<sup>0</sup> in line 83–85.

      (2) As in the previous paper, the authors apply ”constant force” by scanning to find a particular bond distance at which a desired force is selected, rather than simply applying a constant force. I find this approach less desirable unless there is experimental evidence suggesting the pMHC and TCR were forced to be a particular distance apart when forces are applied. It is relatively trivial to apply constant forces, so in general, I would suggest this would have been a reasonable comparison. Line 243-245 speculates that there is a difference in catch bonding behavior that could be inferred because lower force occurs at larger extensions, but I do not believe this hypothesis can be fully justified and could be due to other differences in the complex.

      R2-c. There is indeed experimental evidence that the TCR-pMHC complex operates under constant separation. The spacing between a T-cell and an antigen-presenting cell is maintained by adhesion molecules such as the CD2CD58 pair, as explained in our paper on the A6 TCR Chang-Gonzalez et al., eLife, 2024 and also in our previous review paper Reinherz et al., PNAS, 2023. In in vitro single-molecule experiments, pulling to a fixed separation and holding is also commonly done. We added an explanation about this in line 79–83 of the manuscript. On the other hand, force between a T cell and and antigen-presenting cell is also controlled by the actin cytoskeleton, which make the applied load not a simple function of the separation between the two cells. An explanation about this was added in line 300–303. Detailed comparison between constant extension vs. constant force simulations is definitely a subject of our future study.

      Regarding line 243–245 of the original submission (line 297–298 of the revised manuscript), we agree with the reviewer that without further tests, lower forces at larger extensions per se cannot be an indicator that B7 forms a weaker catch bond. But with additional information, one can see it does have relevance to the catch bond strength. In addition to fewer TCR-pMHC contacts (Figure 1C of our manuscript), the intra-TCR contacts are also reduced compared to those of A6 (bottom panel of Figure 1D vs. Chang-Gonzalez et al., eLife, 2024, Figure 8A,B, first column). Based on these data, we calculated the average total intra-TCR contact occupancies in the 500–1000-ns interval, which was 30.4±0.49 (average±std) for B7 and 38.7±0.87 for A6. This result shows that the B7 TCR forms a looser complex with pMHC compared to A6. Also, B7<sup>low</sup> and B7<sup>high</sup> differ in extension by 16.3 ˚A while A6<sup>low</sup> and A6<sup>high</sup> differ by 5.1 ˚A, for similar ∼5-pN difference between low- and high-load cases. With the higher compliance of B7, it would be more difficult to achieve load-induced stabilization of the TCR-pMHC interface, hence a weaker catch bond. We explained this in line 129–132 and line 292–297.

      (3) On a related note, the authors do not refer to or consider other works using MD to study force-stabilized interactions (e.g. for catch bonding systems), e.g. these cases where constant force is applied and enhanced sampling techniques are used to assess the impact of that applied force: https://www.cell.com/biophysj/fulltext/S0006-3495(23)00341-7, https://www.biorxiv.org/content/10.1101/2024.10.10.617580v1. I was also surprised not to see this paper on catch bonding in pMHC-TCR referred to, which also includes some MD simulations: https://www.nature.com/articles/s41467-023-38267-1

      R2-d. We thank the reviewer for bringing the three papers to our attention, which are:

      (1) Languin-Catto¨en, Sterpone, and Stirnemann, Biophys. J. 122:2744 (2023): About bacterial adhesion protein FimH.

      (2) Pen˜a Ccoa, et al., bioRxiv (2024): About actin binding protein vinculin.

      (3) Choi et al., Nat. Comm. 14:2616 (2023): About a mathematical model of the TCR catch bond.

      Catch bond mechanisms of FimH and vinculin are different from that of TCR in that FimH and vinculin have relatively well-defined weak- and strong-binding states where there are corresponding crystal structures. Availability of the end-state structures permits simulation approaches such as enhanced sampling of individual states and studying the transition between the two states. In contrast, TCR does not have any structurally well-defined weak- or strong-binding states, which requires a different approach. As demonstrated in our current manuscript as well as in our previous two papers (Hwang et al., PNAS 2020 and Chang-Gonzalez et al., eLife, 2024), our microsecond-long simulations of the complex under realistic pN-level loads and a combination of analysis methods are effective for elucidating the catch bond mechanism of TCR. These are explained in line 227–238 of the manuscript.

      The third paper (Choi, et al., 2023) proposes a mathematical model to analyze extensive sets of data, and also perform new experiments and additional simulations. Of note, their model assumptions are based mainly on the steered MD (SMD) simulation in their previous paper (Wu, et al., Mol. Cell. 73:1015, 2019). In their model, formation of a catch bond (called catch-slip bond in Choi’s paper) requires partial unfolding of MHC and tilting of the TCR-pMHC interface. Our mechanism does not conflict with their assumptions since the complex in the fully folded state should first bear load in a ligand-dependent manner in order to allow any larger-scale changes. This is explained in line 239–243.

      For the revised text mentioned above (line 227–243), in addition to the 3 papers that the reviewer pointed out, we cited the following papers:

      • Thomas, et al., Annu. Rev. Biophys. 2008: Catch bond mechanisms in general.

      • Bakolitsa et al., Cell 1999, Le Trong et al., Cell 2010, Sauer et al., Nat. Comm. 2016, Mei et al., eLife 2020:

      Crystal structures of FimH and vinculin in different states.

      • Wu, et al., Mol. Cell. 73:1015, 2019: The SMD simulation paper mentioned above.

      (4) The authors should make at least the input files for their system available in a public place (github, zenodo) so that the systems are a more useful reference system as mentioned above. The authors do not have a data availability statement, which I believe is required.

      R2-d. As mentioned in R2-a above, we have added a Github repository containing sample simulation systems and scripts for the B7 TCR.

      Reviewer 3:

      Summary:

      The paper by Chang-Gonzalez et al. is a molecular dynamics (MD) simulation study of the dynamic recognition (load-induced catch bond) by the T cell receptor (TCR) of the complex of peptide antigen (p) and the major histocompatibility complex (pMHC) protein. The methods and simulation protocols are essentially identical to those employed in a previous study by the same group (Chang-Gonzalez et al., eLife 2024). In the current manuscript, the authors compare the binding of the same pMHC to two different TCRs, B7 and A6 which was investigated in the previous paper. While the binding is more stable for both TCRs under load (of about 10-15 pN) than in the absence of load, the main difference is that, with the current MD sampling, B7 shows a smaller amount of stable contacts with the pMHC than A6.

      Strengths:

      The topic is interesting because of the (potential) relevance of mechanosensing in biological processes including cellular immunology.

      Weaknesses:

      The study is incomplete because the claims are based on a single 1000-ns simulation at each value of the load and thus some of the results might be marred by insufficient sampling, i.e., statistical error. After the first 600 ns, the higher load of B7<sup>high</sup> than B7<sup>low</sup> is due mainly to the simulation segment from about 900 ns to 1000 ns (Figure 1D). Thus, the difference in the average value of the load is within their standard deviation (9 +/- 4 pN for B7<sup>low</sup> and 14.5 +/- 7.2 for B7<sup>high</sup>, Table 1). Even more strikingly, Figure 3E shows a lack of convergence in the time series of the distance between the V-module and pMHC, particularly for B7<sup>0</sup> (left panel, yellow) and B7<sup>low</sup> (right panel, orange). More and longer simulations are required to obtain a statistically relevant sampling of the relative position and orientation of the V-module and pMHC.

      R3-a. The reviewer uses data points during the last 100 ns to raise an issue with sampling. But since we are using realistic pN range forces, force fluctuates more slowly. In fact, in our simulation of B7<sup>high</sup>, while the force peaks near 35 pN at 500 ns (Figure 1D of our manuscript), the interfacial contacts show no noticeable changes around 500 ns (Figure 2B and Figure 2–figure supplement 1C of our manuscript). Similarly slow fluctuation of force was also observed for A6 TCR (Figure 8 of Chang-Gonzalez et al., eLife (2024)). Thus, a wider time window must be considered rather than focusing on forces in the last 100-ns interval.

      To compare fluctuation in forces, we added Figure 1–figure supplement 2, which is based on Appendix 3–Figure 1 of our A6 paper. It shows the standard deviation in force versus the average force during 500–1000 ns interval for various simulations in both A6 (open black circles) and B7 (red squares) systems. Except for Y8A<sup>low</sup> and dFG<sup>low</sup> of A6 (explained below), the data points lie on nearly a straight line.

      Thermodynamically, the force and position of the restraint (blue spheres in Figure 1A of our manuscript) form a pair of generalized force and the corresponding spatial variable in equilibrium at temperature 300 K, which is akin to the pressure P and volume V of an ideal gas. If V is fixed, P fluctuates. Denoting the average and std of pressure as ⟨P⟩ and ∆P, respectively, Burgess showed that ∆P/P⟩ is a constant (Eq. 5 of Burgess, Phys. Lett. A, 44:37; 1973). In the case of the TCRαβ-pMHC system, although individual atoms are not ideal gases, since their motion leads to the fluctuation in force on the restraints, the situation is analogous to the case where pressure arises from individual ideal gas molecules hitting the confining wall as the restraint. Thus, the near-linear behavior in the figure above is a consequence of the system being many-bodied and at constant temperature. The linearity is also an indicator that sampling of force was reasonable in the 500–1000-ns interval. The fact that A6 and B7 data show a common linear profile further demonstrates the consistency in our force measurement. About the two outliers of A6, Y8A<sup>low</sup> is for an antagonist peptide and dFG<sup>low</sup> is the Cβ FG-loop deletion mutant. Both cases had reduced numbers of contacts with pMHC, which likely caused a wider conformational motion, hence greater fluctuation in force.

      Upon suggestion by the reviewer, we extended the simulations of B7<sup>0</sup>, B7<sup>low</sup> and B7<sup>high</sup> to about 1500 ns (Table 1). While B7<sup>0</sup> and B7<sup>low</sup> behaved similarly, B7<sup>high</sup> started to lose contacts at around 1300 ns (top panel of Figure 1D and Figure 2B). A closer inspection revealed that destabilization occurred when the complex reached low-force states. Even before 1300 ns, at about 750 ns, the force on B7<sup>high</sup> drops below 5 pN, and another drop in force occurred at around 1250 ns, though to a lesser extent (Figure 1D). These changes are followed by increase in the Hamming distance (Figure 2B). Thus, in B7<sup>high</sup>, destabilization is caused not by a high force, but by a lack of force, which is consistent with the overarching theme of our work, the load-induced stabilization of the TCRαβ-pMHC complex.

      The destabilization of B7<sup>high</sup> during our simulation is a combined effect of its overall weaker interface compared to A6 (despite having comparable number of contacts in crystal structures; line 265–269), and its high compliance (explained in the second paragraph of our response R2-c above). Under a fixed extension, the higher compliance of the complex can reach a low-force state where breakage of contacts can happen. In reality, with an approximately constant spacing between a T cell and an antigen-presenting cell, force is also regulated by the actin cytoskeleton (explained in the first paragraph of R2-c above). While detailed comparison between constant-extension and constant-force simulation is the subject of a future study, for this manuscript, we used the 500–1000-ns interval for calculating time-averaged quantities, for consistency across different simulations. For time-dependent behaviors, we showed the full simulation trajectories, which are Figure 1D, Figure 2B, Figure 2–figure supplement 1 (except for panel E), and Figure 4–figure supplement 1B.

      Thus, rather than performing replicate simulations, we perform multiple simulations under different conditions and analyze them from different angles to obtain a consistent picture. If one were interested in quantitative details under a given condition, e.g., dynamics of contacts for a given extension or the time when destabilization occurs at a given force, replicate simulations would be necessary. However, our main conclusions such as load-induced stabilization of the interface through the asymmetric motion, and B7 forming a weaker complex compared to A6, can be drawn from our extensive analysis across multiple simulations. Please also note that reviewer 1 mentioned that our conclusions are “generally well supported by data.”

      A similar argument applies to Figure 2–figure supplement 1F (old Figure 3B that the reviewer pointed out). If precise values of the V-module to pMHC distance were needed, replicate simulations would be necessary, however, the figure demonstrates that B7<sup>high</sup> maintains more stable interface before the disruption at 1300 ns compared to B7<sup>low</sup>, which is consistent with all other measures of interfacial stability we used. The above points are explained throughout our updated manuscript, including

      • Line 106–110, 125–132, 156–158, 298–303.

      • Figures showing time-dependent behaviors have been updated and Figure 1–figure supplement 2 has been added, as explained above.

      It is not clear why ”a 10 A distance restraint between alphaT218 and betaA259 was applied” (section MD simulation protocol, page 9).

      R3-b. αT218 and β_A259 are the residues attached to a leucine-zipper handle in _in vitro optical trap experiments (Das, et al., PNAS 2015). In T cells, those residues also connect to transmembrane helices. Our newly added Figure 1–figure supplement 1 shows a model of N15 TCR used in experiments in Das’ paper, constructed based on PDB 1NFD. Blue spheres represent C<sub>α</sub> atoms corresponding to αT218 and βA259 of B7 TCR. Their distance is 6.7 ˚A. The 10-˚A distance restraint in simulation was applied to mimic the presence of the leucine zipper that prevents excessive separation of the added strands. The distance restraint is a flatbottom harmonic potential which is activated only when the distance between the two atoms exceeds 10 ˚A, which we did not clarify in our original manuscript. It is now explained in line 371–373. The same restraint was used in our previous studies on JM22 and A6 TCRs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Clarify the reason for including arguably non-physiological simulations, in which the C domain is missing. Is the overall point that it is essential for proper peptide discrimination?

      R1-c. This is somewhat a philosophical question. Rather than recapitulating experiment, we believe the goal of simulation is to gain insight. Hence, a model should be justified by its utility rather than its direct physiological relevance. The system lacking the C-module is useful since it informs about the allosteric role of the C-module by comparing its behavior with that of the full TCRαβ-pMHC complex. The increased interfacial stability of Vαβ-pMHC is also consistent with our discovery that the C-module likely undergoes a partial unfolding to an extended state, where the bond lifetime increases (Das, et al., PNAS 2015; Akitsu et al., Sci. Adv., 2024). In this sense, Vαβ-pMHC has a more direct physiological relevance. Furthermore, considering single-chain versions of an antibody lacking the C-module (scFv) are in widespread use (Ahmad et al., J. Immunol. Res., 2012) including CAR T cells, a better understanding of a TCR lacking the C-module may help with developing a novel TCR-based immunotherapy. These explanations have been added in line 253–261.

      (2) Suggest changing Vαβ-pMHC to B7<sup>0</sup>∆C to emphasize that the constant domain is deleted.

      R1-d. While we appreciate the reviewer’s suggestion, the notation Vαβ-pMHC was used in our previous two papers (Hwang, PNAS 2020, Chang-Gonzalez, eLife 2024). We thus prefer to keep the existing notation.

      (3) Suggest adding A6 data to table 1 for comparison, making it clear if it is from a previous paper.

      R1-e. Table 1 of the present manuscript and Table 1 of the A6 paper differ in items displayed. Instead of merging, we added the extension and force for A6 corresponding to B7<sup>low</sup> and B7<sup>high</sup> in the caption of Table 1.

      (4) Suggest discussing the catch-bond behavior in terms of departure from equilibrium, e.g. is it possible to distinguish between different (catch vs slip) bond behaviors on the basis of work of separation histograms? If the difference does not show up in equilibrium work, the exponential work averages would be similar, but work histograms could be very different.

      R1-f. Although energetics of the catch versus slip bond will provide additional insight, it is beyond the scope of the present simulations that do not involve dissociation events nor simulations of slip-bond receptors. We instead briefly mention the energetic aspect in terms of T-cell activation in line 316–319.

      (5) Have the simulations in Figure 1 reached steady state? The force and occupancy increase almost linearly up until 500ns, then seem to decrease rather dramatically by 750ns. It might be worthwhile to extend one simulation to check.

      R1-g. We did extend the simulation to about 1500 ns. The large and slow fluctuation in force is an inherent property of the system, as explained in R3-a above.

      (6) Is the loss of contacts for B7<sup>0</sup> due to thermalization and relaxation away from the X-ray structure?

      R1-h. The initial thermalization at 300 K is not responsible for the loss of contacts for B7<sup>0</sup> since we applied distance restraints to the initial contacts to keep them from breaking during the preparatory runs (line 358–370). While ‘relaxation away from the X-ray structure’ gives an impression that the complex approaches an equilibrium conformation in the absence of the crystallographic confinement, our simulation indicates that the stability of the complex depends on the applied load. We made the distinction between relaxation and the load-dependent stability clearer in line 233–238.

      (7) Figure 4 contains a very large amount of data. Could it be simplified and partly moved to SI? For example, panel G is somewhat hard to read at this scale, and seems non-essential to the general reader.

      R1-i. Upon the reviewer’s suggestion, we simplified Figure 4 by moving some of the panels to Figure 4–figure supplement 1. Panels have also been made larger for better readability.

      (8) If the coupling between C and V domains is necessary for catch-bond behavior, can one propose mutations that would disrupt the interface to test by experiment? This would be interesting in light of the authors’ own comment on p. 8 that ’a logical evolutionary pressure would be for the C domains to maximize discriminatory power by adding instability to the TCR chassis,’ which might lead to a verifiable hypothesis.

      R1-j. This has already been computationally and experimentally tested for other TCRs by the Cβ FG-loop deletion mutants that diminish the catch bond (Das, et al., PNAS 2015; Hwang et al., PNAS 2020; ChangGonzalez et al., eLife, 2024). Furthermore, the Vγδ-Cαβ chimera where the C-module of TCRγδ is replaced by that of TCR_αβ_ that strengthens the V-C coupling achieved a gain-of-function catch bond character while the wild-type TCRγδ is a slip-bond receptor (Mallis, et al., PNAS 2021; Bettencourt et al., Biophys. J. 2024). We added our prediction that the FG-loop deletion mutants of B7 TCR will behave similarly in line 261–264.

      (9) Regarding extending TCR and MHC termini using native sequences, as described in the methods, what would be the disadvantage of using the same sequence, which could be made much more rigid, e.g. a poly-Pro sequence? After all, the point seems to be applying a roughly constant force, but flexible/disordered linkers seem likely to increase force fluctuation.

      R1-k. The purpose of adding linkers was to allow a certain degree of longitudinal and transverse motion as would occur in vivo. While it will be worthwhile to explore the effects of linker flexibility on the conformational dynamics of the complex, for the present study, we used the actual sequence for the linkers for those proteins (line 341–344).

      Reviewer #2 (Recommendations for the authors):

      (1) Figure 2 is almost illegible, especially Figure 2A-D. I do not think that these contacts vs time would be useful to anyone except for someone interested in this particular pMHC interaction, so I would suggest moving it to a supporting figure and making it much larger.

      R2-e. Thanks for the suggestion. We created Figure 2–figure supplement 1 and made panels larger for clearer presentation.

      (2) Figure 4 is overwhelming, and does not convey any particular message.

      R2-f. This is the same comment as reviewer 1’s comment (7) above. Please see our response R1-i.

      Reviewer #3 (Recommendations for the authors):

      (1) The label ”beta2m” in Figure 1A should be moved closer to the beta2 microglobulin domain. A label TCR should be added to Figure 1A.

      R3-c. Thanks for pointing out about β2m. We have corrected it. About putting the label ‘TCR,’ to avoid cluttering, we explained that Vα, Vβ, Cα, and Cβ are the 4 subdomains of TCR in the caption of Figure 1A.

      (2) Hydrogen atoms should be removed from the peptide in Figure 1B.

      R3-d. We have removed the hydrogen atoms.

      (3) The authors should consider moving Figures 1 A-D to the SI and show a simpler description of the contact occupancy than the heat maps. The legend of Figure 2A-D is too small.

      R3-e. By ‘Figures 1 A-D’ we believe the reviewer meant Figure 2A–D. This is the same comment as reviewer 2’s comment (1). Please see our response R2-e above.

      (4) Vertical (dashed) lines should be added to Figure 3E at 500 ns to emphasize the segment of the time series used for the histograms.

      R3-f. We added vertical lines in figures showing time-dependent behaviors, which are Figure 1D, Figure 2B, Figure 2–figure supplement 1F, and Figure 4–figure supplement 1B.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Summary:

      The authors examine the eigenvalue spectrum of the covariance matrix of neural recordings in the whole-brain larval zebrafish during hunting and spontaneous behavior. They find that the spectrum is approximately power law, and, more importantly, exhibits scale-invariance under random subsampling of neurons. This property is not exhibited by conventional models of covariance spectra, motivating the introduction of the Euclidean random matrix model. The authors show that this tractable model captures the scale invariance they observe. They also examine the effects of subsampling based on anatomical location or functional relationships. Finally, they briefly discuss the benefit of neural codes which can be subsampled without significant loss of information.

      Strengths:

      With large-scale neural recordings becoming increasingly common, neuroscientists are faced with the question: how should we analyze them? To address that question, this paper proposes the Euclidean random matrix model, which embeds neurons randomly in an abstract feature space. This model is analytically tractable and matches two nontrivial features of the covariance matrix: approximate power law scaling, and invariance under subsampling. It thus introduces an important conceptual and technical advance for understanding large-scale simultaneously recorded neural activity.

      Weaknesses:

      The downside of using summary statistics is that they can be hard to interpret. Often the finding of scale invariance, and approximate power law behavior, points to something interesting. But here caution is in order: for instance, most critical phenomena in neural activity have been explained by relatively simple models that have very little to do with computation (Aitchison et al., PLoS CB 12:e1005110, 2016; Morrell et al., eLife 12, RP89337, 2024). Whether the same holds for the properties found here remains an open question.

      We are grateful for the thorough and constructive feedback provided on our manuscript. We have addressed each point raised by you.

      Regarding the main concern about power law behavior and scale invariance, we would like to clarify that our study does not aim to establish criticality. Instead, we focus on describing and understanding a specific scale-invariant property in terms of collapsed eigenspectra in neural activity. We tested Morrell et al.’s latent-variable model (eLife 12, RP89337, 2024, [1]), where a slowly varying latent factor drives population activity. Although it produces a seemingly power-law-like spectrum, random sampling does not replicate the strict spectral collapse observed in our data (second row in Fig. S23). This highlights that simply adding latent factors does not fully recapitulate the scale invariance we measure, suggesting richer or more intricate processes may be involved in real neural recordings.

      Specifically, we have incorporated five key revisions.

      • As mentioned, we evaluated the latent variable model proposed by Morrell et al., and found that they fail to reproduce the scale-invariant eigenspectra observed in our data; these results are now presented in the Discussion section and supported by a new Supplementary Figure (Fig. S23).

      • We included a comparison with the findings of Manley et al. (2024 [2]) regarding the issue of saturating dimension in the Discussion section, highlighting the methodological differences and their implications.

      • We added a new mathematical derivation in the Methods section, elucidating the bounded dimensionality using the spectral properties of our model. • We have added a sentence in the Discussion section to further emphasize the robustness of our findings by demonstrating their consistency across diverse datasets and experimental techniques.

      • We have incorporated a brief discussion on the implications for neural coding (lines 330-332). In particular, Fisher information can become unbounded when the slope of the power-law rank plot is less than one, as highlighted in the recent work by Moosavi et al. (bioRxiv 2024.08.23.608710, Aug, 2024 [3]).

      We believe these revisions address the concerns raised during the review process and collectively strengthen our manuscript to provides a more comprehensive and robust understanding of the geometry and dimensionality of brain-wide activity. We appreciate your consideration of our revised manuscript and look forward to your feedback.

      Recommendations for the authors:

      In particular, in our experience replies to the reviewers are getting longer than the paper, and we (and I’m sure you!) want to avoid that. Maybe just reply explicitly to the ones you disagree with? We’re pretty flexible on our end.

      (1) The main weakness, from our point of view, is whether the finding of scale invariance means something interesting, or should be expected from a null model. We can suggest such model; if it is inconsistent with the data, that would make the results far more interesting.

      Morrell et al. (eLife 12, RP89337,2024 [1]) suggest a very simple model in which the whole population is driven by a slowly time-varying quantity. It would be nice to determine whether it matched this data. If it couldn’t, that would add some evidence that there is something interesting going on.

      We appreciate your insightful suggestion to consider the model proposed by Morrell et al. (eLife 12, RP89337, 2024 [1]), where a slowly time-varying quantity drives the entire neural population. We conducted simulations using parameters from Morrell et al. [4, 1], as detailed below.

      Our simulations show that Morrell’s model can replicate a degree of scaleinvariance when using functional sampling or RG as referred to in Morrell et al, 2021, PRL [4] (FSap, Fig.S23A-D, Author response image 1). However, it fails to fully capture the scale-invariance of collapsing spectra we observed in data under random sampling (RSap, Fig.S23E-H). This discrepancy suggests that additional dynamics or structures in the neural activity are not captured by this simple model, indicating the presence of potentially novel and interesting features in the data that merit further investigation.

      Unlike random sampling, the collapse of eigenspectra under functional sampling does not require a stringent condition on the kernel function f(x) in our ERM theory (see Discussion line 269-275), potentially explaining the differing results between Fig.S23A-D and Fig.S23E-H.

      We have incorporated these findings into the Result section 2.1 (lines 100-101) and Discussion section (lines 277-282, quoted below):

      “Morrell et al. [4, 1] suggested a simple model in which a slow time-varying factor influences the entire neural population. To explore the effects of latent variables, we assessed if this model explains the scale invariance in our data. The model posits that neural activity is primarily driven by a few shared latent factors. Simulations showed that the resulting eigenspectra differed considerably from our findings (Fig. S23). Although the Morrell model demonstrated a degree of scale invariance under functional sampling, it did not align with the scale-invariant features under random sampling observed in our data, suggesting that this simple model might not capture all crucial features in our observations.”

      Author response image 1:

      Morrell’s latent model. A: We reproduce the results as presented in Morrell et al., PRL 126(11), 118302 (2021) [4]. Parameters are same as Fig. S23A. Sampled 16 to 256 neurons. Unlike in our study, the mean eigenvalues are not normalized to one. Dashed line: eigenvalues fitted to a power law. See also Morrell et al. [4] Fig.1C. Parameters are same as Author response image 1. µ is the power law exponent (black) of the fit, which is different from the µ parameter used to characterize the slow decay of the spatial correlation function, but corresponds to the parameter α in our study.

      (2) The quantification of the degree of scale invariance is done using a ”collapse index” (CI), which could be better explained/motivated. The fact that the measure is computed only for the non-leading eigenvalues makes sense but it is not clear when originally introduced. How does this measure compare to other measures of the distance between distributions?

      We thank you for raising this important point regarding the explanation and motivation for our Collapse Index (CI). We defined the Collapse Index (CI) instead of other measures of distance between distributions for two main reasons. First, the CI provides an intuitive quantification of the shift of the eigenspectrum motivated by our high-density theory for the ERM model (Eq. 3, Fig. 4A). This high-density theory is only valid for large eigenvalues excluding the leading ones, and hence we compute the CI measure with a similar restriction of the range of area integration. Second, when using distribution to assess the collapse (e.g., we can use kernel density method to estimate the distribution of eigenvalues and then calculate the KL divergence between the two distributions), it is necessary to first estimate the distributions. This estimation step introduces errors, such as inaccuracies in estimating the probability of large eigenvalues.

      We agree that a clearer explanation would enhance the manuscript and thus have made modifications accordingly. The CI is now introduced more clearly in the Results section (lines 145-148) and further detailed in the Methods section (lines 630-636). We have also revised the CI diagram in Fig. 4A to better illustrate the shift concept using a more intuitive cartoon representation.

      (3) The paper focuses on the case in which the dimensionality saturates to a finite value as the number of recorded neurons is increased. It would be useful to contrast with a case in which this does not occur. The paper would be strengthened by a comparison with Manley et al. 2024, which argued that, unlike this study, dimensionality of activity in spontaneously behaving head-fixed mice did not saturate.

      Thank you for highlighting this comparison. We have included a discussion (lines 303-309) comparing our approach with Manley et al. (2024) [2]. While Manley et al. [2] primarily used shared variance component analysis (SVCA) to estimate neural dimensionality, they observed that using PCA led to dimensionality saturation (see Figure S4D, Manley et al. [2]), consistent with our findings (Fig. 2D). We acknowledge the value of SVCA as an alternative approach and agree that it is an interesting avenue for future research. In our study, we chose to use PCA for several reasons. PCA is a well-established and widely trusted method in the neuroscience community, with a proven track record of revealing meaningful patterns in neural data. Its mathematical properties are well understood, making it particularly suitable for our theoretical analysis. While we appreciate the insights that newer methods like SVCA can provide, we believe PCA remains the most appropriate tool for addressing our specific research questions.

      (4) More importantly, we don’t understand why dimensionality saturates. For the rank plot given in Eq. 3,

      where k is rank. Using this, one can estimate sums over eigenvalues by integrals. Focusing on the N-dependence, we have

      This gives

      We don’t think you ever told us what mu/d was (see point 13 below), but in the discussion you implied that it was around 1/2 (line 249). In that case, D<sub>PR</sub> should be approximately linear in N. Could you explain why it isn’t?

      Thank you for your careful derivation. Along this line of calculations you suggested, we have now added derivations on using the ERM spectrum to estimate the upper bound of the dimension in the Methods (section 4.14.4). To deduce D<sub>PR</sub> from the spectrum, we focus on the high-density region, where an analytical expression for large eigenvalues λ is given by:

      Here, d is dimension of functional space, L is the linear size of functional space, ρ is the neuron density and γ is the coefficient in Eq. (3), which only depends on d, µ and E(σ<sup>2</sup>). The primary difference between your derivation and ours is that the eigenvalue λ<sub>r</sub> decays rapidly after the threshold r \= β(N), which significantly affects the summations and . Since we did not discuss the small eigenvalues in the article, we represent them here as an unknown function η(r,N,L).

      The sum is the trace of the covariance matrix C. As emphasized in the Methods section, without changing the properties the covariance spectrum, we always consider a normalized covariance matrix such that the mean neural activity variance E(σ<sup>2</sup>) = 1. Thus

      rather than

      The issue stems from overlooking that Eq. (3) is valid only for large eigenvalues (λ > 1).

      Using the Cauchy–Schwarz inequality, we have a upper bound of

      Conversely, provides a lower bound of :

      As a result, we must have

      In random sampling (RSap), L is fixed. We thus must have a bounded dimensionality that is independent of N for our ERM model. In functional sampling (FSap), L varies while the neuronal density ρ is fixed, leading to a different scaling relationship of the upper bound, see Methods (section 4.14.4) for further discussion.

      (5) The authors work directly with ROIs rather than attempting to separate the signals from each neuron in an ROI. It would be worth discussing whether this has a significant effect on the results.

      We appreciate your thoughtful question on the potential impact of using ROIs. The use of ROIs likely does not impact our key findings since they are validated across multiple datasets with various recording techniques and animal models, from zebrafish calcium imaging to mouse brain multi-electrode recordings (see Figure S2, S24). The consistency of the scale-invariant covariance spectrum in diverse datasets suggests that ROIs in zebrafish data do not significantly alter the conclusions, and they together enhance the generalizability of our results. We highlight this in the Discussion section (lines 319-323).

      (6) Does the Euclidean random matrix model allow the authors to infer the value of D or µ? Since the measured observables only depend on µ/D it seems that one cannot infer the latent dimension where distances between neurons are computed. Are there any experiments that one could, in principle, perform to measure D or mu? Currently the conclusion from the model and data is that D/µ is a large number so that the spectrum is independent of neuron density rho. What about the heterogeneity of the scales σ<sub>i</sub>, can this be constrained by data?

      Measuring d and µ in the ERM Model

      We agree with you that the individual values of d and µ cannot be determined separately from our analysis. In our analysis using the Euclidean Random Matrix (ERM) model, we fit the ratio µ/d, rather than the individual values of d (dimension of the functional space) or µ (exponent of the distance-dependent kernel function). This limitation is inherent because the model’s predictions for observable quantities, such as the distribution of pairwise correlation, are dependent solely on this ratio.

      Currently there are no directly targeted experiments to measure d. The dimensions of the functional space is largely a theoretical construct: it could serve to represent latent variables encoding cognitive factors that are distributed throughout the brain or specific sensory or motor feature maps within a particular brain region. It may also be viewed as the embedding space to describe functional connectivity between neurons. Thus, a direct experimental measurement of the dimensions of the functional space could be challenging. Although there are variations in the biological interpretation of the functional space, the consistent scale invariance observed across various brain regions indicates that the neuronal relationships within the functional space can be described by a uniform slowly decaying kernel function.

      Regarding the Heterogeneity of σ<sub>i</sub>

      The heterogeneity of neuronal activity variances ( σ<sub>i</sub>) is a critical factor in our analysis. Our findings indicate that this heterogeneity:

      (1) Enhances scale invariance: The covariance matrix spectrum, which incorporates the heterogeneity of , exhibits stronger scale invariance compared to the correlation matrix spectrum, which imposes for all neurons. This observation is supported by both experimental data and theoretical predictions from the ERM model, particularly in the intermediate density regime.

      (2) Can be constrained by data: We fit a log-normal distribution to the experimentally observed σ<sup>2</sup> values to capture the heterogeneity in our model which leads to excellent agreement with data (section 4.8.1). Figure S10 provides evidence for this by directly comparing the eigenspectra obtained from experimental data (Fig S10A-F) with those generated by the fitted ERM model (Fig S10M-R). These results suggest that the data provides valuable information about the distribution of neuronal activity variances.

      In conclusion, the ERM model and our analysis cannot separately determine d and µ. We also highlight that the neuronal activity variance heterogeneity, constrained by experimental data, plays a crucial role in improving the scale invariance.

      (7) Does the fitting procedure for the positions x in the latent space recover a ground truth in your statistical regime (for the number of recorded neurons)? Suppose you sampled some neurons from a Euclidean random matrix theory. Does the MDS technique the authors use recover the correct distances?

      While sampling neurons from a Euclidean random matrix model, we demonstrated numerically that the MDS technique can accurately recover the true distances, provided that the true parameter f(x) is known. To quantify the precision of recovery, we applied the CCA analysis (Section 4.9) and compared the true coordinates from the original Euclidean random matrix with the fitted coordinates obtained through our MDS procedure. The CCA correlation between the true and fitted coordinates in each spatial dimension is nearly 1 (the difference from 1 is less than 10<sup>−7</sup>). When fitting with experimental data, one source of error arises from parameter estimation. To evaluate this, we assess the estimation error of the fitted parameters. When we choose µ \= 0_.5 in our ERM model and then fit the distribution of the pairwise correlation (Eq. 21), the estimated parameter is = 0.503 ± 0._007 (standard deviation). Then, we use the MDS-recovered distances to fit the coordinates with the fitted kernel function , which is determined by the fitted parameter . The CCA correlation between the true and fitted coordinates in each direction remains nearly 1 (the difference from 1 is less than 10<sup>−5</sup>).

      (8) l. 49: ”... both the dimensionality and covariance spectrum remain invariant ...”. Just to be clear, if the spectrum is invariant, then the dimensionality automatically is too. Correct?

      Thanks for the question. In fact, there is no direct causal relationship between eigenvalue spectrum invariance and dimensionality invariance as we elaborate below and added discussions in lines 311-317. For eigenvalue spectrum invariance, we focus on the large eigenvalues, whereas dimensionality invariance considers the second order statistics of all eigenvalues. Consequently, the invariance results for these two concepts may differ. And dimensional and spectral invariance have different requirements:

      (1) The condition for dimensional saturation is finite mean square covariance

      The participation ratio D<sub>PR</sub> for random sampling (RSap) is given by Eq. 5:

      This expression becomes invariant as N → ∞ if the mean square covariance is finite. In contrast, neural dynamics models, such as the balanced excitatory-inhibitory (E-I) neural network [5], exhibit a different behavior, where , leading to unbounded dimensionality (see discussion lines 291-295, section 6.9 in SI).

      (2) The requirements for spectral invariance involving the kernel function

      In our Euclidean Random Matrix (ERM) model, the eigenvalue distribution follows:

      For spectral invariance to emerge: (1) The eigenvalue distribution must remain unchanged after sampling. (2) Since sampling reduces the neuronal density ρ. (3) The ratio µ/d must approach 0 to maintain invariance.

      We can also demonstrate that D<sub>PR</sub> is independent of density ρ in the large N limit (see the answer of question 4).

      In conclusion, there is no causal relationship between spectral invariance and dimensionality invariance. This is also the reason why we need to consider both properties separately in our analysis.

      (9) In Eq. 1, the exact expression, which includes i=j, isn’t a lot harder than the one with i=j excluded. So why i≠j?

      The choice is for illustration purposes. In Eq. 1, we wanted to demonstrate that the dimension saturates to a value independent of N. When dividing the numerator and denominator of this expression by N<sup>2</sup>, the term is independent of the neuron number N, but the term associated with the diagonal entries is of order O(1_/N_) and can be ignored for large N.

      (10) Fig. 2D: Could you explain where the theory line comes from?

      We first estimate ] from all neurons, and then compute D<sub>PR</sub> for different neuron numbers N using Eq.5 (). This is further clarified in lines 511-512.

      (11) l 94-5: ”It [scale invariance] is also absent when replacing the neural covariance matrix eigenvectors with random ones, keeping the eigenvalues identical (Fig. 2H).” If eigenvalues are identical, why does the spectrum change?

      The eigenspectra of the covariance matrices in full size are the same by construction, but the eigenspectra of the sampled covariance matrices are different because the eigenvectors affect the sampling results. Please also refer to the construction process described in section 4.3 where this is also discussed: “The composite covariance matrix with substituted eigenvectors in (Fig. 2H) was created as described in the following steps. First, we generated a random orthogonal matrix U<sub>r<.sup> (based on the Haar measure) for the new eigenvectors. This was achieved by QR decomposition A=U<sub>r</sub>R of a random matrix A with i.i.d. entries A<sub>ij</sub> ∼ N(0_,1/N_). The composite covariance matrix C<sub>r</sub> was then defined as, where Λ is a diagonal matrix that contains the eigenvalues of C. Note that since all the eigenvalues are real and U<sub>r</sub> is orthogonal, the resulting C<sub>r</sub> is a real and symmetric matrix. By construction, C<sub>r</sub> and C have the same eigenvalues, but their sampled eigenspectra can differ.”

      (12) Eq 3: There’s no dependence on the distribution of sigma. Is that correct?

      Indeed, this is true in the high-density regime when the neuron density ρ is large. The p(λ) depends only on E(σ<sup>2</sup>) rather than the distribution of σ (see Eq. 8). However, in the intermediate density regime, p(λ) depends on the distribution of σ (see Eq.9 and Eq.10). In our analysis, we consider E(σ<sup>4</sup>) as a measure of heterogeneity.

      (13) Please tell us the best fit values of µ/d.

      This information now is added in the figure caption of Fig S10: µ/d \= [0_.456,0.258,0.205,0.262,0.302,0._308] in fish 1-6.

      (14) l 133: ”The eigenspectrum is rho-independent whenever µ/d ≈ 0.”

      It looks to me like rho sets the scale but not the shape. Correct? If so, why do we care about the overall scale – isn’t it the shape that’s important?

      Yes, our study focuses on the overall scale not only the shape, because many models, such as the ERM with other kernel functions, random RNNs, Morrell’s latent model [4, 1], can exhibit a power-law spectrum. However, these models do not exhibit scale-invariance in terms of spectrum curve collapsing. Therefore, considering the overall scale reveal additional non-trivial phenomenon.

      (15) Figs. 3 and 4: Are the grey dots the same as in previous figures? Either way, please specify what they are in the figure caption.

      Yes, they are the same, and thank you for pointing it out. It has been specified in the figure caption now.

      (16) Fig. 4B: Top is correlation matrix, bottom is covariance matrix, correct? If so, that should be explicit. If not, it should be clear what the plots are.

      That is correct. Both matrices (correlation - top, covariance - bottom) are labeled in the figure caption and plot (text in the lower left corner).

      (17) l 158: ”First, the shape of the kernel function f(x) over a small distance ...”. What does ”over a small distance” mean?

      We thank you for seeking clarification on this point. We understand that the phrase ”over a small distance” could be made clearer. We made a revised explanation in lines 164-165 Here, “over a small distance” refers to modifications of the particular kernel function f(x) we use Eq. 11 near x \= 0 in the functional space, while preserving the overall power-law decay at larger distances. The t-distribution based f(x) (Eq. 11) has a natural parameter ϵ that describes the transition to near 0. So we modified f(x) in different ways, all within this interval of |x| ≤ ϵ, and considered different values of ϵ. Table S3 and Figure S7 provide a summary of these modifications. Figure S7 visually compares these modifications to the standard power-law kernel function, highlighting the differences in shape near x \= 0.

      Our findings indicate that these alterations to the kernel function at small distances do not significantly affect the distribution of large eigenvalues in the covariance spectrum. This supports our conclusion that the large eigenvalues are primarily determined by the slow decay of the kernel function at larger distances in the functional space, as this characteristic governs the overall correlations in neural activity.

      (18) l390 . This x<sub>i</sub> is, we believe, different from the x<sub>i</sub> which is position in feature space. Given the difficulty of this paper, it doesn’t help to use the same symbol to mean two different things. But maybe we’re wrong?

      Thank you for your careful reading and suggestion. Indeed here x<sub>i</sub> was representing activity rather than feature space position. We have thus revised the notation (Line 390 has been updated to line 439 as well.):

      In this revised notation: a<sub>i</sub>(t) represents the neural activity of neuron i at time t (typically the firing rate we infer from calcium imaging). is simply the mean activity of neuron i across time. Meanwhile, we’ll keep x<sub>i</sub> exclusively for denoting positions in the functional space.

      This change should make it much easier to distinguish between neural activity measurements and spatial coordinates in the functional space.

      (19) Eq. 19: is it correct that g(u) is not normalized to 1? If so, does that matter?

      It is correct that the approximation of g(u) is not normalized to 1, as Eq. 19 provides an approximation suitable only for small pairwise distances (i.e., large correlation). Therefore, we believe this does not pose an issue. We have newly added this note in lines 691-693.

      (20) I get a different answer in Eq. 20:

      Whereas in Eq. 20,

      µ

      Which is correct?

      Thank you for your careful derivation. We believe the difference arises in the calculation of g(u).In our calculations:

      ,

      (Your first equation seems to missed an 1_/µ_ in R’s exponent.)

      ,

      That is, Eq. 20 is correct. From these, we obtain

      rather than

      We hope this clarifies the question.

      (21) I’m not sure we fully understand the CCA analysis. First, our guess as to what you did: After sampling (either Asap or Fsap), you used ERM to embed the neurons in a 2-D space, and then applied canonical correlation analysis (CCA). Is that correct? If so, it would be nice if that were more clear.

      We first used ERM to embed all the neurons in a 2-D functional space, before any sampling. Once we have the embedding, we can quantify how similar the functional coordinates are with the anatomical coordinates using R<sub>CCA</sub> (section 2.4). We can then use the anatomical and functional coordinates to perform ASap and FSap, respectively. Our theory in section 2.4 predicts the effect on dimension under these samplings given the value of R<sub>CCA</sub> estimated earlier (Fig. 5D). The detailed description of the CCA analysis is in section 4.9, where we explain how CCA is used to find the axes in both anatomical and functional spaces that maximize the correlation between projections of neuron coordinates.

      As to how you sampled under Fsap, I could not figure that out – even after reading supplementary information. A clearer explanation would be very helpful.

      Thank you for your feedback. Functional sampling (FSap) entails the expansion of regions of interest (ROIs) within the functional space, as illustrated in Figure 5A, concurrently with the calculation of the covariance matrix for all neurons contained within the ROI. Technically, we implemented the sampling using the RG approach [6], which is further elaborated in Section 4.12 (lines 852-899), quoted below.

      Stage (i): Iterative Clustering We begin with N</sub>0</sub> neurons, where N</sub>0</sub> is assumed to be a power of 2. In the first iteration, we compute Pearson’s correlation coefficients for all neuron pairs. We then search greedily for the most correlated pairs and group the half pairs with the highest correlation into the first cluster; the remaining neurons form the second cluster. For each pair (a,b), we define a coarse-grained variable according to:

      ,

      Where normalizes the average to ensure unit nonzero activity. This process reduces the number of neurons to N<sub>1</sub> = N<sub>0</sub>/2. In subsequent iterations, we continue grouping the most correlated pairs of the coarse-grained neurons, iteratively reducing the number of neurons by half at each step. This process continues until the desired level of coarse-graining is achieved.

      When applying the RG approach to ERM, instead of combining neural activity, we merge correlation matrices to traverse different scales. During the _k_th iteration, we compute the coarse-grained covariance as:

      and the variance as:

      Following these calculations, we normalize the coarse-grained covariance matrix to ensure that all variances are equal to one. Note that these coarse-grained covariances are only used in stage (i) and not used to calculate the spectrum.

      Stage (ii): Eigenspectrum Calculation The calculation of eigenspectra at different scales proceeds through three sequential steps. First, for each cluster identified in Stage (i), we compute the covariance matrix using the original firing rates of neurons within that cluster (not the coarse-grained activities). Second, we calculate the eigenspectrum for each cluster. Finally, we average these eigenspectra across all clusters at a given iteration level to obtain the representative eigenspectrum for that scale.

      In stage (ii), we calculate the eigenspectra of the sub-covariance matrices across different cluster sizes as described in [6]. Let N<sub>0</sub> = 2<sup>n</sub> be the original number of neurons. To reduce it to size N \= N<sub>0</sub>/2<sup>k</sup> = 2<sup>n-k</sup>, where k is the kth reduction step, consider the coarse-grained neurons in step nk in stage (i). Each coarse-grained neuron is a cluster of 2<sup>n-k</sup> neurons. We then calculate spectrum of the block of the original covariance matrix corresponding to neurons of each cluster (there are 2<sup>k</sup> such blocks). Lastly, an average of these 2<sup>k</sup> spectra is computed.

      For example, when reducing from N<sub>0</sub> = 2<sup>3</sup> = 8 to N \= 2<sup>3−1</sup> = 4 neurons (k \= 1), we would have two clusters of 4 neurons each. We calculate the eigenspectrum for each 4x4 block of the original covariance matrix, then average these two spectra together. To better understand this process through a concrete example, consider a hypothetical scenario where a set of eight neurons, labeled 1,2,3,...,7,8, are subjected to a two-step clustering procedure. In the first step, neurons are grouped based on their maximum correlation pairs, for example, resulting in the formation of four pairs: {1,2},{3,4},{5,6}, and {7,8} (see Fig. S22). Subsequently, the neurons are further grouped into two clusters based on the results of the RG step mentioned above. Specifically, if the correlation between the coarse-grained variables of the pair {1,2} and the pair {3,4} is found to be the largest among all other pairs of coarse-grained variables, the first group consists of neurons {1,2,3,4}, while the second group contains neurons {5,6,7,8}. Next, take the size of the cluster N = 4 for example. The eigenspectra of the covariance matrices of the four neurons within each cluster are computed. This results in two eigenspectra, one for each cluster. The correlation matrices used to compute the eigenspectra of different sizes do not involve coarse-grained neurons. It is the real neurons 1,2,3,...,7,8, but with expanding cluster sizes. Finally, the average of the eigenspectra of the two clusters is calculated.

      (22) Line 37: ”even if two cell assemblies have the same D<sub>PR</sub>, they can have different shapes.” What is meant by shape here isn’t clear.

      Thank you for pointing out this potential ambiguity. The “shape” here refers to the geometric configuration of the neural activity space characterized as a highdimensional ellipsoid by the covariance. Specifically, if we denote the eigenvalues of the covariance matrix as λ<sub>1</sub>,λ<sub>2</sub>,...,λ<sub>N</sub>, then corresponds to the length of the i-th semi-axis of this ellipsoid (Figure 1B). As shown in Figure 1C, two neural populations with the same dimensionality (D<sub>PR</sub> = 25/11 ≈ 2.27) exhibit different eigenvalue spectra, leading to differently shaped ellipsoids. This clarification is now included in lines 39-40.

      (23) Please discuss if any information about the latent dimension or kernel function can be inferred from the measurements.

      Same as comment(6): we would like to clarify that in our analysis using the Euclidean Random Matrix (ERM) model, we fit the ratio µ/d, rather than the individual values of d (dimension of the functional space) or µ (exponent of the distancedependent kernel function). This limitation is inherent because the model’s predictions for observable quantities, such as the eigenvalue spectrum of the covariance matrix, are dependent solely on this ratio.

      For the kernel function, once the d is chosen, we can infer the general shape of the kernel function from data (Figs S12 and S13), up to a certain extent (see also lines 164-166). In particular, we can compare the eigenspectrum of the simulation results for different kernel functions with the eigenspectrum of our data. This allows us to qualitatively exclude certain kernel functions, such as the exponential and Gaussian kernels (Fig. S4), which show clear differences from our data.

      References

      (1) M. C. Morrell, I. Nemenman, A. Sederberg, Neural criticality from effective latent variables. eLife 12, RP89337 (2024).

      (2) J. Manley, S. Lu, K. Barber, J. Demas, H. Kim, D. Meyer, F. M. Traub, A. Vaziri, Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron (2024).

      (3) S. A. Moosavi, S. S. R. Hindupur, H. Shimazaki, Population coding under the scale-invariance of high-dimensional noise (2024).

      (4) M. C. Morrell, A. J. Sederberg, I. Nemenman, Latent dynamical variables produce signatures of spatiotemporal criticality in large biological systems. Physical Review Letters 126, 118302 (2021).

      (5) A. Renart, J. De La Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, K. D. Harris, The asynchronous state in cortical circuits. science 327, 587–590 (2010).

      (6) L. Meshulam, J. L. Gauthier, C. D. Brody, D. W. Tank, W. Bialek, Coarse graining, fixed points, and scaling in a large population of neurons. Physical Review Letters 123, 178103 (2019).

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public Review):

      Summary:

      This paper explores how diverse forms of inhibition impact firing rates in models for cortical circuits. In particular, the paper studies how the network operating point affects the balance of direct inhibition from SOM inhibitory neurons to pyramidal cells, and disinhibition from SOM inhibitory input to PV inhibitory neurons. This is an important issue as these two inhibitory pathways have largely been studies in isolation. Support for the main conclusions is generally solid, but could be strengthened by additional analyses.

      Strengths

      The paper has improved in revision, and the new intuitive summary statements added to the end of each results section are quite helpful. Weaknesses

      The concern about whether the results hold outside of the range in which neural responses are linear remains. This is particularly true given the discontinuity observed in the stability measure. I appreciate the concern (provided in the response to the first round of reviews) that studying nonlinear networks requires a lot of work. A more limited undertaking would be to test the behavior of a spiking network at a few key points identified by your linearization approach. Such tests could use relatively simple (and perhaps imperfect) measures of gain and stability. This could substantially enhance the paper, regardless of the outcome.

      We appreciate the reviewer’s concern and in our resubmission we explore if networks dynamics that operate outside of the case where linearization is possible would continue to show our main result on the (dis)entanglement of stability and gain; the short answer is yes. To this end we have added a new section and Figure to our main text.

      “Gain and stability in stochastically forced E – PV – SOM circuits

      To confirm that our results do not depend on our approach of a linearization around a fixed point, we numerically simulate similar networks as shown above (Figure 2) in which the E and PV population receive slow varying, large amplitude noise (Figure 6A). This leads to noisy rate dynamics sampling a large subspace of the full firing rate grid (r<sub>E</sub>,r<sub>P</sub>) and thus any linearization would fail to describe the network response. In this stochastically forced network we explore how adding an SOM modulation or a stimulus affects this subspace (Figure 6B). To quantify stability without linearization, we assume that a network is more stable the lower the mean and variance of E rates. This is because very stable networks can better quench input fluctuations [Kanashiro et al., 2017; Hennequin et al., 2018]. To quantify gain, we calculate the change in E rates when adding the stimulus, yet having identical noise realizations for stimulated and non-stimulated networks (Methods).

      For the disinhibitory network without feedback a positive SOM modulation decreases stability due to increases of the mean and variance of E rates (Figure 6Ci) while the network gain increases (Figure 6Cii). As seen before (Figure 2A,B), stability and gain change in opposite directions in a disinhibitory circuit without feedback. Adding feedback PV → SOM and applying a negative SOM modulation increases both, stability and gain and therefore disentangles the inverse relation also in a noisy circuit (Figure 6D-F). This gives numerical support that our results do not depend on the assumption of linearization.

      “Methods: Noisy input and numerical measurement of stability and gain

      We consider a temporally smoothed input process ξ<sub>X</sub> with white noise ζ (zero mean, standard deviation one): for populations X ∈{E,P} with timescale τ<sub>ξ</sub> = 50ms, σ<sub>X</sub> \= 6 and fixed mean input IX. To quantify the stability of the network without linearization, we assume that a network is more stable if the mean and variance of excitatory rates are low. To quantify network gain, we freeze the white noise process ζ for the case of with and without stimulus presentation and calculate the difference of E rates at each time point, leading to a distribution of network gains (Figure 6Cii,Fii). Total simulation time is 1000 seconds.”

      We decided against using a spiking network because sufficiently asynchronous spiking network dynamics can still obey a linearized mean field theory (if the fluctuations in population firing rates are small). In our new analysis the firing rate deviations from the time averaged firing rate are sizable, making a linearization ineffective.

      In summary, based on our additional analysis of recurrent circuits with noisy inputs we conclude that our results also hold in fluctuating networks, without the need of assuming realization aroud a stable fixed point.

      Reviewer #2 (Public Review):

      Summary:

      Bos and colleagues address the important question of how two major inhibitory interneuron classes in the neocortex differentially affect cortical dynamics. They address this question by studying Wilson-Cowan-type mathematical models. Using a linearized fixed point approach, they provide convincing evidence that the existence of multiple interneuron classes can explain the counterintuitive finding that inhibitory modulation can increase the gain of the excitatory cell population while also increasing the stability of the circuit’s state to minor perturbations. This effect depends on the connection strengths within their circuit model, providing valuable guidance as to when and why it arises.

      Overall, I find this study to have substantial merit. I have some suggestions on how to improve the clarity and completeness of the paper.

      Strengths:

      (1) The thorough investigation of how changes in the connectivity structure affect the gain-stability relationship is a major strength of this work. It provides an opportunity to understand when and why gain and stability will or will not both increase together. It also provides a nice bridge to the experimental literature, where different gain-stability relationships are reported from different studies.

      (2) The simplified and abstracted mathematical model has the benefit of facilitating our understanding of this puzzling phenomenon. (I have some suggestions for how the authors could push this understanding further.) It is not easy to find the right balance between biologically-detailed models vs simple but mathematically tractable ones, and I think the authors struck an excellent balance in this study.

      We thank the reviewer for their support of our work.

      Weaknesses:

      (1) The fixed-point analysis has potentially substantial limitations for understanding cortical computations away from the steady-state. I think the authors should have emphasized this limitation more strongly and possibly included some additional analyses to show that their conclusions extend to the chaotic dynamical regimes in which cortical circuits often live.

      In the response to reviewer 1 we have included model analyses that addresses the limitations of linearization. Rather than use a chaotic model, which would require significant effort, we opted for a stochastically forced network, where the sizable fluctuations in rate dynamics preclude linearization.

      (2) The authors could have discussed – even somewhat speculatively – how VIP interneurons fit into this picture. Their absence from this modelling framework stands out as a missed opportunity.

      We agree that including VIP neurons into the framework would be an obvious and potentially interesting next step. At this point we only include them as potential modulators of SOM neurons. Modeling their dynamics without them receiving inputs from E, PV, or SOM neurons would be uninteresting. However, including them properly into the circuit would be outside the scope of the paper.

      (3) The analysis is limited to paths within this simple E, PV, SOM circuit. This misses more extended paths (like thalamocortical loops) that involve interactions between multiple brain areas. Including those paths in the expansion in Eqs. 11-14 (Fig. 1C) may be an important consideration.

      We agree that our pathway expansion can be used to study more than just the E – PV – SOM circuit. However, properly investigating full thalamocortcial loops should be done in a subsequent study.

      Comments on revisions:

      I think the authors have done a reasonable job of responding to my critiques, and the paper is in pretty good shape. (Also, thanks for correctly inferring that I meant VIP interneurons when I had written SST in my review! I have updated the public review accordingly.)

      I still think this line of research would benefit substantially from considering dynamic regimes including chaotic ones. I strongly encourage the authors to consider such an extension in future work.

      Please see our response above to Reviewer 1.

      Reviewer #3 (Public Review):

      Summary:

      Bos et al study a computational model of cortical circuits with excitatory (E) and two subtypes of inhibition parvalbumin (PV) and somatostatin (SOM) expressing interneurons. They perform stability and gain analysis of simplified models with nonlinear transfer functions when SOM neurons are perturbed. Their analysis suggests that in a specific setup of connectivity, instability and gain can be untangled, such that SOM modulation leads to both increases in stability and gain, in contrast to the typical direction in neuronal networks where increased gain results in decreased stability.

      Strengths:

      - Analysis of the canonical circuit in response to SOM perturbations. Through numerical simulations and mathematical analysis, the authors have provided a rather comprehensive picture of how SOM modulation may affect response changes.

      - Shedding light on two opposing circuit motifs involved in the canonical E-PV-SOM circuitry - namely, direct inhibition (SOM -¿ E) vs disinhibition (SOM -¿ PV -¿ E). These two pathways can lead to opposing effects, and it is often difficult to predict which one results from modulating SOM neurons. In simplified circuits, the authors show how these two motifs can emerge and depend on parameters like connection weights.

      - Suggesting potentially interesting consequences for cortical computation. The authors suggest that certain regimes of connectivity may lead to untangling of stability and gain, such that increases in network gain are not compromised by decreasing stability. They also link SOM modulation in different connectivity regimes to versatile computations in visual processing in simple models.

      We thank the reviewer for their support of our work.

      Weaknesses

      Computationally, the analysis is solid, but it’s very similar to previous studies (del Molino et al, 2017). Many studies in the past few years have done the perturbation analysis of a similar circuitry with or without nonlinear transfer functions (some of them listed in the references). This study applies the same framework to SOM perturbations, which is a useful computational analysis, in view of the complexity of the high-dimensional parameter space.

      Link to biology: the most interesting result of the paper with regard to biology is the suggestion of a regime in which gain and stability can be modulated in an unconventional way - however, it is difficult to link the results to biological networks:

      - A general weakness of the paper is a lack of direct comparison to biological parameters or experiments. How different experiments can be reconciled by the results obtained here, and what new circuit mechanisms can be revealed? In its current form, the paper reads as a general suggestion that different combinations of gain modulation and stability can be achieved in a circuit model equipped with many parameters (12 parameters). This is potentially interesting but not surprising, given the high dimensional space of possible dynamical properties. A more interesting result would have been to relate this to biology, by providing reasoning why it might be relevant to certain circuits (and not others), or to provide some predictions or postdictions, which are currently missing in the manuscript.

      - For instance, a nice motivation for the paper at the beginning of the Results section is the different results of SOM modulation in different experiments - especially between L23 (inhibition) and L4 (disinhibition). But no further explanation is provided for why such a difference should exist, in view of their results and the insights obtained from their suggested circuit mechanisms. How the parameters identified for the two regimes correspond to different properties of different layers?

      Please see our answer to the previous round of revision.

      - One of the key assumptions of the model is nonlinear transfer functions for all neuron types. In terms of modelling and computational analysis, a thorough analysis of how and when this is necessary is missing (an analysis similar to what has been attempted in Figure 6 for synaptic weights, but for cellular gains). A discussion of this, along with the former analysis to know which nonlinearities would be necessary for the results, is needed, but currently missing from the study. The nonlinearity is assumed for all subtypes because it seems to be needed to obtain the results, but it’s not clear how the model would behave in the presence or absence of them, and whether they are relevant to biological networks with inhibitory transfer functions.

      Please see our answer to the previous round of revision.

      - Tuning curves are simulated for an individual orientation (same for all), not considering the heterogeneity of neuronal networks with multiple orientation selectivity (and other visual features) - making the model too simplistic.

      Please see our answer to the previous round of revision.

      Reviewer #1 (Recommendations For The Authors):

      Introduction, first paragraph, last sentence: suggest ”sense,” -¿ ”sense” (no comma)

      Introduction, second paragraph, first sentence: suggest ”is been” -¿ ”has been”

      Introduction, very end of next to last paragraph: clarify ”modulate the circuit”

      Figure 1 legend: can you make the ”Change ...” in the legend for 1D clearer - e.g. ”strenghen SOM → E connections and eliminate SOM → P connections”.

      Paragraph immediately below Figure 1: In sentence starting ”Specifically ...” can you relate the cases described here back to the equation in Figure 1C?

      Sentence right below equation 2: This sentence does not separate the network gain from the cellular gain as clearly as it could.

      Page 7, second full paragraph: sentence starting ”Therefore, with ...” could be split into two or otherwise made clearer.

      Sentence starting ”Furthermore” right below Figure 5 has an extra comma

      We thank the reviewer for their additional comments, we made the respective changes in the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      There is a long part in the reply letter discussing the link to biology - but the revised manuscript doesn’t seem to reflect that.

      The information in the reply letter discussing the link to biology has been added at multiple points in the discussion. In the section ‘decision of labor between PV and SOM neurons’ we mention Ferguson and Carding 2020, in the section ‘impact of SOM neuron modulation on tuning curves’ we discuss Phillups and Hasenstaub 2016, and in the section ‘limitations and future directions’ we mention Tobin et al., 2023.

      The writing can be improved - for example, see below instances:

      P. 7: Intuitively, the inverse relationship follows for inhibitory and disinhibitory pathways (and their mixture) because the firing rate grid (heatmap) does not depend on how the SOM neurons inhibit the E - PV circuit.

      P.8: We first remark that by adding feedback E connections onto SOM neurons, changes in SOM rates can now affect the underlying heatmaps in the (rE, rP) grid.

      Not clear how ”rates can affect the heatmaps”. It’s too colloquial and not scientifically rigorous or sound.

      We added further explanations at the respective places in the manuscript to improve the writing.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the editors and the reviewers for their time and constructive comments, which helped us to improve our manuscript “The Hungry Lens: Hunger Shifts Attention and Attribute Weighting in Dietary Choice” substantially. In the following we address the comments in depth:

      R1.1: First, in examining some of the model fits in the supplements, e.g. Figures S9, S10, S12, S13, it looks like the "taste weight" parameter is being constrained below 1. Theoretically, I understand why the authors imposed this constraint, but it might be unfairly penalizing these models. In theory, the taste weight could go above 1 if participants had a negative weight on health. This might occur if there is a negative correlation between attractiveness and health and the taste ratings do not completely account for attractiveness. I would recommend eliminating this constraint on the taste weight.

      We appreciate the reviewer’s suggestion to test a multi-attribute attentional drift-diffusion model (maaDDM) that does not constrain the taste and health weights to the range of 0 and 1. We tested two versions of such a model. First, we removed the phi-transformation, allowing the weight to take on any value (see Author response image 1). The results closely matched those found in the original model. Partially consistent with the reviewer’s comment, the health weight became slightly negative in some individuals in the hungry condition. However, this model had convergence issues with a maximal Rhat of 4.302. Therefore, we decided to run a second model in which we constrained the weights to be between -1 and 2. Again, we obtained effects that matched the ones found in the original model (see Author response image 2), but again we had convergence issues. These convergence issues could arise from the fact that the models become almost unidentifiable, when both attention parameters (theta and phi) as well as the weight parameters are unconstrained.

      Author response image 1.

      Author response image 2.

      R1.2: Second, I'm not sure about the mediation model. Why should hunger change the dwell time on the chosen item? Shouldn't this model instead focus on the dwell time on the tasty option?

      We thank the reviewer for spotting this inconsistency. In our GLMMs and the mediation model, we indeed used the proportion of dwell time on the tasty option as predictors and mediator, respectively. The naming and description of this variable was inconsistent in our manuscript and the supplements. We have now rephrased both consistently.

      R1.3: Third, while I do appreciate the within-participant design, it does raise a small concern about potential demand effects. I think the authors' results would be more compelling if they replicated when only analyzing the first session from each participant. Along similar lines, it would be useful to know whether there was any effect of order.

      R3.2: On the interpretation side, previous work has shown that beliefs about the nourishing and hunger-killing effectiveness of drinks or substances influence subjective and objective markers of hunger, including value-based dietary decision-making, and attentional mechanisms approximated by computational models and the activation of cognitive control regions in the brain. The present study shows differences between the protein shake and a natural history condition (fasted, state). This experimental design, however, cannot rule between alternative interpretations of observed effects. Notably, effects could be due to (a) the drink's active, nourishing ingredients, (b) consuming a drink versus nothing, or (c) both. […]

      R3 Recommendation 1:

      Therefore, I recommend discussing potential confounds due to expectancy or placebo effects on hunger ratings, dietary decision-making, and attention. […] What were verbatim instructions given to the participants about the protein shake and the fasted, hungry condition? Did participants have full knowledge about the study goals (e.g. testing hunger versus satiation)? Adding the instructions to the supplement is insightful for fully harnessing the experimental design and frame.

      Both reviewer 1 and reviewer 3 raise potential demand/ expectancy effects, which we addressed in several ways. First, we have translated and added participants’ instructions to the supplements SOM 6, in which we transparently communicate the two conditions to the participants. Second, we have added a paragraph in the discussion section addressing potential expectancy/demand effects in our design:

      “The present results and supplementary analyses clearly support the two-fold effect of hunger state on the cognitive mechanisms underlying choice. However, we acknowledge potential demand effects arising from the within-subject Protein-shake manipulation. A recent study (Khalid et al., 2024) showed that labeling water to decrease or increase hunger affected participants subsequent hunger ratings and food valuations. For instance, participants expecting the water to decrease hunger showed less wanting for food items. DDM modeling suggested that this placebo manipulation affected both drift rate and starting point. The absence of a starting point effect in our data speaks against any prior bias in participants due to any demand effects. Yet, we cannot rule out that such effects affected the decision-making process, for example by increasing the taste weight (and thus the drift rate) in the hungry condition.”

      Third, we followed Reviewer 1’s suggestion and tested, whether the order of testing affected the results. We did so by adding “order” to the main choice and response time (RT) GLMM. We neither found an effect of order on choice (β<sub>order</sub>=-0.001, SE\=0.163, p<.995), nor on RT (β<sub>order</sub>=0.106, SE\=0.205, p<.603) and the original effects remain stable (see Author response table 1a and Author response table 1 2a below). Further, we used two ANOVAs to compare models with and without the predictor “order”. The ANOVAs indicated that GLMMs without “order” better explained choice and RT (see Author response table 1b and Author response table 2b). Taken together, these results suggest that demand effects played a negligible role in our study.

      Author response table 1.

      a) GLMM: Results of Tasty vs Healthy Choice Given Condition, Attention and Order

      Note. p-values were calculated using Satterthwaites approximations. Model equation: choice ~ condition + scale(_rel_taste_DT) + order + (1+condition|subject);_ rel_taste_DT refers to the relative dwell time on the tasty option; order with hungry/sated as the reference

      b) Model Comparison

      Author response table 2.

      a) GLMM: Response Time Given Condition, Choice, Attention and Order

      Note. p-values were calculated using Satterthwaites approximations. Model equation: RT ~ choice + condition + scale(_rel_taste_DT) + order + choice * scale(rel_taste_DT) (1+condition|subject);_ rel_taste_DT refers to the relative dwell time on the tasty option; order with hungry/sated as the reference

      b) Model Comparison

      R1.4: Fourth, the authors report that tasty choices are faster. Is this a systematic effect, or simply due to the fact that tasty options were generally more attractive? To put this in the context of the DDM, was there a constant in the drift rate, and did this constant favor the tasty option?

      We thank the reviewer for their observant remark about faster tasty choices and potential links to the drift rate. While our starting point models show that there might be a small starting point bias towards the taste boundary, which would result in faster tasty decisions, we took a closer look at the simulated value differences as obtained in our posterior predictive checks to see if the drift rate was systematically more extreme for tasty choices (Author response image 3). In line with the reviewer’s suggestion that tasty options were generally more attractive, tasty decisions were associated with higher value differences (i.e., further away from 0) and consequently with faster decisions. This indicates that the main reason for faster tasty choices was a higher drift rate in those trials (as a consequence of the combination of attribute weights and attribute values rather than “a constant in the drift rate”), whereas a strong starting point bias played only a minor role.

      Author response image 3.

      Note. Value Difference as obtained from Posterior Predictive Checks of the maaDDM2𝜙 in hungry and sated condition for healthy (green) and tasty (orange) choices.

      R1.5: Fifth, I wonder about the mtDDM. What are the units on the "starting time" parameters? Seconds? These seem like minuscule effects. Do they align with the eye-tracking data? In other words, which attributes did participants look at first? Was there a correlation between the first fixations and the relative starting times? If not, does that cast doubt on the mtDDM fits? Did the authors do any parameter recovery exercises on the mtDDM?

      We thank Reviewer 1 for their observant remarks about the mtDDM. In line with their suggestion, we have performed a parameter recovery which led to a good recovery of all parameters except relative starting time (rst). In addition, we had convergence issues of rst as revealed by parameter Rhats around 20. Together these results indicate potential limitations of the mtDDM when applied to tasks with substantially different visual representations of attributes leading to differences in dwell time for each attribute (see Figure 3b and Figure S6b). We have therefore decided not to report the mtDDM in the main paper, only leaving a remark about convergence and recovery issues.

      R2: My main criticism, which doesn't affect the underlying results, is that the labeling of food choices as being taste- or health-driven is misleading. Participants were not cued to select health vs taste. Studies in which people were cued to select for taste vs health exist (and are cited here). Also, the label "healthy" is misleading, as here it seems to be strongly related to caloric density. A high-calorie food is not intrinsically unhealthy (even if people rate it as such). The suggestion that hunger impairs making healthy decisions is not quite the correct interpretation of the results here (even though everyone knows it to be true). Another interpretation is that hungry people in negative calorie balance simply prefer more calories.

      First, we agree with the reviewer that it should be tested to what extent participants’ choice behavior can be reduced to contrasting taste vs. health aspects of their dietary decisions (but note that prior to making decisions, they were asked to rate these aspects and thus likely primed to consider them in the choice task). Having this question in mind, we performed several analyses to demonstrate the suitability of framing decisions as contrasting taste vs. health aspects (including the PCA reported in the Supplemental Material).

      Second, we agree with the reviewer in that despite a negative correlation (Author response image 4) between caloric density and health, high-caloric items are not intrinsically unhealthy. This may apply only to two stimuli in our study (nuts and dried fruit), which are also by our participants recognized as such.

      Finally, Reviewer 2’s alternative explanation, that hungry individuals prefer more calories is tested in SOM5. In line with the reviewer’s interpretation, we show that hungry individuals indeed are more likely to select higher caloric options. This effect is even stronger than the effect of hunger state on tasty vs healthy choice. However, in this paper we were interested in the effect of hunger state on tasty vs healthy decisions, a contrast that is often used in modeling studies (e.g., Barakchian et al., 2021; Maier et al., 2020; Rramani et al., 2020; Sullivan & Huettel, 2021). In sum, we agree with Reviewer 2 in all aspects and have tested and provided evidence for their interpretation, which we do not see to stand in conflict with ours.

      Author response image 4.

      Note. strong negative correlation between health ratings and objective caloric content in both hungry (r\=-.732, t(64)=-8.589, p<.001) and sated condition (r\=-.731, t(64)=-8.569, p<.001).

      R3.1: On the positioning side, it does not seem like a 'bad' decision to replenish energy states when hungry by preferring tastier, more often caloric options. In this sense, it is unclear whether the observed behavior in the fasted state is a fallacy or a response to signals from the body. The introduction does mention these two aspects of preferring more caloric food when hungry. However, some ambiguity remains about whether the study results indeed reflect suboptimal choice behavior or a healthy adaptive behavior to restore energy stores.

      We thank Reviewer 3 for this remark, which encouraged us to interpret the results also form a slightly different perspective. We agree that choosing tasty over healthy options under hunger may be evolutionarily adaptive. We have now extended a paragraph in our discussion linking the cognitive mechanisms to neurobiological mechanisms:

      “From a neurobiological perspective, both homeostatic and hedonic mechanisms drive eating behaviour. While homeostatic mechanisms regulate eating behaviour based on energy needs, hedonic mechanisms operate independent of caloric deficit (Alonso-Alonso et al., 2015; Lowe & Butryn, 2007; Saper et al., 2002). Participants’ preference for tasty high caloric food options in the hungry condition aligns with a drive for energy restoration and could thus be taken as an adaptive response to signals from the body. On the other hand, our data shows that participants preferred less healthy options also in the sated condition. Here, hedonic drivers could predominate indicating potentially maladaptive decision-making that could lead to adverse health outcomes if sustained. Notably, our modeling analyses indicated that participants in the sated condition showed reduced attentional discounting of health information, which poses potential for attention-based intervention strategies to counter hedonic hunger. This has been investigated for example in behavioral (Barakchian et al., 2021; Bucher et al., 2016; Cheung et al., 2017; Sullivan & Huettel, 2021), eye-tracking (Schomaker et al., 2022; Vriens et al., 2020) and neuroimaging studies (Hare et al., 2011; Hutcherson & Tusche, 2022) showing that focusing attention on health aspects increased healthy choice. For example, Hutcherson and Tusche (2022) compellingly demonstrated that the mechanism through which health cues enhance healthy choice is shaped by increased value computations in the dorsolateral prefrontal cortex (dlPFC) when cue and choice are conflicting (i.e., health cue, tasty choice). In the context of hunger, these findings together with our analyses suggest that drawing people’s attention towards health information will promote healthy choice by mitigating the increased attentional discounting of such information in the presence of tempting food stimuli.”

      Recommendations for the authors:

      R1: The Results section needs to start with a brief description of the task. Otherwise, the subsequent text is difficult to understand.

      We included a paragraph at the beginning of the results section briefly describing the experimental design.

      R1/R2: In Figure 1a it might help the reader to have a translation of the rating scales in the figure legend.

      We have implemented an English rating scale in Figure 1a.

      R2: Were the ratings redone at each session? E.g. were all tastiness ratings for the sated session made while sated? This is relevant as one would expect the ratings of tastiness and wanting to be affected by the current fed state.

      The ratings were done at the respective sessions. As shown in S3a there is a high correlation of taste ratings across conditions. We decided to take the ratings of the respective sessions (rather than mean ratings across sessions) to define choice and taste/health value in the modeling analyses, for several reasons. First, by using mean ratings we might underestimate the impact of particularly high or low ratings that drove choice in the specific session (regression to the mean). Second, for the modeling analysis in particular, we want to model a decision-making process at a particular moment in time. Consequently, the subjective preferences in that moment are more accurate than mean preferences.

      R2: It would be helpful to have a diagram of the DDM showing the drifting information to the boundary, and the key parameters of the model (i.e. showing the nDT, drift rate, boundary, and other parameters). (Although it might be tricky to depict all 9 models).

      We thank the reviewer for their recommendation and have created Figure 6, which illustrates the decision-making process as depicted by the maaDDM2phi.

      R3.1: Past work has shown that prior preferences can bias/determine choices. This effect might have played a role during the choice task, which followed wanting, taste, health, and calorie ratings during which participants might have already formed their preferences. What are the authors' positions on such potential confound? How were the food images paired for the choice task in more detail?

      The data reported here, were part of a larger experiment. Next to the food rating and choice task, participants also completed a social preference rating and choice task, as well as rating and choice tasks for intertemporal discounting. These tasks were counterbalanced such that first the three rating tasks were completed in counterbalanced order and second the three choice tasks were completed in the same order (e.g. food rating, social rating, intertemporal rating; food choice, social choice, intertemporal choice). This means that there were always two other tasks between the food rating and food choice task. In addition, to the temporal delay between rating and choice tasks, our modeling analyses revealed that models including a starting point bias performed worse than those without the bias. Although we cannot rule out that participants might occasionally have tried to make their decision before the actual task (e.g., by keeping their most/least preferred option in mind and then automatically choosing/rejecting it in the choice task), we think that both our design as well as our modeling analyses speak against any systematic bias of preference in our choice task. The options were paired such that approximately half of the trials were random, while for the other half one option was rated healthier and the other option was rated tastier (e.g., Sullivan & Huettel, 2021)

      R3.2: In line with this thought, theoretically, the DDMs could also be fitted to reaction times and wanting ratings (binarized). This could be an excellent addition to corroborate the findings for choice behavior.

      We have implemented several alternative modeling analyses, including taste vs health as defined by Nutri-Score (Table S12 and Figures S22-S30) and higher wanted choice vs healthy choice (Table S13; Figure S30-34). Indeed, these models corroborate those reported in the main text demonstrating the robustness of our findings.

      R3.3: The principal component analysis was a good strategy for reducing the attribute space (taste, health, wanting, calories, Nutriscore, objective calories) into two components. Still, somehow, this part of the results added confusion to harnessing in which of the analyses the health attribute corresponded only to the healthiness ratings and taste to the tastiness ratings and if and when the components were used as attributes. This source of confusion could be mitigated by more clearly stating what health and taste corresponded to in each of the analyses.

      We thank the reviewer for this recommendation and have now reported the PCA before reporting the behavioural results to clarify that choices are binarized based on participants’ taste and health ratings, rather than the composite scores. We have chosen this approach, as it is closer to our hypotheses and improves interpretability.

      R3.4: From the methods, it seems that 66 food images were used, and 39 fell into A, B, C, and D Nutriscores. How were the remaining 27 images selected, and how healthy and tasty were the food stimuli overall?

      The selection of food stimuli was done in three steps: First, from Charbonnier and collegues (2016) standardized food image database (available at osf.io/cx7tp/) we excluded food items that were not familiar in Germany/unavailable in regular German supermarkets. Second, we excluded products that we would not be able to incentivize easily (i.e., fastfood, pastries and items that required cooking/baking/other types of preparation). Third, we added the Nutri Scores to the remaining products aiming to have an equal number of items for each Nutri-Score, of which approximately half of the items were sweet and the other half savory. This resulted in a final stimuli-set of 66 food images (13 items =A; 13 items=B; 12 items=C; 14 items =D; 14 items = E). The experiment with including the set of food stimuli used in our study is also uploaded here: osf.io/pef9t/.With respect to the second question, we would like to point out that preference of food stimuli is very individual, therefore we obtained the ratings (taste, health, wanting and estimated caloric density) of each participant individually. However, we also added the objective total calories, which is positively correlated subjective caloric density and negatively correlated with Nutri-Score (coded as A=5; B=4; C=3; D=2; E=1) and health ratings (see Figure S7).

      R3.5: It seems that the degrees of freedom for the paired t-test comparing the effects of the condition hungry versus satiated on hunger ratings were 63, although the participant sample counted 70. Please verify.

      This is correct and explained in the methods section under data analysis: “Due to missing values for one timepoint in six participants (these participants did not fill in the VAS and PANAS before the administration of the Protein Shake in the sated condition) the analyses of the hunger state manipulation had a sample size of 64.”

      R3.5: Please add the range of BMI and age of participants. Did all participants fall within a healthy BMI range

      The BMI ranged from 17.306 to 48.684 (see Author response image 5), with the majority of participants falling within a normal BMI (i.e., between 18.5 and 24.9. In our sample, 3 participants had a BMI lager than 30. By using subject as a random intercept in our GLMMs we accounted for potential deviations in their response.

      Author response image 5.

      R3.5: Defining the inference criterion used for the significance of the posterior parameter chains in more detail can be pedagogical for those new to or unfamiliar with inferences drawn from hierarchical Bayesian model estimations and Bayesian statistics.

      We have added an explanation of the highest density intervals and what they mean with respect to our data in the respective result section.

    1. Author response:

      Reviewer #1 (Public Review):

      We are grateful to this reviewer for her/his constructive comments, which have greatly improved our work. Individual responses are provided below.

      The authors recorded from multiple mossy cells (MCs) of the dentate gyrus in slices or in vivo using anesthesia. They recorded MC spontaneous activity during spontaneous sharp waves (SWs) detected in area CA3 (in vitro) or in CA1 ( in vivo). They find variability of the depolarization of MCs in response to a SW. They then used deep learning to parse out more information. They conclude that CA3 sends different "information" to different MCs. However, this is not surprising because different CA3 neurons project to different MCs and it was not determined if every SW reflected the same or different subsets of CA3 activity.

      Thank you for your valuable comments. We agree that our finding that different MCs receive different information is unsurprising. These data are, in fact, to be expected from the anatomical knowledge of the circuit structure. However, as a physiological finding, there is a certain value in proving this fact; please note that it was not clear whether the neural activity of individual MCs received heterogeneous/variable information at the physiological level. It was therefore necessary to investigate this by recording neural activity. We believe this study is important because it quantitatively demonstrates this fact.

      The strengths include recording up to 5 MCs at a time. The major concerns are in the finding that there is variability. This seems logical, not surprising. Also it is not clear how deep learning could lead to the conclusion that CA3 sends different "information" to different MCs. It seems already known from the anatomy because CA3 neurons have diverse axons so they do not converge on only one or a few MCs. Instead they project to different MCs. Even if they would, there are different numbers of boutons and different placement of boutons on the MC dendrites, leading to different effects on MCs. There also is a complex circuitry that is not taken into account in the discussion or in the model used for deep learning. CA3 does not only project to MCs. It also projects to hilar and other dentate gyrus GABAergic neurons which have complex connections to each other, MCs, and CA3. Furthermore, MCs project to MCs, the GABAergic neurons, and CA3. Therefore at any one time that a SW occurs, a very complex circuitry is affected and this could have very different effects on MCs so they would vary in response to the SW. This is further complicated by use of slices where different parts of the circuit are transected from slice to slice.

      The first half of this paragraph is closely related to the previous paragraph. We propose that the variation in membrane potential of the simultaneously recorded MCs allows for the expression of diverse information. We also believe that this is highly novel in that no previous work has described the extent to which SWR is encoded in MCs. Our study proposes a new quantitative method that relates two variables (LFP and membrane potential) that are inherently incomparable. Specifically, we used machine learning (please note that it is a neural network, but not "deep learning") to achieve this quantification, and we believe this innovation is noteworthy.

      In the latter part of this article, you raise another important point. First, we would like to point out that this comment contains a slight misunderstanding. Our goal is not to reproduce the circuit structure of the hippocampus in silico but to propose a "function (or mapping/transformation)" that connects the two different modalities, i.e., LFP and Vm. This function should be as simple as possible, which is desirable from an explanatory point of view. In this respect, our machine learning model is a 'perceptron'-like 3-layer neural network. One of the simplest classical neural network models can predict the LFP waveform from Vm, which is quite surprising and an achievement we did not even imagine before. The fact that our model does not consider dendrites or inhibitory neurons is not a drawback but an important advantage. On the other hand, the fact that the data we used for our predictions were primarily obtained using slice experiments may be a drawback of this study, and we agree with your comments. However, we can argue that the new quantitative method we propose here is versatile since we showed that the same machine learning can be used to predict in vivo single-cell data.

      It is also not discussed if SWs have a uniform frequency during the recording session. If they cluster, or if MC action potentials occur just before a SW, or other neurons discharge before, it will affect the response of the MC to the SW. If MC membrane potential varies, this will also effect the depolarization in response to the SW.

      Thank you for raising an important point. We have done some additional analyses in response to your comment. First, we plotted how the SWR parameter fluctuated during our recording time (especially for data recorded for long periods of more than 5 minutes). As shown in the new Figure 1 - figure supplement 4, we can see that the frequency of SWRs was kept uniform during the recording time. These data ensure the rationale for pooling data over time.

      We also calculated the average membrane potentials of MCs before and after SWRs and found that MCs did not show depolarization or hyperpolarization before SWs, unlike Vm of CA1 neurons. These data indicate that the surrounding circuitry was not particularly active before SW, eliminating any concern that such unexpected preceding activity might affect our analysis. These data are shown in Figure 1 - figure supplement 2.

      In vivo, the SWs may be quite different than in vivo but this is not discussed. The circuitry is quite different from in vitro. The effects of urethane could have many confounding influences. Furthermore, how much the in vitro and in vivo SWs tell us about SWs in awake behaving mice is unclear.

      We agree with this point. Ideally, recording in vitro and in vivo under conditions as similar as possible would be optimal. However, as you know, patch-clamp recording from mossy cells in vivo is technically challenging, and currently, there is no alternative to conducting experiments under anesthesia. We believe that science advances not merely through theoretical discourse, but by contributing empirical data collected under existing conditions. However, as we mentioned in the paper, we believe that in vivo and in vitro SWR share some properties and a common principle of occurrence. We also observed that there are similar characteristics in the membrane potential response of MC to SWR. However, as you have pointed out, data derived from these limitations require careful interpretation, and we have explicitly stated in the paper that not only are there such problems, but that there are also common properties in the data obtained in vivo and in vitro (Page 12, Line 357).

      Also, methods and figures are hard to understand as described below.

      Thank you for all your comments. We have carefully considered the reviewers' comments and improved the text and legend. We hope you will take the time to review them.

      Reviewer #2 (Public Review):

      Thank you for the positive evaluations, which have encouraged us to resubmit this manuscript. We have revised our manuscript in accordance with your comments. Our point-by-point responses are as follows:

      • A summary of what the authors were trying to achieve

      Drawing from theoretical insights on the pivotal role of mossy cells (MCs) in pattern separation - a key process in distinguishing between similar memories or inputs - the authors investigated how MCs in the dentate gyrus of the hippocampus encode and process complex neural information. By recording from up to five MCs simultaneously, they focused on membrane potential dynamics linked to sharp wave-ripple complexes (SWRs) originating from the CA3 area. Indeed, using a machine learning approach, they were able to demonstrate that even a single MC's synaptic input can predict a significant portion (approximately 9%) of SWRs, and extrapolation suggested that synaptic input obtained from 27 MCs could account for 90% of the SWR patterns observed. The study further illuminates how individual MCs contribute to a distributed but highly specific encoding system. It demonstrates that SWR clusters associated with one MC seldom overlap with those of another, illustrating a precise and distributed encoding strategy across the MC network.

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments, we were pleased to be able to revise and improve the manuscript. Individual responses are listed below:

      • An account of the major strengths and weaknesses of the methods and results

      Strengths:

      (1) This study is remarkable because it establishes a critical link between the subthreshold activities of individual neurons and the collective dynamics of neuronal populations.

      (2) The authors utilize machine learning to bridge these levels of neuronal activity. They skillfully demonstrate the predictive power of membrane potential fluctuations for neuronal events at the population level and offer new insights into neuronal information processing.

      (3) To investigate sharp wave/ripple-related synaptic activity in mossy cells (MCs), the authors performed challenging experiments using whole-cell current-clamp recordings. These recordings were obtained from up to five neurons in vitro and from single mossy cells in live mice. The latter recordings are particularly valuable as they add to the limited published data on synaptic input to MCs during in vivo ripples.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments. Our point-by-point responses are provided below:

      Weaknesses:

      (1) The model description could significantly benefit from additional details regarding its architecture, training, and evaluation processes. Providing these details would enhance the paper's transparency, facilitate replication, and strengthen the overall scientific contribution. For further details, please see below.

      Thank you for the suggestions. We have responded with model details based on the following comments.

      (2) The study recognizes the concept of pattern separation, a central process in hippocampal physiology for discriminating between similar inputs to form distinct memories. The authors refer to a theoretical paper by Myers and Scharfman (2011) that links pattern separation with activity backpropagating from CA3 to mossy cells. Despite this initial citation, the concept is not discussed again in the context of the new findings. Given the significant role of MCs in the dentate gyrus, where pattern separation is thought to occur, it would be valuable to understand the authors' perspective on how their findings might relate to or contribute to existing theories of pattern separation. Could the observed functions of MCs elucidated in this study provide new insights into their contribution to processes underlying pattern separation?

      Thank you for your valuable comment. The role of MCs in pattern separation is described in the discussion as follows:

      “It has been shown through theoretical models that MCs are a contributor to pattern separation (Myers and Scharfman, 2011). In general, the pathway of neural information is diverged from the entorhinal cortex through the larger granule cell layer and then compressed into the smaller CA3 cell layer. In this case, there is a high possibility of information loss during the transmission process. Thus, a backprojection mechanism via MCs has been proposed as a device to prevent information loss. Indeed, in theoretical models, such backprojection improves pattern separation and memory capacity, and the results are closer to experimental data than models without built-in backprojection. However, it was unclear what information individual MCs receive during backprojection. Our results show that CA3 SWR is distributed and encoded in the MC population, and that even though the number of MCs is smaller than in other regions, it is possible to reproduce about 30% of the SWR in CA3 from the membrane potential of only five MCs. Based on these results, it is believed that MCs not only play a role in preventing information loss, but also play a role in receiving some kind of newly encoded memory information in the CA3 region, and it is highly likely that the information contained in the backprojections is different from the neural information transmitted through conventional transmission pathways. Indeed, the fact that the information replayed in CA3 is reflected as SWR and propagated to each brain region suggests that the newly encoded memory information in CA3 is propagated to MC. If  backprojection simply returned the information transmitted from DG to CA3, and to MC, this would be unrealistic and extremely inefficient. However, it is still unclear what kind of memory information is actually backprojected and distributed to the MC, and how it differs from the memory information transmitted in the forward direction. These are open questions that need to be addressed in future experiments in awake animals.” (Page 11, Line 333)

      (3) Previous work concluded that sharp waves are associated with mossy cell inhibition, as evidenced by a consistent ripple function-related hyperpolarization of the membrane potential in these neurons when recorded at resting membrane potential (Henze & Buzsáki, 2007). In contrast, the present study reveals an SWR-induced depolarization of the membrane potential. Can the authors explain the observed modulation of the membrane potential during CA1 ripples in more detail? What was the proportion of cases of depolarization or hyperpolarization? What were the respective amplitude distributions? Were there cases of activation of the MCs, i.e., spiking associated with the ripple? This more comprehensive information would add significance to the study as it is not currently available in the literature.

      Sorry for confusing the conclusion. First, we did not mention in the paper that in vivo MC depolarized during SWR. The following sentences have added to result:

      “Previous research has shown that the hyperpolarization of MC membrane potential associated with SWR indicates that SWR is related to the inhibition of mossy cells (Henze and Buzsáki, 2007). However, our data showed that the proportion of cases of depolarization or hyperpolarization was about the same, with a slight excess of depolarization. However, it should be noted that MCs are highly active and fluctuating cells, and the determination of whether they are depolarized or hyperpolarized is highly dependent on the method of analysis. Moreover, the firing rate of MCs that we recorded was 1.07 ± 0.93 Hz (mean ± SD from 6 cells, 6 mice), and 6.68 ± 4.79% (mean ± SD from 6 cells, 6 mice, n = 757 SWR events) of all SWRs recruited MC firing (calculated as firing within 50 ms after the SWR peak). ” (Page 5, Line 143)

      (4) In the study, the observation that mossy cells (MCs) in the lower (infrapyramidal) blade of the dentate gyrus (DG) show higher predictability in SWR patterns is both intriguing and notable. This finding, however, appears to be mentioned without subsequent in-depth exploration or discussion. One wonders if this observed predictability might be influenced by potential disruptions or severed connections inherent to the brain slice preparation method used. Furthermore, it prompts the question of whether similar observations or trends have been noted in MCs recorded in vivo, which could either corroborate or challenge this intriguing in vitro finding.

      As you pointed out, one cannot rule out the possibility that this predictability may be influenced by potential disruptions or disconnections inherent in the methods used to prepare the acute slices. And the number of cells is limited to six with respect to the anatomical location of the MC recorded in vivo, making SWR and MC patch clamp recording very difficult even under anesthesia. Therefore, it is difficult to find statistical significance in the current data. We have added following text in Discussion:

      “In addition, the finding that SWR is more predictive when the recorded location of the MC is near the lower blade of the DG is unexpected, so the possibility that this result is influenced by potential disruptions or severed connections during the preparation of the acute slice cannot be ruled out.” (Page 14, Line 405)

      (5) The study's comparison of SWR predictability by mossy cells (MCs) is complicated by using different recording sites: CA3 for in vitro and CA1 for in vivo experiments, as shown in Fig. 2. Since CA1-SWRs can also arise from regions other than CA3 (see e.g. Oliva et al., 2016, Yamamoto and Tonegawa, 2017), it is difficult to reconcile in vitro and in vivo results. Addressing this difference and its implications for MC predictability in the results discussion would strengthen the study.

      Thank you for your comment. We have added the following discussion to your comment:

      “In this study, we performed MC patch-clamp recording both in vivo and in vitro, and clarified that SWR can be predicted from V_m of MC in both cases. However, there are three caveats to the interpretation of these data. First, the _in vivo SWR cannot be said to be exactly the same as the in vitro SWR: note that in vitro SWR has some similarities to in vivo SWR, such as spatial and spectral profiles and neural activity patterns (Maier et al., 2009; Hájos et al., 2013; Pangalos et al., 2013). The same concern applies to MC synaptic inputs. The in vivo V_m data may contain more information compared to the _in vitro single MC data, because the entire projections that target MCs are intact, resulting in a complete set of synaptic inputs related to SWR activity, as opposed to slices where connections are severed. While we recognize these differences, it is also very likely that there are common ways of expressing information. Second, since the in vivo LFP recordings were obtained from the CA1 region, it is possible that the CA1-SWR receives input from the CA2 region (Oliva et al., 2016) and the entorhinal cortex (Yamamoto and Tonegawa, 2017). In addition, urethane anesthesia has been observed to reduce subthreshold activity, spike synchronization, and SWR (Yagishita et al., 2020), making it difficult to achieve complete agreement with in vitro SWR recorded from the CA3 region. Finally, although we were able to record MC V_m during _in vivo SWR in this study, the in vivo data set consisted of recordings from a single MC, in contrast to the in vitro dataset. To perform the same analysis as in the in vitro experiment, it would be desirable to record LFPs from the CA3 region and collect data from multiple MCs simultaneously, but this is technically very difficult. In this study, it was difficult to directly clarify the consistency between CA3 network activity and in vivo MC synaptic input, but the fact that the SWR waveform can be predicted from in vivo MC V_m in CA1-SWR may be the result of some CA3 network activity being reflected in CA1-SWR. It is undeniable that more accurate predictions would have been possible if it had been possible to record LFP from the CA3 regions _in vivo. ” (Page 12, Line 357)

      • An appraisal of whether the authors achieved their aims, and whether the results support their conclusions

      As outlined in the abstract and introduction, the primary aim is to investigate the role of MCs in encoding neuronal information during sharp wave ripple complexes, a crucial neuronal process involved in memory consolidation and information transmission in the hippocampus. It is clear from the comprehensive details in this study that the authors have meticulously pursued their goals by providing extensive experimental evidence and utilizing innovative machine learning techniques to investigate the encoding of information in the hippocampus by mossy cells (MCs). Together, this study provides a compelling account supported by rigorous experimental and analytical methods. Linking subthreshold membrane potentials and population activity by machine learning provides a comprehensive new analytic approach and sheds new light on the role of MCs in information processing in the hippocampus. The study not only achieves the stated goals, but also provides novel methodology, and valuable insights into the dynamics of neural coding and information flow in the hippocampus.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments.

      • A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community

      Impact: Both the novel methodology and the provided biological insights will be of great interest to the community.

      Utility of methods/data: The applied deep learning approach will be of particular interest if the authors provide more details to improve its reproducibility (see related suggestions below).

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments.

      Reviewer #3 (Public Review):

      We appreciate that this reviewer raised several important issues. We are pleased to have been able to revise the paper into a better manuscript based on these comments. Individual responses are listed below:

      Compared to the pyramidal cells of the CA1 and CA3 regions of the hippocampus, and the granule cells of the dentate gyrus (DG), the computational role(s) of mossy cells of the DG have received much less attention over the years and are consequently not well understood. Mossy cells receive feedforward input from granule cells and feedback from CA3 cells. One significant factor is the compression of the large number of CA3 cells that input onto a much smaller population of mossy cells, which then send feedback connections to the granule cell layer. The present paper seeks to understand this compression in terms of neural coding, and asks whether the subthreshold activity of a small number of mossy cells can predict above chance levels the shapes of individual SWs produced by the CA3 cells. Using elegant multielectrode intracellular recordings of mossy cells, the authors use deep learning networks to show that they can train the network to "predict" the shape of a SW that preceded the intracellular activity of the mossy cells. Putatively, a single mossy cell can predict the shape of SWs above chance. These results are interesting, but there are some conceptual issues and questions about the statistical tests that must be addressed before the results can be considered convincing.

      We appreciate that this reviewer found scientific value in our manuscript. Thanks to the comments, we were pleased to be able to revise and improve the manuscript. Individual responses are listed below:

      Strengths

      (1) The paper uses technically challenging techniques to record from multiple mossy cells at the same time, while also recording SWs from the LFP of the CA3 layer. The data appear to be collected carefully and analyzed thoughtfully.

      (2) The question of how mossy cells process feedback input from CA3 is important to understand the role of this feedback pathway in hippocampal processing.

      3) Given the concerns expressed below about proper statistical testing are resolved, the data appear supportive of the main conclusions of the authors and suggest that, to some degree, the much smaller population of mossy cells can conserve the information present in the larger population of CA3 cells, presumably by using a more compressed, dense population code.

      We appreciate the reviewer’s critical evaluations, which have encouraged us to revise and resubmit this manuscript. We have revised our manuscript in line with the reviewer’s comments. Our point-by-point responses are provided below:

      Weaknesses

      4) Some of the statistical tests appear inappropriate because they treat each CA3 SW and associated Vm from a mossy cell as independent samples. This violates the assumptions of statistical tests such as the Kolmogorov-Smirnov tests of Figure 3C and Fig 3E. Although there is large variability among the SWs recorded and among the Vm's, they cannot be considered independent measurements if they derive from the same cell and same recording site of an individual animal. This becomes especially problematic when the number of dependent samples adds up to the tens of thousands, providing highly inflated numbers of samples that artificially reduce the p values. Techniques such as mixed-effects models are being increasingly used to factor out the effects of within cell and within animal correlations in the data. The authors need to do something similar to factor out these contributions in order to perform statistical tests, throughout the manuscript when this problem occurs.

      Thank you for the insightful comment. As for the correlation between the animals, since they were brought in at the same age and kept in the same environment, we do not think it is necessary to account for the differences due to environmental factors. As the reviewer pointed out, we cannot completely rule out the possibility that within cell or within animal correlation might influence the results, so we plotted the differences in prediction accuracy between cells, slices, and animals (Figure 3 - figure supplement 7). The results showed that prediction accuracy of the real data was better than that of the shuffled data in 66 of the 87 MCs (75.9%). In response to the comment that measurements from the same animal do not constitute independent samples, we have indicated that the average ΔRMSE for each mouse were calculated and these values were significantly different from 0 (n = 14, *p = 0.0041, Student’s t-test). In other words, even if each animal is considered an independent sample, it is possible to obtain statistically significant differences.

      5) A separate statistical problem occurs when comparing real data against a shuffled, surrogate data set. From the methods, I gather that Figure 3C combined data from 100 surrogate shuffles to compare to the real data. It is inappropriate to do a classic statistical test of data against such shuffles, because the number of points in the pooled surrogate data sets are not true samples from a population. It is a mathematical certainty that one can eventually drive a p value to < 0.05 just by increasing the number of shuffles sufficiently. Thus, the p value is determined by the number of computer shuffles allowed by the time and processing power of a computer, rather than by sampling real data from the population. Figures such as 4C and 5A are examples that test data against shuffle appropriately, as a single value is determined to be within or outside the 95% confidence interval of the shuffle, and this determination is not directly affected by the number of shuffles performed.

      Thank you for raising a very good point. We understand the reviewer's comments, but we cannot fully agree with the part that says "It is mathematical certainty that one can eventually drive a p value to < 0.05 just by increasing the number of shuffles sufficiently". This is because when comparing data with no difference at all, no amount of shuffling will produce a significant difference. In this regard, we agree that increasing the number of shuffles will lower the p-value when comparing data with even a small difference. Based on the reviewer's comments, we used a paired t-test to test whether the difference between RMSEreal and RMSEsurrogate was significantly different from 0, and showed it was significantly different (Figure 3 - figure supplement 5). Even when a paired t-test was used for the test, as in Figure 3E, a significant difference in the prediction error of the real and shuffled data was observed for all MC number inputs and also for the in vivo data.

      6) The last line of the Discussion states that this study provides "important insights into the information processing of neural circuits at the bottleneck layer," but it is not clear what these insights are. If the statistical problems are addressed appropriately, then the results do demonstrate that the information that is reflected in SWs can be reconstructed by cells in the MC bottleneck, but it is not certain what conceptual insights the authors have in mind. They should discuss more how these results further our understanding of the function of the feedback connection from CA3 to the mossy cells, discuss any limitations on their interpretation from recording LFPs rather than the single-unit ensemble activity (where the information is really encoded).

      Thank you for your insightful comment. We have added the following text to the discussion:

      “Given that different SWRs may encode information that correlates with different experiences, it is also possible that the activity of individual MCs may play a role in encoding different experiences via SWRs. Indeed, several in vivo studies have confirmed that MC activity is involved in the space encoding (Bui et al., 2018; Huang et al., 2024). However, the relationship with SWRs has not been investigated. The significance of the fact that the SWR recorded from CA3 is reflected in the MC as synaptic input is that it not only shows the transmission pathway from CA3 to MC, but also reveals the information below the threshold that leads to firing, and in a broad sense, it approaches the mechanism by which information processing by neuronal firing. And the expression of synaptic input to the MC is not uniform, but varies in a variety of ways according to the pattern of SWR. Based on previous research showing that diversity is important for information representation (Padmanabhan and Urban, 2010; Tripathy et al., 2013), it is possible that this heterogeneity in membrane potential levels, rather than the all-or-none output of neuronal firing activity, is the key to encoding more precise information. In this respect, our research, which focuses on information encoding at the subthreshold level, may be able to extract even more information than information encoded by firing activity. ” (Page 14, Line 419)

      7) In Figure 1C, the maximum of the MC response on the first inset precedes the SW, and the onset of the Vm response may be simultaneous with SW. This would suggest that the SW did not drive the mossy cell, but this was a coincident event. How many SW-mossy cell recordings are like this? Do the authors have a technical reason to believe that these are events in which the mossy cell is driven by the CA3 cells active during the SW?

      Thank you for your insightful comment. Based on your comment, we have aligned all the MC EPSPs for each SWR onset and found that the EPSPs rise after the SWR onset (Figure 1 - figure supplement 2). This leads us to believe that the EPSP of the MC is most likely driven by the SWR.

    1. Of course, we don’t just communicate verbally—we have various options, or channels for communication. Encoded messages are sent through a channel, or a sensory route on which a message travels, to the receiver for decoding. While communication can be sent and received using any sensory route (sight, smell, touch, taste, or sound), most communication occurs through visual (sight) and/or auditory (sound) channels. If your roommate has headphones on and is engrossed in a video game, you may need to get his attention by waving your hands before you can ask him about dinner.

      This is especially interesting to me now, as we saw the rise of smartphones people started to talk to each other in person less and less, especially after 2020. And I just think it's interesting to see how peoples interactions with each other changed after that. There is simply a lot more communication that is only text based now, I'd argue more now than there has ever been before. And I know from experience how easy it can be to misinterpret a text that someone sent, because you can't tell what tone they said it in through text and you can't see if they make a hand or arm motion to show its a joke, or a million other things could happen and cause someone to misjudge the situation that could never happen in person for a million different reasons.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Wu et al. introduce a novel approach to reactivate the Muller glia cell cycle in the mouse retina by simultaneously reducing p27Kip1 and increasing cyclin D1 using a single AAV vector. The approach effectively promotes Muller glia proliferation and reprograming without disrupting retinal structure or function. Interestingly, reactivation of the Muller glia cell cycle downregulates IFN pathway, which may contribute to the induced retinal regeneration. The results presented in this manuscript may offer a promising approach for developing Müller glia cell-mediated regenerative therapies for retinal diseases.

      Strengths:

      The data are convincing and supported by appropriate, validated methodology. These results are both technically and scientifically exciting and are likely to appeal to retinal specialists and neuroscientists in general.

      Weaknesses:

      There are some data gaps that need to be addressed.

      (1) Please label the time points of AAV injection, EdU labeling, and harvest in Figure 1B.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We have labeled all experiment timelines in the figures where appropriate in the revised version.

      (2) What fraction of Müller cells were transduced by AAV under the experimental conditions?

      We apologize for not clearly explaining the AAV transduction effeciency. AAV transduction efficiency was not uniform across the retinas. The retinal region adjacent to the optic nerve exhibits a transduction efficiency of nearly 100%. In contrast, the peripheral retina shows a lower transduction efficiency compared to the central region. The representative retinal sections with typical infection pattern are shown in Supplementary figure 4. The quantification of Edu+ MG or other markers was conducted in a 250 µm region with the highest efficiency. For scRNA-seq experiment, retinal regions with high AAV transduction efficiency were dissected with the aid of a control GFP virus.   

      (3) It seems unusually rapid for MG proliferation to begin as early as the third day after CCA injection. Can the authors provide evidence for cyclin D1 overexpression and p27 Kip1 knockdown three days after CCA injection?

      We included the data that GFP expression is evident at 3 days post AAV-GFP-GFP injection (Supplementary Fig. 1B). Additionally, we performed immunostaining and confirmed cyclin D1 overexpression at 3 days post CCA injection (Fig. 2E) as well as qPCR analysis to confirm cyclin D1 overexpression and p27kip1 knockdown at the same time point (Supplementary Fig. 5).

      (4) The authors reported that MG proliferation largely ceased two weeks after CCA treatment. While this is an interesting finding, the explanation that it might be due to the dilution of AAV episomal genome copies in the dividing cells seems far-fetched.

      We agree with the reviewer that dilution of AAV episomal genomes is unlikely to be the sole reason for the stop of MG proliferation. By staining cyclin D1 at various days post CCA injection, we found that cyclin D1 is immediately downregulated in the mitotic MG undergoing interkinetic nuclear migration to the outer nuclear layer (Fig. 2G-I). In contrast, the effect of p27<sup>kip1</sup> knockdown by CCA lasted longer (Supplementary Figure 9-10). It is possible that other anti-proliferative genes are involved in the immediate downregulation of Cyclin D1.

      Reviewer #2 (Public Review):

      This manuscript by Wu, Liao et al. reports that simultaneous knockdown of P27Kip1 with overexpression of Cyclin D can stimulate Muller glia to re-enter the cell cycle in the mouse retina. There is intense interest in reprogramming mammalian muller glia into a source for neurogenic progenitors, in the hopes that these cells could be a source for neuronal replacement in neurodegenerative diseases. Previous work in the field has shown ways in which mouse Muller glia can be neurogenically reprogrammed and these studies have shown cell cycle re-entry prior to neurogenesis. In other works, typically, the extent of glial proliferation is limited, and the authors of this study highlight the importance of stimulating large numbers of Muller glia to re-enter the cell cycle with the hopes they will differentiate into neurons. While the evidence for stimulating proliferation in this study is convincing, the evidence for neurogenesis in this study is not convincing or robust, suggesting that stimulating cell cycle-reentry may not be associated with increasing regeneration without another proneural stimulus.

      Below are concerns and suggestions.

      Intro:

      (1) The authors cite past studies showing "direct conversion" of MG into neurons. However, these studies (PMID: 34686336; 36417510) show EdU+ MG-derived neurons suggesting cell cycle re-entry does occur in these strategies of proneural TF overexpression.

      We thank the reviewer for pointing this out. We have revised the statement to "MG reprogramming".

      (2) Multiple citations are incorrectly listed, using the authors first name only (i.e. Yumi, et al; Levi, et al;). Studies are also incompletely referenced in the references.

      We apologize for the mistakes in reference. We have corrected the reference mistakes in the revised version.

      Figure 1:

      (3) When are these experiments ending? On Figure 1B it says "analysis" on the end of the paradigm without an actual day associated with this. This is the case for many later figures too. The authors should update the paradigms to accurately reflect experimental end points.

      We thank the reviewer for highlighting the lack of clarity in our experimental design. We have labeled all experiment timelines in the figures where appropriate in the revised version.

      (4) Are there better representative pictures between P27kd and CyclinD OE, the EdU+ counts say there is a 3 fold increase between Figure 1D&E, however the pictures do not reflect this. In fact, most of the Edu+ cells in Figure 1E don't seem to be Sox9+ MG but rather horizontally oriented nuclei in the OPL that are likely microglia.

      Thanks to the reviewer for pointing this out. We have replaced the image of cyclin D1 OE retina which a more representative image.

      (5) Is the infection efficacy of these viruses different between different combinations (i.e. CyclinD OE vs. P27kd vs. control vs. CCA combo)? As the counts are shown in Figure 1G only Sox9+/Edu+ cells are shown not divided by virus efficacy. If these are absolute counts blind to where the virus is and how many cells the virus hits, if the virus efficacy varies in efficiency this could drive absolute differences that aren't actually biological.

      Rule out the possibility that the differences in MG proliferation across groups are due to variations in viral efficacy, we have examined the p27<sup>kip1</sup> knockdown and cyclin D1 overexpression efficiencies for all four groups by qPCR analysis. The result showed that cyclin D1 overexpression efficiency by AAV-GFAP-Cyclin D1 virus alone or P27 knockdown efficiency by AAV-GFAP-mCherry-p27kip1 shRNA1 is comparable to, if not even higher than, those by CCA virus (Supplementary Fig 5). Therefore, the virus efficacy cannot explain the drastic increase in MG proliferation by CCA. 

      As the central retina usually had 100% infection efficacy (Supplementary Fig. 4), we quantified the Edu+Sox9+ cell number in the 250µm regions next to the optic nerve.

      (6) According to the Jax laboratories, mice aren't considered aged until they are over 18months old. While it is interesting that CCA treatment does not seem to lose efficacy over maturation I would rephrase the findings as the experiment does not test this virus in aged retinas.

      Thank you to the reviewer for bringing this to our attention. We have changed to “older adult mice” in our revised manuscript.

      (7) Supplemental Figure 2c-d. These viruses do not hit 100% of MG, however 100% of the P27Kip staining is gone in the P27sh1 treatment, even the P27+ cell in the GCL that is likely an astrocyte has no staining in the shRNA 1 picture. Why is this?

      We have replaced the images in Supplementary Fig. 2B-D.

      Figure 2

      (8) Would you expect cells to go through two rounds of cell cycle in such a short time? The treatment of giving Edu then BrdU 24 hours later would have to catch a cell going through two rounds of division in a very short amount of time. Again the end point should be added graphically to this figure.

      We thank the reviewer for the comment. We repeated the Edu/BrdU colabelling experiment with extended periods of Edu/BrdU injections. Based on the result of the MG proliferation time course study (Fig. 2A), we injected 5 times of Edu from D1 to D5 and 5 times of BrdU from D6 to D10 post-CCA injection, which covered the major phase of MG proliferation (Fig. 2B-C). Consistent with the previous findings, we did not observe any BrdU&EdU double positive MG cells.

      Additionally, we showed that cyclin D1 overexpression immediately ceased in migrating mitotic MG (Fig. 2G-I), which may explain why CCA-treated MG do not progress to the second round of cell division.

      Figure 3

      (9) I am confused by the mixing of ratios of viruses to indicate infection success. I know mixtures of viruses containing CCA or control GFP or a control LacZ was injected. Was the idea to probe for GFP or LacZ in the single cell data to see which cells were infected but not treated? This is not shown anywhere?

      The virus infection was not uniform across the entire retina (Supplementary Fig. 4). To mark the infection hotspots, we added 10% GFP virus to the mixture. Regions of the retina with low infection efficiency were removed by dissection and excluded from the scRNA-seq analysis. Therefore, we assumed that the vast majority of MG were infected by CCA. We apologize for not clearly explaining this methodological detail in the original text. We have added the experimental design to Fig. 3A and revised the result part (line 191-196) accordingly.

      (10) The majority of glia sorted from TdTomato are probably not infected with virus. Can you subset cells that were infected only for analysis? Otherwise it makes it very hard to make population judgements like Figure 3E-H if a large portion are basically WT glia.

      This question is related to the last one. Since the regions with high virus infection efficiency were selectively dissected and isolated for analysis, the CCA-infected MG should constitute the vast majority of MG in the scRNA-seq data.

      (11) Figure 3C you can see Rho is expressed everywhere which is common in studies like this because the ambient RNA is so high. This makes it very hard to talk about "Rod-like" MG as this is probably an artifact from the technique. Most all scRNA-seq studies from MG-reprogramming have shown clusters of "rods" with MG hybrid gene expression and these had in the past just been considered an artifact.

      We agree with the reviewer that the high rod gene expression in the rod-MG cluster is an artifact. We have performed multiple rounds of RNA in situ hybridization on isolated MG nuclei. The counts of Gnat1 and Rho mRNA signal are largely overlapped between the two samples with and without CCA treatment (Supplementary Fig 14). Some MG in the control retinas without CCA treatment had up to 7 or 8 dots per cell, suggesting contamination of attached rod cell debris during retina dissociation (Supplementary Fig 14). Therefore, the result did not support that rod-MG is a reprogrammed MG population with rod gene upregulation.

      (12) It is mentioned the "glial" signature is downregulated in response to CCA treatment. Where is this shown convincingly? Figure H has a feature plot of Glul, which is not clear it is changed between treatments. Otherwise MG genes are shown as a function of cluster not treatment.

      We have added box plots of several MG-specific genes to illustrate the downregulation of the glial signature in the relevant cell cluster in the revised manuscript (Supplementary Fig. 15).

      Figure 4

      (13) The authors should be commended for being very careful in their interpretations. They employ the proper controls (Er-Cre lineage tracing/EdU-pulse chasing/scRNA-seq omics) and were very careful to attempt to see MG-derived rods. This makes the conclusion from the FISH perplexing. The few puncta dots of Rho and GNAT in MG are not convincing to this reviewer, Rho and GNAT dots are dense everywhere throughout the ONL and if you drew any random circle in the ONL it would be full of dots. The rigor of these counts also comes into question because some dots are picked up in MG in the INL even in the control case. This is confusing because baseline healthy MG do not express RNA-transcripts of these Rod genes so what is this picking up? Taken together, the conclusion that there are Rod-like MG are based off scRNA-seq data (which is likely ambient contamination) and these FISH images. I don't think this data warrants the conclusion that MG upregulate Rod genes in response to CCA.

      Given the results of RNA in situ hybridization on isolated MG, we revisited the result of the RNA in situ hybridization on retinal sections as well. We performed RNA in situ in the retinal section at 1 week post CCA treatment, expecting to see lower Gnat1 and Rho signals in the ONL-localizing MG compared to 3 weeks and 4 months post CCA treatment. However, we observed similar levels across all three time points (data not shown). The lack of dynamic changes in rod gene expression levels also suggests contamination from tightly surrounding neighboring rods. Consequently, we have reinterpreted the scRNA-seq and RNA FISH data and withdrawn the conclusion that MG upregulated rod genes after CCA treatment. We thank the reviewer for pointing out this potential issue and helping us avoid an incorrect conclusion.

      Figure 5

      (14) Similar point to above but this Glul probe seems odd, why is it throughout the ONL but completely dark through the IPL, this should also be in astrocytes can you see it in the GCL? These retinas look cropped at the INL where below is completely black. The whole retinal section should be shown. Antibodies exist to GS that work in mouse along with many other MG genes, IHC or western blots could be done to better serve this point.

      We have replaced the images in Figure 4 in the revised manuscript. Additionally, we have performed the Sox9 antibody staining to demonstrate partial MG dedifferentiation following CCA treatment (Figure 5).

      Figure 6

      (15) Figure 6D is not a co-labeled OTX2+/ TdTomato+ cell, Otx2 will fill out the whole nucleus as can be seen with examples from other MG-reprogramming papers in the field (Hoang, et al. 2020; Todd, et al. 2020; Palazzo, et al. 2022). You can clearly see in the example in Figure 6D the nucleus extending way beyond Otx2 expression as it is probably overlapping in space. Other examples should be shown, however, considering less than 1% of cells were putatively Otx2+, the safer interpretation is that these cells are not differentiating into neurons. At least 99.5% are not.

      We have replaced the image of Otx2+ Tdt+ Edu+ cell, which shows the whole nucleus filled with strong Otx2 staining.  

      (16) Same as above Figure 6I is not convincingly co-labeled HuC/D is an RNA-binding protein and unfortunately is not always the clearest stain but this looks like background haze in the INL overlapping. Other amacrine markers could be tested, but again due to the very low numbers, I think no neurogenesis is occurring.

      Since we didn’t find HuC/D+Tdt+EdU+ cells at 3 weeks post CCA treatment, we believe that the weak HuC/D+ staining in the MG daughter cells at 4 months is not background, but rather reflects an incomplete neurogenic switch. This suggests that the process of neurogenesis may be ongoing but not fully realized within the observed timeframe without additional stimuli.

      (17) In the text the authors are accidently referring to Figure 6 as Figure 7.

      We thank the reviewer for pointing out the mistake. We will correct the mistake in the revised manuscript.

      Figure 7

      (18) I like this figure and the concept that you can have additional MG proliferating without destroying the retina or compromising vision. This is reminiscent of the chick MG reprogramming studies in which MG proliferate in large numbers and often do not differentiate into neurons yet still persist de-laminated for long time points.

      General:

      (19) The title should be changed, as I don't believe there is any convincing evidence of regeneration of neurons. Understanding the barriers to MG cell-cycle re-entry are important and I believe the authors did a good job in that respect, however it is an oversell to report regeneration of neurons from this data.

      We thank the reviewer for the suggestion. We have changed the title to “Simultaneous cyclin D1 overexpression and p27kip1 knockdown enable robust Müller glia cell cycle reactivation in uninjured mouse retina” in the revised manuscript.

      (20) This paper uses multiple mouse lines and it is often confusing when the text and figures switch between models. I think it would be helpful to readers if the mouse strain was added to graphical paradigms in each figure when a different mouse line is employed.

      We have labeled the mouse lines used in each experiment in the figures where appropriate.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Mehmet Mahsum Kaplan et al. demonstrate that Meis2 expression in neural crest-derived mesenchymal cells is crucial for whisker follicle (WF) development, as WF fails to develop in wnt1-Cre;Meis2 cKO mice. Advanced imaging techniques effectively support the idea that Meis2 is essential for proper WF development and that nerves, while affected in Meis2 cKO, are dispensable for WF development and not the primary cause of WF developmental failure. The study also reveals that although Meis2 significantly downregulates Foxd1 in the mesenchyme, this is not the main reason for WF development failure. The paper presents valuable data on the role of mesenchymal Meis2 in WF development. However, further quantification and analysis of the WF developmental phenotype would be beneficial in strengthening the claim that Meis2 controls early WF development rather than causing a delay or arrest in development. A deeper sequencing data analysis could also help link Meis2 to its downstream targets that directly impact the epithelial compartment.

      Strengths:

      (1) The authors describe a novel molecular mechanism involving Mesenchymal Meis2 expression, which plays a crucial role in early WF development.

      (2) They employ multiple advanced imaging techniques to illustrate their findings beautifully.

      (3) The study clearly shows that nerves are not essential for WF development.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      (1) The authors claim that Meis2 acts very early during development, as evidenced by a significant reduction in EDAR expression, one of the earliest markers of placode development. While EDAR is indeed absent from the lower panel in Figure 3C of the Meis2 cKO, multiple placodes still express EDAR in the upper two panels of the Meis2 cKO. The authors also present subsequent analysis at E13.3, showing one escaped follicle positive for SHH and Sox9 in Figures 1 and 3. Does this suggest that follicles are specified but fail to develop? Alternatively, could there be a delay in follicle formation? The increase in Foxd1 expression between E12.5 and E13.5 might also indicate delayed follicle development, or as the authors suggest, follicles that have escaped the phenotype. The paper would significantly benefit from robust quantification to accompany their visual data, specifically quantifying EDAR, Sox9, and Foxd1 at different developmental stages. Additionally, analyzing later developmental stages could help distinguish between a delay or arrest in WF development and a complete failure to specify placodes.

      The earliest DC (FOXD1) and placodal (EDAR, LEF1) markers tested in this study were observed only in the escaped WFs whereas these markers were missing in expected WF sites in mutants. This was also reflected in the loss of typical placodal morphology in the mutant’s epithelium. On the other hand, escaped WFs developed normally as shown by the analysis in Supp Fig 1A-B showing their normal size. These data suggest that development of escaped WFs is not delayed because they would appear smaller in size. To strengthen this conclusion, we assessed whisker development at E18.5 in Meis2 cKO mice by EDAR staining and results are shown in newly added Supplementary Figure 2. This experiment revealed that whisker phenotype persisted until E18.5 therefore this phenotype cannot be explained by a developmental delay.

      As far as quantification is concerned, we have already quantified the number of whiskers in controls and mutants at E12.5 and E13.5 in all whole mount experiments we did, i.e. Shh ISH and SOX9 or EDAR whole mount IFC. We pooled all these numbers together and calculated the whisker number reduction to 5.7+/-2.0% at E12.5 and 17.1+/-5.9 at E13.5. Line:132-134.

      (2) The authors show that single-cell sequencing reveals a reduction in the pre-DC population, reduced proliferation, and changes in cell adhesion and ECM. However, these changes appear to affect most mesenchymal cells, not just pre-DCs. Moreover, since E12.5 already contains WFs at different stages of development, as well as pre-DCs and DCs, it becomes challenging to connect these mesenchymal changes directly to WF development. Did the authors attempt to re-cluster only Cluster 2 to determine if a specific subpopulation is missing in Meis2 cKO? Alternatively, focusing on additional secreted molecules whose expression is disrupted across different clusters in Meis2 cKO could provide insights, especially since mesenchymal-epithelial communication is often mediated through secreted molecules. Did the authors include epithelial cells in the single-cell sequencing, can they look for changes in mesenchyme-epithelial cell interactions (Cell Chat) to indicate a possible mechanism?

      We agree with the reviewer that the effect of Meis2 on cell proliferation and expression of cell adhesion and ECM markers are more general because they take place in the whole underlying mesenchyme. Our genetic tools did not allow specific targeting of DC or pre-DCs. Nonetheless, we trust that our data show that mesenchymal Meis2 is required for the initial steps of WF development including Pc formation. As far as bioinformatics data are concerned, this data set was taken from the large dataset GSE262468 covering the whole craniofacial region which led to very limited cell numbers in the cluster 2 (DC): WT_E12_5 --> 28, WT_E13_5 --> 131, MUT_E12_5 --> 19, MUT_E13_5 --> 28. Unfortunately, such small cell numbers did not allow further sub-clustering, efficient normalization, integration and conclusions from their transcriptional profiles. Although a number of interesting differentially expressed genes were identified (see supplementary datasets), none of them convincingly pointed at reasonable secreted molecule candidate. 

      We agree with the reviewer that cellchat analysis could provide robust indication of the mesenchymal-epithelial communication, however our datasets included only mesenchymal cell population (Wnt1-Cre2progeny) and epithelial cells were excluded by FACS prior to sc RNA-seq. (Hudacova et al. https://doi.org/10.1016/j.bone.2024.117297)

      (3) The authors aim to link Meis2 expression in the mesenchyme with epithelial Wnt signaling by analyzing Lef1, bat-gal, Axin1, and Wnt10b expression. However, the changes described in the figures are unclear, and the phenotype appears highly variable, making it difficult to establish a connection between Meis2 and Wnt signaling. For instance, some follicles and pre-condensates are Lef1 positive in Meis2 cKO. Including quantification or providing a clearer explanation could help clarify the relationship between mesenchymal Meis2 and Wnt signaling in both epidermal and mesenchymal cells. Did the authors include epithelial cells in the sequencing? Could they use single-cell analysis to demonstrate changes in Wnt signaling?

      We have now analyzed changes in LEF1 staining intensity in the epithelium and in the upper dermis. According to these quantifications, we observed a considerable decline in the number of LEF1+ placodes in the epithelium which corresponds to the lower number of placodes. On the other hand, LEF1 intensity in the ‘escaped’ placodes were similar between controls and mutants. LEF1 signal in the upper dermis is very strong overall and its quantification did not reveal any changes in the DC and non-DC region of the upper dermis. These data corroborate with our conclusion that Meis2 in the mesenchyme is not crucial for the dermal WNT signaling but is required for induction of LEF1 expression in the epithelium. However, once ‘escaper’ placodes appear, they display normal wnt signaling in Pc, DC and subsequent development. These quantitative data have been added to the revised manuscript. Line247-260.

      (4) Existing literature, including studies on Neurog KO and NGF KO, as well as the references cited by the authors, suggest that nerves are unlikely to mediate WF development. While the authors conduct a thorough analysis of WF development in Neurog KO, further supporting this notion, this point may not be central to the current work. Additionally, the claim that Meis2 influences trigeminal nerve patterning requires further analysis and quantification for validation.

      We agree with the reviewer that analysis of the Neurogenin1 knockout mice should not be central to this report. Nonetheless, a thorough analysis of WF development in Neurog1 KO was needed to distinguish between two possible mechanisms: whisker phenotype in Meis2 cKO results from 1. impaired nerve branching 2. Function of Meis2 in the mesenchyme. We will modify the text accordingly to make this clearer to readers. We also agree that nerve branching was not extensively analyzed in the current study but two samples from mutant mice were provided (Fig1 and Supp Videos), reflecting the consistency of the phenotype (see also Machon et al. 2015). This section was not central to this report either but led us to focus fully on the mesenchyme. We think that Meis2 function in cranial nerve development is very interesting and deserves a separate study.

      We have edited the introduction to reflect the literature better. Line70-79.

      (5) Meis2 expression seems reduced but has not entirely disappeared from the mesenchyme. Can the authors provide quantification?

      We have attempted to quantify MEIS2 staining in the snout dermis. However, the background fluorescence made it challenging to reliable quantify. Additionally, since at the point, dermal region where MEIS2 expression is relevant to induce WF formation is not known, we were unable to determine the regions to analyze. Instead, we now added three additional images from multiple regions of the snout sections stained with MEIS2 antibody in Supplementary Figure 1C. We believe newly added images will make our conclusion that MEIS2 is efficiently deleted in the mutants more convincing.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Kaplan et al. study mesenchymal Meis2 in whisker formation and the links between whisker formation and sensory innervation. To this end, they used conditional deletion of Meis2 using the Wnt1 driver. Whisker development was arrested at the placode induction stage in Meis2 conditional knockouts leading to the absence of expression of placodal genes such as Edar, Lef1, and Shh. The authors also show that branching of trigeminal nerves innervating whisker follicles was severely affected but that whiskers did form in the complete absence of trigeminal nerves.

      Strengths:

      The analysis of Meis2 conditional knockouts convincingly shows a lack of whisker formation and all epithelial whisker/hair placode markers were analyzed. Using Neurog1 knockout mice, the authors show equally convincingly that whiskers and teeth develop in the complete absence of trigeminal nerves.

      We thank the reviewer for valuable comments that will help improve our study.

      Weaknesses:

      The manuscript does not provide much mechanistic insight as to why mesenchymal Meis2 leads to the absence of whisker placodes. Using a previously generated scRNA-seq dataset they show that two early markers of dermal condensates, Foxd1 and Sox2, are downregulated in Meis2 mutants. However, given that placodes and dermal condensates do not form in the mutants, this is not surprising and their absence in the mutants does not provide any direct link between Meis2 and Foxd1 or Sox2. (The absence of a structure evidently leads to the absence of its markers.)

      We apologize for unclear explanation of our data. We meant that Meis2 is functionally upstream of Foxd1 because Foxd1 is reduced upon Meis2 deletion. This means that during WF formation, Meis2 operates before Foxd1 induction and does not mean necessarily that Meis2 directly controls expression of Foxd1. Yes, we agree with reviewer’s note that Foxd1 and Sox2, as known DC markers, decline because the number of WF declines. We wanted to convince readers that Meis2 operates very early in the GRN hierarchy during WF development. We also admit that we provide poor mechanistic insights into Meis2 function as a transcription factor. We think that this weak point does not lower the value of the report showing indispensable role of Meis2 in WFs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The text could benefit from editing.

      We have proofread the text.

      Some information is missing from the materials and methods section - a description of sequenced cells, the ISH protocol used, etc.

      Methodological section has been updated and single-cell experiments were performed and described in detail by Hudacova et al. 2025  (https://doi.org/10.1016/j.bone.2024.117297). We have utilized these datasets for scRNA analysis which has been described sufficiently in the referred paper. Reference for standard in site protocol has been added.

      Reviewer #2 (Recommendations for the authors):

      In the Introduction of the paper, the authors raise the question on the role of innervation in whisker follicle induction "It has been speculated that early innervation plays a role in initiating WF formation (ref. 1)"...and..."this revives the previous speculations that axonal network may be involved in WF positioning". However, the authors forget to mention that Wrenn & Wessless, 1984 (reference 1 in the manuscript) made exactly the opposite conclusion and stated e.g. "Nerve trunks and branches are present in the maxillary process well before any sign of vibrissa formation. Because innervation is so widespread there appears to be no immediate temporal correlation between the outgrowth of a nerve branch to a site and the generation of a vibrissa there. Furthermore, at the time just prior to the formation of the first follicle rudiment, there is little or no nerve branching to the presumptive site of that first follicle while branches are found more dorsally where vibrissae will not form until later." Therefore, I find that referring to the paper by Wrenn & Wessells is somewhat misleading. Given that the whisker follicles develop in ex vivo cultured whisker pads further hints that innervation is unlikely to play a role in whisker follicle induction.

      The Introduction also hints at the role of innervation in tooth induction but forgets to refer to the literature that shows exactly the opposite. Based on the evidence it rather appears that the developing tooth regulates the establishment of its own nerve supply, not that the nerves would regulate induction of tooth development.

      in my opinion, the Introduction should be partially rewritten to better reflect the literature.

      The introduction has been revised to better reflect the literature on the role of innervation on WF and tooth development. Line70-87.

      The authors conclude that Meis2 is upstream of Foxd1, but the evidence is based on the lack of Foxd1 expression in Meis2 mutants. However, as whiskers do not form, evidently all markers are also absent. More direct evidence of Meis2 being upstream of Foxd1 (or Sox2) should be presented to consolidate the conclusions.

      We have already reacted to this point above in the section Weaknesses. The text is now modified so that the interpretation is correct. Line: 407-409.

      Other comments:

      Author contributions state that XX performed experiments but the author list does not include anyone with such initials.

      This error has been corrected in revision.

    1. “You may haveheard that women don’t do as well as men on difficult standardized math tests,but that’s not true for the particular standardized math test; on this particulartest, women always do as well as men.”

      REACT: In my perspective, this text challenges the stereotype that women perform worse than men on math tests by pointing out that, in this specific case, women perform just as well. It highlights the idea that gender differences in performance might not be as clear-cut as we think and suggests that external factors, not ability, could influence test results.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the editor and reviewers for their supportive comments about our modeling approach and conclusions, and for raising several valid concerns; we address them briefly below. In addition, a detailed, point-by-point response to the reviewers’ comments are below, along with additions and edits we have made to the revised manuscript. 

      Concerns about model’s biological realism and impact on interpretations

      The goal of this paper was to use an interpretable and modular model to investigate the impact of varying sensorimotor delays. Aspects of the model (e.g. layered architecture, modularity) are inspired by biology; at the same time, necessary abstractions and simplifications (e.g. using an optimal controller) are made for interpretability and generalizability, and they reflect common approaches from past work. The hypothesized effects of certain simplifying assumptions are discussed in detail in Section 3.5. Furthermore, the modularity of our model allows us to readily incorporate additional biological realism (e.g. biomechanics, connectomics, and neural dynamics) in future work. In the revision, we have added citations and edits to the text to clarify these points.

      Concerns that the model is overly complex

      To investigate the impact of sensorimotor delays on locomotion, we built a closed-loop model that recapitulates the complex joint trajectories of fly walking. We agree that locomotion models face a tradeoff between simplicity/interpretability and realism — therefore, we developed a model that was as simple and interpretable as possible, while still reasonably recapitulating joint trajectories and generalizing to novel simulation scenarios. Along these lines, we also did not select a model that primarily recreates empirical data, as this would hinder generalizability and add unnecessary complexity to the model. We do not think these design choices are significant weaknesses of this model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data. We have add citations and edits to the text to clarify these points in the revision. 

      Concerns about the validity of the Kinematic Similarity (KS) metric to evaluate walking

      We chose to incorporate only the first two PCA modes dimensions in the KS metric because the kernel density estimator performs poorly for high dimensional data. Our primary use of this metric was to indicate whether the simulated fly continues walking in the presence of perturbations. For technical reasons, it is not feasible to perform equivalent experiments on real walking flies, which is one of the reasons we explore this phenomenon with the model. We note the dramatic shift from walking to nonwalking as delay increases (Figure 5). To be thorough, in the revision, we have investigated the effect of incorporating additional PCA modes, and whether this affects the interpretation of our results. We have additionally added to the discussion and presentation of the KS metric to clarify its purpose in this study. We agree with the reviewers that the KS metric is too coarse to reflect fine details of joint kinematics; indeed, in the unperturbed case, we evaluate our model’s performance using other metrics based on comparisons with empirical data (Figures 2, 7, 8). 

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors present a novel, multi-layer computational model of motor control to produce realistic walking behaviour of a Drosophila model in the presence of external perturbations and under sensory and motor delays. The novelty of their model of motor control is that it is modular, with divisions inspired by the fly nervous system, with one component based on deep learning while the rest are based on control theory. They show that their model can produce realistic walking trajectories. Given the mostly reasonable assumptions of their model, they convincingly show that the sensory and motor delays present in the fly nervous system are the maximum allowable for robustness to unexpected perturbations.

      Their fly model outputs torque at each joint in the leg, and their dynamics model translates these into movements, resulting in time-series trajectories of joint angles. Inspired by the anatomy of the fly nervous system, their fly model is a modular architecture that separates motor control at three levels of abstraction:

      (1) oscillator-based model of coupling of phase angles between legs,

      (2) generation of future joint-angle trajectories based on the current state and inputs for each leg (the trajectory generator), and

      (3) closed-loop control of the joint-angles using torques applied at every joint in the model (control and dynamics).

      These three levels of abstraction ensure coordination between the legs, future predictions of desired joint angles, and corrections to deviations from desired joint-angle trajectories. The parameters of the model are tuned in the absence of external perturbations using experimental data of joint angles of a tethered fly. A notable disconnect from reality is that the dynamics model used does not model the movement of the body and ground contacts as is the case in natural walking, nor the movement of a ball for a tethered fly, but instead something like legs moving in the air for a tethered fly.

      n order to validate the realism of the generated simulated walking trajectories, the authors compare various attributes of simulated to real tethered fly trajectories and show qualitative and quantitative similarities, including using a novel metric coined as Kinematic Similarity (KS). The KS score of a trajectory is a measure of the likelihood that the trajectory belongs to the distribution of real trajectories estimated from the experimental data. While such a metric is a useful tool to validate the quality of simulated data, there is some room for improvement in the actual computation of this score. For instance, the KS score is computed for any given time-window of walking simulation using a fraction of information from the joint-angle trajectories. It is unclear if the remaining information in joint-angle trajectories that are not used in the computation of the KS score can be ignored in the context of validating the realism of simulated walking trajectories.

      The authors validate simulated walking trajectories generated by the trained model under a range of sensorimotor delays and external perturbations. The trained model is shown to generate realistic jointangle trajectories in the presence of external perturbations as long as the sensorimotor delays are constrained within a certain range. This range of sensorimotor delays is shown to be comparable to experimental measurements of sensorimotor delays, leading to the conclusion that the fly nervous system is just fast enough to be robust to perturbations.

      Strengths:

      This work presents a novel framework to simulate Drosophila walking in the presence of external perturbations and sensorimotor delay. Although the model makes some simplifying assumptions, it has sufficient complexity to generate new, testable hypotheses regarding motor control in Drosophila. The authors provide evidence for realistic simulated walking trajectories by comparing simulated trajectories generated by their trained model with experimental data using a novel metric proposed by the authors. The model proposes a crucial role in future predictions to ensure robust walking trajectories against external perturbations and motor delay. Realistic simulations under a range of prediction intervals, perturbations, and motor delays generating realistic walking trajectories support this claim. The modular architecture of the framework provides opportunities to make testable predictions regarding motor control in Drosophila. The work can be of interest to the Drosophila community interested in digitally simulating realistic models of Drosophila locomotion behaviors, as well as to experimentalists in generating testable hypotheses for novel discoveries regarding neural control of locomotion in Drosophila. Moreover, the work can be of broad interest to neuroethologists, serving as a benchmark in modelling animal locomotion in general.

      We thank the reviewer for their positive comments.

      Weaknesses:

      As the authors acknowledge in their work, the control and dynamics model makes some simplifying assumptions about Drosophila physics/physiology in the context of walking. For instance, the model does not incorporate ground contact forces and inertial effects of the fly's body. It is not clear how these simplifying assumptions would affect some of the quantitative results derived by the authors. The range of tolerable values of sensorimotor delays that generate realistic walking trajectories is shown to be comparable with sensorimotor delays inferred from physiological measurements. It is unclear if this comparison is meaningful in the context of the model's simplifying assumptions.

      We now discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We reproduce the relevant sentences below:

      “The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”

      “We anticipate that the increased sensory resolution from more detailed proprioceptor models and the stability from mechanical compliance of limbs in a more detailed biomechanical model would make the system easier to control and increase the allowable range of delay parameters. Conversely, we expect that modeling the nonlinearity and noise inherent to biological sensors and actuators may decrease the allowable range of delay parameters.”

      The authors propose a novel metric coined as Kinematic Similarity (KS) to distinguish realistic walking trajectories from unrealistic walking trajectories. Defining such an objective metric to evaluate the model's predictions is a useful exercise, and could potentially be applied to benchmark other computational animal models that are proposed in the future. However, the KS score proposed in this work is calculated using only the first two PCA modes that cumulatively account for less than 50% of the variance in the joint angles. It is not obvious that the information in the remaining PCA modes may not change the log-likelihood that occurs in the real walking data.

      The primary reason we designed the KS metric was to determine whether the simulated fly continues walking in the presence of perturbations. We initially limited the analysis of the KS to the first 2 principal components. For completeness, we now investigate the additional principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10. 

      Overall, the results look similar when including additional components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9, which shows that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation. 

      We added the following text in the methods:

      “We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”

      (Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)

      We also reference Appendix 10 in the results:

      “We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”

      Reviewer #2 (Public Review):

      Summary:

      In this study, Karashchuk et al. develop a hierarchical control system to control the legs of a dynamic model of the fly. They intend to demonstrate that temporal delays in sensorimotor processing can destabilize walking and that the fly's nervous system may be operating with as long of delays as could possibly be corrected for.

      Strengths:

      Overall, the approach the authors take is impressive. Their model is trained using a huge dataset of animal data, which is a strength. Their model was not trained to reproduce animal responses to perturbations, but it successfully rejects small perturbations and continues to operate stably. Their results are consistent with the literature, that sensorimotor delays destabilize movements.

      Weaknesses:

      The model is sophisticated and interesting, but the reviewer has great concerns regarding this manuscript's contributions, as laid out in the abstract:

      (1) Much simpler models can be used to show that delays in sensorimotor systems destabilize behavior (e.g., Bingham, Choi, and Ting 2011; Ashtiani, Sarvestani, and Badri-Sproewitz 2021), so why create this extremely complex system to test this idea? The complexity of the system obscures the results and leaves the reviewer wondering if the instability is due to the many, many moving parts within the model. The reviewer understands (and appreciates) that the authors tested the impact of the delay in a controlled way, which supports their conclusion. However, the reviewer thinks the authors did not use the most parsimonious model possible, and as such, leave many possible sources for other causes of instability.

      We thank the reviewer for this observation — we agree that we did not make the goal of the work quite clear. The goal of this paper was to build an interpretable and generalizable model of fly walking, which was then used to investigate varying sensorimotor delays in the context of locomotion. To this end, we used a modular model to recreate walking kinematics, and then investigated the effect of delays on locomotion. Locomotion in itself is a complex phenomenon — thus, we have chosen a model that is complex enough to reasonably recapitulate joint trajectories, while remaining interpretable.

      We have clarified this in the text near the end of the introduction:

      “Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”

      We also emphasize the investigation of sensorimotor delays in the context of locomotion in the beginning of the “Effect of sensory and motor delays on walking” section:

      “... we used our model to investigate how changing sensory and motor delays affects locomotor robustness.”

      We also remark that while they are very relevant papers for our work, neither of the prior papers focus on locomotion: the first involves a 2D balance model of a biped, and the second involves drop landings of quadrupeds.

      Lastly, we note that the investigation of delay is not the only use for this model —  in the future, this model can also be used to study other aspects of locomotion such as the role of proprioceptive feedback (see “Role of proprioceptive feedback in fly walking” section). The layered framework of the model can also be extended to other animals and locomotor strategies (see “Layered model produces robust walking and facilitates local control” section”).

      (2) In a related way, the reviewer is not sure that the elements the authors introduced reflect the structure or function of the fly's nervous system. For example, optimal control is an active field of research and is behind the success of many-legged robots, but the reviewer is not sure what evidence exists that suggests the fly ventral nerve cord functions as an optimal controller. If this were bolstered with additional references, the reviewer would be less concerned.

      We thank the reviewer for the comment — we have now further clarified how our model elements reflect the fly’s nervous system. The elements we introduce are plausible but only loosely analogous to the fly’s nervous system. While we draw parallels from these elements to anatomy (e.g. in Fig 1A-B, and in the first paragraph of the Results section), we do not mean to suggest that these functional elements directly correspond to specific structures in the fly’s nervous system. A substantial portion of the suggested future work (see “Towards biomechanical and neural realism”) aims to bridge the gap between these functional elements and fly physiology, which is beyond the scope of this work. 

      We have added clarifying text to the Results section:

      “While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”

      In the specific case of optimal control — optimal control is a theoretical model that predicts various aspects of motor control in humans, there is evidence that optimal control is implemented by the human nervous system (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011). Based on this, we make the assumption that optimal control is a reasonable model for motor control in flies implemented by the fly nervous system as well. Fly movement makes use of proprioceptive feedback signals (Mendes et al., 2013; Pratt et al., 2024; Berendes et al., 2016), and optimal control is a plausible mechanism that incorporates feedback signals into movement.

      We have added the following clarifying text in the Results section: 

      “The optimal controller layer maintains walking kinematics in the presence of sensori motor delays and helps compensate for external perturbations. This design was inspired by optimal control-based models of movements in humans (Todorov and Jordan, 2002; Scott, 2004; Berret et al., 2011)”

      (3) "The model generates realistic simulated walking that matches real fly walking kinematics...". The reviewer appreciates the difficulty in conducting this type of work, but the reviewer cannot conclude that the kinematics "match real fly walking kinematics". The range of motion of several joints is 30% too small compared to the animal (Figure 2B) and the reviewer finds the video comparisons unpersuasive. The reviewer would understand if there were additional constraints, e.g., the authors had designed a robot that physically could not complete the prescribed motions. However the reviewer cannot think of a reason why this simulation could not replicate the animal kinematics with arbitrary precision, if that is the goal.

      We agree with the reviewer that the model-generated kinematics are not perfectly indistinguishable from real walking kinematics, and now clarify this in the text. We also agree with the reviewer that one could build a model that precisely replicates real kinematics, but as they intuit, that was not our goal. Our goal was to build a model that both replicates animal kinematics, and is interpretable and generalizable (which allows us to investigate what happens when perturbations and varying sensorimotor delays are introduced). There is a trade-off between realism and generalizability — a simulation that fully recreates empirical data would require a model that is completely fit to data, which is likely to be more complex (in terms of parameters required) and less generalizable to novel scenarios. We have made design choices that result in a model that balances these trade-offs. We do not consider this to be a weakness of the model; in fact, few comparable models account for all joints involved in locomotion, and fewer explicitly compare model kinematics with kinematics from data.

      We have tempered the language in the abstract:

      “The model generates realistic simulated walking that resembles real fly walking kinematics”

      The tempered statement, we believe, is a fair characterization of the walking — it resembles but does not perfectly match real kinematics.

      We have also introduced clarifying text in the introduction:

      “Overall, existing walking models focus on either kinematic or physiological accuracy, but few achieve both, and none consider the effect of varying sensorimotor delays. Here, we develop a new, interpretable, and generalizable model of fly walking, which we use to investigate the impact of varying sensorimotor delays in Drosophila locomotion.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Potential typo on page 5:

      2.1.2 Joint kinematics trajectory generator

      Paragraph 4, last line: Original text - ".....it also estimates the current phase". Suggested correction - "...it also estimates the current phase velocity"

      Done

      Potential typo on page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      Paragraph 3, line 2: Original text - "...brief, unexpected force (e.g. legs slipping on an unstable surface)".

      Consider replacing force with motion, or providing an example of a force as opposed to displacement (slipping).

      Done

      Potential typo on page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      Paragraph 3, line 4: Original text - "The magnitude of this velocity is drawn from a normal distribution...".

      Is this really magnitude? If so, please discuss how the sign (+/-) is assigned to velocity, and how the normal distribution is centred so as to sample only positive values representing magnitude.

      Indeed the magnitude of the velocity is drawn from a normal distribution. A positive or negative sign is then assigned with equal odds. We have added text to clarify this:

      “The sign of the velocity was drawn separately so that there is equal likelihood for negative or positive perturbation velocities.”

      Page 8:

      2.3 Model maintains walking under unpredictable external perturbations.

      In Paragraph 5: Why is the data reduced to only 2 dimensions? Could higher order PCA modes (cumulatively accounting for more than 50% variance in the data) not have distinguishing information between realistic and unrealistic walking trajectories?

      We provide a longer response for this in the public review above.

      Page 11:

      Why wouldn't a system trained in the presence of external perturbations perform better? What is the motivation to remove external perturbations during training?

      We agree that a system trained in the presence of external perturbations would probably perform better — however, we do not have data that contains walking with external perturbations. Nothing was removed — all the data used in this study involve a fly walking without perturbations.

      We have added a clarification:

      “our model maintains realistic walking in the presence of external dynamic perturbations, despite being trained only on data of walking without perturbations (no perturbation data was available).”

      Page 16:

      4.1 Tracking joint angles of D. melanogaster walking in 3D.

      Paragraph 1: Readers who wish to collect similar data might benefit from specifying the exposure time, animal size in pixels (or camera sensor format and field of view), in addition to the frame rate. Alternatively, consider mentioning the camera and lens part numbers provided by the manufacturer.

      This is a good point. We have updated the text to include these specifications:

      “We obtained fruit fly D. melanogaster walking kinematics data following the procedure previously described in (Karashchuk et al, 2021). Briefly, a fly was tethered to a tungsten wire and positioned on a frictionless spherical treadmill ball suspended on compressed air. Six cameras (Basler acA800-510um with Computar zoom lens MLM3X-MP) captured the movement of all of the fly's legs at 300 Hz. The fly size in pixels ranges from about 300x300 up to 700x500 pixels across the 6 cameras. Using Anipose, we tracked 30 keypoints on the fly, which are the following 5 points on each of the 6 legs: body-coxa, coxa-femur, femur-tibia, and tibia-tarsus joints, as well as the tip of the tarsus.”

      Potential typos on page 18:

      4.3.3 Training procedure

      Paragraph 2, line 1: Original text - "..(, p)"

      Do the authors mean "...(, )"

      Paragraph 2, line 2: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?

      Paragraph 3, line 3: Original text - "... (,, v, p)" Do the authors mean "... (,, v, )"?

      Thank you for pointing out this issue. We have now fixed the phase p to be \phi to be consistent with the rest of the text.

      Paragraph 3, line 3: Original text - "...()"

      Do the authors mean "(d)"? If not, please discuss the difference between and d.

      Thank you for pointing this out. \hat \theta and \theta_d were used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.

      Page 19:

      Typo after eqn. (6):

      Original text: "where x := q - q, ... A and B are Jacobians with respect to...."

      Correction: "where x := q - q, ... Ac and Bc are Jacobians with respect to...."

      Similar corrections in eqn. 7 and eqn. 8: A and B should be replaced with Ac and Bc. Done

      Page 19, eqn. (10b):

      Should the last term be qd(t+T) as opposed to qd(t+1)?

      No: in fact (10a) contains the typo: it should be y(t+1) as opposed to y(t+T). This has been fixed.

      Page 19

      The authors' detailed description of the initial steps leading up to the dynamics model, involving the construction of the ODE, linearizing the system about the fixed point makes the text broadly accessible to the general reader. Similarly, adding some more description of the predictive model (eqn. 11 - 15) could improve the text's accessibility and the reader's appreciation for the model. This is especially relevant since the effects of sensorimotor delay and external perturbations, which are incorporated in the control and dynamics model, form a major contribution to this work. What do the matrices F, G, L, H, and K look like for the Drosophila model? Are there any differences between the model in Stenberg et al. (referenced in the paper) and the authors' model for predictive control? Are there any differences in the assumptions made in Stenberg et al. compared to the model presented in this work? The readers would likely also benefit from a figure showing the information flow in the model, and describing all the variables used in the predictive control model in eqn. 11 through eqn. 15 (analogous to Figure 1 in Stenberg et al. (2022)). Such a detailed description of the control and dynamics model would help the reader easily appreciate the assumptions made in modelling the effects of sensorimotor delay and external perturbations.

      Done

      Page 20:

      Eqn. 12: Should z(t+1) be z(t+T) instead?

      Similar comment for eqn. 14

      No: we made a mistake in (10a); there should be no (t+T) terms; all terms should be (t+1) terms to reflect a standard discrete-time difference equation.

      Eqn. 13: r(t) can be defined explicitly

      Done

      4.5 Generate joint trajectories of the complete model with perturbations Paragraph 2, line 2: Please read the previous comment

      \hat \theta and \theta_d were previously used interchangeably which is confusing. We have standardized our reference to the desired trajectory as \theta_d throughout the text.

      Original text - "Every 8 timesteps, we set :=...."

      Does this mean dis set to? If so, the motivation for this is not clear.

      We mean that \theta_d is set to be equal to \theta. We have replaced “:=” with “=” for clarity.

      General comments for the authors:

      Could the authors discuss the assumptions regarding Drosophila physiology implied in the control model?

      The control model is primarily included as a plausible functional element of the fly’s nervous system, and as such implies minimal assumptions on physiology itself. The main assumption, which is evident from the description of the model components, is that the fly uses proprioceptive feedback information to inform future movements.

      We have added clarifying text to the Results section:

      “While the model is inspired by neuroanatomy, its components do not strictly correspond to components of the nervous system --- the construction of a neuroanatomically accurate model is deferred to future work (see Discussion).”

      The authors acknowledge the absence of ground contact forces in the model. It is probably worth discussing how this simplification may affect inferences regarding the acceptable range of sensorimotor delay in generating realistic walking trajectories.

      We agree, and discuss how some of these assumptions affect the quantitative results in the section “Towards biomechanical and neural realism”. We replicate the relevant sentences below:

      “The inclusion of explicit leg-ground contact interactions would also make it harder for the model to recover when perturbed, because perturbations during walking often occur upon contact with the ground (e.g. the ground is slippery or bumpy).”

      The effects of other simplifications are also mentioned in the same section.

      Can the authors provide an insight into why the use of a second derivative of joint angles as the output of the trajectory generator () leads to more realistic trajectories (4.3.1 Model formulation, paragraph 1)?

      Does the use of a second-order derivative of joint angles lead to drift error because of integration?

      Could the distribution of θd produced be out of the domain due to drift errors? Could this affect the performance of the neural network model approximating the trajectory generator?

      We are not sure why the second derivative works better than the first derivative. It is possible that modeling the system as a second order differential equation gives the network more ability to produce complex dynamics. 

      As can be seen in the example time series in Figures 2 and 3 and supplemental videos, there is no drift error from integration, so it is unlikely to affect the performance of the neural network.

      What does the model's failure (quantified by a low KS score) look like in the context of fly dynamics? What do the joint angles look like for low values of KS score? Does the fly fall down, for example?

      Since the model primarily considers kinematics, a low KS score means that kinematics are unrealistic, e.g. the legs attain unnatural angles or configurations. Examples of this can be seen in videos 4-7 (linked from Appendix 1 of the paper), as well as in the bottom row of Fig. 5, panel A. Here, at 40ms of motor delay, L2 femur rotation is seen to attain values that far exceed the normal ranges. 

      We have added a small clarification in the caption of Fig.5 panel A:

      “low KS indicates that the perturbed walking deviates from data and results in unnatural angles

      (as seen at 40ms motor delay)” 

      We remark that since our simulations do not incorporate contact forces (as the reviewer remarks above, we simulate something like legs moving in the air for a tethered fly), the fly cannot “fall down” per se. However, if forces were incorporated then yes, these unrealistic kinematics would correspond to a fly that falls down or is no longer walking.

      Reviewer #2 (Recommendations For The Authors):

      L49: "Computational models of locomotion do not typically include delay as a tunable parameter, and most existing models of walking cannot sustain locomotion in the presence of delays and external perturbations". This remark confuses the reviewer.

      (1) If models do not "typically" include delay as a tunable parameter, this suggests that atypical models do. Which models do? Please provide references.

      Our initial phrasing was confusing. We meant to say that most models do not include delay, and some models do include delay as a fixed value (rather than a tunable value). We clarify in the updated text, which is replicated below:

      “Computational models of locomotion typically have not included delays as a tunable parameter, although some models have included them as fixed values (Geyer and Herr, 2010; Geijtenbeek et al., 2013).”

      (2) Has the statement that most existing models cannot sustain locomotion with delays been tested? If so, provide references. If not, please remove this statement or temper the language.

      Since most models don’t include delays, they cannot be run in scenarios with delays. We clarify in the updated text, which is replicated below:

      “Computational models of locomotion have not typically included delays. Some have included delay as a fixed value rather than a tunable parameter (Geyer and Herr, 2010; Geijtenbeek et al., 2013). However, in general, the impact of sensorimotor delays on locomotor control and robustness remains an underexplored topic in computational neuroscience.”

      L57: "two of six legs lift off the ground at a time" - Two legs are off the ground at any time, but they do not "lift off" simultaneously in the fruit fly. To lift off simultaneously, contralateral leg pairs would need to be 33% out of phase with one another, but they are almost always 50% out of phase.

      Thank you for pointing out this oversight. We have updated the text accordingly:

      “Flies walk rhythmically with a continuum of stepping patterns that range from tetrapod (where two of six legs are off the ground at a time) to tripod (where three of six legs are off the ground at a time)"

      L88: "a new model of fly walking" - The intention of the authors is to produce a model from which to learn about walking in the fly, is that correct? The reviewer has read the paper several times now and wants to be sure that this is the authors' goal, not to engineer a control system for an animation or a robot.

      Indeed, this is our goal. We were previously unclear about this, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).

      L126: "These desired phases are synchronized across pairs of legs to maintain a tripod coordination pattern, even when subject to unpredictable perturbations." - Does the animal maintain tripod coordination even when perturbed? In the reviewer's experience, flies vary their interleg coordination all the time. The reviewer would also expect that if perturbed strongly (as the supplemental videos show), the animal would adapt its interleg coordination in response. The author finds this assumption to be a weak point in the paper for the use of this disturbance exploring animal locomotion.

      We do not know exactly how flies may react to our mechanical perturbations. However, we may hypothesize based on past papers. 

      Couzin-Fuchs et al (2015) apply a mechanical perturbation to walking cockroaches. They find that that tripod is temporarily broken immediately after the perturbation but the cockroach recovers to a full tripod within one step cycle. 

      DeAngelis et al (2019) apply optogenetic perturbations to fly moonwalker neurons that drive backward walking. Flies slow down following perturbation, but then recover after 200ms (about 2-3 steps) to their original speed (on average). 

      Thus, we think it is reasonable to model a fly’s internal phase coupling to maintain tripod and for its intended speed to remain the same even after a perturbation. 

      We do agree with the reviewer that it is plausible a fly might also slow down or even stop after a perturbation and we do not model such cases. We have added some text to the discussion on future work:

      “Future work may also model how higher-level planning of fly behavior interacts with the lowerlevel coordination of joint angles and legs. Walking flies continuously change their direction and speed as they navigate the environment (Katsov et al, 2017; Iwasaki et al 2024). Past work shows that flies tend to recover and walk at similar speeds following perturbations (DeAngelis et al, 2019), but individual flies might still change walking speed, phase coupling, or even transition to other behaviors, such as grooming. Modeling these higher-level changes in behavior would involve combining our sensorimotor model with models for navigation (Fisher 2022) or behavioral transitions (Berman et al, 2016).”

      L136: "...to output joint torques to the physical model of each leg" - Is this the ultimate output of the nervous system? Muscles are certainly not idealized torque generators. There are dynamics related to activation and mechanics. The reviewer is skeptical that this is a model of neural control in the animal, because the computation of the nervous system would be tuned to account for all these additional dynamics.

      We agree with the reviewer that joint torques are not the ultimate output of the nervous system. We use a torque controller because it is parsimonious, and serves our purpose of creating an interpretable and modular locomotion model.

      We also agree that muscles are an important consideration — we make mention of them later on in the paper under the section “Toward biomechanical and neural realism”, where we state “Another step toward biological realism is the incorporation of explicit dynamical models of proprioceptors, muscles, tendons, and other biomechanical aspects of the exoskeleton.”

      Our goal is not to directly model neural control of the animal. We have introduced text clarifications to emphasize this — we provide a longer response for this in the public review above (see (2)).

      L143: "To train the network from data, we used joint kinematics of flies walking on a spherical treadmill..." This is an impressive approach, but then the reviewer is confused about why the kinematics of the model are so different from those of the animal. The animal takes longer strides at a lower frequency than the model. If the model were trained with data, why aren't they identical? This kind of mismatch makes the reviewer think the approach in this paper is too complicated to address the main problem.

      The design of our trajectory generator model is one of the simplest for reproducing the output of a dynamical system. It consists of a multilayer perceptron model that models the phase velocity and joint angle accelerations at each timestep. All of its inputs are observable and interpretable: the current joint angles, joint angle derivatives, desired walking speed, and phase angle. 

      We chose this model for ease of interpretability, integration with the optimal controller, and to allow for generalization across perturbations. Given all of these constraints, this is the best model of desired kinematics we could obtain. We note that the simulated kinematics do match real fly kinematics qualitatively (Figure 2A and supplemental videos) and are close quantitatively (Figure 2B and C). We speculate that matching the animals’ strides at all walking frequencies may require explicitly modeling differences across individual flies. We leave the design and training of more accurate (but more complex) walking models for future work.

      We add some further discussion about fitting kinematics in the discussion:

      “Although we believe our model matches the fly walking sufficiently for this investigation, we do note that our model still underfits the joint angle oscillations in the walking cycle of the fly (see Figure 2 and Appendix 3). More precise fitting of the joint angle kinematics may come from increasing the complexity of the neural network architecture, improving the training procedure based on advances in imitation learning (Hussein et al., 2018), or explicitly accounting for individual differences in kinematics across flies (Deangelis et al., 2019; Pratt et al., 2024).”

      Figure 2: The reviewer thinks the violin plots in Figure 2C are misleading. Joint angles could be greater or less than 0, correct? If so, why not keep the sign (pos/neg) in the data? Taking the absolute value of the errors and "folding over" the distribution results in some strange statistics. Furthermore, the absolute value would shroud any systematic bias in the model, e.g., joint angles are always too small. The reviewer suggests the authors plot the un-rectified data and simply include 2 dashed lines, one at 5.56 degrees and one at -5.56 degrees.

      These violin plots are averages of errors over all phases within each speed. We chose to do this to summarize the errors across all phase angle plots, which are shown in detail in Appendix 3 and 4.

      For the reviewer, we have added a plot of the raw errors across all phase angle plots in Appendix 5, E.

      L156: Should "\phi\dot" be "\phi"?

      We originally had a typo: we said “phase” when we meant “phase velocity”. This has been fixed. \phi\dot is correct.

      L160: "This control is possible because the controller operates at a higher temporal frequency than the trajectory generator...". This statement concerns the reviewer. To the reviewer, this sounds like the higher-level control system communicates with the "muscles" at a higher frequency than the low-level control system, which conflicts with the hierarchical timescales at which the nervous system operates. Or do the authors mean that the optimal controller can perform many iterations in between updates from the trajectory generator level? If so, please clarify.

      We mean that the optimal controller can perform many iterations in between updates from the trajectory generator level. The text has been clarified:

      “This control is possible because the controller operates at a higher temporal frequency than the trajectory generator in the model. The controller can perform many iterations (and reject disturbances) in between updates to and from the trajectory generator.”

      L225: "We considered two types of perturbations: impulse and persistent stochastic". Are these realistic perturbations? Realistic perturbations such as a single leg slipping, or the body movement being altered would produce highly correlated joint velocities.

      These perturbations are not quite realistic — nonetheless, we illustrate their analogousness to real perturbations in the subsequent text in the paper, and restrict our simulations to ranges that would be biologically plausible (see Appendix 7). We agree that realistic perturbations would produce highly correlated joint accelerations and velocities, whereas our perturbations produce random joint accelerations. 

      L265: "...but they are difficult to manipulate experimentally..." This is true, but it can and has been done. The authors should cite:

      Bässler, U. (1993). The femur-tibia control system of stick insects-A model system for the study of the neural basis of joint control. Brain Research Reviews, 18(2), 207-226. 

      Thank you for the suggestion, we have incorporated it into the text at the end of the referenced sentence.

      L274: "...since the controller can effectively compensate for large delays by using predictions of joint angles in the future". But can the nervous system do this? Or, is there a reason to think that the nervous system can? The reviewer thinks the authors need stronger justification from the literature for their optimal control layer.

      To clarify, this sentence describes a feature of the model’s behavior when no external perturbations are present. This is not directly relevant to the nervous system, since organisms do not typically exist in an environment free of perturbations — we are not suggesting that the nervous system does this.

      In response to the question of whether the nervous system can compensate for delays using predictions: we know that delays are present in the nervous system, perturbations exist in the environment, and that flies manage to walk in spite of them. Thus, some type of compensation must exist to offset the effects of delays (the reviewer themself has provided some excellent citations that study the effects of delays). In our model, we use prediction as the compensation mechanism — this is one of our central hypotheses. We further discuss this in the section “Predictive control is critical for responding to perturbations due to motor delay”.

      L319: "The formulation of a modular, multi-layered model for locomotor control makes new experimentally-testable hypotheses about fly motor control...". What testable hypotheses are these? The authors should explicitly state them. They are not clear to the reviewer, especially given the nonphysiological nature of the control system and the mechanics.

      A number of testable hypotheses are mentioned throughout the Discussion section:

      “Our model predicts that at the same perturbation magnitude, walking robustness decreases as delays increase. This could be experimentally tested by altering conduction velocities in the fly, for example by increasing or decreasing the ambient temperature (Banerjee et al, 2021).  If a warmer ambient temperature decreases delays in the fly, but fly walking robustness remains the same in response to a fixed perturbation, this would indicate a stronger role for central control in walking than our modeling results suggest.”

      “In our model, robust locomotion was constrained by the cumulative sensorimotor delay. This result could be experimentally validated by comparing how animals with different ratios of sensory to motor delays respond to perturbations. Alternatively, it may be possible to manipulate sensory vs. motor delays in a single animal, perhaps by altering the development of specific neurons or ensheathing glia (Kottmeier et al., 2020). If sensory and motor delays have significantly different effects on walking quality, then additional compensatory mechanisms for delays could play a larger role than we expect, such as prediction through sensory integration, mechanical feedback, or compensation through central control.”

      “we hypothesize that removing proprioceptive feedback would impair an insect's ability to sustain locomotion following external perturbations.”

      “We propose that fly motor circuits may encode predictions of future joint positions, so the fly may generate motor commands that account for motor neuron and muscle delays.”

      L323: "...and biomechanical interactions between the limb and the environment". In the reviewer's experience, the primary determinant of delay tolerance is the mechanical parameters of the limb: inertia, damping, and parallel elasticity. For example, in Ashtiani et al. 2021, equation 5 shows exactly how this comes about: the delay changes the roots and poles of the control system. This is why the reviewer is confused by the complexity of the model in this submission; a simpler model would explain why delays cannot be tolerated in certain circumstances.

      We were previously unclear about the goal of the model, and have made text edits to clarify this — we provide a longer response for this in the public review above (see (1)).

      L362: Another highly relevant reference here would be Sutton et al. 2023.

      Done

      L366: Szczecinski et al. 2018 is hardly a "model"; it is mostly a description of experimental data. How about Goldsmith, Szczecinski, and Quinn 2020 in B&B? Their model of fly walking has patterngenerating elements that are coordinated through sensory feedback. In their model, motor activation is also altered by sensory feedback. The reviewer thinks the statement "Models of fly walking have ignored the role of feedback" is inaccurate and their description of these references should be refined.

      Thank you for the suggestion; we have tempered the language and revised this section to include more references, including the suggested one — text is replicated below. 

      “Many models of fly walking ignore the role of feedback, relying instead on central pattern generators (Lobato-Rios et al., 2022; Szczecinski et al., 2018; Aminzare et al., 2018) or metachondral waves (Deangelis et al., 2019) to model kinematics. Some models incorporate proprioceptive feedback, primarily as a mechanism that alters timing of movements in inter-leg coordination (Goldsmith et al., 2020; Wang-Chen et al., 2023).”

      We remark that Szczecinski et al does include a model that replicates data without using sensory feedback, so we think it is fair to include.  

      L371: "...highly dependent on proprioceptive feedback for leg coordination during walking." What about Berendes et al. 2016, which showed that eliminating CS feedback from one leg greatly diminished its ability to coordinate with the other legs? This suggests that even flies depend on sensory feedback for proper coordination, at least in some sense.

      Interesting suggestion – we have integrated it into the text a little further down, where it better fits:

      “Silencing mechanosensory chordotonal neurons alters step kinematics in walking Drosophila (Mendes et al., 2013; Pratt et al., 2024). Additionally, removing proprioceptive signals via amputation interferes with inter-leg coordination in flies at low walking speeds (Berendes et al., 2016)”

      L426: "The layered model approach also has potential applications for bio-mimetic robotic locomotion.". How fast can this model be computed? Can it run faster than real-time? This would be an important prerequisite for use as a robot control system.

      The model should be able to be run quite fast, as it involves only

      (1) Addition, subtraction, matrix multiplication, and sinusoidal computation on scalars (for the phase coordinator and optimal controller)

      (2) Neural network inference with a relatively small network (for the trajectory generator) Whether this can run in real-time depends on the hardware capabilities of the specific robot and the frequency requirements — it is possible to run this on a desktop or smaller embedded device.

      We do note that the model needs to first be set up and trained before it can be run, which takes some time (see panel D of Figure 1).

      L432: "...which is a popular technique in robotics.". Please cite references supporting this statement.

      We have added citations: the text and relevant citations are reproduced below:

      “... which is a popular technique in robotics (Hua et al., 2021; Johns, 2021)

      Hua J, Zeng L, Li G, Ju Z. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors. 2021; 21(4):1278

      Johns E. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration. In:

      2021 IEEE international conference on robotics and automation (ICRA) IEEE; 2021. p. 4613–4619

      L509: "We find that the phase offset across legs is not modulated across walking speeds in our dataset". This is a surprising result to the reviewer. Looking at Figure 6C, the reviewer understands that there are no drastic changes in coordinate with speed, but there are certainly some changes, e.g., L1-R3, L3-R1. In the reviewer's experience, even very small changes in interleg phasing can change the visual classification of walking from "tripod" to "tetrapod" or "metachronal". Furthermore, several leg pairs do not reside exactly at 0 or \pi radians apart, e.g., L1-L3, L2-L3, R1-R3, R2-R3. In conclusion, the reviewer thinks that setting the interleg coordination to tripod in all cases is a large assumption that requires stronger justification (or, should be eliminated altogether).

      We made a simplifying assumption of a tripod coordination across all speeds. The change in relative phase coordination across speeds is indeed relatively small and additionally we see little change in our results across forward speeds (see Figures 4B, 5C and 5D). 

      We have added text to clarify this assumption and what could be changed for future studies in the methods:

      “We estimate $\bar \phi_{ij}$ from the walking data by taking the circular mean over phase differences of pairs the legs during walking bouts. We find that the phase offset across legs is not strongly modulated across walking speeds in our dataset (see Appendix 2) so we model $\bar \phi_{ij}$ as a single constant independent of speed. In future studies, this could be a function of forward and rotation speeds to account for fine phase modulation differences.”

      L581: "of dimension...". Should the asterisk be replaced by \times? The asterisk makes the reviewer think of convolution. This change should be made throughout this paragraph.

      Good point, done.

      Figure 6: Rotational velocities in all 3 sections are reported in mm/s, but these units do not make sense. Rotational velocities must be reported in rad/s or deg/s.

      The rotation velocity of mm/s corresponded to the tangential velocity of the ball the fly walked on. We agree that this does not easily generalize across setups, so we have updated the figure rotation velocities in rad/s. 

      L619: The reviewer is unconvinced by using only 2 principal components of the data to compare the model and animal kinematics. The authors state on line 626 that the 2 principal components do not capture 56.9% of the variation in the data, which seems like a lot to the reviewer. This is even more extreme considering that the model has 20 joints, and the authors are reducing this to 2 variables; the reviewer can't see how any of the original waveforms, aside from the most fundamental frequencies, could possibly be represented in the PCA dataset. If the walking fly models looked similar to each other, the reviewer could accept that this method works. But the fact that this method says the kinematics are similar, but the motion is clearly different, leads the reviewer to suspect this method was used so the authors could state that the data was a good match.

      Our primary use of the KS metric was to indicate whether the simulated fly continues walking in the presence of perturbations, hence we limited the analysis of the KS to the first 2 principal components. 

      For completeness, we investigate the principal components in Appendix 9 and the effect of evaluating KS with different numbers of components in Appendix 10. 

      The results look similar across components for impulse perturbations. For stochastic perturbations, the range of similar walking decreases as we increase the number of components used to evaluate walking kinematics. Comparing this with Appendix 9 showing that higher components represent higher frequencies of the walking cycle, we conclude that at the edge of stability for delays (where sum of sensory and actuation delays are about 40ms), flies can continue walking but with impaired higher frequencies (relative to no perturbations) during and after perturbation. 

      We add text in the methods:

      “We chose 2 dimensions for PCA for two key reasons. First, these 2 dimensions alone accounted for a large portion of the variance in the data (52.7% total, with 42.1% for first component and 10.6% for second component)). There was a big drop in variance explained from the first to the second component, but no sudden drop in the next 10 components (see Appendix 9). Second, the KDE procedure only works effectively in low-dimensional spaces, and the minimal number of dimensions needed to obtain circular dynamics for walking is 2. We investigate the effect of varying the number of dimensions of PCA in Appendix 10.”

      (Note that we have corrected the percentage of variance accounted for by the principal components, as these numbers were from an older analysis prior to the first draft.)

      We also reference Appendix 10 in the results:

      “We observed that robust walking was not contingent on the specific values of motor and sensory delay, but rather the sum of these two values (Fig. 5E). Furthermore, as delay increases, higher frequencies of walking are impacted first before walking collapses entirely (Appendix 10).”

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The paper nicely shows that PP2A antagonizes Crb-dependent and Crb-independent phosphorylation and degradation of Expanded (Ex), in cell culture and in wing discs. The authors focus on the Mts catalytic subunit of PP2A, but also demonstrate the involvement of the Wrd and Tws B regulatory subunits. They also show via use of transcriptional reporters that PP2A directly affects Hpo signaling in vivo. Finally, they show a potential role for Merlin and Kibra in regulating Ex levels, and that Kib binds to Mts and Wrd. The experiments are on the whole well executed and quantified.

      Major comments:- (1) I am not convinced that the authors can entirely rule out a role for the STRIPAK complex. Mutation of MtsR268A reduces binding of Wrd by 60% and abrogates the effect of Mts on Ex. However mutation of MtsL186A reduces binding of Cka by less than 50% and doesn't disrupt Mts regulation of Ex. Perhaps Cka is more abundant than Wrd, and 50% of Mts/Cka complex is more than sufficient for it to carry out its enzymatic function.

      To further investigate whether PP2A can indeed stabilise Ex independently of the STRIPAK complex we will conduct the following experiments in response to the comments from Reviewers 1 and 3:

      • Test whether knocking down other components of the STRIPAK complex such as FGOP2 and Mob4 affects the ability of Mts to stabilise Ex degradation in the presence or absence of Crbintra in vitro using S2 cells. If we do observe any effect, we will also test whether knocking these components in the posterior compartment of the wing disc also has an effect on the Ex stability reporter levels.
      • The reviewers raised the point that the MtsL186A mutant results in 50% reduction in binding with Cka and that a 50% reduction in the Mts/Cka complex may still be sufficient to stabilise Ex levels. To address this, we will knock down either Wrd or Cka and test whether this affects the ability of MtsL186A to stabilise Ex both in the presence/absence of Crbintra. This will test whether the stabilisation of Ex by MtsL186A can be attributed to the function of the MtsL186A::Cka holoenzyme or the MtsL186A::Wrd holoenzyme. We will test this both in vitro and in vivo.

        I also note that in Fig 1H, Ex levels in Crb/Mts+Cka RNAi appear to be intermediate between those in Crb and Crb/Mts. Ideally this would be quantified. Similarly in 4J, mtsL186A (while not significant) appears intermediate between mtsH118N and mts-WT. What is the actual P value for the comparison to Mts-WT? In any case I would suggest the authors tone down these conclusions.

      We have now provided quantification for the blot in Fig. 1H (now Fig. 1I) in Fig. 1J. We will tone down our conclusions regarding the role of STRIPAK based on our results from the experiments detailed above.

      (2) I also found it rather confusing that the authors discuss the Cka B subunit in the context of the STRIPAK complex in Figure 1, then don't look at the other B subunits until Figures 3/4. In my opinion, it would be easier to follow the flow of the manuscript if the authors discussed Crb-dependent and independent regulation of Ex, then the roles of Gish/CKI, then the role of the B subunits including Cka. In this context, it would also be interesting to see if there was any redundancy between Cka and Wrd - have the authors tried any double knockdown experiments (with appropriate controls for RNAi dosage)?

      We thank the reviewer for their suggestion to potentially alter the order by which some of the results of the paper are presented. At the moment, we believe the current description of the results fits well with the observations and their significance, but we will assess this after the revisions are completed and, if required, we will change the order of the results to improve the clarity of the manuscript. To test for any redundancy between Cka and Wrd, we will undertake knock down both Cka and Wrd using S2 cells.

      (3) The authors examine Crb-independent Ex regulation in the wing disc, which appears to be wing discs that do not overexpress Crb. I would expect that wing discs do express Crb - or is this not the case? Please clarify whether this is in the absence of Crb, or the absence of overexpressed Crb.

      This is now clarified in the text Line 358.

      (4) I was confused by the section 'CKIs and Slmb regulate Ex proteostasis via the 452-457 Slmb consensus sequence'. The authors conclude that 'these results show that the machinery that facilitates Crb-mediated Ex phosphorylation and degradation is also partly involved in the Crb-independent regulation of Ex protein stability.' However, I had concluded the opposite, as it appeared that Slimb and gish RNAi only affected Ex1-468, and similarly Slmb only affected Ex1-468, but not Ex1-450 (which in the previous section was shown to be regulated by Mts independent of Crb). Please could the authors explain/clarify this.

      We have previously shown that, in the presence of Crbintra, Gish/Ck1α/Slmb act on Ex via the Ex452-457 aa sequence, which corresponds to a b-TrCP/Slmb consensus sequence (Fulford et al., 2019). In the absence of Crbintra, we observed that Gish/Ck1α/Slmb require the 452-457 site to be present to be able to phosphorylate and degrade Ex (i.e. the Ex1-450 truncation that lacks this site is refractory to the regulation by Gish/Ck1α/Slmb). This suggests that Gish/Ck1α/Slmb regulate Ex via the 452-457 site, both in absence and presence of Crbintra. We have now clarified this in the text: Lines 387-388 and Lines 405-406.

      (5) The regulation of Ex by Merlin and Kibra is potentially interesting, but a bit preliminary. This part of the manuscript could be strengthened by showing for example if Mts or Wrd knockdown affects the stabilization of Ex by Kib.

      As suggested by the reviewer we will further characterise the interaction between Kib and Mts in stabilising Ex. We will test whether Kib can stabilise Ex when either mts or wrd is knocked down. We will also test whether Kib can stabilise Ex in the absence of ectopic Crb expression in vivo and whether this is indeed dependent on the Wrd subunit.

      Minor comments: (1) The Introduction gives a quite comprehensive review of known interactions between STRIPAK, Expanded and Hippo pathway components. However, it is hard to keep track of all the components and interactions if you are not deeply into the field. To improve accessibility, I would suggest a summary diagram of the key interactions (currently the manuscript has no introductory figures at all!) and if possible the authors might consider whether there are details they could leave out or which could just be mentioned as necessary in the results sections.

      We have now added an introductory figure, Fig.1A, detailing the key elements of Hpo regulation that is pertinent for this study.

      (2) Could the authors show a shorter exposure of the Ex blot in Figure 1A, in order to better visualize the loss of band shift?

      A shorter exposure of the Ex blot has now been added to the Fig. 1B (previously Fig. 1A).

      (3) Line 307 '(Fig. 1B,D,G,I)' the call-out to Fig.1I appears to be in strike-through font, presumably because 1I shouldn't be cited here? It also looks like Fig.1I is wrongly cited on line 342 as that sentence only describes action of L168A in wing discs. I think a sentence describing the experiment in Fig.1I is missing?

      The Figures have now been cited appropriately. Fig. 1J (previously Fig. 1I) is now referred to in Line 336.

      (4) Line 355 ambiguous, should this read low expression of Crb in S2 cells?

      This has now been changed from extremely low expression to low expression.

      (5) Line 369 reads 'PP2A was able to stabilize full-length Ex', Mts-WT would be more precise.

      This has now been changed to MtsWT was able to stabilise full-length Ex.

      (6) The blot in panel 2O is mislabeled Ex1-468, I think this should be Ex1-450.

      The blot in panel 2O is now correctly labelled as Ex1-450.* *

      (7) The nomenclature of 'Mts-WT' for their own transgene and 'Mts-BL' for the Bloomington transgene. is confusing, as both are, I believe, wild type. Maybe leave this detail for the M&M, at least if the authors believe there is no difference in behavior.

      We are happy to change this if required.

      (8) Figure S6 appears to be missing from the uploaded version.

      We thank the reviewer for noticing this. Fig. S6 is now included in the supplementary figure file.

      (9) Lines 480-481: 'Using co-IP analyses, we observed that Mts interacts with Ex, both in the presence and absence of Crbintra.' No figure call-out is given for this statement, and I can't see the data anywhere, but from the figure legends it seems to be in the missing Fig.S6? And everything that follows in this paragraph should have call-outs for Fig.4K?

      Fig. S6 has now been appended and the call-outs to Fig. 4K have been added to in the paragraph Line 475-490.

      (10) Lines 503-504: 'we found that Kib associated with Mts (Fig. 5C)' - Fig.5B?

      This has now been changed.

      (11) Lines 504-505: 'no interaction was observed between Mts and Mer (Fig.5B)' - Fig.5C?

      This has now been changed.

      (12) In Figure 6G, authors note that 'the mean diap1GFP4.3 levels of MtsWT+Crb-Intra were lower than those of Crb-Intra, this difference was not statistically significant when all genotypes were included in the comparisons, but only when the Control, crbintra and mtsWT+crbintra conditions were considered.' It might be useful to have a table showing the actual P values of all the comparisons (or maybe better still just put actual P values on the graphs?). Sometimes an arbitrary cut-off of 0.05 for significant can be misleading.

      We have now added the actual p-values for those >0.05 to the graph.

      Reviewer #1 (Significance (Required)):

      The Hippo signaling pathway is a conserved regulator of tissue growth, and understanding how this pathway is activated and modulated is of great importance. Levels of the upstream activator Expanded are known to be regulated by phosphorylation/degradation, but whether dephosphorylation of Ex is important for growth control has not been widely investigated. This paper utilizes cell culture and the fruit fly model organism to provide clear evidence for a role for PP2A in regulation of Ex levels, independent of its known role in regulating phosphorylation of Hpo. It will therefore be of interest to biologists working in the fields of growth control and tissue homeostasis.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The authors show that the protein phosphatase PP2A antagonizes Crb-mediated phosphorylation and subsequent degradation of Expanded in vivo. Using Drosophila imaginal wing discs and the GAL4-UAS system, the authors provide evidence that the PP2A holoenzyme dephosphorylates Ex, stabilizing its protein levels, in a manner independent of the STRIPAK complex and identifies Wrd as a key regulatory subunit of PP2A in this process. Importantly, the study also shows that PP2A stabilizes Ex protein levels independent of Crb-driven phosphorylation and that, via this stabilization, PP2A activates Hpo pathway signaling to repress transcriptional targets of Yki.

      Major comments: Overall, the study is strong, and the conclusions are supported by the data. The data does largely lean on overexpression models in the wing disc and it would strengthen the biological relevance to include genomic alleles (i.e., do Ex-GFP levels go down in PP2A/mts mutant clones?). Materials and methods are thoroughly presented, and statistical analyses are adequate. OPTIONAL: While not necessarily required for publication, note that full in vivo confirmation would require altering the PP2A target sites in Ex by generating phospho-deficient and phospho-mimetic versions and seeing if they match the model. This would push the conclusions to the highest degree of confidence and rigor.

      We agree with the reviewer and indeed have tried to undertake MARCM experiments with mts null mutant clones. However, since mts is an essential gene, even when MtsWT was expressed in the presence of mts mutant, we were only able to obtain few single cell clones, which was difficult to analyse. Hence, clonal analysis using mts mutant clones will not be feasible in this case. (see also revision plan for figure illustrating the data referred to here).

      Minor comments: Text and figures are clear and accurate. It may be helpful to include a modified version of the Mts mutants table in SF1 in a main figure for easier reference but is not necessary.

      If required, we can move the table to one of the main figures based on whether additional data will be presented in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      The studies strengths include biochemical and in vivo validation of the effect of PP2A and its various regulatory subunits on Ex phosphorylation and stabilization. The study very methodically parses out the context in which PP2A is stabilizing Ex (i.e., both in the context of Crb stimuli and independently, and it does so independently of the STRIPAK complex). As noted previously, recapitulating the major results in clones using genomic alleles would strengthen the biological relevance. The study advances our understanding of mechanisms tightly controlling downstream transcriptional outputs of the Hpo pathway via regulating Ex protein stability/turnover. Though the primary audience may be those well-versed in the Hpo field and Drosophila genetics, the implications for the research are broad.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      The authors hypothesized that Crb mediated Ex phosphorylation and degradation, that they previously established, should be countered and set on to identify the phosphatase involved. Surprisingly, they find that Mts, the catalytic subunit of PP2A, counters the effect of ectopically expressed intracellular domain of Crb on Ex stability. This was surprising because PP2A and the STRIPAK complex was shown to counter Hippo activity previously, suggesting that PP2A would inject both positive and negative inputs into Hpo activity. The title reflects this finding.

      Overall, the experiments are well controlled and are of high quality. I especially appreciate the effort to show results of parallel experiments both in S2 cells and in vivo in wing discs.

      The manuscript convincingly demonstrates that Mts expression stabilizes Ex1-468::GFP in the presence or absence of ectopic Crb-intra. This effect is mainly mediated by the Wrd adaptor subunit, and requires the catalytic activity of Mts. However, results shown in Fig4K highlights the Tws adaptor as the main one that binds to and stabilizes Ex in S2 cells, in the presence or absence of Crb-intra expression. This is slightly at odds with Wrd-RNAi experiments nicely reversing the effects of Crb-intra expression.

      We would like to highlight that results shown in Fig. 4K were obtained upon the transfection of HA-tagged Wrd/Tws and, hence, they are not necessarily indicative of the levels of binding between the endogenous Ex and the regulatory subunits. Additionally, we would argue that the Ex:Tws interaction is merely indicative of the steady state regulation of Ex, which occurs both in the presence and absence of Crbintra, thereby explaining why we can detect the interaction in both settings. As for Wrd, given that we have shown that it is involved in the regulation of Ex only in the presence of Crbintra and antagonises its effect on Ex protein stability, it is only interacting with Ex in conditions where Crbintra is affecting Ex protein levels.

      The manuscript is not easy to read given the vast amount of data using many different constructs, but there is little the authors can do about it as the story is complex and layered.

      The argument that the effects of Mts are independent of the STRIPAK complex is less convincing. This conclusion is based on Mts-L186A mutant which should not bind Cka which is the PP2A adaptor subunit found in the STRIPAK complex. Fig S3F and G show that Cka binding to Mts is reduced by half when Mts-L186A mutant is expressed in lieu wt Mts. Consistent with this in Fig1F rescue of Ex degradation by Mts-L186A is half as effective as the rescue seen in 1F by the wt Mts.

      We will conduct the experiments mentioned in the reply to Major comments 1 of Reviewer 1 to address this.

      Towards the same argument, data shown on S3A-D is deemed inconclusive based on quantification in S3E which does not reflect the clear reduction in Ex that is seen in S3B. Hence FigS3 is in favour of Cka4 being involved in the rescue effect.

      In Fig. S3 we show that expression of either Crbintra or MtsWT+Crbintra does not cause any changes in the levels of the Ex reporter when the crosses were raised at 18°C. Hence, we believe that in this setting, we are unable to fully study PP2A-mediated stabilisation of Ex in the presence of Crbintra. Cka RNAi causes dramatic effects on tissue growth at 18°C (where Crbintra cannot modulate Ex protein levels), and lethality prior to the late L3 stage (where Crbintra modulates Ex protein levels), and this precludes us from testing the role of Cka. However, the results shown with the Mts mutant that has reduced binding to the STRIPAK complex strongly suggest that Cka is not essential for the role of PP2A in regulating Ex protein levels.

      In Figures 5A and 3A, Crb-intra expression does not destabilize Ex1-468::GFP, why is that?

      This is due to the expression levels of Crbintra in this particular biological repeat of the experiment. We will repeat this experiment to obtain a more representative image of the effect of Crbintra.

      The authors connect effects on Ex stability to the influence on Hippo pathway activity in Fig 6, which is a very nice touch.

      Finally, I wonder whether the dual effect of PP2A on Hippo activity (inhibiting Hippo and stabilizing Ex) could be a single effect. I am guessing the Ex1-468::GFP construct, having its own regulatory elements, would act independently of the transcriptional activity of Hippo. However, I was not able to find this demonstrated in the literature. Can the authors show that? For example, make hpo or wts mutant clones in the presence of the Ex1-468::GFP construct. Otherwise, an alternative explanation could be that PP2A, with its various adaptor subunits, counters Hippo activity which translates into higher levels of expanded transcription and Ex protein production.

      Since the reporter is under the control of the ubiquitin 63E promoter as opposed to the endogenous promoter, we do not envisage that its transcription is regulated by Yki. Indeed, a similar method of decoupling potential transcriptional and post-translational effects of Hpo signalling has been successfully used in studies that have focused on other Hpo pathway components, such as Kibra (Tokamov et al., 2021) and Salvador (Aerne et al., 2015). The reviewer suggests that we should assess the effect of hpo or wts mutant clones and determine of these affect the levels of the ubi-Ex1-468::GFP reporter. However, we believe this may lead to results that will be difficult to interpret. Although hpo or wts clones are expected to result in higher Yki activity, they will also remove Hpo or Wts function, and these proteins may be involved in the molecular mechanisms that regulate Ex protein stability. Therefore, as an alternative approach to assess the impact of Hpo signalling on the Ex reporter, we will perform RT-PCR experiments to monitor the transcriptional regulation of the transgenic reporter in the presence or absence of Yki overexpression.

      It was also demonstrated that there are higher levels of Crb in hippo mutants likely due to the expansion of the apical domain. This would be consistent with the stabilized Crb-intra seen in Figures 1A&3A upon Mts expression. Stabilization of Crb upon Mts expression (not commented on in the manuscript) is very interesting as extra Crb should further push the balance towards Ex degradation but Mts seems to be able to reverse the effect. I agree that this alternative explanation may be far-fetched, yet it is also easily tested, and would greatly simplify the model put forward.

      The reviewer suggests that Mts may potentially be involved in regulating Crbintra levels. To test this, we will test whether overexpression of various doses of either MtsWT or MtsH118N affects the stability of Crbintra using S2 cells.

      Finally, if indeed various PP2A complexes, depending on the adaptor subunits they contain, have a range of effects on Ex stability and Hippo pathway activity, this brings in the question of what regulates the availability of various adaptor subunits and the PP2A complexes they form? The question is outside the scope of the manuscript but it is worth discussing.

      We agree with the reviewer that this is a crucial question. However, tackling this experimentally would be challenging at this stage and we believe this is beyond the scope of the current manuscript. However, we will address this point in the discussion of the revised manuscript.

      Reviewer #3 (Significance (Required)):

      A vast amount of data is presented in both in vivo and in vitro settings. The study uses biochemical and genetic approaches and combines them aptly.

      I think the findings showing multiple and various effects on PP2A on the same pathway would be of higher interest to the PP2A enthusiasts than the Hippo researchers.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      Jocher, Janssen, et al examine the robustness of comparative functional genomics studies in primates that make use of induced pluripotent stem cell-derived cells. Comparative studies in primates, especially amongst the great apes, are generally hindered by the very limited availability of samples, and iPSCs, which can be maintained in the laboratory indefinitely and defined into other cell types, have emerged as promising model systems because they allow the generation of data from tissues and cells that would otherwise be unobservable.

      Undirected differentiation of iPSCs into many cell types at once, using a method known as embryoid body differentiation, requires researchers to manually assign all cell types in the dataset so they can be correctly analysed. Typically, this is done using marker genes associated with a specific cell type. These are defined a priori, and have historically tended to be characterised in mice and humans and then employed to annotate other species. Jocher, Janssen, et al ask if the marker genes and features used to define a given cell type in one species are suitable for use in a second species, and then quantify the degree of usefulness of these markers. They find that genes that are informative and cell type specific in a given species are less valuable for cell type identification in other species, and that this value, or transferability, drops off as the evolutionary distance between species increases.

      This paper will help guide future comparative studies of gene expression in primates (and more broadly) as well as add to the growing literature on the broader challenges of selecting powerful and reliable marker genes for use in single-cell transcriptomics.

      Strengths:

      Marker gene selection and cell type annotation is a challenging problem in scRNA studies, and successful classification of cells often requires manual expert input. This can be hard to reproduce across studies, as, despite general agreement on the identity of many cell types, different methods for identifying marker genes will return different sets of genes. The rise of comparative functional genomics complicates this even further, as a robust marker gene in one species need not always be as useful in a different taxon. The finding that so many marker genes have poor transferability is striking, and by interrogating the assumption of transferability in a thorough and systematic fashion, this paper reminds us of the importance of systematically validating analytical choices. The focus on identifying how transferability varies across different types of marker genes (especially when comparing TFs to lncRNAs), and on exploring different methods to identify marker genes, also suggests additional criteria by which future researchers could select robust marker genes in their own data.

      The paper is built on a substantial amount of clearly reported and thoroughly considered data, including EBs and cells from four different primate species - humans, orangutans, and two macaque species. The authors go to great lengths to ensure the EBs are as comparable as possible across species, and take similar care with their computational analyses, always erring on the side of drawing conservative conclusions that are robustly supported by their data over more tenuously supported ones that could be impacted by data processing artefacts such as differences in mappability, etc. For example, I like the approach of using liftoff to robustly identify genes in non-human species that can be mapped to and compared across species confidently, rather than relying on the likely incomplete annotation of the non-human primate genomes. The authors also provide an interactive data visualisation website that allows users to explore the dataset in depth, examine expression patterns of their own favourite marker genes and perform the same kinds of analyses on their own data if desired, facilitating consistency between comparative primate studies.

      We thank the Reviewer for their kind assessment of our work.

      Weaknesses and recommendations:

      (1) Embryoid body generation is known to be highly variable from one replicate to the next for both technical and biological reasons, and the authors do their best to account for this, both by their testing of different ways of generating EBs, and by including multiple technical replicates/clones per species. However, there is still some variability that could be worth exploring in more depth. For example, the orangutan seems to have differentiated preferentially towards cardiac mesoderm whereas the other species seemed to prefer ectoderm fates, as shown in Figure 2C. Likewise, Supplementary Figure 2C suggests a significant unbalance in the contributions across replicates within a species, which is not surprising given the nature of EBs, while Supplementary Figure 6 suggests that despite including three different clones from a single rhesus macaque, most of the data came from a single clone. The manuscript would be strengthened by a more thorough exploration of the intra-species patterns of variability, especially for the taxa with multiple biological replicates, and how they impact the number of cell types detected across taxa, etc.

      You are absolutely correct in pointing out that the large clonal variability in cell type composition is a challenge for our analysis. We also noted the odd behavior of the orangutan EBs, and their underrepresentation of ectoderm. There are many possible sources for these variable differentiation propensities: clone, sample origin (in this case urine) and individual. However, unfortunately for the orangutan, we have only one individual and one sample origin and thus cannot say whether this germ layer preference says something about the species or is due to our specific sample.

      Because of this high variability from multiple sources, getting enough cell types with an appreciable overlap between species was limiting to analyses. In order to be able to derive meaningful conclusions from intra-species analyses and the impact of different sources of variation on cell type propensity, we would need to sequence many more EBs with an experimental design that balances possible sources of variation. This would go beyond the scope of this study.

      Instead, here we control for intra-species variation in our analyses as much as possible: For the analysis of cell type specificity and conservation the comparison is relative for the different specificity degrees (Figure 3C).  For the analysis of marker gene conservation, we explicitly take intra-species variation into account (Figure 4D).

      The same holds for the temporal aspect of the data, which is not really discussed in depth despite being a strength of the design. Instead, days 8 and 16 are analysed jointly, without much attention being paid to the possible differences between them.

      Concerning the temporal aspect, indeed we knowingly omitted to include an explicit comparison of day 8 and day 16 EBs, because we felt that it was not directly relevant to our main message. Our pseudotime analysis showed that the differences of the two time points were indeed a matter of degree and not so much of quality. All major lineages were already present at day 8 and even though day 8 cells had on average earlier pseudotimes, there was a large overlap in the pseudotime distributions between the two sampling time points (Author response image 1). That is why we decided to analyse the data together.

      Are EBs at day 16 more variable between species than at day 8? Is day 8 too soon to do these kinds of analyses?

      When we started the experiment, we simply did not know what to expect. We were worried that cell types at day 8 might be too transient, but longer culture can also introduce biases. That is why we wanted to look at two time points, however as mentioned above the differences are in degree.

      Concerning the cell type composition: yes, day 16 EBs are more heterogeneous than day 8 EBs. Firstly, older EBs have more distinguishable cell types and hence even if all EBs had identical composition, the sampling variance would be higher given that we sampled a similar number of cells from both time points. Secondly, in order to grow EBs for a longer time, we moved them from floating to attached culture on day 8 and it is unclear how much variance is added by this extra handling step.

      Are markers for earlier developmental progenitors better/more transferable than those for more derived cell types?

      We did not see any differences in the marker conservation between early and late cell types, but we have too little data to say whether this carries biological meaning.

      Author response image 1.

      Pseudotime analysis for a differentiation trajectory towards neurons. Single cells were first aggregated into metacells per species using SEACells (Persad et al. 2023). Pluripotent and ectoderm metacells were then integrated across all four species using Harmony and a combined pseudotime was inferred with Slingshot (Street et al. 2018), specifying iPSCs as the starting cluster. Here, lineage 3 is shown, illustrating a differentiation towards neurons. (A) PHATE embedding colored by pseudotime (Moon et al. 2019). (B) PHATE embedding colored by celltype. (C) Pseudotime distribution across the sampling timepoints (day 8 and day 16) in different species.

      (2) Closely tied to the point above, by necessity the authors collapse their data into seven fairly coarse cell types and then examine the performance of canonical marker genes (as well as those discovered de novo) across the species. However some of the clusters they use are somewhat broad, and so it is worth asking whether the lack of specificity exhibited by some marker genes and driving their conclusions is driven by inter-species heterogeneity within a given cluster.

      Author response image 2.

      UMAP visualization for the Harmony-integrated dataset across all four species for the seven shared cell types, colored by cell type identity (A) and species (B).

      Good point, if we understand correctly, the concern is that in our relatively broadly defined cell types, species are not well mixed and that this in turn is partly responsible for marker gene divergence. This problem is indeed difficult to address, because most approaches to evaluate this require integration across species which might lead to questionable results (see our Discussion).

      Nevertheless, we attempted an integration across all four species. To this end, we subset the cells for the 7 cell types that we found in all four species and visualized cell types and species in the UMAPs above (Author response image 2).

      We see that cardiac fibroblasts appear poorly integrated in the UMAP, but they still have very transferable marker genes across species. We quantified integration quality using the cell-specific mixing score (cms) (Lütge et al. 2021) and indeed found that the proportion of well integrated cells is lowest for cardiac fibroblasts (Author response image 3A). On the other end of the cms spectrum, neural crest cells appear to have the best integration across species, but their marker transferability between species is rather worse than for cardiac fibroblasts (Supplementary Figure 9). Cell-type wise calculated rank-biased overlap scores that we use for marker gene conservation show the same trends (Author response image 3B) as the F1 scores for marker gene transferability.  Hence, given our current dataset we do not see any indication that the low marker gene conservation is a result of too broadly defined cell types.

      Author response image 3.

      (A) Evaluation of species mixing per cell type in the Harmony-integrated dataset, quantified by the fraction of cells with an adjusted cell-specific mixing score (cms) above 0.05. (B) Summary of rank-biased overlap (RBO) scores per cell type to assess concordance of marker gene rankings for all species pairs.

      Reviewer #2 (Public review):

      Summary:

      The authors present an important study on identifying and comparing orthologous cell types across multiple species. This manuscript focuses on characterizing cell types in embryoid bodies (EBs) derived from induced pluripotent stem cells (iPSCs) of four primate species, humans, orangutans, cynomolgus macaques, and rhesus macaques, providing valuable insights into cross-species comparisons.

      Strengths:

      To achieve this, the authors developed a semi-automated computational pipeline that integrates classification and marker-based cluster annotation to identify orthologous cell types across primates. This study makes a significant contribution to the field by advancing cross-species cell type identification.

      We thank the reviewer for their positive and thoughtful feedback.

      Weaknesses:

      However, several critical points need to be addressed.

      (1) Use of Liftoff for GTF Annotation

      The authors used Liftoff to generate GTF files for Pongo abelii, Macaca fascicularis, and Macaca mulatta by transferring the hg38 annotation to the corresponding primate genomes. However, it is unclear why they did not use species-specific GTF files, as all these genomes have existing annotations. Why did the authors choose not to follow this approach?

      As Reviewer 1 also points out, also we have observed that the annotation of non-human primates often has truncated 3’UTRs. This is especially problematic for 3’ UMI transcriptome data as the ones in the 10x dataset that we present here. To illustrate this we compared the Liftoff annotation derived from Gencode v32,  that we also used throughout our manuscript to the Ensembl gene annotation Macaca_fascicularis_6.0.111. We used transcriptomes from human and cynomolgus iPSC bulk RNAseq  (Kliesmete et al. 2024) using the Prime-seq protocol (Janjic et al. 2022) which is very similar to 10x in that it also uses 3’ UMIs. On average using Liftoff produces higher counts than the Ensembl annotation (Author response image 4A). Moreover, when comparing across species, using Ensembl for the macaque leads to an asymmetry in differentially expressed genes, with apparently many more up-regulated genes in humans. In contrast, when we use the Liftoff annotation, we detect fewer DE-genes and a similar number of genes is up-regulated in macaques as in humans (Author response image 4B). We think that the many more DE-genes are artifacts due to mismatched annotation in human and cynomolgus macaques. We illustrate this for the case of the transcription factor SALL4 in Author response image 4 C,D.  The Ensembl annotation reports 2 transcripts, while Liftoff from Gencode v32 suggests 5 transcripts, one of which has a longer 3’UTR. This longer transcript is also supported by Nanopore data from macaque iPSCs. The truncation of the 3’UTR in this case leads to underestimation of the expression of SALL4 in macaques and hence SALL4 is detected as up-regulated in humans (DESeq2: LFC= 1.34, p-adj<2e-9). In contrast, when using the Liftoff annotation SALL4 does not appear to be DE between humans and macaques (LFC=0.33, p.adj=0.20).

      Author response image 4. 

      (A) UMI-counts/ gene for the same cynomolgus macaque iPSC samples. On the x-axis the gtf file from Ensembl Macaca_fascicularis_6.0.111 was used to count and on the y-axis we used our filtered Liftoff annotation that transferred the human gene models from Gencode v32. (B) The # of DE-genes between human  and cynomolgus iPSCs detected with DESeq2. In Liftoff, we counted human samples using Gencode v32 and compared it to the Liftoff annotation of the same human gene models to macFas6. In Ensembl, we use Gencode v32 for the human and  Ensembl Macaca_fascicularis_6.0.111 for the Macaque. For both comparisons we subset the genes to only contain one to one orthologues as annotated in biomart. Up and down regulation is relative to human expression. C) Read counts for one example gene SALL4. Here we used in addition to the Liftoff and Ensembl annotation also transcripts derived from Nanopore cDNA sequencing of cynomolgus iPSCs. D) Gene models for SALL4 in the space of MacFas6 and a coverage for iPSC-Prime-seq bulk RNA-sequencing.

      (2) Transcript Filtering and Potential Biases

      The authors excluded transcripts with partial mapping (<50%), low sequence identity (<50%), or excessive length differences (>100 bp and >2× length ratio). Such filtering may introduce biases in read alignment. Did the authors evaluate the impact of these filtering choices on alignment rates?

      We excluded those transcripts from analysis in both species, because they present a convolution of sequence-annotation differences and expression. The focus in our study is on regulatory evolution and we knowingly omit marker differences that are due to a marker being mutated away, we will make this clearer in the text of a revised version.

      (3) Data Integration with Harmony

      The methods section does not specify the parameters used for data integration with Harmony. Including these details would clarify how cross-species integration was performed.

      We want to stress  that none of our conservation and marker gene analyses relies on cross-species integration. We only used the Harmony integrated data for visualisation in Figure 1 and the rough germ-layer check up in Supplementary Figure S3.  We will add a better description in the revised version.

      References

      Janjic, Aleksandar, Lucas E. Wange, Johannes W. Bagnoli, Johanna Geuder, Phong Nguyen, Daniel Richter, Beate Vieth, et al. 2022. “Prime-Seq, Efficient and Powerful Bulk RNA Sequencing.” Genome Biology 23 (1): 88.

      Kliesmete, Zane, Peter Orchard, Victor Yan Kin Lee, Johanna Geuder, Simon M. Krauß, Mari Ohnuki, Jessica Jocher, Beate Vieth, Wolfgang Enard, and Ines Hellmann. 2024. “Evidence for Compensatory Evolution within Pleiotropic Regulatory Elements.” Genome Research 34 (10): 1528–39.

      Lütge, Almut, Joanna Zyprych-Walczak, Urszula Brykczynska Kunzmann, Helena L. Crowell, Daniela Calini, Dheeraj Malhotra, Charlotte Soneson, and Mark D. Robinson. 2021. “CellMixS: Quantifying and Visualizing Batch Effects in Single-Cell RNA-Seq Data.” Life Science Alliance 4 (6): e202001004.

      Moon, Kevin R., David van Dijk, Zheng Wang, Scott Gigante, Daniel B. Burkhardt, William S. Chen, Kristina Yim, et al. 2019. “Visualizing Structure and Transitions in High-Dimensional Biological Data.” Nature Biotechnology 37 (12): 1482–92.

      Persad, Sitara, Zi-Ning Choo, Christine Dien, Noor Sohail, Ignas Masilionis, Ronan Chaligné, Tal Nawy, et al. 2023. “SEACells Infers Transcriptional and Epigenomic Cellular States from Single-Cell Genomics Data.” Nature Biotechnology 41 (12): 1746–57.

      Street, Kelly, Davide Risso, Russell B. Fletcher, Diya Das, John Ngai, Nir Yosef, Elizabeth Purdom, and Sandrine Dudoit. 2018. “Slingshot: Cell Lineage and Pseudotime Inference for Single-Cell Transcriptomics.” BMC Genomics 19 (1): 477.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, the authors study the effects of synaptic activity on the process of eye-specific segregation, focusing on the role of caspase 3, classically associated with apoptosis. The method for synaptic silencing is elegant and requires intrauterine injection of a tetanus toxin light chain into the eye. The authors report that this silencing leads to increased caspase 3 in the contralateral eye (Figure 1) and demonstrate evidence of punctate caspase 3 that does not overlap neuronal markers like map2. However, the quantifications showing increased caspase 3 in the silenced eye (done at P5) are complicated by overlap with the signal from entire dying cells in the thalamus. The authors also show that global caspase 3 deficiency impairs the process of eye-specific segregation and circuit refinement (Figures 3-4).

      The reviewer states: “this silencing leads to increased caspase 3 in the contralateral eye”. We observed increased caspase-3 activity, not protein levels, in the contralateral dLGN, not eye.

      The reviewer states: “and demonstrate evidence of punctate caspase 3 that does not overlap neuronal markers like map2”. We do not believe that this statement is accurate, as we show that the punctate active caspase-3 signals overlap with the dendritic marker MAP2 (Figure S4A).

      The reviewer also states: “, the quantifications showing increased caspase 3 [activity] in the silenced [dLGN] (done at P5) are complicated by overlap with the signal from entire dying cells in the thalamus”. We do not believe that this statement is accurate. The apoptotic neurons we observed are relay neurons (confirmed by their morphology and positive staining of NeuN – Figure S4B-C) located in the dLGN (the dLGN is clearly labeled by expression of fluorescent proteins in RGCs, and only caspase-3 activity in the dLGN area is analyzed), not “cells” of unknown lineage (as suggested by the reviewer) in the general “thalamus” area (as suggested by the reviewer). If the dying cells were non-neuronal cells, that would indeed confound our quantification and conclusions, but that is not the case.

      We argue that whole-cell caspase-3 activation in dLGN relay neurons is a bona fide response to synaptic silencing by TeTxLC and therefore should be included in the quantification. We have two sets of controls: one is between the strongly inactivated dLGN and the weakly inactivated dLGN in the same TeTxLC-injected animal; and the second is between the dLGN of TeTxLC-injected animals and mock-injected animals. In both controls, only the dLGNs receiving strong synapse inactivation have more apoptotic dLGN relay neurons, demonstrating that these cells occur because of synapse inactivation. It is also unlikely that our perturbation is causing cell death through a non-synaptic mechanism. Since mock injections do not cause apoptosis in dLGN neurons, this phenomenon is not related to surgical damage. TeTxLC is injected into the eyes and only expressed in presynaptic RGCs, not in postsynaptic relay neurons, so this phenomenon is also unlikely to be caused by TeTxLC-related toxicity. Furthermore, if apoptosis of dLGN relay neurons is not related to synapse inactivation, then when TeTxLC is injected into both eyes, one would expect to see either the same amount or more apoptotic relay neurons, but we instead observed a reduction in dLGN neuron apoptosis, suggesting that synapse-related mechanisms are responsible. Considering the above, occasional whole-cell caspase-3 activation in relay neurons in TeTxLC-inactivated dLGN is causally linked to synapse inactivation and should be included in the quantification.

      We also revised the manuscript to better explain the possible mechanistic connection between localized caspase-3 activity and whole-cell caspase-3 activity. We propose that whole-cell caspase-3 activation occurs because of uncontrolled accumulation of localized caspase-3 activation. Please see line 127-140 and line 403-413 for details.

      Additionally, we would like to clarify that we are not claiming that synapse inactivation leads to only localized caspase-3 activation or only whole-cell caspase-3 activation, as is suggested by the editors and reviewers in the eLife assessment. We have clearly stated in the manuscript that both types of signals were observed. However, we reasoned that, because whole-cell caspase-3 activation in unperturbed dLGNs – which undergo normal synapse elimination – is infrequently observed, whole-cell caspase-3 activation may not be a significant driver of synapse elimination during normal development. In this revision, we included a new experiment to corroborate this hypothesis. If whole-cell caspase-3 activation in dLGN relay neurons is a prevalent phenomenon during normal development, such caspase-3 activity would lead to significant death of dLGN relay neurons during normal development. Consequently, if we block caspase-3 activation by deleting caspase-3, the number of relay neurons in the dLGN should increase. However, in support of our hypothesis, we observed comparable numbers of relay neurons in Casp3<sup>+/+</sup> and Casp3<sup>-/-</sup> mice. Please see Figure S7 for details.

      The authors also report that "synapse weakening-induced caspase-3 activation determines the specificity of synapse elimination mediated by microglia but not astrocytes" (abstract). They report that microglia engulf fewer RGC axon terminals in caspase 3 deficient animals (Figure 5), and that this preferentially occurs in silenced terminals, but this preferential effect is lost in caspase 3 knockouts. Based on this, the authors conclude that caspase 3 directs microglia to eliminate weaker synapses. However, a much simpler and critical experiment that the authors did not perform is to eliminate microglia and show that the caspase 3 dependent effects go away. Without this experiment, there is no reason to assume that microglia are directing synaptic elimination.

      The reviewer states: “microglia engulf fewer RGC axon terminals in caspase 3 deficient animals (Figure 5), and that this preferentially occurs in silenced terminals, but this preferential effect is lost in caspase 3 knockouts”. We are not sure what the reviewer means by “this preferentially occurs in silenced terminals”. Our results show that microglia preferentially engulf silenced terminals, and such preference is lost in caspase-3 deficient mice (Figure 6).

      We do not understand the experiment where the reviewer suggested to: “eliminate microglia and show that the caspase 3 dependent effects go away”. To quantify caspase-3 dependent engulfment of synaptic material by microglia or preferential engulfment of silenced terminals by microglia, microglia must be present in the tissue sample. If we eliminate microglia, neither of these measurements can be made. What could be measured if microglia are eliminated is the refinement of retinogeniculate pathway. This experiment would test whether microglia are required for caspase-3 dependent phenotypes. This is not a claim made in the manuscript. Instead, we claimed caspase-3 is required for microglia to engulf weak synapses, as supported by the evidence presented in Figure 6.

      We did not claim that “microglia are directing synaptic elimination”. Our claim is that synapse inactivation induces caspase-3 activity, and caspase-3 activation in turn leads to engulfment of weak synapses by microglia. Based on this model, it is the neuronal activity that fundamentally directs synapse elimination. Synapse engulfment by microglia is only a readout we used to measure the outcome of activity-dependent synapse elimination. We have revised all sections in the manuscript that are related to synapse engulfment by microglia to emphasize the logic of this model.

      We have also revised the abstract and title of the paper to better align it with our main claims, removed the reference to astrocytes, and clarified that microglia engulfment measurements are used as readouts of synapse elimination.

      Finally, the authors also report that caspase 3 deficiency alters synapse loss in 6-month-old female APP/PS1 mice, but this is not really related to the rest of the paper.

      We respectfully disagree that Figure 7 is not related to the rest of the paper. Many genes involved in postnatal synapse elimination, such as C1q and C3, have been implicated in neurodegeneration. It is therefore natural and important to ask whether the function of caspase-3 in regulating synaptic homeostasis extends to neurodegenerative diseases in adult animals. The answer to this question may have broad therapeutic impacts.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Yu et al. demonstrates that activation of caspase-3 is essential for synapse elimination by microglia, but not by astrocytes. This study also reveals that caspase 3 activation-mediated synapse elimination is required for retinogeniculate circuit refinement and eye-specific territories segregation in dLGN in an activity-dependent manner. Inhibition of synaptic activity increases caspase-3 activation and microglial phagocytosis, while caspase-3 deficiency blocks microglia-mediated synapse elimination and circuit refinement in the dLGN. The authors further demonstrate that caspase-3 activation mediates synapse loss in AD, loss of caspase-3 prevented synapse loss in AD mice. Overall, this study reveals that caspase-3 activation is an important mechanism underlying the selectivity of microglia-mediated synapse elimination during brain development and in neurodegenerative diseases.

      Strengths:

      A previous study (Gyorffy B. et al., PNSA 2018) has shown that caspase-3 signal correlates with C1q tagging of synapses (mostly using in vitro approaches), which suggests that caspase-3 would be an underlying mechanism of microglial selection of synapses for removal. The current study provides direct in vivo evidence demonstrating that caspase-3 activation is essential for microglial elimination of synapses in both brain development and neurodegeneration.

      The paper is well-organized and easy to read. The schematic drawings are helpful for understanding the experimental designs and purposes.

      Weaknesses:

      It seems that astrocytes contain large amounts of engulfed materials from ipsilateral and contralateral axon terminals (Figure S11B) and that caspase-3 deficiency also decreased the volume of engulfed materials by astrocytes (Figures S11C, D). So the possibility that astrocyte-mediated synapse elimination contributes to circuit refinement in dLGN cannot be excluded.

      We would like to clarify that we do not claim that astrocytes are unimportant for synapse elimination or circuit refinement. We acknowledge that the claim made in the original submitted manuscript that caspase-3 does not regulate synapse elimination by astrocytes lacks strong supporting evidence. We have removed this claim and revised the section related to synapse engulfment by astrocytes to provide a more rigorous interpretation of our data. We also removed the section in discussion regarding distinct substrate preferences of microglia and astrocytes.

      Does blocking single or dual inactivation of synapse activity (using TeTxLC) increase microglial or astrocytic engulfment of synaptic materials (of one or both sides) in dLGN?

      We assume that by “blocking single or dual inactivation of synapse activity”, the reviewer refers to inactivating retinogeniculate synapses from one or both eyes.

      We showed that inactivating retinogeniculate synapses from one eye (single inactivation) increases engulfment of inactive synapses by microglia (Figure 6). We did not measure synapse engulfment by microglia while inactivating retinogeniculate synapses from both eyes (dual inactivation). However, based on the total active caspase-3 signal (Figure 2) in the dual inactivation scenario, we do not expect to see an increase in engulfment of synaptic material by microglia.

      We did not measure astrocyte-mediated engulfment with single or dual inactivation, as we did not see a robust caspase-3 dependent phenotype in synapse engulfment by astrocytes.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the Authors):

      (1) Figure 1 - It is not clear from this figure whether the authors are measuring caspase 3 in dendritic compartments or in dying relay neurons in the thalamus. The authors state that "either" whole cell death (1B) or smaller punctate signals (1F) were observed. When quantifying "photons" in Figure 1E, it appears most of the signal captured will be of dying relay neurons. What determined which signal was observed, and what is being quantified in Figure 1E? This also applies to the quantifications being reported in Figure 2.

      The quantification includes both types of signals – it is sum of all active caspase-3 signal within the dLGN boundary. We note that there is a significant amount of punctate signal in the TeTxLC-inactivated dLGN. Unfortunately, due to file compression, these signals are not clearly visible in the submitted manuscript file. We have provided high resolution figures in this revision.

      As argued above in the response to the public review, apoptotic relay neurons in TeTxLC-inactivated dLGN (not the general thalamus area) occur as a direct consequence of synapse inactivation. Therefore, active caspase-3 signals in these relay neurons should be included in the quantification.

      We believe it is the extent of synapse inactivation (i.e., the number of synapses that are inactivated) that determines whether dLGN relay neuron apoptosis occurs or not. Such apoptosis is expected considering the nature of the apoptosis signaling cascade. In the intrinsic apoptosis pathway, release of cytochrome-c from mitochondria induces cleavage of the initiator caspase, caspase-9, and caspase-9 in turn cleaves the executioner caspases, caspase-3/7, which causes apoptosis. Caspase-3 can cleave upstream factors in the apoptosis pathway, leading to explosive amplification of caspase-3 activity (McComb et al., DOI: 10.1126/sciadv.aau9433). When a relay neuron receives a few inactivated synapses, caspase-3 activation in the postsynaptic dendrite can remain local (as we observed in Figure 1), constrained by mechanisms such as proteasomal degradation of cleaved caspase-3 (Erturk et al., DOI: 10.1523/JNEUROSCI.3121-13.2014). However, when a relay neuron receives many inactivated synapses, the cumulative caspase-3 activity induced in the dendrite can overwhelm negative regulation and lead to significantly higher levels of caspase-3 activity in entire dendrites (Figure S4B) through positive feedback amplification, eventually leading to caspase-3 activation in entire relay neurons. Please see line 127-140 and line 403-413 for our discussion in the main text.

      (2) Figure 5 - Figures 5c-d and Fig 6 are confounded by pseudoreplication, whereby performing statistics on 50-60 microglia inflates statistical significance. Could the authors show all these data per mouse?

      If we understand the reviewer correctly, the reviewer is suggesting that reporting measurements from multiple microglia in one animal constitutes pseudo-replication. This is correct in a strict sense, as microglia in the same animal are more likely to be similar than microglia from different animals. In the revised version, we have plotted the data by animal in Figure S11 and S13. The observations remain valid. However, we would like to point out that averaging measurements from all microglia in each animal and report by mouse is very conservative, as measurements from microglia in the same animal still vary greatly due to cell-to-cell differences.

      (3) Although the authors are not the only ones to use this strategy, it is worth noting that performing all microglial experiments in Cx3cr1 heterozygotes could lead to alterations in microglial function that may not be reflective of their homeostatic roles.

      We acknowledge that Cx3cr1 heterozygosity could cause alterations in microglial physiology.

      While Cx3cr1 heterozygosity may impact microglia physiology, we note that the engulfment assay in Figure 5 is comparing microglia in Cx3cr1<sup>+/-</sup>; Casp3<sup>+/-</sup> and Cx3cr1<sup>+/-</sup>; Casp3<sup>-/-</sup> animals. Therefore, the impact of Cx3cr1 heterozygosity is controlled for in our experiment, and the observed difference in engulfed synaptic material in microglia is an effect specific to caspase-3 deficiency. However, we acknowledge that this difference could be quantitatively affected by Cx3cr1 heterozygosity.

      It is important to note that we did not perform all microglia engulfment analyses using Cx3cr1<sup>+/-</sup> mice. We have edited the manuscript to make this more clear. In the activity-dependent microglia engulfment analysis performed in Figure 6, we used Casp3<sup>+/+</sup> and Casp3<sup>-/-</sup> animals and detected microglia with anti-Iba1 immunostaining. Therefore, the impact of Cx3cr1 heterozygosity is not a problem for this experiment.

      Minor:

      (1) Figures are presented out of order, which makes the manuscript difficult to follow.

      We have revised text regarding the segregation analysis to align with the order of figures.

      (2) Figure S3 is very confusing- the terms "left" and "right" are used in three or four partly overlapping contexts (which eye, which injection, which panel or subpanel of the figure is being referred to). Would this not be more appropriately analyzed with a repeated measures ANOVA (multiple comparisons not necessary) rather than multiple separate T-tests?

      We have revised Figure S3 and S5 with better annotation and legends.

      Yes, it is possible to use repeated measure two-way ANOVA. The analysis reports significant effect from genotypes, with a dF of 1, SoS and MoS of 0.0001081, F(1,13) = 7.595, and p = 0.0164. We used multiple separate t-tests because we wanted to show how genotype effects change with increasing thresholds, whereas two-way ANOVA only provides one overall p-value.

      (3) Could the authors clarify why the percentage overlap (in the controls) is so different between Figure 3C and Figure S3C, and why different thresholds are applied?

      This difference is primary due to difference in age. Figure 3 and Figure S5 are acquired at age of P10, while Figure S3 is acquired at P8. While the segregation process is largely complete by P8, the segregation continues from P8 to P10. Therefore, overlap measured at P10 will be lower than that measured at P8. If we compare overlap at the same threshold (e.g., 10%) and at the same age in Figure 3 and S5, the overlap is very similar.

      The choice of threshold is related to the methods of labeling. In Figure 3, RGC terminals are labeled with AlexaFlour conjugated cholera toxin subunit-beta (CTB). In Figure S3 and S5, RGC axons are labeled by expression of fluorescent proteins. Labeling with CTB only labels membrane surfaces but yields stronger and slightly different signals at fine scales than labeling with fluorescent protein which are cell fillers. For Figure S3 and S5 (which use fluorescent protein labeling), higher thresholds such as those used in Figure 3 (which use CTB labeling) can be applied and the same trend still holds, but the data will be noisier. Regardless of the small difference in thresholds used, the important observation is that the defects in TeTxLC-injected or caspase-3 deficient animals are clear across multiple thresholds.

      (4) Many describe the eye-specific segregation process as being complete "between P8-10". Other studies have quantified ESS at P10 (Stevens 2007). The authors state they did all quantifications at P8 (l. 82) and refer to Figure 3, but Figure 3 shows images from P10, whereas Figure S3 shows data from P8.

      We did not say we performed all quantification at P8. In line 85, we said “To validate the efficacy of our synapse inactivation method, we injected AAV-hSyn-TeTxLC into the right eye of wildtype E15 embryos and analyzed the segregation of eye-specific territories at postnatal day 8 (P8), when the segregation process is largely complete”. The age of postnatal day 8 in this context is specifically referring to the experiment shown in Figure S3. For the segregation analysis in Figure 3, we specifically stated that the experiment was conducted at P10 (line 277).

      Although the experiment in Figure S3 is conducted at P8, and Figure S5 and Figure 3 show results at P10, each dataset always included appropriate age-matched controls.  P8 is generally considered an age where segregation is mostly complete and sufficient for us to assess the potency of TeTxLC-delivered AAV on eye segregation.  We don’t think performing the experiment shown in Figure S3 at P8 impacts the interpretation of the data.

      (5) Is Figure 6 also using Cx3cr1 GFP to label microglia? This is not clarified.

      We apologize for this oversight. In Figure 6 microglia are labeled by anti-Iba1 immunostaining. We have clarified this in figure legends and text.

      Reviewer #2 (Recommendations for the Authors):

      (1) The authors quantified the caspase-3 activity using immunostaining and confocal microscopy (Figures 1B-E). They may need to verify the result (increased level of activated caspase-3 upon synapse inactivation) using alternative methods, such as western blotting.

      Both western blot and immunostaining are based on antibody-antigen interaction. These two methods are not likely sufficiently independent. Additionally, to perform a western blot, we would need to surgically collect the TeTxLC-inactivated dLGN to avoid sample contamination from other brain regions. Such collection at the age we are interested in (P5) is very challenging. We have tested the anti-cleaved caspase-3 antibody using caspase-3 deficient mice and we can confirm it is a highly specific antibody that doesn’t generate signal in the caspase-3 deficient tissue samples.

      (2) Does caspase-3 deficiency alter the density of microglia or astrocytes in dLGN?

      No. Neither the density of microglia nor astrocytes changed with caspase-3 deficiency. In the case of microglia, we find that the mean density of microglia per unit area of dLGN is virtually the same in wild type and caspase-3 deficient mice (two-tailed t test P = 0.8556, 6 wild type and 5 Casp3<sup>-/-</sup> mice). Some overviews showing microglia in dLGNs of wildtype and caspase-3 deficient mice can be found in Figure S10.  Similarly for astrocytes, we did not observe overt changes in astrocytes dLGN density linked to caspase-3 deficiency.

      (3) During dLGN eye-specific segregation in normal developing animals, did the authors observe different levels of activated caspase-3 in different regions (territories)?

      For normal developing animals, the activated caspase-3 signal is generally sparse, and it is difficult to distinguish whether the signal is related to synapse elimination. For animals receiving TeTxLC-injection, we did notice that in the dLGN contralateral to the injection, where most inactivated synapses are located, the punctate caspase-3 signal tends to concentrate on the ventral-medial side of the dLGN (Figure 1B), which is the region preferentially innervated by the contralateral eye.

      (4) Recording of NMDAR-mediated synaptic currents may not be necessary for demonstrating that caspase 3 is essential for dLGN circuit refinement. In addition, the PPR may not necessarily reflect the number of innervations that a dLGN neuron receives. Instead, showing the changes in the frequency of mEPSCs (or synapse/spine density) may be more supportive.

      Thank you for the comment. We have performed the suggested mEPSC measurements and reported the results in revised Figure 4D-F.

      (5) Why is caspase 3 activation enhanced (compared to control) only at 4 months of age, when A-beta deposition has not formed yet, but not at later time points in AD mice (Figure S17)?

      A prevailing hypothesis in the field is that the form of A-beta that is most neurotoxic is the soluble oligomeric form, not the fibril form that leads to plaque deposition. As the oligomeric form appears before plaque deposition, the enhanced caspase-3 activation we observed at 4-month may reflect an increase in oligomeric A-beta, which occurs before any visible A-beta plaque formation.

      (6) The manuscript can be made more concise, and the figures more organized.

      We removed superfluous details and corrected text-figure mismatches in the revised manuscript to improve readability.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Major changes in the revised manuscript include:

      (1) The distinction between condition-dependent versus condition-independent variation in neural activity has been clarified. 

      (2) Principal angle calculations have been added. 

      (3) Neurons modulated during action execution but not during action observation have been analyzed to compare and contrast with mirror neurons. 

      (4) Canonical correlation analysis has been extended to three dimensions. 

      (5) Speculations have been moved to and modified in the Discussion. 

      (6) Computational details have been expanded in the Methods.

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary and strengths. This paper starts with an exceptionally fair and balanced introduction to a topic, the mirror neuron literature, which is often debated and prone to controversies even in the choice of the terminology. In my opinion, the authors made an excellent job in this regard, and I really appreciated it. Then, they propose a novel method to look at population dynamics to compare neural selectivity and alignment between execution and observation of actions performed with different types of grip. 

      Thank you.

      Weakness.

      Unfortunately, the goal and findings within this well-described framework are less clear to me. The authors aimed to investigate, using a novel analytic approach, whether and to what extent a match exists between population codes and neural dynamics when a monkey performs an action or observes it performed by an experimenter. This motivation stems from the fact that the general evidence in the literature is that the match between visual and motor selectivity of mirror neuron responses is essentially at a chance level. While the approach devised by the author is generally well-described and understandable, the main result obtained confirms this general finding of a lack of matching between the two contexts in 2 out of the three monkeys. Nevertheless, the authors claim that the patterns associated with execution and observation can be re-aligned with canonical correlation, indicating that these distinct neural representations show dynamical similarity that may enable the nervous system to recognize particular actions. This final conclusion is hardly acceptable to me, and constitutes my major concern, at least without a more explicit explanation: how do we know that this additional operation can be performed by the brain? 

      Point taken.  In the Discussion, we now have clarified that this is our speculation rather than a conclusion and we also offer an alternative interpretation (lines 724 to 744):

      “One classic interpretation of similar latent dynamics in the PM MN population during execution and observation would be that this similarity provides a means for the brain to recognize similar movements performed by the monkey during execution and by the experimenter during observation. Through some process akin to a communication subspace (Semedo et al., 2019), brain regions beyond PM might recognize the correspondence between the latent dynamics of the executed and observed actions.

      Alternatively, given that observation of another individual can be considered a form of social interaction, PM MN population activity during action observation, rather than representing movements made by another individual similar to one’s own movements, instead may represent different movements one might execute oneself in response to those made by another individual (Ninomiya et al., 2020; Bonini et al., 2022; Ferrucci et al., 2022; Pomper et al., 2023). This possibility is consistent with the finding that the neural dynamics of PM MN populations are more similar during observation of biological versus non-biological movements than during execution versus observation (Albertini et al., 2021). Though neurons active only during observation of others (AO units) have been hypothesized to drive observation activity in MNs, the present AO populations were too small to analyze with the approaches we applied here.  Nevertheless, the similar relative organization of the execution and observation population activity in PM MNs revealed here by alignment of their latent dynamics through CCA could constitute a correspondence between particular movements that might be made by the subject in response to particular movements made by the other individual, i.e. responsive movements which would not necessarily be motorically similar to the observed movements.”

      Is this a computational trick to artificially align something that is naturally non-aligned, or can it capture something real and useful? 

      We feel this is more than a trick.  In the Introduction, we now have clarified (lines 166 to 170):

      “Such alignment would indicate that the relationships among the trajectory segments in the execution subspace are similar to the relationships among the trajectory segments in the observation subspace, indicating a corresponding structure in the latent dynamic representations of execution and observation movements by the same PM MN population.”

      In the Results we give the follow example (lines 446 to 455):

      “Such alignment would indicate that neural representations of trials involving the four objects bore a similar relationship to one another in neural space during execution and observation, even though they occurred in different subspaces.  For example, the trajectories of PMd+M1 neuron populations recorded from two different monkeys during center-out reaching movements could be aligned well (Safaie et al., 2023).  CCA showed, for example, that in both brains the neural trajectory for the movement to the target at 0° was closer to the trajectory for movement to the target at 45° than to the trajectory for the movement to the target at 180°. Relationships among these latent dynamic representations of the eight movements thus were similar even though the neural populations were recorded from two different monkeys.”

      And in the Discussion we now compare (lines 677 to 686):

      “Corresponding neural representations of action execution and observation during task epochs with higher neural firing rates have been described previously in PMd MNs and in PMv MNs using representational similarity analysis RSA (Papadourakis and Raos, 2019).  And during force production in eight different directions, neural trajectories of PMd neurons draw similar “clocks” during execution, cooperative execution, and passive observation (Pezzulo et al., 2022).  Likewise in the present study, despite execution and observation trajectories progressing through largely distinct subspaces, in all three monkeys execution and observation trajectory segments showed some degree of alignment, particularly the Movement and Hold segments (Figure 8C), indicating similar relationships among the latent dynamic representations of the four RGM movements during execution and observation.”

      Based on the accumulated evidence on space-constrained coding of others' actions by mirror neurons (e.g., Caggiano et al. 2009; Maranesi et al. 2017), recent evidence also cited by the authors (Pomper et al. 2023), and the most recent views supported even by the first author of the original discovery (i.e., Vittorio Gallese, see Bonini et al. 2022 on TICS), it seems that one of the main functions of these cells, especially in monkeys, might be to prepare actions and motor responses during social interaction rather than recognizing the actions of others - something that visual brain areas could easily do better than motor ones in most situations. In this perspective, and given the absence of causal evidence so far, the lack of visuo-motor congruence is a potentially relevant feature of the mechanism rather than something to be computationally cracked at all costs. 

      We agree that this perspective provides a valuable interpretation of our findings.  In the Discussion, we have added the following paragraph (lines 730 to 744):

      “Alternatively, given that observation of another individual can be considered a form of social interaction, PM MN population activity during action observation, rather than representing movements made by another individual similar to one’s own movements, instead may represent different movements one might execute oneself in response to those made by another individual (Ninomiya et al., 2020; Bonini et al., 2022; Ferrucci et al., 2022; Pomper et al., 2023). This possibility is consistent with the finding that the neural dynamics of PM MN populations are more similar during observation of biological versus non-biological movements than during execution versus observation (Albertini et al., 2021). Though neurons active only during observation of others (AO units) have been hypothesized to drive observation activity in MNs, the present AO populations were too small to analyze with the approaches we applied here.  Nevertheless, the similar relative organization of the execution and observation population activity in PM MNs revealed here by alignment of their latent dynamics through CCA could constitute a correspondence between particular movements that might be made by the subject in response to particular movements made by the other individual, i.e. responsive movements which would not necessarily be motorically similar to the observed movements.”

      Specific comments on Results/Methods: 

      I can understand, based on the authors' hypothesis, that they employed an ANOVA to preliminarily test whether and which of the recorded neurons fit their definition of "mirror neurons". However, given the emphasis on the population level, and the consolidated finding of highly different execution and observation responses, I think it could be interesting to apply the same analysis on (at least also) the whole recorded neuronal population, without any preselection-based on a single neuron statistic. Such preselection of mirror neurons could influence the results of EXE-OBS comparisons since all the neurons activated only during EXE or OBS are excluded. Related to this point, the authors could report the total number of recorded neurons per monkey/session, so that also the fraction of neurons fitting their definition of mirror neuron is explicit. 

      We are aware that a number of recent studies from other laboratories already have analyzed the entire population of neurons during execution versus observation, without selectively analyzing neurons active during both execution and observation (Jiang et al., 2020; Albertini et al., 2021). However, our focus lies not in how the entire PM neural population encodes execution versus observation, but in the differential activity of the mirror neuron subpopulation in these two contexts.  Our new Table 2 presents the numbers of mirror neurons (MN), action execution only neurons (AE), action observation only neurons (AO), and neurons not significantly task-related during either execution or observation (NS).  Although we often recorded substantial numbers of AE neurons, very few AO neurons were found in our recordings.  In analyzing the AE subpopulation, we found unexpected differences in canonical correlation alignment between and within the MN and AE neuron populations. In view of the editors’ comments that “…the reviewers provided several specific recommendations of new analyses to include. However, now the paper feels extremely long…”. We have chosen to focus on comparing AE neurons with MNs.  

      Furthermore, the comparison of the dynamics of the classification accuracy in figures 4 and 5, and therefore the underlying assumption of subspaces shift in execution and observation, respectively, reveal substantial similarities between monkeys despite the different contexts, which are clearly greater than the similarities among neural subspaces shifts across task epochs: to me, this suggests that the main result is driven by the selected neural populations in different monkeys/implants rather than by an essential property of the neuronal dynamics valid across animals. Could the author comment on this issue? This could easily explain the "strange" result reported in figure 6 for monkey T. 

      We have taken the general approach of emphasizing findings common across individual animals, but also reporting individual differences.  We have added the following in the Discussion (lines 645 to 654):

      “We did not attempt to classify neurons in our PM MN populations as strictly congruent, broadly congruent, or non-congruent.  Nevertheless, the minimal overlap we found in instantaneous execution and observation subspaces would be consistent with a low degree of congruence in our PM MN populations.  Particularly during one session monkey T was an exception in this regard, showing a considerable degree of overlap between execution and observation subspaces, not unlike the shared subspace found in other studies that identified orthogonal execution and observation subspaces as well (Jiang et al., 2020).  Although our microelectrode arrays were placed in similar cortical locations in the three monkeys, by chance monkey T’s PM MN population may have included a substantial proportion of congruent neurons.”

      Reviewer #2 (Public Review): 

      In this work, the authors set out to identify time-varying subspaces in the premotor cortical activity of monkeys as they executed/observed a reach-grasp-hold movement of 4 different objects. Then, they projected the neural activity to these subspaces and found evidence of shifting subspaces in the time course of a trial in both conditions, executing and observing. These shifting subspaces appear to be distinct in execution and observation trials. However, correlation analysis of neural dynamics reveals the similarity of dynamics in these distinct subspaces. Taken together, Zhao and Schieber speculate that the condition-dependent activity studied here provides a representation of movement that relies on the actor. 

      This work addresses an interesting question. The authors developed a novel approach to identify instantaneous subspaces and decoded the object type from the projected neural dynamics within these subspaces. As interesting as these results might be, I have a few suggestions and questions to improve the manuscript: 

      (1) Repeating the analyses in the paper, e.g., in Fig5, using non-MN units only or the entire population, and demonstrating that the results are specific to MNs would make the whole study much more compelling. 

      We have added analyses of those non-MNs modulated significantly during action execution but not during observation, which we refer to as AE neurons.  The additional findings from these analyses are spread throughout the manuscript:

      Lines 284-293:

      “We also examined the temporal progression of the instantaneous subspace of AE neurons.  As would be expected given that AE neurons were not modulated significantly during observation trials, in the observation context AE populations had no gradual changes in principal angle (Figure 4 – figure supplement 3).  During execution, however, Figure 4I-L show that the AE populations had a pattern of gradual decrease in principal angle similar to that found in the MN population (Figure 4A-D).  After the instruction onset, the instantaneous subspace shifted quickly away from that present at time I and progressed gradually toward that present at times G and M, only shifting toward that present at time H after movement onset.  As for the PM MN populations, the condition-dependent subspace of the PM AE populations shifted progressively over the time course of execution RGM trials.” 

      Lines 411-419:

      “During execution trials, classification accuracy for AE populations (Figure 6I-L) showed a time course quite similar to that for MN populations, though amplitudes were lower overall, most likely because of the smaller population sizes. During observation, AE populations showed only low-amplitude, short-lived peaks of classification accuracy around times I, G, M, and H (Figure 6 – figure supplement 1).  Given that individual AE neurons showed no statistically significant modulation during observation trials, even these small peaks might not have been expected.  Previous studies have indicated, however, that neurons not individually related to task events nevertheless may contribute to a population response (Shenoy et al., 2013; Cunningham and Yu, 2014; Gallego et al., 2017; Jiang et al., 2020).”

      Lines 495-508:

      “Although MNs are known to be present in considerable numbers in both the primary motor cortex and premotor cortex (see Introduction), most studies of movement-related cortical activity in these areas make no distinction between neurons with activity only during action execution (AE neurons) and those with activity during both execution and observation (MNs).  This reflects an underlying assumption that during action execution, mirror neurons function in parallel with AE neurons, differing only during observation.  We therefore tested the hypothesis that MN and AE neuron execution trajectory segments from the same session would align well.  Figure 8C (blue) shows the mean CCs between MN and AE execution trajectory segments across 8 alignments (MN/AE; 2 R, 3 T, 3 F), which reached the highest values for the Hold segments .  All three of these coefficients were substantially lower than those for the MN execution vs. observation alignments given above.  Surprisingly, the alignment of AE neuron execution trajectory segments with those of the simultaneously recorded MN population was weaker than the alignment of MN trajectories during execution vs. observation.

      Did these differences in MN:1/2, MN:E/O, and MN/AE alignment result from consistent differences in their respective patterns of co-modulation, or from of greater trial-by-trial variability in the patterns of co-modulation among MNs during observation than during execution, and still greater variability among AE neurons during execution?  The bootstrapping approach we used for CCA (see Methods) enabled us to evaluate the consistency of relationships among trajectory segments across repeated samplings of trials recorded from the same neuron population in the same session and in the same context (execution or observation).  We therefore performed 500 iterations of CCA between two different random samples of MN execution (MN:E/E), MN  observation (MN:O/O), or AE execution (AE:E/E) trajectory segments from a given session (2 R, 3 T, 3 F). This within-group alignment of MN execution trajectory segments from the same session (Figure 8D, MN:E/E, gray, Hold: () was as strong as between session alignment (Figure 8C, MN/1:2, black).  But within-group alignment of MN observation trajectory segments (Figure 8D, MN:O/O, orange, Hold: () was lower than that found with MN execution segments (Figure 8C, MN:E/O, red, .  Likewise, within-group alignment of AE neuron trajectory segments (Figure 8D, AE:E/E, light blue, Hold: () was lower than their alignment with MN execution segments (Figure 8C, MN/AE, blue, Hold: ().  Whereas MN execution trajectories were relatively consistent within sessions, MN observation trajectories and AE execution trajectories were less so.”

      And in the Discussion we now suggest (lines 682 to 698):

      “Based on the assumption that AE neurons and MNs function as a homogenous neuron population during action execution, we had expected AE and MN execution trajectory segments to align closely.  During execution trials, the progression of instantaneous condition-dependent subspaces and of classification accuracy in AE populations was quite similar to that in MN populations.  We were surprised to find, therefore, that alignment between execution trajectory segments from AE populations and from the simultaneously recorded MN populations was even lower than alignment between MN execution and observation segments (Figure 8C, blue versus red).  Moreover, whereas within-group alignment of MN execution trajectory segments was high, within-group alignment of AE neuron execution trajectory segments was low (Figure 8D, gray versus light blue).  These findings indicate that the predominant patterns of co-modulation among MNs during execution are quite consistent within sessions, but the patterns of comodulation among AE neurons are considerably more variable.  Together with our previous finding that modulation of MNs leads that of non-mirror neurons in time, both at the single neuron level and at the population level (Mazurek and Schieber, 2019), this difference in consistency versus variability leads us to speculate that during action execution, while MNs carry a consistent forward model of the intended movement, AE neurons carry more variable feedback information.”

      (2) The method presented here is similar and perhaps related to principal angles (https://doi.org/10.2307/2005662). It would be interesting to confirm these results with principal angles. For instance, instead of using the decoding performance as a proxy for shifting subspaces, principal angles could directly quantify the 'shift' (similar to Gallego et al, Nat Comm, 2018). 

      Point taken.  We now have calculated the principal angles as a function of time and present them as a new section of the Results including new figure 4 (lines 237 to 293). 

      “Instantaneous subspaces shift progressively during both execution and observation 

      We identified an instantaneous subspace at each one millisecond time step of RGM trials.  At each time step, we applied PCA to the 4 instantaneous neural states (i.e. the 4 points on the neural trajectories representing trials involving the 4 different objects each averaged across 20 trials per object, totaling 80 trials), yielding a 3-dimensional subspace at that time (see Methods).  Note that because these 3-dimensional subspaces are essentially instantaneous, they capture the condition-dependent variation in neural states, but not the common, condition-independent variation.  To examine the temporal progression of these instantaneous subspaces, we then calculated the principal angles between each 80-trial instantaneous subspace and the instantaneous subspaces averaged across all trials at four behavioral time points that could be readily defined across trials, sessions, and monkeys: the onset of the instruction (I), the go cue (G), the movement onset (M), and the beginning of the final hold (H).  This process was repeated 10 times with replacement to assess the variability of the principal angles.  The closer the principal angles are to 0°, the closer the two subspaces are to being identical; the closer to 90°, the closer the two subspaces are to being orthogonal.  

      Figure 4A-D illustrate the temporal progression of the first principal angle of the mirror neuron population in the three sessions (red, green, and blue) from monkey R during execution trials. As illustrated in Figure 4 – figure supplement 1 (see also the related Methods), in each session all three principal angles, each of which could range from 0° to 90°, tended to follow a similar time course.  In the Results we therefore illustrate only the first (i.e. smallest) principal angle.  Solid traces represent the mean across 10-fold cross validation using the 80-trial subsets of all the available trials; shading indicates ±1 standard deviation.  As would be expected, the instantaneous subspace using 80 trials approaches the subspace using all trials at each of the four selected times—I, G, M, and H—indicated by the relatively narrow trough dipping toward 0°.  Of greater interest are the slower changes in the first principal angle in between these four time points.  Figure 4A shows that after instruction onset (I) the instantaneous subspace shifted quickly away from the subspace at time I, indicated by a rapid increase in principal angle to levels not much lower than what might be expected by chance alone (horizontal dashed line). In contrast, throughout the remainder of the instruction and delay epochs (from I to G), Figure 4B and C show that the 80-trial instantaneous subspace shifted gradually and concurrently, not sequentially, toward the all-trial subspaces that would be reached at the end of the delay period (G) and then at the onset of movement (M), indicated by the progressive decreases in principal angle. As shown by Figure 4D, shifting toward the H subspace did not begin until the movement onset (M). To summarize, these changes in principal angles indicate that after shifting briefly toward the subspace present at time the instruction appeared (I), the instantaneous subspace shifted progressively throughout the instruction and delay epochs toward the subspace that would be reached at the time of the go cue (G), then further toward that at the time of movement onset (M), and only thereafter shifted toward the instantaneous subspace that would be present at the time of the hold (H).

      Figure 4E-H show the progression of the first principal angle of the mirror neuron population during observation trials.  Overall, the temporal progression of the MN instantaneous subspace during observation was similar to that found during execution, particularly around times I and H.  The decrease in principal angle relative to the G and M instantaneous subspaces during the delay epoch was less pronounced during observation than during execution.  Nevertheless, these findings support the hypothesis that the condition-dependent subspace of PM MNs shifts progressively over the time course of RGM trials during both execution and observation, as illustrated schematically in Figure 1A.

      We also examined the temporal progression of the instantaneous subspace of AE neurons.  As would be expected given that AE neurons were not modulated significantly during observation trials, in the observation context AE populations had no gradual changes in principal angle (Figure 4 – figure supplement 3).  During execution, however, Figure 4I-L show that the AE populations had a pattern of gradual decrease in principal angle similar to that found in the MN population (Figure 4A-D).  After the instruction onset, the instantaneous subspace shifted quickly away from that present at time I and progressed gradually toward that present at times G and M, only shifting toward that present at time H after movement onset.  As for the PM MN populations, the condition-dependent subspace of the PM AE populations shifted progressively over the time course of execution RGM trials.”

      The related Methods are now described in subsection “Subspace Comparisons—Principal Angles”

      Relatedly, why the decoding of the 'object type' is used to establish the progressive shifting of the subspaces? I would be interested to see the authors' argument. 

      We have clarified the reason for our decoding analysis as follows (lines 295 to 297):

      “The progressive changes in principal angles do not capture another important aspect of condition-dependent neural activity.  The neural trajectories during trials involving different objects separated increasingly as trials progressed in time.”

      And… (lines 332 to 348):

      “Decodable information changes progressively during both execution and observation 

      As RGM trials proceeded in time, the condition-dependent neural activity of the PM MN population thus changed in two ways.  First, the instantaneous condition-dependent subspace shifted, indicating that the patterns of firing-rate co-modulation among neurons representing the four different RGM movements changed progressively, both during execution and during observation.  Second, as firing rates generally increased, the neural trajectories representing the four RGM movements became progressively more separated, more so during execution than during observation. 

      To evaluate the combined effects of these two progressive changes, we clipped 100 ms single-trial trajectory segments beginning at times I, G, M, or H, and projected these trajectory segments from individual trials into the instantaneous 3D subspaces at 50 ms time steps.  At each of these time steps, we trained a separate LSTM decoder to classify individual trials according to which of the four objects was involved in that trial.  We expected that the trajectory segments would be classified most accurately when projected into instantaneous subspaces near the time at which the trajectory segments were clipped.  At other times we reasoned that classification accuracy would depend both on the similarity of the current instantaneous subspace to that found at the clip time as evaluated by the principal angle (Figure 4), and on the separation of the four trajectories at the clip time (Figure 5).”

      The object type should be much more decodable during movement or hold, than instruction, which is probably why the chance-level decoding performance (horizontal lines) is twice the instruction segment for the movement segment. 

      Indeed, the object type is more decodable during the movement and hold than during instruction or delay epochs.

      (3) Why aren't execution and observation subspaces compared together directly? Especially given that there are both types of trials in the same session with the same recorded population of neurons. Using instantaneous subspaces, or the principal angles between manifolds during exec trials vs obs trials.

      Point taken.  We now have added comparison of the execution and observation subspaces using the principal angles between instantaneous subspaces (lines 421 to 436):

      “Do PM mirror neurons progress through the same subspaces during execution and observation?

      Having found that PM mirror neuron populations show similar progressive shifts in their instantaneous neural subspace during execution and observation of RGM trials, as well as similar changes in decodable information, we then asked whether this progression passes through similar subspaces during execution and observation.  To address this question, we first calculated the principal angles between the instantaneous mirror-neuron execution subspace at selected times I, G, M, or H and the entire time series of instantaneous mirror-neuron observation subspaces (Figure 7A-D).  Conversely, we calculated the principal angles between the instantaneous observation subspaces at selected times I, G, M, or H and the entire time series of instantaneous execution subspaces (Figure 7E-H).  Although the principal angles were slightly smaller than might be expected from chance alone, indicating some minimal overlap of execution and observation instantaneous subspaces, the instantaneous observation subspaces did not show any progressive shift toward the I, G, M, or H execution subspace (Figure 7A-D), nor did the instantaneous execution subspaces shift toward the I, G, M, or H observation subspace (Figure 7E-H).”

      (4) The definition of the instantaneous subspaces is a critical point in the manuscript. I think it is slightly unclear: based on the Methods section #715-722 and the main text #173-#181, I gather that the subspaces are based on trial averaged neural activity for each of the 4 objects, separately. So for each object and per timepoint, a vector of size (1, n) -n neurons- is reduced to a vector of (1, 2 or 3 -the main text says 2, methods say 3-) which would be a single point in the low-d space. Is this description accurate? This should be clarified in the manuscript.  

      In the Methods, we now have clarified (lines 849 to 859):

      “Instantaneous subspace identification 

      Instantaneous neural subspaces were identified at 1 ms intervals.  At each 1 ms time step, the N-dimensional neural firing rates from trials involving the four different objects— sphere, button, coaxial cylinder, and perpendicular cylinder—were averaged separately, providing four points in the N-dimensional space representing the average neural activity for trials involving the different objects at that time step.  PCA then was performed on these four points.  Because three dimensions capture all the variance of four points, three principal component dimensions fully defined each instantaneous subspace.  Each instantaneous 3D subspace can be considered a filter described by a matrix, W, that can project high-dimensional neural activity into a low-dimensional subspace, with the time series of instantaneous subspaces, W_i, forming a time series of filters (Figure 1B).”

      (5) Isn't the process of projecting segments of neural dynamics and comparing the results equivalent to comparing the projection matrices in the first place? If so, that might have been a more intuitive avenue to follow. 

      As described in more detail in our responses to item 2, above, we have added analyses of principal angles to compare the projection matrices directly.  However, “the process of projecting segments of neural dynamics and comparing the results” incorporates the progressively increasing separation of the trajectory segments and hence is not simply equivalent to comparing the subspaces with principal angles.

      (6) Lines #385-#389: This process seems unnecessarily complicated. Also, given the number of trials available, this sometimes doesn't make sense. E.g. Monkey R exec has only 8 trials of one of the objects, so bootstrapping 20 trials 500 times would be spurious. Why not, as per Gallego et al, Nat Neurosci 2020 and Safaie et al, Nat 2023 which are cited, concatenate the trials? 

      In the Methods we now clarify that (lines 953 to 969):

      “To provide an estimate of variability, we used a bootstrapping approach to CCA.  From each of two data sets we randomly selected 20 trials involving each target object (totaling 80 trials) with replacement, clipped trajectory segments from each of those trials for 100 ms (100 points at 1 ms intervals) after the instruction onset, go cue, movement onset, or beginning of the final hold, and performed CCA as described above. (Note that because session 1 from monkey R included only 8 button trials (Table 1), we excluded this session from CCA analyses.)  With 500 iterations, we obtained a distribution of the correlation coefficients (CCs) between the two data sets in each of the three dimensions of the aligned subspace, which permitted statistical comparisons. We then used this approach to evaluate alignment of latent dynamics between different sessions (e.g. execution trials on two different days), between different contexts (e.g. execution and observation), and between different neural populations (e.g. MNs and AE neurons).This bootstrapping approach further enabled us to assess the consistency of relationships among neural trajectories within a given group—i.e. the same neural population during the same context (execution or observation) in the same session—by drawing two separate random samples of 80 trials from the same population, context, and session (Figure 8D), which would not have been possible had we concatenated trajectory segments from all trials in the session (Gallego et al., 2020; Safaie et al., 2023).”

      And we report results that could not have been obtained by concatenating all the trials (lines 522 to 541):

      “Did these differences in MN:1/2, MN:E/O, and MN/AE alignment result from consistent differences in their respective patterns of co-modulation, or from of greater trial-by-trial variability in the patterns of co-modulation among MNs during observation than during execution, and still greater variability among AE neurons during execution?  The bootstrapping approach we used for CCA (see Methods) enabled us to evaluate the consistency of relationships among trajectory segments across repeated samplings of trials recorded from the same neuron population in the same session and in the same context (execution or observation).  We therefore performed 500 iterations of CCA between two different random samples of MN execution (MN:E/E), MN  observation (MN:O/O), or AE execution (AE:E/E) trajectory segments from a given session (2 R, 3 T, 3 F). This within-group alignment of MN execution trajectory segments from the same session (Figure 8D, MN:E/E, gray, Hold: () was as strong as between session alignment (Figure 8C, MN/1:2, black).  But within-group alignment of MN observation trajectory segments (Figure 8D, MN:O/O, orange, Hold: () was lower than that found with MN execution segments (Figure 8C, MN:E/O, red, .  Likewise, within-group alignment of AE neuron trajectory segments (Figure 8D, AE:E/E, light blue, Hold: () was lower than their alignment with MN execution segments (Figure 8C, MN/AE, blue, Hold: ().  Whereas MN execution trajectories were relatively consistent within sessions, MN observation trajectories and AE execution trajectories were less so.”

      Because only 8 button trials were available in Session 1 from Monkey R, we excluded this session from the CCA analyses.  Sessions 2 and 3 from monkey R provide valid results, however.  For example, we now state explicitly (lines 468 to 472):

      “As a positive control, we first aligned MN execution trajectory segments from two different sessions in the same monkey (which we abbreviate as MN:1/2).  The 2 sessions in monkey R provided only 1 possible comparison, but the 3 sessions in monkeys T and F each provided 3 comparisons.  For each of these 7 comparisons, we found the bootstrapped average of CC1, of CC2, and of CC3.”

      (7) Related to the CCA analysis, what behavioural epoch has been used here, the same as the previous analyses, i.e. 100ms? how many datapoint is that in time? Given that CCA is essentially a correlation value, too few datapoints make it rather meaningless. If that's the case, I encourage using, let's say, one window combined of I and G until movement, and one window of movement and hold, such that they are both easier to interpret. Indeed low values of exec-exec in CC2 compared to Gallego et al, Nat Neurosci, 2020 might be a sign of a methodological error. 

      In the Methods described for CCA, we now have clarified that (lines 953 to 961):

      “To provide an estimate of variability, we used a bootstrapping approach to CCA.  From each of two data sets we randomly selected 20 trials involving each target object (totaling 80 trials) with replacement, clipped trajectory segments from each of those trials for 100 ms (100 points at 1 ms intervals) after the instruction onset, go cue, movement onset, or beginning of the final hold, and performed CCA as described above. (Note that because session 1 from monkey R included only 8 button trials (Table 1), we excluded this session from CCA analyses.)  With 500 iterations, we obtained a distribution of the correlation coefficients (CCs) between the two data sets in each of the three dimensions of the aligned subspace, which permitted statistical comparisons.”

      And in the Results we report that (lines 475 to 480):

      “The highest values for MN:1/2 correlations were obtained for the Movement trajectory segments .  These values indicate consistent relationships among the Movement neural trajectory segments representing the four different RGM movements from session to session, as would have been expected from previous studies (Gallego et al., 2018; Gallego et al., 2020; Safaie et al., 2023).”

      Reviewer #3 (Public Review): 

      Summary: 

      In their study, Zhao et al. investigated the population activity of mirror neurons (MNs) in the premotor cortex of monkeys either executing or observing a task consisting of reaching to, grasping, and manipulating various objects. The authors proposed an innovative method for analyzing the population activity of MNs during both execution and observation trials. This method enabled to isolate the condition-dependent variance in neural data and to study its temporal evolution over the course of single trials. The method proposed by the authors consists of building a time series of "instantaneous" subspaces with single time step resolution, rather than a single subspace spanning the entire task duration. As these subspaces are computed on an instant time basis, projecting neural activity from a given task time into them results in latent trajectories that capture condition-dependent variance while minimizing the condition-independent one. The authors then analyzed the time evolution of these instantaneous subspaces and revealed that a progressive shift is present in subspaces of both execution and observation trials, with slower shifts during the grasping and manipulating phases compared to the initial preparation phase. Finally, they compared the instantaneous subspaces between execution and observation trials and observed that neural population activity did not traverse the same subspaces in these two conditions. However, they showed that these distinct neural representations can be aligned with Canonical Correlation Analysis, indicating dynamic similarities of neural data when executing and observing the task. The authors speculated that such similarities might facilitate the nervous system's ability to recognize actions performed by oneself or another individual. 

      Strengths: 

      Unlike other areas of the brain, the analysis of neural population dynamics of premotor cortex MNs is not well established. Furthermore, analyzing population activity recorded during non-trivial motor actions, distinct from the commonly used reaching tasks, serves as a valuable contribution to computational neuroscience. This study holds particular significance as it bridges both domains, shedding light on the temporal evolution of the shift in neural states when executing and observing actions. The results are moderately robust, and the proposed analytical method could potentially be used in other neuroscience contexts. 

      Weaknesses: 

      While the overall clarity is satisfactory, the paper falls short in providing a clear description of the mathematical formulas for the different methods used in the study. 

      We have added the various mathematical formulas in the Methods.

      For Cumulative Separation (lines 864 to 871): 

      “To quantify the separation between the four trial-averaged trajectory segments involving the different objects in a given instantaneous subspace, we then calculated their cumulative separation (𝐶𝑆) as: 

      where d<sub>ij</sub>(t) is the 3-dimensional Euclidean distance between the i<sup>th</sup> and j<sup>th</sup> trajectories at time point 𝑡. We summed the 6 pairwise distances between the 4 trajectory segments across time points and normalized by the number of time points, 𝑇 = 100.  The larger the 𝐶𝑆, the greater the separation of the trajectory segments.”

      For principal angles (lines 877 to 884): 

      For example, given the 3-dimensional instantaneous subspace at the time of movement onset, W<sub>M</sub> and at any other time, W<sub>i</sub>, we calculated their 3x3 inner product matrix and performed singular value decomposition to obtain:

      where 3x3 matrices P<sub>M</sub> and W<sub>P</sub> define new manifold directions which successively minimize the 3 principal angles specific to the two subspaces being compared. The elements of diagonal matrix 𝐶 then are the ranked cosines of the principal angles, 𝜃𝑖 , ordered from smallest to largest: 

      For CCA (lines 945 to 952): 

      “CCA was performed as follows: The original latent dynamics, L<sub>A</sub> and L<sub>B</sub>, first were transformed and decomposed as and .  The first m = 3 column vectors of each 𝑄𝑖 provide an orthonormal basis for the column vectors of (where 𝑖 = 𝐴, 𝐵).  Singular value decomposition on the inner product matrix of  𝑄𝐴 and 𝑄𝐵 then gives , and new manifold directions that maximize pairwise correlations are provided by and .  We then projected the original latent dynamics into the new, common subspace: .  Pairwise correlation coefficients between the aligned latent dynamics sorted from largest to smallest then are given by the elements of the diagonal matrix .”

      Moreover, it was not immediately clear why the authors did not consider a (relatively) straightforward metric to quantity the progressive shift of the instantaneous subspaces, such as computing the angle between consecutive subspaces, rather than choosing a (in my opinion) more cumbersome metric based on classification of trajectory segments representing different movements. 

      Point taken.  We now have calculated the principal angles as a function of time and present them as a new section of the Results including new figure 4 (lines 237 to 293). 

      “Instantaneous subspaces shift progressively during both execution and observation 

      We identified an instantaneous subspace at each one millisecond time step of RGM trials.  At each time step, we applied PCA to the 4 instantaneous neural states (i.e. the 4 points on the neural trajectories representing trials involving the 4 different objects each averaged across 20 trials per object, totaling 80 trials), yielding a 3-dimensional subspace at that time (see Methods).  Note that because these 3-dimensional subspaces are essentially instantaneous, they capture the condition-dependent variation in neural states, but not the common, condition-independent variation.  To examine the temporal progression of these instantaneous subspaces, we then calculated the principal angles between each 80-trial instantaneous subspace and the instantaneous subspaces averaged across all trials at four behavioral time points that could be readily defined across trials, sessions, and monkeys: the onset of the instruction (I), the go cue (G), the movement onset (M), and the beginning of the final hold (H).  This process was repeated 10 times with replacement to assess the variability of the principal angles.  The closer the principal angles are to 0°, the closer the two subspaces are to being identical; the closer to 90°, the closer the two subspaces are to being orthogonal.  

      Figure 4A-D illustrate the temporal progression of the first principal angle of the mirror neuron population in the three sessions (red, green, and blue) from monkey R during execution trials. As illustrated in Figure 4 – figure supplement 1 (see also the related Methods), in each session all three principal angles, each of which could range from 0° to 90°, tended to follow a similar time course.  In the Results we therefore illustrate only the first (i.e. smallest) principal angle.  Solid traces represent the mean across 10-fold cross validation using the 80-trial subsets of all the available trials; shading indicates ±1 standard deviation.  As would be expected, the instantaneous subspace using 80 trials approaches the subspace using all trials at each of the four selected times—I, G, M, and H—indicated by the relatively narrow trough dipping toward 0°.  Of greater interest are the slower changes in the first principal angle in between these four time points.  Figure 4A shows that after instruction onset (I) the instantaneous subspace shifted quickly away from the subspace at time I, indicated by a rapid increase in principal angle to levels not much lower than what might be expected by chance alone (horizontal dashed line). In contrast, throughout the remainder of the instruction and delay epochs (from I to G), Figure 4B and C show that the 80-trial instantaneous subspace shifted gradually and concurrently, not sequentially, toward the all-trial subspaces that would be reached at the end of the delay period (G) and then at the onset of movement (M), indicated by the progressive decreases in principal angle. As shown by Figure 4D, shifting toward the H subspace did not begin until the movement onset (M). To summarize, these changes in principal angles indicate that after shifting briefly toward the subspace present at time the instruction appeared (I), the instantaneous subspace shifted progressively throughout the instruction and delay epochs toward the subspace that would be reached at the time of the go cue (G), then further toward that at the time of movement onset (M), and only thereafter shifted toward the instantaneous subspace that would be present at the time of the hold (H).

      Figure 4E-H show the progression of the first principal angle of the mirror neuron population during observation trials.  Overall, the temporal progression of the MN instantaneous subspace during observation was similar to that found during execution, particularly around times I and H.  The decrease in principal angle relative to the G and M instantaneous subspaces during the delay epoch was less pronounced during observation than during execution.  Nevertheless, these findings support the hypothesis that the condition-dependent subspace of PM MNs shifts progressively over the time course of RGM trials during both execution and observation, as illustrated schematically in Figure 1A.

      We also examined the temporal progression of the instantaneous subspace of AE neurons.  As would be expected given that AE neurons were not modulated significantly during observation trials, in the observation context AE populations had no gradual changes in principal angle (Figure 4 – figure supplement 3).  During execution, however, Figure 4I-L show that the AE populations had a pattern of gradual decrease in principal angle similar to that found in the MN population (Figure 4A-D).  After the instruction onset, the instantaneous subspace shifted quickly away from that present at time I and progressed gradually toward that present at times G and M, only shifting toward that present at time H after movement onset.  As for the PM MN populations, the condition-dependent subspace of the PM AE populations shifted progressively over the time course of execution RGM trials.”

      The related Methods are now described in subsection “Subspace Comparisons—Principal Angles”

      Specific comments: 

      In the methods, it is stated that instantaneous subspaces are found with 3 PCs. Why does it say 2 here?  

      We now have clarified. (lines 295 to 310):

      “The progressive changes in principal angles do not capture another important aspect of condition-dependent neural activity.  The neural trajectories during trials involving different objects separated increasingly as trials progressed in time.  To illustrate this increasing separation, we clipped 100 ms segments of high-dimensional MN population trial-averaged trajectories beginning at times I, G, M, and H, for trials involving each of the four objects.  We then projected the set of four object-specific trajectory segments clipped at each time into each of the four instantaneous 3D subspaces at times I, G, M, and H.  This process was repeated separately for execution trials and for observation trials.  

      For visualization, we projected these trial-averaged trajectory segments from an example session into the PC1 vs PC2 planes (which consistently captured > 70% of the variance) of the I, G, M, or H instantaneous 3D subspaces.  In Figure 5, the trajectory segments for each of the four objects (sphere – purple, button – cyan, coaxial cylinder – magenta, perpendicular cylinder – yellow) sampled at different times (rows) have been projected into each of the four instantaneous subspaces defined at different times (columns).  Rather than appearing knotted as in Figure 3, these short trajectory segments are distinct when projected into each instantaneous subspace.”

      And in the legend for Figure 5 we now clarify that:

      “Each set of these four segments then was projected into the PC1 vs PC2 plane of the instantaneous 3D subspace present at four different times (columns: I, G, M, H).”

      Another doubt on how instantaneous subspaces are computed: in the methods you state that you apply PCA on trial-averaged activity at each 50ms time step. From the next sentence, I gather that you apply PCA on an Nx4 data matrix (N being the number of neurons, and 4 being the trial-averaged activity of the four objects) every 50 ms. Is this right? It would help to explicitly specify the dimensions of the data matrix that goes into PCA computation. 

      We apologize for this confusion.  Although the LSTM decoding was performed in 50 ms time steps, the instantaneous subspaces were calculated at 1 ms intervals. In the Methods we now have clarified (lines 849 to 759):

      “Instantaneous subspace identification 

      Instantaneous neural subspaces were identified at 1 ms intervals.  At each 1 ms time step, the N-dimensional neural firing rates from trials involving the four different objects— sphere, button, coaxial cylinder, and perpendicular cylinder—were averaged separately, providing four points in the N-dimensional space representing the average neural activity for trials involving the different objects at that time step.  PCA then was performed on these four points.  Because three dimensions capture all the variance of four points, three principal component dimensions fully defined each instantaneous subspace.  Each instantaneous 3D subspace can be considered a filter described by a matrix, W, that can project high-dimensional neural activity into a low-dimensional subspace, with the time series of instantaneous subspaces, W_i, forming a time series of filters (Figure 1B).”

      It would help to include some equations in the methods section related to the LSTM decoding. Just to make sure I understood correctly: after having identified the instantaneous subspaces (every 50 ms), you projected the Instruction, Go, Movement, and Holding segments from individual trials (each containing 100 samples, since they are sampled from a 100ms window) onto each instantaneous subspace. So you have four trajectories for each subspace. In the methods, it is stated that a single LSTM classifier is trained for each subspace. Do you also have a separate classifier for each trajectory segment? What is used as input to the classifier? Each trajectory segment should be a 100x3 matrix once projected in an instantaneous subspace. Is that what (each of) the LSTMs take as input? And lastly, what is the LSTM trained to predict exactly? Just a label indicating the type of object that was manipulated in that trial? I apologize if I overlooked any detail, but I believe a clearer explanation of the LSTM, preferably with mathematical formulas, would greatly help readers understand this section. 

      LSTM decoding is not readily described with a set of equations.  However, we have expanded our description to provide the information requested (lines 910 to 937):

      “Decodable information—LSTM

      As illustrated schematically in Figure 1B, the same segment of high-dimensional neural activity projected into different instantaneous subspaces can generate low-dimensional trajectories of varying separation.  The degree of separation among the projected trajectory segments will depend, not only on their separation at the time when the segments were clipped, but also on the similarity of the subspaces into which the trajectory segments are projected.  To quantify the combined effects of trajectory separation and projection into different subspaces, we projected high-dimensional neural trajectory segments (each including 100 points at 1 ms intervals) from successful trials involving each of the four different target objects into time series of 3-dimensional instantaneous subspaces at 50 ms intervals. In each of these instantaneous subspaces, the neural trajectory segment from each trial thus became a 100 point x 3 dimensional matrix.  For each instantaneous subspace in the time series, we then trained a separate long short-term memory (LSTM, (Hochreiter and Schmidhuber, 1997)) classifier to attribute each of the neural trajectories from individual trials to one of the four target object labels: sphere, button, coaxial cylinder, or perpendicular cylinder. Using MATLAB’s Deep Learning Toolbox, each LSTM classifier had 3 inputs (instantaneous subspace dimensions), 20 hidden units in the bidirectional LSTM layer, and a softmax layer preceding the classification layer which had 4 output classes (target objects). The total number of successful trials available in each session for each object is given in Table 1.  To avoid bias based on the total number of successful trials, we used the minimum number of successful trials across the four objects in each session, selecting that number from the total available randomly with replacement. Each LSTM classifier was trained with MATLAB’s adaptive moment estimation (Adam) optimizer on 40% of the selected trials, and the remaining 60% were decoded by the trained classifier.  The success of this decoding was used as an estimate of classification accuracy from 0 (no correct classifications) to 1 (100% correct classifications). This process was repeated 10 times and the mean ± standard deviation across the 10 folds was reported as the classification accuracy at that time.  Classification accuracy of trials projected into each instantaneous subspace at 50 ms intervals was plotted as a function of trial time.”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      Here are some more specific comments. 

      Abstract. Line 41. "same action" is not justified, there is plenty of evidence showing that the action does not need to be the same (or it has not even to be an action), rephrasing or substituting with "similar" is necessary, especially in the light of the subsequent sentence (which is totally correct). 

      Thank you for pointing this out.  As recommended, we have changed “same” to “similar” (lines 40 to 41):  

      “Many neurons in the premotor cortex show firing rate modulation whether the subject performs an action or observes another individual performing a similar action.”

      Introduction. A relevant, missing reference in the otherwise exhaustive introduction is Albertini et al. 2021 J Neurophysiol, showing that neural dynamics and similarities between biological and nonbiological movements in premotor areas are greater than those between the same executed and observed movements. 

      Thank you for pointing out this important finding.  After revision, we felt it was now cited most appropriately in the revised Discussion as follows (lines 730 to 736):

      “Alternatively, given that observation of another individual can be considered a form of social interaction, PM MN population activity during action observation, rather than representing movements made by another individual similar to one’s own movements, instead may represent different movements one might execute oneself in response to those made by another individual (Ninomiya et al., 2020; Bonini et al., 2022; Ferrucci et al., 2022; Pomper et al., 2023). This possibility is consistent with the finding that the neural dynamics of PM MN populations are more similar during observation of biological versus non-biological movements than during execution versus observation (Albertini et al., 2021)."

      In Line 85, the sentence about Papadourakis and Raos 2019 has to be generalized to PMv, as they show that the proportion of congruent MNs is at chance in both PMd and PMv. 

      Point taken.  We have rephrased this sentence as follows (lines 88 to 89): 

      “And in both PMv and PMd, the proportion of congruent neurons may not be different from that expected by chance alone (Papadourakis and Raos, 2019).”

      Lines 122-132. The initial sentence was unclear to me at first glance. I was wondering how subspaces could be "at other times over the course of the trial" if they are instantaneous. I could imagine that the subspaces referred to corresponding behavioral intervals of execution and observation conditions (and this may be what they will later call "condition dependent" activity), but nevertheless, they could hardly be understood as "instantaneous". I grasped the author's idea only when reading the results, with the statement "no-time dependent variance is captured". The idea is to take a static snapshot of the evolution of population activity at each checkpoint (i.e. I, G, M, and H): I suggest clarifying this point immediately in the introduction to improve readability. 

      We have clarified this point by adding two paragraphs to the Introduction first defining condition independent versus condition-dependent variance and then explaining the use of instantaneous subspaces (lines 125 to 153):

      “A relevant but often overlooked aspect of such dynamics in neuron populations active during both execution and observation has to do with the distinction between condition independent and condition-dependent variation in neuronal activity (Kaufman et al., 2016; Rouse and Schieber, 2018).  The variance in neural activity averaged across all the conditions in a given task context is condition-independent.  For example, in an 8-direction center-out reaching task, averaging a unit’s firing rate as a function of time across all 8 directions may show an initially low firing rate that increases prior to movement onset, peaks during the movement, and then declines during the final hold, irrespective of the movement direction.  Subtracting this condition-independent activity from the unit’s firing rate during each trial gives the remaining variance, and averaging separately across trials in each of the 8 directions then averages out noise variance, leaving the condition-dependent variance that represents the unit’s modulation among the 8 directions (conditions). Alternatively, condition-independent, condition dependent, and noise variance can be partitioned through demixed principal component analysis (Kobak et al., 2016; Gallego et al., 2018).  The extent to which neural dynamics occur in a subspace shared by execution and observation versus subspaces unique to execution or observation may differ for the condition-independent versus condition-dependent partitions of neural activity.  Here, we tested the hypothesis that the condition-dependent activity of PM mirror neuron populations progresses through distinct subspaces during execution versus observation, which would indicate distinct patterns of co-modulation amongst mirror neurons during execution versus observation.

      Because of the complexity of condition-dependent neural trajectories for movements involving the hand, we developed a novel approach.  Rather than examining trajectories over the entire time course of behavioral trials, we identified time series of instantaneous PM mirror neuron subspaces covering the time course of behavioral trials. We identified separate time series for execution trials and for observation trials, both involving four different reach-graspmanipulation (RGM) movements.  Given that each subspace in these time series is instantaneous (a snapshot in time), it captures condition-dependent variance in the neural activity among the four RGM movements while minimizing condition-independent (time dependent) variance.”

      Results. 

      Regarding the execution-observation alignment, as explained in my initial comment, it does not sound convincing. Applying a CCA to align EXE and OBS activities (which the authors had just shown being essentially not aligned), even separately for each epoch segment (line 396), seems to be a trick to show that they nonetheless share some similarities. Couldn't this be applied to any pairs of differently encoded conditions to create some sort of artificial link between them? Is the similarity in the neural data or rather in the method used to realign them? 

      CCA would not align arbitrary sets of neural data.  The similarity is in the data, not in the method.  For example, in an 8-direction center-out task, the neural representation of movement to the 45° target is between the neural representations of the 0° and the 90° targets.  If the same is true in a second data set, then CCA will give high correlation coefficients.  But if in the second data set the neural representation of the 45° target is between the 135° and 180° targets, CCA will give low correlation coefficients. 

      In the end, what does this tell us about the brain? 

      In the Introduction we now clarify that (lines 166 to 170):

      “Such alignment would indicate that the relationships among the trajectory segments in the execution subspace are similar to the relationships among the trajectory segments in the observation subspace, indicating a corresponding structure in the latent dynamic representations of execution and observation movements by the same PM MN population.”

      And in the Results (lines 449 to 455):

      “For example, the trajectories of PMd+M1 neuron populations recorded from two different monkeys during center-out reaching movements could be aligned well (Safaie et al., 2023).  CCA showed, for example, that in both brains the neural trajectory for the movement to the target at 0° was closer to the trajectory for movement to the target at 45° than to the trajectory for the movement to the target at 180°. Relationships among these latent dynamic representations of the eight movements thus were similar even though the neural populations were recorded from two different monkeys.”

      In relation to Figure 8 (lines 461 to 467)

      “But when both sets of trajectory segments are projected into another common subspace identified with CCA, as shown in Figure 8B, a similar relationship among the neural representations of the four movements during execution and observation is revealed.  In both behavioral contexts the neural representation of movements involving the sphere (purple) is now closest to the representation of movements involving the coaxial cylinder (magenta) and farthest from that of movements involving the button (cyan). The two sets of trajectory segments are more or less “aligned.”

      And in the Discussion (lines 665 to 674):

      “Corresponding neural representations of action execution and observation during task epochs with higher neural firing rates have been described previously in PMd MNs and in PMv MNs using representational similarity analysis RSA (Papadourakis and Raos, 2019).  And during force production in eight different directions, neural trajectories of PMd neurons draw similar “clocks” during execution, cooperative execution, and passive observation (Pezzulo et al., 2022).  Likewise in the present study, despite execution and observation trajectories progressing through largely distinct subspaces, in all three monkeys execution and observation trajectory segments showed some degree of alignment, particularly the Movement and Hold segments (Figure 12A), indicating similar relationships among the latent dynamic representations of the four RGM movements during execution and observation.”

      Concerning the discussion, I would like to reconsider it after having seen the authors' response to the comments above and to my general concern about the relevance of the findings from the neurophysiological point of view. 

      Certainly, please do.

      Reviewer #2 (Recommendations For The Authors): 

      Here are a few issues that I want to bring to the authors' attention (in no particular order): 

      • I am not clear on what is meant by "condition-dependent". Is the condition exec vs obs, or the object types? 

      In the Introduction, we now clarify (lines 125 to 144): 

      “A relevant but often overlooked aspect of such dynamics in neuron populations active during both execution and observation has to do with the distinction between condition independent and condition-dependent variation in neuronal activity (Kaufman et al., 2016; Rouse and Schieber, 2018).  The variance in neural activity averaged across all the conditions in a given task context is condition-independent.  For example, in an 8-direction center-out reaching task, averaging a unit’s firing rate as a function of time across all 8 directions may show an initially low firing rate that increases prior to movement onset, peaks during the movement, and then declines during the final hold, irrespective of the movement direction.  Subtracting this condition-independent activity from the unit’s firing rate during each trial gives the remaining variance, and averaging separately across trials in each of the 8 directions then averages out noise variance, leaving the condition-dependent variance that represents the unit’s modulation among the 8 directions (conditions). Alternatively, condition-independent, condition dependent, and noise variance can be partitioned through demixed principal component analysis (Kobak et al., 2016; Gallego et al., 2018).  The extent to which neural dynamics occur in a subspace shared by execution and observation versus subspaces unique to execution or observation may differ for the condition-independent versus condition-dependent partitions of neural activity.  Here, we tested the hypothesis that the condition-dependent activity of PM mirror neuron populations progresses through distinct subspaces during execution versus observation, which would indicate distinct patterns of co-modulation amongst mirror neurons during execution versus observation.”

      And in the Results, we have added a new Figure 3 to illustrate condition-independent versus conditiondependent activity using an example from the present data sets (lines 208 to 236): 

      “Condition-dependent versus condition-independent neural activity in PM MNs

      Whereas a large fraction of condition-dependent neural variance during reaching movements without grasping can be captured in a two-dimensional subspace (Churchland et al., 2012; Ames et al., 2014), condition-dependent activity in movements that involve grasping is more complex (Suresh et al., 2020). In part, this may reflect the greater complexity of controlling the 24 degrees of freedom in the hand and wrist as compared to the 4 degrees of freedom in the elbow and shoulder (Sobinov and Bensmaia, 2021).  Figure 3 illustrates this complexity in a PM MN population during the present RGM movements.  Here, PCA was performed on the activity of a PM MN population across the entire time course of execution trials involving all four objects.  The colored traces in Figure 3A show neural trajectories averaged separately across trials involving each of the four objects and then projected into the PC1 vs PC2 plane of the total neural space.  Most of the variance in these four trajectories is comprised of a shared rotational component.  The black trajectory, obtained by averaging trajectories from trials involving all four objects together, represents this condition-independent (i.e. independent of the object involved) activity.  The condition-dependent (i.e. dependent on which object was involved) variation in activity is reflected by the variation in the colored trajectories around the black trajectory.  The condition-dependent portions can be isolated by subtracting the black trajectory from each of the colored trajectories. The resulting four condition dependent trajectories have been projected into the PC1 vs PC2 plane of their own common subspace in Figure 3B.  Rather than exhibiting a simple rotational motif, these trajectories appear knotted. To better understand how these complex, condition-dependent trajectories progress over the time course of RGM trials, we chose to examine time series of instantaneous subspaces.”

      While there is an emphasis on the higher complexity of manipulating objects compared to just reaching movements in the Abstract, the majority of the analysis relates to the instruction, movement initiation, and grasp, and there is no specific analyses looking at manipulation and how those presumably more complex dynamics compare to the reaching dynamics, and how they differ from reaching in the mirror neurons. 

      We have clarified that (lines 178 to 187):

      “Because we chose to study relatively naturalistic movements, the reach, grasp, and manipulation components were not performed separately, but rather in a continuous fluid motion during the movement epoch of the task sequence (Figure 2B).  In previous studies involving a version of this task without separate instruction and delay epochs, we have shown that joint kinematics, EMG activity, and neuron activity in the primary motor cortex, all vary throughout the movement epoch in relation to both reach location and object grasped, with location predominating early in the movement epoch and object predominating later (Rouse and Schieber, 2015, 2016a, b).  The present task, however, did not dissociate the reach, the hand shape used to grasp the object, and the manipulation performed on the object.”

      • The analysis in Fig3C,D is interesting, however, in my opinion, requires control. For instance, what would these values look like if you projected the segments to a subspace defined by the activity during the entire length of the trial, or if you projected the activity during intertrials, just to get a sense of how meaningful these values are? 

      This material is now presented in Figure 5 – figure supplement 1.  In the legend to this figure supplement, we have clarified that (lines 327 to 328):

      “CS values, which we use only to characterize the phenomenon of trajectory separation,….”

      • MN is used (#85) before definition (#91). Similar for RGM, I believe. 

      Thanks for catching this problem.  We have now defined these abbreviations at first use as follows:

      In lines 89 to 92:

      “Though many authors apply the term mirror neurons strictly to highly congruent neurons, here we will refer to all neurons modulated during both contexts—execution and observation—as mirror neurons (MNs).”

      And in lines 148 to 150:

      We identified separate time series for execution trials and for observation trials, both involving four different reach-grasp-manipulation (RGM) movements.”

      • I believe in the Intro when presenting the three hypotheses, there is a First, and a Third, but no Second. 

      We have revised this part of the Introduction without numbering our hypotheses as follows (lines 145 to 173):

      “Because of the complexity of condition-dependent neural trajectories for movements involving the hand, we developed a novel approach.  Rather than examining trajectories over the entire time course of behavioral trials, we identified time series of instantaneous PM mirror neuron subspaces covering the time course of behavioral trials. We identified separate time series for execution trials and for observation trials, both involving four different reach-graspmanipulation (RGM) movements.  Given that each subspace in these time series is instantaneous (a snapshot in time), it captures condition-dependent variance in the neural activity among the four RGM movements while minimizing condition-independent (time dependent) variance.

      We then tested the hypothesis that the condition-dependent subspace shifts progressively over the time course of behavioral trials (Figure 1A) by calculating the principal angles between four selected instantaneous subspaces that occurred at times easily defined in each behavioral trial—instruction onset (I), go cue (G), movement onset (M), and the beginning of the final hold (H)—and every other instantaneous subspace in the time series.  Initial analyses showed that condition-dependent neural trajectories for the four RGM movements tended to separate increasingly over the course of behavioral trials.  We therefore additionally examined the combined effects of i) the progressively shifting subspaces and ii) the increasing trajectory separation, by decoding neural trajectory segments sampled for 100 msec after times I, G, M, and H and projected into the time series of instantaneous subspaces (Figure 1B).

      Finally, we used canonical correlation to ask whether the prevalent patterns of mirror neuron co-modulation showed similar relationships among the four RGM movements during execution and observation (Figure 1C).  Such alignment would indicate that the relationships among the trajectory segments in the execution subspace are similar to the relationships among the trajectory segments in the observation subspace, indicating a corresponding structure in the latent dynamic representations of execution and observation movements by the same PM MN population.  And finally, because we previously have found that during action execution the activity of PM mirror neurons tends to lead that of non-mirror neurons which are active only during action execution (AE neurons) (Mazurek and Schieber, 2019), we performed parallel analyses of the instantaneous state space of PM AE neurons.”

      • The use of the term 'instantaneous subspaces' in the abstract confused me initially, as I wasn't sure what it meant. It might be a good idea to define or rephrase it. 

      In the Abstract we now state (lines 51 to 52):

      “Rather than following neural trajectories in subspaces that contain their entire time course, we identified time series of instantaneous subspaces …”

      And in the Introduction, we have clarified (lines 145 to 153):

      “Because of the complexity of condition-dependent neural trajectories for movements involving the hand, we developed a novel approach.  Rather than examining trajectories over the entire time course of behavioral trials, we identified time series of instantaneous PM mirror neuron subspaces covering the time course of behavioral trials. We identified separate time series for execution trials and for observation trials, both involving four different reach-graspmanipulation (RGM) movements.  Given that each subspace in these time series is instantaneous (a snapshot in time), it captures condition-dependent variance in the neural activity among the four RGM movements while minimizing condition-independent (time dependent) variance.”

      And in the Methods (lines 849 to 859):

      “Instantaneous subspace identification 

      Instantaneous neural subspaces were identified at 1 ms intervals.  At each 1 ms time step, the N-dimensional neural firing rates from trials involving the four different objects— sphere, button, coaxial cylinder, and perpendicular cylinder—were averaged separately, providing four points in the N-dimensional space representing the average neural activity for trials involving the different objects at that time step.  PCA then was performed on these four points.  Because three dimensions capture all the variance of four points, three principal component dimensions fully defined each instantaneous subspace.  Each instantaneous 3D subspace can be considered a filter described by a matrix, 𝑊, that can project high-dimensional neural activity into a low-dimensional subspace, with the time series of instantaneous subspaces, 𝑊𝑖, forming a time series of filters (Figure 1B).”

      Reviewer #3 (Recommendations For The Authors): 

      (1) Page 4, lines 127-131. In the introduction, it was not immediately clear to me what you meant by 'separation' and 'decoding' of the projected neural activity. You do mention that you are separating/decoding trajectory segments representing different movements at the end of this paragraph, but at this point of the paper it was not very clear to me what those different movements were (I only understood that after reading the results section). I suggest briefly expanding on these concepts here. 

      To clarify these points in the Introduction, we have expanded exposition of these concepts (lines 145 to 163):

      “Because of the complexity of condition-dependent neural trajectories for movements involving the hand, we developed a novel approach.  Rather than examining trajectories over the entire time course of behavioral trials, we identified time series of instantaneous PM mirror neuron subspaces covering the time course of behavioral trials. We identified separate time series for execution trials and for observation trials, both involving four different reach-graspmanipulation (RGM) movements.  Given that each subspace in these time series is instantaneous (a snapshot in time), it captures condition-dependent variance in the neural activity among the four RGM movements while minimizing condition-independent (time dependent) variance.

      We then tested the hypothesis that the condition-dependent subspace shifts progressively over the time course of behavioral trials (Figure 1A) by calculating the principal angles between four selected instantaneous subspaces that occurred at times easily defined in each behavioral trial—instruction onset (I), go cue (G), movement onset (M), and the beginning of the final hold (H)—and every other instantaneous subspace in the time series.  Initial analyses showed that condition-dependent neural trajectories for the four RGM movements tended to separate increasingly over the course of behavioral trials.  We therefore additionally examined the combined effects of i) the progressively shifting subspaces and ii) the increasing trajectory separation, by decoding neural trajectory segments sampled for 100 msec after times I, G, M, and H and projected into the time series of instantaneous subspaces (Figure 1B).”

      (2) Page 6, line 175. In the methods, it is stated that instantaneous subspaces are found with 3 PCs. Why does it say 2 here? 

      Thank you for noticing this discrepancy.  In the Methods, we have clarified that the instantaneous subspaces are 3-dimensional (see our reply to the next comment), but in Figure 5 (previously Figure 3), for purposes of visualization, we are projecting trajectory segments into the PC1-PC2 plane (lines 295 to 308):

      “The progressive changes in principal angles do not capture another important aspect of condition-dependent neural activity.  The neural trajectories during trials involving different objects separated increasingly as trials progressed in time.  To illustrate this increasing separation, we clipped 100 ms segments of high-dimensional MN population trial-averaged trajectories beginning at times I, G, M, and H, for trials involving each of the four objects.  We then projected the set of four object-specific trajectory segments clipped at each time into each of the four instantaneous 3D subspaces at times I, G, M, and H.  This process was repeated separately for execution trials and for observation trials.  

      For visualization, we projected these trial-averaged trajectory segments from an example session into the PC1 vs PC2 planes (which consistently captured > 70% of the variance) of the I, G, M, or H instantaneous 3D subspaces.  In Figure 5, the trajectory segments for each of the four objects (sphere – purple, button – cyan, coaxial cylinder – magenta, perpendicular cylinder – yellow) sampled at different times (rows) have been projected into each of the four instantaneous subspaces defined at different times (columns).”

      And in the legend for Figure 5 we now clarify that:

      “Each set of these four segments then was projected into the PC1 vs PC2 plane of the instantaneous 3D subspace present at four different times (columns: I, G, M, H).”

      Another doubt on how instantaneous subspaces are computed: in the methods you state that you apply PCA on trial-averaged activity at each 50ms time step. From the next sentence, I gather that you apply PCA on an Nx4 data matrix (N being the number of neurons, and 4 being the trial-averaged activity of the four objects) every 50 ms. Is this right? It would help to explicitly specify the dimensions of the data matrix that goes into PCA computation. 

      Thank you for catching an error: The instantaneous subspaces were computed at 1 ms intervals. (It is the LSTM decoding that was done in 50 ms time steps).  We have clarified how the instantaneous subspaces were computed in the Methods (lines 849 to 859):

      “Instantaneous subspace identification 

      Instantaneous neural subspaces were identified at 1 ms intervals.  At each 1 ms time step, the N-dimensional neural firing rates from trials involving the four different objects— sphere, button, coaxial cylinder, and perpendicular cylinder—were averaged separately, providing four points in the N-dimensional space representing the average neural activity for trials involving the different objects at that time step.  PCA then was performed on these four points.  Because three dimensions capture all the variance of four points, three principal component dimensions fully defined each instantaneous subspace.  Each instantaneous 3D subspace can be considered a filter described by a matrix, 𝑊, that can project high-dimensional neural activity into a low-dimensional subspace, with the time series of instantaneous subspaces, 𝑊𝑖, forming a time series of filters (Figure 1B).”

      (3) Page 7, line 210-212. I am not sure if I missed it in the discussion, but have you speculated on why the greatest separation in observation trials was observed during the holding phase while in execution trials during the movement phase? 

      This was a consistent finding, and we therefore point it out as a difference between execution and observation.  Of course, this reflects greater condition-dependent variance in the PM MN population in the movement epoch than in the hold epoch during execution, whereas the reverse is true during observation.  We have no clear speculation as to why this occurs, however.

      (4) Figure 3. Add a legend with color scheme for each object in panels A and B. Also, please specify what metric is represented by the colorbar of panels C, D, E, F (write it down next to the colorbar itself and not just in the caption). 

      This is now Figure 5.  We have added a color legend for A and B.  Panels C, D, E, and F, now have been moved to Figure 5 – figure supplement 1, where we have indicated that the colorbar represents cumulative separation.

      (5) Page 9, line 228. I found the description of this decoding analysis a bit confusing initially (and perhaps still do), this should be clarified. 

      We have clarified our decoding analysis in the Methods (lines 910 to 937):

      “Decodable information—LSTM

      As illustrated schematically in Figure 1B, the same segment of high-dimensional neural activity projected into different instantaneous subspaces can generate low-dimensional trajectories of varying separation.  The degree of separation among the projected trajectory segments will depend, not only on their separation at the time when the segments were clipped, but also on the similarity of the subspaces into which the trajectory segments are projected.  To quantify the combined effects of trajectory separation and projection into different subspaces, we projected high-dimensional neural trajectory segments (each including 100 points at 1 ms intervals) from successful trials involving each of the four different target objects into time series of 3-dimensional instantaneous subspaces at 50 ms intervals. In each of these instantaneous subspaces, the neural trajectory segment from each trial thus became a 100 point x 3 dimensional matrix.  For each instantaneous subspace in the time series, we then trained a separate long short-term memory (LSTM, (Hochreiter and Schmidhuber, 1997)) classifier to attribute each of the neural trajectories from individual trials to one of the four target object labels: sphere, button, coaxial cylinder, or perpendicular cylinder. Using MATLAB’s Deep Learning Toolbox, each LSTM classifier had 3 inputs (instantaneous subspace dimensions), 20 hidden units in the bidirectional LSTM layer, and a softmax layer preceding the classification layer which had 4 output classes (target objects). The total number of successful trials available in each session for each object is given in Table 1.  To avoid bias based on the total number of successful trials, we used the minimum number of successful trials across the four objects in each session, selecting that number from the total available randomly with replacement. Each LSTM classifier was trained with MATLAB’s adaptive moment estimation (Adam) optimizer on 40% of the selected trials, and the remaining 60% were decoded by the trained classifier.  The success of this decoding was used as an estimate of classification accuracy from 0 (no correct classifications) to 1 (100% correct classifications). This process was repeated 10 times and the mean ± standard deviation across the 10 folds was reported as the classification accuracy at that time.  Classification accuracy of trials projected into each instantaneous subspace at 50 ms intervals was plotted as a function of trial time.”

      (6) Page 9, line 268. This might be trivial, but can you speculate on why the accuracy for Instruction segments had a lower peak compared to the rest of the segments? Is it because there is less 'distinct' information embedded in neural data about the type of object manipulated until you are actually reaching toward it or holding it? The latter seems straightforward, but the former not so much. 

      Thank you for asking this question.  We have added the following speculations (lines 592 to 604): 

      “Short bursts of “signal” related discharge are known to occur in a substantial fraction of PMd neurons beginning at latencies of ~60 ms following an instructional stimulus (Weinrich et al., 1984; Cisek and Kalaska, 2004).  Here we found that the instantaneous subspace shifted briefly toward the subspace present at the time of instruction onset (I), similarly during execution and observation.  This brief trough in principal angle (Figure 4A) and the corresponding peak in classification accuracy (Figure 7A) in part may reflect smoothing of firing rates with a 50 ms Gaussian kernel.  We speculate, however, that the early rise of this peak at the time of instruction onset also reflects the anticipatory activity often seen in PMd neurons in expectation of an instruction, which may not be entirely non-specific, but rather may position the neural population to receive one of a limited set of potential instructions (Mauritz and Wise, 1986). We attribute the relatively low amplitude of peak classification accuracy for Instruction trajectory segments to the likely possibility that only the last 40 ms of our 100 ms Instruction segments captured signal related discharge.”

      (7) Figure 8. Shouldn't the plots in panel A resemble those in Figure 3? Here you are projecting the hold trajectory segments into the subspace at time H, which should be the same as in Fig. 3A/B bottom right panel. 

      The previous Figure 8 is now Figure 8 panels A and B, and the previous Figure 3 is now Figure 5.  The data used in these two figures come from two different recording sessions in two different monkeys. The current Figure 8A,B uses data from monkey F, session 2; whereas Figure 5 uses data from monkey T, session 3, which we now state in the legend to each figure, respectively.  Consequently, the relative arrangement of the trajectory segments in the instantaneous subspace at time H differs.  The session used in Figure 8A,B, which we now show in three dimensions, better illustrates how CCA identifies a common subspace in which execution versus observations segments show alignment (Figure 8B) that was not evident in their original subspaces (Figure 8A).

      (8) Page 14, line 369. Are you computing CCA using only 2 components? I thought the subspaces were 3 dimensional. Why not align all three dimensions? 

      We have expanded this analysis to use all three dimensions, as illustrated in Figure 8 above.

      (9) Page 14, line 407. Does this mean that instantaneous subspaces between execution and observation trials are more similar to each other during the Movement and Holding phase? Is this related to the fact that in those moments there is a smaller progressive shift of the subspaces within execution and observation trials? 

      Our new analyses of principal angles (see our reply to your comment 11, below) show that the progressive shifting of the instantaneous subspace continues through the movement and hold epochs.  We now discuss this better alignment of the Movement and Hold trajectory segments as follows (lines 656 to 664):

      “Given the complexity of condition-dependent neural trajectories across the entire time course of RGM trials (Figure 3B), rather than attempting to align entire neural trajectories, we applied canonical correlation to trajectory segments clipped for 100 ms following four well defined behavioral events: Instruction onset, Go cue, Movement onset, and the beginning of the final Hold.  In all cases, alignment was poorest for Instruction segments, somewhat higher for Go segments, and strongest for Movement and Hold segments.  This progressive increase in alignment likely reflects a progressive increase in the difference between average neuron firing rates for trials involving different objects (Figure 6) relative to the trial-by-trial variance in firing rate for a given object.”

      (10) page 15, line 431. Typo, it should be Table 3. 

      We have removed Table 3 which no longer applies.

      (11) A more general observation: did you try to compute another metric to assess the progressive shift of subspaces over time? I am thinking of something like computing the principal angles between consecutive subspaces. If it is true that the shifts happen over time, but it slows down during movement and hold, you should be able to conclude it from principal angles as well. Am I missing something? Is there any reason you went with classification accuracy instead of a metric like this?  

      Point taken.  We now have calculated the principal angles as a function of time and have presented them as a new section of the Results including new Figure 4 and Figure 4 – figure supplement 3 (lines 237 to 293). 

      “Instantaneous subspaces shift progressively during both execution and observation 

      We identified an instantaneous subspace at each one millisecond time step of RGM trials.  At each time step, we applied PCA to the 4 instantaneous neural states (i.e. the 4 points on the neural trajectories representing trials involving the 4 different objects each averaged across 20 trials per object, totaling 80 trials), yielding a 3-dimensional subspace at that time (see Methods).  Note that because these 3-dimensional subspaces are essentially instantaneous, they capture the condition-dependent variation in neural states, but not the common, condition-independent variation.  To examine the temporal progression of these instantaneous subspaces, we then calculated the principal angles between each 80-trial instantaneous subspace and the instantaneous subspaces averaged across all trials at four behavioral time points that could be readily defined across trials, sessions, and monkeys: the onset of the instruction (I), the go cue (G), the movement onset (M), and the beginning of the final hold (H).  This process was repeated 10 times with replacement to assess the variability of the principal angles.  The closer the principal angles are to 0°, the closer the two subspaces are to being identical; the closer to 90°, the closer the two subspaces are to being orthogonal.  

      Figure 4A-D illustrate the temporal progression of the first principal angle of the mirror neuron population in the three sessions (red, green, and blue) from monkey R during execution trials. As illustrated in Figure 4 – figure supplement 1 (see also the related Methods), in each session all three principal angles, each of which could range from 0° to 90°, tended to follow a similar time course.  In the Results we therefore illustrate only the first (i.e. smallest) principal angle.  Solid traces represent the mean across 10-fold cross validation using the 80-trial subsets of all the available trials; shading indicates ±1 standard deviation.  As would be expected, the instantaneous subspace using 80 trials approaches the subspace using all trials at each of the four selected times—I, G, M, and H—indicated by the relatively narrow trough dipping toward 0°.  Of greater interest are the slower changes in the first principal angle in between these four time points.  Figure 4A shows that after instruction onset (I) the instantaneous subspace shifted quickly away from the subspace at time I, indicated by a rapid increase in principal angle to levels not much lower than what might be expected by chance alone (horizontal dashed line). In contrast, throughout the remainder of the instruction and delay epochs (from I to G), Figure 4B and C show that the 80-trial instantaneous subspace shifted gradually and concurrently, not sequentially, toward the all-trial subspaces that would be reached at the end of the delay period (G) and then at the onset of movement (M), indicated by the progressive decreases in principal angle. As shown by Figure 4D, shifting toward the H subspace did not begin until the movement onset (M). To summarize, these changes in principal angles indicate that after shifting briefly toward the subspace present at time the instruction appeared (I), the instantaneous subspace shifted progressively throughout the instruction and delay epochs toward the subspace that would be reached at the time of the go cue (G), then further toward that at the time of movement onset (M), and only thereafter shifted toward the instantaneous subspace that would be present at the time of the hold (H).

      Figure 4E-H show the progression of the first principal angle of the mirror neuron population during observation trials.  Overall, the temporal progression of the MN instantaneous subspace during observation was similar to that found during execution, particularly around times I and H.  The decrease in principal angle relative to the G and M instantaneous subspaces during the delay epoch was less pronounced during observation than during execution.  Nevertheless, these findings support the hypothesis that the condition-dependent subspace of PM MNs shifts progressively over the time course of RGM trials during both execution and observation, as illustrated schematically in Figure 1A.

      We also examined the temporal progression of the instantaneous subspace of AE neurons.  As would be expected given that AE neurons were not modulated significantly during observation trials, in the observation context AE populations had no gradual changes in principal angle (Figure 4 – figure supplement 3).  During execution, however, Figure 4I-L show that the AE populations had a pattern of gradual decrease in principal angle similar to that found in the MN population (Figure 4A-D).  After the instruction onset, the instantaneous subspace shifted quickly away from that present at time I and progressed gradually toward that present at times G and M, only shifting toward that present at time H after movement onset.  As for the PM MN populations, the condition-dependent subspace of the PM AE populations shifted progressively over the time course of execution RGM trials.”

      The related Methods are now described is subsection “Subspace Comparisons—Principal Angles”

      Is there any reason you went with classification accuracy instead of a metric like this? 

      We now point out that (lines 295 to 297):

      “The progressive changes in principal angles do not capture another important aspect of condition-dependent neural activity.  The neural trajectories during trials involving different objects separated increasingly as trials progressed in time.”

      And we further clarify this as follows (lines 331 to 348):

      “Decodable information changes progressively during both execution and observation 

      As RGM trials proceeded in time, the condition-dependent neural activity of the PM MN population thus changed in two ways.  First, the instantaneous condition-dependent subspace shifted, indicating that the patterns of firing-rate co-modulation among neurons representing the four different RGM movements changed progressively, both during execution and during observation.  Second, as firing rates generally increased, the neural trajectories representing the four RGM movements became progressively more separated, more so during execution than during observation. 

      To evaluate the combined effects of these two progressive changes, we clipped 100 ms single-trial trajectory segments beginning at times I, G, M, or H, and projected these trajectory segments from individual trials into the instantaneous 3D subspaces at 50 ms time steps.  At each of these time steps, we trained a separate LSTM decoder to classify individual trials according to which of the four objects was involved in that trial.  We expected that the trajectory segments would be classified most accurately when projected into instantaneous subspaces near the time at which the trajectory segments were clipped.  At other times we reasoned that classification accuracy would depend both on the similarity of the current instantaneous subspace to that found at the clip time as evaluated by the principal angle (Figure 4), and on the separation of the four trajectories at the clip time (Figure 5).”

    1. Author response:

      We would like to express our gratitude to all three reviewers for their time and valuable feedback on the manuscript. Below, we provide our point-by-point responses to their comments. Additionally, we summarize here the experiments we plan to conduct in accordance with the reviewers' suggestions:

      Revision plan 1. To include live imaging of Dl/Notch trafficking in normal and GlcT mutant ISCs.

      We agree that the effect of GlcT mutation on Dl trafficking was not convincingly demonstrated in our previous work. Although we attempted live imaging of the intestine using GFP tagged at the C-terminal of Dl, the fluorescent signal was regrettably too weak for reliable capture. In this revision, we will optimize the imaging conditions to determine if this issue can be resolved. Alternatively, we will transiently express GFP/RFP-tagged Dl in both normal and mutant ISCs to investigate the trafficking dynamics through live imaging.

      Revision plan 2. To update and improve the presentation of the data regarding the features of early/late/recycling endosomes in GlcT mutant ISCs.

      Our analysis of Rab5 and Rab7 endosomes in both normal and GlcT mutant ISCs revealed that Dl tends to accumulate in Rab5 endosomes in GlcT mutant ISCs. To strengthen our findings, we will include additional quantitative data and conduct further analysis on recycling endosomes labeled with Rab11-GFP. We acknowledge that this portion of the data is not entirely convincing, and in accordance with the reviewers' suggestions, we will revise our conclusions to present a more tempered interpretation.

      Revision plan 3. To include western blot analysis of Dl in normal and GlcT mutant ISCs.

      While we propose that MacCer may function as a component of lipid rafts, facilitating the anchorage of Dl on the membrane and its proper endocytosis, it is also possible that it acts as a substrate for the modification of Dl, which is essential for its functionality. To investigate this further, we will conduct Western blot analysis to determine whether the depletion of GlcT alters the protein size of Dl.

      Please find our detailed point-by-point responses below.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      From a forward genetic mosaic mutant screen using EMS, the authors identify mutations in glucosylceramide synthase (GlcT), a rate-limiting enzyme for glycosphingolipid (GSL) production, that result in EE tumors. Multiple genetic experiments strongly support the model that the mutant phenotype caused by GlcT loss is due to by failure of conversion of ceramide into glucosylceramide. Further genetic evidence suggests that Notch signaling is comprised in the ISC lineage and may affect the endocytosis of Delta. Loss of GlcT does not affect wing development or oogenesis, suggesting tissue-specific roles for GlcT. Finally, an increase in goblet cells in UGCG knockout mice, not previously reported, suggests a conserved role for GlcT in Notch signaling in intestinal cell lineage specification.

      Strengths:

      Overall, this is a well-written paper with multiple well-designed and executed genetic experiments that support a role for GlcT in Notch signaling in the fly and mammalian intestine. I do, however, have a few comments below.

      Weaknesses:

      (1) The authors bring up the intriguing idea that GlcT could be a way to link diet to cell fate choice. Unfortunately, there are no experiments to test this hypothesis.

      We indeed attempted to establish an assay to investigate the impact of various diets (such as high-fat, high-sugar, or high-protein diets) on the fate choice of ISCs. Subsequently, we intended to examine the potential involvement of GlcT in this process. However, we observed that the number or percentage of EEs varies significantly among individuals, even among flies with identical phenotypes subjected to the same nutritional regimen. We suspect that the proliferative status of ISCs and the turnover rate of EEs may significantly influence the number of EEs present in the intestinal epithelium, complicating the interpretation of our results. Consequently, we are unable to conduct this experiment at this time. The hypothesis suggesting that GlcT may link diet to cell fate choice remains an avenue for future experimental exploration.

      (2) Why do the authors think that UCCG knockout results in goblet cell excess and not in the other secretory cell types?

      This is indeed an interesting point. In the mouse intestine, it is well-documented that the knockout of Notch receptors or Delta-like ligands results in a classic phenotype characterized by goblet cell hyperplasia, with little impact on the other secretory cell types. This finding aligns very well with our experimental results, as we noted that the numbers of Paneth cells and enteroendocrine cells appear to be largely normal in UGCG knockout mice. By contrast, increases in other secretory cell types are typically observed under conditions of pharmacological inhibition of the Notch pathway.

      (3) The authors should cite other EMS mutagenesis screens done in the fly intestine.

      To our knowledge, the EMS screen on 2L chromosome conducted in Allison Bardin’s lab is the only one prior to this work, which leads to two publications (Perdigoto et al., 2011; Gervais, et al., 2019). We will include citations for both papers in the revised manuscript.

      (4) The absence of a phenotype using NRE-Gal4 is not convincing. This is because the delay in its expression could be after the requirement for the affected gene in the process being studied. In other words, sufficient knockdown of GlcT by RNA would not be achieved until after the relevant signaling between the EB and the ISC occurred. Dl-Gal4 is problematic as an ISC driver because Dl is expressed in the EEP.

      We agree that the lack of an observable phenotype using NRE-Gal4 might be attributed to a delay in its expression, which could result in missing the critical window necessary for effective GlcT knockdown. Consequently, we cannot rule out the possibility that GlcT may also play a role in early EBs or EEPs. We will revise our manuscript to present a more cautious conclusion on this issue.

      (5) The difference in Rab5 between control and GlcT-IR was not that significant. Furthermore, any changes could be secondary to increases in proliferation.

      We agree that it is possible that the observed increase in proliferation could influence the number of Rab5+ endosomes, and we will temper our conclusions on this aspect accordingly. However, it is important to note that, although the difference in Rab5+ endosomes between the control and GlcT-IR conditions appeared mild, it was statistically significant and reproducible. As we have indicated earlier, we plan to further analyze Rab11+ endosomes, as this additional analysis may provide further support for our previous conclusions.

      Reviewer #2 (Public review):

      Summary:

      This study genetically identifies two key enzymes involved in the biosynthesis of glycosphingolipids, GlcT and Egh, which act as tumor suppressors in the adult fly gut. Detailed genetic analysis indicates that a deficiency in Mactosyl-ceramide (Mac-Cer) is causing tumor formation. Analysis of a Notch transcriptional reporter further indicates that the lack of Mac-Ser is associated with reduced Notch activity in the gut, but not in other tissues.

      Addressing how a change in the lipid composition of the membranes might lead to defective Notch receptor activation, the authors studied the endocytic trafficking of Delta and claimed that internalized Delta appeared to accumulate faster into endosomes in the absence of Mac-Cer. Further analysis of Delta steady-state accumulation in fixed samples suggested a delay in the endosomal trafficking of Delta from Rab5+ to Rab7+ endosomes, which was interpreted to suggest that the inefficient, or delayed, recycling of Delta might cause a loss in Notch receptor activation.

      Finally, the histological analysis of mouse guts following the conditional knock-out of the GlcT gene suggested that Mac-Cer might also be important for proper Notch signaling activity in that context.

      Strengths:

      The genetic analysis is of high quality. The finding that a Mac-Cer deficiency results in reduced Notch activity in the fly gut is important and fully convincing.

      The mouse data, although preliminary, raised the possibility that the role of this specific lipid may be conserved across species.

      Weaknesses:

      This study is not, however, without caveats and several specific conclusions are not fully convincing.

      First, the conclusion that GlcT is specifically required in Intestinal Stem Cells (ISCs) is not fully convincing for technical reasons: NRE-Gal4 may be less active in GlcT mutant cells, and the knock-down of GlcT using Dl-Gal4ts may not be restricted to ISCs given the perdurance of Gal4 and of its downstream RNAi.

      As previously mentioned, we acknowledge that a role for GlcT in early EBs or EEPs cannot be completely ruled out. We will revise our manuscript to present a more cautious conclusion and explicitly describe this possibility in the updated version.

      Second, the results from the antibody uptake assays are not clear.: i) the levels of internalized Delta were not quantified in these experiments; ii) additionally, live guts were incubated with anti-Delta for 3hr. This long period of incubation indicated that the observed results may not necessarily reflect the dynamics of endocytosis of antibody-bound Delta, but might also inform about the distribution of intracellular Delta following the internalization of unbound anti-Delta. It would thus be interesting to examine the level of internalized Delta in experiments with shorter incubation time.

      We thank the reviewer for these excellent questions. In our antibody uptake experiments, we noted that Dl reached its peak accumulation after a 3-hour incubation period. We recognize that quantifying internalized Dl would enhance our analysis, and we will include the corresponding statistical graphs in the revised version of the manuscript. In addition, we agree that during the 3-hour incubation, the potential internalization of unbound anti-Dl cannot be ruled out, as it may influence the observed distribution of intracellular Dl. To address this concern, we plan to supplement our findings with live imaging experiments to capture the dynamics of Dl endocytosis in GlcT mutant ISCs.

      Overall, the proposed working model needs to be solidified as important questions remain open, including: is the endo-lysosomal system, i.e. steady-state distribution of endo-lysosomal markers, affected by the Mac-Cer deficiency? Is the trafficking of Notch also affected by the Mac-Cer deficiency? is the rate of Delta endocytosis also affected by the Mac-Cer deficiency? are the levels of cell-surface Delta reduced upon the loss of Mac-Cer?

      Regarding the impact on the endo-lysosomal system, this is indeed an important aspect to explore. While we did not conduct experiments specifically designed to evaluate the steady-state distribution of endo-lysosomal markers, our analyses utilizing Rab5-GFP overexpression and Rab7 staining did not indicate any significant differences in endosome distribution in MacCer deficient conditions. Moreover, we still observed high expression of the NRE-LacZ reporter specifically at the boundaries of clones in GlcT mutant cells (Fig. 4A), indicating that GlcT mutant EBs remain responsive to Dl produced by normal ISCs located right at the clone boundary. Therefore, we propose that MacCer deficiency may specifically affect Dl trafficking without impacting Notch trafficking.

      In our 3-hour antibody uptake experiments, we observed a notable decrease in cell-surface Dl, which was accompanied by an increase in intracellular accumulation. These findings collectively suggest that Dl may be unstable on the cell surface, leading to its accumulation in early endosomes.

      Third, while the mouse results are potentially interesting, they seem to be relatively preliminary, and future studies are needed to test whether the level of Notch receptor activation is reduced in this model.

      In the mouse small intestine, olfm4 is a well-established target gene of the Notch signaling pathway, and its staining provides a reliable indication of Notch pathway activation. While we attempted to evaluate Notch activation using additional markers, such as Hes1 and NICD, we encountered difficulties, as the corresponding antibody reagents did not perform well in our hands. Despite these challenges, we believe that our findings with Olfm4 provide an important start point for further investigation in the future.

      Reviewer #3 (Public review):

      Summary:

      In this paper, Tang et al report the discovery of a Glycoslyceramide synthase gene, GlcT, which they found in a genetic screen for mutations that generate tumorous growth of stem cells in the gut of Drosophila. The screen was expertly done using a classic mutagenesis/mosaic method. Their initial characterization of the GlcT alleles, which generate endocrine tumors much like mutations in the Notch signaling pathway, is also very nice. Tang et al checked other enzymes in the glycosylceramide pathway and found that the loss of one gene just downstream of GlcT (Egh) gives similar phenotypes to GlcT, whereas three genes further downstream do not replicate the phenotype. Remarkably, dietary supplementation with a predicted GlcT/Egh product, Lactosyl-ceramide, was able to substantially rescue the GlcT mutant phenotype. Based on the phenotypic similarity of the GlcT and Notch phenotypes, the authors show that activated Notch is epistatic to GlcT mutations, suppressing the endocrine tumor phenotype and that GlcT mutant clones have reduced Notch signaling activity. Up to this point, the results are all clear, interesting, and significant. Tang et al then go on to investigate how GlcT mutations might affect Notch signaling, and present results suggesting that GlcT mutation might impair the normal endocytic trafficking of Delta, the Notch ligand. These results (Fig X-XX), unfortunately, are less than convincing; either more conclusive data should be brought to support the Delta trafficking model, or the authors should limit their conclusions regarding how GlcT loss impairs Notch signaling. Given the results shown, it's clear that GlcT affects EE cell differentiation, but whether this is via directly altering Dl/N signaling is not so clear, and other mechanisms could be involved. Overall the paper is an interesting, novel study, but it lacks somewhat in providing mechanistic insight. With conscientious revisions, this could be addressed. We list below specific points that Tang et al should consider as they revise their paper.

      Strengths:

      The genetic screen is excellent.

      The basic characterization of GlcT phenotypes is excellent, as is the downstream pathway analysis.

      Weaknesses:

      (1) Lines 147-149, Figure 2E: here, the study would benefit from quantitations of the effects of loss of brn, B4GalNAcTA, and a4GT1, even though they appear negative.

      We will incorporate the quantifications for the effects of the loss of brn, B4GalNAcTA, and a4GT1 in the updated Figure 2.

      (2) In Figure 3, it would be useful to quantify the effects of LacCer on proliferation. The suppression result is very nice, but only effects on Pros+ cell numbers are shown.

      We will add quantifications of the number of EEs per clone to the updated Figure 3.

      (3) In Figure 4A/B we see less NRE-LacZ in GlcT mutant clones. Are the data points in Figure 4B per cell or per clone? Please note. Also, there are clearly a few NRE-LacZ+ cells in the mutant clone. How does this happen if GlcT is required for Dl/N signaling?

      In Figure 4B, the data points represent the fluorescence intensity per single cell within each clone. It is true that a few NRE-LacZ+ cells can still be observed within the mutant clone; however, this does not contradict our conclusion. As noted, high expression of the NRE-LacZ reporter was specifically observed around the clone boundaries in MacCer deficient cells (Fig. 4A), indicating that the mutant EBs can normally receive Dl signal from the normal ISCs located at the clone boundary and activate the Notch signaling pathway. Therefore, we believe that, although affecting Dl trafficking, MacCer deficiency does not significantly affect Notch trafficking.

      (4) Lines 222-225, Figure 5AB: The authors use the NRE-Gal4ts driver to show that GlcT depletion in EBs has no effect. However, this driver is not activated until well into the process of EB commitment, and RNAi's take several days to work, and so the author's conclusion is "specifically required in ISCs" and not at all in EBs may be erroneous.

      As previously mentioned, we acknowledge that a role for GlcT in early EBs or EEPs cannot be completely ruled out. We will revise our manuscript to present a more cautious conclusion and describe this possibility in the updated version.

      (5) Figure 5C-F: These results relating to Delta endocytosis are not convincing. The data in Fig 5C are not clear and not quantitated, and the data in Figure 5F are so widely scattered that it seems these co-localizations are difficult to measure. The authors should either remove these data, improve them, or soften the conclusions taken from them. Moreover, it is unclear how the experiments tracing Delta internalization (Fig 5C) could actually work. This is because for this method to work, the anti-Dl antibody would have to pass through the visceral muscle before binding Dl on the ISC cell surface. To my knowledge, antibody transcytosis is not a common phenomenon.

      We thank the reviewer for these insightful comments and suggestions. In our in vivo experiments, we observed increased co-localization of Rab5 and Dl in GlcT mutant ISCs, indicating that Dl trafficking is delayed at the transition to Rab7⁺ late endosomes, a finding that is further supported by our antibody uptake experiments. We acknowledge that the data presented in Fig. 5C are not fully quantified and that the co-localization data in Fig. 5F may appear somewhat scattered; therefore, we will include additional quantification and enhance the data presentation in the revised manuscript.

      Regarding the concern about antibody internalization, we appreciate this point. We currently do not know if the antibody reaches the cell surface of ISCs by passing through the visceral muscle or via other routes. Given that the experiment was conducted with fragmented gut, it is possible that the antibody may penetrate into the tissue through mechanisms independent of transcytosis.

      As mentioned earlier, we plan to supplement our findings with live imaging experiments to investigate the dynamics of Dl/Notch endocytosis in both normal and GlcT mutant ISCs. Anyway, due to technical challenges and potential pitfalls associated with the assays, we agree that this part of data is not fully convincing and we will provide a more cautious conclusion in the revised manuscript.

      (6) It is unclear whether MacCer regulates Dl-Notch signaling by modifying Dl directly or by influencing the general endocytic recycling pathway. The authors say they observe increased Dl accumulation in Rab5+ early endosomes but not in Rab7+ late endosomes upon GlcT depletion, suggesting that the recycling endosome pathway, which retrieves Dl back to the cell surface, may be impaired by GlcT loss. To test this, the authors could examine whether recycling endosomes (marked by Rab4 and Rab11) are disrupted in GlcT mutants. Rab11 has been shown to be essential for recycling endosome function in fly ISCs.

      We agree that assessing the state of recycling endosomes, especially by using markers such as Rab11, would be valuable in determining whether MacCer regulates Dl-Notch signaling by directly modifying Dl or by influencing the broader endocytic recycling pathway. We will incorporate these experiments into our future experimental plans to further characterize Dl trafficking in GlcT mutant ISCs.

      (7) It remains unclear whether Dl undergoes post-translational modification by MacCer in the fly gut. At a minimum, the authors should provide biochemical evidence (e.g., Western blot) to determine whether GlcT depletion alters the protein size of Dl.

      While we propose that MacCer may function as a component of lipid rafts, facilitating Dl membrane anchorage and endocytosis, we also acknowledge the possibility that MacCer could serve as a substrate for protein modifications of Dl necessary for its proper function. Conducting biochemical analyses to investigate potential post-translational modifications of Dl by MacCer would indeed provide valuable insights. To address this, we will incorporate Western blot analysis into our experimental plan to determine whether GlcT depletion affects the protein size of Dl.

      (8) It is unfortunate that GlcT doesn't affect Notch signaling in other organs on the fly. This brings into question the Delta trafficking model and the authors should note this. Also, the clonal marker in Figure 6C is not clear.

      In the revised working model, we will explicitly specify that the events occur in intestinal stem cells. Regarding Figure 6C, we will delineate the clone with a white dashed line to enhance its clarity and visual comprehension.

      (9) The authors state that loss of UGCG in the mouse small intestine results in a reduced ISC count. However, in Supplementary Figure C3, Ki67, a marker of ISC proliferation, is significantly increased in UGCG-CKO mice. This contradiction should be clarified. The authors might repeat this experiment using an alternative ISC marker, such as Lgr5.

      Previous studies have indicated that dysregulation of the Notch signaling pathway can result in a reduction in the number of ISCs. While we did not perform a direct quantification of ISC numbers in our experiments, our olfm4 staining—which serves as a reliable marker for ISCs—demonstrates a clear reduction in the number of positive cells in UGCG-CKO mice.

      The increased Ki67 signal we observed reflects enhanced proliferation in the transit-amplifying region, and it does not directly indicate an increase in ISC number. Therefore, in UGCG-CKO mice, we observe a decrease in the number of ISCs, while there is an increase in transit-amplifying (TA) cells (progenitor cells). This increase in TA cells is probably a secondary consequence of the loss of barrier function associated with the UGCG knockout.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The authors propose a transformer-based model for the prediction of condition - or tissue-specific alternative splicing and demonstrate its utility in the design of RNAs with desired splicing outcomes, which is a novel application. The model is compared to relevant existing approaches (Pangolin and SpliceAI) and the authors clearly demonstrate its advantage. Overall, a compelling method that is well thought out and evaluated.

      Strengths:

      (1) The model is well thought out: rather than modeling a cassette exon using a single generic deep learning model as has been done e.g. in SpliceAI and related work, the authors propose a modular architecture that focuses on different regions around a potential exon skipping event, which enables the model to learn representations that are specific to those regions. Because each component in the model focuses on a fixed length short sequence segment, the model can learn position-specific features. Another difference compared to Pangolin and SpliceAI which are focused on modeling individual splice junctions is the focus on modeling a complete alternative splicing event.

      (2) The model is evaluated in a rigorous way - it is compared to the most relevant state-of-the-art models, uses machine learning best practices, and an ablation study demonstrates the contribution of each component of the architecture.

      (3) Experimental work supports the computational predictions.    

      (4) The authors use their model for sequence design to optimize splicing outcomes, which is a novel application.

      We wholeheartedly thank Reviewer #1 for these positive comments regarding the modeling approach we took to this task and the evaluations we performed. We have put a lot of work and thought into this and it is gratifying to see the results of that work acknowledged like this.

      Weaknesses:

      No weaknesses were identified by this reviewer, but I have the following comments:

      (1) I would be curious to see evidence that the model is learning position-specific representations.

      This is an excellent suggestion to further assess what the model is learning. We have several ideas on how to test this which we will plan to report in the revised version. 

      (2) The transformer encoders in TrASPr model sequences with a rather limited sequence size of 200 bp; therefore, for long introns, the model will not have good coverage of the intronic sequence. This is not expected to be an issue for exons.

      Yes we can divide predictions by intron length, that’s a good suggestion. We will report on that in the revision.

      (3) In the context of sequence design, creating a desired tissue- or condition-specific effect would likely require disrupting or creating motifs for splicing regulatory proteins. In your experiments for neuronal-specific Daam1 exon 16, have you seen evidence for that? Most of the edits are close to splice junctions, but a few are further away.

      That is another good question and suggestion. In the original paper describing the mutation locations some motif similarities were noted to PTB (CU) and CUG/Mbnl-like elements (Barash et al Nature 2010). We could revisit this now with an RBP motif D.B. such as http://rbpdb.ccbr.utoronto.ca/. We note the ENCODE uses human cell lines and cannot be used for this but we will also look for mouse CLIP and KD data supporting such regulatory findings. 

      (4) For sequence design, of tissue- or condition-specific effect in neuronal-specific Daam1 exon 16 the upstream exonic splice junction had the most sequence edits. Is that a general observation? How about the relative importance of the four transformer regions in TrASPr prediction performance?

      This is another excellent question that we plan to follow up with matching analysis in the revision.

      (5) The idea of lightweight transformer models is compelling, and is widely applicable. It has been used elsewhere. One paper that came to mind in the protein realm:

      Singh, Rohit, et al. "Learning the language of antibody hypervariability." Proceedings of the National Academy of Sciences 122.1 (2025): e2418918121.

      Yes, we are for sure not the only/first to advocate for such an approach. We will be sure to make that point clear in the revision and thank the reviewer for the example from a different domain.  

      Reviewer #2 (Public review):

      Summary:

      The authors present a transformer-based model, TrASPr, for the task of tissue-specific splicing prediction (with experiments primarily focused on the case of cassette exon inclusion) as well as an optimization framework (BOS) for the task of designing RNA sequences for desired splicing outcomes.

      For the first task, the main methodological contribution is to train four transformer-based models on the 400bp regions surrounding each splice site, the rationale being that this is where most splicing regulatory information is. In contrast, previous work trained one model on a long genomic region. This new design should help the model capture more easily interactions between splice sites. It should also help in cases of very long introns, which are relatively common in the human genome.

      TrASPr's performance is evaluated in comparison to previous models (SpliceAI, Pangolin, and SpliceTransformer) on numerous tasks including splicing predictions on GTEx tissues, ENCODE cell lines, RBP KD data, and mutagenesis data. The scope of these evaluations is ambitious; however, significant details on most of the analyses are missing, making it difficult to evaluate the strength of the evidence. Additionally, state-of-the-art models (SpliceAI and Pangolin) are reported to perform extremely poorly in some tasks, which is surprising in light of previous reports of their overall good prediction accuracy; the reasoning for this lack of performance compared to TrASPr is not explored.

      In the second task, the authors combine Latent Space Bayesian Optimization (LSBO) with a Transformer-based variational autoencoder to optimize RNA sequences for a given splicing-related objective function. This method (BOS) appears to be a novel application of LSBO, with promising results on several computational evaluations and the potential to be impactful on sequence design for both splicing-related objectives and other tasks.

      We thank Reviewer #2 for this detailed summary and positive view of our work. It seems the main issue raised in this summary regards the evaluations: The reviewer finds details of the evaluations missing and the fact that SpliceAI and Pangolin perform poorly on some of the tasks to be surprising. In general, we made a concise effort to include the required details, including code and data tables, but will be sure to include more details based on the specific questions/comments listed below. As for the perceived performance issues for Pangolin/SpliceAI we believe this may be the result of not making it clear what tasks they perform well on vs those in which they do not work well. We give more details below. 

      Strengths:

      (1) A novel machine learning model for an important problem in RNA biology with excellent prediction accuracy.

      (2) Instead of being based on a generic design as in previous work, the proposed model incorporates biological domain knowledge (that regulatory information is concentrated around splice sites). This way of using inductive bias can be important to future work on other sequence-based prediction tasks.

      Weaknesses:

      (1) Most of the analyses presented in the manuscript are described in broad strokes and are often confusing. As a result, it is difficult to assess the significance of the contribution.

      We made an effort to make the tasks be specific and detailed,  including making the code and data of those available. Still, it is evident from the above comment Reviewer #2 found this to be lacking. We will review the description and make an effort to improve that given the clarifications we include below. 

      (2) As more and more models are being proposed for splicing prediction (SpliceAI, Pangolin, SpliceTransformer, TrASPr), there is a need for establishing standard benchmarks, similar to those in computer vision (ImageNet). Without such benchmarks, it is exceedingly difficult to compare models. For instance, Pangolin was apparently trained on a different dataset (Cardoso-Moreira et al. 2019), and using a different processing pipeline (based on SpliSER) than the ones used in this submission. As a result, the inferior performance of Pangolin reported here could potentially be due to subtle distribution shifts. The authors should add a discussion of the differences in the training set, and whether they affect your comparisons (e.g., in Figure 2). They should also consider adding a table summarizing the various datasets used in their previous work for training and testing. Publishing their training and testing datasets in an easy-to-use format would be a fantastic contribution to the community, establishing a common benchmark to be used by others.

      There are several good points to unpack here. First, we agree that a standard benchmark will be useful to include. We will work to create and include one for the revision. That said, we note that unlike the example given by Reviewer #2 (ImageNet) there are no standards for the splicing prediction tasks. There are actually different task definitions with different input/outputs as we tried to cover briefly in the introduction section. 

      Second, regarding the usage of different data and distribution shifts as potential reasons for Pangolin performance differences. We originally evaluated Pangolin after retraining it with MAJIQ based quantifications and found no significant changes. We will include a more detailed analysis of Pangolin retrained like this in the revision. We also note that Pangolin original training involved significantly more data as it was trained on four species with four tissues each, and we only evaluated it on three of those tissues (for human), in exons the authors deemed as test data. That said, we very much agree that retraining Pangolin as mentioned above is warranted, as well as clearly listing what data was used for training as suggested by the reviewer.

      (3) Related to the previous point, as discussed in the manuscript, SpliceAI, and Pangolin are not designed to predict PSI of cassette exons. Instead, they assign a "splice site probability" to each nucleotide. Converting this to a PSI prediction is not obvious, and the method chosen by the authors (averaging the two probabilities (?)) is likely not optimal. It would interesting to see what happens if an MLP is used on top of the four predictions (or the outputs of the top layers) from SpliceAI/Pangolin. This could also indicate where the improvement in TrASPr comes from: is it because TrASPr combines information from all four splice sites? Also, consider fine-tuning Pangolin on cassette exons only (as you do for your model).

      As mentioned above, we originally did try to retrain Pangolin with MAJIQ PSI values without observing much differences, but we will repeat this and include the results in the revision. Trying to combine 4 different SpliceAI models as proposed by the Reviewer seems to be a different kind of a new model, one that takes 4 large ResNets and combines those with annotation. Related to that, we did try to replace the transformers in our ablation study. The reviewer’s suggestion seems like another interesting architecture to try but since this is a non existing model that would likely require some adjustments. Given that, we view adding such a new model architecture as beyond the scope of this work.

      (4) L141, "TrASPr can handle cassette exons spanning a wide range of window sizes from 181 to 329,227 bases - thanks to its multi-transformer architecture." This is reported to be one of the primary advantages compared to existing models. Additional analysis should be included on how TrASPr performs across varying exon and intron sizes, with comparison to SpliceAI, etc.

      Yes, that is a good suggestion, similar to one made by Reviewer #1 as well. We plan to include such analysis in the revision. 

      (5) L171, "training it on cassette exons". This seems like an important point: previous models were trained mostly on constitutive exons, whereas here the model is trained specifically on cassette exons. This should be discussed in more detail.

      Previous models were not trained exclusively on constitutive exons and Pangolin specifically was trained with their version of junction usage across tissues. That said, the reviewer’s point is valid (and similar to ones made above) about a need to have a matched training/testing. As noted above we plan to include Pangolin training on our PSI values for comparison.

      (6) L214, ablations of individual features are missing.

      OK

      (7) L230, "ENCODE cell lines", it is not clear why other tissues from GTEx were not included.

      The task here was to assess predictions in very different conditions, hence we tested on completely different data of human cell lines rather than similar tissue samples. Yes, we can also assess on unseen GTEX tissues as well.

      (8) L239, it is surprising that SpliceAI performs so badly, and might suggest a mistake in the analysis. Additional analysis and possible explanations should be provided to support these claims. Similarly, the complete failure of SpliceAI and Pangolin is shown in Figure 4d.

      Line 239 refers to predicting relative inclusion levels between competing 3’ and 5’ splice sites. We admit we too expected this to be better for SpliceAI and Pangolin and will be sure to recheck for bugs, but to be fair we are not aware of a similar assessment being done for either of those algorithms (i.e. relative inclusion for 3’ and 5’ alternative splice site events).

      One issue we ran into, reflected in Reviewer #2 comments, is the mix between tasks that SpliceAI and Pangolin excel at and other tasks where they should not necessarily be expected to excel. Both algorithms focus on cryptic splice site creation/disruption. This has been the focus of those papers and subsequent applications.  While Pangolin added tissue specificity to SpliceAI training, the authors themselves admit “...predicting differential splicing across tissues from sequence alone is possible but remains a considerable challenge and requires further investigation”. The actual performance on this task is not included in Pangolin’s main text, but we refer Reviewer #2 to supplementary figure S4 in that manuscript to get a sense of Pangolin’s reported performance on this task. Similar to that, Figure 4d is for predicting *tissue specific* regulators. We do not think it is surprising that SpliceAI (tissue agnostic) and Pangolin (slight improvement compared to SpliceAI in tissue specific predictions) do not perform well on this task.  Similarly, we do not find the results in Figure 4C surprising either. These are for mutations that slightly alter inclusion level of an exon, not something SpliceAI was trained on, as it was simply trained on splice sites yes/no predictions. As noted and we will stress in the revision as well, training Pangolin on this dataset like TrASPr gives similar performance. That is to be expected as well - Pangolin is constructed to capture changes in PSI, those changes are not even tissue specific for CD19 data and the model has no problem/lack of capacity to generalize from the training set just like TrASPr does. In fact, if you only use combination of known mutations seen during training a simple regression model gives correlation of ~92-95% (Cortés-López et al 2022). In summary, we believe that better understanding of what one can realistically expect from models such as SpliceAI, Pangolin, and TrASPr will go a long way to have them better understood and used effectively. We will try to improve on that in the revision.

      (9) BOS seems like a separate contribution that belongs in a separate publication. Instead, consider providing more details on TrASPr.

      We thank the reviewer for the suggestion. We agree those are two distinct contributions and we indeed considered having them as two separate papers. However, there is strong coupling between the design algorithm (BOS) and the predictor that enables it (TrASPr). This coupling is both conceptual (TrASPr as a “teacher”) and practical in terms of evaluations. While we use experimental data (experiments done involving Daam1 exon 16, CD19 exon 2) we still rely heavily on evaluations by TrASPr itself. A completely independent evaluation would have required a high-throughput experimental system to assess designs, which is beyond the scope of the current paper. For those reasons we eventually decided to make it into what we hope is a more compelling combined story about generative models for prediction and design of RNA splicing. 

      (10) The authors should consider evaluating BOS using Pangolin or SpliceTransformer as the oracle, in order to measure the contribution to the sequence generation task provided by BOS vs TrASPr.

      We can definitely see the logic behind trying BOS with different predictors. That said, as we note above most of BOS evaluations are based on the “teacher”. As such, it is unclear what value replacing the teacher would bring. We also note that given this limitation we focus mostly on evaluations in comparison to existing approaches (genetic algorithm or random mutations as a strawman).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-0284z

      Corresponding author(s): Bérénice, Benayoun A

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      This paper by McGill and colleagues explores sex differences in murine macrophages from different niches. They use a combination of publicly available, and newly developed datasets, and combine these using meta-analysis approaches. They explore DEGs between sexes - both common across niches, and specific to certain niches - and use enrichment analyses to identify pathways linked to these genes. Their overall conclusions are that gene expression changes in females are more consistent across niches, than for males, and are enriched in extracellular matrix-related genes. The paper is easy to follow and very well written.

      Major Comments:

      1. I would suggest Figure 1 be moved to a supplemental figure. We agree that the Xist and Ddx3y is QC and can be removed. However, we believe that the separation of macrophage transcriptomes based on sex in the Multidimensional Scaling plot is an important result. Thus, we have revised Figure 1 to only include the MDS plots and have moved the Xist/Ddx3y plots to the supplement (new Supplemental Figure S1) in line with the reviewer’s suggestion.

      Line 106 - It should be clarified why 50 DEGs was selected as the cut off for exclusion.

      We apologize that our cut off criteria was not explained clearly enough. Because these are publicly available datasets, every lab used different numbers of biological replicates, methods, and sequencing depths, impacting the power of the assay to detect differences in gene expression robustly. Since we were interested in functions that were sex-dimorphic, and that requires running functional enrichment analysis, we needed to have a minimum gene set size to be able to run these analyses, which, in the field, is usually accepted to be 50 genes for robustness. Thus, we used 50 DEGs and have updated the methods to explain our reasoning: “Applying a cutoff for the number of differentially expressed genes (DEGs) helps ensure data consistency and comparability across datasets with varying methodologies and sequencing depths. This prevents datasets with excessively low DEG counts from disproportionately influencing downstream analyses. A cutoff also reduces noise from spurious findings, prioritizing datasets with robust transcriptional changes that are more likely to be biologically meaningful. The excluded microglia dataset contained only 11 DEGs (whereas all other microglia datasets had hundreds of DEGs), the pleural macrophage dataset had 37 (whereas all other lung-related macrophage datasets had above 50), and the spleen macrophage dataset had only 30.” (page 12, lines 381-388).

      Optional - would suggest sex chromosome-linked genes are excluded and the analysis redone to see if there are other autosomal genes that are statistically shadowed by the X and Y linked genes.

      We thank the reviewer for this great suggestion, and we now added this point to the discussion (page 9, lines 260-268). However, we think that genes on the X and Y chromosomes will impact overall function of the macrophages and that they are necessary to understand how macrophages from males and females may support differences in immune function throughout life. We now add this in the discussion as a potential future direction: “We find that a majority of genes similarly differential across sexes among the macrophage niches are sex chromosome linked. X-linked genes like Tlr7, Cxcr3, and Kdm6a enhance immune responses in female macrophages, potentially increasing inflammation with age (Feng et al., 2024). Meanwhile, Y-linked genes such as Uty and Sry influence transcriptional regulation and inflammatory signaling in male macrophages, which may contribute to chronic low-grade inflammation (Lusis, 2019). These genetic differences affect macrophage activity, tissue-specific immune responses, and susceptibility to age-related diseases, highlighting the importance of sex-specific factors in immune research. Future research should also explore how non-sex chromosome-linked genes interact with these sex-specific mechanisms to further shape macrophage and immune function.” (page 9, lines 260-268).

      More metadata about the included studies should be included eg mouse ages, strains, experimental manipulations etc. I can't seem to access all of the Supplemental tables so this may already be included in Table S1.

      We agree that this information is important to take into consideration and have now included this information in Supplemental Table S1A, along with the accession numbers to each dataset. All mice were aged between 2 to 24 weeks and all on variations of the C57BL/6 background.

      How relevant the findings in mice are for humans should be explained further in the discussion.

      We agree that our discussion needs to better explain broader implications. Our findings are relevant for human health because macrophages play key roles in immunity, inflammation, and tissue homeostasis, and their functions are known to differ between sexes. Understanding these sex-specific transcriptional differences in mice can provide insights into how male and female immune systems respond differently to infections, autoimmune diseases, and aging in humans. Since macrophage phenotypes are influenced by both systemic factors (e.g., hormones) and tissue-specific environments, studying multiple macrophage subtypes from different organs helps identify conserved and context-dependent sex differences. Indeed, our findings suggest the ECM may be a potential mechanism underlying sex-biased diseases, such as higher autoimmune prevalence in females or increased susceptibility to certain infections in males. We have added this detail to the discussion (page 10, lines 269-275).

      Minor Comments:

      1. Lines 63-66 - need references here. This mirrors Reviewer 2’s major point #2. We agree with the reviewer that references are needed and now cite PMID: 31541153, PMID: 29533975, PMID: 37863894, PMID: 33415105, and PMID: 37491279 (page 4 line 68-69).

      Line 61 and 69 - repeated.

      We thank the reviewer for catching this oversight and have deleted the first instance of the sentence.

      Reviewer #1 (Significance (Required)):

      Although this study is primarily descriptive, it adds to the current knowledge about sex differences in macrophages, an important and relatively understudied area. Those interested in sex differences and in the innate immune system generally, plus those who study macrophages in any context, should be interested in this work.

      We thank the reviewer for their interest in our work and their helpful suggestions.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: The study investigates sex-specific differences in macrophage gene expression across various tissue niches by analyzing both newly generated and publicly available datasets of varying quality. The key finding is the identification of three consistently differentially expressed genes (DEGs) across all macrophage niches: the Y-chromosome-encoded genes Ddx3y and Eif2s3y, and the X-chromosome-specific gene Xist. However, the number of sex-dimorphic DEGs varied significantly between macrophage niches, with female-biased genes showing more consistency across datasets. To further explore these sex-specific differences, the authors performed an overrepresentation analysis of the DEGs across datasets. They found enriched gene sets associated with specific biological terms in female-biased macrophages from peritoneal macrophages, bone marrow-derived macrophages (BMDMs), and osteoclast progenitors (OCPs), while male-biased enrichment was observed in microglia, exudate macrophages, OCPs, and BMDMs. Notably, extracellular matrix (ECM)-related genes were specifically enriched in female peritoneal macrophages and OCPs, whereas the term "nucleic acid binding" was more prominent in male samples from microglia, BMDMs, and OCPs, driven by the Y-chromosome genes Uty and Kdm5d. A gene set enrichment analysis (GSEA) using Gene Ontology (GO) and Reactome databases further confirmed the enrichment of sex-biased pathways. Based on these findings, the authors conclude that three sex chromosome-associated genes are consistently differentially expressed across all datasets and that female-associated gene expression appears to be more stable, particularly in relation to ECM-associated processes.

      Major Comments:

      Are the key conclusions convincing?

      1. The study provides valuable insights into sex-dimorphic gene expression in macrophages across different niches. However, some conclusions appear overinterpreted due to the limited number of differentially expressed genes (DEGs) driving specific terms in the overrepresentation analysis. The reliance on only a few recurring genes (e.g., Kdm5d, Eif2s3y, Uty, and Ddx3y) raises concerns about the biological significance of some enriched terms. A clearer discussion on the limitations of such findings is necessary. We apologize for the confusion. Although the Venn Diagram may give the impression that our comparisons are limited to those few genes, we only highlight them with bold text because they are a good quality control mechanism for our analyses.

      Importantly, methods like gene set enrichment analysis [GSEA] use whole-transcriptome ranking, which means the results we obtain are driven by the entire transcriptome and not just a few genes (GSEA results are reported in Figure 5). We agree that further explanation of these methodologies would improve interpretation of our findings for readers unfamiliar with these analytical techniques. To address this, we have now added the following to the methods: “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes.” (page 13, lines 415-417).

      Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether?Some claims, particularly those regarding the role of macrophages in diseases such as AD, histiocytosis, and osteoporosis, lack relevant references.

      This mirrors minor point #1 from Reviewer #1. We apologize for not originally including references for this statement and have now updated the introduction and discussion with appropriate references: “Excessive macrophage activation is associated with numerous conditions, including neurodegeneration, atherosclerosis, osteoporosis, and cancer, many of which exhibit sex-biased tendencies (Chen et al., 2020; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 4, lines 67-69) and “Thus, investigating female and male-biased processes in macrophages, including the contribution of the ECM, will be an important step in developing treatments for diseases including, but not limited to, AD, histiocytosis, and osteoporosis(Chen et al., 2020; Cox et al., 2021; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 10, lines 285-288).

      Would additional experiments be essential to support the claims of the paper? While additional wet-lab experiments are not strictly necessary, a deconvolution analysis of the datasets could be highly beneficial. This would allow the identification of enriched macrophage subtypes and help assess whether differences between datasets are driven by specific macrophage populations rather than global sex differences. Since peritoneal macrophage origin is influenced by age and inflammation status, deconvolution could also clarify dataset comparability.

      The reviewer makes an interesting point. We apologize for the confusion regarding the purity and origin of these datasets. All the datasets we curated from public repositories for our analysis are from purified populations of macrophages. To clarify this, we now include a column with the purification method used for each of the datasets based on the original manuscript in revised Supplemental Table S1A.

      Since all the used datasets were derived from pure macrophage populations, deconvolution (which is used to identify cellular proportions in heterogeneous contexts) would not accomplish much, predicting that all the cells in the data are macrophages. While some people have argued that deconvolution may be used to identify different cell states, this is very controversial, especially since the “pure” reference and the heterogeneous query are subject to batch effects (i.e. either from differences in bench processing, sex of provenance for target/query datasets, transcriptional impact of sorting methods, differences in transcriptomic quantification methods, etc.) which overshadow most differences beyond cell types. Thus, due to the known batch sensitivity of deconvolution methods and the fact that we only selected pure macrophage transcriptomic profiling datasets, using deconvolution to identify macrophage subtypes would not be informative/feasible. Importantly, we focused our analyses on datasets derived only from young, healthy, naïve animals (2 to 24 weeks), without any interference from age-related inflammation.

      To make this caveat clearer, we have added sentences to the results section indicating the age range of the animals (page 6, lines 100-101), as well as in the discussion to discuss how inflammation states and age may change some of our findings (page 10, lines 295-299).

      Are the suggested experiments realistic in terms of time and resources? Performing cell-type deconvolution using established computational tools (e.g., CIBERSORT, BisqueRNA, or single-cell deconvolution methods) would be a realistic approach within a few weeks and would significantly strengthen the study. This analysis would not require additional experimental work but could refine the interpretation of the dataset. Additionally, a PCA of all datasets could help identify potential similarities among macrophages from different niches and between sexes.

      As explained in our response to point #4, the use of only datasets from purified macrophages from young animals (before any influence of age or disease) makes deconvolution analysis meaningless, especially due to batching concerns. Specifically, it would require us to generate paired single-cell and bulk datasets on all macrophage subtypes in house to remove batch-inducing experimental biases, which we believe is outside of the scope of this small bioinformatics study.

      To the second point, doing a PCA of all the datasets together would not provide much new information beyond cell type of origin due to batching concerns that could not be corrected, which are a known problem in transcriptomics analyses (PMID:20838408, PMID:28351613). Since datasets come from different labs, using different isolation methods, RNA capture choices, library construction kits and sequencing platforms, the main separating effects overall will be batch/dataset, not biology (PMID:20838408, PMID:28351613). Indeed, this is what we observe (Reviewer Figure 1), with broad separation of datasets by tissue of origin, then dataset of origin. Additionally, the top 10 loadings for PC1 and PC2 are primarily associated to autosomal genes (i.e. not on the sex chromosomes; Reviewer Table 1).

      Reviewer Figure 1. (A) PCA of all samples across datasets. Read counts were processed together through R package sva v.3.46.0 for surrogate variable estimation, and surrogate variables were removed using the removeBatchEffect function from ‘limma’ v.3.54.2. DESeq2 normalized counts were used to make the PCA. (B) Zoomed in PCA excluding three outlier sample to enable easier visual discrimination of samples.

      Principal Component – Gene

      Loading

      Chromosome

      PC1- Srcin1

      0.013601

      11

      PC1- Cacna1c

      0.013593

      6

      PC1- Pclo

      0.01357

      5

      PC1- Tro

      0.013547

      X

      PC1- Ppp4r4

      0.013541

      12

      PC1- Ppp1r1a

      0.01354

      15

      PC1- Homer2

      0.013538

      7

      PC1- Caskin1

      0.013535

      17

      PC1- Arhgef9

      0.013527

      X

      PC1- Slc4a3

      0.013499

      1

      PC2- Gm15446

      0.017978

      5

      PC2- 1810034E14Rik

      0.017897

      13

      PC2- Gm19557

      0.017871

      19

      PC2- Pkd1l2

      0.017792

      8

      PC2- H60b

      0.017274

      10

      PC2- Appbp2os

      0.01723

      11

      PC2- Mir7050

      0.017221

      7

      PC2- Nkapl

      0.017166

      13

      PC2- Tmem51os1

      0.017083

      4

      PC2- Dpep3

      0.016962

      8

      Reviewer Table 1. Top 10 loadings for principal component 1 and principal component 2 with their respective chromosomal location.

      Thus, since batch effects can only be accounted for rigorously when they are not confounded by biology (and in our case since each dataset only looks at one type of macrophage), this cannot be corrected in a rigorous manner to yield the desired results.

      We have added a sentence to the discussion to highlight how future work where macrophages from diverse niches would be profiled in parallel may give greater insights into niche-specific sex-dimorphic effects (page 10, line 295-296).

      Are the data and the methods presented in such a way that they can be reproduced? Some methodological details are missing, particularly regarding:

      The isolation of mouse peritoneal macrophages (details on injection and harvesting procedure needed). Quality control of isolated macrophages (How were contaminating cells excluded? Was additional validation performed beyond using the kit?)

      The age of mice used for bone marrow-derived macrophages (BMDMs) is not provided, which is important given that immune responses can be age-dependent.

      We appreciate the reviewer’s request for additional methodological details. We apologize for not being clear with our details and have updated the methods to be clearer (page 11, lines 320-346), as well as added this information in revised Supplemental Table S1A (e.g. age of animals and purification method as described in the original papers). For all our in house datasets, mice were 4-months old, and the text is now updated to reflect this: “Long bones (tibia and femur) of young (4-months-old) from both sexes were collected and bone marrow was flushed into 1.5mL Eppendorf tubes via centrifugation (30 seconds, 10,000g) (Amend et al., 2016)” (page 11, lines 334-336).

      While we couldn’t check the purity post hoc for published datasets we identified for meta-analysis, we performed a purity check on our isolated peritoneal macrophages using Cd11b-F4/80 staining by flow cytometry and have now included this data (including gating strategy) in Supplemental Figure S4. For BMDMs, no purity check was performed, as there is extensive literature on the efficiency of this differentiation protocol which consistently yields > 90% of macrophages. This has been added to the methods: “We used a protocol that is expected to yield ~90% Cd11b+ F4/80+ cells (Mendoza et al., 2022; Toda et al., 2021)” (page 11, lines 336-337).

      Are the experiments adequately replicated and statistical analysis adequate? The statistical analysis appears generally appropriate, but there are concerns about dataset inconsistencies that should be addressed. Some datasets were not used across all analyses, which is not clearly indicated in figures or text. This should be explicitly mentioned to avoid misleading interpretations.

      We appreciate the reviewer’s careful evaluation of our statistical analysis and the concern regarding dataset inconsistencies.

      We believe that the reviewer is referring to the omission of the exudate dataset from the Venn Diagram analysis (Figure 2C), as this is the only time that we did not report the results from all datasets. We originally chose not to include the exudate dataset in the shared differentially expressed gene (DEG) analysis, because it contained over 1,300 DEGs, whereas all other datasets had between 4–30 DEGs, resulting in an unreadable figure.

      However, we agree that it is important to include for the readers, and while we have decided to still exclude the exudate dataset from Figure 1C for readability purposes, we now include the overlap analyses for all datasets in Supplemental Figure S2 using an upset plot (an alternative visualization method) showing all 6 niches, as well as a table panel that lists the shared genes across niches “Three genes were found to be differentially expressed across all six niches: Xist, Ddx3y, and Eif2s3y (Figure 2C, Supplemental Figure 2A,B)” (page 6, lines 124-126). We thank the reviewer for drawing our attention to this and making our analysis clearer for future readers.

      Minor Comments

      1. Figures are included twice in the manuscript. We apologize for this, and figures are now only included once.

      The use of stereotypic colors in figures (e.g., blue for male, pink for female) could be reconsidered for better readability and to avoid reinforcing gender stereotypes.

      While we understand that this color choice might feel gender normative, we respectfully disagree with the reviewer, as we believe that for the expediency of scientific communication it is important to choose a color palette that is easily understandable without confusion without even needing to consult a legend.

      Importantly, we have been using the same color palette in all publications from the lab on sex-differences for consistency (Lu et al, Nat aging 2021 PMID: 34514433; McGill et al, PLoS ONE, 2023 PMID: 38032907; Kang et al, J Neuroinflammation, 2024 PMID: 38840206; McGill et al, STAR Protocols, 2021 PMID: 34820637), which is crucial for scientific rigor and communication consistency.

      Results - Section 1

      Line 92: The word 'identified' may not be the most appropriate choice here, as it implies discovery rather than selection. Consider rephrasing to 'compiled' or 'gathered' to more accurately reflect the process of assembling the datasets. Additionally, the sentence structure could be refined for clarity, such as specifying that the datasets include both newly generated and publicly available data.

      We have changed two instances of using the word identified to “collected” and “gathered” (page 4, line 83 and page 6, line 98). We also adjusted the sentence to say, “Although we initially collected 21 datasets, both newly generated and publicly available, for our study, only 18 datasets were retained after various quality filtering steps for downstream analysis” (page 4, lines 83-85).

      Line 95: Specify the source of exudate-derived macrophage data.

      We have updated Supplemental Table S1A to make sure it was comprehensively describing the datasets we used in our analysis and double checked that it was complete (including for the exudate data). We have updated the text to reflect this: “All accession numbers and corresponding manuscripts are found in Supplemental Table S1A” (page 6, lines 103-104).

      Figure 1/2A: The scheme overview lacks clarity-its purpose is unclear. The two identical boxes are redundant and do not provide additional insight. Consider illustrating the origins of different macrophage subtypes instead. The cutoff of >50 DEGs should be included in the schematic to improve clarity. Overrepresentation and GSEA analysis should not be illustrated multiple times across different figures-it is redundant.

      In Figure 1A, we included the identical boxes to indicate that no datasets were excluded for incorrect labeling of males/females. However, we agree that this is unnecessary and have removed the second box as suggested.

      In Figure 2A, we agree the identical boxes are unneeded as the Xist/Ddx3y quality control step was listed in Figure 1A, and we have modified the figure accordingly.

      We also agree that including the DEG cutoff and removing the GSEA mention will streamline the figures and have updated them accordingly as well.

      Line 100: The mention of R software should be moved to the Methods section instead of appearing in the Results section.

      We have now updated the text to say, “Expression levels of male-specific Ddx3y and female-specific Xist genes across all samples were examined to ensure proper sex labeling of samples (Supplemental Figure 1A-U)” (page 6, lines 111-112).

      Figure 1B-V: The current figure layout is visually cluttered. Consider plotting male and female datasets together in a single graph with different point shapes instead of separate panels for each specific niche.

      This seems to echo the above request for a global PCA in Reviewer 2’s Major Point #4, which unfortunately cannot be included due to the disproportionate impact of batch effects that has been well documented in the literature (Reviewer Figure 1; PMID:20838408, PMID:28351613). However, to make the figure clearer and less cluttered, and to address related Reviewer 1’s Major Point #1, we have moved the Xist/Ddx3y plots to Supplemental Figure S1 and only include the Multidimensional Scaling plots in Figure 1 to showcase the sex separation in each dataset.

      Text-Figure alignment: The text describes male/female-specific gene expression levels first, while the figure starts with MDS analysis. The order should be consistent.

      We agree and have adjusted the text accordingly (lines 109-112).

      Figure 2C: Exudate data is missing-explain why.

      This point echoes major point #6. As explained above, we have clarified this and included new data panels for clarity (New Supplemental Figure S2).

      Results - Section 2

      Line 151: Use consistent terminology-either "DEGs" or "DE genes", not both.

      We replaced all instances of “DE genes” with DEGs (lines 132, 137, 141, 147, 149, 163, and 397).

      Figure 3A: The text suggests not all datasets were included in this analysis-this should be explicitly indicated in the figure.

      We apologize for the confusion. All datasets were included in this analysis; however, some niches did not have any GO terms passing the FDR

      Show the number of DEGs used for analysis.

      We apologize for the confusion. For the ORA analyses (Figures 3 and 4), we indicate the number of DEGs used for analysis in the panel header. For the GSEA analysis (Figure 5, Supplemental Figure S3), all expressed genes are ranked based on effect size without any prior filter (see response to major point #1), so DEGs are irrelevant for these analyses.

      Figure 3B: Smaller pale dots in the bubble plot are difficult to distinguish-consider using a darker outline.

      We have now added outlines to all the bubbles in the plots to help improve visibility.

      Line 158: The term "phagocytosis" appears inconsistent with the figure, where it is labeled "phagocytosis, recognition".

      We have updated the text accordingly (page 7, line 170).

      Figure 4B, D, E: The overrepresentation analysis is based on very few genes (often only 1-2 genes per term), which may lead to overinterpretation.

      We apologize for the lack of clarity of our previous manuscript. The number of genes used for DEG analysis is in the panel titles of Figure 3 and 4. While the overlap is small, this is unlikely to be spurious since all of the pathways we discuss show significant enrichment with FDR

      Consider explicitly naming these genes and discussing their biological role instead of assigning terms based on minimal evidence.

      We now discuss these genes in the results: “Male-biased GO terms for microglia, OCPs, and BMDMs derived from four genes: Kdm5d, Uty, Ddx3y, and Eif2s3y. All of these are Y-linked genes and play crucial roles in regulating innate and adaptive immune responses (Meester et al., 2020). Kdm5d and Uty influence adaptive immunity through chromatin remodeling and histone modification, while Ddx3y and Eif2s3y shape innate immune responses by modulating macrophage activation and cytokine production via translation initiation and RNA processing (Bloomer et al., 2013; Hamlin et al., 2024; Meester et al., 2020) “(page 8, lines 195-200).

      Figures S3G and S3H seem to be switched.

      We are puzzled by this comment, as our original manuscript did not include a Supplemental Figure S3. Out of an abundance of caution, however, we checked that Supplemental Table S3G and H were correctly labelled, and independently confirmed that they are not switched.

      Results - Section 3

      Figure 5A does not add significant new insights. Consider refining its content to highlight key findings more effectively.

      We respectfully disagree and believe that schematic overviews help readers understand what is accomplished in any specific figure and have thus decided to keep it.

      Number of genes included in the analysis is not provided-this is important to assess significance and should be stated in methods and figure legends.

      We apologize for the lack of clarity. As explained above, GSEA uses all the genes in rank order (PMID: 16199517), we now explain GSEA more explicitly in the text “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes” (page 13, lines 415-417).

      Discussion 20. Line 201-203: Missing reference.

      We have now updated the text with the proper reference: “Tissue-resident macrophages are crucial to proper immune system function (Guilliams et al., 2020). While all macrophages share the responsibility of clearing cellular debris and foreign bodies, tissue-resident macrophages also have unique responsibilities that facilitate homeostasis throughout the body (Guilliams et al., 2020; Varol et al., 2015)” (page 9, lines 227-230).

      Reference 23 (1999) is outdated. Newer literature should be cited to reflect modern insights into sex differences in macrophages.

      We have now updated the text with an updated reference for two outdated references: (i) “Sex differences have previously been reported in macrophages, with female macrophages having higher phagocytic activity than males (Scotland et al., 2011)” (page 9, lines 232-233) and (ii) “Dysfunctional OCPs are associated with development of osteoporosis, a disease that is four times more prevalent in women (Alswat, 2017)” (page 10, lines 284-285).

      Peritoneal macrophages and OCPs originate from monocytes. Would deconvolution help identify enriched subtypes and assess dataset comparability?

      As noted in Reviewer 2’s Major Points #3 and #4, deconvolution analysis is not meaningful for subtype analysis without paired isolated/bulk datasets, which are outside of the scope of this study to generate.

      The 'more consistent' pathways found for female datasets are not discussed.

      We now discuss pathways found among the female datasets: “In addition, GSEA analysis of REACTOME gene sets showed male-biased expression for cell cycle related pathways (average set size 499), and female-biased expression for G protein-coupled receptor (GPCR) signaling (average set size 122) and extracellular matrix organization (average set size 127) (Figure 5C, Supplemental Table S4S-AJ; consistent with our ECM observation, Supplemental Figure S3A). Macrophages express a wide variety of GPCRs that allow them to respond to different stimuli. The expression of specific GPCRs influences macrophage polarization toward either a pro-inflammatory or anti-inflammatory state (Wang et al., 2019). A manual review of the genes contributing to this GPCR enrichment reveals the presence of several chemokine-related genes (such as Ccl4, Ccr4, Cxcl1, and others) (Supplemental Table S4). This suggests that females may have an increased abundance of chemokine GPCRs, potentially contributing to heightened autoimmune activity, among other factors.” (page 8, lines 212-222).

      Methods - Peritoneal macrophage isolation:

      Details on injection and harvesting are missing.

      We apologize for not being clear with our details and have modified the methods to be clearer (page 11, lines 320-331).

      How was contamination from other cell types assessed? F4/80 selection may not be fully macrophage-specific, and contamination could occur due to insufficient washing or the presence of non-macrophage F4/80+ cells.

      For the peritoneal macrophage datasets we generated, the macrophages were checked for purity through flow cytometry using Cd11b and F4/80 antibodies. We considered double positive Cd11b+ F4/80+ cells to be macrophages, which represents >95% of cells using our methodology (Supplemental Figure S4), without a difference between sexes.

      For the BMDMs, we utilize a protocol that is expected to yield ~90% Cd11b+ F4/80+ cells (PMID: 35212988 and PMID: 33458708).

      Finally, we now include the purification method for all publicly available datasets according to their original manuscript in Supplemental Table S1A and explicitly discuss the information for our in-house datasets in the methods (page 11, lines 321-346).

      • Bone marrow macrophages:

      Mouse age is not provided in the results part.

      We now provide this information in the methods (page 11, line 334). All ages for all datasets are now included in Supplemental Table S1A.

      Figure Legends

      Figure 2: Peritoneal macrophages are abbreviated as PeriMac-consider using this abbreviation consistently in the text.

      We respectfully disagree with the reviewer and choose to keep Peritoneal Macrophages spelled out in the text for clarity. We use the shorthand “PeriMac” in Figure 2 and Figure 5 solely for spacing purposes, but these are explained in the figure legend.

      Reviewer #2 (Significance (Required)):

      The study's strengths include the integration of multiple datasets, the use of both overrepresentation and GSEA, and the exploration of tissue-specific macrophage niches. These findings have relevance for diverse communities, including immunologists, sex-difference researchers, and those studying macrophage-driven diseases such as osteoporosis, neurodegeneration, and chronic inflammation. The work provides a foundation for further studies on sex-specific macrophage biology and may have implications for sex-specific therapeutic strategies. However, the study has limitations. The conclusions regarding enriched pathways rely heavily on a small number of DEGs, raising concerns about overinterpretation. Additionally, dataset variability and missing data for some analyses (e.g., exudate macrophages) could affect the robustness of the results.

      Despite these limitations, the study makes a meaningful but incremental advance by highlighting stable sex-dimorphic patterns in macrophage biology. It provides insights for both fundamental and translational research, particularly for audiences focused on immune regulation, sex-specific gene expression, and tissue-specific macrophage function.

      We thank the reviewer for understanding the importance of our work.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary: McGill et al. explore sex-based differences in macrophage gene expression across various tissues. Using a meta-analysis of publicly available and newly generated datasets, they identify conserved and divergent sex-dimorphic genes and pathways between tissues. Overall, the report is easy to follow and guides the reader through the analysis. The authors highlight the relevance of the report by noting sex differences in immune responses to infection, autoimmunity, and chronic diseases. The inclusion of 17 independent transcriptomic datasets provides a robust and extensive analysis of sex-based transcriptional differences. The authors explore potential biological implications of sex-based transcriptional differences using pathway analysis. Despite the overall strengths, there are some points for which further clarification and analysis would improve the manuscript. Detailed comments are listed below.

      Major comments:

      1. A comparison of the overall transcriptomic profiles of macrophages regardless of sex would be additive. Knowing the degree of similarities and differences among macrophages from different niches would help the reader determine what genetic programs vary by compartment. If macrophages are very different by niche, it is not surprising that they share few sex-dimorphic patterns. This mirrors Reviewer 2’s Major Point #4. While this approach may seem valuable, it would only be feasible if all datasets were generated simultaneously by the same lab using identical sequencing and library preparation protocols to avoid batch effects. In this case, biology and batch effects are confounded, making any global analysis misleading. Although the reviewer may find the limited overlap unsurprising, given that macrophages are generally considered to be the same cell type, our goal was to explore the extent of shared versus distinct features across datasets, which we believe to be an invaluable question for the field.

      Although it would not be possible to do this rigorously with the data we curated, the question of niche specific gene regulation of macrophages has been studied, showing extensive niche-specific regulation: “While the question of niche-specific gene regulation has been studied, showing extensive niche-specific regulation (Gosselin et al., 2014; Lavin et al., 2014), a comprehensive and systematic study of sex-differences across macrophage subtypes has not yet been performed” (page 4, lines 78-81).

      It is unclear what age and strain the mice were and the number of samples that were included (n) for each dataset. This information should be included in S1A. If different ages or strains were used, how might this impact findings?

      This mirrors Reviewer 1’s Major Point #4. We agree that this information is important to take into consideration and have now included this information in Supplemental Table 1A, along with the accession numbers to each dataset. Because there is no aging effect (all mice are aged between 2 to 24 weeks) and all mice are on a variation of the C57BL/6 background, we don’t expect this to be a major problem impacting our findings.

      The authors used a Jaccard index to examine similarities in sex-based differences across tissue compartments. They claim that there are more similarities in females. However, the male are female graphs (Fig. 1E,D) do not look that different. Is there a better way to display this?

      We apologize for the lack of clarity. We clustered the Jaccard matrices using hierarchical clustering to determine patterns of sharing. Thus, in these figures, the samples cluster based on the degree of similarity in sex-biased genes. In the females, there is clear separation by macrophage origin (yolk sac or circulating monocytes); whereas males have some separation but also have some mixing (e.g. Peritoneal Macrophage 2 clustering with the yolk-sac derived macrophage datasets). Additionally, four microglia datasets are together in the females with only one separate, whereas in the males they are split into three. We included colored bars by the dataset names to help highlight clear separation by niche of origin.

      We have added this detail to the text to better explain the similarities: “Our results indicate that female-biased genes were more consistent among the cell types compared to male-biased genes (Figures 2D,E). In females, there is clear separation by macrophage origin (yolk sac or circulating monocytes), with all the peritoneal macrophages clustering together, followed by bone-related macrophages, then microglia and lung macrophages. In the males, the five microglia datasets are split into three groups, and Peritoneal Macrophage 2 clusters with the yolk-sac derived macrophage datasets” (page 7, lines 155-160).

      In the Gene Ontology analysis, it is unclear what type of GO pathways were included (biological process, cellular component, molecular function). Also, some of the GO analyses were done with very few genes (as little as 4).

      This echoes Reviewer #2’s Major Comment #1. For the Overrepresentation analysis (ORA) using Gene Ontology, we use the “ALL” option to include biological process, cellular component, and molecular function terms. We used ORA to look at shared DEGs across datasets of the same niche which is why some have very low input. For this reason, we also performed Gene Set Enrichment Analysis that uses all genes, not just those differentially expressed at FDR 5%, to examine gene changes at a broader level. In the methods we have added this information: “The differentially expressed genes shared within each niche were divided into up and down-regulated based on the sign of the DEseq2 log2 fold change. These gene lists were used as the shared genes and all expressed genes across datasets in that specific niche were used as the universe for the clusterProfiler function ‘enrichGO’, using the “ALL” option to include biological process, cellular component, and molecular function terms” (page 13, lines 405-410) and “GSEA relies on whole-transcriptome ranking, ensuring that the results reflect global transcriptomic patterns rather than being influenced by only a few genes.” (page 13, lines 415-417)”.

      Is it possible to combine datasets by tissue to remove potential batch effects before downstream analyses? At the very least, PCA on combined data may help determine if some biological (e.g., age, strain) or technical (batch) differences are contributing to identifying few common sex differences.

      This mirrors Reviewer #2’s Major Point #4. Unfortunately, since every dataset only examined a single niche, biology and batches are confounded, and thus performing a PCA on all datasets together will be driven by technical rather than biological drivers. Batch effects are a well-documented issue in genomics (PMID:20838408, PMID:28351613) Indeed, this is largely observed when we attempt this analysis, with datasets clustering by batch (Reviewer Figure 1). Due to the issue of uncorrectable batch effects, we do not believe this analysis meets the rigor required to be included in the revised manuscript and have chosen to not include it.

      Validation of key results would further strengthen the manuscript.

      We agree that future validation is important but is beyond the scope of this purely bioinformatic analysis. We have included text in the revision to highlight the importance of future validation studies: “Thus, investigating female- and male-biased processes in macrophages, including the contribution of the ECM, will be an important step in developing treatments for diseases including, but not limited to, AD, histiocytosis, and osteoporosis, and future research will be essential to validate these findings and further refine therapeutic strategies (Chen et al., 2020; Cox et al., 2021; Hou et al., 2023; Li et al., 2023; Mammana et al., 2018)” (page 10, lines 285-289).

      Further contextualization of key results would enhance the discussion. For example, ECM-related differences in female macrophages could have broader roles in wound healing, fibrosis, and migration.

      We agree with the reviewers and have added this detail to the discussion: “ECM components are emerging as key regulators of innate immune responses (García-García & Martin, 2019). Macrophages contribute to ECM remodeling by producing and degrading collagens (Sutherland et al., 2023), and ECM-related differences in female macrophages may impact wound healing, fibrosis, and migration. In lung and kidney tissues, macrophages recruit and activate fibroblasts, influencing fibrosis through direct interactions and ECM-degrading enzymes (Nikolic-Paterson et al., 2014). The balance between ECM deposition and degradation is crucial for tissue homeostasis, as excessive fibrosis leads to pathology (Nikolic-Paterson et al., 2014; Ran et al., 2025). Mechanical properties of the ECM, such as stiffness and collagen crosslinking, enhance macrophage adhesion, migration, and inflammatory activation (Hsieh et al., 2019). These ECM cues direct macrophage behavior during injury response, influencing their ability to reach inflammation sites and promote repair. Thus, female-biased expression of ECM-related genes may contribute to phenotypes such as enhanced wound healing or even fibrosis(Balakrishnan et al., 2021; Harness-Brumley et al., 2014; Rønø et al., 2013) “ (page 9, lines 248-259).

      Minor comments:

      1. Line 51: In the introduction, the authors state that macrophages produce chemokines. There are other signaling molecules produced by macrophages (e.g., cytokines) that also contribute to immune responses. We apologize for this and have updated the text to say: “Macrophages are a key component of the mammalian immune system and are responsible for producing a diverse array of signaling molecules including (but not limited to) cytokines, chemokines, and interferons that activate the rest of the immune system to combat infection (Shapouri-Moghaddam et al., 2018)” (page 4, lines 49-52).

      Line 53: The authors state that after birth the primary source of new macrophages come from differentiation of monocytes. However, some tissue resident macrophages are self-renewing.

      We apologize for this oversight and have adjusted the text to say: “After birth, the primary source of new macrophages comes from the differentiation of monocytes, which can be recruited to tissues throughout life. However, some tissue resident macrophages can self-renew, including those from the pleural and peritoneal cavities (Röszer, 2018)” (page 4, lines 53-56).

      Line 123: "spermatogenial" should be "spermatogonial"

      We have updated the text accordingly (page 6, line 130).

      Reviewer #3 (Significance (Required)):

      Significance: • General assessment: The study provides a novel and comprehensive analysis of sex-dimorphic gene expression in macrophages, with key findings that emphasize the importance of ECM remodeling in female macrophages. The strengths include the broad dataset inclusion, rigorous quality control, and methodological rigor. However, consideration of potential confounding variables (e.g., age, strain) should be included and validation of key results would strengthen the manuscript. • Advance: This study advances knowledge by analyzing sex differences across multiple macrophage niches rather than focusing on a single tissue type. It extends findings from previous immune studies. • Audience: This report would be of interest to immunologists and researchers studying sex differences. Expertise: Immunology, sex differences in disease, macrophage biology, transcriptomics, and inflammation research.

      We thank the reviewer for their positive comments on the impact of our work and for their useful feedback.

      __ __


      References

      Alswat, K. A. (2017). Gender Disparities in Osteoporosis. J Clin Med Res, 9(5), 382-387. https://doi.org/10.14740/jocmr2970w

      Amend, S. R., Valkenburg, K. C., & Pienta, K. J. (2016). Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation. J Vis Exp(110). https://doi.org/10.3791/53936

      Balakrishnan, M., Patel, P., Dunn-Valadez, S., Dao, C., Khan, V., Ali, H., El-Serag, L., Hernaez, R., Sisson, A., Thrift, A. P., Liu, Y., El-Serag, H. B., & Kanwal, F. (2021). Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol, 19(1), 61-71.e15. https://doi.org/10.1016/j.cgh.2020.04.067

      Bloomer, L. D., Nelson, C. P., Eales, J., Denniff, M., Christofidou, P., Debiec, R., Moore, J., Zukowska-Szczechowska, E., Goodall, A. H., Thompson, J., Samani, N. J., Charchar, F. J., & Tomaszewski, M. (2013). Male-specific region of the Y chromosome and cardiovascular risk: phylogenetic analysis and gene expression studies. Arterioscler Thromb Vasc Biol, 33(7), 1722-1727. https://doi.org/10.1161/atvbaha.113.301608

      Chen, K., Jiao, Y., Liu, L., Huang, M., He, C., He, W., Hou, J., Yang, M., Luo, X., & Li, C. (2020). Communications Between Bone Marrow Macrophages and Bone Cells in Bone Remodeling. Front Cell Dev Biol, 8, 598263. https://doi.org/10.3389/fcell.2020.598263

      Cox, N., Pokrovskii, M., Vicario, R., & Geissmann, F. (2021). Origins, Biology, and Diseases of Tissue Macrophages. Annu Rev Immunol, 39, 313-344. https://doi.org/10.1146/annurev-immunol-093019-111748

      Gosselin, D., Link, V. M., Romanoski, C. E., Fonseca, G. J., Eichenfield, D. Z., Spann, N. J., Stender, J. D., Chun, H. B., Garner, H., Geissmann, F., & Glass, C. K. (2014). Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell, 159(6), 1327-1340. https://doi.org/10.1016/j.cell.2014.11.023

      Hamlin, R. E., Pienkos, S. M., Chan, L., Stabile, M. A., Pinedo, K., Rao, M., Grant, P., Bonilla, H., Holubar, M., Singh, U., Jacobson, K. B., Jagannathan, P., Maldonado, Y., Holmes, S. P., Subramanian, A., & Blish, C. A. (2024). Sex differences and immune correlates of Long Covid development, symptom persistence, and resolution. Sci Transl Med, 16(773), eadr1032. https://doi.org/10.1126/scitranslmed.adr1032

      Harness-Brumley, C. L., Elliott, A. C., Rosenbluth, D. B., Raghavan, D., & Jain, R. (2014). Gender differences in outcomes of patients with cystic fibrosis. J Womens Health (Larchmt), 23(12), 1012-1020. https://doi.org/10.1089/jwh.2014.4985

      Hou, P., Fang, J., Liu, Z., Shi, Y., Agostini, M., Bernassola, F., Bove, P., Candi, E., Rovella, V., Sica, G., Sun, Q., Wang, Y., Scimeca, M., Federici, M., Mauriello, A., & Melino, G. (2023). Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis, 14(10), 691. https://doi.org/10.1038/s41419-023-06206-z

      Lavin, Y., Winter, D., Blecher-Gonen, R., David, E., Keren-Shaul, H., Merad, M., Jung, S., & Amit, I. (2014). Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell, 159(6), 1312-1326. https://doi.org/10.1016/j.cell.2014.11.018

      Li, M., Yang, Y., Xiong, L., Jiang, P., Wang, J., & Li, C. (2023). Metabolism, metabolites, and macrophages in cancer. J Hematol Oncol, 16(1), 80. https://doi.org/10.1186/s13045-023-01478-6

      Mammana, S., Fagone, P., Cavalli, E., Basile, M. S., Petralia, M. C., Nicoletti, F., Bramanti, P., & Mazzon, E. (2018). The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets. Int J Mol Sci, 19(3). https://doi.org/10.3390/ijms19030831

      Meester, I., Manilla-Muñoz, E., León-Cachón, R. B. R., Paniagua-Frausto, G. A., Carrión-Alvarez, D., Ruiz-Rodríguez, C. O., Rodríguez-Rangel, X., & García-Martínez, J. M. (2020). SeXY chromosomes and the immune system: reflections after a comparative study. Biol Sex Differ, 11(1), 3. https://doi.org/10.1186/s13293-019-0278-y

      Rønø, B., Engelholm, L. H., Lund, L. R., & Hald, A. (2013). Gender affects skin wound healing in plasminogen deficient mice. PLoS One, 8(3), e59942. https://doi.org/10.1371/journal.pone.0059942

      Röszer, T. (2018). Understanding the Biology of Self-Renewing Macrophages. Cells, 7(8). https://doi.org/10.3390/cells7080103

      Scotland, R. S., Stables, M. J., Madalli, S., Watson, P., & Gilroy, D. W. (2011). Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. Blood, 118(22), 5918-5927. https://doi.org/10.1182/blood-2011-03-340281

      Shapouri-Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S. A., Mardani, F., Seifi, B., Mohammadi, A., Afshari, J. T., & Sahebkar, A. (2018). Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol, 233(9), 6425-6440. https://doi.org/10.1002/jcp.26429

      Wang, X., Iyer, A., Lyons, A. B., Körner, H., & Wei, W. (2019). Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Front Immunol, 10, 2031. https://doi.org/10.3389/fimmu.2019.02031

    1. Author response:

      The following is the authors’ response to the original reviews.

      General responses:

      The authors sincerely thank all the reviewers for their valuable and constructive comments. We also apologize for the long delay in providing this rebuttal due to logistical and funding challenges. In this revision, we modified the bipolar gradients from one single direction to all three directions. Additionally, in response to the concerns regarding data reliability, we conducted a thorough examination of each step in our data processing pipeline. In the original processing workflow, the projection-onto-convex-set (POCS) method was used for partial Fourier reconstruction. Upon examination, we found that applying the POCS method after parallel image reconstruction significantly altered the signal and resulted in considerable loss of functional feature. Futhermore, the original scan protocol employed a TE of 46 ms, which is notably longer than the typical TE of 33 ms. A prolonged TE can increase the ratio of extravascular to intravascular contributions. Importantly, the impact of TE on the efficacy of phase regression remains unclear, introducing potential confounding effects. To address these issues, we revised the protocol by shortening the TE from 46 ms to 39 ms. This adjustment was achieved by modifying the SMS factor to 3 and the in-plane acceleration rate to 3, thereby minimizing the confounding effects associated with an extended TE.

      Following these changes, we recollected task-based fMRI data (N=4) and resting-state fMRI data (N=14) under the updated protocol. Using the revised dataset, we validated layer-specific functional connectivity (FC) through seed-based analyses. These analyses revealed distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with statistically significant inter-layer differences. Furthermore, additional analyses with a seed in the primary sensory cortex (S1) corroborated the robustness and reliability of the revised methodology. We also changed the ‘directed’ functional connectivity in the title to ‘layer-specific’ functional connectivity, as drawing conclusions about directionality requires auxiliary evidence beyond the scope of this study.

      We provide detailed responses to the reviewers’ comments below.

      Reviewer #1 (Public Review):

      Summary:

      (1)   This study aims to provide imaging methods for users of the field of human layer-fMRI. This is an emerging field with 240 papers published so far. Different than implied in the manuscript, 3T is well represented among those papers. E.g. see the papers below that are not cited in the manuscript. Thus, the claim on the impact of developing 3T methodology for wider dissemination is not justified. Specifically, because some of the previous papers perform whole brain layer-fMRI (also at 3T) in more efficient, and more established procedures.

      3T layer-fMRI papers that are not cited:

      Taso, M., Munsch, F., Zhao, L., Alsop, D.C., 2021. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). Journal of Cerebral Blood Flow and Metabolism. https://doi.org/10.1177/0271678X20982382

      Wu, P.Y., Chu, Y.H., Lin, J.F.L., Kuo, W.J., Lin, F.H., 2018. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Scientific Reports 8, 1-14. https://doi.org/10.1038/s41598-018-31292-x

      Lifshits, S., Tomer, O., Shamir, I., Barazany, D., Tsarfaty, G., Rosset, S., Assaf, Y., 2018. Resolution considerations in imaging of the cortical layers. NeuroImage 164, 112-120. https://doi.org/10.1016/j.neuroimage.2017.02.086

      Puckett, A.M., Aquino, K.M., Robinson, P.A., Breakspear, M., Schira, M.M., 2016. The spatiotemporal hemodynamic response function for depth-dependent functional imaging of human cortex. NeuroImage 139, 240-248. https://doi.org/10.1016/j.neuroimage.2016.06.019

      Olman, C.A., Inati, S., Heeger, D.J., 2007. The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. NeuroImage 34, 1126-1135. https://doi.org/10.1016/j.neuroimage.2006.08.045

      Ress, D., Glover, G.H., Liu, J., Wandell, B., 2007. Laminar profiles of functional activity in the human brain. NeuroImage 34, 74-84. https://doi.org/10.1016/j.neuroimage.2006.08.020

      Huber, L., Kronbichler, L., Stirnberg, R., Ehses, P., Stocker, T., Fernández-Cabello, S., Poser, B.A., Kronbichler, M., 2023. Evaluating the capabilities and challenges of layer-fMRI VASO at 3T. Aperture Neuro 3. https://doi.org/10.52294/001c.85117

      Scheeringa, R., Bonnefond, M., van Mourik, T., Jensen, O., Norris, D.G., Koopmans, P.J., 2022. Relating neural oscillations to laminar fMRI connectivity in visual cortex. Cerebral Cortex. https://doi.org/10.1093/cercor/bhac154

      We thank the reviewer for listing out 8 papers related to 3T layer-fMRI papers. The primary goal of our work is to develop a methodology for brain-wide, layer-dependent resting-state functional connectivity at 3T. Upon review of the cited papers, we found that:

      (1) One study (Lifshits et al.) was not an fMRI study.

      (2) One study (Olman et al.) was conducted at 7T, not 3T.

      (3) Two studies (Taso et al. and Wu et al.) employed relatively large voxel sizes (1.6 × 2.3 × 5 mm³ and 1.5 mm isotropic, respectively), which limits layer specificity.

      (4) Only one of the listed studies (Huber et al., Aperture Neuro 2023) provides coverage of more than half of the brain.

      While each of these studies offers valuable insights, the VASO study by Huber et al. is the most relevant to our work, given its brain-wide coverage. However, the VASO method employs a relatively long TR (14.137 s), which may not be optimal for resting-state functional connectivity analyses.

      To address these limitations, our proposed method achieves submillimeter resolution, layer specificity, brain-wide coverage, and a significantly shorter TR (<5 s) altogether. We believe this advancement provides a meaningful contribution to the field, enabling broader applicability of layer-fMRI at 3T.

      (2) The authors implemented a sequence with lots of nice features. Including their own SMS EPI, diffusion bipolar pulses, eye-saturation bands, and they built their own reconstruction around it. This is not trivial. Only a few labs around the world have this level of engineering expertise. I applaud this technical achievement. However, I doubt that any of this is the right tool for layer-fMRI, nor does it represent an advancement for the field. In the thermal noise dominated regime of sub-millimeter fMRI (especially at 3T), it is established to use 3D readouts over 2D (SMS) readouts. While it is not trivial to implement SMS, the vendor implementations (as well as the CMRR and MGH implementations) are most widely applied across the majority of current fMRI studies already. The author's work on this does not serve any previous shortcomings in the field.

      We would like to thank the reviewer for their comments and the recognition of the technical efforts in implementing our sequence. We would like to address the points raised:

      (1) We completely agree that in-house implementation of existing techniques does not constitute an advancement for the field. We did not claim otherwise in the manuscript. Our focus was on the development of a method for brain-wide, layer-dependent resting-state functional connectivity at 3T, as mentioned in the response above.

      (2) The reviewer stated that "it is established to use 3D readouts over 2D (SMS) readouts". This is a strong claim, and we believe it requires robust evidence to support it. While it is true that 3D readouts can achieve higher tSNR in certain regions, such as the central brain, as shown in the study by Vizioli et al. (ISMRM 2020 abstract; https://cds.ismrm.org/protected/20MProceedings/PDFfiles/3825.html?utm_source=chatgpt.com ), higher tSNR does not necessarily equate to improved detection power in fMRI studies. For instance, Le Ster et al. (PLOS ONE, 2019; https://doi.org/10.1371/journal.pone.0225286 ). demonstrated that while 3D EPI had higher tSNR in the central brain, SMS EPI produced higher t-scores in activation maps.

      (3) When choosing between SMS EPI and 3D EPI, multiple factors should be taken into account, not just tSNR. For example, SMS EPI and 3D EPI differ in their sensitivity to motion and the complexity of motion correction. The choice between them depends on the specific research goals and practical constraints.

      (4) We are open to different readout strategies, provided they can be demonstrated suitable to the research goals. In this study, we opted for 2D SMS primarily due to logistical considerations. This choice does not preclude the potential use of 3D readouts in the future if they are deemed more appropriate for the project objectives.

      The mechanism to use bi-polar gradients to increase the localization specificity is doubtful to me. In my understanding, killing the intra-vascular BOLD should make it less specific. Also, the empirical data do not suggest a higher localization specificity to me.

      We will elaborate the mechanism and reasoning in the later responses.

      Embedding this work in the literature of previous methods is incomplete. Recent trends of vessel signal manipulation with ABC or VAPER are not mentioned. Comparisons with VASO are outdated and incorrect.

      The reproducibility of the methods and the result is doubtful (see below).

      In this revision, we updated the scan protocol and recollected the imaging data. Detailed explanations and revised results are provided in the later responses.

      I don't think that this manuscript is in the top 50% of the 240 layer-fmri papers out there.

      We respect the reviewer’s personal opinion. However, we can only address scientific comments or critiques.

      Strengths:

      See above. The authors developed their own SMS sequence with many features. This is important to the field. And does not leave sequence development work to view isolated monopoly labs. This work democratises SMS.

      The questions addressed here are of high relevance to the field: getting tools with good sensitivity, user-friendly applicability, and locally specific brain activity mapping is an important topic in the field of layer-fMRI.

      Weaknesses:

      (1) I feel the authors need to justify why flow-crushing helps localization specificity. There is an entire family of recent papers that aim to achieve higher localization specificity by doing the exact opposite. Namely, MT or ABC fRMRI aims to increase the localization specificity by highlighting the intravascular BOLD by means of suppressing non-flowing tissue. To name a few:

      Priovoulos, N., de Oliveira, I.A.F., Poser, B.A., Norris, D.G., van der Zwaag, W., 2023. Combining arterial blood contrast with BOLD increases fMRI intracortical contrast. Human Brain Mapping hbm.26227. https://doi.org/10.1002/hbm.26227.

      Pfaffenrot, V., Koopmans, P.J., 2022. Magnetization Transfer weighted laminar fMRI with multi-echo FLASH. NeuroImage 119725. https://doi.org/10.1016/j.neuroimage.2022.119725

      Schulz, J., Fazal, Z., Metere, R., Marques, J.P., Norris, D.G., 2020. Arterial blood contrast ( ABC ) enabled by magnetization transfer ( MT ): a novel MRI technique for enhancing the measurement of brain activation changes. bioRxiv. https://doi.org/10.1101/2020.05.20.106666

      Based on this literature, it seems that the proposed method will make the vein problem worse, not better. The authors could make it clearer how they reason that making GE-BOLD signals more extra-vascular weighted should help to reduce large vein effects.

      The proposed VN fMRI method employs VN gradients to selectively suppress signals from fast-flowing blood in large vessels. Although this approach may initially appear to diverge from the principles of CBV-based techniques (Chai et al., 2020; Huber et al., 2017a; Pfaffenrot and Koopmans, 2022; Priovoulos et al., 2023), which enhance sensitivity to vascular changes in arterioles, capillaries, and venules while attenuating signals from static tissue and large veins, it aligns with the fundamental objective of all layer-specific fMRI methods. Specifically, these approaches aim to maximize spatial specificity by preserving signals proximal to neural activation sites and minimizing contributions from distal sources, irrespective of whether the signals are intra- or extra-vascular in origin. In the context of intravascular signals, CBV-based methods preferentially enhance sensitivity to functional changes in small vessels (proximal components) while demonstrating reduced sensitivity to functional changes in large vessels (distal components). For extravascular signals, functional changes are a mixture of proximal and distal influences. While tissue oxygenation near neural activation sites represents a proximal contribution, extravascular signal contamination from large pial veins reflects distal effects that are spatially remote from the site of neuronal activity. CBV-based techniques mitigate this challenge by unselectively suppressing signals from static tissues, thereby highlighting contributions from small vessels. In contrast, the VN fMRI method employs a targeted suppression strategy, selectively attenuating signals from large vessels (distal components) while preserving those from small vessels (proximal components). Furthermore, the use of a 3T scanner and the inclusion of phase regression in the VN approach mitigates contamination from large pial veins (distal components) while preserving signals reflecting local tissue oxygenation (proximal components). By integrating these mechanisms, VN fMRI improves spatial specificity, minimizing both intravascular and extravascular contributions that are distal to neuronal activation sites. We have incorporated the responses into Discussion section.

      The empirical evidence for the claim that flow crushing helps with the localization specificity should be made clearer. The response magnitude with and without flow crushing looks pretty much identical to me (see Fig, 6d).

      In the new results in Figure 4, the application of VN gradients attenuated the bias towards pial surface. Consistent with the results in Figure 4, Figure 5 also demonstrated the suppression of macrovascular signal by VN gradients.

      It's unclear to me what to look for in Fig. 5. I cannot discern any layer patterns in these maps. It's too noisy. The two maps of TE=43ms look like identical copies from each other. Maybe an editorial error?

      In this revision, the original Figure 5 has been removed. However, we would like to clarify that the two maps with TE = 43 ms in the original Figure 5 were not identical. This can be observed in the difference map provided in the right panel of the figure.

      The authors discuss bipolar crushing with respect to SE-BOLD where it has been previously applied. For SE-BOLD at UHF, a substantial portion of the vein signal comes from the intravascular compartment. So I agree that for SE-BOLD, it makes sense to crush the intravascular signal. For GE-BOLD however, this reasoning does not hold. For GE-BOLD (even at 3T), most of the vein signal comes from extravascular dephasing around large unspecific veins, and the bipolar crushing is not expected to help with this.

      The reviewer’s statement that "most of the vein signal comes from extravascular dephasing around large unspecific veins" may hold true for 7T. However, at 3T, the susceptibility-induced Larmor frequency shift is reduced by 57%, and the extravascular contribution decreases by more than 35%, as shown by Uludağ et al. 2009 ( DOI: 10.1016/j.neuroimage.2009.05.051 ).

      Additionally, according to the biophysical models (Ogawa et al., 1993; doi: 10.1016/S0006-3495(93)81441-3 ), the extravascular contamination from the pial surface is inversely proportional to the square of the distance from vessel. For a vessel diameter of 0.3 mm and an isotropic voxel size of 0.9 mm, the induced frequency shift is reduced by at least 36-fold at the next voxel. Notably, a vessel diameter of 0.3 mm is larger than most pial vessels. Theoretically, the extravascular effect contributes minimally to inter-layer dependency, particularly at 3T compared to 7T due to weaker susceptibility-related effects at lower field strengths. Empirically, as shown in Figure 7c, the results at M1 demonstrated that layer specificity can be achieved statistically with the application of VN gradients. We have incorporated this explanation into the Introduction and Discussion sections of the manuscript.

      (2) The bipolar crushing is limited to one single direction of flow. This introduces a lot of artificial variance across the cortical folding pattern. This is not mentioned in the manuscript. There is an entire family of papers that perform layer-fmri with black-blood imaging that solves this with a 3D contrast preparation (VAPER) that is applied across a longer time period, thus killing the blood signal while it flows across all directions of the vascular tree. Here, the signal cruising is happening with a 2D readout as a "snap-shot" crushing. This does not allow the blood to flow in multiple directions.

      VAPER also accounts for BOLD contaminations of larger draining veins by means of a tag-control sampling. The proposed approach here does not account for this contamination.

      Chai, Y., Li, L., Huber, L., Poser, B.A., Bandettini, P.A., 2020. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage 207, 116358. https://doi.org/10.1016/j.neuroimage.2019.116358

      Chai, Y., Liu, T.T., Marrett, S., Li, L., Khojandi, A., Handwerker, D.A., Alink, A., Muckli, L., Bandettini, P.A., 2021. Topographical and laminar distribution of audiovisual processing within human planum temporale. Progress in Neurobiology 102121. https://doi.org/10.1016/j.pneurobio.2021.102121

      If I would recommend anyone to perform layer-fMRI with blood crushing, it seems that VAPER is the superior approach. The authors could make it clearer why users might want to use the unidirectional crushing instead.

      We understand the reviewer’s concern regarding the directional limitation of bipolar crushing. As noted in the responses above, we have updated the bipolar gradient to include three orthogonal directions instead of a single direction. Furthermore, flow-related signal suppression does not necessarily require a longer time period. Bipolar diffusion gradients have been effectively used to nullify signals from fast-flowing blood, as demonstrated by Boxerman et al. (1995; DOI: 10.1002/mrm.1910340103). Their study showed that vessels with flow velocities producing phase changes greater than p radians due to bipolar gradients experience significant signal attenuation. The critical velocity for such attenuation can be calculated using the formula: 1/(2gGDd) where g is the gyromagnetic ratio, G is the gradient strength, d is the gradient pulse width and D is the time between the two bipolar gradient pulses. In the framework of Boxerman et al. at 1.5T, the critical velocity for b value of 10 s/mm<sup>2</sup> is ~8 mm/s, resulting in a ~30% reduction in functional signal. In our 3T study, b values of 6, 7, and 8 s/mm<sup>2</sup> correspond to critical velocities of 16.8, 15.2, and 13.9 mm/s, respectively. The flow velocities in capillaries and most venules remain well below these thresholds. Notably, in our VN fMRI sequences, bipolar gradients were applied in all three orthogonal directions, whereas in Boxerman et al.'s study, the gradients were applied only in the z-direction. Given the voxel dimensions of 3 × 3 × 7 mm<sup>3</sup> in the 1.5T study, vessels within a large voxel are likely oriented in multiple directions, meaning that only a subset of fast-flowing signals would be attenuated. Therefore, our approach is expected to induce greater signal reduction, even at the same b values as those used in Boxerman et al.'s study. We have incorporated this text into the Discussion section of the manuscript.

      (3) The comparison with VASO is misleading.

      The authors claim that previous VASO approaches were limited by TRs of 8.2s. The authors might be advised to check the latest literature of the last years.

      Koiso et al. performed whole brain layer-fMRI VASO at 0.8mm at 3.9 seconds (with reliable activation), 2.7 seconds (with unconvincing activation pattern, though), and 2.3 (without activation).

      Also, whole brain layer-fMRI BOLD at 0.5mm and 0.7mm has been previously performed by the Juelich group at TRs of 3.5s (their TR definition is 'fishy' though).

      Koiso, K., Müller, A.K., Akamatsu, K., Dresbach, S., Gulban, O.F., Goebel, R., Miyawaki, Y., Poser, B.A., Huber, L., 2023. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. Aperture Neuro 34. https://doi.org/10.1101/2022.08.19.504502

      Yun, S.D., Pais‐Roldán, P., Palomero‐Gallagher, N., Shah, N.J., 2022. Mapping of whole‐cerebrum resting‐state networks using ultra‐high resolution acquisition protocols. Human Brain Mapping. https://doi.org/10.1002/hbm.25855

      Pais-Roldan, P., Yun, S.D., Palomero-Gallagher, N., Shah, N.J., 2023. Cortical depth-dependent human fMRI of resting-state networks using EPIK. Front. Neurosci. 17, 1151544. https://doi.org/10.3389/fnins.2023.1151544

      We thank the reviewer for providing these references. While the protocol with a TR of 3.9 seconds in Koiso’s work demonstrated reasonable activation patterns, it was not tested for layer specificity. Given that higher acceleration factors (AF) can cause spatial blurring, a protocol should only be eligible for comparison if layer specificity is demonstrated.

      Secondly, the TRs reported in Koiso’s study pertain only to either the VASO or BOLD acquisition, not the combined CBV-based contrast. To generate CBV-based images, both VASO and BOLD data are required, effectively doubling the TR. For instance, if the protocol with a TR of 3.9 seconds is used, the effective TR becomes approximately 8 seconds. The stable protocol used by Koiso et al. to acquire whole-brain data (94.08 mm along the z-axis) required 5.2 seconds for VASO and 5.1 seconds for BOLD, resulting in an effective TR of 10.3 seconds. The spatial resolution achieved was 0.84 mm isotropic.

      Unfortunately, we could not find the Juelich paper mentioned by the reviewer.

      To have a more comprehensive comparison, we collated relevant literature on brain-wide layer-specific fMRI. We defined brain-wide acquisition as imaging protocols that cover more than half of the human brain, specifically exceeding 55 mm along the superior-inferior axis. We identified five studies and summarized their scan parameters, including effective TR, coverage, and spatial resolution, in Table 1.

      The authors are correct that VASO is not advised as a turn-key method for lower brain areas, incl. Hippocampus and subcortex. However, the authors use this word of caution that is intended for inexperienced "users" as a statement that this cannot be performed. This statement is taken out of context. This statement is not from the academic literature. It's advice for the 40+ user base that wants to perform layer-fMRI as a plug-and-play routine tool in neuroscience usage. In fact, sub-millimeter VASO is routinely being performed by MRI-physicists across all brain areas (including deep brain structures, hippocampus etc). E.g. see Koiso et al. and an overview lecture from a layer-fMRI workshop that I had recently attended: https://youtu.be/kzh-nWXd54s?si=hoIJjLLIxFUJ4g20&t=2401

      In this revision, we decided to focus on cortico-cortical functional connectivity and have removed the LGN-related content. Consequently, the text mentioned by the reviewer was also removed. Nevertheless, we apologize if our original description gave the impression that functional mapping of deep brain regions using VASO is not feasible. The word of caution we used is based on the layer-fMRI blog ( https://layerfmri.com/2021/02/22/vaso_ve/ ) and reflects the challenges associated with this technique, as outlined by experts like Dr. Huber and Dr. Strinberg.

      According to the information provided, including the video, functional mapping of the hippocampus and amygdala using VASO is indeed possible but remains technically challenging. The short arterial arrival times in these deep brain regions can complicate the acquisition, requiring RF inversion pulses to cover a wider area at the base of the brain. For example, as of 2023, four or more research groups were attempting to implement layer-fMRI VASO in the hippocampus. One such study at 3T required multiple inversion times to account for inflow effects, highlighting the technical complexity of these applications. This is the context in which we used the word of caution. We are not sure whether recent advancements like MAGEC VASO have improved its applicability. As of 2024, we have not identified any published VASO studies specifically targeting deep brain structures such as the hippocampus or amygdala. Therefore, it is difficult to conclude that “sub-millimeter VASO is routinely being performed by MRI physicists on deep brain structures such as the hippocampus.”

      Thus, the authors could embed this phrasing into the context of their own method that they are proposing in the manuscript. E.g. the authors could state whether they think that their sequence has the potential to be disseminated across sites, considering that it requires slow offline reconstruction in Matlab?

      We are enthusiastic about sharing our imaging sequence, provided its usefulness is conclusively established. However, it's important to note that without an online reconstruction capability, such as the ICE, the practical utility of the sequence may be limited. Unfortunately, we currently don’t have the manpower to implement the online reconstruction. Nevertheless, we are more than willing to share the offline reconstruction codes upon request.

      Do the authors think that the results shown in Fig. 6c are suggesting turn-key acquisition of a routine mapping tool? In my humble opinion, it looks like random noise, with most of the activation outside the ROI (in white matter).

      As we mentioned in the ‘general response’ in the beginning of the rebuttal, the POCS method for partial Fourier reconstruction caused the loss of functional feature, potentially accounting for the activation in white matter. In this revision, we have modified the pulse sequence, scan protocol and processing pipelines.

      According to the results in Figure 4, stable activation in M1 was observed at the single-subject level across most scan protocols. Yet, the layer-dependent activation profiles in M1 were spatially unstable, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to various factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Furthermore, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons between protocols, leaving residual artifacts unaddressed. Inconsistency in performing the button-pressing task across sessions may also have contributed to the observed variability. These results suggest that submillimeter-resolution fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping, unless group-level statistics are incorporated to enhance robustness. We have incorporated this text into the Limitation section of the manuscript.

      (4) The repeatability of the results is questionable.

      The authors perform experiments about the robustness of the method (line 620). The corresponding results are not suggesting any robustness to me. In fact, the layer profiles in Fig. 4c vs. Fig 4d are completely opposite. The location of peaks turns into locations of dips and vice versa.

      The methods are not described in enough detail to reproduce these results.

      The authors mention that their image reconstruction is done "using in-house MATLAB code" (line 634). They do not post a link to github, nor do they say if they share this code.

      We thank the reviewer for the comments regarding reproducibility and data sharing. In response, we have revised the Methods section and elaborated on the technical details to improve clarity and reproducibility.

      Regarding code sharing, we acknowledge that the current in-house MATLAB reconstruction code requires further refinement to improve its readability and usability. Due to limited manpower, we have not yet been able to complete this task. However, we are committed to making the code publicly available and will upload it to GitHub as soon as the necessary resources are available.

      For data sharing, we face logistical challenges due to the large size of the dataset, which spans tens of terabytes. Platforms like OpenNeuro, for example, typically support datasets up to 10TB, making it difficult to share the data in its entirety. Despite this limitation, we are more than willing to share offline reconstruction codes and raw data upon request to facilitate reproducibility.

      Regarding data robustness, we kindly refer the reviewer to our response to the previous comment, where we addressed these concerns in greater detail.

      It is not trivial to get good phase data for fMRI. The authors do not mention how they perform the respective coil-combination.

      No data are shared for reproduction of the analysis.

      Obtaining phase data is relatively straightforward when the images are retrieved directly from raw data. For coil combination, we employed the adaptive coil combination approach described by (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g ) The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab .

      (5) The application of NODRIC is not validated.

      Previous applications of NORDIC at 3T layer-fMRI have resulted in mixed success. When not adjusted for the right SNR regime it can result in artifactual reductions of beta scores, depending on the SNR across layers. The authors could validate their application of NORDIC and confirm that the average layer-profiles are unaffected by the application of NORDIC. Also, the NORDIC version should be explicitly mentioned in the manuscript.

      Akbari, A., Gati, J.S., Zeman, P., Liem, B., Menon, R.S., 2023. Layer Dependence of Monocular and Binocular Responses in Human Ocular Dominance Columns at 7T using VASO and BOLD (preprint). Neuroscience. https://doi.org/10.1101/2023.04.06.535924

      Knudsen, L., Guo, F., Huang, J., Blicher, J.U., Lund, T.E., Zhou, Y., Zhang, P., Yang, Y., 2023. The laminar pattern of proprioceptive activation in human primary motor cortex. bioRxiv. https://doi.org/10.1101/2023.10.29.564658

      We appreciate the reviewer’s suggestion. To validate the application of NORDIC denoising in our study, we compared the BOLD activation maps before and after denoising in the visual and motor cortices, as well as the depth-dependent activation profiles in M1. These results are presented in Figure 3. The activation patterns in the denoised maps were consistent with those in the non-denoised maps but exhibited higher statistical significance. Notably, BOLD activation within M1 was only observed after NORDIC denoising, underscoring the necessity of this approach. Figure 3c shows the depth-dependent activation profiles in M1, highlighted by the green contours in Figure 3b. Both denoised and non-denoised profiles followed similar trends; however, as expected, the non-denoised profile exhibited larger confidence intervals compared to the NORDIC-denoised profile. These results confirm that NORDIC denoising enhances sensitivity without introducing distortions in the functional signal. The corresponding text has been incorporated into the Results section.

      Regarding the implementation details of NORDIC denoising, the reconstructed images were denoised using a g-factor map (function name: NIFTI_NORDIC). The g-factor map was estimated from the image time series, and the input images were complex-valued. The width of the smoothing filter for the phase was set to 10, while all other hyperparameters were retained at their default values. This information has been integrated into the Methods section for clarity and reproducibility.

      Reviewer #2 (Public Review):

      This study developed a setup for laminar fMRI at 3T that aimed to get the best from all worlds in terms of brain coverage, temporal resolution, sensitivity to detect functional responses, and spatial specificity. They used a gradient-echo EPI readout to facilitate sensitivity, brain coverage and temporal resolution. The former was additionally boosted by NORDIC denoising and the latter two were further supported by parallel-imaging acceleration both in-plane and across slices. The authors evaluated whether the implementation of velocity-nulling (VN) gradients could mitigate macrovascular bias, known to hamper the laminar specificity of gradient-echo BOLD.

      The setup allows for 0.9 mm isotropic acquisitions with large coverage at a reasonable TR (at least for block designs) and the fMRI results presented here were acquired within practical scan-times of 12-18 minutes. Also, in terms of the availability of the method, it is favorable that it benefits from lower field strength (additional time for VN-gradient implementation, afforded by longer gray matter T2*).

      The well-known double peak feature in M1 during finger tapping was used as a test-bed to evaluate the spatial specificity. They were indeed able to demonstrate two distinct peaks in group-level laminar profiles extracted from M1 during finger tapping, which was largely free from superficial bias. This is rather intriguing as, even at 7T, clear peaks are usually only seen with spatially specific non-BOLD sequences. This is in line with their simple simulations, which nicely illustrated that, in theory, intravascular macrovascular signals should be suppressible with only minimal suppression of microvasculature when small b-values of the VN gradients are employed. However, the authors do not state how ROIs were defined making the validity of this finding unclear; were they defined from independent criteria or were they selected based on the region mostly expressing the double peak, which would clearly be circular? In any case, results are based on a very small sub-region of M1 in a single slice - it would be useful to see the generalizability of superficial-bias-free BOLD responses across a larger portion of M1.

      We appreciate and understand the reviewer’s concerns. Given the small size of the hand knob region within M1 and its intersubject variability in location, defining this region automatically remains challenging. However, we applied specific criteria to minimize bias during the delineation of M1: 1) the hand knob region was required to be anatomically located in the precentral sulcus or gyrus; 2) it needed to exhibit consistent BOLD activation across the majority of testing conditions; and 3) the region was expected to show BOLD activation in the deep cortical layers under the condition of b = 0 and TE = 30 ms. Once the boundaries across cortical depth were defined, the gray matter boundaries of hand knob region were delineated based on the T1-weighted anatomical image and the cortical ribbon mask but excluded the BOLD activation map to minimize potential bias in manual delineation. Based on the new criteria, the resulting depth-dependent profiles, as shown in Figure 4, are no longer superficial-bias-free.

      As repeatedly mentioned by the authors, a laminar fMRI setup must demonstrate adequate functional sensitivity to detect (in this case) BOLD responses. The sensitivity evaluation is unfortunately quite weak. It is mainly based on the argument that significant activation was found in a challenging sub-cortical region (LGN). However, it was a single participant, the activation map was not very convincing, and the demonstration of significant activation after considerable voxel-averaging is inadequate evidence to claim sufficient BOLD sensitivity. How well sensitivity is retained in the presence of VN gradients, high acceleration factors, etc., is therefore unclear. The ability of the setup to obtain meaningful functional connectivity results is reassuring, yet, more elaborate comparison with e.g., the conventional BOLD setup (no VN gradients) is warranted, for example by comparison of tSNR, quantification and comparison of CNR, illustration of unmasked-full-slice activation maps to compare noise-levels, comparison of the across-trial variance in each subject, etc. Furthermore, as NORDIC appears to be a cornerstone to enable submillimeter resolution in this setup at 3T, it is critical to evaluate its impact on the data through comparison with non-denoised data, which is currently lacking.

      We appreciate the reviewer’s comments and acknowledge that the LGN results from a single participant were not sufficiently convincing. In this revision, we have removed the LGN-related results and focused on cortico-cortical FC. To evaluate data quality, we opted to present BOLD activation maps rather than tSNR, as high tSNR does not necessarily translate to high functional significance. In Figure 3, we illustrate the effect of NORDIC denoising, including activation maps and depth-dependent profiles. Figure 4 presents activation maps acquired under different TE and b values, demonstrating that VN gradients effectively reduce the bias toward the pial surface without altering the overall activation patterns. The results in Figure 4 and Figure 5 provide evidence that VN gradients retain sensitivity while reducing superficial bias. The ability of the setup to obtain meaningful FC results was validated through seed-based analyses, identifying distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with significant inter-layer differences (see Figure 7). Further analyses with a seed in the primary sensory cortex (S1) demonstrated the reliability of the method (see Figure 8). For further details on the results, including the impact of VN gradients and NORDIC denoising, please refer to Figures 3 to 8 in the Results section.

      Additionally, we acknowledge the limitations of our current protocol for submillimeter-resolution fMRI at the individual level. We found that robust layer-dependent functional mapping often requires group-level statistics to enhance reliability. This issue has been discussed in detail in the Limitations section.

      The proposed setup might potentially be valuable to the field, which is continuously searching for techniques to achieve laminar specificity in gradient echo EPI acquisitions. Nonetheless, the above considerations need to be tackled to make a convincing case.

      Reviewer #3 (Public Review):

      Summary:

      The authors are looking for a spatially specific functional brain response to visualise non-invasively with 3T (clinical field strength) MRI. They propose a velocity-nulled weighting to remove the signal from draining veins in a submillimeter multiband acquisition.

      Strengths:

      - This manuscript addresses a real need in the cognitive neuroscience community interested in imaging responses in cortical layers in-vivo in humans.

      - An additional benefit is the proposed implementation at 3T, a widely available field strength.

      Weaknesses:

      - Although the VASO acquisition is discussed in the introduction section, the VN-sequence seems closer to diffusion-weighted functional MRI. The authors should make it more clear to the reader what the differences are, and how results are expected to differ. Generally, it is not so clear why the introduction is so focused on the VASO acquisition (which, curiously, lacks a reference to Lu et al 2013). There are many more alternatives to BOLD-weighted imaging for fMRI. CBF-weighted ASL and GRASE have been around for a while, ABC and double-SE have been proposed more recently.

      The major distinction between diffusion-weighted fMRI (DW-fMRI) and our methodology lies in the b-value employed. DW-fMRI typically measures cellular swelling using b-values greater than 1000 s/mm<sup>2</sup> (e.g., 1800 s/mm(sup>2</sup>). In contrast, our VN-fMRI approach measures hemodynamic responses by employing smaller b-values specifically designed to suppress signals from fast-flowing draining veins rather than detecting microstructural changes.

      Regarding other functional contrasts, we agree that more layer-dependent fMRI approaches should be mentioned. In this revision, we have expanded the Introduction section to include discussions of the double spin-echo approach and CBV-based methods, such as MT-weighted fMRI, VAPER, ABC, and CBF-based method ASL. Additionally, the reference to Lu et al. (2013) has been cited in the revised manuscript. The corresponding text has been incorporated into the Introduction section to provide a more comprehensive overview of alternative functional imaging techniques.

      - The comparison in Figure 2 for different b-values shows % signal changes. However, as the baseline signal changes dramatically with added diffusion weighting, this is rather uninformative. A plot of t-values against cortical depth would be much more insightful.

      - Surprisingly, the %-signal change for a b-value of 0 is not significantly different from 0 in the gray matter. This raises some doubts about the task or ROI definition. A finger-tapping task should reliably engage the primary motor cortex, even at 3T, and even in a single participant.

      - The BOLD weighted images in Figure 3 show a very clear double-peak pattern. This contradicts the results in Figure 2 and is unexpected given the existing literature on BOLD responses as a function of cortical depth.

      - Given that data from Figures 2, 3, and 4 are derived from a single participant each, order and attention affects might have dramatically affected the observed patterns. Especially for Figure 4, neither BOLD nor VN profiles are really different from 0, and without statistical values or inter-subject averaging, these cannot be used to draw conclusions from.

      We appreciate the reviewer’s suggestions. In this revision, we have made significant updates to the participant recruitment, scan protocol, data processing, and M1 delineation. Please refer to the "General Responses" at the beginning of the rebuttal and the first response to Reviewer #2 for more details.

      Previously, the variation in depth-dependent profiles was calculated across upscaled voxels within a specific layer. However, due to the small size of the hand knob region, the number of within-layer voxels was limited, resulting in inaccurate estimations of signal variation. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section. Furthermore, while the initial submission used percentage signal change for the profiles of M1, the dramatic baseline fluctuations observed previously are no longer an issue after the modifications. For this reason, we retained the use of percentage signal change to present the depth-dependent profiles. After these adjustments, the profiles exhibited a bias toward the pial surface, particularly in the absence of VN gradients.

      - In Figure 5, a phase regression is added to the data presented in Figure 4. However, for a phase regression to work, there has to be a (macrovascular) response to start with. As none of the responses in Figure 4 are significant for the single participant dataset, phase regression should probably not have been undertaken. In this case, the functional 'responses' appear to increase with phase regression, which is contra-intuitive and deserves an explanation.

      We agreed with reviewer’s argument. In the revised results, the issues mentioned by the reviewer are largely diminished. The updated analyses demonstrate that phase regression effectively reduces superficial bias, as shown in Figures 4 and 5.

      - Consistency of responses is indeed expected to increase by a removal of the more variable vascular component. However, the microvascular component is always expected to be smaller than the combination of microvascular + macrovascular responses. Note that the use of %signal changes may obscure this effect somewhat because of the modified baseline. Another expected feature of BOLD profiles containing both micro- and microvasculature is the draining towards the cortical surface. In the profiles shown in Figure 7, this is completely absent. In the group data, no significant responses to the task are shown anywhere in the cortical ribbon.

      We agreed with reviewer’s comments. In the revised manuscript, the results have been substantially updated to addressing the concerns raised. The original Figure 7 is no longer relevant and has been removed.

      - Although I'd like to applaud the authors for their ambition with the connectivity analysis, I feel that acquisitions that are so SNR starved as to fail to show a significant response to a motor task should not be used for brain wide directed connectivity analysis.

      We appreciate the reviewer’s comments and share the concern about SNR limitations. In the updated results presented in Figure 5, the activation patterns in the visual cortex were consistent across TEs and b values. At the motor cortex, stable activation in M1 was observed at the single-subject level across most scan protocols. However, the layer-dependent activation profiles in M1 exhibited spatial instability, irrespective of the application of VN gradients. This spatial instability is not entirely unexpected, as T2*-based contrast is inherently sensitive to factors that perturb the magnetic field, such as eye movements, respiration, and macrovascular signal fluctuations. Additionally, ICA-based artifact removal was intentionally omitted in Figure 4 to ensure fair comparisons across protocols, leaving some residual artifacts unaddressed. Variability in task performance during button-pressing sessions may have further contributed to the observed inconsistencies.

      Although these findings suggest that submillimeter-resolution fMRI may not yet be reliable for individual-level layer-dependent functional mapping, the group-level FC analyses can still yield robust results. In Figure 7, group-level statistics revealed distinct functional connectivity (FC) patterns associated with superficial and deep layers in M1. These FC maps exhibited significant differences between layers, demonstrating that VN fMRI enhances inter-layer independence. Additional FC analyses with a seed placed in S1 further validated these findings (see Figure 8).

      The claim of specificity is supported by the observation of the double-peak pattern in the motor cortex, previously shown in multiple non-BOLD studies. However, this same pattern is shown in some of the BOLD weighted data, which seems to suggest that the double-peak pattern is not solely due to the added velocity nulling gradients. In addition, the well-known draining towards the cortical surface is not replicated for the BOLD-weighted data in Figures 3, 4, or 7. This puts some doubt about the data actually having the SNR to draw conclusions about the observed patterns.

      We appreciate the reviewer’s comments. In the updated results, the efficacy of the VN gradients is evident near the pial surface, as shown in Figures 4 and 5. In Figure 4, comparing the second and third columns (b = 0 and b = 6 s/mm<sup>2</sup>, respectively, at TE = 38 ms), the percentage signal change in the superficial layers is generally lower with b = 6 s/mm<sup>2</sup> than with b = 0. This indicates that VN gradient-induced signal suppression is more pronounced in the superficial layers. Additionally, in Figure 5, the VN gradients effectively suppressed macrovascular signals as highlighted by the blue circles. These observations support the role of VN gradients in enhancing specificity by reducing superficial bias and macrovascular contamination. Furthermore, bias towards cortical surface was observed in the updated results in Figure 4.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) L141: "depth dependent" is slightly misleading here. It could be misunderstood to suggest that the authors are assessing how spatial specificity varies as a function of depth. Rather, they are assessing spatial specificity based on depth-dependent responses (double peak feature). Perhaps "layer-dependent spatial specificity" could be substituted with laminar specificity?

      We thank the reviewer for the suggestion. The term “depth dependent” has been replaced by “layer dependent” in the revised manuscript.

      (2) L146-149: these do not validate spatial specificity.

      The original text is removed.

      (3) L180: Maybe helpful to describe what the b-value is to assist unfamiliar readers.

      We have clarified the b-value as “the strength of the bipolar diffusion gradients” where it is first mentioned in the manuscript.

      (4) Figure 1B: I think it would be appropriate with a sentence of how the authors define micro/macrovasculature. Figure 1B seems to suggest that large ascending veins are considered microvascular which I believe is a bit unconventional. Nevertheless, as long as it is clearly stated, it should be fine.

      In our context, macrovasculature refers to vessels that are distal to neural activation sites and contribute to extravascular contamination. These vessels are typically larger in size (e.g., > 0.1 mm in diameter) and exhibit faster flow rates (e.g., > 10 mm/s).

      (5) I think the authors could be more upfront with the point about non-suppressed extravascular effects from macrovasculature, which was briefly mentioned in the discussion. It could already be highlighted in the introduction or theory section.

      We thank the reviewer’s suggestions. We have expanded the discussion of extravascular effects from macrovasculature in both the Introduction (5th paragraph) and Discussion (3rd paragraph) sections.

      (6) The phase regression figure feels a bit misplaced to me. If the authors agree: rather than showing the TE-dependency of the effect of phase regression, it may be more relevant for the present study to compare the conventional setup with phase regression, with the VN setup without phase regression. I.e., to show how the proposed setup compares to existing 3T laminar fMRI studies.

      In this revision, both the TE-dependent and VN-dependent effects of phase regression were investigated. The results in Figure 4 and Figure 5 demonstrated that phase regression effectively suppresses macrovascular contributions primarily near the gray matter/CSF boundary, irrespective of TE or the presence of VN gradients.

      (7) L520: It might be beneficial to also cite the large body of other laminar studies showing the double peak feature to underscore that it is highly robust, which increases its relevance as a test-bed to assess spatial specificity.

      We agreed. More literatures have been cited (Chai et al., 2020; Huber et al., 2017a; Knudsen et al., 2023; Priovoulos et al., 2023).

      (8) L557: The argument that only one participant was assessed to reduce inter-subject variability is hard to buy. If significant variability exists across subjects, this would be highly relevant to the authors and something they would want to capture.

      We thank the reviewer for the suggestions. In this revision, we have increased the number of participants to 4 for protocol development and 14 for resting-state functional connectivity analysis, allowing us to better assess and account for inter-subject variability.

      (9) L637: add download link and version number.

      The download link has been added as requested. The version number is not applicable.

      (10) L638: How was the phase data coil-combined?

      The reconstructed multi-channel data, which were of complex values, were combined using the adaptive combination method (Walsh et al.; DOI: 10.1002/(sici)1522-2594(200005)43:5<682::aid-mrm10>3.0.co;2-g). The MATLAB code for this implementation was developed by Dr. Diego Hernando and is publicly available at https://github.com/welton0411/matlab . The phase data were then extracted using the MATLAB function ‘angle’.

      (11) L639: Why was the smoothing filter parameter changed (other parameters were default)?

      The smoothing filter parameter was set based on the suggestion provided in the help comments of the NIFTI_NORDIC function:

      function  NIFTI_NORDIC(fn_magn_in,fn_phase_in,fn_out,ARG)

      % fMRI

      %

      %  ARG.phase_filter_width=10;

      In other words, we simply followed the recommendation outlined in the NIFTI_NORDIC function’s documentation.

      (12) I assume the phase data was motion corrected after transforming to real and imaginary components and using parameters estimated from magnitude data? Maybe add a few sentences about this.

      Prior to phase regression, the time series of real and imaginary components were subjected to motion correction, followed by phase unwrapping. The phase regression was incorporated early in the data processing pipeline to minimize the discrepancy in data processing between magnitude and phase images (Stanley et al., 2021).

      (13) Was phase regression applied with e.g., a deming model, which accounts for noise on both the x and y variable? In my experience, this makes a huge difference compared with regular OLS.

      We appreciate the reviewer’s insightful comment. We are aware that the noise present in both magnitude and phase data therefore linear Deming regression would be a good fit to phase regression (Stanley et al., 2021). To perform Deming regression, however, the ratio of magnitude error variance to phase error variance must be predefined. In our initial tests, we found that the regression results were sensitive to this ratio. To avoid potential confounding, we opted to use OLS regression for the current analysis. However, we agreed Deming model could enhance the efficacy of phase regression if the ratio could be determined objectively and properly.

      (14) Figure 2: What is error bar reflecting? I don't think the across-voxel error, as also used in Figure 4, is super meaningful as it assumes the same response of all voxels within a layer (might be alright for such a small ROI). Would it be better to e.g. estimate single-trial response magnitude (percent signal change) and assess variability across? Also, it is not obvious to me why b=30 was chosen. The authors argue that larger values may kill signal, but based on this Figure in isolation, b=48 did not have smaller response magnitudes (larger if anything).

      We agreed with the reviewer’s opinion on the across-voxel error. In the revised manuscript, the signal was averaged within each layer before performing the GLM analysis, and signal variation was calculated using the temporal residuals. The technical details of these changes are described in the "Materials and Methods" section.

      Additionally, the bipolar diffusion gradients were modified from a single direction to three orthogonal directions. As a result, the questions and results related to b=30 or b=48 are no longer applicable.

      (15) Figure 5: would be informative to quantify the effect of phase regression over a large ROI and evaluate reduction in macrovascular influence from superficial bias in laminar profiles.

      We appreciate the reviewer’s suggestion. In the revised manuscript, the reduction in macrovascular influence from superficial bias across a large ROI is displayed in Figure 5. Additionally, the impact on laminar profiles is demonstrated in Figure 4.

      (16) L406-408: What kind of robustness?

      We acknowledge that describing the protocol as “robust” was an overstatement. The updated results indicate that the current protocol for submillimeter fMRI may not yet be suitable for reliable individual-level layer-dependent functional mapping. However, group-level functional connectivity (FC) analyses demonstrated clear layer-specific distinctions with VN fMRI, which were not evident in conventional fMRI. These findings highlight the enhanced layer specificity achievable with VN fMRI.

      (17) Figure 8: I think C) needs pointers to superficial, middle, and deep layers? Why is it not in the same format as in Figure 9C? The discussion of the FC results could benefit from more references supporting that these observations are in line with the literature.

      In the revised results, the layer pooling shown in Figure 9c has been removed, making the question regarding format alignment no longer applicable. Additionally, references supporting the FC results have been added to the revised Discussion section (7th paragraph).

      (18) L456-457: But correlation coefficients may also be biased by different CNR across layers.

      That is correct. In the updated FC results in Figure 7 to 9, we used group-level statistics rather than correlation coefficients.

      Reviewer #3 (Recommendations For The Authors):

      The results in Figure 2-6 should be repeated over, or averaged over, a (small) group of participants. N=6 is usual in this field. I would seriously reconsider the multiband acceleration - the acquisition seemingly cannot support the SNR hit.

      A few more specific points are given below:

      (1) Abstract: The sentence about LGN in the abstract came for me out of the blue - why would LGN be important here, it's not even a motor network node? Perhaps the aims of the study should be made more clear - if it's about networks as suggested earlier then a network analysis result would be expected too. Expanding the directed FC findings would improve the logical flow of the abstract. Given the many concerns, removing the connectivity analysis altogether would also be an option.

      We thank the reviewer for the suggestions. The LGN-related results indeed diluted the focus of this study and have been completely removed in this revision.

      (2) Line 105: in addition to the VASO method, ..

      The corresponding text has been revised, and as a result, the reviewer’s suggestion is no longer applicable.

      (3) If out of the set MB 4 / 5 / 6 MB4 was best, why did the authors not continue with a comparison including MB3 and MB2? It seems to me unlikely that the MB4 acquisition is actually optimal.

      Results: We appreciate the reviewer’s suggestions. In this revision, we decreased the MB factor to 3, as it allowed us to increase the in-plane acceleration rate to 3, thereby shortening the TE. The resulting sensitivity for both individual and group-level results is detailed in earlier responses, such as the response to Q16 for Reviewer #2.

      (4) The formatting of the references is occasionally flawed, including first names and/or initials. Please consider using a reliable reference manager.

      We used Zotero as our reference manager in this revision to ensure consistency and accuracy. The references have been formatted according to the APA style.

      (5) In the caption of Figure 5, corrected and uncorrected p values are identical. What multiple comparisons correction was made here? A multiple comparisions over voxels (as is standard) would usually lead to a cut-off ~z=3.2. That would remove most of the 'responses' shown in figure 5.

      We appreciate the reviewer’s comment. The original results presented in Figure 5 have been removed in the revised manuscript, making this comment no longer applicable.

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      The manuscript from Craig et al., (2023) leverages a previously reported atoh1a reporter to drive expression of lifeact-egfp in Merkel cells (MC) to assess MC morphology during both scale development and regeneration, in the optically tractable zebrafish. Using a combination of live-imaging approaches and genetic perturbations, the authors show that MCs arise from a more immature population of dendritic Merkel cells (dMC) and that dMCs themselves derive from basal keratinocytes. The authors show that following injury, dMCs are the major cell type to infiltrate the regenerating scale region, with MCs becoming the predominant cell type at later stages of regeneration (presumably as the dMCs mature). The authors present evidence suggesting that dMCs are molecularly similar to both keratinocytes and MCs and argue that dMCs may represent an intermediate cell type. Data in the manuscript suggests MC and dMC protrusions are differently polarized, and that MC and dMC dynamics are also different. The authors provide direct evidence that dMCs mature into MCs morphologically and suggest that the reverse may also occur. Finally, the authors show that MC microvilli morphology is impaired in eda-/- mutants, suggesting a role for eda in the normal morphology of MCs, more specifically in the trunk.

      Major comments:

      1. The discovery and characterization of dMCs in this study relies entirely on their labeling by an atoh1a-lifeact transgenic reporter. Given the striking similarity of dMCs to melanocytes, it is important to confirm the atoh1a reporter labels dMCs and MCs specifically, and not melanocytes. For example, it would be useful to see confirmation of cell type by double labelling of dMCs, e.g. with atoh1a:lifeact-egfp together with an antibody for atoh1a or preferably, another MC/dMC marker. dMCs look morphologically similar to melanocytes, which also display many of the behaviors noted in this manuscript. According to RNA-seq data (see https://hair-gel.net/), atoh1 is expressed in melanocytes in embryonic mouse skin and hair follicle stem cell precursors in post-natal skin. We recommend that the authors mine a similar dataset for zebrafish to ascertain whether atho1a is also expressed in pigment cells (e.g. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE190115). We would also recommend that the authors run a stain for a melanocyte marker such as Mitf/Tyr/Dct to show this is not expressed in dMCs.
      2. A major conclusion of the paper is that dMCs display molecular properties that overlap with both MCs and basal keratinocytes based on expression of three markers. I feel this conclusion is a little strong given the evidence presented; global transcriptomic analysis of these cells (RNA-seq) would better define where along a differentiation trajectory dMCs lie.
      3. More data regarding the function of the dMC intermediate cell type would greatly strengthen the significance of the study. The characterization of dMCs forms the core of the report, yet little is shown/discussed regarding the function of this cell population. For example, why is this intermediary even required? Presumably this is to facilitate the migration of MCs from the basal layer into the upper strata and their dispersion upon arrival. In this case, one could argue that the morphology of the dMC is directly related to its migratory function, as the authors suggest dMCs arise from basal keratinocytes, then migrate upwards towards the more superficial strata, where mature MCs are located. However, very little evidence in support of this upward migration is presented - most of the migratory data are related to lateral movement. Experiments to alter the migratory properties of dMCs, for example using inhibitors of Arp2/3, would address whether migration is the key function of dMCs. Finally, there is insufficient evidence to suggest contact-inhibition is occurring, and in the cell division movie 5, it doesn't appear to happen (or the movie isn't long enough to show it). More examples are required or this observation should be reworded accordingly.
      4. Eda is shown to be important for MC morphology, especially in MCs located in the trunk. More discussion of how eda may function would be helpful to the reader. For example, in what cells are Eda and Edar expressed? Do the authors think Edar signaling is cell autonomous within the MCs? Or does the loss of Eda indirectly affect MC morphology as a result of impaired scale formation? Additionally, the authors state that corneal MCs in both WT and eda-/- have similar microvilli morphologies. The figure, however, shows that corneal MCs from these genotypes do look different, with eda-/- corneal MCs having a more evenly distributed microvilli than the polarized microvilli of their WT counterparts. The metric '% of MCs with microvilli' does not capture this aspect of their morphology.
      5. In several places, the number of biological replicates is unclear. A major concern is that data presented as 'number of cells' may only have been collated from n=1 animal. The authors should specify the number of both biological and technical replicates per experiment and consider displaying the data in superplots. Where stats are undertaken, particularly on percentages, it should be made clear whether the stats test was perfomed on raw numbers or the % (particularly true for Chi square). Examples of this issue can be found in figures 3C-H, 4F-H, 5B-C and supplemental.

      Minor comments:

      • Line 124. Why did the authors choose developmental stages 11mm and 28mm for the quantification? The images in Figure 1 show 8, 10 and 12mm but not 11mm.
      • Line 126. It is unclear what the difference is between circularity and roundness.
      • Line 645 and Fig 1I. 'Cells manually classified as MC or dMC'. Please provide further clarification on this categorization (e.g. number of protrusions/roundness value etc.)
      • Line 141 and Fig 1O. The authors comment on the mosaic nature of DsRed expression, but it seems particularly sparse in the image. Similarly, there are numerous GFP+ cells that do not express DsRed, and the ones that do are found at a distance from the DsRed+ basal keratinocytes. Further explanation is required here. For example, if MCs ultimately arise from dMCs, why are so few of them labelled? It would be useful to know the % of cre-recombination that is actually occurring (i.e. how efficient the cre driver is in keratinocytes by DsRed+/total number) to put these data in context.
      • Line 170 and 179. The authors do not comment on the possibility of de/trans-differentiation of mature MCs as an explanation of how dMCs and 'new' MCs arise on regenerating scales.
      • Line 176. Can the authors comment on how quickly the nls-Eos protein turns over? This is pertinent given it is possible that by 7 dpp all the red nls-Eos could potentially have been replaced by green nls-Eos in an 'existing' atoh1a+ cell.
      • Figure 2M-P. Both channels (green and magenta) should be shown here. Cells will express both and it is unclear from the image panel what this looks like.
      • Line 186, 200 and 206. 'regenerating dMCs' this is confusing. Perhaps reword to 'dMCs associated with regenerating scales'.
      • Line 186. Why did the authors focus on 5dpp, particularly given that at 3 dpp the proportion of dMCs:MCs is more evenly spread?
      • Figure 3A-B. An additional panel with DAPI is needed here to enable Tp63 negative nuclei to be visualized. Also, what is the cell in the top right of 3B? It has a red nucleus but is not marked by an asterisk.
      • Figure 3D-E. This data panel also needs to show a dMC that is negative for SV2.
      • Figure 4D-E and line 235. It is intuitive that dMCs will not have basal facing processes if they are already in the basal layer of keratinocytes - there simply isn't the physical space (unless they penetrate the scales/basement membrane which presumably they don't). Also, the authors need to comment on, and quantify dMC protrusions in relation to the directionality of dMC migration in the main text. This is referred to in line 762 as part of the figure legend (Fig 5) and Movie 3 legend (line 809), but this is not quantified anywhere.
      • Line 258. How do these unipolar protrusions correlate with directionality?
      • Line 287 and Figure 5G. There is insufficient evidence to conclude that MCs can revert back to dMCs, particularly given that MCs are considered post-mitotic. N=2 (cells/fish?) is not sufficient without further evidence, and the MC depicted in Figure 5G doesn't resemble a bona fide MC at the start of imaging. Suggest removing this conclusion and data or increasing n and providing further evidence.
      • Line 394. 'These protrusions extended from lateral-facing membranes and interdigitated between basal and suprabasal keratinocytes'. Did the authors specifically show this? It is not clear from the data.
      • Line 430. The reference to Merkel Cell carcinoma needs more commentary with regards to the relevance of the authors' findings.
      • Line 491. Denoise.ai was used on images as stated. Can the authors confirm that any image quantification was done on raw images prior to using the Denoise.ai function?
      • Line 528. Include details of the tp63 antibody here.

      Significance

      Overall, the data are novel and of interest to researchers in several fields, including development, skin biology and MC carcinoma. This work provides an important step forward in our understanding of how basal keratinocytes give rise to MCs in zebrafish - via a dMC intermediary cell type. The imaging presented therein is of a high quality, and the movies are beautiful; capturing the cellular behaviors very clearly. This paper does not however, comment on the molecular mechanisms regulating this transition, nor on the cellular mechanisms resulting in the altered morphology and migration of dMCs and maturation into MCs. Inclusion of data as described above in the major comments section would increase the significance and impact of this work. Notwithstanding, the observations made in this work describe, for the first time to my knowledge, a morphologically distinct cell type in zebrafish (dMCs) similar to that having been described in other vertebrates and provide the ground work for future investigation.

      Reviewer expertise: skin biology, live-imaging, zebrafish, mouse, developmental biology.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Millard and colleagues investigated if the analgesic effect of nicotine on pain sensitivity, assessed with two pain models, is mediated by Peak Alpha Frequency (PAF) recorded with resting state EEG. The authors found indeed that nicotine (4 mg, gum) reduced pain ratings during phasic heat pain but not cuff pressor algometry compared to placebo conditions. Nicotine also increased PAF (globally). However, mediation analysis revealed that the reduction in pain ratings elicited by the phasic heat pain after taking nicotine was not mediated by the changes in PAF. Also, the authors only partially replicated the correlation between PAF and pain sensitivity at baseline (before nicotine treatment). At the group-level no correlation was found, but an exploratory analysis showed that the negative correlation (lower PAF, higher pain sensitivity) was present in males but not in females. The authors discuss the lack of correlation.

      In general, the study is rigorous, methodology is sound and the paper is well-written. Results are compelling and sufficiently discussed.

      Strengths:

      Strengths of this study are the pre-registration, proper sample size calculation, and data analysis. But also the presence of the analgesic effect of nicotine and the change in PAF.

      Weaknesses:

      It would even be more convincing if they had manipulated PAF directly.

      We thank Reviewer #1 for their positive and constructive comments regarding our study. We appreciate the view that the study was rigorous and methodologically sound, that the paper was well-written, and that the strengths included our pre-registration, sample size calculation, and data analysis.

      In response to the reviewer's comment about more directly manipulating Peak Alpha Frequency (PAF), we agree that such an approach could provide a more direct investigation of the role of PAF in pain processing. We chose nicotine to modulate PAF as the literature suggested it was associated with a reliable increase in PAF speed. As mentioned in our Discussion, there are several alternative methods to manipulate PAF, such as non-invasive brain stimulation techniques (NIBS) like transcranial alternating current stimulation (tACS) or neurofeedback training. These approaches could help clarify whether a causal relationship exists between PAF and pain sensitivity. Although methods such as NIBS still require further investigation as there is little evidence for these approaches changing PAF (Millard et al., 2024).

      Reviewer #2 (Public Review):

      Summary:

      The study by Millard et al. investigates the effect of nicotine on alpha peak frequency and pain in a very elaborate experimental design. According to the statistical analysis, the authors found a factor-corrected significant effect for prolonged heat pain but not for alpha peak frequency in response to the nicotine treatment.

      Strengths:

      I very much like the study design and that the authors followed their research line by aiming to provide a complete picture of the pain-related cortical impact of alpha peak frequency. This is very important work, even in the absence of any statistical significance. I also appreciate the preregistration of the study and the well-written and balanced introduction. However, it is important to give access to the preregistration beforehand.

      Weaknesses:

      The weakness of the study revolves around three aspects:

      (1) I am not entirely convinced that the authors' analysis strategy provides a sufficient signal-tonoise ratio to estimate the peak alpha frequency in each participant reliably. A source separation (ICA or similar) would have been better suited than electrode ROIs to extract the alpha signal. By using a source separation approach, different sources of alpha (mu, occipital alpha, laterality) could be disentangled.

      (2) Also, there's a hint in the literature (reference 49 in the manuscript) that the nicotine treatment may not work as intended. Instead, the authors' decision to use nicotine to modulate the peak alpha frequency and pain relied on other, not suitable work on chronic pain and permanent smokers. In the present study, the authors use nicotine treatment and transient painful stimulation on nonsmokers.

      (3) In my view, the discussion could be more critical for some aspects and the authors speculate towards directions their findings can not provide any evidence. Speculations are indeed very important to generate new ideas but should be restricted to the context of the study (experimental pain, acute interventions). The unfortunate decision to use nicotine severely hampered the authors' aim of the study.

      Impact:

      The impact of the study could be to show what has not worked to answer the research questions of the authors. The authors claim that their approach could be used to define a biomarker of pain. This is highly desirable but requires refined methods and, in order to make the tool really applicable, more accurate approaches at subject level.

      We thank reviewer #2 for their recognition of the study’s design, the importance of this research area, and the pre-registration of our study. In response to the weaknesses highlighted:

      (1) We appreciate the reviewer’s suggestion to improve the signal-to-noise ratio by applying source separation techniques, such as ICA, which have now been performed and incorporated into the manuscript. Our original decision to use sensor-level ROIs followed the precedent set in previous studies, our rationale being to improve reproducibility and avoid  biases from picking individual electrodes or manually picking sources. We have  added analyses using an automated pipeline that selects components based on the presence of a peak in the alpha range and alignment with a predefined template topography representing sensorimotor sites. Here again we found no significant differences in the mediation results that used a sensor space sensorimotor ROI, further supporting the robustness of the chosen approach. ICA could still potentially disentangle different sources of alpha, such as occipital alpha and mu rhythm, and provide new insights into the PAF-pain relationship. We have now added a discussion in the manuscript about the potential advantages of source separation techniques and suggest that the possible contributions of separate alpha sources be investigated and compared to sensor space PAF as a direction for future research.

      (2) We recognise the reviewer's concern regarding our choice of nicotine as a modulator of pain and alpha peak frequency (PAF). The meta-analysis by Ditre et al. (2016) indeed points to small effect sizes for nicotine's impact on experimental pain and highlights the potential for publication bias. However, our decision to use nicotine in this study was not primarily based on its direct analgesic effects, but rather on its well-documented ability to modulate PAF, in smoking and non-smoker populations, as outlined in our study aims.

      In this regard, the intentional use of nicotine was to assess whether changes in PAF could mediate alterations in pain. This approach aligns with the broader concept that a direct effect of an intervention is not necessary to observe indirect effects (Fairchild & McDaniel, 2017). We have, however, revised our introduction to further clarify this rationale, highlighting that nicotine was used as a tool for PAF modulation, not solely for its potential analgesic properties.

      (3) We agree with the reviewer’s observation that certain aspects of the Discussion could be more cautious, particularly regarding speculations about nicotine’s effects and PAF as a biomarker of pain. We have revised the Discussion to ensure that our interpretations are better grounded in the data from this study, clearly stating the limitations and avoiding overgeneralization. This revision focuses on a more critical evaluation of the potential relationships between PAF, nicotine, and pain sensitivity based solely on our experimental context.

      Finally, We also apologize for not providing access to the preregistration earlier. This was an oversight on our end, and we will ensure that future preregistrations are made available upfront.

      Reviewer #3 (Public Review):

      In this manuscript, Millard et al. investigate the effects of nicotine on pain sensitivity and peak alpha frequency (PAF) in resting state EEG. To this end, they ran a pre-registered, randomized, double-blind, placebo-controlled experiment involving 62 healthy adults who received either 4 mg nicotine gum (n=29) or placebo (n=33). Prolonged heat and pressure were used as pain models. Resting state EEG and pain intensity (assessed with a visual analog scale) were measured before and after the intervention. Additionally, several covariates (sex at birth, depression and anxiety symptoms, stress, sleep quality, among others) were recorded. Data was analyzed using ANCOVAequivalent two-wave latent change score models, as well as repeated measures analysis of variance. Results do not show *experimentally relevant* changes of PAF or pain intensity scores for either of the prolonged pain models due to nicotine intake.

      The main strengths of the manuscript are its solid conceptual framework and the thorough experimental design. The researchers make a good case in the introduction and discussion for the need to further investigate the association of PAF and pain sensitivity. Furthermore, they proceed to carefully describe every aspect of the experiment in great detail, which is excellent for reproducibility purposes. Finally, they analyse the data from almost every possible angle and provide an extensive report of their results.

      The main weakness of the manuscript is the interpretation of these results. Even though some of the differences are statistically significant (e.g., global PAF, pain intensity ratings during heat pain), these differences are far from being experimentally or clinically relevant. The effect sizes observed are not sufficiently large to consider that pain sensitivity was modulated by the nicotine intake, which puts into question all the answers to the research questions posed in the study.

      We would like to express our gratitude to Reviewer #3 for their thoughtful and constructive review, including the positive feedback on the strengths of our study's conceptual framework, experimental design, and thorough methodological descriptions.

      We acknowledge the concern regarding the experimental and clinical relevance of some statistically significant results (e.g., global PAF and pain intensity during heat pain) and agree that small effect sizes may limit their practical implications. However, our primary goal was to assess whether nicotine-induced changes in PAF mediate pain changes, rather than to demonstrate large direct effects on pain sensitivity. Nicotine was chosen for its known ability to modulate PAF, and our focus was on the mechanistic role of PAF in pain perception. To clarify this, we have revised the discussion to better differentiate between statistical significance, experimental relevance, and clinical applicability. We emphasize that this study represents a preliminary step towards understanding PAF’s mechanistic role in pain, rather than a direct clinical application.

      We appreciate the suggestion to refine our interpretation. We have adjusted our language to ensure it aligns with the effect sizes observed and made recommendations for future research, such as testing different nicotine doses, to potentially uncover stronger or more clinically relevant effects.

      Although modest, we believe these findings offer valuable insights into the potential mechanisms by which nicotine affects alpha oscillations and pain. We have also discussed how these small effects could become more pronounced in different populations (e.g., chronic pain patients) and over time, offering guidance for future research on PAF modulation and pain sensitivity.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I have a number of points that the authors may want to consider for this or future work.

      (1) By reviewing the literature provided by the authors in the introduction I think that using nicotine as a means to modulate pain and alpha peak frequency was a mistake. The only work that may give a hint on whether nicotine can modulate experimental pain is the meta-analysis by Ditre and colleagues (2016). They suggest that their small effect may contain a publication bias. I think the other "large body of evidence" is testing something else than analgesia.

      Thank you for your consideration of our choice of nicotine in the study. The meta-analysis by Ditre and colleagues (2016) suggests small effect sizes for nicotine's impact on experimental pain, compared to the moderate effects claimed in some papers, especially when accounting for the potential publication bias you mentioned. However, our selection of nicotine was primarily driven by its documented ability to modulate PAF rather than its direct analgesic effects, as clearly stated in our aims. Therefore, we do not view our decision to use nicotine as a mistake; instead, it was aligned with our goal of assessing whether changes in PAF mediate alterations in pain and thus served as a valuable tool. This perspective aligns with the broader concept that a direct effect is not a prerequisite for observing indirect effects of an intervention on an outcome (Fairchild &

      McDaniel, 2017). To further enhance clarity, we've revised the introduction to emphasize the role of nicotine in manipulating PAF in relation to our study's aims.

      Previously we wrote: “A large body of evidence suggests that nicotine is an ideal choice for manipulating PAF, as both nicotine and smoking increase PAF speed [37,40–47] as well as pain thresholds and tolerance [48–52].” This has been changed to read: “Because evidence suggests that nicotine can modulate PAF, where both nicotine and smoking increase PAF speed [37,40–47], we chose nicotine to assess our aim of whether changes in PAF mediate changes in pain in a ‘mediation by design’ approach [48]. In addition, given evidence that nicotine may increase experimental pain thresholds and tolerance [49–53], nicotine could also influence pain ratings during tonic pain.”

      (2) As mentioned above, the OSF page is not accessible.

      We apologise for this. We had not realised that the pre-registration was under embargo, but we have now made it available.

      (3) I generally struggle with the authors' approach to investigating alpha. With the approach the authors used to detect peak alpha frequency it might be that the alpha signal may just show such a low amplitude that it is impossible to reliably detect it at electrode level. In my view, the approach is not accurate enough, which can be seen by the "jagged" shape of the individual alpha peak frequency. In my view, a source separation technique would have been more useful. I wonder which of the known cortical alphas contributes to the effects the authors have reported previously: occipital, mu rhythms projections or something else? A source separation approach disentangles the different alphas and will increase the SNR. My suggestion would be to work on ICA components or similar approaches. The advantage is that the components are almost completely free of any artefacts. ICAs could be run on the entire data or separately for each individual. In the latter case, it might be that some participants do not exhibit any alpha component.

      We appreciate your thoughtful consideration of our approach to investigating alpha. The calculation of PAF involves various methods and analysis steps across the literature (Corcoran et al., 2018; Gil Avila et al., 2023; McLain et al., 2022). Your query about which known cortical alphas contribute to reported effects is important. Initially focusing on a sensorimotor component from an ICA in Furman et al., 2018, subsequent work from our labs suggested a broader relationship between PAF and pain across the scalp (Furman et al., 2019; Furman et al., 2020; Millard et al., 2022), and a desire to conduct analyses at the sensor level in order to improve the reproducibility of the methods (Furman et al., 2020). However, based on your comment we have made several additions to the manuscript, including: explaining why we did not use manual ICA methods, suggest this for future research, and added an exploratory analysis using a recently developed automated pipeline that selects components based on the presence of a peak in the alpha range and alignment with a predefined template topography representing activity from occipital or motor sites.

      While we acknowledge that ICA components can offer a better signal-to-noise ratio (SNR) and possibly smoother spectral plots, we opted for our chosen method to avoid potential bias inherent in deciding on a component following source separation. The desire for a quick, automated, replicable, and unbiased pipeline, crucial for potential clinical applications of PAF as a biomarker, influenced this decision. At the time of analysis registration, automated methods for deciding which alpha components to extract following ICA were not apparent. We have now added this reasoning to Methods.

      “Contrary to some previous studies that used ICA to isolate sensory region alpha sources (Furman et al., 2018; De Martino et al., 2021; Valentini et al., 2022), we used pre-determined sensor level ROIs to improve reproducibility and reduce the potential for bias when individually selecting ICA components. Using sensor level ROIs may decrease the signal-to-noise ratio of the data; however, this approach has still been effective for observing the relationship between PAF and experimental pain (Furman et al., 2019; Furman et al., 2020).”

      We have also added use of ICA and development of methods as a suggestion for future research in the discussion:

      “Additionally, the use of global PAF may have introduced mediation measurement error into our mediation analysis. The spatial precision used in the current study was based on previous literature on PAF as a biomarker of pain sensitivity, which have used global and/or sensorimotor ROIs (Furman et al., 2018; Furman et al., 2020). Identification and use of the exploratory electrode clusters found in this study could build upon the current work (e.g., Furman et al., 2021). However, exploratory analysis of the clusters found in the present analysis demonstrated no influence on mediation analysis results (Supplementary Materials 3.8-3.10). Alternatively, independent component analysis (ICA) could be used to identify separate sources of alpha oscillations (Choi et al., 2005), as used in other experimental PAF-pain studies (Furman et al., 2018; Valentini et al., 2022), which could aid to disentangle the potential relevance of different alpha sources in the PAFpain relationship. Although this comes with the need to develop more reproducible and automated methods for identifying such components.”

      The specific location or source of PAF that relates to pain remains unclear. Because of this, we did employ an exploratory cluster-based permutation analysis to assess the potential for variations in the presence of PAF changes across the scalp at sensor level, and emphasise that location of PAF change could be explored in future. However, we have now conducted the mediation analysis (difference score 2W-LCS model) using averages from the data-driven parietal cluster, frontal cluster, and both clusters together. For these we see a stronger effect of gum on PAF change, which was expected given the data driven approach of picking electrodes. There was still a total and direct effect of nicotine on pain during the PHP model, but still no indirect effect via change in PAF. For the CPA models, there were still no significant total, direct, or indirect effects of nicotine on CPA ratings. Therefore, using these data-driven clusters did not alter results compared to the model using the global PAF variable.

      The reader has been directed to this supplementary material so:

      “The potential mediating effect of this change in PAF on change in PHP and CPA was explored (not pre-registered) by averaging within each cluster (central-parietal: CP1, CP2, Cpz, P1, P2, P3, P4, Pz, POz; right-frontal: F8, FT8, FT10) and across both clusters. This averaging across electrodes produced three new variables, each assessed in relation to mediating effects on PHP and CPA ratings. The resulting in six exploratory mediation analysis (difference score 2W-LCS) models demonstrated minimal differences from the main analysis of global PAF (8-12 Hz), except for the

      expected stronger effect of nicotine on change in PAF (bs = 0.11-0.14, ps < .003; Supplementary

      Materials 3.8-3.10).”

      Moreover, our team has been working on an automated method for selecting ICA components, so in response to your comment we assessed whether using this method altered the results of the current analysis. The in-depth methodology behind this new automatic pipeline will be published with a validation from some co-authors in the current collaboration in due course. At present, in summary, this automatic pipeline conducts independent component analysis (ICA) 10 times for each resting state, and selects the component with the highest topographical correlation to a template created of a sensorimotor alpha component from Furman et al., (2018). 

      The results of the PHP or CPA mediation models were not substantially different using the PAF calculated from independent components than that using the global PAF. For the PHP model, the total effect (b = -0.648, p \= .033) and direct effects (b = -0.666, p \= .035) were still significant, and there was still no significant indirect effect (b = 0.018, p \= .726). The general fit was reduced, as although the CFI was above 0.90, akin to the original model, the RMSEA and SRMR were not below 0.08, unlike the original models (Little, 2013). For the CPA model, there were still no significant total (b = -0.371, p \= .357), direct (b = -0.364, p \= .386), or indirect effects (b = -0.007, p \= .906), and the model fit also decreased, with CFI below 0.90 and RMSEA and SRMR above 0.08. See supplementary material (3.11). Note that still no correlations were seen between this IC sensorimotor PAF and pain (PHP: r = 0.11, p = .4; CPA: r \= -0.064, p = .63).

      Interestingly, in both models, there was now no longer a significant a-path (PHP: b = 0.08, p =

      0.292; CPA: b = 0.039, p = 0.575), unlike previously observed (PHP: b = 0.085, p = 0.018; CPA: b = 0.089, p = 0.011). We interpret this as supporting the previously highlighted difference between finding an effect on PAF globally but not in a sensorimotor ROI (and now a sensorimotor IC), justifying the exploratory CBPA and the suggestion in the discussion to explore methodology.

      We understand that this analysis does not fully uncover the reviewer’s question in which they wondered which of the known cortical alphas contributes to the effects reported in our previous work. However, we consider this exploration to be beyond the scope of the current paper, as it would be more appropriately addressed with larger datasets or combinations of datasets, potentially incorporating MEG to better disentangle oscillatory sources. The highlighted differences seen between global PAF, sensorimotor ROI PAF, sensorimotor IC PAF, as well as the CBPA of PAF changes provide ample directions for future research to build upon: 1) which alpha (sensor or source space) are related to pain, 2) how are these alpha signals represented robustly in a replicable way, and 3) which alpha (sensor or source space) are manipulable through interventions. These are all excellent questions for future studies to investigate.

      The below text has been added to the Discussion:

      In-house code was developed to compare a sensorimotor component to the results presented in this manuscript (Supplementary Material 3.11), showing similar results to the sensorimotor ROI mediation analysis presented here. However, examination of which alpha - be it sensor or source space - are related to pain, how they can be robustly represented, and how they can be manipulated are ripe avenues for future study.

      (4) I have my doubts that you can get a reliable close to bell-shaped amplitude distribution for every participant. The argument that the peak detection procedure is hampered by the high-amplitude lower frequency can be easily solved by subtracting the "slope" before determining the peak. My issue is that the entire analysis is resting on the assumption that each participant has a reliable alpha effect at electrode level. This is not the case. Non-alpha participants can severely distort the statistics. ICA-based analyses would be more sensitive but not every participant will show alpha. You may want to argue with robust group effects but In my view, every single participant counts, particularly for this type of data analysis, where in the case of a low SNR the "peak" can easily shift to the extremes. In case there is an alpha effect for a specific subject, we should see a smooth bump in the frequency spectrum between 8 and 12 12Hz. Anything beyond that is hard to believe. The long stimulation period allows a broad FFT analysis window with a good frequency resolution in order to detect the alpha frequency bump.

      The reviewer is correct that non-alpha participants can distort the statistics. We did visually assess the EEG of each individual’s spectra at baseline to establish the presence of global peaks, as we believe this is good practice to aid understanding of the data. Please see Author response image 1 for individual spectra seen at baseline. Although not all participants had a ‘smooth bump in the frequency spectrum between 8 and 12 Hz’, we prefer to not apply/necessitate this assumption to our data. Chiang et al., (2011) suggest that ~3% of individuals do not have a discernible alpha peak, and in our data we observed only one participant without a very obvious spectral peak (px-39). But, this participant does have enough activity within the alpha range to identify PAF by the CoG method (i.e. not just flat spectra and activity on top of 1/f characteristics). Without a pre-registered and standardised decision process to remove such a participant in place, we opted to not remove any participants to avoid curation of our data.

      Author response image 1.

      (5) I find reports on frequent channel rejections reflect badly on the data quality. Bad channels can be avoided with proper EEG preparation. EEG should be continuously monitored during recording in order to obtain best data quality. Have any of the ROI channels been rejected?

      We appreciate your attention to the channel rejection. We believe that the average channels removed (0.94, 0.98, 0.74, and 0.87 [range: 0-4] for each of the four resting states out of 64 channels) does not suggest overly frequent rejection, as it was less than one electrode on average and the numbers are below the accepted number of bad channels to remove/interpolate (i.e. 10%) in EEG pipelines (Debnath et al., 2020; Kayhan et al., 2022). To maintain data quality, consistently poor channels were identified and replaced over time. We hope you will accept our transparency on this issue and note that by stating how channel removal decisions were made (i.e. 8 or more deviations) and reporting the number of channels removed, we adhere to the COBIDAS guidelines (Pernet et al., 2018; 2020).

      During analysis, cases of sensorimotor ROI channels being rejected were noted and are now specified in our manuscript. “Out of 248 resting states recorded, 14 resting states had 4 ROI channels instead of 5. Importantly, no resting state had fewer than 4 channels for the sensorimotor ROI.”

      Note, we also realised that we had not specified that we did interpolate channels for the cluster based permutation analysis. This has been corrected with the following sentence:

      “Removed channels were not interpolated for the pre-registered global and sensorimotor ROI averaged analyses, but were interpolated for an exploratory cluster based permutation analysis using the nearest neighbour average method in `Fieldtrip`.”

      (6) I have some issues buying the authors' claims that there is an effect of nicotine on prolonged pain. By looking at the mean results for the nicotine and placebo condition, this can not be right. What was the point in including the variables in the equation? In my view, in this within-subject design the effect of nicotine should be universal, no matter what gender, age, or depression. The unconditional effect of nicotine is close to zero. I can not get my head around how any of the variables can turn the effects into significance. There must be higher or lower variable scores that might be related to a higher or lower effect on nicotine. The question is not to consider these variables as a nuisance but to show how they modulate the pain-related effect of nicotine treatment. Still, the overall nicotine effect of the entire group is basically zero.

      Another point is that for within-subject analyses even tiny effects can become statistically significant if they are systematically in one direction. This might be the case here. There might be a significant effect of nicotine on pain but the actual effect size (5.73 vs. 5.78) is actually not interpretable. I think it would be interesting for the reader how (in terms of pain rating difference) each of the variables can change the effect of nicotine.

      Thank you for your comments. We recognize the concern about interpreting the effect of nicotine on prolonged pain solely based on mean results, and in fact wish to discourage this approach. It's crucial to note that both PAF and pain are highly individual measures (i.e. high inter-individual variance), necessitating the use of random intercepts for participants in our analyses to acknowledge the inherent variability at baseline across participants. Including random intercepts rather than only considering the means helps address the heterogeneity in baseline levels among participants. We also recognise that displaying the mean PHP ratings for all participants in Table 2 could be misleading, firstly because these means do not have weight in an analysis that takes into account a random-effects intercept for participants, and secondly because two participants (one from each group) did not have post-gum PHP assessments and were not included in the mediation analysis due to list-wise deletion of missing data. Therefore, to reduce the potential for misinterpretation, we have added extra detail to display both the full sample and CPA mediation analysis (i.e. N=62) and the data used for PHP mediation analysis (i.e. n=60) in Table 2. We hope that the extra details added to this table will help the readers interpretation of results.

      In light of this, we have also altered the PAF Table 3 to reflect both the pre-post values used for the CPA mediation and baseline correlations with CPA and PHP pain (i.e. N=62), and the pre-post values used for the PHP mediation (i.e. n=60).

      It is inherently difficult to visualise the findings of a mediation analysis with confounding variables that also used latent change scores (LCS) and random-effect intercepts for participants. LCS was specifically used because of issues of regression to the mean that occur if you calculate a straightforward ‘difference-score’, therefore calculating the difference in order to demonstrate the results of the statistical model in a figure, for example, does not provide a full description of the data assessed (Valente & McKinnon, 2017). Nevertheless, if we look at the data descriptively with this in mind, then calculating the change in PHP ratings does indicate that, for the nicotine group, the mean change in PHP ratings was -0.047 (SD = 1.05, range: -4.13, 1.45). Meanwhile, for the placebo group the mean change in PHP ratings was 0.33 (SD = 0.75, range: -1.37, 1.66). Therefore suggesting a slight decrease in pain ratings on average for the nicotine group compared to a slight increase on average for the placebo group. With control for pre-determined confounders, we found that the latent change score was -0.63 lower for the nicotine group compared to the control group (i.e. the direct effect of nicotine on change in pain).

      If the reviewer is only discussing the effect of nicotine on pain, we do not believe that this effect ‘should be universal’. There is clear evidence that effects of nicotine on other measures can vary greatly across individuals (Ettinger et al., 2009; Falco & Bevins, 2015; Pomerleau et al., 1995). Our intention would not be to propose a universal effect but to understand how these variables may influence nicotine's impact on pain for individuals. Here we focus on the effects of nicotine on PAF and pain sensitivity, but attempted to control for the potential influence of these other confounding factors. Therefore, our statistical approach goes beyond mean values, incorporating variables like sex at birth, age, and depression to control for and explore potential modulating factors. Control for confounding factors is an important aspect of mediation analysis (Lederer et al., 2019; VanderWeele, 2019).

      Regarding the seemingly small effect size, we understand your concern. Indeed ‘tiny effects can become statistically significant if they are systematically in one direction’, which may be what we see in this analysis. We do not agree that the effect is ‘not interpretable’, rather that it should be interpreted in light of its small effect size (effect size being the beta coefficient in our analysis, rather than the mean group difference). We agree on the importance of considering practical significance alongside statistical significance and hope to conduct additional experiments and analyses in future to elucidate the contribution of each variable to the subtle and therefore not entirely conclusive overall effect you mention.

      Your feedback on this is valuable, and we have ensured a more detailed discussion in the revised manuscript on how these factors should be interpreted alongside some additional post-hoc analyses of confounding factors that were significant in our mediation, with the note that investigation of these interactions is exploratory. We had already discussed the potential contribution of sex on the effect of nicotine on PAF, with exploratory post-hoc analysis on this included in supplementary materials. In addition, we have now added an exploratory post-hoc analysis on the potential contribution of stress on the effect of nicotine on pain. This then shows the stratified effects by the covariates that our model suggest are influencing change in PAF and pain.

      Results edits:

      “There was also a significant effect of perceived stress at baseline on change in PHP ratings when controlling for group allocation and other confounding variables (b = -0.096, p = .048, bootstrapped 95% CI: [-0.19, -0.000047]), where higher perceived stress resulted in larger decreases in PHP ratings (see Supplementary Material 3.3 for post-hoc analysis of stress).”

      Supplementary material addition:

      “3.3 Exploratory analysis of the influence of perceived stress on the effects of nicotine on change in PHP ratings “

      “Due to the significant estimated effects of perceived stress on change in PHP ratings in the 2WLCS mediation model, we also explored post-hoc effects of stress on change in PHP ratings. We found that there is strong evidence for a negative correlation between stress and change in PHP rating within the nicotine group (n = 28, r = −0.39, BF10 = 13.65; Figure 3) that is not present in the placebo group, with equivocal evidence (n = 32, r = −0.14, BF10 = 0.46). This suggests that those with higher baseline stress who had nicotine gum experienced greater decreases in PHP ratings. Note that there was less, but still sufficient evidence for this relationship within the nicotine group when the participant who was a potential outlier for change in PHP rating was removed (n = 27, r = −0.32, BF10 = 1.45). “

      Author response image 2.

      Spearman correlations od baseline perceived stress with the change in phasic heat pain (PHP) ratings, suggest strong evidence for a negative relationship for the nicotine gum groupin orange (n=28; BF<sub>10</sub>=13.65) but not for the placebo group in grey (n=32; BF<sub>10</sub>=0.46). Regression lines and 95% confidence intervals.

      Discussion edits:

      “For example, in addition to the effect of nicotine on prolonged heat pain ratings, our results suggest an effect of stress on changes in heat pain ratings, with those self-reporting higher stress at baseline having greater reductions in pain. Our post-hoc analysis suggested that this relationship between higher stress and larger decrease in PHP ratings was only present for the nicotine group (Supplementary Material 3.3). As stress is linked to nicotine use [69,70] and pain [71–73], these interactions should be explored in future.”

      (7) Is the differential effect of nicotine vs. placebo based on the pre vs. post treatment effect of the placebo condition or on the pre vs. post effect of the nicotine treatment? Can the mediation model be adapted and run for each condition separately? The placebo condition seems to have a stronger effect and may have driven the result.

      Thank you for your comments. In our mediation analysis, the differential effect of nicotine vs. placebo is assessed as a comparison between the pre-post difference within each condition. A latent change score (i.e. pre-post) is calculated for each condition (nicotine and placebo), and then the effect of being in the nicotine group (dummy coded as 1) is compared to being in the placebo group (dummy coded as 0). The comparison between conditions is needed for this model (Valente & MacKinnon, 2017), as we are assessing the change in PAF and pain in the nicotine group compared to the change in the placebo group.

      However, to address your response, it is possible to simplify and assess the relationship between the change in peak alpha frequency (PAF) and change in pain within each gum group (nicotine and placebo) independently, without including the intervention as a factor. To do this, the mediation model can be simplified to regression analysis with latent change scores that focus purely on these relationships. The results of this can help to understand whether change in PAF influences change in pain within each group separately. As with the main analysis, we see no significant influence of change in PAF on change in pain while controlling for the same confounding variables within the nicotine group (Beta = -0.146 +/- 1.105, p = 0.895, 95% CI: -2.243, 2.429) or the placebo group (Beta = 0.730 +/- 2.061, p = 0.723, 95% CI: -4.177, 3.625).

      When suggesting that the “the placebo condition seems to have a stronger effect and may have driven the result”, we believe you are referring to the increase in mean PHP ratings within the placebo group from pre (5.51 +/- 2.53) to post-placebo gum (5.84 +/- 2.67). Indeed there was a significant increase in pain ratings pre to post chewing placebo gum (t(31) = -2.53, p = 0.0165, 95% CI: -0.603, -0.0653), that was not seen after chewing nicotine gum (t(27) = 0.237, p = 0.81, 95% CI: -0.358, 0.452). In lieu of a control where no gum was chewed (i.e. simply a second pain assessment ~30 minutes after the first), we assume the gum without nicotine is a good reference that controls for the effect of time plus expectation of chewing nicotine gum. With this in mind, as we describe in our results, the change in PHP ratings is reduced in the nicotine group compared to the placebo group. Note that this phrasing keeps the effect of placebo on pain as our reference from which to view the effect of nicotine on pain. However, you are correct that we need to ensure we emphasise that the change in pain in the PHP group is reduced in comparison to the change seen after placebo.

      We have not included these extra statistics in our revised manuscript, but hope that they aid the your understanding and interpretation of the included analyses and have highlighted these nuances in the discussion.

      “However, we note that the observed effect of nicotine on pain was small in magnitude, and most prominent in comparison to the effect of placebo, where pain ratings increased after chewing, which brings into question whether this reduction in pain is meaningful in practice.”

      (8) I would not dare to state that nicotine can function as an acute analgesic. Acute analgesics need to work for everyone. The average effect here is close to zero.

      In light of your feedback, we have refined our language to avoid a sweeping assertion of universal analgesic effects and emphasize individual variability. Nicotine's role as a coping strategy for pain is acknowledged in the literature (Robinson et al., 2022), with the meta-analysis by Ditre et al. (2016) discussing its potential as an acute analgesic in humans, along with some evidence from animal research (Zhang et al., 2020). Our revised discussion underscores the need for further exploration into factors influencing nicotine's potential impact on pain. We have also specified the short-term nature of nicotine use in this context to distinguish acute effects from potential opposing effects after long-term use (Zhang et al., 2020).

      “Short-term nicotine use is thought to have acute analgesic properties in experimental settings, with a review reporting that nicotine increased pain thresholds and pain tolerance [49]. In addition, research in a rat model suggests analgesic effects on mechanical thresholds after short-term nicotine use (Zhang et al., 2020). However, previous research has not assessed the acute effects of nicotine on prolonged experimental pain models. The present study found that 4 mg of nicotine reduced heat pain ratings during prolonged heat pain compared to placebo for our human participants, but that prolonged pressure pain decreased irrespective of which gum was chewed. Our findings are thus partly consistent with the idea that nicotine may have acute analgesic properties [49], although further research is required to explore factors that may influence nicotine’s potential impact on a variety of prolonged pain models. We further advance the literature by reporting this effect in a

      model of prolonged heat pain, which better approximates the experience of clinical pain than short lasting models used to assess thresholds and tolerance [50]. However, we note that the observed effect of nicotine on pain was small in magnitude, and most prominent in comparison to the effect of placebo, where pain ratings increased after chewing, which brings into question whether this reduction in pain is meaningful in practice. Future research should examine whether effects on pain increase in magnitude with different nicotine administration regimens (i.e. dose and frequency).”

      (9) Figures 2E and 2F are not particularly intuitive. Usually, the colour green in "jet" colour coding is being used for "zero" values. I would suggest to cut off the blue and use only the range between red green and red.

      We have chosen to retain the current colour scale for several reasons. In our analysis, green represents the middle of the frequency range (approx 10 Hz in this case), and if we were to use green as zero, it would effectively remove both blue and green from the plot, resulting in only red shades. Additionally, we have provided a clear colour scale for reference next to the plot, which allows readers to interpret the data accurately. Our intention is to maintain clarity and precision in representing the data, rather than conforming strictly to conventional practices in color coding.

      We believe that the current representation effectively conveys the results of our study while allowing readers to interpret the data within the context provided. Thank you again for your suggestion, and we hope you understand our reasoning in this matter.

      (10) Did the authors do their analysis on the parietal ROI or on the pre-registerred ROI?

      The analysis was conducted on the pre-registered sensorimotor ROI and on the global values. We have now also conducted the analysis with the regions suggested with the cluster based permutation analysis as requested by reviewer 2, comment 3.

      (11) Point 3.2 in the discussion. I would be very cautious to discuss smoking and chronic pain in the context of the manuscript. The authors can not provide any additional knowledge with their design targeting non-smokers, acute nicotine and experimental pain. The information might be interesting in the introduction in order to provide the reader with some context but is probably misleading in the discussion.

      We appreciate your perspective and agree with your caution regarding the discussion of smoking and chronic pain. While our study specifically targets non-smokers and focuses on acute nicotine effects in experimental pain, we understand the importance of contextual clarity. We have removed these points from the discussion to not mislead the reader.

      Previously we wrote, and have removed: “For those with chronic pain, smoking and nicotine use is reported as a coping strategy for pain [52]; abstinence can increase pain sensitivity [48,50], and pain is thus seen as a barrier to smoking cessation due to fear of worsening pain [51,52]. Therefore, continued understanding of the acute effects of nicotine on models of prolonged pain could improve understanding of the role of nicotine and smoking use in chronic pain [49,51,52].”

      (12) I very much appreciate section 3.3 of the discussion. I would not give up on PAF as a target to modulate pain. A modulation might not be possible in such a short period of experimental intervention. PAF might need longer and different interventions to gradually shift in order to attenuate the intensity of pain. As discussed by the authors themselves, I would also consider other targets for alpha analysis (as mentioned above not other electrodes or ROIs but separated sources.)

      Thank you for your comments on section 3.3. We appreciate your recognition of the potential significance of PAF as a target for pain modulation. Your insights align with our considerations that the experimental intervention duration or type might be a limiting factor in observing substantial shifts in PAF to attenuate pain intensity. We had mentioned the use of the exploratory electrode clusters in future work, but have now also mentioned that the use of ICA to identify separate ICA sources may provide an alternative approach. See responses to your previous ICA comment regarding separate sources.

      REFERENCES for responses to reviewer 2

      Chiang, A. K. I., Rennie, C. J., Robinson, P. A., Van Albada, S. J., & Kerr, C. C. (2011). Age trends and sex differences of alpha rhythms including split alpha peaks. Clinical Neurophysiology, 122(8), 1505-1517.

      Debnath, R., Buzzell, G. A., Morales, S., Bowers, M. E., Leach, S. C., & Fox, N. A. (2020). The Maryland analysis of developmental EEG (MADE) pipeline. Psychophysiology, 57(6), e13580.

      Ettinger, U., Williams, S. C., Patel, D., Michel, T. M., Nwaigwe, A., Caceres, A., ... & Kumari, V. (2009). Effects of acute nicotine on brain function in healthy smokers and non-smokers: estimation of inter-individual response heterogeneity. Neuroimage, 45(2), 549-561.

      Falco, A. M., & Bevins, R. A. (2015). Individual differences in the behavioral effects of nicotine: a review of the preclinical animal literature. Pharmacology Biochemistry and Behavior, 138, 80-90.

      Kayhan, E., Matthes, D., Haresign, I. M., Bánki, A., Michel, C., Langeloh, M., ... & Hoehl, S. (2022). DEEP: A dual EEG pipeline for developmental hyperscanning studies. Developmental cognitive neuroscience, 54, 101104.

      Lederer, D. J., Bell, S. C., Branson, R. D., Chalmers, J. D., Marshall, R., Maslove, D. M., ... & Vincent, J. L. (2019). Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals. Annals of the American Thoracic Society, 16(1), 22-28.

      Little TD. Longitudinal structural equation modeling. Guilford press; 2013.

      Pernet, C., Garrido, M., Gramfort, A., Maurits, N., Michel, C. M., Pang, E., ... & Puce, A. (2018). Best practices in data analysis and sharing in neuroimaging using MEEG.

      Pernet, C., Garrido, M. I., Gramfort, A., Maurits, N., Michel, C. M., Pang, E., ... & Puce, A. (2020). Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature neuroscience, 23(12), 1473-1483.

      Pomerleau, O. F. (1995). Individual differences in sensitivity to nicotine: implications for genetic research on nicotine dependence. Behavior genetics, 25(2), 161-177.

      Robinson, C. L., Kim, R. S., Li, M., Ruan, Q. Z., Surapaneni, S., Jones, M., ... & Southerland, W. (2022). The Impact of Smoking on the Development and Severity of Chronic Pain. Current Pain and Headache Reports, 26(8), 575-581.

      Xia, J., Mazaheri, A., Segaert, K., Salmon, D. P., Harvey, D., Shapiro, K., ... & Olichney, J. M. (2020). Event-related potential and EEG oscillatory predictors of verbal memory in mild cognitive impairment. Brain communications, 2(2), fcaa213.

      VanderWeele, T. J. (2019). Principles of confounder selection. European journal of epidemiology, 34, 211-219.

      Valente, M. J., & MacKinnon, D. P. (2017). Comparing models of change to estimate the mediated effect in the pretest–posttest control group design. Structural Equation Modeling: A Multidisciplinary Journal, 24(3), 428-450.

      Vimolratana, O., Aneksan, B., Siripornpanich, V., Hiengkaew, V., Prathum, T., Jeungprasopsuk, W., ... & Klomjai, W. (2024). Effects of anodal tDCS on resting state eeg power and motor function in acute stroke: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 21(1), 1-15.

      Zhang, Y., Yang, J., Sevilla, A., Weller, R., Wu, J., Su, C., ... & Candiotti, K. A. (2020). The mechanism of chronic nicotine exposure and nicotine withdrawal on pain perception in an animal model. Neuroscience letters, 715, 134627.

      Reviewer #3 (Recommendations For The Authors):

      Introduction

      (1) Rationale and link to chronic pain. I am not sure I agree with the statement "The ability to identify those at greater risk of developing chronic pain is limited". I believe there is an abundance of literature associating risk factors with the different instances of chronic pain (e.g., Mills et al., 2019). The fact that the authors cite studies involving potential neuroimaging biomarkers leads me to believe that they perhaps did not intend to make such a broad statement, or that they wanted to focus on individual prediction instead of population risk.

      We thank the reviewer for the thought put into this comment. We did indeed wish to refer to individual prediction, but also realise that the focus on predicting pain might not be the most appropriate opening for this manuscript. Therefore, we have adjusted the below sentence to refer to the need to identify modifiable factors rather than the need to predict pain.

      “Identifying modifiable factors that influence pain sensitivity could be a key step in reducing the presence and burden of chronic pain (van der Miesen et al., 2019; Davis et al., 2020; Tracey et al., 2021).”

      (2) The statement "Individual peak alpha frequency (PAF) is an electro-physiological brain measure that shows promise as a biomarker of pain sensitivity, and thus may prove useful for predicting chronic pain development" is a non sequitur. PAF may very well be a biomarker of pain sensitivity, but the best measures of pain sensitivity we have (selfreported pain intensity ratings) in general are not in themselves predictive of the development of chronic pain. Conversely, features that are not related to pain sensitivity could be useful for predicting chronic pain (e.g., Tanguay-Sabourin et al., 2023).

      We agree that it is essential to acknowledge that self-reported pain intensity ratings alone are not definitive predictors of chronic pain development. To align with this, we have revised the sentence, removing the second clause to avoid overstatement. The adjusted sentence now reads, "Individual peak alpha frequency (PAF) is an electrophysiological brain measure that shows promise as a biomarker of pain sensitivity."

      (3) Finally, some of the statements in the discussion comparing a tonic heat pain model with chronic neuropathic pain might be an overstatement. Whereas it is true that some of the descriptors are similar, the time courses and mechanisms are vastly different.

      We appreciate this comment, and agree that it is difficult to compare the heat pain model used to clinical neuropathic pain. This was an oversight and with further understanding we have removed this comment from the introduction and the discussion:

      “In parallel, we saw no indication of a relationship between PAF and pain ratings during CPA. The introduction of the CPA model, specifically calibrated to a moderate pain threshold, provides further support for the notion that the relationship between PAF and pain is specific to certain pain types [17,28]. Prolonged heat pain was pre-dominantly described as moderate/severe shooting, sharp, and hot pain, whereas prolonged pressure pain was predominantly described as mild/moderate throbbing, cramping, and aching in the present study. It is possible that the PAF–pain relationship is specific to particular pain models and protocols [12,17].”

      Methodology

      (4) or the benefit of good science. However, I am compelled to highlight that I could not access the preregistered files, even though I waited for almost two weeks after requesting permission to do so. This was a problem on two levels: the main one is that I could not check the hypothesized effect sizes of the sample size estimation, which are not only central to my review, and in general negate all the benefits that should go with preregistration (i.e., avoiding phacking, publication bias, data dredging, HARKing, etc.). The second one is that I had to provide an email address to request access. This allows the authors to potentially identify the reviewers. Whereas I have no issues with this and I support transparent peer review practices (https://elifesciences.org/inside-elife/e3e90410/increasingtransparency-in-elife-s-review-process), I also note that this might condition other reviewers.

      We apologise for this. We had not realised that the pre-registration was under embargo, but we have now made it available.

      Interpretation of results

      (5)To be perfectly clear, I trust the results of this study more than some of the cited studies regarding nicotine and pain because it was preregistered, the sample size is considerably larger, and it seems carefully controlled. I just do not agree with the interpretation of the results, stated in the first paragraph of the Discussion. Quoting J. Cohen, "The primary product of a research inquiry is one or more measures of effect size, not P values" (Cohen, 1990). As I am sure the authors are aware of, even tiny differences between conditions, treatments or groups will eventually be statistically significant given arbitrarily large sample sizes. What really matters then is the magnitude of these differences. In general, the authors hypothesize on why there were no differences on the pressure pain model, and why decreases in heat pain were not mediated by PAF, but do not seem to consider the possibility that the intervention just did not cause the intended effect on the nociceptive system, which would be a much more straightforward explanations for all observations.

      While acknowledging and agreeing with the concern that 'even tiny differences between conditions, treatments, or groups will eventually be statistically significant given arbitrarily large sample sizes,' it's crucial to clarify that our sample size of N=62 does not fall into the category of arbitrarily large. We carefully considered the observed outcomes in the pressure pain model and the lack of PAF mediation in heat pain, as dictated by our statistical approach and the obtained results.

      The suggestion of a straightforward explanation aligning with the intervention not causing the intended effect on the nociceptive system is a valid consideration. We did contemplate the possibility of a false positive, emphasising this in the limitations of our findings and the need for replication to draw stronger conclusions to follow up this initial study.

      (6) In this regard, I do not believe that an average *increase* of 0.05 / 10 (Nicotine post - pre) can be considered a "reduction of pain ratings", regardless of the contrast with placebo (average increase of 0.24 / 10). This tiny effect size is more relevant in the context of the considerable inter-individual variation, in which subjects scored the same heat pain model anywhere from 1 to 10, and the same pressure pain model anywhere from 1 to 8.5. In this regard, the minimum clinically or experimentally important differences (MID) in pain ratings varies from study to study and across painful conditions but is rarely below 1 / 10 in a VAS or NRS scale, see f. ex. (Olsen et al., 2017). It is not my intention to question whether nicotine can function as an acute analgesic in general (as stated in the Discussion), but instead, if it worked as such under these very specific experimental conditions. I also acknowledge that the authors note this issue in two lines in the Discussion, but I believe that this is not weighed properly.

      We appreciate your perspective on the interpretation of the effect size, and we understand the importance of considering it in the context of individual variation.

      As also discussed in response to comment 6 From reviewer 2, we recognize the concern about interpreting the effect of nicotine on prolonged pain solely based on mean results, and in fact wish to discourage this approach. It's crucial to note that both PAF and pain are highly individual measures (i.e. high inter-individual variance), necessitating the use of random intercepts for participants in our analyses to acknowledge the inherent variability at baseline across participants. Including random intercepts rather than only considering the means helps address the heterogeneity in baseline levels among participants. We also recognise that displaying the mean PHP ratings for all participants in Table 2 could be misleading, firstly because these means do not have weight in an analysis that takes into account a random-effects intercept for participants, and secondly because two participants (one from each group) did not have post-gum PHP assessments and were not included in the mediation analysis due to list-wise deletion of missing data. Therefore, to reduce the potential for misinterpretation, we have added extra detail to display both the full sample and CPA mediation analysis (i.e. N=62) and the data used for PHP mediation analysis (i.e. n=60) in Table 2. We hope that the extra details added to this table will help the readers interpretation of results.

      Moreover, we have made sure refer to the comparison with the placebo group when discussing the reduction or decrease in pain seen in the nicotine group, for example:

      “2) nicotine reduced prolonged heat pain intensity but not prolonged pressure pain intensity compared to placebo gum;”

      “The nicotine group had a decrease in heat pain ratings compared to the placebo group and increased PAF speed across the scalp from pre to post-gum, driven by changes at central-parietal and right-frontal regions.”

      We have kept our original comment of whether this effect on pain is meaningful in practice to refer to the minimum clinically or experimentally important differences in pain ratings as highlighted by Olsen et al., 2017.

      “While acknowledging the modest effect size, it’s essential to consider the broader context of our study’s focus. Assessing the clinical relevance of pain reduction is pertinent in applications involving the use of any intervention for pain management [69]. However, from a mechanistic standpoint, particularly in understanding the implications of and relation to PAF, the specific magnitude of the pain effect becomes less pivotal. Nevertheless, future research should examine whether effects on pain increase in magnitude with different nicotine administration regimens (i.e. dose and frequency).”

      (7) In line with the topic of effect sizes, average effect sizes for PAF in the study cited in the manuscript range from around 1 Hz (Boord et al., 2008; Wydenkeller et al., 2009; Lim et al., 2016), to 2 Hz (Foulds et al., 1994), compared with changes of 0.06 Hz (Nicotine post - pre) or -0.01 Hz (Placebo post - pre). MIDs are not so clearly established for peak frequencies in EEG bands, but they should be certainly larger than some fractions of a Hertz (which is considerably below the reliability of the measurement).

      We appreciate your care of these nuances. We acknowledge the differences in effect sizes between our study and those referenced in the manuscript. Given the current state of the literature, it's noteworthy that ‘MIDs’ for peak frequencies in EEG bands, particularly PAF changes, are not clearly established, other than a recent publication suggesting that even small changes in PAF are reliable and meaningful (Furman et al., 2021). In light of this, we have addressed the uncertainty around the existence and determination of MIDs in our revision, highlighting the need for further research in this area.

      In addition, our study employed a greater frequency resolution (0.2 Hz) compared to some of the referenced studies, with approximately 0.5 Hz resolution (Boord et al., 2008; Wydenkeller et al., 2009; Foulds et al., 1994). This improved resolution allows for a more precise measurement of changes in PAF. Considering this, it is plausible that studies with lower resolution might have conflated increases in PAF, and our higher resolution contributes to a more accurate representation of the observed changes.

      We have also incorporated this insight into the manuscript, emphasising the methodological advancements in our study and their potential impact on the interpretation of PAF changes. Thank you for your thoughtful feedback.

      “The ability to detect changes in PAF can be considerably impacted by the frequency resolution used during Fourier Transformations, an element that is overlooked in recent methodological studies on PAF calculation [16,95]. Changes in PAF within individuals might be obscured or conflated by lower frequency resolutions, which should be considered further in future research.”

      (8) The authors also ran alternative statistical models to analyze the data and did not find consistent results in terms of PHP ratings (PAF modulation was still statistically significantly different). The authors attribute this to the necessity of controlling for covariates. Now, considering the effects sizes, aren't these statistically significant differences just artifacts stemming from the inclusion of too many covariates (Simmons et al., 2011)? How much influence should be attributable to depression and anxiety symptoms, stress, sleep quality and past pain, considering that these are healthy volunteers? Should these contrasting differences call the authors to question the robustness of the findings (i.e., whether the same data subjected to different analysis provides the same results), particularly when the results do not align with the preregistered hypothesis (PAF modulation should occur on sensorimotor ROIs)?

      Thank you for your comments on our alternative statistical models. By including these covariates, we aim to provide a more nuanced understanding of the complexities within our data by considering their potential impact on the effects of interest. The decision to include covariates was preregistered (apologies again that this was not available) and made with consideration of balancing model complexity and avoiding potential confounding. Moreover, we hope that the insights gained from these analyses will offer valuable information about the behaviour of our data and aid future research in terms of power calculations, expected variance, and study design.

      (9) Beyond that, I believe in some cases that the authors overreach in an attempt to provide explanations for their results. While I agree that sex might be a relevant covariate, I cannot say whether the authors are confirming a pre-registered hypothesis regarding the gender-specific correlation of PAF and pain, or if this is just a post hoc subgroup analysis. Given the large number of analyses performed (considering the main document and the supplementary files), caution should be exercised on the selective interpretation of those that align with the researchers' hypotheses.

      We chose to explore the influence of sex on the correlation between PAF and pain, because this has also been investigated in previous publications of the relationship (Furman et al., 2020).  We state that the assessment by sex is exploratory in our results on p.17: “in an exploratory analysis of separate correlations in males and females (Figure 5, plot C)”. For clarity regarding whether this was a pre-registered exploration or not, we have adjusted this to be: “in an exploratory analysis (not pre-registered) of separate correlations in males and females (Figure 5, plot C), akin to those conducted in previous research on this topic (Furman et al., 2020),

      We have made sure to state this in the discussion also. Therefore, when we previously said on p.22:

      “Regarding the relationship between PAF and pain at baseline, the negative correlation between PAF and pain seen in previous work [7–11,15] was only observed here for male participants during the PHP model for global PAF.” We have now changed this to: “Regarding the relationship between PAF and pain at baseline, the negative correlation between PAF and pain seen in previous work [7– 11,15] was only observed here for male participants during the PHP model for global PAF in an exploratory analysis.”

      Please also note that we altered the colour and shape of points on the correlation plot (Figure 5 in initial submission), the male brown was changed to a dark brown as we realised that the light brown colour was difficult to read. The shape was then changed for male points so that the two groups can be distinguished in grey-scale.

      Overall, your thoughtful feedback is instrumental in refining the interpretation of our findings, and we look forward to presenting a more comprehensive and nuanced discussion. Thank you for your comments.

      REFERENCES for responses to reviewer 3

      Arendt-Nielsen, L., & Yarnitsky, D. (2009). Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. The Journal of Pain, 10(6), 556-572.

      Chowdhury, N. S., Skippen, P., Si, E., Chiang, A. K., Millard, S. K., Furman, A. J., ... & Seminowicz, D. A. (2023). The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. Journal of Neuroscience Methods, 385, 109766.

      Fishbain, D. A., Lewis, J. E., & Gao, J. (2013). Is There Significant Correlation between SelfReported Low Back Pain Visual Analogue Scores and Low Back Pain Scores Determined by Pressure Pain Induction Matching?. Pain practice, 13(5), 358-363.

      Furman, A. J., Prokhorenko, M., Keaser, M. L., Zhang, J., Chen, S., Mazaheri, A., & Seminowicz, D. A. (2021). Prolonged pain reliably slows peak alpha frequency by reducing fast alpha power.

      bioRxiv, 2021-07.

      Heitmann, H., Ávila, C. G., Nickel, M. M., Dinh, S. T., May, E. S., Tiemann, L., ... & Ploner, M. (2022). Longitudinal resting-state electroencephalography in patients with chronic pain undergoing interdisciplinary multimodal pain therapy. Pain, 163(9), e997.

      McLain, N. J., Yani, M. S., & Kutch, J. J. (2022). Analytic consistency and neural correlates of peak alpha frequency in the study of pain. Journal of neuroscience methods, 368, 109460.

      Ngernyam, N., Jensen, M. P., Arayawichanon, P., Auvichayapat, N., Tiamkao, S., Janjarasjitt, S., ... & Auvichayapat, P. (2015). The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury. Clinical Neurophysiology, 126(2), 382-390.

      Parker, T., Huang, Y., Raghu, A. L., FitzGerald, J., Aziz, T. Z., & Green, A. L. (2021). Supraspinal effects of dorsal root ganglion stimulation in chronic pain patients. Neuromodulation: Technology at the Neural Interface, 24(4), 646-654.

      Petersen-Felix, S., & Arendt-Nielsen, L. (2002). From pain research to pain treatment: the role of human experimental pain models. Best Practice & Research Clinical Anaesthesiology, 16(4), 667680.

      Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V., & Jeanmonod, D. (2006). Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain, 129(1), 55-64.

      Sato, G., Osumi, M., & Morioka, S. (2017). Effects of wheelchair propulsion on neuropathic pain and resting electroencephalography after spinal cord injury. Journal of Rehabilitation Medicine, 49(2), 136-143.

      Sufianov, A. A., Shapkin, A. G., Sufianova, G. Z., Elishev, V. G., Barashin, D. A., Berdichevskii, V. B., & Churkin, S. V. (2014). Functional and metabolic changes in the brain in neuropathic pain syndrome against the background of chronic epidural electrostimulation of the spinal cord. Bulletin of experimental biology and medicine, 157(4), 462-465.

    1. In particular, it is important to help students see each culture through the eyes of its own people rather than through outsiders’ stereotypes, to emphasize cultural universals and similarities in purposes and motives more than differences, and to show that what at first may seem exotic or bizarre upon closer inspection usually can be seen as sensible adaptation to the time and place or as parallel to certain features of our own culture.

      I think a lot of focus on culture is in the eyes of the individual who is shaped by that culture. I think it is important to stress seeing culture through others’ eyes. Some expect others to understand their culture without understanding others, but it is a two way street that we can walk down with our students.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      The manuscript by Bohra et al. describes the indirect effects of ligand-dependent gene activation on neighboring non-target genes. The authors utilized single-molecule RNA-FISH (targeting both mature and intronic regions), 4C-seq, and enhancer deletions to demonstrate that the non-enhancer-targeted gene TFF3, located in the same TAD as the target gene TFF1, alters its expression when TFF1 expression declines at the end of the estrogen signaling peak. Since the enhancer does not loop with TFF3, the authors conclude that mechanisms other than estrogen receptor or enhancer-driven induction are responsible for TFF3 expression. Moreover, ERα intensity correlations show that both high and low levels of ERα are unfavorable for TFF1 expression. The ERa level correlations are further supported by overexpression of GFP-ERa. The authors conclude that transcriptional machinery used by TFF1 for its acute activation can negatively impact the TFF3 at peak of signaling but once, the condensate dissolves, TFF3 benefits from it for its low expression.

      Strengths:

      The findings are indeed intriguing. The authors have maintained appropriate experimental controls, and their conclusions are well-supported by the data.

      Weaknesses:

      There are some major and minor concerns that related to approach, data presentation and discussion. But I think they can be fixed with more efforts.

      We thank the reviewer for their positive comments on the paper. We have addressed all their specific recommendations below.  

      The deletion of enhancer reveals the absolute reliance of TFF1 on its enhancers for its expression. Authors should elaborate more on this as this is an important finding.

      We thank the reviewer for the comment. We have now added a more detailed discussion on the requirement of enhancer for TFF1 expression in the revised manuscript (line 368-385).  

      In Fig. 1, TFF3 expression is shown to be induced upon E2 signaling through qRT-PCR, while smFISH does not display a similar pattern. The authors attribute this discrepancy to the overall low expression of TFF3. In my opinion, this argument could be further supported by relevant literature, if available. Additionally, does GRO-seq data reveal any changes in TFF3 expression following estrogen stimulation? The GRO-seq track shown in Fig.1 should be adjusted to TFF3 expression to appreciate its expression changes.

      We have now included a browser shot image of TFF3 region showing GRO-Seq signal at E2 time course (Fig. S1C). We observed an increased transcription towards the 3’ end of TFF3 gene body at 3h.  The increased transcription at 3h, corroborates with smFISH data. The relative changes of TFF3 expression measured by qRT-PCR and smFISH for intronic transcripts are somewhat different, we speculate that such biased measurements that are dependent on PCR amplifications could be more for genes that express at low levels and smFISH using intronic probes may be a more sensitive assay to detect such changes.    

      Since the mutually exclusive relationship between TFF1 and TFF3 is based on snap shots in fixed cells, can authors comment on whether the same cell that expresses TFF1 at 1h, expresses TFF3 at 3h? Perhaps, the calculations taking total number of cells that express these genes at 1 and 3h would be useful.

      Like pointed out by the reviewer, since these are fixed cells, we cannot comment on the fate of the same cell at two time points. To further address this limitation, future work could employ cells with endogenous tags for TFF1 and TFF3 and utilize live cell imaging techniques. In a fixed cell assay, as the reviewer suggests, it can be investigated whether a similar fraction shows high TFF3 expression at 3h, as the fraction that shows high TFF1 expression at 1 h. To quantify the fractions as suggested by the reviewer, we plotted the fraction of cells showing high TFF1 and TFF3 expression at 1h and 3h. We identify truly high expressing cells by taking mean and one standard deviation (for single cell level data) at E2-1hr as the threshold for TFF1 (80 and above transcript counts) and mean and one standard deviation (for single cell level data) at E2-3hr as the threshold for TFF3 (36 and above transcript counts). The fraction with high TFF1 expression at 1h  (12.06 ± 2.1) is indeed comparable to that with high TFF3 expression at 3h (12.50 ± 2.0) (Fig. 2C and Author response image 1). We should note that if the transcript counts were normally distributed, a predetermined fraction would be expected to be above these thresholds and comparable fractions can arise just from underlying statistics. But in our experiments, this is unlikely to be the case given the many outliers that affect both the mean and the standard deviation, and the lack of normality and high dispersion in single cell distributions. Of course, despite the fractions being comparable, we cannot be certain if it is the same set of cells that go from high expression of TFF1 to high expression of TFF3, but definitely that is a possibility. We thank the reviewer for pointing out this comparison.

      Author response image 1.

      The graph represents the percent of cells that show high expression for TFF1 and TFF3 at 1h and 3h post E2 signaling. The threshold was collected by pooling in absolute RNA counts from 650 analyzed cells (as in Fig. 2C). The mean and standard deviation over single cell data were calculated. Mean plus one standard deviation was used to set the threshold for identifying high expressing cells. For TFF1, as it maximally expresses at 1h the threshold used was 80. For TFF3, as it maximally expresses at 3h the threshold used was 36. Fraction of cells expressing above 80 and 36 for TFF1 and TFF3 respectively were calculated from three different repeats. Mean of means and standard deviations from the three experiments are plotted here.

      Authors conclude that TFF3 is not directly regulated by enhancer or estrogen receptor. Does ERa bind on TFF3 promoter? 

      The ERa ChIP-seq performed at 1h and 3h of signaling suggests that TFF3 promoter is not bound by ERa as shown in supplementary Fig. 1B and S1B. However, one peak upstream to TFF1 promoter is visible and that is lost at 3h. 

      Minor comments:

      Reviewer’s comment -The figures would benefit from resizing of panels. There is very little space between the panels.

      We have now resized the figures in the revised manuscript.

      The discussion section could include an extrapolation on the relationship between ERα concentration and transcriptional regulation. Given that ERα levels have been shown to play a critical role in breast cancer, exploring how varying concentrations of ERα affect gene expression, including the differential regulation of target and non-target genes, would provide valuable insights into the broader implications of this study.

      This is a very important point that was missing from the manuscript. We have included this in the discussion in the revised manuscript (line 426-430).

      Reviewer #2:

      Summary:

      In this manuscript by Bohra et al., the authors use the well-established estrogen response in MCF7 cells to interrogate the role of genome architecture, enhancers, and estrogen receptor concentration in transcriptional regulation. They propose there is competition between the genes TFF1 and TFF3 which is mediated by transcriptional condensates. This reviewer does not find these claims persuasive as presented. Moreover, the results are not placed in the context of current knowledge.

      Strengths:

      High level of ERalpha expression seems to diminish the transcriptional response. Thus, the results in Fig. 4 have potential insight into ER-mediated transcription. Yet, this observation is not pursued in great depth however, for example with mutagenesis of ERalpha. However, this phenomenon - which falls under the general description of non monotonic dose response - is treated at great depth in the literature (i.e. PMID: 22419778). For example, the result the authors describe in Fig. 4 has been reported and in fact mathematically modeled in PMID 23134774. One possible avenue for improving this paper would be to dig into this result at the single-cell level using deletion mutants of ERalpha or by perturbing co-activators.

      We thank the reviewer for pointing us to the relevant literature on our observation which will enhance the manuscript. We have discussed these findings in relations to ours in the discussion section (Line 400-413). We thank the reviewer for insight on non-monotonic behavior.

      Weaknesses:

      There are concerns with the sm-RNA FISH experiments. It is highly unusual to see so much intronic signal away from the site of transcription (Fig. 2) (PMID: 27932455, 30554876), which suggests to me the authors are carrying out incorrect thresholding or have a substantial amount of labelling background. The Cote paper cited in the manuscript is likewise inconsistent with their findings and is cited in a misleading manner: they see splicing within a very small region away from the site of transcription. 

      We thank the reviewer for this comment, and apologize if they feel we misrepresented the argument from Cote et al. This has now been rectified in the manuscript. However, we do not agree that the intronic signals away from the site of transcription are an artefact. First, the images presented here are just representative 2D projections of 3D Z-stacks; whereas the full 3D stack is used for spot counting using a widely-used algorithm that reports spot counts that are constant over wide range of thresholds (Raj et al., 2008). The veracity of automated counts was first verified initially by comparison to manual counts. Even for the 2D representations the extragenic intronic signals show up at similar thresholds to the transcription sites. 

      The signal is not non-specific arising from background labeling, explained by following reasons:

      • To further support the time-course smFISH data and its interpretation without depending on the dispersed intronic signal, we have analyzed the number of alleles firing/site of transcription at a given time in a cell under the three conditions. We counted the sites of transcription in a given cell and calculated the percentage of cells showing 1,2,3,4 or >4 sites. We see that the percent of cells showing a single site of transcription for TFF1 is very high in uninduced cells and this decreases at 1h. At 1h, the cells showing 2, 3 and 4 sites of transcription increase which again goes down at 3h (Author response image 2A). This agrees with the interpretation made from mean intronic counts away from the site of transcription. Similarly, for TFF3, the number of cells showing 2,3 and 4 sites of transcription increase slightly at 3hr compared to uninduced and 1hr (Author response image 2B).  We can also see that several cells have no alleles firing at a given time as has been quantified in the graphs on right showing total fraction of cells with zero versus non-zero alleles firing (Author response image 2A-B). A non-specific signal would be present in all cells.

      • There is literature on post-transcriptional splicing of RNA beyond our work, which suggests that intronic signal can be found at relatively large distances away from the site of transcription. Waks et al. showed that some fraction of unspliced RNA could be observed up to 6-10 microns away from the site of transcription suggesting that there can be a delay between transcription and (alternative) splicing (Waks et al., 2011). Pannuclear disperse intronic signals can arise as there can be more than one allele firing at a time in different nuclear locations. The spread of intronic transcripts in our images is also limited in cells in which only 1 allele is firing at E2-1 hour (Author response image 2C) or uninduced cells (Author response image 2D). Furthermore, Cote et al. discuss that “Of note, we see that increased transcription level correlates with intron dispersal, suggesting that the percentage of splicing occurring away from the transcription site is regulated by transcription level for at least some introns. This may explain why we observe posttranscriptional splicing of all genes we measured, as all were highly expressed.” This is in line with our interpretation that intron signal dispersal can occur in case of posttranscriptional splicing (Coté et al., 2023). Additionally, other studies have suggested that transcripts in cells do not necessarily undergo co-transcriptional splicing which leads us to conclude that intronic signal can be found farther away from the site of transcription. Coulon et al. showed that splicing can occur after transcript release from the site and suggested that no strict checkpoint exists to ensure intron removal before release which results in splicing and release being kinetically uncoupled from each other (Coulon et al., 2014). Similarly, using live-cell imaging, it was shown that splicing is not always coupled with transcription, and this could depend on the nature and structural features of transcript (such as blockage of polypyrimidine tract which results in delayed recognition) (Vargas et al., 2011). Drexler  et al. showed that as opposed to drosophila transcripts that are shorter, in mammalian cells, splicing of the terminal intron can occur post-transcriptionally (Drexler et al., 2020). Using RNA polymerase II ChIP-Seq time course data from ERα activation in the MCF-7 cells, Honkela et al. showed that large number of genes can show significant delays between the completion of transcription and mRNA production (Honkela et al., 2015). This was attributed to faster transcription of shorter genes which results in splicing  delays suggesting rapid completion of transcription on shorter genes can lead to splicing-associated delays (Honkela et al., 2015). More recently, comparisons of nascent and mature RNA levels suggested a time lapse between transcription and splicing for the genes that are early responders during signaling (Zambrano et al., 2020). The presence of significant numbers of TFF1 nascent RNA in the nucleus in our data corroborates with above observations. 

      • Uniform intensities across many transcripts suggests these are true signal arising from RNA molecules which would not be the case for non-specific, background signal (Author response image 2E).

      • Splicing occurs in the nucleus and intron containing pre-transcripts should be nuclear localized. Thus, intronic signals should remain localized to the nucleus unlike the mature mRNA which translocate to the cytoplasm after processing and thus exonic signals can be found both in the nucleus and the cytoplasm. In keeping with this, we observe no signal in the cytoplasm for the intronic probes and it remains localized within the nucleus as expected and can be seen in Author response image 2F, while exonic signals are observed in both compartments. This suggests to us that the signal is coming from true pre-transcripts. There is no reason for non-specific background labelling to remain restricted to the nucleus.

      • We observe that the mean intronic label counts for both the genes TFF1 and TFF3 increases upon E2-induction compared to uninduced condition (Fig. 2B). Similarly, the mean intronic count for both genes reduce drastically in the TFF1-enhancer deleted cells (Fig. 3C, D). This change in the number of intronic signal specifically on induction and enhancer deletion suggests that the signal is not an artefact and arises from true nascent transcripts that are sensitive to stimulus or enhancer deletion.

      • We expect colocalization of intronic signal with exonic signals in the nucleus, while there can be exonic signals that do not colocalize with intronic, representing more mature mRNA. Indeed, we observe a clear colocalization between the intronic and exonic signals in the nucleus, while exonic signals can occur independent of intronic both in the nucleus and the cytoplasm. This clearly demonstrates that the intronic signals in our experiments are specific and not simply background labelling (Author response image 2G).

      These studies and the arguments above lead us to conclude that the presence of intronic transcripts in the nucleus, away from the site of transcription is not an artefact. We hope the reviewer will agree with us. These analyses have now been included in the manuscript as Supplementary Figure 6 and have been added in the manuscript at line numbers 106-111, 201204,  215-217 and line 231-235. We thank the reviewer for raising this important point.

      Author response image 2.

      Dynamic induction and RNA localization of TFF1 and TFF3 transcription across cell populations using smRNA FISH A. Bar graph depicting the percentage of cells with 1,2,3,4, or greater than 4 sites of transcription for TFF1 (left) is shown. The graph shows the mean of means from different repeats of the experiment, and error bars denote SEM (n>200, N=3). Only the cells with at least one allele firing were counted and cells with no alleles were not included in this. The graph on right shows the number of cells with zero or non-zero number of alleles firing. B. Bar graph depicting the percentage of cells with 1,2,3,4 or greater than 4 sites of transcription for TFF3 (left) is shown. The graph shows the mean of means from different repeats of the experiment, and error bars denote SEM (n>200, N=3). Only the cells with at least one allele firing were counted and cells with no alleles were not included in this. The graph in the middle shows the number of cells with 2,3,4 or greater than 4 sites of transcription for TFF3.The graph on the right shows the number of cells with zero or non-zero number of alleles firing. C. Images from single molecule RNA FISH experiment showing transcripts for InTFF1 in cells induced for 1 hour with E2. The image shows that when a single allele of TFF1 is firing, the transcripts show a more spatially restricted localisation. The scale bar is 5 microns. D. Images from single molecule RNA FISH experiment showing transcripts for InTFF1 in uninduced cells. The image shows that when a single allele of TFF1 is firing and transcription is low, the transcripts show a more spatially restricted localisation. The scale bar is 5 microns. E. Line profile through several transcripts in the nucleus show uniform and similar intensities indicating that these are true signals. F. 60X Representative images from a single molecule RNA FISH experiment showing transcripts for InTFF1 and ExTFF1 (top) and InTFF3 and ExTFF3 (bottom). The image shows that there is no intronic signal in the cytoplasm, while exonic signals can be found both in the nucleus and the cytoplasm. The scale bar is 5 microns. G. 60X Representative images from single molecule RNA FISH experiment showing transcripts for InTFF1 and ExTFF1. The image shows that all intronic signals are colocalized with exonic signals, but all exonic signals are expectedly not colocalized with intronic signals, representing more mature mRNA. The scale bar is 5 microns.

      One substantial way to improve the manuscript is to take a careful look at previous single cell analysis of the estrogen response, which in some cases has been done on the exact same genes (PMID: 29476006, 35081348, 30554876, 31930333). In some of these cases, the authors reach different conclusions than those presented in the present manuscript. Likewise, there have been more than a few studies that have characterized these enhancers (the first one I know of is: PMID 18728018). Also, Oh et al. 2021 (cited in the manuscript) did show an interaction between TFF1e and TFF3, which seems to contradict the conclusion from Fig. 3. In summary, the results of this paper are not in dialogue with the field, which is a major shortcoming. 

      We thank the reviewer for pointing out these important studies. The studies from Prof. Larson group are particularly very insightful (Rodriguez et al., 2019). We have now included this in the discussion (line 106-111 and line 420-424) where we suggest the differences and similarities between our, Larson’s group and also Mancini’s group (Patange et al., 2022; Stossi et al., 2020). 

      The 4C-Seq data from the manuscript Oh et al. 2021 is exactly consistent with our observation from Fig 3 as they also observed little to no interaction between TFF1e and TFF3p in WT cells, only upon TFF1p deletion, did the TFF1e become engaged with the TFF3p. In agreement with this, we also observe little to no interaction between TFF1e and TFF3p in WT cells (Fig.3A). This is also consistent with our competition model for resources between these two genes. Oh et al. shows interaction between TFF1e and TFF3 when the TFF1 promoter is deleted showing that when the primary promoter is not available the enhancer is retargeted to the next available gene (Oh et al., 2021). It does not show that in WT or at any time point of E2 signalling does TFF1e and TFF3 interact.

      In the opinion of this reviewer, there are few - if any - experiments to interrogate the existence of LLPS for diffraction-limited spots such as those associated with transcription. This difficulty is a general problem with the field and not specific to the present manuscript. For example, transient binding will also appear as a dynamic 'spot' in the nucleus, independently of any higher-order interactions. As for Fig. 5, I don't think treating cells with 1,6 hexanediol is any longer considered a credible experiment. For example, there are profound effects on chromatin independent of changes in LLPS (PMID: 33536240).  

      We are cognizant of and appreciate the limitations pointed out by the reviewer. We and others have previously shown that ERa forms condensates on TFF1 chromatin region using ImmunoFISH assay (Saravanan et al., 2020).  The data below shows the relative mean ERα intensity on TFF1 FISH spots and random regions clearly showing an appearance of the condensate at the TFF1 site. Further, the deletion of TFF1e causes the reduction in size of this condensate. Thus, we expect that these ERα condensates are characterized by higher-order interactions and become disrupted on treatment with 1,6-hexanediol. These condensates are the size of below micron as mentioned by the reviewer, but most TF condensates are of the similar sizes. We agree with the reviewer that 1,6- hexanediol treatment is a brute-force experiment with several irreversible changes to the chromatin. Although we have tried to use it at a low concentration for a short period of time and it has been used in several papers (Chen et al., 2023; Gamliel et al., 2022). The opposite pattern of TFF1 vs. TFF3 expression upon 1,6- hexanediol treatment suggests that there is specificity. Further, to perturb condensates, mutants of ERa can be used (N-terminus IDR truncations) however, the transcriptional response of these mutants is also altered due to perturbed recruitment of coactivators that recognize Nterminus of ER, restricting the distinction between ERa functions and condensate formation.

      References:

      Chen, L., Zhang, Z., Han, Q., Maity, B. K., Rodrigues, L., Zboril, E., Adhikari, R., Ko, S.-H., Li, X., Yoshida, S. R., Xue, P., Smith, E., Xu, K., Wang, Q., Huang, T. H.-M., Chong, S., & Liu, Z. (2023). Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Molecular Cell, 83(19), 3438-3456.e12. https://doi.org/10.1016/j.molcel.2023.08.027

      Coté, A., O’Farrell, A., Dardani, I., Dunagin, M., Coté, C., Wan, Y., Bayatpour, S., Drexler, H. L., Alexander, K. A., Chen, F., Wassie, A. T., Patel, R., Pham, K., Boyden, E. S., Berger, S., Phillips-Cremins, J., Churchman, L. S., & Raj, A. (2023). Post-transcriptional splicing can occur in a slow-moving zone around the gene. eLife, 12. https://doi.org/10.7554/eLife.91357.2

      Coulon, A., Ferguson, M. L., de Turris, V., Palangat, M., Chow, C. C., & Larson, D. R. (2014). Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife, 3, e03939. https://doi.org/10.7554/eLife.03939

      Drexler, H. L., Choquet, K., & Churchman, L. S. (2020). Splicing Kinetics and Coordination Revealed by Direct Nascent RNA Sequencing through Nanopores. Molecular Cell, 77(5), 985-998.e8. https://doi.org/10.1016/j.molcel.2019.11.017

      Gamliel, A., Meluzzi, D., Oh, S., Jiang, N., Destici, E., Rosenfeld, M. G., & Nair, S. J. (2022). Long-distance association of topological boundaries through nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 119(32), e2206216119. https://doi.org/10.1073/pnas.2206216119

      Honkela, A., Peltonen, J., Topa, H., Charapitsa, I., Matarese, F., Grote, K., Stunnenberg, H. G., Reid, G., Lawrence, N. D., & Rattray, M. (2015). Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays. Proceedings of the National Academy of Sciences of the United States of America, 112(42), 13115. https://doi.org/10.1073/pnas.1420404112

      Oh, S., Shao, J., Mitra, J., Xiong, F., D’Antonio, M., Wang, R., Garcia-Bassets, I., Ma, Q., Zhu, X., Lee, J.-H., Nair, S. J., Yang, F., Ohgi, K., Frazer, K. A., Zhang, Z. D., Li, W., & Rosenfeld, M. G. (2021). Enhancer release and retargeting activates disease-susceptibility genes. Nature, 595(7869), Article 7869. https://doi.org/10.1038/s41586-021-03577-1

      Patange, S., Ball, D. A., Wan, Y., Karpova, T. S., Girvan, M., Levens, D., & Larson, D. R. (2022). MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Reports, 38(4). https://doi.org/10.1016/j.celrep.2021.110292

      Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., & Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 5(10), Article 10. https://doi.org/10.1038/nmeth.1253

      Rodriguez, J., Ren, G., Day, C. R., Zhao, K., Chow, C. C., & Larson, D. R. (2019). Intrinsic Dynamics of a Human Gene Reveal the Basis of Expression Heterogeneity. Cell, 176(1–2), 213-226.e18. https://doi.org/10.1016/j.cell.2018.11.026

      Saravanan, B., Soota, D., Islam, Z., Majumdar, S., Mann, R., Meel, S., Farooq, U., Walavalkar, K., Gayen, S., Singh, A. K., Hannenhalli, S., & Notani, D. (2020). Ligand dependent gene regulation by transient ERα clustered enhancers. PLOS Genetics, 16(1), e1008516. https://doi.org/10.1371/journal.pgen.1008516

      Stossi, F., Dandekar, R. D., Mancini, M. G., Gu, G., Fuqua, S. A. W., Nardone, A., De Angelis, C., Fu, X., Schiff, R., Bedford, M. T., Xu, W., Johansson, H. E., Stephan, C. C., & Mancini, M. A. (2020). Estrogeninduced transcription at individual alleles is independent of receptor level and active conformation but can be modulated by coactivators activity. Nucleic Acids Research, 48(4), 1800. https://doi.org/10.1093/nar/gkz1172

      Vargas, D. Y., Shah, K., Batish, M., Levandoski, M., Sinha, S., Marras, S. A. E., Schedl, P., & Tyagi, S. (2011). Single-Molecule Imaging of Transcriptionally Coupled and Uncoupled Splicing. Cell, 147(5), 1054–1065. https://doi.org/10.1016/j.cell.2011.10.024

      Waks, Z., Klein, A. M., & Silver, P. A. (2011). Cell-to-cell variability of alternative RNA splicing. Molecular Systems Biology, 7(1), 506. https://doi.org/10.1038/msb.2011.32

      Zambrano, S., Loffreda, A., Carelli, E., Stefanelli, G., Colombo, F., Bertrand, E., Tacchetti, C., Agresti, A., Bianchi, M. E., Molina, N., & Mazza, D. (2020). First Responders Shape a Prompt and Sharp NF-κB-Mediated Transcriptional Response to TNF-α. iScience, 23(9), 101529. https://doi.org/10.1016/j.isci.2020.101529

    1. Author response:

      The following is the authors’ response to the original reviews.

      Responses to Reviewer’s Comments:  

      To Reviewer #2:

      (1) The use of two m<sup>5</sup>C reader proteins is likely a reason for the high number of edits introduced by the DRAM-Seq method. Both ALYREF and YBX1 are ubiquitous proteins with multiple roles in RNA metabolism including splicing and mRNA export. It is reasonable to assume that both ALYREF and YBX1 bind to many mRNAs that do not contain m<sup>5</sup>C. 

      To substantiate the author's claim that ALYREF or YBX1 binds m<sup>5</sup>C-modified RNAs to an extent that would allow distinguishing its binding to non-modified RNAs from binding to m<sup>5</sup>Cmodified RNAs, it would be recommended to provide data on the affinity of these, supposedly proven, m<sup>5</sup>C readers to non-modified versus m<sup>5</sup>C-modified RNAs. To do so, this reviewer suggests performing experiments as described in Slama et al., 2020 (doi: 10.1016/j.ymeth.2018.10.020). However, using dot blots like in so many published studies to show modification of a specific antibody or protein binding, is insufficient as an argument because no antibody, nor protein, encounters nanograms to micrograms of a specific RNA identity in a cell. This issue remains a major caveat in all studies using so-called RNA modification reader proteins as bait for detecting RNA modifications in epitranscriptomics research. It becomes a pertinent problem if used as a platform for base editing similar to the work presented in this manuscript.

      The authors have tried to address the point made by this reviewer. However, rather than performing an experiment with recombinant ALYREF-fusions and m<sup>5</sup>C-modified to unmodified RNA oligos for testing the enrichment factor of ALYREF in vitro, the authors resorted to citing two manuscripts. One manuscript is cited by everybody when it comes to ALYREF as m<sup>5</sup>C reader, however none of the experiments have been repeated by another laboratory. The other manuscript is reporting on YBX1 binding to m<sup>5</sup>C-containing RNA and mentions PARCLiP experiments with ALYREF, the details of which are nowhere to be found in doi: 10.1038/s41556-019-0361-y.

      Furthermore, the authors have added RNA pull-down assays that should substitute for the requested experiments. Interestingly, Figure S1E shows that ALYREF binds equally well to unmodified and m<sup>5</sup>C-modified RNA oligos, which contradicts doi:10.1038/cr.2017.55, and supports the conclusion that wild-type ALYREF is not specific m<sup>5</sup>C binder. The necessity of including always an overexpression of ALYREF-mut in parallel DRAM experiments, makes the developed method better controlled but not easy to handle (expression differences of the plasmid-driven proteins etc.) 

      Thank you for pointing this out. First, we would like to correct our previous response: the binding ability of ALYREF to m<sup>5</sup>C-modified RNA was initially reported in doi: 10.1038/cr.2017.55, (and not in doi: 10.1038/s41556-019-0361-y), where it was observed through PAR-CLIP analysis that the K171 mutation weakens its binding affinity to m<sup>5</sup>C -modified RNA.

      Our previous experimental approach was not optimal: the protein concentration in the INPUT group was too high, leading to overexposure in the experimental group. Additionally, we did not conduct a quantitative analysis of the results at that time. In response to your suggestion, we performed RNA pull-down experiments with YBX1 and ALYREF, rather than with the pan-DRAM protein, to better validate and reproduce the previously reported findings. Our quantitative analysis revealed that both ALYREF and YBX1 exhibit a stronger affinity for m<sup>5</sup>C -modified RNAs. Furthermore, mutating the key amino acids involved in m<sup>5</sup>C recognition significantly reduced the binding affinity of both readers. These results align with previous studies (doi: 10.1038/cr.2017.55 and doi: 10.1038/s41556-019-0361-y), confirming that ALYREF and YBX1 are specific readers of m<sup>5</sup>C -modified RNAs. However, our detection system has certain limitations. Despite mutating the critical amino acids, both readers retained a weak binding affinity for m<sup>5</sup>C, suggesting that while the mutation helps reduce false positives, it is still challenging to precisely map the distribution of m<sup>5</sup>C modifications. To address this, we plan to further investigate the protein structure and function to obtain a more accurate m<sup>5</sup>C sequencing of the transcriptome in future studies. Accordingly, we have updated our results and conclusions in lines 294-299 and discuss these limitations in lines 109114.

      In addition, while the m<sup>5</sup>C assay can be performed using only the DRAM system alone, comparing it with the DRAM<sup>mut</sup> control enhances the accuracy of m<sup>5</sup>C region detection. To minimize the variations in transfection efficiency across experimental groups, it is recommended to use the same batch of transfections. This approach not only ensures more consistent results but also improve the standardization of the DRAM assay, as discussed in the section added on line 308-312.

      (2) Using sodium arsenite treatment of cells as a means to change the m<sup>5</sup>C status of transcripts through the downregulation of the two major m<sup>5</sup>C writer proteins NSUN2 and NSUN6 is problematic and the conclusions from these experiments are not warranted. Sodium arsenite is a chemical that poisons every protein containing thiol groups. Not only do NSUN proteins contain cysteines but also the base editor fusion proteins. Arsenite will inactivate these proteins, hence the editing frequency will drop, as observed in the experiments shown in Figure 5, which the authors explain with fewer m<sup>5</sup>C sites to be detected by the fusion proteins.

      The authors have not addressed the point made by this reviewer. Instead the authors state that they have not addressed that possibility. They claim that they have revised the results section, but this reviewer can only see the point raised in the conclusions. An experiment would have been to purify base editors via the HA tag and then perform some kind of binding/editing assay in vitro before and after arsenite treatment of cells.

      We appreciate the reviewer’s insightful comment. We fully agree with the concern raised. In the original manuscript, our intention was to use sodium arsenite treatment to downregulate NSUN mediated m<sup>5</sup>C levels and subsequently decrease DRAM editing efficiency, with the aim of monitoring m<sup>5</sup>C dynamics through the DRAM system. However, as the reviewer pointed out, sodium arsenite may inactivate both NSUN proteins and the base editor fusion proteins, and any such inactivation would likely result in a reduced DRAM editing.

      This confounds the interpretation of our experimental data.

      As demonstrated in Author response image 1A, western blot analysis confirmed that sodium arsenite indeed decreased the expression of fusion proteins. In addition, we attempted in vitro fusion protein purificationusing multiple fusion tags (HIS, GST, HA, MBP) for DRAM fusion protein expression, but unfortunately, we were unable to obtain purified proteins. However, using the Promega TNT T7 Rapid Coupled In Vitro Transcription/Translation Kit, we successfully purified the DRAM protein (Author response image 1B). Despite this success, subsequent in vitro deamination experiments did not yield the expected mutation results (Author response image 1C), indicating that further optimization is required. This issue is further discussed in line 314-315.

      Taken together, the above evidence supports that the experiment of sodium arsenite treatment was confusing and we determined to remove the corresponding results from the main text of the revised manuscript.

      Author response image 1.

      (3) The authors should move high-confidence editing site data contained in Supplementary Tables 2 and 3 into one of the main Figures to substantiate what is discussed in Figure 4A. However, the data needs to be visualized in another way then excel format. Furthermore, Supplementary Table 2 does not contain a description of the columns, while Supplementary Table 3 contains a single row with letters and numbers.

      The authors have not addressed the point made by this reviewer. Figure 3F shows the screening process for DRAM-seq assays and principles for screening highconfidence genes rather than the data contained in Supplementary Tables 2 and 3 of the former version of this manuscript.

      Thank you for your valuable suggestion. We have visualized the data from Supplementary Tables 2 and 3 in Figure 4A as a circlize diagram (described in lines 213-216), illustrating the distribution of mutation sites detected by the DRAM system across each chromosome. Additionally, to improve the presentation and clarity of the data, we have revised Supplementary Tables 2 and 3 by adding column descriptions, merging the DRAM-ABE and DRAM-CBE sites, and including overlapping m<sup>5</sup>C genes from previous datasets.

      Responses to Reviewer’s Comments:  

      To Reviewer #3:

      The authors have again tried to address the former concern by this reviewer who questioned the specificity of both m<sup>5</sup>C reader proteins towards modified RNA rather than unmodified RNA. The authors chose to do RNA pull down experiments which serve as a proxy for proving the specificity of ALYREF and YBX1 for m<sup>5</sup>C modified RNAs. Even though this reviewer asked for determining the enrichment factor of the reader-base editor fusion proteins (as wildtype or mutant for the identified m<sup>5</sup>C specificity motif) when presented with m<sup>5</sup>C-modified RNAs, the authors chose to use both reader proteins alone (without the fusion to an editor) as wildtype and as respective m<sup>5</sup>C-binding mutant in RNA in vitro pull-down experiments along with unmodified and m<sup>5</sup>C-modified RNA oligomers as binding substrates. The quantification of these pull-down experiments (n=2) have now been added, and are revealing that (according to SFigure 1 E and G) YBX1 enriches an RNA containing a single m<sup>5</sup>C by a factor of 1.3 over its unmodified counterpart, while ALYREF enriches by a factor of 4x. This is an acceptable approach for educated readers to question the specificity of the reader proteins, even though the quantification should be performed differently (see below).

      Given that there is no specific sequence motif embedding those cytosines identified in the vicinity of the DRAM-edits (Figure 3J and K), even though it has been accepted by now that most of the m<sup>5</sup>C sites in mRNA are mediated by NSUN2 and NSUN6 proteins, which target tRNA like substrate structures with a particular sequence enrichment, one can conclude that DRAM-Seq is uncovering a huge number of false positives. This must be so not only because of the RNA bisulfite seq data that have been extensively studied by others, but also by the following calculations: Given that the m<sup>5</sup>C/C ratio in human mRNA is 0.02-0.09% (measured by mass spec) and assuming that 1/4 of the nucleotides in an average mRNA are cytosines, an mRNA of 1.000 nucleotides would contain 250 Cs. 0.02- 0.09% m<sup>5</sup>C/C would then translate into 0.05-0.225 methylated cytosines per 250 Cs in a 1000 nt mRNA. YBX1 would bind every C in such an mRNA since there is no m<sup>5</sup>C to be expected, which it could bind with 1.3 higher affinity. Even if the mRNAs would be 10.000 nt long, YBX1 would bind to half a methylated cytosine or 2.25 methylated cytosines with 1.3x higher affinity than to all the remaining cytosines (2499.5 to 2497.75 of 2.500 cytosines in 10.000 nt, respectively). These numbers indicate a 4999x to 1110x excess of cytosine over m<sup>5</sup>C in any substrate RNA, which the "reader" can bind as shown in the RNA pull-downs on unmodified RNAs. This reviewer spares the reader of this review the calculations for ALYREF specificity, which is slightly higher than YBX1. Hence, it is up to the capable reader of these calculations to follow the claim that this minor affinity difference allows the unambiguous detection of the few m<sup>5</sup>C sites in mRNA be it in the endogenous scenario of a cell or as fusion-protein with a base editor attached? 

      We sincerely appreciate the reviewer’s rigorous analysis. We would like to clarify that in our RNA pulldown assays, we indeed utilized the full DRAM system (reader protein fused to the base editor) to reflect the specificity of m<sup>5</sup>C recognition. As previously suggested by the reviewer, to independently validate the m<sup>5</sup>C-binding specificity of ALYREF and YBX1, we performed separate pulldown experiments with wild-type and mutant reader proteins (without the base editor fusion) using both unmodified and m<sup>5</sup>C-modified RNA substrates. This approach aligns with established methodologies in the field (doi:10.1038/cr.2017.55 and doi: 10.1038/s41556-019-0361-y). We have revised the Methods section (line 230) to explicitly describe this experimental design.

      Although the m<sup>5</sup>C/C ratios in LC/MS-assayed mRNA are relatively low (ranging from 0.02% to 0.09%), as noted by the reviewer, both our data and previous studies have demonstrated that ALYREF and YBX1 preferentially bind to m<sup>5</sup>C-modified RNAs over unmodified RNAs, exhibiting 4-fold and 1.3-fold enrichment, respectively (Supplementary Figure 1E–1G). Importantly, this specificity is further enhanced in the DRAM system through two key mechanisms: first, the fusion of reader proteins to the deaminase restricts editing to regions near m<sup>5</sup>C sites, thereby minimizing off-target effects; second, background editing observed in reader-mutant or deaminase controls (e.g., DRAM<sup>mut</sup>-CBE in Figure 2D) is systematically corrected for during data analysis.

      We agree that the theoretical challenge posed by the vast excess of unmodified cytosines. However, our approach includes stringent controls to alleviate this issue. Specifically, sites identified in NSUN2/NSUN6 knockout cells or reader-mutant controls are excluded (Figure 3F), which significantly reduces the number of false-positive detections. Additionally, we have observed deamination changes near high-confidence m<sup>5</sup>C methylation sites detected by RNA bisulfite sequencing, both in first-generation and high-throughput sequencing data. This observation further substantiates the validity of DRAM-Seq in accurately identifying m<sup>5</sup>C sites.

      We fully acknowledge that residual false positives may persist due to the inherent limitations of reader protein specificity, as discussed in line 299-301 of our manuscript. To address this, we plan to optimize reader domains with enhanced m<sup>5</sup>C binding (e.g., through structure-guided engineering), which is also previously implemented in the discussion of the manuscript.

      The reviewer supports the attempt to visualize the data. However, the usefulness of this Figure addition as a readable presentation of the data included in the supplement is up to debate.

      Thank you for your kind suggestion. We understand the reviewer's concern regarding data visualization. However, due to the large volume of DRAM-seq data, it is challenging to present each mutation site and its characteristics clearly in a single figure. Therefore, we chose to categorize the data by chromosome, which not only allows for a more organized presentation of the DRAM-seq data but also facilitates comparison with other database entries. Additionally, we have updated Supplementary Tables 2 and 3 to provide comprehensive information on the mutation sites. We hope that both the reviewer and editors will understand this approach. We will, of course, continue to carefully consider the reviewer's suggestions and explore better ways to present these results in the future.

      (3) A set of private Recommendations for the Authors that outline how you think the science and its presentation could be strengthened

      NEW COMMENTS to TEXT:

      Abstract:

      "5-Methylcytosine (m<sup>5</sup>C) is one of the major post-transcriptional modifications in mRNA and is highly involved in the pathogenesis of various diseases."

      In light of the increasing use of AI-based writing, and the proof that neither DeepSeek nor ChatGPT write truthfully statements if they collect metadata from scientific abstracts, this sentence is utterly misleading.

      m<sup>5</sup>C is not one of the major post-transcriptional modifications in mRNA as it is only present with a m<sup>5</sup>C/C ratio of 0.02- 0.09% as measured by mass-spec. Also, if m<sup>5</sup>C is involved in the pathogenesis of various diseases, it is not through mRNA but tRNA. No single published work has shown that a single m<sup>5</sup>C on an mRNA has anything to do with disease. Every conclusion that is perpetuated by copying the false statements given in the many reviews on the subject is based on knock-out phenotypes of the involved writer proteins. This reviewer wishes that the authors would abstain from the common practice that is currently flooding any scientific field through relentless repetitions in the increasing volume of literature which perpetuate alternative facts.

      We sincerely appreciate the reviewer’s insightful comments. While we acknowledge that m<sup>5</sup>C is not the most abundant post-transcriptional modification in mRNA, we believe that research into m<sup>5</sup>C modification holds considerable value. Numerous studies have highlighted its role in regulating gene expression and its potential contribution to disease progression. For example, recent publications have demonstrated that m<sup>5</sup>C modifications in mRNA can influence cancer progression, lipid metabolism, and other pathological processes (e.g., PMID: 37845385; 39013911; 39924557; 38042059; 37870216).

      We fully agree with the reviewer on the importance of maintaining scientific rigor in academic writing. While m<sup>5</sup>C is not the most abundant RNA modification, we cannot simply draw a conclusion that the level of modification should be the sole criterion for assessing its biological significance. However, to avoid potential confusion, we have removed the word “major”.

      COMMENTS ON FIGURE PRESENTATION:

      Figure 2D:

      The main text states: "DRAM-CBE induced C to U editing in the vicinity of the m<sup>5</sup>C site in AP5Z1 mRNA, with 13.6% C-to-U editing, while this effect was significantly reduced with APOBEC1 or DRAM<sup>mut</sup>-CBE (Fig.2D)." The Figure does not fit this statement. The seq trace shows a U signal of about 1/3 of that of C (about 30%), while the quantification shows 20+ percent

      Thank you for your kind suggestion. Upon visual evaluation, the sequencing trace in the figure appears to suggest a mutation rate closer to 30% rather than 22%. However, relying solely on the visual interpretation of sequencing peaks is not a rigorous approach. The trace on the left represents the visualization of Sanger sequencing results using SnapGene, while the quantification on the right is derived from EditR 1.0.10 software analysis of three independent biological replicates. The C-to-U mutation rates calculated were 22.91667%, 23.23232%, and 21.05263%, respectively. To further validate this, we have included the original EditR analysis of the Sanger sequencing results for the DRAM-CBE group used in the left panel of Figure 2D (see Author response image 2). This analysis confirms an m<sup>5</sup>C fraction (%) of 22/(22+74) = 22.91667, and the sequencing trace aligns well with the mutation rate we reported in Figure 2D. In conclusion, the data and conclusions presented in Figure 2D are consistent and supported by the quantitative analysis.

      Author response image 2.

      Figure 4B: shows now different numbers in Venn-diagrams than in the same depiction, formerly Figure 4A

      We sincerely thank the reviewer for pointing out this issue, and we apologize for not clearly indicating the changes in the previous version of the manuscript. In response to the initial round of reviewer comments, we implemented a more stringent data filtering process (as described in Figure 3F and method section) : "For high-confidence filtering, we further adjusted the parameters of Find_edit_site.pl to include an edit ratio of 10%–60%, a requirement that the edit ratio in control samples be at least 2-fold higher than in NSUN2 or NSUN6knockout samples, and at least 4 editing events at a given site." As a result, we made minor adjustments to the Venn diagram data in Figure 4A, reducing the total number of DRAM-edited mRNAs from 11,977 to 10,835. These changes were consistently applied throughout the manuscript, and the modifications have been highlighted for clarity. Importantly, these adjustments do not affect any of the conclusions presented in the manuscript.

      Figure 4B and D: while the overlap of the DRAM-Seq data with RNA bisulfite data might be 80% or 92%, it is obvious that the remaining data DRAM seq suggests a detection of additional sites of around 97% or 81.83%. It would be advised to mention this large number of additional sites as potential false positives, unless these data were normalized to the sites that can be allocated to NSUN2 and NSUN6 activity (NSUN mutant data sets could be substracted).

      Thank you for pointing this out. The Venn diagrams presented in Figure 4B and D already reflect the exclusion of potential false-positive sites identified in methyltransferasedeficient datasets, as described in our experimental filtering process, and they represent the remaining sites after this stringent filtering. However, we acknowledge that YBX1 and ALYREF, while preferentially binding to m<sup>5</sup>C-modified RNA, also exhibit some affinity for unmodified RNA. Although we employed rigorous controls, including DRAM<sup>mut</sup> and deaminase groups, to minimize false positives, the possibility of residual false positives cannot be entirely ruled out. Addressing this limitation would require even more stringent filtering methods, as discussed in lines 299–301 of the manuscript. We are committed to further optimizing the DRAM system to enhance the accuracy of transcriptome-wide m<sup>5</sup>C analysis in future studies.

      SFigure 1: It is clear that the wild type version of both reader proteins are robustly binding to RNA that does not contain m<sup>5</sup>C. As for the calculations of x-fold affinity loss of RNA binding using both ALYREF -mut or YBX1 -mut, this reviewer asks the authors to determine how much less the mutated versions of the proteins bind to a m<sup>5</sup>C-modified RNAs. Hence, a comparison of YBX1 versus YBX1 -mut (ALYREF versus ALYREF -mut) on the same substrate RNA with the same m<sup>5</sup>C-modified position would allow determining the contribution of the so-called modification binding pocket in the respective proteins to their RNA binding. The way the authors chose to show the data presently is misleading because what is compared is the binding of either the wild type or the mutant protein to different RNAs.

      We appreciate the reviewer’s valuable feedback and apologize for any confusion caused by the presentation of our data. We would like to clarify the rationale behind our approach. The decision to present the wild-type and mutant reader proteins in separate panels, rather than together, was made in response to comments from Reviewer 2. Below, we provide a detailed explanation of our experimental design and its justification.

      First, we confirmed that YBX1 and ALYREF exhibit stronger binding affinity to m<sup>5</sup>Cmodified RNA compared to unmodified RNA, establishing their role as m<sup>5</sup>C reader proteins. Next, to validate the functional significance of the DRAM<sup>mut</sup> group, we demonstrated that mutating key amino acids in the m<sup>5</sup>C-binding pocket significantly reduces the binding affinity of YBX1<sup>mut</sup> and ALYREF<sup>mut</sup> to m<sup>5</sup>C-modified RNA. This confirms that the DRAM<sup>mut</sup> group effectively minimizes false-positive results by disrupting specific m<sup>5</sup>C interactions.

      Crucially, in our pull-down experiments, both the wild-type and mutant proteins (YBX1/YBX1<sup>mut</sup> and ALYREF/ALYREF<sup>mut</sup>) were incubated with the same RNA sequences. To avoid any ambiguity, we have included the specific RNA sequence information in the Methods section (lines 463–468). This ensures a assessment of the reduced binding affinity of the mutant versions relative to the wild-type proteins, even though they are presented in separate panels.

      We hope this explanation clarifies our approach and demonstrates the robustness of our findings. We sincerely appreciate the reviewer’s understanding and hope this addresses their concerns.

      SFigure 2C: first two panels are duplicates of the same image.

      Thank you for pointing this out. We sincerely apologize for incorrectly duplicating the images. We have now updated Supplementary Figure 2C with the correct panels and have provided the original flow cytometry data for the first two images. It is important to note that, as demonstrated by the original data analysis, the EGFP-positive quantification values (59.78% and 59.74%) remain accurate. Therefore, this correction does not affect the conclusions of our study. Thank you again for bringing this to our attention.

      Author response image 3.

      SFigure 4B: how would the PCR product for NSUN6 be indicative of a mutation? The used primers seem to amplify the wildtype sequence.

      Thank you for your kind suggestion. In our NSUN6<sup>-/-</sup> cell line, the NSUN6 gene is only missing a single base pair (1bp) compared to the wildtype, which results in frame shift mutation and reduction in NSUN6 protein expression. We fully agree with the reviewer that the current PCR gel electrophoresis does not provide a clear distinction of this 1bp mutation. To better illustrate our experimental design, we have included a schematic representation of the knockout sequence in SFigure 4B. Additionally, we have provided the original sequencing data, and the corresponding details have been added to lines 151-153 of the manuscript for further clarification.

      Author response image 4.

      SFigure 4C: the Figure legend is insufficient to understand the subfigure.

      Thank you for your valuable suggestion. To improve clarity, we have revised the figure legend for SFigure 4C, as well as the corresponding text in lines 178-179. We have additionally updated the title of SFigure 4 for better clarity. The updated SFigure 4C now demonstrates that the DRAM-edited mRNAs exhibit a high degree of overlap across the three biological replicates.

      SFigure 4D: the Figure legend is insufficient to understand the subfigure.

      Thank you for your kind suggestion. We have revised the figure legend to provide a clearer explanation of the subfigure. Specifically, this figure illustrates the motif analysis derived from sequences spanning 10 nucleotides upstream and downstream of DRAMedited sites mediated by loci associated with NSUN2 or NSUN6. To enhance clarity, we have also rephrased the relevant results section (lines 169-175) and the corresponding discussion (lines 304-307).

      SFigure 7: There is something off with all 6 panels. This reviewer can find data points in each panel that do not show up on the other two panels even though this is a pairwise comparison of three data sets (file was sent to the Editor) Available at https://elife-rp.msubmit.net/elife-rp_files/2025/01/22/00130809/02/130809_2_attach_27_15153.pdf

      Response: We thank the reviewer for pointing this out. We would like to clarify the methodology behind this analysis. In this study, we conducted pairwise comparisons of the number of DRAM-edited sites per gene across three biological replicates of DRAM-ABE or DRAM-CBE, visualized as scatterplots. Each data point in the plots corresponds to a gene, and while the same gene is represented in all three panels, its position may vary vertically or horizontally across the panels. This variation arises because the number of mutation sites typically differs between replicates, making it unlikely for a data point to occupy the exact same position in all panels. A similar analytical approach has been used in previous studies on m6A (PMID: 31548708). To address the reviewer’s concern, we have annotated the corresponding positions of the questioned data points with arrows in Author response image 5.

      Author response image 5.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statement:

      We appreciate the reviewers for acknowledging the impact of our work to the field of neurodegeneration and motor neuron diseases as well as for the understanding of the biology and function of VAPB itself; “the idea of assaying the function of ALS-causing VAPB mutants in iPSC-derived neurons is great and would be a great asset to the field” (Reviewer 1) “The new iPSC-derived system to study VAPB mutations in human motor neurons is significant and has led the authors to discover new functions for VAPB (i.e., mitochondria-ER contacts).” (Reviewer 2). The main concern raised by both reviewers is that the doxycycline inducible VAPB iPSC lines may not fully recapitulate the physiological environment found in patients, as patients are heterozygous for the VAPB P56S mutation, and our lines had VAPB under the control of an exogenous doxycycline inducible promoter. While we maintain that the doxycycline inducible lines do provide their own substantial benefits to the interrogation of the ALS pathogenesis, namely the opportunity to identify mutant VAPB interactors compared to wild type VAPB interactors through proteomics, as well as to identify pathogenesis associated to mutant VAPB without the confounding effects of wild type VAPB, we do agree with both reviewers that the inclusion of heterozygous patient iPSC lines would increase the significance of our study. Thus, in this revised manuscript we have included iPSC patient lines harboring the VAPB P56S mutation which we reprogrammed in our lab and to uphold the highest standards in the stem cell field we also performed CRISPR mediated genomic editing to generate the isogenic corrected pair. In our assessment of the ALS patient iPSC-derived motor neurons, we have already observed the same mitochondria and translation dysfunction previously described in our work with the doxycycline-inducible VAPB P56S mutant iPSC lines. Most importantly, these phenotypes were also similarly rescued by the integrated stress response inhibitor (ISRIB). Collectively, these findings suggest that the proposed mechanism initially identified in doxycycline-inducible iPSC-derived motor neurons is preserved in ALS patient iPSC-derived motor neurons.

      Reviewer #1 Major Point 1. The method of knocking out and selecting an inducible line in problematic. VAPB is an essential gene-patients with P56S are always heterozygotes, since nonfunctional VAPB is embryonic lethal. Selecting a knockout cell line is already choosing a parent that is very far from physiological, and the reexpression of P56S VAPB as the sole form also is not a good a model for understanding the contributions of P56S to disease. This approach is unusual, as it seems to overlook the advantages of working with iPSCs and patient-derived neurons. Unfortunately, the value of this amazing and rare system is diminished by the design of the selection method.

      *Reviewer #2 Major Point 1. Why did the authors decide to make VAPB knockouts and then introduce the WT or P56S VAPB constructs on a lentivirus instead of generating the point mutations (or correcting them) directly in the endogenous locus? Data in Extended Fig. 1c and Extended Fig. 2a indicate significant differences in either the kinetics of WT vs. P56S VAPB expression (1c) or levels (2a). It seems important to be able to compare comparable levels of WT and mutant proteins, especially for the interpretation of the subsequent IP-MS experiments to identify PTP151. The authors may wish to consider generating (or obtaining) isogenic lines harboring the mutations at the endogenous locus so that equal levels of expression of WT and mutant VAPB can be assessed. *

      Carried Out Revisions

      The development of the inducible system for VAPB was specifically designed to enable a systematic investigation of the effects of mutant VAPB (VAPB P56S) on cellular homeostasis while minimizing confounding influences from the wild-type (WT) protein. Additionally, this system allowed us to assess VAPB P56S binding partners and compare them to those of VAPB WT, which would not have been feasible in the context of heterozygous ALS8 patient cells.

      In response to Reviewer 2’s concern regarding differences in VAPB WT and VAPB P56S expression levels, we utilized ALS8 patient cells and familial controls to calibrate the doxycycline dose response. This approach allowed us to precisely adjust VAPB protein levels in the inducible system to match those observed in ALS8 patient and familial control iPSCs. As a result, the inducible VAPB P56S iPSCs recapitulate the VAPB expression levels found in ALS8 patient iPSCs, whereas the inducible VAPB WT iPSCs mimic the levels present in familial control iPSCs. Furthermore, the differential expression of VAPB between ALS8 patient and control cells is well documented in the literature (Mitne-Neto, et al., 2011)

      Nonetheless, we acknowledge the significance of studying ALS patient-derived iPSCs. To address this, we obtained fibroblasts from an ALS8 patient carrying the heterozygous VAPB P56S mutation, originating from a genetic background distinct from the cells used in our inducible system. These fibroblasts were reprogrammed into iPSCs in our laboratory, followed by CRISPR/Cas9-mediated genome editing to generate isogenic corrected iPSCs as controls.

      The resulting iPSC isogenic pair was differentiated into motor neurons following the protocol described in our manuscript. Notably, ALS8 patient iPSC-derived motor neurons exhibited reduced mRNA translation, as assessed by the SUnSET assay (Fig. 6A), along with a decrease in mitochondrial membrane potential, as determined using the JC-1 assay (Fig. 6B). These findings confirm that the hypotranslation and mitochondrial dysfunction initially identified in VAPB P56S doxycycline-inducible iPSC-derived motor neurons were successfully recapitulated in ALS8 patient iPSC-derived motor neurons. Furthermore, ISRIB treatment effectively rescued these phenotypic defects.

      Overall, these results demonstrate that the molecular and cellular abnormalities identified in the original inducible system can be reliably reproduced in an ALS patient-derived model with a different genetic background, thereby reinforcing the significance and broader applicability of our findings.

      Currently, we are investigating the electrophysiological properties of ALS8 patient iPSC-derived motor neurons compared to the isogenic control using the multi-electrode array (MEA) system. If a reduction in electrophysiological activity is observed, consistent with our initial findings in doxycycline-inducible VAPB P56S iPSC-derived motor neurons, we plan to treat the heterozygous patient-derived cultures with ISRIB on day 45 of differentiation. This will allow us to determine whether neuronal firing deficits in the heterozygous patient-derived motor neurons can be rescued.

      All other concerns have been addressed in this revision.

      Citation:

      1. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20: 3642-3652 Reviewer #1 Major Point 2. The interactome analysis is not controlled properly to interpret. It is not the total amount of VAPB that needs to be used as the normalization control, since it is already known 90+% of the P56S VAPB is in cytoplasmic aggregates. The authors need to normalize to the amount of VAPB that made it to the contact sites-a much smaller amount in the cells expressing the diseased form. For example, the fact that the authors can still pull down detectable PTPIP51 in Fig. 2e actually argues for the opposite conclusion than what the authors have stated-if the authors have actually expressed just P56S in a true knock out condition, this means that P56S CAN still bind to PTPIP51 (and possibly even better than WT, as several previous papers have suggested-since there is ~100-fold less available for binding). Without an appropriate normalization, the authors cannot make any conclusion about how to interpret the results of this part of the paper.

      Carried Out Revisions

      We sincerely thank Reviewer 1 for highlighting this critical point. Previous studies have demonstrated that the VAPB P56S mutation increases its binding affinity for PTPIP51; however, it has been proposed that the overall reduction in VAPB levels in cells harboring the P56S mutation leads to a decrease in ER-mitochondrial contacts despite the enhanced affinity (De Vos et al., 2012).

      To address this, we have repeated the co-immunoprecipitation experiment and normalized the data to VAPB levels. Consistent with Reviewer 1’s hypothesis, when normalized to soluble VAPB, we observe an increased affinity of VAPB P56S for PTPIP51. However, the total amount of PTPIP51 co-immunoprecipitated with VAPB remains significantly lower in the mutant compared to WT, likely due to the overall reduced levels of soluble VAPB P56S. This finding aligns with both Reviewer 1’s comment and the previous observations reported by De Vos et al. (2012).

      Figure 2E has been updated to reflect the normalized co-immunoprecipitation data.

      Citation:

      1. De Vos, K. J. et al. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum Mol Genet 21, 1299-1311, doi:10.1093/hmg/ddr559 (2012). *Reviewer #1 Major Point 3. The electron microscopy data is not interpretable in this form. The authors have provided no data at all on how analysis was performed, how contact sites were defined, how samples were collected and ensured to be representative, blinding that was performed, how sources of bias were accounted for, etc. It is clear even from what little is shown that the authors are not focused on what matters to address their own questions. For example, apart from the P56S Day 35 example, none of the "contact sites" selected for the figure are even possible to be mediated by VAPB, since the distance between the ER and the mitochondria is too far for the maximum tethering distance of VAPB-PTPIP51. Since the authors have neglected to include scale bars in their zooms, the reader cannot be sure of the distance, but it is clearly in excess of 50 nm since there are obviously visible ribosomes between the two organelles. Additionally, the authors provide no information on what "% mitochondria in contact with ER" means (By organelle? By unit surface area? Is the data grouped by cell or all comes from a single cell? How do you account for contact sites vs. proximity by crowding? Etc.). *

      2. *

      Carried Out Revisions

      We thank Reviewer 1 for their insightful comments on the analysis of the electron microscopy (EM) data and recognize the need for greater clarity in describing our quantification approach. To address this, we have revised the Electron Microscopy section of the Methods to explicitly detail our methodology for quantifying ER-mitochondria-associated membranes (ER-MAMs), as follows:

      "A series of images at various magnifications were provided, and data were collected from unique images at the highest magnification for each condition: D35 WT (13 unique images), D35 P56S (21 unique images), D60 WT (13 unique images), and D60 P56S (18 unique images). All images for a given condition originated from a single well of a 12 mm Snapwell™ Insert with 0.4 µm Pore Polyester Membranes (Corning). No information on cell grouping or sampling strategy was supplied with the images; therefore, we treated the dataset as a random sampling of the culture. Images were blinded, and quantification was performed using FIJI. Mitochondria were identified based on the presence of cristae and a double membrane. The mitochondrial perimeter was traced using the free-draw tool, and the length of ER membranes within 50 nm of this perimeter was quantified. The final measurement represents the percentage of each mitochondrion’s perimeter in contact with the ER, aggregating all visually distinct ER-MAMs, as continuity beyond the imaging plane cannot be determined (Cosson et al., 2012; Csordás et al., 2010; Stoica et al., 2014). Each data point on the graph corresponds to a single mitochondrion, with data collected from multiple cells across the unique images provided by the Core, originating from a single biological replicate."

      Regarding the quantification of ER-MAM distances, VAPB has not been definitively localized exclusively to either the rough or smooth ER. To ensure comprehensive analysis, we quantified ER-MAMs without restricting our assessment to a specific ER subdomain. We adopted a 50 nm threshold as the maximum distance for defining ER-MAMs, a well-established criterion that Reviewer 1 also referenced.

      Furthermore, we disagree with Reviewer 1’s assertion that the presence of ribosomes should justify extending the ER-MAM threshold beyond 50 nm. Ribosomes in human cells have a well-documented diameter of 20–30 nm (Anger et al., 2013), which does not support the claim that an observed ribosome within the contact site necessitates a redefinition of the ER-MAM boundary.

      We stand by our methodological approach and have updated the manuscript to ensure precision and clarity in our EM data analysis.

      Citations:

      1. Cosson, P., Marchetti, A., Ravazzola, M. & Orci, L. Mitofusin-2 independent juxtaposition of endoplasmic reticulum and mitochondria: an ultrastructural study. PLoS One 7, e46293 (2012).
      2. Csordás, G. et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 39, 121-132 (2010).
      3. Stoica, R. et al. ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5, 3996 (2014).
      4. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R. Structures of the human and Drosophila 80S ribosome. Nature. 2013 May 2;497(7447):80-5. doi: 10.1038/nature12104. PMID: 23636399. We would like to thank the Editor of Review Commons for clarifying Reviewer #1’s Major Point 4 and will be responding to the Editor’s interpretations as detailed in the Editorial Note.

      Reviewer #1 Major Point 4. The strange pooling of data without explanation, unusual sample sizes, and lack of clarity about statistical testing, false hypothesis testing, and really any clear rigor in statistics of any kind make it impossible for a reader to have any confidence in the results presented here. The fact that every experiment in the paper has just enough n to trigger statistical significance as determined by the authors raises some concerns, suggesting potential biases. The reliability of these conclusions is questionable, especially if the authors were blinded to the identity of their own samples. This is particularly relevant for the EM data, where the determination of contact sites appears to have been made subjectively.

      Reviewer #1: "The strange pooling of data without explanation"

      • *

      - When looking into the figures and their captions in more detail, we could also not understand the nature of the replicates and how the data was aggregated or “pooled”. In Figure 1, the stated number of replicates is "N=8 separate wells”. It is unclear whether these are 8 wells from a single dissociation/replating procedure (the procedure is described in Materials & Methods as follows: "Motor neurons were dissociated on day 25 of differentiation and re-plated onto 48-well MEA plate") or whether the eight are sampled across multiple plates across cultures obtained from independent dissociations procedures.

      • We apologize for the lack of clarity and specificity. We have updated the Multi-Electrode Array Recordings portion of the Methods Section with the following: “iPSC-derived MNs from a single well of a 6-well plate thawed as day 15 MNP were dissociated and plated across 8 wells of the MEA plate. Each point on the graph is an average of the weighted mean firing rate of those 8 wells, normalized for cell count across genotypes, obtained after all firings were recorded by dissociating 2 wells per line, counting and averaging the cell numbers, and then normalizing all firings by the ratio of cell number between WT and P56S. Wells with no firing detected were excluded from quantification.”

      - In Figure 3, the number of replicates is "N=13-21 images”. Here, it is unclear whether these images come from the same or independent samples, how many quantifications were performed per image, and how many images per sample were used.

      • We have updated the Electron Microscopy Methods Section with the following: “We were provided with a series of images and magnifications and were able to gather data from unique images at the highest magnification level for each of the following categories: D35 WT: 13 unique images, D35 P56S: 21 unique images, D60 WT 13 unique images, D60 P56S: 18 unique images. All images for a given line come from a single well of a 12 mm Snapwell™ Insert with 0.4 µm Pore Polyester Membranes (Corning). No indication of cell grouping or sampling techniques was provided with the images, therefore the images were quantified as a random sampling of the culture. *Images were then blinded, and FIJI was used to quantify.” *

      We are happy to make all images publicly available.

      *- We also note that replicates are not mentioned in the proteomics analysis. *

      • We apologize for missing this and thank the editor for mentioning it. The Proteomics portion of the methods section has been updated with the following: “The identification of VAPB binding partners via mass spectrometry was performed with one biological sample, while the validation of VAPB-PTPIP51 binding via co-immunoprecipitation and Western Blot was performed with three separate biological replicates.”

      Reviewer #1: “unusual sample sizes”:

      • *

      - The wording is indeed not very explicit, but we believe it is reasonable to assume that this point refers to "N=13-21 images” and that it is not clear how the data were pooled. The reviewer makes the related point: "Is the data grouped by cell or all comes from a single cell?", which provides further context to this point.

      • We thank the editor for this clarification, our response to Reviewer #1 Major Point 3 details the updates to Electron Microscopy section of the Methods and covers this. All images were provided to us by the Case Western Reserve University Electron Microscopy Core based on the number of quality images their team were able to obtain from our samples. Reviewer #1: “lack of clarity about statistical testing”:

      • *

      - We agree that without a clear description of the nature of the replicates, the statistical analysis is unclear.

      • We hope with the updated clarity on the description of the nature of the replicates as detailed above, the nature of the statistical analysis is clearer. In addition, we have added a Statistical Analysis subsection in the Methods Section. Reviewer #1: "The reliability of these conclusions is questionable, especially if the authors were blinded to the identity of their own samples.”:

      • *

      - This is a typo; the word “not” is missing. It should read: "if the authors were NOT blinded to the identity…” and refers to concerns raised by the reviewers about evaluating the EM images.

      • We apologize for this omission, each unique image was blinded after we received them from the core, and then quantification was performed on the blinded images. The Electron Microscopy portion of the methods section has been updated to include: “We were provided with a series of images and magnifications and were able to gather data from unique images at the highest magnification level for each of the following categories: D35 WT: 13 unique images, D35 P56S: 21 unique images, D60 WT 13 unique images, D60 P56S: 18 unique images. All images for a given line come from a single well of a 12 mm Snapwell™ Insert with 0.4 µm Pore Polyester Membranes (Corning). No indication of cell grouping or sampling techniques was provided with the images, therefore the images were quantified as a random sampling of the culture. Images were then blinded, and FIJI was used to quantify.”

      Reviewer #1: “The figures suggest a lack of appropriate blinding, with cherry-picking evident even in the ‘representative’ images'”

      • *

      - We agree the wording is somewhat problematic. However, we also feel that there is a discrepancy between the differences highlighted between the EM images shown in Fig 3A and a rather modest change of the median by only a few percent, as shown in the respective violin plots. We agree with the reviewer that the images of Fig 3A might, therefore, not be “representative” of the quantified changes.

      • We appreciate the editor's clarification and have selected images that more accurately represent the subtle changes in ER-MAMs observed in our quantification. These images have been included in Figure EV6 and referenced accordingly in the manuscript to ensure a balanced depiction of our findings. Additionally, we are prepared to make all images publicly available. We would like to again thank the editor for their clarification on Reviewer #1’s Major Point 4 as well as their agreement on the inappropriate nature of some of Reviewer #1’s comments.

      *Reviewer#1 Minor points: 1. It is not accurate to describe Day 60 neurons as "aged" in the context of P56S-induced disease or imply they are a model for human aging. I could be mistaking, as I am not an iPSC expert, but I believe the field uses these terms in the context of iPSC-derived neurons to mean something more akin to "mature". The authors try to invoke this to argue for the relevance of their results to patient disease, unless the authors know this is somehow actually representative of neurons from older patients, I think this is misleading. *

      Carried Out Revisions

      We apologize for any confusion. Our use of the term "aged" was intended solely as a relative descriptor, indicating that day 60 motor neurons had been maintained in culture for a longer duration than day 35 motor neurons. It was not meant to suggest that these neurons represent a specific age or disease state, but rather that they had been cultured for an extended period.

      Furthermore, we use the term "mature" specifically in the context of motor neuron differentiation to indicate the expression of motor neuron-specific markers, which occurs by day 25 of differentiation. To avoid ambiguity, we have revised the manuscript to use the term "culture time" instead, ensuring clarity in our terminology.

      *Reviewer #1 Minor Point 2. The JC-1 experiment is not being appropriately controlled. These results are predicted by increased cell or mitochondrial death even if the membrane potentials are identical. The authors need to control for apoptotic signaling if they want to make this conclusion. There is an accepted standard in the mitochondrial field for assaying mitochondrial membrane potential (generally using TMRE or TMRM, but JC-1 can be used with proper controls), but it requires lots of careful controls not performed here (normalization to oligomycin- and FCCP-treated cells as a bare minimum. *

      Carried Out Revisions

      We would like to thank Reviewer 1 for this comment. We apologize for the omission, and we did treat the cells with CCCP provided in the JC-1 kit as a positive control. The JC-1 subsection of the methods has been updated to reflect this with the following: “A separate aliquot of cell suspension was also incubated with 1 uL of the supplied 50mM CCCP for 15 min prior to JC-1 dye addition, to act as a positive control and ensure the JC-1 dye was correctly detecting low MMP populations.”

      • The flow cytometry experiments are problematic in general since the authors state that part of their incentive for studying mitochondria in this model is due to effects at synapses, and the sample preparation for the cytometer involved dissociating the cells (i.e.-removing all of the processes where synapses mostly reside). *

      Carried Out Revisions

      We thank Reviewer #1 for this comment. Our citation of the study by Gómez-Suaga et al. (2019) was not intended to suggest that our investigation focuses exclusively on mitochondria at synapses but rather to provide context on the current understanding of the field. To clarify this point, we have revised the manuscript to include the following statement: "It has also been shown that this interaction can occur at synapses, and disruptions to it may impact synaptic activity (Gómez-Suaga et al., 2019)."

      Citation:

      Gómez-Suaga, P. et al. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathologica Communications 7, 35, doi:10.1186/s40478-019-0688-4 (2019).

      • The normalization for VAPB in the inducible lines is unclear-how is normalization performed simultaneously to two genes at once? The authors do not provide enough information for us to understand what they have actually done, and I wonder if the data presented in the supplement on this is actually sufficiently different from random noise to be interpretable, since no statistics of any kind are given.*

      In response, we have added a qPCR section to the Methods, detailing our experimental approach as follows:

      "Quantitative PCR: RNA was extracted using TRIzol Reagent (Thermo Fisher), and the procedure was performed according to their provided protocol. cDNA was generated using SuperScript™ IV VILO™ Master Mix (Thermo Fisher), following the manufacturer’s instructions. qPCR was conducted using PowerTrack™ SYBR Green Master Mix for qPCR (Thermo Fisher), following the provided protocol, on a BioRad CFX96 thermocycler. Samples were run in triplicate. Quantification was performed using CFX Maestro software (BioRad). VAPB expression was normalized to Neomycin and RPL3 using the software, and the resultant expression values were graphed along with the provided SEM, per standards in the field (Livak & Schmittgen, 2001; Wong & Medrano, 2005)."

      Additionally, we have modified the graph to more clearly illustrate the comparison between VAPB WT and P56S, emphasizing that there is no significant difference in mRNA expression.

      Citations

      1. Wong, M. L. & Medrano, J. F. Real-time PCR for mRNA quantitation. Biotechniques 39, 75-85 (2005).
      2. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408 (2001).

      3. I don't think the tunicamycin experiments make sense in this context. The authors start with premise that I do not understand: "if the decrease in MERC was underlying the decrease in MMP seen later in differentiation, inducing cell stress early in differentiation could mimic the decreased MMP." Most cell stress pathways enhance ER-mito contact, not decrease it, so I am not sure why they expected this to work this way. They then continue: "We selected tunicamycin, an ER stressor, as VAPB is an ER protein, and if the decreased MMP could be caused, at least partially, by loss of MERCs, ER stress would likely exacerbate it." I don't understand this either- Tunicamycin is not a general ER-stressing agent-it is a specific inhibitor of some N-linked glycosylation-maturation pathways in the ER lumen, which causes ER stress by dysregulation of misfolded protein pathways. Since VAPB has no luminal domains to speak of, is not known to interact with the protein folding and maturation machinery at all, and Tunicamycin has no obvious connection I'm aware of to MERCs, I am not able to follow the authors' intentions or conclusions here. I suspect this needs a major rewrite to explain what the goals were and how the authors controlled for their findings. *

      Carried Out Revisions

      We thank Reviewer 1 for this insightful comment. To provide greater clarity on this point, we have revised the manuscript to include the following statement:

      "MAMs are known to be a hot spot for the transfer of stress signals from the ER to mitochondria (van Vliet & Agostinis, 2018). Consequently, to test whether we could induce mitochondrial dysfunction by exposing iPSC-derived motor neurons to stressors, we selected tunicamycin (TM), an ER stressor, as VAPB is an ER protein, and if the decreased MMP could be caused, at least partially, by loss of ER-MAM, ER stress would likely exacerbate it."

      This revision aims to more clearly articulate the rationale behind our approach and the selection of tunicamycin as an ER stressor.

      Citations

      1. van Vliet AR, Agostinis P (2018) Mitochondria-Associated Membranes and ER Stress. Curr Top Microbiol Immunol 414: 73-102 Minor Adjustments Not in Response to Reviewer Comments

      Several minor adjustments have been made in response to internal reviews and feedback, independent of any specific Reviewer comment. The only modification affecting the presented data resulted from a comment noting a minor discrepancy in the gating of green-fluorescing cells between VAPB WT and VAPB P56S on Day 30 (Figure 3C). To ensure consistency, the gating was redrawn and applied uniformly to both plots, leading to a slight change in values. However, the overall difference remains non-significant, and our interpretation of the data remains unchanged. Additionally, to facilitate visual comparison, the Y-axes of the quantification graphs in Figures 3C and 3D have been standardized, though the data in Figure 3D itself was not modified—only the Y-axis scaling was adjusted.

      Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

      We have responded to both of Reviewer #2’s Major Points 2 and 3 together, as the answer applies to both questions and the points raised in each idea.

      • *

      *Reviewer #2 Major Point 2. The authors highlight PTP151 binding to VAPB as a way to promote mitochondria ER contacts (MERC). They provide evidence that this association is diminished by the P56S VAPB mutation. This raises an important question. How does PTPIP51 binding connect with other phenotypes, such as the neuronal firing and ER stress sensitivity? Can the authors consider experiments to test this directly? For example, is there a way to drive PTP151 : VAPB interactions even in the face of mutant VAPB and see if this rescues the MERC defects and other phenotypes? *

      Reviewer #2 Major Point 3. The authors propose that the detachment of the mitochondria from the ER most likely be the cause for why their mutant motor neurons are more sensitive to ER stressors. Along the lines of the above, is there a way to test this hypothesis directly? Can they use other means to promote ER mitochondria association even in the face of VAPB mutation and test if this rescues phenotypes?

      Analyses We Prefer Not or Are Unable to Carry Out

      We thank Reviewer 2 for these insightful suggestions and fully agree that enhancing PTPIP51:VAPB interactions in the presence of mutant VAPB would be an effective approach to directly demonstrate that the loss of this interaction is the causative event underlying the observed phenotypes or to drive increased ER-mitochondria attachment.

      However, we have not identified a method to achieve this without introducing substantial alterations to the model system, which would likely compromise the interpretability of the results. The most promising approach we considered was the use of rapamycin-inducible linkers, as described by Csordás et al. (2010), which facilitate ER-mitochondria tethering upon rapamycin addition. Unfortunately, rapamycin directly affects translational regulation via mTOR (mammalian target of rapamycin) and given that translation dysregulation is a key phenotype in our study, its addition could influence multiple pathways, making it difficult to attribute any observed effects specifically to the intended manipulation.

      If the reviewers or editors have suggestions for alternative approaches, we would greatly appreciate their input. However, based on the current state of the field, we do not believe there is a method to selectively drive ER-mitochondria attachment or specifically enhance VAPB-PTPIP51 interactions without introducing confounding factors that would obscure whether the resulting effects are due to VAPB P56S pathophysiology or the intervention itself.

      Citation:

      1. Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell. 2010 Jul 9;39(1):121-32. doi: 10.1016/j.molcel.2010.06.029. PMID: 20603080; PMCID: PMC3178184.
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study demonstrates the significant role of secretory leukocyte protease inhibitor (SLPI) in regulating B. burgdorferi-induced periarticular inflammation in mice. They found that SLPI-deficient mice showed significantly higher B. burgdorferi infection burden in ankle joints compared to wild-type controls. This increased infection was accompanied by infiltration of neutrophils and macrophages in periarticular tissues, suggesting SLPI's role in immune regulation. The authors strengthened their findings by demonstrating a direct interaction between SLPI and B. burgdorferi through BASEHIT library screening and FACS analysis. Further investigation of SLPI as a target could lead to valuable clinical applications.

      The conclusions of this paper are mostly well supported by data, but two aspects need attention:

      (1) Cytokine Analysis:

      The serum cytokine/chemokine profile analysis appears without TNF-alpha data. Given TNF-alpha's established role in inflammatory responses, comparing its levels between wild-type and infected B. burgdorferi conditions would provide valuable insight into the inflammatory mechanism.

      (2) Sample Size Concerns:

      While the authors note limitations in obtaining Lyme disease patient samples, the control group is notably smaller than the patient group. This imbalance should either be addressed by including additional healthy controls or explicitly justified in the methodology section.

      We thank the reviewer for the careful review and positive comments.

      (1) We did look into the level of TNF-alpha in both WT and SLPI-/- mice with and without B. burgdorferi infection. At serum level, using ELISA, we did not observe any significant difference between all four groups. At gene expression level, using RT-qPCR on the tibiotarsal tissue, we also did not observe any significant differences. Our RT-qPCR result is consistent with the previous microarray study using the whole murine joint tissue (DOI: 10.4049/jimmunol.177.11.7930). The microarray study did not show significant changes in TNF-alpha level in C57BL/6 mice following B. burgdorferi infection. A brief discussion has been added, and the above data is provided as Supplemental figure 4 in the revised manuscript, line 334-339, and 756-763.

      (2) We agree with the reviewer that the control group is smaller than the patient group. Among the archived samples that are available, the number of adult healthy controls are limited. It has been shown that the serum level of SLPI in healthy volunteers is in average about 40 ng/ml  (DOI: 10.3389/fimmu.2019.00664 and 10.1097/00003246-200005000-00003). The median level in the healthy control in our data was 38.92 ng/ml, which is comparable to the previous results. A brief discussion has been added in the revised manuscript, line 364-369.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Yu and coworkers investigates the potential role of Secretory leukocyte protease inhibitor (SLPI) in Lyme arthritis. They show that, after needle inoculation of the Lyme disease (LD) agent, B. burgdorferi, compared to wild type mice, a SLPI-deficient mouse suffers elevated bacterial burden, joint swelling and inflammation, pro-inflammatory cytokines in the joint, and levels of serum neutrophil elastase (NE). They suggest that SLPI levels of Lyme disease patients are diminished relative to healthy controls. Finally, they find that SLPI may interact directly the B. burgdorferi.

      Strengths:

      Many of these observations are interesting and the use of SLPI-deficient mice is useful (and has not previously been done).

      We appreciate the reviewer’s careful reading and positive comments.

      Weaknesses:

      (a) The known role of SLPI in dampening inflammation and inflammatory damage by inhibition of NE makes the enhanced inflammation in the joint of B. burgdorferi-infected mice a predicted result;

      We agree that the observation of the elevated NE level and the enhanced inflammation is theoretically likely. Indeed, that was the hypothesis that we explored, and often what is theoretically possible does not turn out to occur. In addition, despite the known contribution of neutrophils to the severity of murine Lyme arthritis, the importance of the neutrophil serine proteases and anti-protease has not been specifically studied, and neutrophils secrete many factors. Therefore, our data fill an important gap in the knowledge of murine Lyme arthritis development – and set the stage for the further exploration of this hypothesis in the genesis of human Lyme arthritis.

      (b) The potential contribution of the greater bacterial burden to the enhanced inflammation is not addressed;

      We agree with the reviewer’s viewpoint that the increased infection burden in the tibiotarsal tissue of the infected SLPI-/- mice could contribute to the enhanced inflammation. A brief discussion of this possibility has been added in the revised manuscript, line 287-288.

      (c) The relationship of SLPI binding by B. burgdorferi to the enhanced disease of SLPI-deficient mice is not clear; and

      We agree with the reviewer that we have not shown the importance of the SLPI-B. burgdorferi binding in the development of periarticular inflammation. It is an ongoing project in our lab to identify the SLPI binding partner in B. burgdorferi. Our hypothesis is that SLPI could bind and inhibit an unknown B. burgdorferi virulence factor that contributes to murine Lyme arthritis. A brief discussion has been added in the revised manuscript, line 401-407.

      (d) Several methodological aspects of the study are unclear.

      We appreciate the critique. We have modified the methods section in greater detail in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      The authors investigated the role of secretory leukocyte protease inhibitors (SLPI) in developing Lyme disease in mice infected with Borrelia burgdorferi. Using a combination of histological, gene expression, and flow cytometry analyses, they demonstrated significantly higher bacterial burden and elevated neutrophil and macrophage infiltration in SLPI-deficient mouse ankle joints. Furthermore, they also showed direct interaction of SLPI with B. burgdorferi, which likely depletes the local environment of SLPI and causes excessive protease activity. These results overall suggest ankle tissue inflammation in B. burgdorferi-infected mice is driven by unchecked protease activity.

      Strengths:

      Utilizing a comprehensive suite of techniques, this is the first study showing the importance of anti-protease-protease balance in the development of periarticular joint inflammation in Lyme disease.

      We greatly appreciate the reviewer’s careful reading and positive comments.

      Weaknesses:

      Due to the limited sample availability, the authors investigated the serum level of SLPI in both in Lyme arthritis patients and patients with earlier disease manifestations.

      We agree with the reviewer that it would be ideal to have more samples from Lyme arthritis patients. However, among the available archived samples, samples from Lyme arthritis patients are limited. For the samples from patients with single EM, the symptom persisted into 3-4 month after diagnosis, the same timeframe when acute arthritis is developed. A brief discussion has been added in the revised manuscript, line 364-369.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) In Figure 2, for histological scoring, do they have similar n numbers?

      In panel B, 20 infected WT mice and 19 infected SLPI-/- mice were examined. In panel D, 13 infected WT and SLPI-/- mice were examined. Without infection, WT and SLPI-/- mice do not develop spontaneous arthritis. Due to the slow breeding of the SLPI-/- mice, a small number of uninfected control animals were used. All the supporting data values are provided in the supplemental excel.

      (2) In Figure 3, for macrophage population analysis, maybe consider implementing Ly6G-negative gating strategy to prevent neutrophil contamination in macrophage population?

      We appreciate reviewer’s suggestion. We have analyzed the data using the Ly6G-negative gating strategy and provided the result in the Supplemental figure 1. The two gating strategies showed consistent result, significantly higher percentage of infiltrating macrophages in the tibiotarsal tissue from infected SLPI-/- mice, line 154-158, line 726-729.

      Reviewer #2 (Recommendations for the authors):

      (1) The investigators should address the possibility that much of the enhanced inflammatory features of infected SLPI-deficient mice are simply due to the higher bacterial load in the joint.

      We agree with the reviewer’s viewpoint that the increased infection burden in the tibiotarsal tissue of the infected SLPI-/- mice could contribute to the enhanced inflammation. A brief discussion of this possibility has been added in the revised manuscript, line 287-288.

      (2) Fig. 1. (A) There is no statistically significant difference in the bacterial load in the heart or skin, in contrast to the tibiotarsal joint. It would be of interest to know whether other tissues that are routinely sampled to assess the bacterial load, such as injection site, knee, and bladder, also harbored increased bacterial load in SLPI-deficient mice. (B) Heart and joint burden were measured at "21-28" days. The two time points should be analyzed separately rather than pooled.

      (A) We appreciate the reviewer’s suggestion. We agree that looking into the infection load in other tissues is helpful. However, studies into murine Lyme arthritis have been predominantly focused on tibiotarsal tissue, which displays the most consistent and prominent swelling that’s easy to observe and measure. Thus, we focused on the tibiotarsal joint in our study. (B) We collected the heart and joint tissue approximately 3-week post infection within a 3-day window based on the feasibility and logistics of the laboratory. Using “21-28 d”, we meant to describe between 21 to 24 days post infection. We apologize for the mislabeling and it has been corrected it in the revised manuscript. In the methods, we defined the timeframe as “Mice were euthanized approximately 3-week post infection within a 3-day window (between 21 to 24 dpi) based on the feasibility and logistics of the laboratory”, line 464-466. In the results and figure legend, we corrected it as “between 21 to 24 dpi”.

      (3) Fig. 2. (A) The same ambiguity as to the days post-infection as cited above in Point 2B exists in this figure. (B) Panel B: Caliper measurements to assess joint swelling should be utilized rather than visual scoring. (In addition, the legend should make clear that the black circles represent mock-infected mice.)

      (A) The histology scoring, and histopathology examination were performed at the same time as heart and joint tissue collection, approximately 3 weeks post infection within a 3-day window based on the feasibility and logistics of the laboratory. We apologize for the mislabeling and it has been corrected in the revised manuscript. (B) We appreciate the reviewer’s suggestion. However, our extensive experience is that caliper measurement can alter the assessment of swelling by placing pressure on the joints and did not produce consistent results. Double blinded scoring was thus performed. Histopathology examination was performed by an independent pathologist and confirmed the histology score and provided additional measurements.

      (4) Fig. 3. (A) See Point 2B. (B) For Panels C-E, uninfected controls are lacking.

      We apologize for this omission. Uninfected controls have been provided in Figure 3 in the revised manuscript.

      (5) Fig. 4. Fig. 4. Some LD subjects were sampled multiple times (5 samples from 3 subjects with Lyme arthritis; 13 samples from 4 subjects with EM), and samples from same individuals apparently are treated as biological replicates in the statistical analysis. In contrast, the 5 healthy controls were each sampled only once.

      We agree with the reviewer that the control group is smaller than the patient group. Among the archived samples that are available, the number of adult healthy controls are limited, and sampled once. We used these samples to establish the baseline level of SLPI in the serum. It has been shown that the serum level of SLPI in healthy volunteers is in average about 40 ng/ml  (DOI: 10.3389/fimmu.2019.00664 and 10.1097/00003246-200005000-00003). The median level in the healthy control in our data was 38.92 ng/ml, which is comparable to the previous results. A brief discussion has been added in the revised manuscript, line 364-369.

      (6) Fig. 5. (A) Panel A: does binding occur when intact bacteria are used? (B) Panels B, C: Were bacteria probed with PI to indicate binding likely to occur to surface? How many biological replicates were performed for each panel? Is "antibody control" a no SLPI control? What is the blue line?

      Actively growing B. burgdorferi were collected and used for binding assays. We do not permeabilize the bacteria for flow cytometry. Thus, all the binding detected occurs to the bacterial surface. Three biological replicates were performed for each panel. The antibody control is no SLPI control. For panel D, the bacteria were stained with Hoechst, which shows the morphology of bacteria. We apologize for the missing information. A complete and detailed description of Figure 5 has been provided in both methods and figure legend in the revised manuscript. 

      (7) Sup Fig. 1. (A) Panel A: Was this experiment performed multiple times? I.e., how many biological replicates? (B) Panel B: Strain should be specified.

      The binding assay to B. burgdorferi B31A was performed two times. In panel B, B. burgdorferi B31A3 was used. We apologize for the missing information. A complete and detailed description has been provided in the figure legend in the revised manuscript. 

      (8) Fig. S2. It is not clear that the condition (20% serum) has any bactericidal activity, so the potential protective activity of SLPI cannot be determined. (Typical serum killing assays in the absence of specific antibody utilized 40% serum.)

      In Fig. S2, panel B, the first two bars (without SLPI, with 20% WT anti serum) showed around 40% viability. It indicates that the 20% WT anti serum has bactericidal activity. Serum was collected from B. burgdorferi-infected WT mice at 21 dpi, which should contain polyclonal antibody against B. burgdorferi.

      Reviewer #3 (Recommendations for the authors):

      It was a pleasure to review! I congratulate the authors on this elegant study. I think the manuscript is very well-written and clearly conveys the research outcomes. I only have minor suggestions to improve the readability of the text.

      We greatly appreciate the reviewer’s recognition of our work.

      Line 92: Please briefly summarize the key results of the study at the end of the introduction section.

      We appreciate the reviewer’s suggestion. A brief summary has been added in the revised manuscript, line 93-103.

      Line 108: Why is the inflammation significantly occurred only in ankle joints of SLPI-I mice? Could you please provide a brief explanation?

      The inflammation may also happen in other joints the B. burgdorferi infected SLPI-/- mice, which has not been studied. The study into murine Lyme arthritis has been predominantly done in the tibiotarsal tissue, which displays the most prominent swelling that’s easy to observe and measure. Thus, we focused on the tibiotarsal joint in our study.

      Line 136: Please also include the gene names in Figure 3.

      We apologize for the omission. Gene names has been included in figure legend in the revised manuscript.

      Line 181: Please briefly introduce BASEHIT. Why did you use this tool? What are the benefits?

      We appreciate the reviewer’s suggestion. We have provided a brief introduction on BASEHIT in the revised manuscript, line 216-218.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      As our understanding of the immune system increases it becomes clear that murine models of immunity cannot always prove an accurate model system for human immunity. However, mechanistic studies in humans are necessarily limited. To bridge this gap many groups have worked on developing humanised mouse models in which human immune cells are introduced into mice allowing their fine manipulation. However, since human immune cells will attack murine tissues, it has proven complex to establish a human-like immune system in mice. To help address this, Vecchione et al have previously developed several models using human cell transfer into mice with or without human thymic fragments that allow negative selection of autoreactive cells. In this report they focus on the examination of the function of the B-helper CD4 T-cell subsets T-follicular helper (Tfh) and T-peripheral helper (Tph) cells. They demonstrate that these cells are able to drive both autoantibody production and can also induce B-cell independent autoimmunity.

      Strengths:

      A strength of this paper is that currently there is no well-established model for Tfh or Tph in HIS mice and that currently there is no clear murine Tph equivalent making new models for the study of this cell type of value. Equally, since many HIS mice struggle to maintain effective follicular structures Tfh models in HIS mice are not well established giving additional value to this model.

      Weaknesses:

      A weakness of the paper is that the models seem to lack a clear ability to generate germinal centres. For Tfh it is unclear how we can interpret their function without the structure where they have the greatest influence. In some cases, the definition of Tph does not seem to differentiate well between Tph and highly activated CD4 T-cells in general.

      The limited ability of HIS mice to generate well-defined lymphoid tissue structures is well noted. While the emergence of T cells in HIS mice increases the size of lymphoid tissues, the structure remains suboptimal and vaccination responses are limited. We believe this is mainly due to the common gamma chain knockout, which results in a lack of murine lymphoid tissue inducer (LTi) cells, which require IL-7 signaling to interact with murine mesenchymal cells for normal lymphoid tissue development. Ongoing efforts by our group and others aim to address this challenge by providing the necessary signals. Despite this challenge, these mice do develop Tfh cells, allowing us to study this cell subset.

      We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.

      However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1 expression, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production. 

      Reviewer #2 (Public Review):

      Summary:

      Humanized mice, developed by transplanting human cells into immunodeficient NSG mice to recapitulate the human immune system, are utilized in basic life science research and preclinical trials of pharmaceuticals in fields such as oncology, immunology, and regenerative medicine. However, there are limitations to using humanized mice for mechanistic analysis as models of autoimmune diseases due to the unnatural T cell selection, antigen presentation/recognition process, and immune system disruption due to xenogeneic GVHD onset.

      In the present study, Vecchione et al. detailed the mechanisms of autoimmune disease-like pathologies observed in a humanized mouse (Human immune system; HIS mouse) model, demonstrating the importance of CD4+ Tfh and Tph cells for the disease onset. They clarified the conditions under which these T cells become reactive using techniques involving the human thymus engraftment and mouse thymectomy, showing their ability to trigger B cell responses, although this was not a major factor in the mouse pathology. These valuable findings provide an essential basis for interpreting past and future autoimmune disease research conducted using HIS mice.

      Strengths:

      (1) Mice transplanted with human thymus and HSCs were repeatedly executed with sufficient reproducibility, with each experiment sometimes taking over 30 weeks and requiring desperate efforts. While the interpretation of the results is still debatable, these description is valuable knowledge for this field of research.

      (2) Mechanistic analysis of T-B interaction in humanized mice, which has not been extensively addressed before, suggests part of the activation mechanism of autoreactive B cells. Additionally, the differences in pathogenicity due to T cell selection by either the mouse or human thymus are emphasized, which encompasses the essential mechanisms of immune tolerance and activation in both central and peripheral systems.

      Weaknesses:

      (1) In this manuscript, for example in Figure 2, the proportion of suppressive cells like regulatory T cells is not clarified, making it unclear to what extent the percentages of Tph or Tfh cells reflect immune activation. It would have been preferable to distinguish follicular regulatory T cells, at least. While Figure 3 shows Tregs are gated out using CD25- cells, it is unclear how the presence of Treg cells affects the overall cell population immunogenic functionally.

      We analyzed the % FOXP3+ cells and the % of ICOS+ cells within the Tfh and Tph cells in the spleen of Hu/Hu and Mu/Hu mice at 20 weeks post-transplantation. Importantly, we see no difference in FOXP3 expression between Tfh of Mu/Hu and Hu/Hu mice. The results have been added to panels J and K of Figure 2. 

      (2) The definition of "Disease" discussed after Figure 6 should be explicitly described in the Methods section. It seems to follow Khosravi-Maharlooei et al. 2021. If the disease onset determination aligns with GVHD scoring, generally an indicator of T cell response, it is unsurprising that B cell contribution is negligible. The accelerated disease onset by B cell depletion likely results from lymphopenia-induced T cell activation. However, this result does not prove that these mice avoid organ-specific autoimmune diseases mediated by auto-antibodies and the current conclusion by the authors may overlook significant changes. For instance, would defining Disease Onset by the appearance of circulating autoantibodies alter the result of Disease-Free curve? Are there possibly histological findings at the endpoint of the experiment suggesting tissue damage by autoantibodies?

      We have added a definition of disease to the Methods section as requested. Regarding the possibility of antibody-mediated disease that may be missed by this definition, we acknowledge this point in the Discussion section. However, we also discuss the point that the deficient complement pathway in NSG mice is likely to have protected the HIS mice from autoantibody-mediated organ damage.

      (3) Helper functions, such as differentiating B cells into CXCR5+, were demonstrated for both Hu/Hu and Mu/Huderived T cells. This function seemed higher in Hu/Hu than in Mu/Hu. From the results in Figure 7-8, Hu/Hu Tph/Tfh cells have a stronger T cell identity and higher activation capacity in vivo on a per-cell basis than Mu/Hu's ones. However, Hu/Hu-T cells lacked an ability to induce class-switching in contrast to Mu/Hu's. The mechanisms causing these functional differences were not fully discussed. Discussions touching on possible changes in TCR repertoire diversity between Mu/Hu- and Hu/Hu- T cells would have been beneficial. 

      Consistent with the reviewer’s suggestion, we have previously shown that the TCR repertoire in Mu/Hu mice is less diverse than that in Hu/Hu mice (Khosravi-Maharlooei M, et al., J Autoimmun., 2021). We believe that the narrowed TCR repertoire in the periphery of Mu/Hu mice, combined with the inadequate negative selection in the murine thymus reported in the paper cited above, results in selective peripheral expansion primarily of the few T cell clones that are cross-reactive with HLA/murine self peptide complexes presented by human APCs in the periphery.  We have discussed the reasons why these cells, when transferred to secondary recipients containing the same APCs, might not be as active as the more diverse, HLA-selected T cell repertoire transferred from Hu/Hu mice.  These possible reasons include exhaustion of the T cells in Mu/Hu mice, limited expression of the few targeted HLA-peptide complexes recognized by the narrow cross-reactive TCR repertoire of Mu/Hu T cells and the consequent relatively impaired T-B cell collaboration in these mice.   

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      The authors note that they removed an outlier result from Figures 1 B & C. With only 4 mice it seems difficult to see exactly how they determined the result was an outlier. Presumably, it was quite different from the others but in such a small dataset removing data without a very clear statistical rationale seems likely to strongly influence the results.

      We have revised Fig 1 to include the previously-deleted outlier mouse.   

      Figure 4. The authors describe the follicular area. Were they able to observe any GC-like structures in their data?

      From the examples, I can see that the PNA staining is sometimes diffuse but even if the authors felt they could not observe a distinct GC this should be stated and discussed in the text.

      We now describe the three colors IF staining in more detail in accordance with this comment. We characterized 4 Hu/Hu and 3 Mu/Hu spleens earlier than 20 weeks post-transplant. In all of these mice, distinct B cell areas (CD20+) were obvious and PNA+ cells were more concentrated in the B cell zones. We stained 4 Hu/Hu and 3 Mu/Hu spleens from mice between 20-30 weeks post-transplant and found that B cell areas were smaller in all these spleens compared to those taken before 20-weeks post-transplant. PNA+ areas are also more diffusely distributed and are not enriched in the B cell areas. Only 2 Mu/Hu mice showed clear B cell zones with some enriched PNA+ areas in the B cell zones. Additionally, we stained 2 Hu/Hu and 2 Mu/Hu mice later than week 30 post-transplant. No distinct B cell areas were observed in any of the spleens of these mice and PNA+ cells were diffusely distributed.  

      In Figure 3E the authors sort CD25-CXCR5-CD45RA- CD4 T-cells as Tph. This does seem a very loose definition including essentially all non-naïve CD4 cells that are not Tregs or Tfh.

      We agree with the reviewer that the distinction between Tph and highly activated CD4 T cells is incomplete.

      However, we have provided several distinctions in our manuscript that support the presence of Tph in HIS mice: 1) Tph cells exhibit very high levels of PD-1, whereas other activated CD4 cells have varying levels of PD-1 expression. 2) Tph cells express IL-21. 3) Tph cells promote B cell differentiation and antibody production. 

      Tph is sometimes a hard cell type to separate from more general highly activated CD4 T-cells. The broad CXCR5PD1+ phenotype they have used is common in the literature and the authors have confirmed some enrichment of IL21 production by these cells. However, they should consider if there are ways of further confirming this by examination of other markers such as CCR2 and CCR5 or elimination of other effector identities such as Th1 and Th17 or PD1+ exhaustion phenotypes.

      For this study, we chose to follow the commonly used definitions in the literature for Tph and Tfh cells. For this reason, we are careful to refer to “Tph-like” cells rather than Tph cells in this manuscript. Distinguishing Tph cells from other subsets of activated CD4 cells would require further studies such as single cell RNA seq, which we hope to be able to perform in the future with additional funding.  

      Figure 8. The authors perform some analysis of B-cell phenotypes looking at markers such as CD27, IgD in 8B, and CD11c in 8C. Why is CD11c considered in isolation? The level of expression of the other markers would change how this data would be interpreted e.g. IgD-CD27-CD11c+ = DN2/Atypical cells, IgD-CD27+CD11c+ = Activated or ageassociated, etc.

      In response to this comment, we reanalyzed the splenic samples of the donor Mu/Hu and Hu/Hu mice and their adoptive recipients. Interestingly, in the T cell donors, the Mu/Hu B cells included greater proportions of activated/age-associated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+), compared to the Hu/Hu B cells. This is consistent with the increased disease, increased Tph/Tfh and increased IgG antibody findings in the primary Mu/Hu compared to Hu/Hu mice. These results have been added to Figure 5G. We performed a similar analysis in the blood (week 9) and spleen of adoptive recipient mice. These studies showed that activated/ageassociated B cells (IgD-CD27+CD11c+) and atypical cells (IgD-CD27-CD11c+) were significantly increased in the adoptive recipients of Hu/Hu Tph and Tfh cells compared to the adoptive recipients of Mu/Hu Tph and Tfh cells (Fig. 8C). These results are consistent with the disease, T cell expansion and antibody results in the adoptive recipients. 

      Data not shown occurs often in this manuscript. In some cases what is not shown is potentially important. The authors note in the text relating to Figure 7 that the "purity of the cell populations as assessed by FCM ranged from 56-60% (data not shown)". Those numbers are a little alarming. They are referring to the purity of the FCS sorted Tfh and Tph prior to transfer? Currently, some of the discussion of this paper is about the possibility of plasticity, with Tfh switching into a Tph phenotype. If the transferred cell populations are 56-60% pure I don't think it is possible to make any interpretation of plasticity.

      We looked into this further and realized that the purity figure cited in the original manuscript was erroneous due to a misunderstanding on the part of the first author of a question from the senior author. Unfortunately, data on the purity of the FACS-sorted population was not saved. However, we have added panel B to Figure 7 to show the sorting strategy for Tfh and Tph cells.   We agree that any discussion of plasticity between these cell types is speculative, as outgrowth of a minor population is possible even from well-purified sorted cells.  

      Minor points:

      Some graphs have issues with presentation; Figures 5D and 5E, split scale clips data points. 5F the color representing time would be better replaced with direct labels. 6C and 6C some distortion of text clipping other elements.

      We changed 5D and 5E y axis scales to avoid cutting the data points. Also, we changed 5F labels. Distortion of text clipping and other elements in Fig 6E and 6A have been corrected.  

      The abbreviation LIP is used in the abstract without a clear definition until later in the text.

      This abbreviation has been defined again in the text.

      Generally, the discussion section is quite long.

      We agree that the discussion is quite long, but the results are quite complex and require considerable discussion.  We have attempted to be as concise as possible.

      Reviewer #2 (Recommendations For The Authors):

      Suggestion

      Can Supplementary Figures be merged into the mains for the convenience of readers? There is enough extra margin.

      We prefer to keep the order of main and supplementary figures as they are. 

      There are some confusing results which I would recommend to make the additional explanation for readers. For example, about 10% of Hu/Hu CD3+ T cells reacted to Auto-DC in Figure 1B, but neither CD4+ nor CD8+ cells did in Figure 1C.

      We have re-analyzed the data in Fig 1 and included the previously-deleted outlier mouse. 

      Minor

      Figure 3C

      The figure legend does not explain the figure. Hu/Mu or Mu/Mu?

      Both groups were combined in the figure, as the results were similar for both.  The N per group is given in the figure legend.  The same applies to figure 3D.

      Figure 4B, 4C

      Why were Hu/Hu and Mu/Hu data merged only in 4B? They should be discussed in the context of parallel comparison. Both y-axis labels are the same between B and C despite the legend saying differently.

      We switched the order of Figure 4B and 4C, each of which serves a different purpose. Figure 4B aims to demonstrate the similarity between the two groups at each timepoint.  Figure 4C combines the two groups in order to provide sufficient animal numbers to demonstrate the statistically significant changes over time. 

      Figure 5D

      The axis label was missing and the uncertain bar emerged. The authors should replace it with the corrected one.

      The axis and the bar in 5D have been corrected.

      Figure 5F

      The legend does not explain the figure. What are these numbers? Also, it is better if the authors add a detailed explanation to the manuscript about the reason why the sum of antibody titer represents the poly-reactivity of IgM in these mice.

      The numbers in the previous version of the figure were eartag numbers, which we have now renumbered as animal 1,2,3, etc in each group. Please refer to the final paragraph of the "Autoreactivity of IgM and IgG in HIS Mice" section in the Results section for an explanation of IgM polyreactivity.

      Fig. 7D-E etc.

      The definition of Asterisk is insufficient. Between what to what in the multiple comparisons?

      The green asterisks show significant differences between the Tph in Hu/Hu vs Mu/Hu mice, while the orange asterisks show significant differences between the Tfh in Hu/Hu vs Mu/Hu mice. This has been added to the figure legend.

      Figure 7 ~ Figure 8

      The legends on the figure are confusing due to the different order of figures. The scales are inappropriate in some figures. The readers cannot interpret the data from the unfairly compressed plots.

      We made the plots bigger to make them readable and changed the order.

      Methods

      In the description of B cell depletion Experiments, the authors should directly mention the figure number instead of "In the second Experiment ..."

      We have corrected this in the Methods section.

      There is no definition of how to define the "disease" onset.

      This definition has been added to the Methods section.

      Several undefined abbreviations: "LIP", "BLT" ...

      We defined these in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public reviews):

      Summary:

      In this study, Fakhar et al. use a game-theoretical framework to model interregional communication in the brain. They perform virtual lesioning using MSA to obtain a representation of the influence each node exerts on every other node, and then compare the optimal influence profiles of nodes across different communication models. Their results indicate that cortical regions within the brain's "rich club" are most influential.

      Strengths:

      Overall, the manuscript is well-written. Illustrative examples help to give the reader intuition for the approach and its implementation in this context. The analyses appear to be rigorously performed and appropriate null models are included.

      Thank you.

      Weaknesses:

      The use of game theory to model brain dynamics relies on the assumption that brain regions are similar to agents optimizing their influence, and implies competition between regions. The model can be neatly formalized, but is there biological evidence that the brain optimizes signaling in this way? This could be explored further. Specifically, it would be beneficial if the authors could clarify what the agents (brain regions) are optimizing for at the level of neurobiology - is there evidence for a relationship between regional influence and metabolic demands? Identifying a neurobiological correlate at the same scale at which the authors are modeling neural dynamics would be most compelling.

      This is a fundamental point, and we put together a new project to address it. The current work focuses on, firstly, rigorously formalizing a prevailing assumption that brain regions optimize communication, and then uncovering what are the characteristics of communication if this optimization is indeed taking place. Based on our findings, we suspect the mechanism of an optimal communication to be through broadcasting (compared to other modes explored in our work, e.g., the shortest-path signalling or diffusion). However, we recognize that our game-theoretical framework does not directly address “how” this mechanism is implemented. Thus, in our follow-up work, we are analyzing available datasets of signal propagation in the brain to see if communication dynamics there match the predictions of the game-theoretical setup. However, following your question, we extended our discussion to cover this point, cited five other works on this topic, and what, we think, could be the neurobiological mechanism of optimal signalling.  

      It is not entirely clear what Figure 6 is meant to contribute to the paper's main findings on communication. The transition to describing this Figure in line 317 is rather abrupt. The authors could more explicitly link these results to earlier analyses to make the rationale for this figure clearer. What motivated the authors' investigation into the persistence of the signal influence across steps?

      Great question. Figure 6 in part follows Figure 5, which summarizes a key aspect of our work: Signals subside at every step but not exponentially (Figure 5), and they nearly fall apart after around 6 steps (Figure 6 A and B). Subplots A and B together suggest that although measures like communicability account for all possible pathways, the network uses a handful instead, presumably to balance signalling robustness versus the energetic cost of signalling. Subplot C, one of our main findings, then shows how one simple model is all needed to predict a large portion of optimal influence compared to other models and variables. In sum, Figure 5 focused on the decay dynamics while Figure 6 focused on the extent, in terms of steps, given that the decay is monotonic. Together, our motivation for this figure was to show how the right assumption about decay rate and dynamics can outperform other measures in predicting optimal communication. 

      The authors used resting-state fMRI data to generate functional connectivity matrices, which they used to inform their model of neural dynamics. If I understand correctly, their functional connectivity matrices represent correlations in neural activity across an entire fMRI scan computed for each individual and then averaged across individuals. This approach seems limited in its ability to capture neural dynamics across time. Modeling time series data or using a sliding window FC approach to capture changes across time might make more sense as a means of informing neural dynamics.

      We agree with you on the fact that static fMRI is limited in capturing neural dynamics. However, we opted not to perform dynamic functional connectivity fitting just yet for a practical reason: Other communication models used here do not fit to any empirical data and provide a static view of the dynamics, comparable to the static functional connectivity. Since one of our goals was to compare different communication regimes, and the fact that fitting dynamics does not seem to substantially change the outcome if the end result is static (Figure 7), we decided to go with the poorer representation of neural data for this work. However, part of our follow-up project involves looking into the dynamics of influence over time and for that, we will fit our models to represent more realistic dynamics.

      The authors evaluated their model using three different structural connectomes: one inferred from diffusion spectrum imaging in humans, one inferred from anterograde tract tracing in mice, and one inferred from retrograde tract-tracing in macaque. While the human connectome is presumably an undirected network, the mouse and macaque connectomes are directed. What bearing does experimentally inferred knowledge of directionality have on the derivation of optimal influence and its interpretation?

      In terms of if directionality changes the interpretation of optimal influence, we think it sets limits for how much we can compare communication dynamics of these two types of networks. We think interpreting optimal communication in directed graphs needs to disentangle incoming influence from outgoing influence, e.g., analyzing “projector hubs/coordinators” and “receiver hubs/integrators” instead of putting both into a common class of hubs. Also, here we showed the extent of which a signal travels before it significantly degrades, having done so in an undirected graph. One of its implications for a directed graph is the possibility that some nodes can be unreachable from others, given the more restricted navigation. A possibility that we did not observe in the human connectome as all nodes could reach others, although with limited influence (see Figure 2. C). We did not explore these differences, as we used mice and macaque connectomes primarily to control for modality-specific confounds of DSI. However, our relatively poorer fit for directed networks (Supplementary Figure 2) motivated us to analyze how reciprocal connections shape dynamics and what impact do they have on networks’ function. Using the same connectomes as the current work, we addressed this question in a separate publication (Hadaeghi et al., 2024) and plan to extend both works by analyzing the signalling properties of directed networks.

      It would be useful if the authors could assess the performance of the model for other datasets. Does the model reflect changes during task engagement or in disease states in which relative nodal influence would be expected to change? The model assumes optimality, but this assumption might be violated in disease states.

      This is a wonderful idea that we initially had in mind for this work as well, but decided to dedicate a separate work on deviations in different tasks states, as well as disease states (mainly neurodegenerative disorders). We noticed the practical challenges of fitting large-scale models to task dynamics and harmonizing neuroimaging datasets of neurodegenerative disorders is beyond the scope of the current work. Unfortunately, this effort, although exciting and promising, is still pending as the corresponding author does not yet have the required expertise of neuroimaging processing pipelines.

      The MSA approach is highly computationally intensive, which the authors touch on in the Discussion section. Would it be feasible to extend this approach to task or disease conditions, which might necessitate modeling multiple states or time points, or could adaptations be made that would make this possible?

      Continuing our response from the previous point, yes, we think, in theory, the framework is applicable to both settings. Currently, our main point of concern is not the computational cost of the framework but the harmonization of the data, to ensure differences in results are not due to differences in preprocessing steps. However, assuming that all is taken care of, we believe a reasonable compute cluster should suffice by parallelizing the analytical pipeline over subjects. We acknowledge that the process would still be time-consuming, but besides the fitting process, we expect a modern high-performance CPU with about 32–64 threads to take up to 3 days analyzing one subject, given 100 brain regions or fewer. This performance then scales with the number of cluster nodes that can each work on one subject. We note that the analytical estimators such as SAR could be used instead, as it largely predicts the results from MSA. The limitations are then the lack of dynamics over time and potential estimation errors.

      Reviewer #2 (Public review):

      Summary:

      The authors provide a compelling method for characterizing communication within brain networks. The study engages important, biologically pertinent, concerns related to the balance of dynamics and structure in assessing the focal points of brain communication. The methods are clear and seem broadly applicable, however further clarity on this front is required.

      Strengths:

      The study is well-developed, providing an overall clear exposition of relevant methods, as well as in-depth validation of the key network structural and dynamical assumptions. The questions and concerns raised in reading the text were always answered in time, with straightforward figures and supplemental materials.

      Thank you.

      Weaknesses:

      The narrative structure of the work at times conflicts with the interpretability. Specifically, in the current draft, the model details are discussed and validated in succession, leading to confusion. Introducing a "base model" and "core datasets" needed for this type of analysis would greatly benefit the interpretability of the manuscript, as well as its impact.

      Following your suggestion, we modified the introduction to emphasize on the human connectome and the linear model as the main toolkit. We also added a paragraph explaining the datasets that can be used instead.

      Recommendations for the authors:

      Essential Revisions (for the authors):

      (1) The method presents an important and well-validated method for linking structural and functional networks, but it was not clear precisely what the necessary data inputs were and what assumptions about the data mattered. To improve the clarity of the presentation for the reader, it would be beneficial to have an early and explicit description of the flow of the method - what exact kinds of datasets are needed and what decisions need to be made to perform the analysis. In addition, there were questions about how the use or interpretation of the method might change with different methods of measuring structure or function, which could be answered via an explicit discussion of the issue. For example, how do undirected fMRI correlation networks compare to directed tracer injection projection networks? Similarly, could this approach apply in cases like EM connectomics with linked functional imaging that do not have full observability in both modalities?

      This is an important point that we missed addressing in detail in the original manuscript. Now we did so, by first adding a paragraph (lines 292-305, page 10) explaining the pipeline and how our framework handles different modeling choices, and then further discussing it in the Discussion (lines 733-748, page 28). Moreover, we adjusted Figure 1, by delineating two main steps of the pipeline. Briefly, we clarified that MSA is model-agnostic, meaning that, in principle, any model of neural dynamics can be used with it, from the most abstract to the most biologically detailed. Moreover, the approach extends to networks built on EM connectomics, tract-tracing, DTI, and other measures of anatomical connectivity. However, we realized that a key detail was not explicitly discussed (pointed to by Reviewer #2), that is, the fact that these models naturally need to be fitted to the empirical dataset, even though this fitting step appears not to be critical, as shown in Figure 7.

      Lines 292-305:

      “The MSA begins by defining a ‘game.’ To derive OSP, this game is formulated as a model of dynamics, such as a network of interacting nodes. These can range from abstract epidemic and excitable models (Garcia et al., 2012; Messé et al., 2015a) to detailed spiking neural networks (Pronold et al., 2023) and to mean-field models of the whole brain dynamics, as chosen here (see below). The model should ideally be fitted to reflect real data dynamics, after which MSA systematically lesions all nodes to derive the OSP. Put together, the framework is general and model-agnostic in the sense that it accommodates a wide range of network models built on different empirical datasets, from human neuroimaging and electrophysiology to invertebrate calcium imaging, and anything in between. In essence, the framework is not bound to specific modelling paradigms, allowing direct comparison among different models (e.g., see section Global Network Topology is More Influential Than Local Node Dynamics).”

      Lines 733-740:

      “As noted in the introduction, OI is model-agnostic, here, we leveraged this liberty to compare signaling under different models of local dynamics, primarily built upon undirected human connectome data. We also considered different modalities, e.g., tract tracing in Macaque (see Structural and Functional Connectomes under Materials and Methods) to confirm that the influence of weak connections is not inflated due to imaging limitations (Supplementary Figure 5. A). The game theoretical formulation of signaling allows for systematic comparison among many combinations of modeling choices and data sources.”

      We then continued with addressing the issue of full observability. We clarified that in this work, full observability was assumed. However, the mathematical foundations of our method capture unobserved contributors/influencers as an extra term, similar to the additive error term of a linear regression model. To keep the paper as non-technical as possible, we omitted expanding the axioms and the proof of how this is achieved, and instead referred to previous papers introducing the framework. 

      Lines 740-748:

      “Nonetheless, in this work, we assumed full observability, i.e., complete empirical knowledge of brain structure and function that is not necessarily practically given. Although a detailed investigation of this issue is needed, mathematical principles behind the method suggest that the framework can isolate the unobserved influences. In these cases, activity of the target node is decomposed such that the influence from the observed sources is precisely mapped, while the unobserved influences form an extra term, capturing anything that is left unaccounted for, see (Algaba et al., 2019b; Fakhar et al., 2024) for more technical details.”

      (2) The value of the normative game theoretic approach was clear, but the neurobiological interpretation was less so. To better interpret the model and understand its range of applicability, it would be useful to have a discussion of the potential neurobiological correlates that were at the same level of resolution as the modeling itself. Would such an optimization still make sense in disease states that might also be of interest?

      This is a brilliant question, which we decided to explore further in separate studies. Specifically, the link between optimal communication and brain disorders is a natural next step that we are pursuing. Here, we expanded our discussion with a few lines first explaining the roots of our main assumption, which is that neurons optimize information flow, among other goals. We then hypothesized that the biological mechanisms by which this goal is achieved include (based on our findings) adopting a broadcasting regime of signaling. We suspect that this mode of communication, operationalized on complex network topologies, is a trade-off between robust signaling and energy efficiency. Currently, we are planning practical steps to test this hypothesis.

      Lines 943-962:

      “Nonetheless, our framework is grounded in game theory where its fundamental assumption is that nodes aim at maximizing their influence over each other, given the existing constraints. This assumption is well explored using various theoretical frameworks (Buehlmann and Deco, 2010; Bullmore and Sporns, 2012; Chklovskii et al., 2002; Laughlin and Sejnowski, 2003; O’Byrne and Jerbi, 2022) and remains open to further empirical investigation. Here, we used game theory to mathematically formalize a theoretical optimum for communication in brain networks. Our findings then provide a possible mechanism for achieving this optimality through broadcasting. Based on our results, we speculate that, there exists an optimal broadcasting strength that balances robustness of the signal with its metabolic cost. This hypothesis is reminiscent of the concept of brain criticality, which suggests the brain to be positioned in a state in which the information propagates maximally and efficiently (O’Byrne and Jerbi, 2022; Safavi et al., 2024). Together, we suggest broadcasting to be the possible mechanism with which communication is optimized in brain networks, however, further research directions include investigating whether signaling within brain networks indeed aligns with a game-theoretic definition of optimality. Additionally, if it does, subsequent studies could then examine how deviations from optimal communication contribute to or result from various brain states or neurological and psychiatric disorders.”

      Reviewer #1 (Recommendations for the authors):

      I would recommend that the authors consider the following point in a revision, as well as the major weaknesses of the public review. Some aspects of Figure 1 could be clearer. What is being illustrated by the looping arrow to MSA? What is being represented in the matrices (labeling "source" and "target" on the matrix might enhance clarity)? Is R2 the metric used to assess the degree of similarity between communication models? These could be addressed by making small additions to the figure legend or to the figure itself.

      Thank you for your constructive comment on Figure 1, which is arguably the most important figure in the manuscript. We adjusted the figure and its caption (see above) based on your suggestions. After doing so, we think the figure is now clearer regarding the pipeline used in this work.

      Reviewer #2 (Recommendations for the authors):

      Overall, as stated in the public review and the short assessment, the manuscript is in a clearly mature state and brings an important method to link the fields of structural and functional brain networks.

      Nevertheless, the paper would benefit from an early, and clear, discussion of the:

      (1) components of the model, and assumptions of each, should be stated at the end of the introduction, or early in results. (2) datasets necessary to run the analysis.

      The confusion arises from lines 130-131, stating "In the present work (summarized in Figure 1), we used the human connectome, large-131 scale models of dynamics, and a game-theoretical perspective of signaling." This, to me, indicated that a structural connectivity map may be the only dataset required, as the dynamics model and game theory component are solely simulated. However, later, lines 214-216 state that the empirical functional connectivity is estimated from the structural connectivity, indicating that the method is only applied to cases where we have both.

      Finally, Supplemental Figure 5 validates a number of metrics on different solely structural networks (which is a very necessary and well-done control). Similarly, while the dynamical model is discussed in depth, and beautifully shown that the specific choice of dynamical model does not directly impact the results, it would be helpful to clarify the dynamical model utilized in the early figures.

      Thank you for pointing out a critical detail that we missed elaborating sufficiently early in the paper: the modelling step. Following your suggestions, we added a paragraph from line 292 to 305 (page 10) expanding on the modelling framework. We also explicitly divided the modelling step in Figure 1 and briefly clarified our modelling choices in the caption. Together, we emphasized the fact that our framework is generally model agnostic, which allows different models of dynamics to be plugged into various anatomical networks. We then clarified that, like in any modelling effort, one needs to first fit/optimize the model parameters to reproduce empirical data. In other words, we emphasized the fact that our framework relies on a computational model as its ‘game’ to infer how regions interact, and we fine-tuned our models to reproduce the empirical FC.

      Again, this is not a critique of the methods, which are excellent, but the presentation. It would help readers, and even me, to have a clear indication of the model earlier. Further, it would help to discuss, both in the introduction and discussion, the datasets required for applying these methods more broadly. For instance, 2-photon recordings are discussed - would it be possible to apply this method then to EM connectomes with functional data recorded for them? In theory, it seems like yes, although the current datasets have 100% observability, whereas 2-photon imaging, or other local methods, will not have perfect overlap between structural and functional connectomes. Discussions like this, related to the assumptions of the model, the necessary datasets, and broader application directions beyond DSI, fMRI, and BOLD cases where the method was validated, would increase the impact and interpretability for a broad readership.

      This is a valid point that we should have been more explicit about. The revised manuscript now contains a paragraph (lines 740-748) clarifying the fact that, throughout this work, we assumed full observability. We then briefly discuss, based on the mathematical principles of the framework, what we expect to happen in cases with partial observability. We then point at two references in which the details of a framework with partial observability are laid out, one containing mathematical proofs and the other using numerical simulations.

      References:

      Hadaeghi, F., Fakhar, K., & Hilgetag, C. C. (2024). Controlling Reciprocity in Binary and Weighted Networks: A Novel Density-Conserving Approach (p. 2024.11.24.625064). bioRxiv. https://doi.org/10.1101/2024.11.24.625064

    1. Author response:

      The following is the authors’ response to the original reviews.

      Alternate explanations for major conclusions.

      The major conclusions are (a) surface motility of W3110 requires pili which is not novel, (b) pili synthesis and pili-dependent surface motility require putrescine — 1 mM is optimal, and 4 mM is inhibitory, and (c) the existence of a putrescine homeostatic network that maintains intracellular putrescine that involves compensatory mechanisms for low putrescine, including diversion of energy generation toward putrescine synthesis.

      Conclusion a: Reviewer 3 suggests that the mutant may have lost surface motility because of outer surface structures that actually mediate motility but are co-regulated with or depend on pili synthesis. The reviewer explicitly suggests flagella as the alternate appendage, although flagella and pili are reciprocally regulated. Most experiments were performed in a Δ_fliC_ background, which lacks the major flagella subunit, in order to prevent the generation of fast-moving flagella-dependent variants. Furthermore, no other surface structure that could mediate surface motility is apparent in the electron microscope images. This observation does not definitively rule out this possibility, especially because of the large transcriptomic changes with low putrescine. Our explanation is the simplest.

      Conclusion b, first comment: Reviewer 1 states that “it is not possible to conclude that the effects of gene deletions to biosynthetic, transport or catabolic genes on pili-dependent surface motility are due to changes in putrescine levels unless one takes it on faith that there must be changes to putrescine levels.” The comment ignores both the nutritional supplementation and the transcript changes that strongly suggest compensatory mechanisms for low putrescine. Why compensate if the putrescine concentration does not change? The reviewer then implicitly acknowledges changes in putrescine content: “it is important to know how much putrescine must be depleted in order to exert a physiological effect”.

      Conclusion b, second comment: Reviewer 1 proposes that agmatine accumulation can account for some of the observed properties, but which property is not specified. With respect to motility, agmatine accumulation cannot account for motility defects because motility is impaired in (a) a speA mutant which cannot make agmatine and (b) a speC speF double mutant which should not accumulate agmatine. With respect to the transcriptomic results, even if high agmatine is the reason for some transcript changes, the results still suggest a putrescine homeostasis network.

      Conclusion c: the reviewers made no comments on the RNAseq analysis or the interpretation of the existence of a homeostatic network.

      Additional experiments proposed.

      Complementation. Reviewers 1 and 3 suggested complementation experiments, but the latter states that nutritional supplementation strengthens our arguments. The most relevant complementation is with speB.  We tried complementation and found that our control plasmid inhibited motility by increasing the lag time before movement commenced. A plasmid with speB did stimulate motility relative to the control plasmid, but movement with the speB plasmid took 4 days, while wild-type movement took 1.5 days. We think that interpretation of this result is ambiguous. We did not systematically search for plasmids that had no effect on motility.

      The purpose of complementation is to determine whether a second-site mutation is the actual cause of the motility defect. In this case, the artifact is that an alteration in polyamine metabolism is not the cause of the defect. However, external putrescine reverses the effects on motility and pili synthesis in the speB mutant. This result is inconsistent with a second-site mutation. Still, we agree that complementation is important, and because of our difficulties, we tested numerous mutants with defects in polyamine metabolism. The results present an interpretable and coherent pattern. For example, if putrescine is not the regulator, then mutants in putrescine transport and catabolism should have had no effect. Every single mutant is consistent with a role in movement and pili synthesis. The simplest explanation is that putrescine affects movement and pili synthesis.

      Phase variation. Reviewer 2 noted that we did not discuss phase variation. The comment came from the observation that the speB mutant had fewer fimB transcripts which could explain the loss of motility. The reviewer also suggested a simple experiment, which we performed and found that putrescine does not control phase variation. We present those results in the supplemental material. Our discussion of this topic includes a major qualification.

      Testing of additional strains. Published results from another lab showed that surface motility of MG1655 requires spermidine instead of putrescine (PMID 19493013 and 21266585). MG1655 and the W3110 that we used in our study are E. coli K-12 derivatives and phylogenetic group A. Any number of changes in enzymes that affect intracellular putrescine concentration could result in different responses to putrescine. We are currently studying pili synthesis and motility in other strains. While that study is incomplete, loss of speB in a strain of phylogenetic group D eliminates no surface motility. This work was intended as our initial analysis and the focus was on a single strain.

      Measuring intracellular polyamines. We felt that we had provided sufficient evidence to conclude that putrescine controls pili synthesis and putrescine concentrations are lower in the speB mutant: the nutritional supplementation, the lower levels of transcripts for putrescine catabolic enzymes which require putrescine for their expression strongly suggest lower putrescine in a mutant lacking a putrescine biosynthesis gene, and a transcriptomic analysis that found the speB mutant had transcript changes to compensate for low putrescine. We understand the importance of measuring intracellular polyamines. We are currently examining the quantitative relationship between intracellular polyamines and pili synthesis in multiple strains which respond differently to loss of speB.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The authors should measure putrescine, agmatine, cadaverine, and spermidine levels in their gene deletion strains.

      Polyamine concentration measurements will be part of a separate study on polyamine control of pili synthesis of a uropathogenic strain. A comparison is essential, and the results from W3110 will be part of that study.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 28. Your statements about urinary tract infections are pure speculation. They are fine for the discussion, but should not be in the abstract.

      The abstract from line 27 on has been reworked. The comment of the reviewer is fair.

      (2) Line 65. Do we need this discussion about the various strains? If you keep it, you should point out that they were all W3110 strains. But you could just say that you confirmed that your background strain can do PDSM (since you are also not showing any data for the other isolates). Discussing the various strains implies that you are not confident in your strain and raises the question of why you didn't use a sequenced wt MG1655, or something like that.

      This section has been reworked. Our strain of W3110 has an insertion in fimB which is relevant for movement but does not affect our results. The insertion limits our conclusions about phase variation. We want to point out that strains variations are large. We also sequenced our strain of W3110.

      (3) Related. You occasionally use "W3110-LR" to designate the wild type. You use this or not, but be consistent throughout the text.

      Fixed

      (4) Line 99. Does eLife allow "data not shown"?  

      (5) Line 119. As you note, the phenotype of the puuA patA double mutant is exactly the opposite of what one would expect. Although you provide additional evidence that high levels also inhibit motility, complementing the double mutant would provide confidence that the strain is correct.

      We rapidly ran into issues with complementation which are discussed in public responses to reviewer comments.

      (6) Figure 6C. Either you need to quantify these data or you need a better picture.

      The files were corrupted. It was repeated several time, but we lost the other data.

      (7) Figure 7. Label panels A and B to indicate that these strains are speB. Also, you need to switch panels C and D to match the order of discussion in the manuscript.

      Done

      (8) Line 134. Is there a statistically significant difference in the ELISA between 1 and 4 mM? You need to say one way or the other.

      No statistical significance and this has been added to the paper

      (9) Figure 10C. You need to quantify these data.

      Quantification added as an extra panel.

      (10) Line 164. You include H-NS in the group of "positive effectors that control fim operon expression" and you reference Ecocyc, rather than any primary reference. Nowhere in the manuscript do you mention phase variation. In the speB mutant, you see decreased fimB, increased fimE, and decreased hns expression. My interpretation of the literature suggests that this would drive the fim switch to the off-state. This could certainly explain some of the results. It is also easily measurable with PCR. This might require testing cells scraped directly from the plates.

      The experiments were performed. There is no need to scrap cells from plates because the fimB result from RNAseq was from a liquid culture, and the prediction would be that the phase-locking should be evident in these cells.

      (11) Figure 10. Likewise, do you know that your hns mutant is not locked in the off-state? Granted, the original hns mutants (pilG) showed increased rates of switching, but growth conditions might matter.

      We also did phase variation for the hns mutant and the hns mutant was not phase locked. This result is shown. In addition to growth conditions, the strain probably matters.

      (12) Line 342. You describe the total genome sequencing of W3110, yet this is not mentioned anywhere else in the manuscript.

      It is now

      Minor points:

      (13) Line 192. "One of the most differentially expressed genes...".

      (14) Line 202. "...implicates extracellular putrescine in putrescine homeostasis."

      (15) Line 209. "...potential pili regulators...".

      (16) You are using a variety of fonts on the figures. Pick one.

      (17) Figure 9A. It took me a few minutes to figure out the labeling for this figure and I was more confused after reading the legend. It would be simpler to independently label red triangles, blue triangles, red circles, and blue circles.

      (18) Figure 9B and 10. The reader can likely figure out what W3110_1.0_3 means, but more straightforward labeling would be better, or you need to define these labels.

      All points were addressed and fixed.

      Reviewer #3 (Recommendations for the authors):

      Other comments:

      (1) Please go through the figures and the reference to figures in the text, as they often do not refer to the right panel (ex: figures 2 and 7 for instance). In the text, please homogenize the reference to figures (Figure 2C vs Figure 3). To help compare motility experiments between figures, please use the same scale in all figures.

      This has been fixed.

      (2) Lines 65-70: I am not sure I get the reason behind choosing the W3110 strain from your lab stock. In what background were the initial mutants constructed (from l.64-65)? Were the nine strains tested, all variations of W3110? If so, is the phenotype described in the manuscript robust in all strains?

      We have provided more explanation. W3110 was the most stable: insertions that allowed flagella synthesis in the presence of glucose were frequent. We deleted the major flagella subunit for most experiments. Before introduction of the fliC deletion, we needed to perform experiments 10 times so that fast-moving variants, which had mutationally altered flagella synthesis, did not complicate results.

      (3) Line 82-84: As stated in the public review, I think more controls are needed before making this conclusion, especially as type I fimbriae are usually involved in sessile phenotypes.

      Response provided in the public response.

      (4) In Figure 3: Changing the order of the image to follow the text would make the figure easier to follow.

      Fixed as requested

      (5) Lines 100-101: simultaneous - the results presented here do not support this conclusion. In Figure 4b, the addition of putrescine to speB mutants is actually not different from WT. From the results, it seems like one of biosynthesis or transport is needed, but it's not clear if both are needed simultaneously. For this, a mutant with no biosynthesis and no transport is needed and/or completely non-motile mutants would be needed to compare.

      We disagree. If there are two pathways of putrescine synthesis and both are needed, then our conclusion follows.

      (6) Lines 104-105: '... because E. coli secretes putrescine.' - not sure why this statement is there, as most transporters tested after are importers of putrescine? It is also not clear to me if putrescine is supplemented in the media in these experiments. If not, is there putrescine in the GT media?

      Good points, and this section has been reworded to clarify these issues. Some of the material was moved to the discussion.

      (7) Line 109: 'We note that potE and plaP are more highly expressed than potE and puuP...' - first potE should be potF?

      This has been corrected.

      (8) Figure 8: What is the difference between the TEM images in Figure 1 and here? The WT in Figure 1 does show pili without the supplementation unless I'm missing something here. Please specify.

      The reviewer means Figure 2 and not Figure 1. Figure 2 shows a wild-type strain which has both putrescine anabolic pathways while Figure 8 is the ΔspeB strain which lacks one pathway.

      (9) Line160-162: Transcripts for the putrescine-responsive puuAP and puuDRCBE operons, which specify genes of the major putrescine catabolic pathway, were reduced from 1.6- to 14- fold (FDR {less than or equal to} 0.02) in the speB mutant (Supplemental Table 1), which implies lower intracellular putrescine. I might not get exactly the point here. If the catabolic pathways are repressed in the speB mutant, then there will be less degradation which means more putrescine!?

      Expression of these genes is a function of intracellular putrescine: higher expression means more putrescine. Any discussion of steady putrescine must include the anabolic pathways: the catabolic pathways do not determine the intracellular putrescine, they are a reflection of intracellular putrescine.

      (10) Lines 162-163: Deletion of speB reduced transcripts for genes of the fimA operon and fimE, but not of fimB. It seems that the results suggest the opposite a reduction of fimB but not fimE!?

      The reviewer is correct, and it is our mistake, and the text now states what is in the figure..

    1. Reviewer #1 (Public review):

      Summary:

      In this interesting and original paper, the authors examine the effect that heat stress can have on the ability of bacterial cells to evade infection by lytic bacteriophages. Briefly, the authors show that heat stress increases the tolerance of Klebsiella pneumoniae to infection by the lytic phage Kp11. They also argue that this increased tolerance facilitates the evolution of genetically encoded resistance to the phage. In addition, they show that heat can reduce the efficacy of phage therapy. Moreover, they define a likely mechanistic reason for both tolerance and genetically encoded resistance. Both lead to a reorganization of the bacterial cell envelope, which reduces the likelihood that phage can successfully inject their DNA.

      Strengths:

      I found large parts of this paper well-written and clearly presented. I also found many of the experiments simple yet compelling. For example, the experiments described in Figure 3 clearly show that prior heat exposure can affect the efficacy of phage therapy. In addition, the experiments shown in Figures 4 and 6 clearly demonstrate the likely mechanistic cause of this effect. The conceptual Figure 7 is clear and illustrates the main ideas well. I think this paper would work even without its central claim, namely that tolerance facilitates the evolution of resistance. The reason is that the effect of environmental stressors on stress tolerance has to my knowledge so far only been shown for drug tolerance, not for tolerance to an antagonistic species.

      Weaknesses:

      I did not detect any weaknesses that would require a major reorganization of the paper, or that may require crucial new experiments. However, the paper needs some work in clarifying specific and central conclusions that the authors draw. More specifically, it needs to improve the connection between what is shown in some figures, how these figures are described in the caption, and how they are discussed in the main text. This is especially glaring with respect to the central claim of the paper from the title, namely that tolerance facilitates the evolution of resistance. I am sympathetic to that claim, especially because this has been shown elsewhere, not for phage resistance but for antibiotic resistance. However, in the description of the results, this is perhaps the weakest aspect of the paper, so I'm a bit mystified as to why the authors focus on this claim. As I mentioned above, the paper could stand on its own even without this claim.

      More specific examples where clarification is needed:

      (1) A key figure of the paper seems to be Figure 2D, yet it was one of the most confusing figures. This results from a mismatch between the accompanying text starting on line 92 and the figure itself. The first thing that the reader notices in the figure itself is the huge discrepancy between the number of viable colonies in the absence of phage infection at the two-hour time point. Yet this observation is not even mentioned in the main text. The exclusive focus of the main text seems to be on the right-hand side of the figure, labeled "+Phage". It is from this right-hand panel that the authors seem to conclude that heat stress facilitates the evolution of resistance. I find this confusing, because there is no difference between the heat-treated and non-treated cells in survivorship, and it is not clear from this data that survivorship is caused by resistance, not by tolerance/persistence. (The difference between tolerance and resistance has only been shown in the independent experiments of Figure 1B.) Figure 2F supports the resistance claim, but it is not one of the strongest experiments of the paper, because the author simply only used "turbidity" as an indicator of resistance. In addition, the authors performed the experiments described therein at small population sizes to avoid the presence of resistance mutations. But how do we know that the turbidity they describe does not result from persisters?

      I see three possibilities to address these issues. First, perhaps this is all a matter of explaining and motivating this particular experiment better. Second, the central claim of the paper may require additional experiments. For example, is it possible to block heat induced tolerance through specific mutations, and show that phage resistance does not evolve as rapidly if tolerance is blocked? A third possibility is to tone down the claim of the paper, and make it about heat tolerance rather than the evolution of heat resistance.

      A minor but general point here is that in Figure 2D and in other figures, the labels "-phage" and "+phage" do not facilitate understanding, because they suggest that cells in the "-phage" treatment have not been exposed to phage at all, but that is not the case. They have survived previous phage treatment and are then replated on media lacking phage.

      (2) Another figure with a mismatch between text and visual materials is Figure 5, specifically Figures 5B-F. The figure is about two different mutants, and it is not even mentioned in the text how these mutants were identified, for example in different or the same replicate populations. What is more, the two mutants are not discussed at all in the main text. That is, the text, starting on line 221 discusses these experiments as if there was only one mutant. This is especially striking as the two mutants behave very differently, as, for example, in Figure 5C. Implicitly, the text talks about the mutant ending in "...C2", and not the one ending in "...C1". To add to the confusion, the text states that the (C2) mutant shows a change in the pspA gene, but in Figure 5f, it is the other (undiscussed) mutant that has a mutation in this gene. Only pspA is discussed further, so what about the other mutants? More generally, it is hard to believe that these were the only mutants that occurred in the genome during experimental evolution. It would be useful to give the reader a 2-3 sentence summary of the genetic diversity that experimental evolution generated.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This manuscript presents an interesting exploration of the potential activation mechanisms of DLK following axonal injury. While the experiments are beautifully conducted and the data are solid, I feel that there is insufficient evidence to fully support the conclusions made by the authors.

      In this manuscript, the authors exclusively use the puc-lacZ reporter to determine the activation of DLK. This reporter has been shown to be induced when DLK is activated.

      However, there is insufficient evidence to confirm that the absence of reporter activation necessarily indicates that DLK is inactive. As with many MAP kinase pathways, the DLK pathway can be locally or globally activated in neurons, and the level of DLK activation may depend on the strength of the stimulation. This reporter might only reflect strong DLK activation and may not be turned on if DLK is weakly activated. The results presented in this manuscript support this interpretation. Strong stimulation, such as axotomy of all synaptic branches, caused robust DLK activation, as indicated by puc-lacZ expression. In contrast, weak stimulation, such as axotomy of some synaptic branches, resulted in weaker DLK activation, which did not induce the puc-lacZ reporter. This suggests that the strength of DLK activation depends on the severity of the injury rather than the presence of intact synapses. Given that this is a central conclusion of the study, it may be worthwhile to confirm this further. Alternatively, the authors may consider refining their conclusion to better align with the evidence presented.

      In Figure 1E we have replotted the puc-lacZ data to show comparisons between different injuries that leave different numbers of spared (or lost) boutons and branches.  We observed no differences between injuries that remove only a small fraction of boutons (injury location (a)) and injuries that remove nearly all of them (injury locations (b) and (c)) and uninjured neurons (Figure 1E). These observations argue against the interpretation that the strength of DLK activation (at least within the cell body) depends on the severity of injury. Rather, puc-lacZ induction appears to be bimodal. It is either induced (in various injuries that remove all synaptic boutons), or not induced, including in injuries that spared only a small fraction of the total boutons. We therefore think that the presence of a remaining synaptic connection rather than the extent of the injury per se is a major determinant of whether the cell body component of Wnd signaling can be activated. 

      The reviewer (and others) fairly point out that our current study focuses on puc-lacZ as a reporter of Wnd signaling in the cell body. We consider this to be a downstream integration of events in axons that are more challenging to detect. It is striking that this integration appears strongly sensitized to the presence of spared synaptic boutons. Examination of Wnd’s activation in axons and synapses is a goal for our future work.

      As noted by the authors, DLK has been implicated in both axon regeneration and degeneration. Following axotomy, DLK activation can lead to the degeneration of distal axons, where synapses are located. This raises an important question: how is DLK activated in distal axons? The authors might consider discussing the significance of this "synapse connection-dependent" DLK activation in the broader context of DLK function and activation mechanisms.

      While it has been noted that inhibition of DLK can mildly delay Wallerian degeneration (Miller et al., 2009), this does not appear to be the case for retinal ganglion cell axons following optic nerve crush (Fernandes et al., 2014). It is also not the case for Drosophila motoneurons and NMJ terminals following peripheral nerve injury (Xiong et al., 2012; Xiong and Collins, 2012). Instead, overexpression of Wnd or activation of Wnd by a conditioning injury leads to an opposite phenotype - an increase in resiliency to Wallerian degeneration for axons that have been previously injured (Xiong et al., 2012; Xiong and Collins, 2012). The downstream outcome of Wnd activation is highly dependent on the context; it may be an integration of the outcomes of local Wnd/DLK activation in axons with downstream consequences of nuclear/cell body signaling.  The current study suggests some rules for the cell body signaling, however, how Wnd is regulated at synapses and why it promotes degeneration in some circumstances but not others are important future questions.

      For the reviewer’s suggestion, it is interesting to consider DLK’s potential contributions to the loss of NMJ synapses in a mouse model of ALS (Le Pichon et al., 2017; Wlaschin et al., 2023). Our findings suggest that the synaptic terminal is an important locus of DLK regulation, while dysfunction of NMJ terminals is an important feature of the ‘dying back’ hypothesis of disease etiology (Dadon-Nachum et al., 2011; Verma et al., 2022). We propose that the regulation of DLK at synaptic terminals is an important area for future study, and may reveal how DLK might be modulated to curtail disease progression. Of note, DLK inhibitors are in clinical trials (Katz et al., 2022; Le et al., 2023; Siu et al., 2018), but at least some have been paused due to safety concerns (Katz et al., 2022). Further understanding of the mechanisms that regulate DLK are needed to understand whether and how DLK and its downstream signaling can be tuned for therapeutic benefit.

      Reviewer #2 (Public review):

      Summary:

      The authors study a panel of sparsely labeled neuronal lines in Drosophila that each form multiple synapses. Critically, each axonal branch can be injured without affecting the others, allowing the authors to differentiate between injuries that affect all axonal branches versus those that do not, creating spared branches. Axonal injuries are known to cause Wnd (mammalian DLK)-dependent retrograde signals to the cell body, culminating in a transcriptional response. This work identifies a fascinating new phenomenon that this injury response is not all-or-none. If even a single branch remains uninjured, the injury signal is not activated in the cell body. The authors rule out that this could be due to changes in the abundance of Wnd (perhaps if incrementally activated at each injured branch) by Wnd, Hiw's known negative regulator. Thus there is both a yet-undiscovered mechanism to regulate Wnd signaling, and more broadly a mechanism by which the neuron can integrate the degree of injury it has sustained. It will now be important to tease apart the mechanism(s) of this fascinating phenomenon. But even absent a clear mechanism, this is a new biology that will inform the interpretation of injury signaling studies across species.

      Strengths:

      (1) A conceptually beautiful series of experiments that reveal a fascinating new phenomenon is described, with clear implications (as the authors discuss in their Discussion) for injury signaling in mammals.

      (2) Suggests a new mode of Wnd regulation, independent of Hiw.

      Weaknesses:

      (1) The use of a somatic transcriptional reporter for Wnd activity is powerful, however, the reporter indicates whether the transcriptional response was activated, not whether the injury signal was received. It remains possible that Wnd is still activated in the case of a spared branch, but that this activation is either local within the axons (impossible to determine in the absence of a local reporter) or that the retrograde signal was indeed generated but it was somehow insufficient to activate transcription when it entered the cell body. This is more of a mechanistic detail and should not detract from the overall importance of the study

      We agree. The puc-lacZ reporter tells us about signaling in the cell body, but whether and how Wnd is regulated in axons and synaptic branches, which we think occurs upstream of the cell body response, remains to be addressed in future studies.

      (2) That the protective effect of a spared branch is independent of Hiw, the known negative regulator of Wnd, is fascinating. But this leaves open a key question: what is the signal?

      This is indeed an important future question, and would still be a question even if Hiw were part of the protective mechanism by the spared synaptic branch. Our current hypothesis (outlined in Figure 4) is that regulation of Wnd is tied to the retrograde trafficking of a signaling organelle in axons. The Hiw-independent regulation complements other observations in the literature that multiple pathways regulate Wnd/DLK (Collins et al., 2006; Feoktistov and Herman, 2016; Klinedinst et al., 2013; Li et al., 2017; Russo and DiAntonio, 2019; Valakh et al., 2013). It is logical for this critical stress response pathway to have multiple modes of regulation that may act in parallel to tune and restrain its activation. 

      Reviewer #3 (Public review):

      Summary:

      This manuscript seeks to understand how nerve injury-induced signaling to the nucleus is influenced, and it establishes a new location where these principles can be studied. By identifying and mapping specific bifurcated neuronal innervations in the Drosophila larvae, and using laser axotomy to localize the injury, the authors find that sparing a branch of a complex muscular innervation is enough to impair Wallenda-puc (analogous to DLK-JNKcJun) signaling that is known to promote regeneration. It is only when all connections to the target are disconnected that cJun-transcriptional activation occurs.

      Overall, this is a thorough and well-performed investigation of the mechanism of sparedbranch influence on axon injury signaling. The findings on control of wnd are important because this is a very widely used injury signaling pathway across species and injury models. The authors present detailed and carefully executed experiments to support their conclusions. Their effort to identify the control mechanism is admirable and will be of aid to the field as they continue to try to understand how to promote better regeneration of axons.

      Strengths:

      The paper does a very comprehensive job of investigating this phenomenon at multiple locations and through both pinpoint laser injury as well as larger crush models. They identify a non-hiw based restraint mechanism of the wnd-puc signaling axis that presumably originates from the spared terminal. They also present a large list of tests they performed to identify the actual restraint mechanism from the spared branch, which has ruled out many of the most likely explanations. This is an extremely important set of information to report, to guide future investigators in this and other model organisms on mechanisms by which regeneration signaling is controlled (or not).

      Weaknesses:

      The weakest data presented by this manuscript is the study of the actual amounts of Wallenda protein in the axon. The authors argue that increased Wnd protein is being anterogradely delivered from the soma, but no support for this is given. Whether this change is due to transcription/translation, protein stability, transport, or other means is not investigated in this work. However, because this point is not central to the arguments in the paper, it is only a minor critique.

      We agree and are glad that the reviewer considers this a minor critique; this is an area for future study. In Supplemental Figure 1 we present differences in the levels of an ectopically expressed GFP-Wnd-kinase-dead transgene, which is strikingly increased in axons that have received a full but not partial axotomy. We suspect this accumulation occurs downstream of the cell body response because of the timing. We observed the accumulations after 24 hours (Figure S1F) but not at early (1-4 hour) time points following axotomy (data not shown). Further study of the local regulation of Wnd protein and its kinase activity in axons is an important future direction.

      As far as the scope of impact: because the conclusions of the paper are focused on a single (albeit well-validated) reporter in different types of motor neurons, it is hard to determine whether the mechanism of spared branch inhibition of regeneration requires wnd-puc (DLK/cJun) signaling in all contexts (for example, sensory axons or interneurons). Is the nerve-muscle connection the rule or the exception in terms of regeneration program activation?

      DLK signaling is strongly activated in DRG sensory neurons following peripheral nerve injury (Shin et al., 2012), despite the fact that sensory neurons have bifurcated axons and their projections in the dorsal spinal cord are not directly damaged by injuries to the peripheral nerve. Therefore it is unlikely that protection by a spared synapse is a universal rule for all neuron types. However the molecular mechanisms that underlie this regulation may indeed be shared across different types of neurons but utilized in different ways. For instance, nerve growth factor withdrawal can lead to activation of DLK (Ghosh et al., 2011), however neurotrophins and their receptors are regulated and implemented differently in different cell types. We suspect that the restraint of Wnd signaling by the spared synaptic branch shares a common underlying mechanism with the restraint of DLK signaling by neurotrophin signaling. Further elucidation of the molecular mechanism is an important next step towards addressing this question. 

      Because changes in puc-lacZ intensity are the major readout, it would be helpful to better explain the significance of the amount of puc-lacZ in the nucleus with respect to the activation of regeneration. Is it known that scaling up the amount of puc-lacZ transcription scales functional responses (regeneration or others)? The alternative would be that only a small amount of puc-lacZ is sufficient to efficiently induce relevant pathways (threshold response).

      While induction of puc-lacZ expression correlates with Wnd-mediated phenotypes, including sprouting of injured axons (Xiong et al., 2010), protection from Wallerian degeneration (Xiong et al., 2012; Xiong and Collins, 2012) and synaptic overgrowth (Collins et al., 2006), we have not observed any correlation between the degree of puc-lacZ induction (eg modest, medium or high) and the phenotypic outcomes (sprouting, overgrowth, etc). Rather, there appears to be a striking all-or-none difference in whether puc-lacZ is induced or not induced. There may indeed be a threshold that can be restrained through multiple mechanisms. We posit in figure 4 that restraint may take place in the cell body, where it can be influenced by the spared bifurcation. 

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      This is a beautiful study. Naturally, you're searching now for the underlying mechanism.

      A few questions:

      (1) At present you can not determine if the Wnd signal is never initiated (when a spared branch is present) or if it gets to the cell body but is incapable of activating the puckered reporter. Is there any optical reporter (JNK activation?) that could differentiate this?

      The reviewer is correct that a tool to detect local activity of JNK kinase in axons would be ideal for probing the mechanisms that underlie our observations. A FRET reporter for JNK kinase activity has been developed and utilized in cultured cells (Fosbrink et al. 2010). It would be interesting to implement this reporter in Drosophila; it would need to be sensitive enough to visualize  in single Drosophila axons. We have previously noted Wnd-dependent phosphorylated JNK in the cell body of injured motoneurons following nerve crush (Xiong et al., 2010). However anti-pJNK antibodies detect what appears to be a constitutive signal in uninjured axons that does not appear to be influenced by activation or inhibition of Wnd (Xiong et al., 2010).

      (2) What happens when you injure the axon in a dSarm KO? This is more of a curiosity, not a necessity, but is it the axon dying or the detection of the injury itself?

      We have tested whether overexpression of Nmnat or the WldS transgene, which inhibit Wallerian degeneration of injured axons, affect the induction of puc-lacZ following nerve injury. This manipulation has no effect on puc-lacZ expression in uninjured animals, and also has no effect on the induction of puc-lacZ following peripheral nerve crush (TJ Waller, personal communication).

      (3) Are Wnd rescue experiments possible in this context? Would be an interesting place to do Wnd structure-function and compare it to the synaptic work.

      This is not possible with current reagents. Expression of wild type wnd cDNA under the Gal4/UAS promoter leads to strong induction of puc-lacZ in uninjured animals, even when weak Gal4 driver lines are used (Xiong et al., 2012, 2010). Similar observations of constitutively active signaling have been observed for expression studies of DLK in mammalian cells ((Hao et al., 2016; Huntwork-Rodriguez et al., 2013; Nihalani et al., 2000), and data not shown). These and other observations suggest that the levels of Wnd/DLK protein are tightly controlled by posttranscriptional mechanisms. Delineation of sequences within Wnd/DLK that are required for its regulation would be helpful for addressing this question.

      This will be required reading in my lab.

      That is an honor. We look forward to help from the field to understand how and why this pathway is restrained at synapses. Your students may bring new ideas to the table.

      Reviewer #3 (Recommendations for the authors):

      Piezo is spelled incorrectly in the supplemental table in multiple places.

      Thank you for pointing this out! We have made the correction.

      References cited (in rebuttal)

      Collins CA, Wairkar YP, Johnson SL, DiAntonio A. 2006. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51:57–69.

      Dadon-Nachum M, Melamed E, Offen D. 2011. The “dying-back” phenomenon of motor neurons in ALS. J Mol Neurosci 43:470–477.

      Feoktistov AI, Herman TG. 2016. Wallenda/DLK protein levels are temporally downregulated by Tramtrack69 to allow R7 growth cones to become stationary boutons. Development 143:2983–2993.

      Fernandes KA, Harder JM, John SW, Shrager P, Libby RT. 2014. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis 69:108–116.

      Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW. 2011. DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764.

      Hao Y, Frey E, Yoon C, Wong H, Nestorovski D, Holzman LB, Giger RJ, DiAntonio A, Collins C. 2016. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife 5. doi:10.7554/eLife.14048

      Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS, Lewcock JW. 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol 202:747–763.

      Katz JS, Rothstein JD, Cudkowicz ME, Genge A, Oskarsson B, Hains AB, Chen C, Galanter J, Burgess BL, Cho W, Kerchner GA, Yeh FL, Ghosh AS, Cheeti S, Brooks L, Honigberg L, Couch JA, Rothenberg ME, Brunstein F, Sharma KR, van den Berg L, Berry JD, Glass JD. 2022. A Phase 1 study of GDC-0134, a dual leucine zipper kinase inhibitor, in ALS. Ann Clin Transl Neurol 9:50–66.

      Klinedinst S, Wang X, Xiong X, Haenfler JM, Collins CA. 2013. Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 33:12764–12778.

      Le K, Soth MJ, Cross JB, Liu G, Ray WJ, Ma J, Goodwani SG, Acton PJ, Buggia-Prevot V, Akkermans O, Barker J, Conner ML, Jiang Y, Liu Z, McEwan P, Warner-Schmidt J, Xu A, Zebisch M, Heijnen CJ, Abrahams B, Jones P. 2023. Discovery of IACS-52825, a potent and selective DLK inhibitor for treatment of chemotherapy-induced peripheral neuropathy. J Med Chem 66:9954–9971.

      Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, Gogineni A, Sengupta Ghosh A, Jiang Z, Lee S-H, Maloney J, Gandham VD, Pozniak CD, Wang B, Lee S, Siu M, Patel S, Modrusan Z, Liu X, Rudhard Y, Baca M, Gustafson A, Kaminker J, Carano RAD, Huang EJ, Foreman O, Weimer R, Scearce-Levie K, Lewcock JW. 2017. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9. doi:10.1126/scitranslmed.aag0394

      Li J, Zhang YV, Asghari Adib E, Stanchev DT, Xiong X, Klinedinst S, Soppina P, Jahn TR, Hume RI, Rasse TM, Collins CA. 2017. Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. Elife 6. doi:10.7554/eLife.24271

      Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A. 2009. A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389.

      Nihalani D, Merritt S, Holzman LB. 2000. Identification of structural and functional domains in mixed lineage kinase dual leucine zipper-bearing kinase required for complex formation and stress-activated protein kinase activation. J Biol Chem 275:7273–7279.

      Russo A, DiAntonio A. 2019. Wnd/DLK is a critical target of FMRP responsible for neurodevelopmental and behavior defects in the Drosophila model of fragile X syndrome. Cell Rep 28:2581–2593.e5.

      Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A. 2012. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74:1015– 1022.

      Siu M, Sengupta Ghosh A, Lewcock JW. 2018. Dual Leucine Zipper Kinase Inhibitors for the Treatment of Neurodegeneration. J Med Chem 61:8078–8087.

      Valakh V, Walker LJ, Skeath JB, DiAntonio A. 2013. Loss of the spectraplakin short stop activates the DLK injury response pathway in Drosophila. J Neurosci 33:17863–17873.

      Verma S, Khurana S, Vats A, Sahu B, Ganguly NK, Chakraborti P, Gourie-Devi M, Taneja V. 2022. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol Neurobiol 59:1502–1527.

      Wlaschin JJ, Donahue C, Gluski J, Osborne JF, Ramos LM, Silberberg H, Le Pichon CE. 2023. Promoting regeneration while blocking cell death preserves motor neuron function in a model of ALS. Brain 146:2016–2028.

      Xiong X, Collins CA. 2012. A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 32:610–615.

      Xiong X, Hao Y, Sun K, Li J, Li X, Mishra B, Soppina P, Wu C, Hume RI, Collins CA. 2012. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLoS Biol 10:e1001440.

      Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA. 2010. Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211– 223.

    1. Credibility can be established through many means: using appropriate professional language, citing highly respected sources, providing reliable evidence, and using sound logic

      I think understanding our ability to establish ethical skills in order to create credibility is an interesting topic. I'd be interested in the impact that non electronic writing communication has on our credibility. In terms of technical writing I don't think it has much impact. But in an environment of handwritten documentation s necessary, many individuals may be lost. Electronic communication has had a major influence on our development as student and writers, but have we lost a element of good handwriting, spelling, and meaning behind paper written communication?

    1. Nonhuman Animal Subject Research One area of controversy regarding research techniques is the use of nonhuman animal subjects. One of the keys to behaving in an ethical manner is to ensure that one has given informed consent to be a subject in a study. Obviously, animals are unable to give consent. For this reason and others related to animal welfare, there are some who believe that researchers should not use nonhuman animal subjects in any case. There are others that advocate for using nonhuman animal subjects because nonhuman animal subjects many times will have distinct advantages over human subjects. Their nervous systems are frequently less complex than human systems, which facilitates the research. It is much easier to learn from a system with thousands of neurons compared to one with billions of neurons like humans. Also, nonhuman animals may have other desirable characteristics such as shorter life cycles, larger neurons, and translucent embryos. However, it is widely recognized that this research must proceed with explicit guidelines ensuring the safe treatment of the animals. For example, any research institution that will be conducting research using nonhuman animal subjects must have an Institutional Animal Care and Use Committee (IACUC). IACUCs review the proposed experiments to ensure an appropriate rationale for using nonhuman animals as subjects and ensure ethical treatment of those subjects. Furthermore, many researchers who work with nonhuman animal subjects adhere to the Three R's: Replacement, Reduction, and Refinement (Russell & Burch, 1959). Replacement suggests that researchers should seek to use inanimate systems as a replacement for nonhuman animal subjects whenever possible. Furthermore, replacement is also suggested to replace higher level organisms with lower level organisms whenever possible. The idea is that instead of choosing a primate to conduct the study, researchers are encouraged to use a lower level animal such as an invertebrate (a sea slug, for example) to conduct the study. Reduction refers to reducing the number of nonhuman animal subjects that will be used in the particular study. The idea here is that if a study can learn sufficient information from one nonhuman animal, then they should only use one. Finally, refinement is about how the nonhuman animals are cared for. The goal is to minimize discomfort that the subject experiences and to enhance the conditions that the subject experiences throughout their life. For a full discussion of the Three R's, see Tannenbaum and Bennett (2015). In conclusion, many researchers argue that what we have learned from nonhuman animal subjects has been invaluable. These studies have led to drug therapies for treating pain and other disorders; for instance, most drugs are studied using animals first, to ensure they are safe for humans. Animal nervous systems are used as models for the human nervous systems in many areas. Sea slugs (Aplysia californica) have been used to learn about neural networks involved in learning and memory. Cats have been studied to learn about how our brain's visual system is organized. Owls have been used to learn about sound localization in the auditory system. Indeed, research using nonhuman animal subjects has led to many important discoveries.

      Interesting how the Three R’s Replacement, Reduction, and Refinement help balance the need for research with animal welfare. Makes me think about how many major discoveries wouldn’t be possible without animal models.

    2. Ethics in Neuroscience Research Research has a very complicated history with respect to ethics. This is true when discussing our treatment of nonhuman animal subjects and our treatment of human subjects as well. Let’s start by discussing the ethical considerations for nonhuman animal subject research. Nonhuman Animal Subject Research One area of controversy regarding research techniques is the use of nonhuman animal subjects. One of the keys to behaving in an ethical manner is to ensure that one has given informed consent to be a subject in a study. Obviously, animals are unable to give consent. For this reason and others related to animal welfare, there are some who believe that researchers should not use nonhuman animal subjects in any case. There are others that advocate for using nonhuman animal subjects because nonhuman animal subjects many times will have distinct advantages over human subjects. Their nervous systems are frequently less complex than human systems, which facilitates the research. It is much easier to learn from a system with thousands of neurons compared to one with billions of neurons like humans. Also, nonhuman animals may have other desirable characteristics such as shorter life cycles, larger neurons, and translucent embryos. However, it is widely recognized that this research must proceed with explicit guidelines ensuring the safe treatment of the animals. For example, any research institution that will be conducting research using nonhuman animal subjects must have an Institutional Animal Care and Use Committee (IACUC). IACUCs review the proposed experiments to ensure an appropriate rationale for using nonhuman animals as subjects and ensure ethical treatment of those subjects. Furthermore, many researchers who work with nonhuman animal subjects adhere to the Three R's: Replacement, Reduction, and Refinement (Russell & Burch, 1959). Replacement suggests that researchers should seek to use inanimate systems as a replacement for nonhuman animal subjects whenever possible. Furthermore, replacement is also suggested to replace higher level organisms with lower level organisms whenever possible. The idea is that instead of choosing a primate to conduct the study, researchers are encouraged to use a lower level animal such as an invertebrate (a sea slug, for example) to conduct the study. Reduction refers to reducing the number of nonhuman animal subjects that will be used in the particular study. The idea here is that if a study can learn sufficient information from one nonhuman animal, then they should only use one. Finally, refinement is about how the nonhuman animals are cared for. The goal is to minimize discomfort that the subject experiences and to enhance the conditions that the subject experiences throughout their life. For a full discussion of the Three R's, see Tannenbaum and Bennett (2015). In conclusion, many researchers argue that what we have learned from nonhuman animal subjects has been invaluable. These studies have led to drug therapies for treating pain and other disorders; for instance, most drugs are studied using animals first, to ensure they are safe for humans. Animal nervous systems are used as models for the human nervous systems in many areas. Sea slugs (Aplysia californica) have been used to learn about neural networks involved in learning and memory. Cats have been studied to learn about how our brain's visual system is organized. Owls have been used to learn about sound localization in the auditory system. Indeed, research using nonhuman animal subjects has led to many important discoveries.

      Do you think the benefits of animal research outweigh the ethical concerns, even with guidelines like the Three R’s in place?

    1. One additional way to study the contributions of each hemisphere separately is through a procedure known as a Wada. In a Wada procedure, a barbiturate (a depressant drug used for various purposes including sedation) is used to put one half of the brain “to sleep” and then the contributions of the other hemisphere can be studied. Wada procedures are typically used for similar purposes as are cortical mapping techniques such as direct cortical stimulation. But, instead of mapping specific functions to specific areas (as with direct cortical stimulation), the Wada procedure maps functions to hemispheres. Usually, the Wada is used to identify which hemisphere is responsible for language processing and memory tasks. Although scientists know that language functions are usually in the left hemisphere, it is not always the case (particularly in left-handed individuals), so the Wada will help determine which hemisphere is dominant for language functions. For memory functions, both hemispheres play a significant role, but during the Wada, doctors are able to determine which hemisphere has stronger memory function. One Major Concern With Lesion/Surgery Studies One thing to remember about all studies of lesion or surgical patients is that the ability to generalize to the population during these studies may be questionable. It is important to keep in mind that that the reason these patients are studied is because they had some sort of issue with their brain. It is reasonable to wonder whether their brains are representative of “normal subjects,” that is, subjects who do not have lesions or other issues. For example, perhaps someone with epilepsy, after having years of seizures, has a different brain organization than someone without epilepsy. In that circumstance, what we learn from them in a split brain study may not be applicable to a non-epileptic population.

      Do you think the Wada procedure's ability to test each hemisphere separately outweighs the risks involved in using a barbiturate?

    1. Using Indirect Functional Imaging Techniques to Study a Disorder: Autism Spectrum Disorder PET and fMRI studies of ASD have found different levels of neuronal activity in the amygdala and the hippocampus compared to subjects without ASD. These areas are notable because they are a part of the “social brain.” These studies have largely focused on patients with ASD when they are viewing faces. As the viewing of faces is a large part of socializing (for example, reading expressions and making eye contact) and socializing is one area where many autistic patients have issues, these studies help provide further information for doctors and researchers to use. (See Philip et al. (2012) for a review of the fMRI studies of ASD.) Transcranial Magnetic Stimulation Another technique that is worth mentioning is transcranial magnetic stimulation (TMS). TMS is a noninvasive method that causes depolarization or hyperpolarization in neurons near the scalp. Depolarizations are increases in the electrical state of the neuron, while hyperpolarizations are decreases. In TMS, a coil of wire is placed just above the participant’s scalp (as shown in Figure 2.4.42.4.4\PageIndex{4}). When electricity flows through the coil, it produces a magnetic field. This magnetic field travels through the skull and scalp and affects neurons near the surface of the brain. When the magnetic field is rapidly turned on and off, a current is induced in the neurons, leading to depolarization or hyperpolarization, depending on the number of magnetic field pulses. Single- or paired-pulse TMS depolarizes site-specific neurons in the cortex, causing them to fire. If this method is used over certain brain areas involved with motor control, it can produce or block muscle activity, such as inducing a finger twitch or preventing someone from pressing a button. If used over brain areas involved with visual perception, it can produce sensations of flashes of light or impair visual processes. This has proved to be a valuable tool in studying the function and timing of specific processes such as the recognition of visual stimuli. Repetitive TMS produces effects that last longer than the initial stimulation. Depending on the intensity, coil orientation, and frequency, neural activity in the stimulated area may be either attenuated or amplified. Used in this manner, TMS is able to explore neural plasticity, which is the ability of connections between neurons to change. This has implications for treating psychological disorders, such as depression, as well as understanding long-term changes in neuronal excitability. Note that TMS is different from the previous techniques in that we are not taking images of what the brain is doing. TMS disrupts or stimulates the brain and actively changes what the brain is doing.

      Since TMS can stimulate or block brain activity, do you think it’s more valuable for research or as a treatment tool (like for depression)?

    1. Functional Imaging Many researchers are also interested in how the brain works. Some studies begin with the scientific question of “what does this part do?” Or more commonly, “Where in the brain does this happen?” Functional imaging techniques allow researchers to learn about the brain activity during various tasks by creating images based on the electrical activity or the absorption of various substances that occurs while a subject is engaging in a task. Such techniques can be used, for example, to visualize the parts of the brain that respond when we're exposed to stimuli that upset us or make us happy. Temporal Versus Spatial Resolution Within functional imaging techniques, researchers are frequently focused on one of two questions. They may ask “When does this activity occur?” Or “Where does this activity occur?” Some techniques are better for answering one of these questions, whereas other techniques are better for answering the other question. We describe how well a technique can determine when the activity has occurred as temporal resolution. For example, was the brain region activity occurring sometime in the last hour, the last minute, the last second, or within milliseconds? While some techniques are excellent at determining precisely when the activity occurred and other techniques are quite terrible at it. Additionally, we can describe how well a technique can determine where the activity has occurred as spatial resolution. For example, did the activity occur in the temporal lobe somewhere or can we narrow that down to a specific gyrus (ridge) or sulcus (groove) of the cerebral cortex? If it occurred on a particular gyrus can we narrow it down to a particular portion of that gyrus? As with temporal resolution, some techniques are excellent at determining precisely where the activity occurred whereas other techniques are less accurate.

      Quick question you guys, which do you think matters more in brian studies: When the activity happens or where it happens? and Why?

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1:

      Major Comments:

      1. The data in the paper strongly suggests that the new copper shuttles are selective for copper and have faster binding kinetics (Fig 1) than the previous one. However, the data regarding the copper shuttling from the copper(Aβ) peptides is not very convincing. It appears to be due to the Cu effect alone (Fig.3), as the reduction in viability with Cu(II)+ AscH- is almost the same as the Cu(II)(Aβ)+AscH-. To convincingly show that the peptide shuttle can strip copper from (Aβ) peptides, the authors need to show that the copper is bound to the (Aβ) peptide before it is used in the experiment. Rightfully so, the effect of the toxicity of Cu(II)+ AscH- is similar to that of Cu(II)(Aβ16)+AscH-. This is due to the fact that Aβ16 is not toxic to the cells, so therefore there is no compounded effect of Cu and Aβ16 as seen for Cu(II)(Aβ40). As for the toxicity of Cu(II)+ AscH-, it is be similar to Cu(II)(Aβ)+AscH- because Cu(II) will be bound to a weaker ligand in the medium and such loosely bound Cu is also able to produce ROS with AscH- with similar rates as Cu-Ab.

      Data from our lab and others have shown that in HEPES solution at pH 7.4, Aβ forms a complex with Cu. The present work is also in line with Cu-binding to Ab, as in Figure 1C (GSH), the rate of Cu withdrawal by the shuttle can only be explained by Cu bound to Ab, as Cu in the buffer binds to the shuttle much faster. Also, the AscH- consumption rate measured in Fig S5D-E are congruent of Cu bound to Ab, unbound Cu has a much faster rate of AscH- consumption (Santoro et al. 2018, doi.org/10.1039/C8CC06040A).

      The concentrations of Aβ and Cu used in our experimental condition were determined with a UV-Vis spectrophotometer.

      Minor comments:

      1. The paper does not cite Figure 1A and some supplementary figures, especially Supp. Fig. 1-2. All the figures and supplementary figures should be cited. This has been rectified for all the concerned figures.

      The data presentation in Figures 3B and S8 is confusing."-" signs indicate no addition or the blank box means no addition. Also, the AKH-αR5W4 has no "-" sign in the first bar. For clarity, please indicate the -, +, or no sign means in the figure legends. Also, what does "Batch A" refer to in Figure 3B?

      The figures have been modified as suggested by the reviewer.

      Page 7, correct (Error! Referencesource not found.Figure 1C).

      This has been rectified.

      The Giantin staining in Figure 2B is making it hard to visualize ATP7A trafficking. If the Giantin image overlay is removed, it may be easier to see the movement of ATP7A from the perinuclear region to the vesicles.

      The images have been modified to better appreciate the ATP7A change in distribution upon the increase in intracellular Cu level. We have reduced the number of conditions for which images are provided and provided individual staining for clarity. Zoomed images are also provided. The remainder of the conditions are in Figure S7B

      In the introduction, the authors mention, "These molecules have, however, a major pitfall as is seen for Elesclemol, a candidate for Menkes disease treatments 32. The authors cite reference " Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins." The paper showing elesclomol as a candidate for Menkes disease treatments is Guthrie L et al., Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science. 2020.

      We thank the reviewer for pointing this out, which was apparently not clearly explained. Our intention here was to show that a major pitfall of shuttles like Elesclomol, as seen in the study by Tsvetkov, P. et al. Science (2022), is cuprotoxicity. The sentence has been clarified and the work of Guthrie L et al is cited for Elesclomol as a candidate for Menkes disease.

      Reviewer #2 :

      Major issues:

      1. This reviewer is not convinced that the authors' experimental system is well suited for studies of glia activation and protective effects. With the exception of a couple of panels it is very hard to see differences. The authors should significantly improve the quality of images in Figure 5 to make this set of data convincing. We thank the reviewer for his/her detailed evaluation and for bringing to light the quality of the image in Figure 5. We have therefore improved the quality of the images by improving the signal to noise ratio to better show the differences between conditions.

      Similarly, the quality of giantin staining is low and needs to be improved and more experimental details are needed (see details below).

      As stated in our answer to reviewer 1, the images have been modified to better appreciate ATP7A redistribution upon increase of intracellular Cu levels. We have reduced the number of conditions for which images are provided and provided individual staining for clarity. Zoomed images are also provided. The remainder of the conditions are in Figure S7B.

      Given that shuttles are found within vesicles, the authors should discuss the mechanism through which Cu is released into the cytosol to trigger ATP7B trafficking.

      The mechanism of Cu escape from endosomes remains poorly understood. However, supported by our recent observations that Cu quickly (within 10 min) dissociates from the Cu-shuttle AKH-αR5W4NBD in endosomes (Okafor et al., 2024, /doi.org/10.3389/fmolb.2024.1355963), we discuss the potential involvement CTR1/2 and DMT1 (page 16).

      There are numerous small writing issues that make paper difficult to read. The authors are encouraged to carefully edit their manuscript.

      We thank the reviewer for pointing this out and several errors have been corrected whereas various sentences have been clarified.

      Minor issues

      * „A solution of monomerized Aβ complex in 10% DMEM (diluted with DMEM salt solution) was prepared in microcentrifuge tubes" - here and further the description of media composition is confusing What is the rest 90%?

      This has been rectified. The composition of the salt solution that makes up the 90% has been provided (page 4).

      * „Afterwards, AscH- was added to the tubes and vortexed, the mixture was then added to PC12 cells" - concentration of ascorbate is mentioned only once (later in the figure legend) where it can be barely found, also without explaining the choice of concentration. Additionally, ascorbate's product code is not listed. Please, correct.

      These points have been rectified.

      * Description of the cell (PC12 line) handling conditions is absent (growth medium, passage number used etc) and should be included.

      This information is now provided.

      * ATP7A delocalization assay. Details for the secondary antibodies are absent (full name (e.g. AlexaFluor 488), manufacturer, code) and should be added.

      Missing information has been added.

      * page 6: „Next, we investigated the capacity of the shuttles to withdraw Cu(II) from cell culture media, DMEM 10% and DMEM/F12 1:1 (D/F)." Here and further explanation is needed why the mixture of DMEM/F12 is needed (F12 is also not listed in the materials list).

      DMEM/F12 is a media that is commercially available used for some cell types, and it has been added to the materials list (page 4).

      * Page 7. Legend to the figure 1B: „Conditions: Cu(II)=AKH-αR5W4NBD=DapHH-αR5W4NBD=HDapH-αR5W4NBD= 5 μM, DMEM 10%, D/F 100%, 25{degree sign}C, n=3." - „DMEM/F12" ratio equals to „100%" is confusing, please clarify

      This has been clarified.

      * Page 8-9. Legend to the Figure 2A. „Similar observations were obtained with 5 different cell cultures." Same remark goes to the legend to supplementary figure 7 ("Similar observations were obtained with at least 3 different cell cultures"). Do the authors mean independent experiments or different cell lines? Please clarify. If different cell lines, consider including these data into the supplement.

      Indeed we meant independent experimentations. This has been clarified.

      * Page 8-9, figure 2B. Giantin is a cis-golgi marker, which should localize perinuclearly. In the cells shown the signal is diffuse and appears non-specific. Please improve the quality.

      We have reduced the number of conditions for which images are provides and are providing individual staining for clarity. Zoomed images are also provided allowing visualization of the typical cis-Golgi distribution of Giantin.

      * Page 8-9, figure 2B. ATP7A is shown in green. The authors did not specify the secondary antibody has been used for it. If the secondary antibody used for labeling of ATP7A has green fluorescence then how does one distinguish between the transporter signal and signal of the green fluorescent shuttle? Please provide more details.

      We thank the reviewer for pointing this point as we missed to mention this technical issue in the original manuscript. The Cu-shuttles labeled with NBD indeed emit in the green signal, but they are not fixable under our conditions and are washed out during ICC procedure. Accordingly, they do generate any background signal and do not interfere with the ICC as shown by the controls and test conditions (Figure S7B and Figure 2B). This is now mentioned (page 11).

      * Page 9 and Figure 2B. Why did authors use Cu(II)EDTA for the experiment? What was the concentration? Please, add this information as well as Cu(II)GTSM treatment conditions to the experiment description in materials and methods.

      EDTA is a strong chelator of Cu(II), however due to its negative charge it cannot penetrate the plasma membrane thus importing Cu. It is therefore used as a negative control, to eliminate the speculation of Cu non-specifically crossing the plasma membrane or through a channel.

      * Figure 2 and supplementary figure 7. It would be beneficial to have higher magnification images. Please, add them, if possible.

      These higher magnification images have been provided.

      * Page 11. „In conclusion, the novel Cu(II)-selective peptide shuttles .... capable of instantly preventing ... toxicity on PC12 cells, whereas ... instantly rescue Cu(II)Aβ1-42 toxicity". Authors should be more careful with terminology. According to the materials and methods, the survival assay was carried out after 24h of cells' treatment with the reagents. Effect visible after 24h and „instant rescue" is not the same, Please clarify or modify the wording

      In principle, the peptides cannot reverse the production of ROS, however they prevent ROS production. Therefore, for the peptides to have an effect, they have to instantly halt ROS production. This is justified by the novel shuttles being more effective than AKH-αR5W4NBD in preventing toxicity, given we modified just the Cu binding sequence. We have however restricted the use of the term instantly to ROS production.

      * Page 13, figure 5, panels C and D. In both quantitations Cu(II) was used as one of the control conditions. Why in panel D the percentage of activated microglial cells (second graphs from right) is several fold higher (appr. 150% vs >500%)?

      This variability was observed throughout our set of experiments and could be linked to the quality of the hippocampal slices used. Slight variations in the age of the animals or in the traces of metals in the mediums are likely explanations. However, the different groups that are compared represent experiments performed simultaneously.

      * Supplementary Figure S3B. The lowest solid line does not correspond to any color in the legend (please, check and correct). However, by the method of exclusion, one may conclude that it refers to Cu(II)+HDapH-shuttle. What could be a potential explanation for stronger quenching of this shuttle by binding Cu(II) directly from the spiked media comparing to when it is pre-complexed with copper (also supported by the panel D)?

      The stronger quenching of this shuttle by binding Cu(II) directly from the spiked media comparing to when it is pre-complexed with copper is not significant.

      * In discussion the authors mention that the designed shuttles are prone to degradation in 48 hours. In the viability assays, they treat cells for 24 hours, in the fluorescent and confocal microscopy experiments for one hour or less. What is the lifetime of these shuttle peptides in the cells?

      The lifetime of the shuttle peptide in the cells is currently unknown. However, after 24h incubation of PC12 cells with the AKH-αR5W4NBD, DapHH-αR5W4NBD and HDapH-αR5W4NBD, the Cu shuttles lose their punctate distribution and appear diffuse inside the cells. We have recently shown that AKH-αR5W4NBD cycles through different endosomal compartments and eventually reaches the lysosomes where it could be degraded (Okafor et al., 2024, /doi.org/10.3389/fmolb.2024.1355963). Therefore, the diffuse distribution of the fluorescence signal could suggest degradation of the Cu-shuttles.

      * From the microscopy observations, the mechanism of entry of apo-shuttles (with no Cu(II) in the complex) and in complex with Cu(II) looks quite different. Namely, in figure S7 the fluorescent signal is very strong in the plasma membrane with significantly less vesicular pattern when compared to figure 2A. It is especially apparent for DapHH shuttle at 15 minutes of incubation. Can authors hypothesize/discuss the reason for these differences?

      The difference of the shuttle’s signal in the presence or absence of Cu binding, is due to fluorescence quenching by Cu bound and was at the heart of the design of these shuttles. Hence a strong signal at the plasma membrane is seen in the absence of Cu as these CPP-based shuttles interact strongly with the plasma membrane. However in presence of Cu, they become less visible due to quenching by Cu. Interestingly however, is that when Cu dissociates from the shuttle inside the cells (likely in acid endosomes), this quenching is suppressed and the fluorescence reappears. This is now better explained (page 10).

      * Please, show the figures in the supplementary file in the same order as you refer to them.

      This has been rectified.

      * Introduction. Description of the shuttle peptides: „(3) a cell penetrating peptide (CPP), αR5W4, with sequence RRWWRRRWWR, for cell entry35" - one R is the middle is extra.

      This has been rectified.

      *Kd units are missing (pages 2, 3 and 15) and should be added.

      This has been added.

      * Figure 1A is either not referred at all or mislabeled.

      * Page 7, Figure 1B: x axis on the second panel (+Mn+) misses a label.

      * Page 8. „Upon addition of DapHH-αR5W4NBD or HDapH-αR5W4NBD, an immediate slow-down in ROS production was observed (Figure 1D and S1E), ..." - mislabeled supplementary figure, please, correct.

      * Page 11. „...but not in the presence of AKH-αR5W4NBD which required pre-incubation to prevent toxicity (Figure 3AFigure)." Please, correct the reference to the figure.

      * Page 11. „This is in line with the faster retrieval ... previously demonstrated in vitro (Figure 1)" - please, specify the panel.

      * Supplementary materials and methods, subsection „Retrieval of Cu by peptide shuttles from Aβ", page 2: „The same was done for 10 μM Cu(II)...to give the estimated 100% saturated emission level." - check the spelling of the shuttle species.

      * Supplementary Figure S4. By the behavior of AKH-shuttle in the presence of copper and other metals, it looks that panels are shuffled, i.e. panel C looks corresponding to the panel B with DMEM/F12 conditions, whish is also supported by the values in the Table S1. Please, check and correct, if needed.

      * Supplementary figure S9, panel A. Apparently, mislabeled images with Abeta1-42 and Cu(II)Abeta1-42. Please, correct.

      We apologize for the different issues in referencing figures. This has been rectified.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Minor Concerns

      I think that authors can add some concepts of general interest on AD, as follows

      evidence showed that AD top-line disease-modifying drugs employing monoclonal antibodies (donanemab, lecanemab, and aducanumab) that tag Aβ, based on the 'Amyloid cascade hypothesis', are able to rid the brain of Aβ plaques, but the drug benefits consist in a reduction of 35% of cognitive decline. The remaining disease burden (more than 65%) has no disease-modifying therapeutic options, at the moment. Furthermore, monoclonal antibodies against Aβ have strong side- events (ARIA). On this basis, it could be suggested that removing Aβ plaque might not be sufficient to slow the 100% percentage of clinical decline in AD. This is why the Cu(II) shuttle invention presented by the candidate may represent a valid and concrete means to fight AD, since also meta-analyses demonstrate that Cu and more specifically non-Cp Cu is increased in AD (PMID: 34219710). The authors can add some of these clinical considerations in the Discussion.

      There is only a very brief description of the scenario of evidence of the involvement of copper in Alzheimer's, especially from a clinical point of view, I mean the scenario resulting from clinical studies carried out on AD patients. This would have highlighted the unmet medical need to which these new compounds (the Cu shuttles) can provide an answer. At least for a subpopulation of Alzheimer's patients, and we know that there are different subtypes of Alzheimer's disease (for example 10.1016/j.neurobiolaging.2004.04.001, but authors can find others), these Cu(II) selective shuttles could provide beneficial effects. Literature reports about a percentage of AD patients with increased levels of Cu (some papers on this topic e can be easily retrieved,), who may primarily benefit from these compounds. These can be easily identified as it is also characterized by a different biochemical, cognitive, and genetic profile. The current study is timely since AD patients with high Cu can be easily identified since they are characterized by a different biochemical, cognitive, and genetic profile as per recent findings (PMID: 37047347). This information can improve the quality of the manuscript by providing information about the unmet clinical need that this study can answer

      We thank the reviewer for his very positive evaluation and for his suggestion that gives more perspective to our work. Accordingly, we have added these parts to the introduction and discussion sections.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      Summary: The paper addresses the design and synthesis of novel copper (Cu)-selective peptide transporters to prevent Cu(Aβ)-induced toxicity and microglial activation in organotypic hippocampal slices.This is a very interesting study. I would define the study as pioneering and I hope that it is a seminal study, as it could be a study that opens the doors to future studies in the sector but above all applications in the clinical field. The methods are very complex and demonstrate an excellent knowledge of the biochemistry of beta-amyloid and copper. Methods are also clear and provide information for reproducibility

      Minor Concerns

      I think that authors can add some concepts of general interest on AD, as follows evidence showed that AD top-line disease-modifying drugs employing monoclonal antibodies (donanemab, lecanemab, and aducanumab) that tag Aβ, based on the 'Amyloid cascade hypothesis', are able to rid the brain of Aβ plaques, but the drug benefits consist in a reduction of 35% of cognitive decline. The remaining disease burden (more than 65%) has no disease-modifying therapeutic options, at the moment. Furthermore, monoclonal antibodies against Aβ have strong side- events (ARIA). On this basis, it could be suggested that removing Aβ plaque might not be sufficient to slow the 100% percentage of clinical decline in AD. This is why the Cu(II) shuttle invention presented by the candidate may represent a valid and concrete means to fight AD, since also meta-analyses demonstrate that Cu and more specifically non-Cp Cu is increased in AD (PMID: 34219710). The authors can add some of these clinical considerations in the Discussion

      there is only a very brief description of the scenario of evidence of the involvement of copper in Alzheimer's, especially from a clinical point of view, I mean the scenario resulting from clinical studies carried out on AD patients. This would have highlighted the unmet medical need to which these new compounds (the Cu shuttles) can provide an answer. At least for a subpopulation of Alzheimer's patients, and we know that there are different subtypes of Alzheimer's disease (for example 10.1016/j.neurobiolaging.2004.04.001, but authors can find others), these Cu(II) selective shuttles could provide beneficial effects. Literature reports about a percentage of AD patients with increased levels of Cu (some papers on this topic e can be easily retrieved,), who may primarily benefit from these compounds. These can be easily identified as it is also characterized by a different biochemical, cognitive, and genetic profile. The current study is timely since AD patients with high Cu can be easily identified since they are characterized by a different biochemical, cognitive, and genetic profile as per recent findings (PMID: 37047347). This information can improve the quality of the manuscript by providing information about the unmet clinical need that this study can answer

      Significance

      The significance of the study relies on that the Cu(II) selective shuttles can import Cu into cells and also release Cu once inside the cells, which was shown to be bioavailable, as revealed by the delocalization of ATP7A from the TGN to the sub-plasmalemma zone in PC12 cells. The novelty is well expressed by the implementation of Cu(II) selective shuttles that can release Cu inside the cells. Thus, they can restore Cu physiological levels in conditions of brain Cu deficiency that typify the neuronal cells in AD. Furthermore, this Cu trafficking can be finely tuned, thus preventing potential adverse drug reactions when transferred into human clinical phase I and II studies. This application may represent a step forward concerning previous copper attenuating compounds/Cu(II) ionophores such as Clioquinol and GTSM which mediated non-physiological Cu import into the cells that have likely contributed to neurotoxicity processes in previous unsuccessful phase II clinical trials.

      Furthermore, the originality of the current study relies on the fact that these shuttles can be tracked in real-time, once in the cell, since they employ a fluorophore moiety sensitive to Cu binding. Furthermore, DapHH-αR5W4NBD and HDapH-αR5W4NBD, can import bioavailable Cu(II) and can prevent ROS production by Cu(II)Aβ instantly, due to the much faster Cu-binding. Importantly, DapHH-αR5W4NBD and HDapH-αR5W4NBD shuttles have been also capable of preventing OHSC slices from Cu-induced neurotoxicity, microglial proliferation, and activation. Another important feature of the Cu shuttles is that they can be designed to control their site of cell delivery. In fact, previous ionophores had the tendency to accumulate in the mitochondria, and, in doing so, excess Cu in the mitochondria might have competed with other transitional metals (mainly Fe) and triggered mitochondrial dysfunction as well as cuproptosis. These are the main strengths of the study.

      The audience of this article is currently that of expert biochemists, but by adding aspects regarding the unmet clinical need relating to the large population of AD patients with high copper in the introduction and discussion, the article can capture the attention of clinicians.

      I am a neuroscientist working on biochemical pathways and metals in Alzheimer's disease.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The questions after reading this manuscript are what novel insights have been gained that significantly go beyond what was already known about the interaction of these receptors and, more importantly, what are the physiological implications of these findings? The proposed significance of the results in the last paragraph of the Discussion section is speculative since none of the receptor interactions have been investigated in TNBC cell lines. Moreover, no physiological experiments were conducted using the PRLR and GH knockout T47D cells to provide biological relevance for the receptor heteromers. The proposed role of JAK2 in the cell surface distribution and association of both receptors as stated in the title was only derived from the analysis of box 1 domain receptor mutants. A knockout of JAK2 was not conducted to assess heteromers formation.

      We thank the reviewer for these comments. The novel insight is that two different cytokine receptors can interact in an asymmetric, ligand-dependent manner, such that one receptor regulates the other receptor’s surface availability, mediated by JAK2. To our knowledge this has not been reported before. Beyond our observations, there is the question if this could be a much more common regulatory mechanism and if it has therapeutic relevance. However, answering these questions is beyond the scope of this work.

      Along the same line, the question regarding the biological relevance of our receptor heteromers and JAK2’s role in cell surface distribution is undoubtfully very important. Studying GHR-PRLR cell surface distributions in JAK2 knockout cells and certain TNBC cell lines as proposed by the reviewer could perhaps be insightful. However, most TNBCs down-regulate PRLR [1], so we would first have to identify TNBC cell lines that actually express PRLR at sufficiently high levels. Moreover, knocking out JAK2 is known to significantly reduce GHR surface availability [2,3], such that the proposed experiment would probably provide only limited insights.

      Unfortunately, our team is currently not in the position to perform any experiments (due to lack of funding and shortage of personnel). However, to address the reviewer’s comment as much as possible, we have revised the respective paragraph of the discussion section to emphasize the speculative nature of our statement and have added another paragraph discussing shortcoming and future experiments (see revised manuscript, pages 23-24).

      (1) López-Ozuna, V., Hachim, I., Hachim, M. et al. Prolactin Pro-Differentiation Pathway in Triple Negative Breast Cancer: Impact on Prognosis and Potential Therapy. Sci Rep 6, 30934 (2016). https://www.nature.com/articles/srep30934

      (2) He, K., Wang, X., Jiang, J., Guan, R., Bernstein, K.E., Sayeski, P.P., Frank, S.J. Janus kinase 2 determinants for growth hormone receptor association, surface assembly, and signaling. Mol Endocrinol. 2003;17(11):2211-27. doi: 10.1210/me.2003-0256. PMID: 12920237.

      (3) He, K., Loesch, K., Cowan, J.W., Li, X., Deng, L., Wang, X., Jiang, J., Frank, S.J. Janus Kinase 2 Enhances the Stability of the Mature Growth Hormone Receptor, Endocrinology, Volume 146, Issue 11, 2005, Pages 4755–4765,https://doi.org/10.1210/en.2005-0514

      (2) Except for some investigation of γ2A-JAK2 cells, most of the experiments in this study were conducted on a single breast cancer cell line. In terms of rigor and reproducibility, this is somewhat borderline. The CRISPR/Cas9 mutant T47D cells were not used for rescue experiments with the corresponding full-length receptors and the box1 mutants. A missed opportunity is the lack of an investigation correlating the number of receptors with physiological changes upon ligand stimulation (e.g., cellular clustering, proliferation, downstream signaling strength).

      We appreciate the reviewer’s comments. While we are confident in the reproducibility of our findings, including those obtained in the T47D cell line, we acknowledge that testing in additional cell lines would have strengthened the generalizability of our results. We also recognize that performing a rescue experiment using our T47D hPRLR or hGHR KO cells would have been valuable. Furthermore, examining physiological changes, such as proliferation rates and downstream signaling responses, would have provided additional insights. Unfortunately, these experiments were not conducted at the time, and we currently lack the resources to carry them out.

      (3) An obvious shortcoming of the study that was not discussed seems to be that the main methodology used in this study (super-resolution microscopy) does not distinguish the presence of various isoforms of the PRLR on the cell surface. Is it possible that the ligand stimulation changes the ratio between different isoforms? Which isoforms besides the long form may be involved in heteromers formation, presumably all that can bind JAK2?

      This is a very good point. We fully agree with the reviewer that a discussion of the results in the light of different PRLR isoforms is appropriate. We have added information on PRLR isoforms to the Introduction (see revised manuscript, page 2) and Discussion sections (see revised manuscript, pages 23-24).

      (4) Changes in the ligand-inducible activation of JAK2 and STAT5 were not investigated in the T47D knockout models for the PRL and GHR. It is also a missed opportunity to use super-resolution microscopy as a validation tool for the knockouts on the single cell level and how it might affect the distribution of the corresponding other receptor that is still expressed.

      We thank the reviewer for his comment. We fully agree that such additional experiments could be very valuable. We are sorry but, as already mentioned above, this is not something we are able to address at this stage due to lack of personnel and funding. However, we do hope to address these and other proposed experiments in the future.

      (5) Why does the binding of PRL not cause a similar decrease (internalization and downregulation) of the PRLR, and instead, an increase in cell surface localization? This seems to be contrary to previous observations in MCF-7 cells (J Biol Chem. 2005 October 7; 280(40): 33909-33916).

      It has been recently reported for GHR that not only JAK2 but also LYN binds to the box1-box2 region, creating competition that results in divergent signaling cascades and affects GHR nanoclustering [1]. So, it is reasonable to assume that similar mechanisms may be at work that regulate PRLR cell surface availability. Differences in cells’ expression of such kinases could perhaps play a role in the perceived inconsistency. Also, Lu et al. [2] studied the downregulation of the long PRLR isoform in response to PRL. All other PRLR isoforms were not detectable in MCF-7 cells. So, differences between MCF-7 and T47D may lead to this perceived contradiction.

      At this stage, we can only speculate about the actual reasons for these seemingly contradictory results. However, for full transparency, we are now mentioning this apparent contradiction in the Discussion section (see page 23) and have added the references below.

      (1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.

      https://www.cell.com/cell-reports/pdf/S2211-1247(23)00501-6.pdf

      (2) Lu, J.C., Piazza, T.M., Schuler, L.A. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem. 2005 Oct 7;280(40):33909-16. doi: 10.1074/jbc.M508118200. PMID: 16103113; PMCID: PMC1976473.

      (6) Some figures and illustrations are of poor quality and were put together without paying attention to detail. For example, in Fig 5A, the GHR was cut off, possibly to omit other nonspecific bands, the WB images look 'washed out'. 5B, 5D: the labels are not in one line over the bars, and what is the point of showing all individual data points when the bar graphs with all annotations and SD lines are disappearing? As done for the y2A cells, the illustrations in 5B-5E should indicate what cell lines were used. No loading controls in Fig 5F, is there any protein in the first lane? No loading controls in Fig 6B and 6H.

      We thank the reviewer for pointing this out. We have amended Fig. 5A to now show larger crops of the two GHR and PRLR Western Blot images and thus a greater range of proteins present in the extracts. Please note that the bands in the WBs other than what is identified as GHR and PRLR are non-specific and reflect roughly equivalent loading of protein in each lane.

      We also made some changes to Figures 5B-5E.

      (7) The proximity ligation method was not described in the M&M section of the manuscript.

      We thank the reviewer for pointing this out. We have added a description of the PL method to the Methods section.

      Reviewer #1 (Recommendations for the Authors):

      A final suggestion for future investigations: Instead of focusing on the heteromer formation of the GHR/PRLR which both signal all through the same downstream effectors (JAK2, STAT5), it would have been more cancer-relevant, and perhaps even more interesting, to look for heteromers between the PRLR and receptors of the IL-6 family since it had been shown that PRL can stimulate STAT3, which is a unique feature of cancer cells. If that is the case, this would require a different modality of the interaction between different JAK kinases.

      We highly appreciate the reviewer’s recommendation and hope to follow up on it in the near future.

      Reviewer #2 (Public Review):

      (1) I could not fully evaluate some of the data, mainly because several details on acquisition and analysis are lacking. It would be useful to know what the background signal was in dSTORM and how the authors distinguished the specific signal from unspecific background fluorescence, which can be quite prominent in these experiments. Typically, one would evaluate the signal coming from antibodies randomly bound to a substrate around the cells to determine the switching properties of the dyes in their buffer and the average number of localisations representing one antibody. This would help evaluate if GHR or PRLR appeared as monomers or multimers in the plasma membrane before stimulation, which is currently a matter of debate. It would also provide better support for the model proposed in Figure 8.

      We are grateful for the reviewer’s comment. In our experience, the background signal is more relevant in dSTORM when imaging proteins that are located at deeper depths (> 3 μm) above the coverslip surface. In our experiments, cells are attached to the coverslip surface and the proteins being imaged are on the cell membrane. In addition, we employed dSTORM’s TIRF (total internal reflection fluorescence) microscopy mode to image membrane receptor proteins. TIRFM exploits the unique properties of an induced evanescent field in a limited specimen region immediately adjacent to the interface between two media having different refractive indices. It thereby dramatically reduces background by rejecting fluorescence from out-of-focus areas in the detection path and illuminating only the area right near the surface.

      Having said that, a few other sources such as auto-fluorescence, scattering, and non-bleached fluorescent molecules close to and distant from the focal plane can contribute to the background signal. We tried to reduce auto-fluorescence by ensuring that cells are grown in phenol-red-free media, imaging is performed in STORM buffer which reduces autofluorescence, and our immunostaining protocol includes a quenching step aside from using blocking buffer with different serum, in addition to BSA. Moreover, we employed extensive washing steps following antibody incubations to eliminate non-specifically bound antibodies. Ensuring that the TIRF illumination field is uniform helps reduce scatter. Additionally, an extended bleach step prior to the acquisition of frames to determine localizations helped further reduce the probability of non-bleached fluorescent molecules.

      In short, due to the experimental design we do not expect much background. However, in the future, we will address this concern and estimate background in a subtype dependent manner. To this end we will distinguish two types of background noise: (A) background with a small change between subsequent frames, which mainly consists of auto-fluorescence and non-bleached out-of-focus fluorescent molecules; and (B) background that changes every imaging frame, which is mainly from non-bleached fluorescent molecules near the focal plane. For type (A) background, temporal filters must be used for background estimation [1]; for type (B) background, low-pass filters (e.g., wavelet transform) should be used for background estimation [2].

      (1) Hoogendoorn, Crosby, Leyton-Puig, Breedijk, Jalink, Gadella, and Postma (2014). The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Scientific reports, 4, 3854. https://doi.org/10.1038/srep03854

      (2) Patel, Williamson, Owen, and Cohen (2021). Blinking statistics and molecular counting in direct stochastic reconstruction microscopy (dSTORM). Bioinformatics, Volume 37, Issue 17, September 2021, Pages 2730–2737, https://doi.org/10.1093/bioinformatics/btab136

      (2) Since many of the findings in this work come from the evaluation of localisation clusters, an image showing actual localisations would help support the main conclusions. I believe that the dSTORM images in Figures 1 and 2 are density maps, although this was not explicitly stated. Alexa 568 and Alexa 647 typically give a very different number of localisations, and this is also dependent on the concentration of BME. Did the authors take that into account when interpreting the results and creating the model in Figures 2 and 8?

      I believe that including this information is important as findings in this paper heavily rely on the number of localisations detected under different conditions.

      Including information on proximity labelling and CRISPR/Cas9 in the methods section would help with the reproducibility of these findings by other groups.

      Figures 1 and 2 show Gaussian interpolations of actual localizations, not density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting. In other words, we show reconstructed images based on identifying true localizations using gaussian fitting and some strict parameters to identify true fluorophore blinking. This allowed us to identify true localizations with high confidence and generate a high-resolution image for membrane receptors.

      Indeed, Alexa 568 and 647 give different numbers of localization. This is dependent on the intrinsic photo-physics of the fluorophores. Specifically, each fluorophore has a different duty cycle, switching cycle, and survival fraction. However, we note that we focused on capturing the relative changes in receptor numbers over time, before and after stimulation by ligands, not the absolute numbers of surface GHR and PRLR. We are not comparing the absolute numbers of localizations or drawing comparisons for localization numbers between 568 and 647. For all these different conditions/times, the photo-physics for a particular fluorophore remains the same. This allows us to make relative comparisons.

      As far as the effect of BME is concerned, the concentration of mercaptoethanol needs to be carefully optimized, as too high a concentration can potentially quench the fluorescence or affect the overall stability of the sample. However, we are using an optimized concentration which has been previously validated across multiple STORM experiments. This makes the concerns relating to the concentration of BME irrelevant to the current experimental design. Besides, the concentration of BME is maintained across all experimental conditions.

      We have added information regarding PL and CRISPR/Cas9 for generating hGHR KO and hPRLR KO cells in two new subsections to the Methods section.

      Reviewer #2 (Recommendations for the authors):

      In the methods please include:<br /> (1) A section with details on proximity ligation assays.

      We have added a description of the PL method to the Methods section.

      (2) A section on CRISPR/Cas9 technology.

      We have added two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR  or hPRLR knockout” to the Methods section.

      (3) List the precise composition of the buffer or cite the paper that you followed.

      We used the buffer recipe described in this protocol [1] and have added the components with concentrations as well as the following reference to the manuscript.

      (1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325

      (4) Exposure time used for image acquisition to put 40 000 frames in the context of total imaging time and clarify why you decided to take 40 000 images per channel.

      Our Nikon Ti2 N-STORM microscope is equipped with an iXon DU-897 Ultra EMCCD camera from Andor (Oxford Instruments). According to the camera’s manufacturer, this camera platform uses a back-illuminated 512 x 512 frame transfer sensor and overclocks readout to 17 MHz, pushing speed performance to 56 fps (in full frame mode). We note that we always tried to acquire STORM images at the maximal frame rate. As for the exposure time, according to the manufacturer it can be as short as 17.8 ms. We would like to emphasize that we did not specify/alter the exposure time.

      See also: https://andor.oxinst.com/assets/uploads/products/andor/documents/andor-ixon-ultra-emccd-specifications.pdf

      The decision to take 40,000 images per frame was based on our intention to identify the true population of the molecules of interest that are localized and accurately represented in the final reconstruction image. The total number of frames depends on the sample complexity, density of sample labeling and desired resolution. We tested a range of frames between 20,000 and 60,000 and found for our experimental design and output requirements that 40,000 frames provided the best balance between achieving maximal resolution and desired localizations to make consistent and accurate localization estimates across different stimulation conditions compared to basal controls.

      (5) The lasers used to switch Alexa 568 and Alexa 647. Were you alternating between the lasers for switching and imaging of dyes? Intermittent and continuous illumination will produce very different unspecific background fluorescence.

      Yes, we used an alternating approach for the lasers exciting Alexa 647 and Alexa 568, for both switching and imaging of the dyes.

      (6) A paragraph with a detailed description of methods used to differentiate the background fluorescence from the signal.

      We have addressed the background fluorescence under Point 1 (Public Review). We have added a paragraph in the Methods section on this issue.

      (7) Minor corrections to the text:

      It appears as though there is a large difference in the expression level of GHR and PRLR in basal conditions in Figure 1. This can be due to the switching properties of the dyes, which is related to the amount of BME in the buffer, or it can be because there is indeed more PRL. Would the authors be able to comment on this?

      We thank the reviewer for this suggestions. According to expression data available online there is indeed more PRLR than GHR in T47D cells. According to CellMiner [1], T47D cells have an RNA-Seq gene expression level log2(FPKM + 1) of 6.814 for PRLR, and 3.587 for GHR, strongly suggesting that there is more PRLR than GHR in basal conditions, matching the reviewer’s interpretation of our images in Fig. 1 (basal). However, we would advise against using STORM images for direct comparisons of receptor expression. First, with TIRF images, we are only looking at the membrane fraction (~150 nm close to the coverslip membrane interface) that is attached to the coverslip. Secondly, as discussed above, our data represent relative cell surface receptor levels that allow for comparison of different conditions (basal vs. stimulation) and does not represent absolute quantifications. Everything is relative and in comparison to controls.

      Also, BME is not going to change the level of expression. The differences in growth factor expression as estimated by relative comparison can be attributed to the actual changes in growth factors and is not an artifact of the amount of BME in the buffer or the properties of dyes. These factors are maintained across all experimental conditions and do not influence the final outcome.

      (1) https://discover.nci.nih.gov/cellminer/

      (8) I would encourage the authors to use unspecific binding to characterize the signal coming from single antibodies bound to the substrate. This would provide a mean number of localizations that a single antibody generates. With this information, one can evaluate how many receptors there are per cluster, which would strengthen the findings and potentially provide additional support for the model presented in Figure 8. It would also explain why the distributions of localisations per cluster in Fig. 3B look very different for hGHR and hPRLR. As the authors point out in the discussion, the results on predimerization of these receptors in basal conditions are conflicting and therefore it is important to shed more light on this topic.

      We thank the reviewer for this suggestions. While we are unable to perform this experiment at this stage, we will keep it in mind for future experiments.

      (9) Minor corrections to the figures:

      Figure 1:

      In the legend, please say what representation was used. Are these density maps or another representation? Please provide examples of actual localisations (either as dots or crosses representing the peaks of the Gaussians). Most findings of this work rely on the characterisation of the clusters of localisations and therefore it is of essence to show what the clusters look like. This could potentially go to the supplemental info to minimise additional work. It's very hard to see the puncta in this figure.

      If the authors created zoomed regions in each of the images (as in Figure 3), it would be much easier to evaluate the expression level and the extent of colocalisation. Halfway through GHR 3 min green pixels become grey, but this may be the issue with the document that was created. Please check. Either increase the font on the scale bars in this figure or delete it.

      As described above, Figure 1 does not show density maps. Imaging captured the fluorophores’ blinking events and localizations were counted as true localizations, when at least 5 consecutive blinking events had been observed. Nikon software was used for Gaussian fitting and smoothing.

      We have generated zoomed regions. In our files (original as well as pdf) we do not see pixels become grey. We increased the font size above one of the scale bars and removed all others.

      Figure 3:

      In A, the GHR clusters are colour coded but PRLR are not. Are both DBSCN images? Explain the meaning of colour coding or show it as black and white. Was brightness also increased in the PRLR image? The font on the scale bars is too small. In B, right panels, the font on the axes is too small. In the figure legend explain the meaning of 33.3 and 16.7

      In our document, both GHR and PRLR are color coded but the hGHR clusters are certainly bigger and therefore appear brighter than the hPRLR clusters. Both are DBSCAN images. The color coding allows to distinguish different clusters (there is no other meaning). We have kept the color-coding but have added a sentence to the caption addressing this. Brightness was increased in both images of Panel B equally. 33.3 and 16.7 are the median cluster sizes. We have added a sentence to the caption explaining this. We have increased the font on the axes in B (right panels).

      Figure 4:

      I struggled to see any colocalization in the 2nd and the 3rd image. Please show zoomed-in sections. In the panels B and C, the data are presented as fractions. Is this per cell? My interpretation is that ~80% of PRL clusters also contain GHR.

      Is this in agreement with Figures 1 and 2? In Figure 1, PRL 3 min, Merge, colocalization seems much smaller. Could the authors give the total numbers of GHR and PRLR from which the fractions were calculated at least in basal conditions?

      We have provided zoom-in views. As for panels B and C, fractions are number of clusters containing both receptors divided by the total number of clusters. We used the same strategy that we had used for calculating the localization changes: We randomly selected 4 ROIs (regions of interest) per cell to calculate fractions and then calculated the average of three different cells from independently repeated experiments. We did not calculate total numbers of GHR/PRLR. The numbers are fractions of cluster numbers.

      Moreover, the reviewer interprets results in panels B and C that ~80% of PRLR clusters also contain GHR. We assume the reviewer refers to Basal state. Now, the reviewer’s interpretation is not correct for the following reason: ~80% of clusters have both receptors. How many of the remaining (~20%) clusters have only PRLR or only GHR is not revealed in the panels. Only if 100% of clusters have PRLR, we can conclude that 80% of PRLR clusters also contain GHR.

      Also, while Figures 1 and 2 show localization based on dSTORM images, Figure 3 indicates and quantifies co-localization based on proximity ligation assays following DBSCAN analysis using Clus-DoC. We do not think that the results are directly comparable.

      Reviewer #3 (Public Review):

      (1) The manuscript suffers from a lack of detail, which in places makes it difficult to evaluate the data and would make it very difficult for the results to be replicated by others. In addition, the manuscript would very much benefit from a full discussion of the limitations of the study. For example, the manuscript is written as if there is only one form of the PRLR while the anti-PRLR antibody used for dSTORM would also recognize the intermediate form and short forms 1a and 1b on the T47D cells. Given the very different roles of these other PRLR forms in breast cancer (Dufau, Vonderhaar, Clevenger, Walker and other labs), this limitation should at the very least be discussed. Similarly, the manuscript is written as if Jak2 essentially only signals through STAT5 but Jak2 is involved in multiple other signaling pathways from the multiple PRLRs, including the long form. Also, while there are papers suggesting that PRL can be protective in breast cancer, the majority of publications in this area find that PRL promotes breast cancer. How then would the authors interpret the effect of PRL on GHR in light of all those non-protective results? [Check papers by Hallgeir Rui]

      We thank the reviewer for such thoughtful comments. We have added a paragraph in the Discussion section on the limitations of our study, including sole focus on T47D and γ2A-JAK2 cells and lack of PRLR isoform-specific data. Also, we are now mentioning that these isoforms play different roles in breast cancer, citing papers by Dufau, Vonderhaar, Clevenger, and Walker labs.

      We did not mean to imply that JAK2 signals only via STAT5 or by only binding the long form. We have made this point clear in the Introduction as well as in our revised Discussion section. Moreover, we have added information and references on JAK2 signaling and PRLR isoform specific signaling.

      In our Discussions section we are also mentioning the findings that PRL is promoting breast cancer. We would like to point out that it is well perceivable that PRL is protective in BC by reducing surface hGHR availability but that this effect may depend on JAK2 levels as well as on expression levels of other kinases that competitively bind Box1 and/or Box2 [1]. Besides, could it not be that PRL’s effect is BC stage dependent? In any case, we have emphasized the speculative nature of our statement.

      (1) Chhabra, Y., Seiffert, P., Gormal, R.S., et al. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep. 2023;42(5):112490. doi: 10.1016/j.celrep.2023.112490. PMID: 37163374.

      Reviewer #3 (Recommendations for the authors):

      Points for improvement of the manuscript:

      (1) Method details -

      a) "we utilized CRISPR/Cas9 to generate hPRLR knockout T47D cells ......" Exactly how? Nothing is said under methods. Can we be sure that you knocked out the whole gene?

      We have addressed this point by adding two new sections on “Generating hGHR knockout and hPRLR knockout T47D cells” and “Design of sgRNAs for hGHR or hPRLR knockout” to the Methods section.

      b) Some of the Western blots are missing mol wt markers. How specific are the various antibodies used for Westerns? For example, the previous publications are quoted as providing characterization of the antibodies also seem to use just band cutouts and do not show the full molecular weight range of whole cell extracts blotted. Anti-PRLR antibodies are notoriously bad and so this is important.

      There is an antibody referred to in Figure 5 that is not listed under "antibodies" in the methods.

      We have modified Figure 5a, showing the entire gel as well as molecular weight markers. As for specificity of our antibodies, we used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48, which have been previously tested and used. In addition, we did our own control experiments to ensure specificity. We have added some of our many control results as Supplementary Figures S2 and S3.

      We thank the reviewer for noticing the missing antibody in the Methods section. We have now added information about this antibody.

      c) There is no description of the proximity ligation assay.

      We have addressed this by adding a paragraph on PLA in the Methods section.

      d) What is the level of expression of GHR, PRLR, and Jak2 in the gamma2A-JAK2 cells compared to the T47D cells? Artifacts of overexpression are always a worry.

      γ2A-JAK2 cell series are over-expressing the receptors. That’s the reason we did not only rely on the observation in γ2A-JAK2 cell lines but also did the experiment in T47D cell lines.

      e) There are no concentrations given for components of the dSTORM imaging buffer. On line 380, I think the authors mean alternating lasers not alternatively.

      Thank you. Indeed, we meant alternating lasers. We are referring to [1] (the protocol we followed) for information on the imaging buffer.

      (1) Beggs, R.R., Dean, W.F., Mattheyses, A.L. (2020). dSTORM Imaging and Analysis of Desmosome Architecture. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 2367. Humana, New York, NY. https://doi.org/10.1007/7651_2020_325

      f) In general, a read-through to determine whether there is enough detail for others to replicate is required. 4% PFA in what? Do you mean PBS or should it be Dulbecco's PBS etc., etc.?

      We prepared a 4% PFA in PBS solution. We mean Dulbecco's PBS.

      (2) There are no controls shown or described for the dSTORM. For example, non-specific primary antibody and second antibodies alone for non-specific sticking. Do the second antibodies cross-react with the other primary antibody? Is there only one band when blotting whole cell extracts with the GHR antibody so we can be sure of specificity?

      We used monoclonal antibodies Anti-GHR-ext-mAB 74.3 and Anti-PRLR-ext-mAB 1.48 (but also tested several other antibodies). While these antibodies have been previously tested and used, we performed additional control experiments to ensure specificity of our primary antibodies and absence of non-specific binding of our secondary antibodies. We have added some of our many control results as Supplementary Figures S2 and S3.

      (3) Writing/figures-

      a) As discussed in the public review regarding different forms of the PRLR and the presence of other Jak2-dependent signaling

      We have added paragraphs on PRLR isoforms and other JAK2-dependent signaling pathways to the Introduction. Also, we have added a paragraph on PRLR isoforms (in the context of our findings) to the Discussion section.

      b) What are the units for figure 3c and d?

      The figures show numbers of localizations (obtained from fluorophore blinking events). In the figure caption to 3C and 3D, we have specified the unit (i.e. counts).

      c) The wheat germ agglutinin stains more than the plasma membrane and so this sentence needs some adjustment.

      We thank the reviewer for this comment. We have rephrased this sentence (see caption to Fig. 4).

      d) It might be better not to use the term "downregulation" since this is usually associated with expression and not internalization.

      While we understand the reviewer’s discomfort with the use of the word “downregulation”, we still think that it best describes the observed effect. Moreover, we would like to note that in the field of receptorology “downregulation” is a specific term for trafficking of cell surface receptors in response to ligands. That said, to address the reviewer’s comment, we are now using the terms “cell surface downregulation” or “downregulation of cell surface [..] receptor” throughout the manuscript in order to explicitly distinguish it from gene downregulation.

      e) Line 420 talks about "previous work", a term that usually indicates work from the same lab. My apologies if I am wrong, but the reference doesn't seem to be associated with the authors.

      At the end of the sentence containing the phrase “previous work”, we are referring to reference [57], which has Dr. Stuart Frank as senior and corresponding author. Dr. Frank is also a co-corresponding author on this manuscript. While in our opinion, “previous work” does not imply some sort of ownership, we are happy to confirm that one of us was responsible for the work we are referencing.

      Reviewing Editor's recommendations:

      The reviewers have all provided a very constructive assessment of the work and offered many useful suggestions to improve the manuscript. I'd advise thinking carefully about how many of these can be reasonably addressed. Most will not require further experiments. I consider it essential to improve the methods to ensure others could repeat the work. This includes adding methods for the PLA and including detail about the controls for the dSTORM. The reviewers have offered suggestions about types of controls to include if these have not already been done.

      We thank the editor for their recommendations. We have revised the methods section, which now includes a paragraph on PLA as well as on CRISPR/Cas9-based generation of mutant cell lines. We have also added information on the dSTORM buffer to the manuscript. Data of controls indicating antibody specificity (using confocal microscopy) have been added to the manuscript’s supplementary material (see Fig. S2 and S3).

      I agree with the reviewers that the different isoforms of the prolactin receptor need to be considered. I think this could be done as an acknowledgment and point of discussion.

      We have revised the discussions section and have added a paragraph on the different PRLR isoforms, among others.

      For Figure 2E, make it clear in the figure (or at least in legend) that the middle line is the basal condition.

      We thank the editor for their comment. We have made changes to Fig 2E and have added a sentence to the legend making it clear that the middle depicts the basal condition.

      My biggest concern overall was the fact that this is all largely conducted in a single cell line. This was echoed by at least one of the reviewers. I wonder if you have replicated this in other breast cancer cell lines or mammary epithelial cells? I don't think this is necessary for the current manuscript but would increase confidence if available.

      We thank the editor for their comment and fully agree with their assessment. Unfortunately, we have not replicated these experiments in other BC cell lines nor mammary epithelial cells but would certainly want to do so in the near future.

    1. Author rsponse:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this paper, the authors have performed an antigenic assay for human seasonal N1 neuraminidase using antigens and mouse sera from 2009-2020 (with one avian N1 antigen). This shows two distinct antigen groups. There is poorer reactivity with sera from 2009-2012 against antigens from 2015-2019, and poorer reactivity with sera from 2015-2020 against antigens from 2009-2013. There is a long branch separating these two groups. However, 321 and 423 are the only two positions that are consistently different between the two groups. Therefore these are the most likely cause of these antigenic differences.

      Strengths:

      (1) A sensible rationale was given for the choice of sera, in terms of the genetic diversity.

      (2) There were two independent batches of one of the antigens used for generating sera, which demonstrated the level of heterogeneity in the experimental process.

      (3) Replicate of the Wisconsin/588/2019 antigen (as H1 and H6) is another useful measure of heterogeneity.

      (4) The presentation of the data, e.g. Figure 2, clearly shows two main antigenic groups.

      (5) The most modern sera are more recent than other related papers, which demonstrates that has been no major antigenic change.

      Weaknesses:

      (1) Issues with experimental methods

      As I am not an experimentalist, I cannot comment fully on the experimental methods. However, I note that BALB/c mice sera were used, whereas outbred ferret sera are typically used in influenza antigenic characterisation, so the antigenic difference observed may not be relevant in humans. Similarly, the mice were immunised with an artificial NA immunogen where the typical approach would be to infect the ferret with live virus intra-nasally.

      Indeed, ferrets are the gold standard model for the study of influenza. The main reason for this is the susceptibility of ferrets to infection with primary human influenza virus isolates and their ability to transmit human influenza A and B viruses. Although mouse models often require the use of mouse-adapted influenza virus strains, it is still the most used model to study new developments on influenza vaccine.

      In our previous publication we performed a parallel analysis of sera of ferrets that were primed by infection and boosted by recombinant protein, as well as mice that, like in this study that focuses on N1 NA, were prime-boosted with purified recombinant NA proteins in the presence of an adjuvant. Our data indicate that the NAI responses in immune sera from infected ferrets after infection and after boost enables similar antigenic classification and correlated strongly with those induced in mice that had been prime-boosted with adjuvanted recombinant NA (Catani et al., eLife 2024). To a large extend, the immunogenicity of an antigen relies on epitope accessibility, which may dictate a universal rule of immunogenicity and antigenicity (Altman et al., 2015).

      (2) Five mice sera were generated per immunogen and then pooled, but data was not presented that demonstrated these sera were sufficiently homogenous that this approach is valid.

      Although individual sera was not tested here. Based on previous studies from our group we are confident that a prime-boost schedule with 1 µg of adjuvanted soluble tetrameric NA, induces a highly homogeneous response in mice (Catani et al., 2022).

      (3) There were no homologous antigens for most of the sera. This makes the responses difficult to interpret as the homologous titre is often used to assess the overall reactivity of a serum. The sequence of the antigens used is not described, which again makes it difficult to interpret the results.

      The absence of homologous antigens may indeed make interpretation more difficult. However, we have observed that homologous sera do not always coincide with the highest reactivity, although highest reactivity is always found within an antigenic cluster. A sequence comparison would be appropriate to improve interpretability of the data. Therefore, a sequence alignment and a pairwise comparison will be provided in the revised manuscript as supplement. 

      (4) To be able to untangle the effects of the individual substitutions at 321, 386, and 432, it would have been useful to have included the naturally occurring variants at these positions, or to have generated mutants at these positions. Gao et al clearly show an antigenic difference with ferret sera correlated separately with N386K and I321V/K432E.

      The prevalence of single amino acid substitutions in N1 NA of clinical H1N1 virus strains isolated between 2009 and 2024 is minimal, which may indicate reduced fitness (see Author response image 1) in strains with these substitutions in NA. Nevertheless, we agree that the rescue of single mutants would provide important evidence to untangle those individual impacts on antigenicity. We plan to generate mutants with substitution at these positions in NA of A/Wisconsin/588/2019 H1N1 and determine the NAI against our panel of sera.

      Author response image 1.

      Prevalence of the indicated N1 NA substitutions in all clinical human H1N1 isolates with unique sequences deposited in the GISAID data bank since 2009.

      (5) The challenge experiments in Gao et al showed that NI titre was not a good correlate of protection, so that limits the interpretation of these results.

      On the contrary, challenges experiments confirmed that drift occurred in NA from H1N1 viruses isolated between 2009 (CA/09) and 2015 (MI/15). The dilution of transferred sera to equal inhibitory titers indicate that the homologous ferret sera (shown in figure 5e-f)(Gao et al., 2019) is still effective in protecting against infection while heterologous sera are not. This result emphasises that the nature of the homologous NAI response is well-suited for protection against a homologous challenge, although mechanistic data was not provided.

      Issues with the computational methods

      (6) The NAI titres were normalised using the ELISA results, and the motivation for this is not explained. It would be nice to see the raw values.

      Mice were immunized with different batches of recombinant protein. Each of those batches may have distinct intrinsic immunogenicity, as observed in Figure 1d. For that reason, NAI values were normalized using homologous ELISA titers induced by each respective NA antigen. A table with the raw values will be included in the revised manuscript.

      (7) It is not clear what value the random forest analysis adds here, given that positions 321 and 432 are the only two that consistently differ between the two groups.

      The substitutions at position 321 and 432 are indeed the only 2 consistently differing amino acids among the tested N1s. Although their correlation with antigenic clustering may be obvious after analysis, a random forest analysis would enable to reveal less obvious substitutions that contribute to the antigenic diversity. In the future, we intend to expand this methodology to strains that are not currently included in the panel. A random forest model is a relatively simple and performant method to deal with a new dataset.

      (8) As with the previous N2 paper, the metric for antigenic distance (the root mean square of the difference between the titres for two sera) is not one that would be consistent when different sera are included. More usual metrics of distance are Archetti-Horsfall, fold down from homologous, or fold down from maximum.

      The antigenic distances calculated prior to our random forest does use fold-difference as metrics as log2(max(EC50) / EC50). After having obtained the fold-difference values, a pairwise dissimilarity matrix was calculated to obtain the average antigenic distance between pairs of sera. A more detailed description of the methodology will be included in the methods session, including the R-code.

      (9) Antigenic cartography of these data is fraught. I wonder whether 2 dimensions are required for what seems like a 1-dimensional antigenic difference - certainly, the antigens, excluding the H5N1, are in a line. The map may be skewed by the high reactivity Brisbane/18 antigen. It is not clear if the column bases (normalisation factors for calculating antigenic distance) have been adjusted to account for the lack of homologous antigens. It is typical to present antigenic maps with a 1:1 x:y ratio.

      Antigenic cartography will be repeated excluding H5N1 and/or Brisbane/18 antigen. Data will be provided in the final rebuttal letter.

      Issues with interpretation

      (10) Figure 2 shows the NAI titres split into two groups for the antigens, however, A/Brisbane is an outlier in the second antigenic group with high reactivity.

      Indeed, A/Brisbane/02/2018 has overall higher IC50 values. However, it still falls into the same cluster that we called AG2. Highlighting A/Brisbane/02/2018 may lead to the misinterpretation of a non-existent antigenic group. 

      (11) Following Gao et al, I think you can claim that it is more likely that the antigenic change is due to K432E than I321V, based on a comparison of the amino acid change.

      Indeed, we would expect that substitution of the basic arginine to an acidic glutamate is more likely to impact antigenicity than the isoleucine-to-valine apolar substitution. Testing of mutant reassortants with single mutations may provide the definitive answer for that question.

      Appraisal:

      Taking into account the limitations of the experimental techniques (which I appreciate are due to resource constraints), this paper meets its aim of measuring the antigenic relationships between 2009-2020 seasonal N1s, showing that there were two main groups. The authors discovered that the difference between the two antigenic groups was likely attributable to positions 321 and 432, as these were the only two positions that were consistently different between the two groups. They came to this finding by using a random forest model, but other simpler methods could have been used.

      Impact:

      This paper contributes to the growing literature on the potential benefit of NA in the influenza vaccine.

      Reviewer #2 (Public review):

      Summary:

      In this study, Catani et al. have immunized mice with 17 recombinant N1 neuraminidases (NAs) from human isolates circulating between 2009-2020 to investigate antigenic diversity. NA inhibition (NAI) titers revealed two groups that were antigenically and phylogenetically distinct. Machine learning was used to estimate the antigenic distances between the N1 NAs and mutations at residues K432E and I321V were identified as key determinants of N1 NA antigenicity.

      Strengths:

      Observation of mutations associated with N1 antigenic drift.

      Weaknesses:

      Validation that K432E and I321V are responsible for antigenic drift was not determined in a background strain with native K432 and I321 or the restitution of antibody binding by reversion to K432 and I321 in strains that evaded sera.

      Reassortant A/Wisconsin/588/2019 with E432K, V321I and also K386N single mutations will be rescued and tested against the panel of sera.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors examined the representational geometry of orientation representations during visual perception and working memory along the visual hierarchy. Using representational similarity analysis, they found that similarity was relatively evenly distributed among all orientations during perception, while higher around oblique orientations during WM. There were some noticeable differences along the visual hierarchy. IPS showed the most pronounced oblique orientation preferences during WM but no clear patterns during perception, likely due to the different task demands for the WM orientation task and the perception contrast discrimination task. The authors proposed two models to capture the differences. The veridical model estimated the representational geometry in perception by assuming an efficient coding framework, while the categorical model estimated the pattern in WM using psychological distances to measure the differences among orientations (including estimates from a separate psychophysical study performed outside the scanner). Therefore, I think this work is valuable and advances our understanding of the transition from perception to memory.

      Strengths:

      The use of RSA to identify representational biases goes beyond simply relying on response patterns and helps identify how representational formats change from perception to WM. The study nicely leverages ideas about efficient coding to explain perceptual representations that are more veridical, while leaning on ideas about abstractions of percepts that are more categorical-psychological in nature (but see (1) below). Moreover, the match between memory biases of orientation and the patterns estimated with RSA were compelling (but see (2) below). I found the analyses showing how RSA and decoding (eg, cross-generalization) are associated and how/why they may differ to be particularly interesting.

      Weaknesses:

      (1) The idea that later visual maps (ie, IPS0) encode perceptions of orientation in a veridical form and then in a categorical form during WM is an attractive idea. However, the support is somewhat weakened by a few issues. The RSA plots in Figure 1C for IPS0 appear to show a similar pattern, but just of lower amplitude during perception. But in the model fits either for orientation statistics or estimated from the psychophysics task, the Veridical model fits best for perception and the Categorical model fits best for memory in IPS0. By my eye, the modeled RSMs in Figures 2 & 3 do not look like the observed ones in Figure 1C. Those modeled RSMs look way more categorical than the observed IPS0. They look like something in between.

      (2) My biggest concern is the omission of the in-scanner behavioral data. Yes, on the one hand, they used the N=17 outside the scanner psychophysics dataset for the analyses in Figure 3. On the other hand, they do not even mention the behavioral data collected in the scanner along with the BOLD data. Those data had clear oblique effects if I recall correctly. Why use the data from the psychophysics experiment? Also, perhaps a missed opportunity; I wonder if the Veridical/Categorical models fit a single subject's RSA data matches that subject's behavioral biases. That would really be compelling if found.

      The data were collected (reanalysis of published study) without consideration for the aims of the current study, and are therefore not optimized to test their goals. The biggest issue is that "The distractors are really distracting me." I'm somewhat concerned about how the distractors may have impacted the results. I honestly did not notice that the authors were using delay periods that had 11s of distractor stimuli until way into the paper. On the one hand, the "patterns" of the model fits across the ROIs appear to be qualitatively similar. That's good if you want to pool data like the authors did. But, while the authors state on line 350 "..we also confirmed that the presence of distractors during the delay did not impact the pattern of results in the memory task (Supplementary Figure 5)." When looking at Supplementary Figure 5, I noticed that there are a couple of exceptions to this. In the Gratings distractor data, V1 shows a better fit to the Veridical model, while V4 and IPS0 shows no better fit to either model. And in the Noise distractor data, neither model fits better for any ROI. At first glance, I was concerned, but then looking at the No distractor data, the pattern is identical to that of the combined data. Thus, this can be seen as a glass half full/empty issue as almost all of the ROIs show a similar pattern, but still it would concern me if I were leading this study. This gets me to my key question, why even use the distractor trials at all, where the interpretation can get dicey? For instance, the authors have shown in this exact data that the impact of distraction affects the fidelity of representations differently along the visual hierarchy (Rademaker, 2019), consistent with several other studies (eg., Bettencourt & Xu, 2016; Lorenc, 2018; Hallenbeck et al., 2022) and with one of the author's preprints (Rademaker & Serences, 2024). My guess is that without the full dataset, some of the RSA analyses are underpowered. If that is the case, I'm fine with it, but it might be nice to state that.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Here, the authors propose that changes in m6A levels may be predictable via a simple model that is based exclusively on mRNA metabolic events. Under this model, m6A mRNAs are "passive" victims of RNA metabolic events with no "active" regulatory events needed to modulate their levels by m6A writers, readers, or erasers; looking at changes in RNA transcription, RNA export, and RNA degradation dynamics is enough to explain how m6A levels change over time.

      The relevance of this study is extremely high at this stage of the epi transcriptome field. This compelling paper is in line with more and more recent studies showing how m6A is a constitutive mark reflecting overall RNA redistribution events. At the same time, it reminds every reader to carefully evaluate changes in m6A levels if observed in their experimental setup. It highlights the importance of performing extensive evaluations on how much RNA metabolic events could explain an observed m6A change.

      Weaknesses:

      It is essential to notice that m6ADyn does not exactly recapitulate the observed m6A changes. First, this can be due to m6ADyn's limitations. The authors do a great job in the Discussion highlighting these limitations. Indeed, they mention how m6ADyn cannot interpret m6A's implications on nuclear degradation or splicing and cannot model more complex scenario predictions (i.e., a scenario in which m6A both impacts export and degradation) or the contribution of single sites within a gene.

      Secondly, since predictions do not exactly recapitulate the observed m6A changes, "active" regulatory events may still play a partial role in regulating m6A changes. The authors themselves highlight situations in which data do not support m6ADyn predictions. Active mechanisms to control m6A degradation levels or mRNA export levels could exist and may still play an essential role.

      We are grateful for the reviewer’s appreciation of our findings and their implications, and are in full agreement with the reviewer regarding the limitations of our model, and the discrepancies in some cases - with our experimental measurements, potentially pointing at more complex biology than is captured by m6ADyn. We certainly cannot dismiss the possibility that active mechanisms may play a role in shaping m6A dynamics at some sites, or in some contexts. Our study aims to broaden the discussion in the field, and to introduce the possibility that passive models can explain a substantial extent of the variability observed in m6A levels.

      (1) "We next sought to assess whether alternative models could readily predict the positive correlation between m6A and nuclear localization and the negative correlations between m6A and mRNA stability. We assessed how nuclear decay might impact these associations by introducing nuclear decay as an additional rate, δ. We found that both associations were robust to this additional rate (Supplementary Figure 2a-c)."

      Based on the data, I would say that model 2 (m6A-dep + nuclear degradation) is better than model 1. The discussion of these findings in the Discussion could help clarify how to interpret this prediction. Is nuclear degradation playing a significant role, more than expected by previous studies?

      This is an important point, which we’ve now clarified in the discussion. Including nonspecific nuclear degradation in the m6ADyn framework provides a model that better aligns with the observed data, particularly by mitigating unrealistic predictions such as excessive nuclear accumulation for genes with very low sampled export rates. This adjustment addresses potential artifacts in nuclear abundance and half-life estimations. However, we continued to use the simpler version of m6ADyn for most analyses, as it captures the key dynamics and relationships effectively without introducing additional complexity. While including nuclear degradation enhances the model's robustness, it does not fundamentally alter the primary conclusions or outcomes. This balance allows for a more straightforward interpretation of the results.

      (2) The authors classify m6A levels as "low" or "high," and it is unclear how "low" differs from unmethylated mRNAs.

      We thank the reviewer for this observation. We analyzed gene methylation levels using the m6A-GI (m6A gene index) metric, which reflects the enrichment of the IP fraction across the entire gene body (CDS + 3UTR). While some genes may have minimal or no methylation, most genes likely exist along a spectrum from low to high methylation levels. Unlike earlier analyses that relied on arbitrary thresholds to classify sites as methylated, GLORI data highlight the presence of many low-stoichiometry sites that are typically overlooked. To capture this spectrum, we binned genes into equal-sized groups based on their m6A-GI values, allowing a more nuanced interpretation of methylation patterns as a continuum rather than a binary or discrete classification (e.g. no- , low- , high methylation).

      (3) The authors explore whether m6A changes could be linked with differences in mRNA subcellular localization. They tested this hypothesis by looking at mRNA changes during heat stress, a complex scenario to predict with m6ADyn. According to the collected data, heat shock is not associated with dramatic changes in m6A levels. However, the authors observe a redistribution of m6A mRNAs during the treatment and recovery time, with highly methylated mRNAs getting retained in the nucleus being associated with a shorter half-life, and being transcriptional induced by HSF1. Based on this observation, the authors use m6Adyn to predict the contribution of RNA export, RNA degradation, and RNA transcription to the observed m6A changes. However:

      (a) Do the authors have a comparison of m6ADyn predictions based on the assumption that RNA export and RNA transcription may change at the same time?

      We thank the reviewer for this point. Under the simple framework of m6ADyn in which RNA transcription and RNA export are independent of each other, the effect of simultaneously modulating two rates is additive. In Author response image 1, we simulate some scenarios wherein we simultaneously modulate two rates. For example, transcriptional upregulation and decreased export during heat shock could reinforce m6A increases, whereas transcriptional downregulation might counteract the effects of reduced export. Note that while production and export can act in similar or opposing directions, the former can only lead to temporary changes in m6A levels but without impacting steady-state levels, whereas the latter (changes in export) can alter steady-state levels. We have clarified this in the manuscript results to better contextualize how these dynamics interact.

      Author response image 1.

      m6ADyn predictions of m6A gene levels (left) and Nuc to Cyt ratio (right) upon varying perturbations of a sampled gene. The left panel depicts the simulated dynamics of log2-transformed m6A gene levels under varying conditions. The lines represent the following perturbations: (1) export is reduced to 10% (β), (2) production is increased 10-fold (α) while export is reduced to 10% (β), (3) export is reduced to 10% (β) and production is reduced to 10% (α), and (4) export is only decreased for methylated transcripts (β^m6A) to 10%. The right panel shows the corresponding nuclear:cytoplasmic (log2 Nuc:Cyt) ratios for perturbations 1 and 4.

      (b) They arbitrarily set the global reduction of export to 10%, but I'm not sure we can completely rule out whether m6A mRNAs have an export rate during heat shock similar to the non-methylated mRNAs. What happens if the authors simulate that the block in export could be preferential for m6A mRNAs only?

      We thank the reviewer for this interesting suggestion. While we cannot fully rule out such a scenario, we can identify arguments against it being an exclusive explanation. Specifically, an exclusive reduction in the export rate of methylated transcripts would be expected to increase the relationship between steady-state m6A levels (the ratio of methylated to unmethylated transcripts) and changes in localization, such that genes with higher m6A levels would exhibit a greater relative increase in the nuclear-to-cytoplasmic (Nuc:Cyt) ratio. However, the attached analysis shows only a weak association during heat stress, where genes with higher m6A-GI levels tend to increase just a little more in the Nuc:Cyt ratio, likely due to cytoplasmic depletion. A global reduction of export (β 10%) produces a similar association, while a scenario where only the export of methylated transcripts is reduced (β^m6A 10%) results in a significantly stronger association (Author response image 2). This supports the plausibility of a global export reduction. Additionally, genes with very low methylation levels in control conditions also show a significant increase in the Nuc:Cyt ratio, which is inconsistent with a scenario of preferential export reduction for methylated transcripts (data not shown).

      Author response image 2.

      Wild-type MEFs m6A-GIs (x-axis) vs. fold change nuclear:cytoplasmic localization heat shock 1.5 h and control (y-axis), Pearson’s correlation indicated (left panel). m6ADyn, rates sampled for 100 genes based on gamma distributions and simulation based on reducing the global export rate (β) to 10% (middle panel). m6ADyn simulation for reducing the export rate for m6A methylated transcripts (β^m6A) to 10% (right panel).

      (c) The dramatic increase in the nucleus: cytoplasmic ratio of mRNA upon heat stress may not reflect the overall m6A mRNA distribution upon heat stress. It would be interesting to repeat the same experiment in METTL3 KO cells. Of note, m6A mRNA granules have been observed within 30 minutes of heat shock. Thus, some m6A mRNAs may still be preferentially enriched in these granules for storage rather than being directly degraded. Overall, it would be interesting to understand the authors' position relative to previous studies of m6A during heat stress.

      The reviewer suggests that methylation is actively driving localization during heat shock, rather than being passively regulated. To address this question, we have now knocked down WTAP, an essential component of the methylation machinery, and monitored nuclear:cytoplasmic localization over the course of a heat shock response. Even with reduced m6A levels, high PC1 genes exhibit increased nuclear abundance during heat shock. Notably, the dynamics of this trend are altered, with the peak effect delayed from 1.5h heat shock in siCTRL samples to 4 hours in siWTAP samples (Supplementary Figure 4). This finding underscores that m6A is not the primary driver of these mRNA localization changes but rather reflects broader mRNA metabolic shifts during heat shock. These findings have been added as a panel e) to Supplementary Figure 4.

      (d) Gene Ontology analysis based on the top 1000 PC1 genes shows an enrichment of GOs involved in post-translational protein modification more than GOs involved in cellular response to stress, which is highlighted by the authors and used as justification to study RNA transcriptional events upon heat shock. How do the authors think that GOs involved in post-translational protein modification may contribute to the observed data?

      High PC1 genes exhibit increased methylation and a shift in nuclear-to-cytoplasmic localization during heat stress. While the enriched GO terms for these genes are not exclusively related to stress-response proteins, one could speculate that their nuclear retention reduces translation during heat stress. The heat stress response genes are of particular interest, which are massively transcriptionally induced and display increased methylation. This observation supports m6ADyn predictions that elevated methylation levels in these genes are driven by transcriptional induction rather than solely by decreased export rates.

      (e) Additionally, the authors first mention that there is no dramatic change in m6A levels upon heat shock, "subtle quantitative differences were apparent," but then mention a "systematic increase in m6A levels observed in heat stress". It is unclear to which systematic increase they are referring to. Are the authors referring to previous studies? It is confusing in the field what exactly is going on after heat stress. For instance, in some papers, a preferential increase of 5'UTR m6A has been proposed rather than a systematic and general increase.

      We thank the reviewer for raising this point. In our manuscript, we sought to emphasize, on the one hand, the fact that m6A profiles are - at first approximation - “constitutive”, as indicated by high Pearson correlations between conditions (Supplementary Figure 4a). On the other hand, we sought to emphasize that the above notwithstanding, subtle quantitative differences are apparent in heat shock, encompassing large numbers of genes, and these differences are coherent with time following heat shock (and in this sense ‘systematic’), rather than randomly fluctuating across time points. Based on our analysis, these changes do not appear to be preferentially enriched at 5′UTR sites but occur more broadly across gene bodies (potentially a slight 3’ bias). A quick analysis of the HSF1-induced heat stress response genes, focusing on their relative enrichment of methylation upon heat shock, shows that the 5'UTR regions exhibit a roughly similar increase in methylation after 1.5 hours of heat stress compared to the rest of the gene body (Author response image 3). A prominent previous publication (Zhou et al. 2015) suggested that m6A levels specifically increase in the 5'UTR of HSPA1A in a YTHDF2- and HSF1-dependent manner, and highlighted the role of 5'UTR m6A methylation in regulating cap-independent translation, our findings do not support a 5'UTR-specific enrichment. However, we do observe that the methylation changes are still HSF1-dependent. Off note, the m6A-GI (m6A gene level) as a metric that captures the m6A enrichment of gene body excluding the 5’UTR, due to an overlap of transcription start site associated m6Am derived signal.

      Author response image 3.

      Fold change of m6A enrichment (m6A-IP / input) comparing 1.5 h heat shock and control conditions for 5UTR region and the rest of the gene body (CDS and 3UTR) in the 10 HSF! dependent stress response genes.

      Reviewer #2 (Public review):

      Dierks et al. investigate the impact of m6A RNA modifications on the mRNA life cycle, exploring the links between transcription, cytoplasmic RNA degradation, and subcellular RNA localization. Using transcriptome-wide data and mechanistic modelling of RNA metabolism, the authors demonstrate that a simplified model of m6A primarily affecting cytoplasmic RNA stability is sufficient to explain the nuclear-cytoplasmic distribution of methylated RNAs and the dynamic changes in m6A levels upon perturbation. Based on multiple lines of evidence, they propose that passive mechanisms based on the restricted decay of methylated transcripts in the cytoplasm play a primary role in shaping condition-specific m6A patterns and m6A dynamics. The authors support their hypothesis with multiple large-scale datasets and targeted perturbation experiments. Overall, the authors present compelling evidence for their model which has the potential to explain and consolidate previous observations on different m6A functions, including m6A-mediated RNA export.

      We thank the reviewer for the spot-on suggestions and comments on this manuscript.

      Reviewer #3 (Public review):

      Summary:

      This manuscript works with a hypothesis where the overall m6A methylation levels in cells are influenced by mRNA metabolism (sub-cellular localization and decay). The basic assumption is that m6A causes mRNA decay and this happens in the cytoplasm. They go on to experimentally test their model to confirm its predictions. This is confirmed by sub-cellular fractionation experiments which show high m6A levels in the nuclear RNA. Nuclear localized RNAs have higher methylation. Using a heat shock model, they demonstrate that RNAs with increased nuclear localization or transcription, are methylated at higher levels. Their overall argument is that changes in m6A levels are rather determined by passive processes that are influenced by RNA processing/metabolism. However, it should be considered that erasers have their roles under specific environments (early embryos or germline) and are not modelled by the cell culture systems used here.

      Strengths:

      This is a thought-provoking series of experiments that challenge the idea that active mechanisms of recruitment or erasure are major determinants for m6A distribution and levels.

      We sincerely thank the reviewer for their thoughtful evaluation and constructive feedback.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Supplementary Figure 5A Data: Please double-check the label of the y-axis and the matching legend.

      We corrected this.

      (2) A better description of how the nuclear: cytoplasmic fractionation is performed.

      We added missing information to the Material & Methods section.

      (3) Rec 1hr or Rec 4hr instead of r1 and r4 to indicate the recovery.

      For brevity in Figure panels, we have chosen to stick with r1 and r4.

      (4) Figure 2D: are hours plotted?

      Plotted is the fold change (FC) of the calculated half-lives in hours (right). For the model (left) hours are the fold change of a dimension-less time-unit of the conditions with m6A facilitated degradation vs without. We have now clarified this in the legend.

      (5) How many genes do we have in each category? How many genes are you investigating each time?

      We thank the reviewer for this question. In all cases where we binned genes, we used equal-sized bins of genes that met the required coverage thresholds. We have reviewed the manuscript to ensure that the number of genes included in each analysis or the specific coverage thresholds used are clearly stated throughout the text.

      (6) Simulations on 1000 genes or 2000 genes?

      We thank the reviewer for this question and went over the text to correct for cases in which this was not clearly stated.

      Reviewer #2 (Recommendations for the authors):

      Specific comments:

      (1) The manuscript is very clear and well-written. However, some arguments are a bit difficult to understand. It would be helpful to clearly discriminate between active and passive events. For example, in the sentence: "For example, increasing the m6A deposition rate (⍺m6A) results in increased nuclear localization of a transcript, due to the increased cytoplasmic decay to which m6A-containing transcripts are subjected", I would directly write "increased relative nuclear localization" or "apparent increase in nuclear localization".

      We thank the reviewer for this careful observation. We have modified the quoted sentence, and also sought to correct additional instances of ambiguity in the text.

      Also, it is important to ensure that all relationships are described correctly. For example, in the sentence: "This model recovers the positive association between m6A and nuclear localization but gives rise to a positive association between m6A and decay", I think "decay" should be replaced with "stability". Similarly, the sentence: "Both the decrease in mRNA production rates and the reduction in export are predicted by m6ADyn to result in increasing m6A levels, ..." should it be "Both the increase in mRNA production and..."?

      We have corrected this.

      This sentence was difficult for me to understand: "Our findings raise the possibility that such changes could, at least in part, also be indirect and be mediated by the redistribution of mRNAs secondary to loss of cytoplasmic m6A-dependent decay." Please consider rephrasing it.

      We rephrased this sentence as suggested.

      (2) Figure 2d: "A final set of predictions of m6ADyn concerns m6A-dependent decay. m6ADyn predicts that (a) cytoplasmic genes will be more susceptible to increased m6A mediated decay, independent of their m6A levels, and (b) more methylated genes will undergo increased decay, independently of their relative localization (Figure 2d left) ... Strikingly, the experimental data supported the dual, independent impact of m6A levels and localization on mRNA stability (Figure 2d, right)."

      I do not understand, either from the text or from the figure, why the authors claim that m6A levels and localization independently affect mRNA stability. It is clear that "cytoplasmic genes will be more susceptible to increased m6A mediated decay", as they always show shorter half-lives (top-to-bottom perspective in Figure 2d). Nonetheless, as I understand it, the effect is not "independent of their m6A levels", as half-lives are clearly the shortest with the highest m6A levels (left-to-right perspective in each row).

      The two-dimensional heatmaps allow for exploring conditional independence between conditions. If an effect (in this case delta half-life) is a function of the X axis (in this case m6A levels), continuous increases should be seen going from one column to another. Conversely, if it is a function of the Y axis (in this case localization), a continuous effect should be observed from one row to another. Given that effects are generally observed both across rows and across columns, we concluded that the two act independently. The fact that half-life is shortest when genes are most cytoplasmic and have the highest m6A levels is therefore not necessarily inconsistent with two effects acting independently, but instead interpreted by us as the additive outcome of two independent effects. Having said this, a close inspection of this plot does reveal a very low impact of localization in contexts where m6A levels are very low, which could point at some degree of synergism between m6A levels and localization. We have therefore now revised the text to avoid describing the effects as "independent."

      (3) The methods part should be extended. For example, the description of the mRNA half-life estimation is far too short and lacks details. Also, information on the PCA analysis (Figure 4e & f) is completely missing. The code should be made available, at least for the differential model.

      We thank the reviewer for this point and expanded the methods section on mRNA stability analysis and PCA. Additionally, we added a supplementary file, providing R code for a basic m6ADyn simulation of m6A depleted to normal conditions (added Source Code 1).

      https://docs.google.com/spreadsheets/d/1Wy42QGDEPdfT-OAnmH01Bzq83hWVrYLsjy_B4n CJGFA/edit?usp=sharing

      (4) Figure 4e, f: The authors use a PCA analysis to achieve an unbiased ranking of genes based on their m6A level changes. From the present text and figures, it is unclear how this PCA was performed. Besides a description in the methods sections, the authors could show additional evidence that the PCA results in a meaningful clustering and that PC1 indeed captures induced/reduced m6A level changes for high/low-PC1 genes.

      We have added passages to the text, hoping to clarify the analysis approach.

      (5) In Figure 4i, I was surprised about the m6A dynamics for the HSF1-independent genes, with two clusters of increasing or decreasing m6A levels across the time course. Can the model explain these changes? Since expression does not seem to be systematically altered, are there differences in subcellular localization between the two clusters after heat shock?

      A general aspect of our manuscript is attributing changes in m6A levels during heat stress to alterations in mRNA metabolism, such as production or export. As shown in Supplementary Figure 4d, even in WT conditions, m6A level changes are not strictly associated with apparent changes in expression, but we try to show that these are a reflection of the decreased export rate. In the specific context of HSF1-dependent stress response genes, we observe a clear co-occurrence of increased m6A levels with increased expression levels, which we propose to be attributed to enhanced production rates during heat stress. This suggests that transcriptional induction can drive the apparent rise in m6A levels. We try to control this with the HSF1 KO cells, in which the m6A level changes, as the increased production rates are absent for the specific cluster of stress-induced genes, further supporting the role of transcriptional activation in shaping m6A levels for these genes. For HSF1-independent genes, the HSF-KO cells mirror the behavior of WT conditions when looking at 500 highest and lowest PC1 (based on the prior analysis in WT cells), suggesting that changes in m6A levels are primarily driven by altered export rates rather than changes in production.

      Among the HSF1 targets, Hspa1a seems to show an inverse behaviour, with the highest methylation in ctrl, even though expression strongly goes up after heat shock. Is this related to the subcellular localization of this particular transcript before and after heat shock?

      Upon reviewing the heat stress target genes, we identified an issue with the proper labeling of the gene symbols, which has now been corrected (Figure 4 panel i). The inverse behavior observed for Hspb1 and partially for Hsp90aa1 is not accounted for by the m6ADyn model, and is indeed an interesting exception with respect to all other induced genes. Further investigation will be required to understand the methylation dynamics of Hspb1 during the response to heat stress.

      Reviewer #3 (Recommendations for the authors):

      Page 4. Indicate reference for "a more recent study finding reduced m6A levels in chromatin-associated RNA.".

      We thank the reviewer for this point and added two publications with a very recent one, both showing that chromatin-associated nascent RNA has less m6A methylation

      The manuscript is perhaps a bit too long. It took me a long time to get to the end. The findings can be clearly presented in a more concise manner and that will ensure that anyone starting to read will finish it. This is not a weakness, but a hope that the authors can reduce the text.

      We have respectfully chosen to maintain the length of the manuscript. The model, its predictions and their relationship to experimental observations are somewhat complex, and we felt that further reduction of the text would come at the expense of clarity.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)): *

      • The authors investigate in this study the function of LIN-42 for the process of precise molting timing in C. elegans. To achieve this, they compare LIN-42 with its mammalian ortholog, Period. They found that similar to Period, LIN-42 interacted with the kinase KIN-20, a mammalian Casein kinase 1 (CK1) ortholog. Hence, two different proteins involved in rhythmic processes, LIN-42 and Period function in a conserved manner. *
      • First, they used mutants with specific deletions to untangle various phenotypes during C. elegans development. From this analysis they identify a specific region, corresponding to a CK1-binding region in mammals, to be mainly involved in the rhythmic molting phenotype. Next, they identify KIN-20, the CK1 ortholog as interaction partner of LIN-42. They even were able to demonstrate an interaction of CK1 with the region of LIN-42. Using CK1, they identified potential phosphorylation sites within LIN-42 and compared those with immunoprecipitated protein in vivo. There was a substantial overlap. While the C-terminal tail of LIN-42 was heavily phosphorylated, deletion of the C-terminal part resulted only in a minor phenotype for rhythmic molting. Last but not least, they demonstrated that point mutations that inactivate the catalytic function of KIN-20 produced a rhythmic molting phenotype. The interaction of LIN-42 with KIN-20 affected the localization of the kinase, similar to what was found to Period and CK1. *
      • Overall, the experiments are well done, well controlled and well described even for non-specialists. I guess it was not easy to kind of sort out the many overlapping phenotypes. It was certainly helpful just to focus on the clear rhythmic molting phenotype. *

      • I have no major or minor comments. *

      • Reviewer #1 (Significance (Required)): *

      • The manuscript is well written and can be followed by non-specialists of the field. The experiments are well performed. Even if some experiments did not yield the expected phenotype, e.g. deletion of the C-terminal tail of LIN-42 had only a minor phenotype inspire of heavy phosphorylation, these experiments are anyhow included and explained. *

      • Overall, the study is interesting for people in the C. elegans field and by similarity mammalian chronobiology. I would expect that most of the progress based on this study will be on the further elucidation of the molting phenotype and how the other phenotypes related to this. Then this could emerge as a blueprint for molting phenomena in other species as well. *
      • I am a mammalian chronobiologist working on Period proteins. *

      We thank the reviewer for their positive evaluation of our work.

      *Reviewer #2 (Evidence, reproducibility and clarity (Required)): *

      • This study represents pioneering work on LIN-42, the C. elegans ortholog of PER, uncovering its role in molting rhythms and heterochronic timing. A key strength of this work lies in its integrative approach, combining genetic and developmental analyses in C. elegans with biochemical characterization of LIN-42 protein. *

      • At the organismal level, the authors take advantage of the power of C. elegans as a model system, employing precise genetic manipulations and high-resolution developmental assays to dissect the contributions of LIN-42 and its interaction partner KIN-20, the C. elegans ortholog of CK1, to molting rhythms. Their findings provide in vivo evidence that binding of LIN-42 with KIN-20 promotes the nuclear accumulation of KIN-20 and is crucial for molting rhythms, while its PAS domain appears dispensable for this function. This detailed phenotypic analysis of multiple LIN-42 and KIN-20 mutants represents a significant contribution to our understanding of the developmental clock. *

      • At the biochemical level, the study provides a detailed analysis of the mechanism underlying LIN-42's interaction with CK1, demonstrating that LIN-42 contains a functionally conserved CK1-binding domain (CK1BD). Through their in vitro kinase assays and structural insights, the authors identified distinct roles for CK1BD-A and CK1BD-B: the former in kinase inhibition and the latter in stable CK1 binding and phosphorylation. Importantly, their data align well with previous findings on PER-CK1 regulation in mammalian and Drosophila systems, reinforcing the evolutionary conservation of key clock components. *

      • Overall, this work stands out for its deep and important insights into how CK1-mediated regulation extends beyond the circadian clock to regulate the developmental clock. The combination of genetic approaches with biochemical analyses makes this an outstanding contribution to both chronobiology and nematode developmental biology. *

      We thank the reviewer for the strong endorsement for publication of our work

      *Major comment 1: * * In Figure 2D, I could not find a crucial control if the authors claim that KIN-20 binds to LIN-42. For example, a single mutant of LIN-42-3xFLAG could be used as a control for the double mutant. *

      We will do an appropriate control experiment.

      *Major comment 2: * * The sizes of the KIN20 bands were very diverged (~40 kDa and ~60 kDa), but the authors provide no explanation for this. *

      The worm produces several KIN-20 isoforms. We will state this in the revised manuscript.

      *Major comment 3: * * Regarding the MS study, the raw data are available, but the detailed supplemental Excel files would be more informative for readers. For example, are other interactors such as REV-ERB/NHR-85 detected in Figure 2A? Regarding Figure 4F, the list of phosphorylation sites and MS scores is also informative. *

      We apologize for our omission in stating clearly in the figure legend that the significantly enriched proteins were labeled with a red dot. These were only LIN-42 itself and KIN-20. NHR-85 was not enriched. We will state this explicitly in a revised version and provide all relevant information.

      *Major comment 4: * * It is an important finding that the PAS domain of LIN-42 is not essential for the molting rhythms. Is the PAS domain also dispensable for binding with KIN-20? *

      Although we have currently no reason to assume that the PAS domain would be required for KIN-20 binding, we will perform an in vitro experiment to test for binding.

      *Major comment 5 (Optional): * * In this study, the authors carefully performed in vitro kinase assays, and I strongly suggest that they investigate whether the CKI-mediated phosphorylation of LIN-42 is temperature-compensated and whether the CKI-BD-AB regions affect it. *

      Although this is an interesting question, addressing it appears outside the scope of the manuscript and a revision; please see section 4 below.

      *Major comment 6 (Optional): * * In Figure 6, the authors argue that the CKI-BD of LIN-42 is important for CK1 nuclear translocation. It would be better to show the effect of the nuclear accumulation of CKI on nuclear proteins, like the mammalian CKI-PER2-CLOCK story. Does CKI localization affect phosphorylation status of other clock-related proteins including REV-ERB/NHR-85? * * Phospho-proteome analysis would identify nuclear substrates of CK1. In addition, is phosphorylation of LIN-42 dispensable for the CK1 nuclear translocation? *

      This is another interesting question yet currently nothing is known about other CK1/KIN-20 targets, and we have no evidence for NHR-85 being one. Please see our detailed comments in the section 4 below.

      To address whether LIN-42 phosphorylation affects CK1/KIN-20 nuclear accumulation, we will seek to examine KIN-20 localization in LIN-42∆Tail animals.

      *Major comment 7 (Optional): * * LIN-42 rhythmic expression could drive rhythmic nuclear accumulation of KIN-20. It would be better to examine this possibility using kin-20::GFP in lin-42 mutants. *

      We agree that the mutant analysis is important for this and Fig. 6C shows reduced KIN-20 nuclear accumulation in LIN-42∆CK1BD.

      Minor 1: * * I could not find the full gel images of the Western blot analyses as supplemental materials.

      This data will be added.

      Minor 2: * * The authors discussed a conserved module in two different clocks. A statement regarding a recently published paper (Hiroki and Yoshitane, Commun Biol, 2024) would be informative for readers.

      We will add such a statement.

      ***Referee cross-commenting** *

      • I basically agree with reviewer 1 and hope that this paper will be published soon as it is very valuable for our field. I have constructively pointed out some parts that could be improved, but depending on the editor's judgement, I believe that even if not all of these are revised, it will be sufficient for publication. *

      • Reviewer #2 (Significance (Required)): *

      • This work stands out for its deep and important insights into how CK1-mediated regulation extends beyond the circadian clock to regulate the developmental clock. The combination of genetic approaches with biochemical analyses makes this an outstanding contribution to both chronobiology and nematode developmental biology. *

      • I strongly suggest editors to accept this study with minor modifications according to the following comments.*

      We thank the reviewer for their strong support and the clear indication of required vs. optional revisions.

      *Reviewer #3 (Evidence, reproducibility and clarity (Required)): *

      • In their manuscript "A conserved chronobiological complex times C. elegans development", Spangler, Braun, Ashley et al. investigate the mechanisms through which the PERIOD orthologue, lin-42, regulates rhythmic molting in C. elegans. Through precise genetic manipulations, the authors identify a particular region of lin-42, the 'CK1BD', which regulates molting timing, with less effect on other lin-42 phenotypes (e.g. heterochrony). They show that LIN-42 and the casein kinase 1 (CK1) homologue KIN-20 interact in vivo, and identify phosphorylation sites of LIN-42. Using biochemical assays, they find that the CK1BD of LIN-42 is sufficient for interaction with the human homologue of KIN-20, CK1, in vitro. The LIN-42 CK1BD is also required for the proper nuclear accumulation of KIN-20 in vivo. Furthermore, a point mutation that should disrupt the catalytic activity of KIN-20 also shows an irregular molting phenotype, similar to the lin-42 CK1BD mutant. The manuscript is very well-written and the data and methods are well-presented and detailed. Overall this work makes a convincing case that the C. elegans lin-42:Kin-20 and mammalian period:Ck1 interactions have functionally conserved roles in the oscillatory developmental programs of each organism (molting timing and circadian rhythms, respectively), with a few caveats below that can be addressed.*

      We thank the reviewer for their positive evaluation of our work.

      *Major comments: *

        1. The authors have shown that LIN-42 is phosphorylated in vivo, but the dependence of this phosphorylation on KIN-20 is not fully addressed. In the discussion (lines 417-420), the authors mention that the unhealthy phenotype of the kin-20 mutant animals prevented them from assessing LIN-42 phosphorylation in this genetic background. To bolster their model and to circumvent this issue, it should be feasible to generate a kin-20 degron allele and to perform the LIN-42 phospho-proteomics upon inducible degradation. Alternatively, perhaps a phos-tag western blot for LIN-42 could be used to compare the kin-20 wild-type to kin-20 mutants.*

      We agree, and acknowledged in the discussion, that phoshorylation of LIN-42 by KIN-20 in vivo has not been demonstrated by us. However, as discussed in the section 4 below, we find that this costly, challenging and time-consuming experiment is not warranted by the expected gain.

      For technical reasons, the in vitro biochemistry was done using human CK1 protein. There are a few places (e.g. results, line 248 and discussion line 437), where the language, in my opinion, is extrapolating the CK1 results too strongly to KIN-20. The authors mention that feedback inhibition is a known property of human CK1. It is indeed quite striking that the LIN-42 CK1BD region interacts with and is phosphorylated by the human counterpart of KIN-20, and that feedback inhibition is also seen! However, the language about KIN-20 itself should be softened, since there does not appear to be clear evidence that KIN-20 exhibits the same properties as human CK1 (unless perhaps human CK1 can functionally replace KIN-20 in worms, or the proteins were extremely similar?)

      We will follow the reviewer’s advice and carefully examine the text for instances where we extrapolated too much and tone these down. (We note that this does not apply to the example of line 248 where we wrote “Collectively, our data establish that the LIN-42

      CK1BD is functionally conserved and mediates stable binding to the CK1 kinase domain.”, i.e., there was no mentioning of KIN-20.)

      The role of the three LIN-42 isoforms should be further clarified. Minimally, it should be explained why the alleles where both b and c isoforms should be flag-tagged seem to only produce detectable b isoform (e.g. Fig. 2C).

      We will clarify that the individual roles of the isoforms are largely unknown and that we can only speculate that the c-isoform may exhibit either generally low expression or expression in only few cells or tissues.

      4. Related to points 2 and 3 above, the authors have shown that the CKIBD mediates association with human CK1 in vitro, and is required for nuclear accumulation of KIN-20 in vivo, but not that the complex formation between LIN-42 and KIN-20 depends on the CK1BD. Given the reciprocal co-IP findings, it should be feasible to create tagged versions of lin-42(deltaCK1BD) and to determine the effect on LIN-42-KIN-20 complex formation. While there is already a b-isoform tag, an a-isoform tag would also help to address whether both the b and a isoforms interact with KIN-20 in a CK1BD-dependent manner in vivo. These strains would also allow the authors to determine how the CK1BD deletion affects overall levels/stability/rhythmic accumulation of LIN-42(a or b), which would potentially serve to strengthen their conclusions about the role of the lin-42 CK1BD.

      We will attempt to generate a FLAG-tagged LIN-42∆CK1BD to perform IP and check for binding of KIN-20.

      As detailed in section 4, we cannot tag LIN-42a individually due to the structure of the genomic locus, and its level appear very low to begin with.

      In the molting timing assay, there is an unexpected result where the delta-C-terminal-tail lin-42 allele resembles the n1089 (N-terminal deletion) (line 315). Could the authors more clearly explain this finding?

      As we point out in the manuscript, n1089 is a partial deletion with a breakpoint in a noncoding (intronic) region of lin-42. Accordingly, it is currently unknown, what mature transcripts and proteins are made in the mutant animals. This prevents us from making educated guesses as to why there is a phenotypic resemblance between these and lin-42∆tail mutant animals. We will clarify in the manuscript that this is an interesting, but currently unexplained observation.

      *Minor comments: *

        1. The correspondence between the LIN-42 "SYQ" and "LT" motifs and the motifs referred to as "A" and "B" should be clarified, and consistent names/labels used. Are these interchangeable names? If it is necessary to use both names, the differences between SYQ/LT and A/B should be made more clear.*

      We agree that the situation is not completely satisfactory but feel that we need to use both names since they have both been used in the literature. We will work to revise the text to reflect more clearly the correspondence.

      For data presented as "% of animals", please indicate the number of animals scored (e.g. egl, alae assays - ~ how many animals per replicate (dot)?).

      We will provide these numbers.

      Line 145-148 - Mentioning the relevant phenotype(s) of the lin-42 null allele from the cited paper would provide a good point of comparison here.

      We will mention the previously described phenotypes.

      Line 201 - the phrase "This is also true for the proteins:" is unclear, as the previous sentence states that both lin-42 and kin-20 mRNAs oscillate, while the next sentence says that only LIN-42 protein oscillates.

      We apologize for the confusion and will correct the text.

      Line 231 - please explain the significance of the 'lower response signal' in the BLI assay for the CKIBD(no tail).

      We will clarify that the lower response signal observed for the CK1BD compared to the CK1BD+Tail (residues 402-589; same construct used in Fig. 3B) reflects its smaller molecular weight, which reduces the overall mass contribution to the BLI sensor.

      Fig. 2 - C/D - the genotype lane labels should I think indicate an N-terminal rather

      We will fix this mistake.

      7. Fig. 6, line 367 - lin-42 is variably described as promoting increased KIN-20 'nuclear accumulation' or 'localization'. I think that 'accumulation' is more accurate, as it doesn't imply a specific mechanism for the difference (transport vs stabilization, etc.)

      We will revise the manuscript accordingly.

      *8. Fig 6B - an overlay of the panels or another way of quantifying the colocalization would make this result more clear. *

      We will supply the requested overlay.

      *Reviewer #3 (Significance (Required)): *

      • This work presents a major mechanistic and conceptual advance in our understanding of the role of lin-42/Period, a conserved key regulator of C. elegans development. Previously, it was not clear if the heterochronic and circadian functions of lin-42 were genetically separable, nor was it known how LIN-42 physically interacted with the CK1 homologue. This work addresses these questions using precise genome engineering and detailed phenotypic and biochemical approaches. The work also reveals the conservation of bi-directional/reciprocal regulation between lin-42 and kin-20. The main limitations of the study, which can potentially be addressed as outlined in the 'major points' above, are that evidence should be provided that lin-42 phosphorylation depends on kin-20 in vivo, and that the CK1BD mediates the interaction in vivo (since the in vitro work is with human CK1). As the authors indicate, this is the first 'conserved clock module' of this type, and this work will therefore be of significant interest to both the C. elegans developmental biology and the more general biological timing fields. *

      • Field of expertise of the reviewer- C. elegans genetics and development.*

      Description of the studies that the authors prefer not to carry out

      *Major comment 5 (Optional): * * In this study, the authors carefully performed in vitro kinase assays, and I strongly suggest that they investigate whether the CKI-mediated phosphorylation of LIN-42 is temperature-compensated and whether the CKI-BD-AB regions affect it. *

      Temperature compensation is of course one of the most striking features of circadian clocks, and CK1-mediated phosphorylation of PER appears a critical component. We agree that it would be interesting to examine whether or not this feature exists in an animal whose development is not or only partially temperature-compensated. However, these studies are not straightforward – we would first have to set up an assay and demonstrate temperature compensation for the mammalian PER – CK1 pair as a positive control. We were not able to purify KIN-20 so could only test whether the LIN-42 substrate promoted temperature compensation. Moreover, either result for LIN-42 – CK1 would immediately raise new questions that would deserve extensive follow-up: if there is temperature compensation, why is worm development not compensated? If there is none, where/how do the interactions between CK1 and LIN-42 differ from those between CK1 and PER? Hence, we propose that these studies are outside the scope of the current study.

      *Major comment 6 (Optional): * * In Figure 6, the authors argue that the CKI-BD of LIN-42 is important for CK1 nuclear translocation. It would be better to show the effect of the nuclear accumulation of CKI on nuclear proteins, like the mammalian CKI-PER2-CLOCK story. Does CKI localization affect phosphorylation status of other clock-related proteins including REV-ERB/NHR-85? * * Phospho-proteome analysis would identify nuclear substrates of CK1. In addition, is phosphorylation of LIN-42 dispensable for the CK1 nuclear translocation? *

      We agree that it will be important to identify relevant targets of KIN-20 in future work. Unfortunately, at this point, none are known, and we especially do not have any knowledge of the phosphorylation status of NHR-85. Indeed, in unrelated (and unpublished) work we have done a phosphoproteomics time course of wild-type animals. We have not detected any NHR-85-derived phosphopeptides in our analysis. Thus, this would establish a completely new line of research, incompatible with the timelines of a revision.

      @Ref. 3:

      1. *The authors have shown that LIN-42 is phosphorylated in vivo, but the dependence of this phosphorylation on KIN-20 is not fully addressed. In the discussion (lines 417-420), the authors mention that the unhealthy phenotype of the kin-20 mutant animals prevented them from assessing LIN-42 phosphorylation in this genetic background. To bolster their model and to circumvent this issue, it should be feasible to generate a kin-20 degron allele and to perform the LIN-42 phospho-proteomics upon inducible degradation. Alternatively, perhaps a phos-tag western blot for LIN-42 could be used to compare the kin-20 wild-type to kin-20 mutants. * We agree, and acknowledged in the discussion, that phoshorylation of LIN-42 by KIN-20 in vivo has not been demonstrated by us. However, since our data from the LIN-42∆Tail mutant also suggest that LIN-42 phosphorylation be functionally largely dispensable for KIN-20’s function in rhythmic molting, we consider further elucidation of this point a lower priority, especially considering the challenges involved. As we have seen for our unpublished work on wild-type animals, a phosphoproteomics experiments would be costly and time-consuming, with a non-trivial analysis (due to the underlying dynamics of protein level changes). A phos-tag gel would be subject to multiple confounders given the abundance of the phosphosites that we detected on immunoprecipitated LIN-42 – unlikely to stem only from KIN-20 activity – and an increase in total LIN-42 levels that we observe upon KIN-20 depletion, and thus appears unsuited to providing a meaningful answer.

      *Related to points 2 and 3 above, the authors have shown that the CKIBD mediates association with human CK1 in vitro, and is required for nuclear accumulation of KIN-20 in vivo, but not that the complex formation between LIN-42 and KIN-20 depends on the CK1BD. Given the reciprocal co-IP findings, it should be feasible to create tagged versions of lin-42(deltaCK1BD) and to determine the effect on LIN-42-KIN-20 complex formation. While there is already a b-isoform tag, an a-isoform tag would also help to address whether both the b and a isoforms interact with KIN-20 in a CK1BD-dependent manner in vivo. These strains would also allow the authors to determine how the CK1BD deletion affects overall levels/stability/rhythmic accumulation of LIN-42(a or b), which would potentially serve to strengthen their conclusions about the role of the lin-42 CK1BD. *

      As detailed in section 2, we will address the point concerning LIN-42∆CK1BD. However, due to the overlapping exons, we are unable to tag the a-isoform independently of the b-isoform. Moreover, in a western blot of a line where both a- and b-isoforms are tagged, we have observed only little or no LIN-42a signal, suggesting that, like the c-isoform, its expression may be more limited, making biochemical characterization difficult. Hence, these experiments are not feasible.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Life Assessment

      This valuable study builds on previous work by the authors by presenting a potentially key method for correcting optical aberrations in GRIN lens-based micro endoscopes used for imaging deep brain regions. By combining simulations and experiments, the authors show that the obtained field of view is significantly increased with corrected, versus uncorrected microendoscopes. The evidence supporting the claims of the authors is solid, although some aspects of the manuscript should be clarified and missing information provided. Because the approach described in this paper does not require any microscope or software modifications, it can be readily adopted by neuroscientists who wish to image neuronal activity deep in the brain.

      We thank the Referees for their interest in the paper and for the constructive feedback. We have taken the time necessary to address all of their comments, acquiring new data and performing additional analyses. With the inclusion of these new results, we modified four main figures (Figures 1, 6, 7, and 8), added three new Supplementary Figures (Supplementary Figures 1, 2, and 3), and significantly edited the text. Based on the additional work suggested by the Referees, we believe that we have improved our manuscript, provided missing information, and clarified some aspects of the manuscript, which the Referees pointed our attention to.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Referee’s comment: Sattin, Nardin, and colleagues designed and evaluated corrective microlenses that increase the useable field of view of two long (>6mm) thin (500 um diameter) GRIN lenses used in deep-tissue two-photon imaging. This paper closely follows the thread of earlier work from the same group (e.g. Antonini et al, 2020; eLife), filling out the quiver of available extended-fieldof-view 2P endoscopes with these longer lenses. The lenses are made by a molding process that appears practical and easy to adopt with conventional two-photon microscopes.

      Simulations are used to motivate the benefits of extended field of view, demonstrating that more cells can be recorded, with less mixing of signals in extracted traces, when recorded with higher optical resolution. In vivo tests were performed in the piriform cortex, which is difficult to access, especially in chronic preparations.

      The design, characterization, and simulations are clear and thorough, but not exhaustive (see below), and do not break new ground in optical design or biological application. However, the approach shows much promise, including for applications not mentioned in the present text such as miniaturized GRIN-based microscopes. Readers will largely be interested in this work for practical reasons: to apply the authors' corrected endoscopes.

      Strengths:

      The text is clearly written, the ex vivo analysis is thorough and well-supported, and the figures are clear. The authors achieved their aims, as evidenced by the images presented, and were able to make measurements from large numbers of cells simultaneously in vivo in a difficult preparation.

      Weaknesses:

      Referee’s comment: (1) The novelty of the present work over previous efforts from the same group is not well explained. What needed to be done differently to correct these longer GRIN lenses?

      We thank the Referee for the positive evaluation of our work. The optical properties of GRIN lenses depend on the geometrical and optical features of the specific GRIN lens type considered, i.e. its diameter, length, numerical aperture, pitch, and radial modulation of the refractive index. Our approach is based on the addition of a corrective optical element at the back end of the GRIN lens to compensate for aberrations that light encounters as it travels through the GRIN lens. The corrective optical element must, therefore, be specifically tailored to the specific GRIN lens type we aim to correct the aberrations of. The novelty of the present article lies in the successful execution of the ray-trace simulations and two-photon lithography fabrication of corrective optical elements necessary to achieve aberration correction in the two novel and long GRIN lens types, i.e. NEM-050-25-15-860-S-1.5p and NEM-050-23-15-860-S-2.0p (GRIN length, 6.4 mm and 8.8 mm, respectively). Our previous work (Antonini et al. eLife 2020) demonstrated aberration correction with GRIN lenses shorter than 4.1 mm. The design and fabrication of a single corrective optical element suitable to enlarge the field-of-view (FOV) in these longer GRIN lenses is not obvious, especially because longer GRIN lenses are affected by stronger aberrations. To better clarify this point, we revised the Introduction at page 5 (lines 3-10 from bottom) as follows:

      “Recently, a novel method based on 3D microprinting of polymer optics was developed to correct for GRIN aberrations by placing specifically designed aspherical corrective lenses at the back end of the GRIN lens 7. This approach is attractive because it is built-in on the GRIN lens and corrected microendoscopes are ready-to-use, requiring no change in the optical set-up. However, previous work demonstrated the feasibility of this method only for GRIN lenses of length < 4.1 mm 7, which are too short to reach the most ventral regions of the mouse brain. The applicability of this technology to longer GRIN lenses, which are affected by stronger optical aberrations 19, remained to be proven.”

      (2) Some strong motivations for the method are not presented. For example, the introduction (page 3) focuses on identifying neurons with different coding properties, but this can be done with electrophysiology (albeit with different strengths and weaknesses). Compared to electrophysiology, optical methods more clearly excel at genetic targeting, subcellular measurements, and molecular specificity; these could be mentioned.

      Thank you for the comment. We added a paragraph in the Introduction (page 3, lines 2-8) according to what suggested by the Reviewer:

      “High resolution 2P fluorescence imaging of the awake brain is a fundamental tool to investigate the relationship between the structure and the function of brain circuits 1. Compared to electrophysiological techniques, functional imaging in combination with genetically encoded indicators allows monitoring the activity of genetically targeted cell types, access to subcellular compartments, and tracking the dynamics of many biochemical signals in the brain (2). However, a critical limitation of multiphoton microscopy lies in its limited (< 1 mm) penetration depth in scattering biological media 3”.

      Another example, in comparing microfabricated lenses to other approaches, an unmentioned advantage is miniaturization and potential application to mini-2P microscopes, which use GRIN lenses.

      We added the concept suggested by the Reviewer in the Discussion (page 21, lines 4-7 from bottom). The text now reads:

      “Another advantage of long corrected microendoscopes described here over adaptive optics approaches is the possibility to couple corrected microendoscopes with portable 2P microscopes 42-44, allowing high resolution functional imaging of deep brain circuits on an enlarged FOV during naturalistic behavior in freely moving mice”.

      (3) Some potentially useful information is lacking, leaving critical questions for potential adopters:

      How sensitive is the assembly to decenter between the corrective optic and the GRIN lens?

      Following the Referee’s comment, we conducted new optical simulations to evaluate the decrease in optical performance of the corrected endoscopes as a function of the radial shift of the corrective lens from the optical axis of the GRIN rod (decentering, new Supplementary Figure 3), using light rays passing either off- or on-axis. For off-axis rays, we found that the Strehl ratio remained above 0.8 (Maréchal criterion) for positive translations in the range 6-11.5 microns and 16-50 microns for the 6.4 mm- and the 8.8 mm-long corrected microendoscope, respectively, while the Strehl ratio decreased below 0.8 for negative translations of amplitude ~ 5 microns. Please note that for the most marginal rays, a negative translation produces a mismatch between the corrective microlens and the GRIN lens such that the light rays no longer pass through the corrective lens. In contrast, rays passing near the optical axis were still focused by the corrected probe with Strehl ratio above 0.8 in a range of radial shifts of -40 – 40 microns for both microendoscope types. Altogether, these novel simulations suggest that decentering between the corrective microlens and the GRIN lens < 5 microns do not majorly affect the optical properties of the corrected endoscopes. These new results are now displayed in Supplementary Figure 3 and described on page 7 (lines 3-5 from bottom).

      What is the yield of fabrication and of assembly?

      The fabrication yield using molding was ~ 90% (N > 30 molded lenses). The main limitation of this procedure was the formation of air bubbles between the mold negative and the glass coverslip. Molded lenses were visually inspected with a stereomicrscope and, in case of air bubble formation, they were discarded.

      The assembly yield, i.e. correct positioning of the GRIN lens with respect to the coverslip, was 100 % (N = 27 endoscopes).

      We added this information in the Methods at page 29 (lines 1-12), as follows:

      “After UV curing, the microlens was visually inspected at the stereomicroscope. In case of formation of air bubbles, the microlens was discarded (yield of the molding procedure: ~ 90 %, N > 30 molded lenses). The coverslip with the attached corrective lens was sealed to a customized metal or plastic support ring of appropriate diameter (Fig. 2C). The support ring, the coverslip and the aspherical lens formed the upper part of the corrected microendoscope, to be subsequently coupled to the proper GRIN rod (Table 2) using a custom-built opto-mechanical stage and NOA63 (Fig. 2C) 7. The GRIN rod was positioned perpendicularly to the glass coverslip, on the other side of the coverslip compared to the corrective lens, and aligned to the aspherical lens perimeter (Fig. 2C) under the guidance of a wide field microscope equipped with a camera. The yield of the assembly procedure for the probes used in this work was 100 % (N = 27 endoscopes). For further details on the assembly of corrected microendoscope see(7)”. 

      Supplementary Figure 1: Is this really a good agreement between the design and measured profile? Does the figure error (~10 um in some cases on average) noticeably degrade the image?

      As the Reviewer correctly noticed, the discrepancy between the simulated profile and the experimentally measured profile can be up to 5-10 microns at specific radial positions. This discrepancy could be due to issues with: (i) the fabrication of the microlens; (ii) the experimental measurement of the lens profile with the stylus profilometer. To discriminate among these two possibilities, we asked what would be the expected optical properties of the corrected endoscope should the corrective lens have the experimentally measured (not the simulated) profile. To this aim, we performed new optical simulations of the point spread function (PSF) of the corrected probe using, as corrective microlens profile, the average, experimentally measured, profile of a fabricated corrective lens. For both microendoscope types, we first fitted the mean experimentally measured profile of the fabricated lens with the aspherical function reported in equation (1) of the main text:

      where:

      -                is the radial distance from the optical axis;

      -                is equal to 1⁄ , where R is the radius of curvature;

      -                is the conic constant;

      -                − are asphericity coefficients;

      -                is the height of the microlens profile on-axis.

      The fitting values of the parameters of equation (1) for the two lenses are reported for the Referee’s inspection here below (variables describing distances are expressed in mm):

      Author response table 1.

      Fitting values for the parameters of Equation (1) describing the profile of corrective microlens replicas measured with the stylus profilometer. Distances are expressed in mm.

      We then assumed that the profile of the corrective microlenses were equal to the mean experimentally measured profiles and used the aspherical fitting functions in the optical simulations to compute the performance of corrected microendoscopes. For both microendoscope types, we found that the Strehl ratio was lower than 0.35, well below the theoretical diffractionlimited threshold of 0.8 (Maréchal criterion) at moderate distances from the optical axis (68 μm94 μm and 67 μm-92 μm on the focal plane in the object space, after the front end of the GRIN lens, for the 6.4 mm- and the 8.8 mm-long corrected microendoscope, respectively, Author response image 1A, C), and the PSF was strongly distorted (Author response image 1B, D).

      Author response image 1.

      Simulated optical performance of corrected probes with profiles of corrective microlenses equal to the mean experimentally measured profiles of fabricated corrective lenses. A) The Strehl ratio for the 6.4 mm-long corrected microendoscope with measured microlens profile (black dots) is computed on-axis (distance from the center of the FOV d = 0 µm) and at two radial distances off-axis (d = 68 μm and 94 μm on the focal plane in the object space) and compared to the Strehl ratio of the uncorrected (red line) and corrected (blue line) microendoscopes. B) Lateral (x,y) and axial (x,z) fluorescence intensity (F) profiles of simulated PSFs on-axis (left) and off-axis (right, at the indicated distance d computed on the focal plane in the object space) for the 6.4 mm-long corrected microendoscope with measured microlens profile. C) Same as in (A) for the 8.8 mm-long corrected microendoscope (off-axis d = 67 μm and 92 μm on the focal plane in the object space). D) Same as in (B) for the 8.8 mm-long corrected microendoscope.

      These simulated findings are in contrast with the experimentally measured optical properties of our corrected endoscopes (Figure 3). In other words, these novel simulated results show that experimentally measured profiles of the corrected lenses are incompatible with the experimental measurements of the optical properties of the corrected endoscopes. Therefore, our experimental recording of the lens profile shown in Supplementary Figure 1 of the first submission (now Supplementary Figure 4) should be used only as a coarse measure of the lens shape and cannot be used to precisely compare simulated lens profiles with measured lens profiles.

      How do individual radial profiles compare to the presented means?

      We provide below a modified version of Supplementary Figure 4 (Supplementary Figure 1 in the first submission), where individual profiles measured with the stylus profilometer and the mean profile are displayed for both microendoscope types (Author response image 2). In the manuscript (Supplementary Figure 4), we would suggest to keep showing mean profiles ± standard errors of the mean, as we did in the original submission.

      Author response image 2.

      Characterization of polymeric corrective lens replicas. A) Stylus profilometer measurements were performed along the radius of the corrective polymer microlens replica for the 6.4 mm-long corrected microendoscope. Individual measured profiles (grey solid lines) obtained from n = 3 profile measurements on m = 3 different corrective lens replicas, plus the mean profile (black solid line) are displayed. B) Same as (A) for the 8.8 mm-long microendoscope.

      What is the practical effect of the strong field curvature? Are the edges of the field, which come very close to the lens surface, a practical limitation?

      A first practical effect of the field curvature is that structures at different z coordinates are sampled. The observed field curvature of corrected endoscopes may therefore impact imaging in brain regions characterized by strong axially organized anatomy (e.g., the pyramidal layer of the hippocampus), but would not significantly affect imaging in regions with homogeneous cell density within the axial extension of the field curvature (< 170 µm, see more details below). A second consequence of the field curvature, as the Referee correctly points out, is that cell at the border of the FOV are closer to the front end of the GRIN lens. In measurements of subresolved fluorescent layers (Figure 3A-D), we observed that the field curvature extends in the axial direction to ~ 110 μm and ~170 μm for the 6.4 mm- and the 8.8 mm-long microendoscopes, respectively. Considered that the nominal working distances on the object side of the 6.4 mm- and the 8.8 mm-long microendoscopes were, respectively, 210 μm and 178 μm (Table 3), structures positioned at the very edge of the FOV were ~ 100 μm and ~ 8 μm away from the GRIN front end for the 6.4 mm-long and for the 8.8 mm-long probe, respectively. Previous studies have shown that brain tissue within 50-100 μm from the GRIN front end may show signs of tissue reaction to the implant (Curreli et al. PLOS Biology 2022, Attardo et al. Nature 2015). Therefore, structures at the very edge of the FOV of the 8.8 mm-long endoscopes, but not those at the edge of the 6.4 mm-long endoscopes, may be within the volume showing tissue reaction. We added a paragraph in the text to discuss these points (page 18 lines 10-14).

      The lenses appear to be corrected for monochromatic light; high-performance microscopes are generally achromatic. Is the bandwidth of two-photon excitation sufficient to warrant optimization over multiple wavelengths?

      Thanks for this comment. All optical simulations described in the first submission were performed at a fixed wavelength (λ = 920 nm). Following the Referee’s request, we explored the effect of changing wavelength on the Strehl ratio using new optical simulations. We found that the Strehl ratio remains > 0.8 at least within ± 10 nm from λ = 920 nm (new Supplementary Figure 1A-D, left panels), which covers the limited bandwidth of our femtosecond laser. Moreover, these simulations demonstrate that, on a much wider wavelength range (800 - 1040 nm), high Strehl ratio is obtained, but at different z planes (new Supplementary Figure 1A-D, right panels). This means that the corrective lens is working as expected also for wavelengths which are different from 920 nm, with different wavelengths having the most enlarged FOV located at different working distances. These new results are now described on page 7 (lines 8-10).

      GRIN lenses are often used to access a 3D volume by scanning in z (including in this study). How does the corrective lens affect imaging performance over the 3D field of view?

      The optical simulations we did to design the corrective lenses were performed maximizing aberration correction only in the focal plane of the endoscope. Following the Referee’s comment, we explored the effect of aberration correction outside the focal plane using new optical simulations. In corrected endoscopes, we found that for off-axis rays (radial distance from the optical axis > 40 μm) the Strehl ratio was > 0.8 (Maréchal criterion) in a larger volume compared to uncorrected endoscopes (new Supplementary Figure 2), demonstrating that the aberration correction method developed in this study does extend beyond the focal plane for short distances. For example, at a radial distance of ~ 90 μm from the optical axis, the axial range in which the Strehl ratio was > 0.8 in corrected endoscopes was 28 μm and 19 μm for the 6.4 mm- and the 8.8 mm-long microendoscope, respectively. These new results are now described on page 7 (10-19).

      (4) The in vivo images (Figure 7D) have a less impressive resolution and field than the ex vivo images (Figure 4B), and the reason for this is not clear. Given the difference in performance, how does this compare to an uncorrected endoscope in the same preparation? Is the reduced performance related to uncorrected motion, field curvature, working distance, etc?

      In comparing images in Figure 4B with images shown in Figure 7D, the following points should be considered:

      (1) Figure 4B is a maximum fluorescence intensity projection of multiple axial planes of a z-stack acquired through a thin brain slice (slice thickness: 50 µm) using 8 frame averages for each plane. In contrast, images in Figure 7D are median projection of a t-series acquired on a single plane in the awake mouse at 30 Hz resonant scanning imaging (8 min, 14,400 frames).

      (2) Images of the fixed brain slice in Figure 4B were acquired at 1024 pixels x 1024 pixels resolution, nominal pixel size 0.45 µm/pixel, and with objective NA = 0.50, whereas in vivo images in Figure 7D were acquired at 512 pixels x 512 pixels resolution, nominal pixel size 0.72 - 0.84 µm/pixel, and with objective NA = 0.45.

      (3) In the in vivo preparation (Figure 7D), excitation and emission light travel through > 180 µm of scattering and absorbing brain tissue, reducing spatial resolution and the SNR of the collected fluorescence signal.

      (4) By shifting the sample in the x, y plane, in Figure 4B we could chose a FOV containing homogenously stained cells. x, y shifting and selecting across multiple FOVs was not possible in vivo, as the GRIN lens was cemented on the animal skull.

      (5) Images in Figure 7D were motion corrected, but we cannot exclude that part of the decrease in resolution observed in Figure 7D when compared to images in Figure 4B are due to incomplete correction of motion artifacts.

      For all the reasons listed above, we believe that it is expected to see smaller resolution and contrast in images recorded in vivo (Figure 7D) compared to images acquired in fixed tissue (Figure 4B).

      Regarding the question of how do images from an uncorrected and a corrected endoscopes compared in vivo, we think that this comparison is better performed in fixed tissue (Figure 4) or in simulated calcium data (Figure 5-6), rather than in vivo recordings (Figure 7). In fact, in the brain of living mice motion artifacts, changes in fluorophore expression level, variation in the optical properties of the brain (e.g., the presence of a blood vessel over the FOV) may make the comparison of images acquired with uncorrected and corrected microendoscopes difficult, requiring a large number of animals to cancel out the contributions of these factors. Comparing optical properties in fixed tissue is, in contrast, devoid of these confounding factors. Moreover, the major advantage of quantifying how the optical properties of uncorrected and corrected endoscopes impact on the ability to extract information about neuronal activity in simulated calcium data is that, under simulated conditions, we can count on a known ground truth as reference (e.g., how many neurons are in the FOV, where they are, and which is their electrical activity). This is clearly not possible in the in vivo recordings.

      Regarding Figure 7, there is no analysis of the biological significance of the calcium signals or even a description of where olfactory stimuli were presented.

      We appreciate the Reviewer pointing out the lack of detailed analysis regarding the biological significance of the calcium signals and the presentation of olfactory stimuli in Figure 7. Our initial focus was on demonstrating the effectiveness of the optimized GRIN lenses for imaging deep brain areas like the piriform cortex, with an emphasis on the improved signal-tonoise ratio (SNR) these lenses provide. However, we agree that including more context about the experimental conditions would enhance the manuscript. To address this point, we added a new panel (Figure 7F) showing calcium transients aligned with the onset of olfactory stimulus presentations, which are now indicated by shaded light blue areas. Additionally, we have specified the timing of each stimulus presented in Figure 7E. This revision allows readers to better understand the relationship between the calcium signals and the olfactory stimuli.

      The timescale of jGCaMP8f signals in Figure 7E is uncharacteristically slow for this indicator (compared to Zhang et al 2023 (Nature)), though perhaps this is related to the physiology of these cells or the stimuli.

      Regarding the timescale of the calcium signals observed in Figure 7E, we apologize for the confusion caused by a mislabeling we inserted in the original manuscript. The experiments presented in Figure 7 were conducted using jGCaMP7f, not jGCaMP8f as previously stated (both indicators were used in this study but in separate experiments). We have corrected this error in the Results section (caption of Figure 7D, E). It is important to note that jGCaMP7f has a longer half-decay time compared to jGCaMP8f, which could in part account for the slower decay kinetics observed in our data. Furthermore, the prolonged calcium signals can be attributed to the physiological properties of neurons in the piriform cortex. Upon olfactory stimulation, these neurons often fire multiple action potentials, resulting in extended calcium transients that can last several seconds. This sustained activity has been documented in previous studies, such as Roland et al. (eLife 2017, Figure 1C therein) in anesthetized animals and Wang et al. (Neuron 2020, Figure 1E therein) in awake animals, which report similar durations for calcium signals.

      (5) The claim of unprecedented spatial resolution across the FOV (page 18) is hard to evaluate and is not supported by references to quantitative comparisons. The promises of the method for future studies (pages 18-19) could also be better supported by analysis or experiment, but these are minor and to me, do not detract from the appeal of the work.

      GRIN lens-based imaging of piriform cortex in the awake mouse had already been done in Wang et al., Neuron 2020. The GRIN lens used in that work was NEM-050-50-00920-S-1.5p (GRINTECH, length: 6.4 mm; diameter: 0.5 mm), similar to the one that we used to design the 6.4 mm-long corrected microendoscope. Here we used a microendoscope specifically design to correct off-axis aberrations and enlarge the FOV, in order to maximize the number of neurons recorded with the highest possible spatial resolution, while keeping the tissue invasiveness to the minimum. Following the Referee’s comments, we revised the sentence at page 19 (lines 68 from bottom) as follows:

      “We used long corrected microendoscopes to measure population dynamics in the olfactory cortex of awake head-restrained mice with unprecedented combination of high spatial resolution across the FOV and minimal invasiveness(17)”.

      (6) The text is lengthy and the material is repeated, especially between the introduction and conclusion. Consolidating introductory material to the introduction would avoid diluting interesting points in the discussion.

      We thank the Reviewer for this comment. As suggested, we edited the Introduction and shortened the Discussion.

      Reviewer #2 (Public review):

      In this manuscript, the authors present an approach to correct GRIN lens aberrations, which primarily cause a decrease in signal-to-noise ratio (SNR), particularly in the lateral regions of the field-of-view (FOV), thereby limiting the usable FOV. The authors propose to mitigate these aberrations by designing and fabricating aspherical corrective lenses using ray trace simulations and two-photon lithography, respectively; the corrective lenses are then mounted on the back aperture of the GRIN lens.

      This approach was previously demonstrated by the same lab for GRIN lenses shorter than 4.1 mm (Antonini et al., eLife, 2020). In the current work, the authors extend their method to a new class of GRIN lenses with lengths exceeding 6 mm, enabling access to deeper brain regions as most ventral regions of the mouse brain. Specifically, they designed and characterized corrective lenses for GRIN lenses measuring 6.4 mm and 8.8 mm in length. Finally, they applied these corrected long micro-endoscopes to perform high-precision calcium signal recordings in the olfactory cortex.

      Compared with alternative approaches using adaptive optics, the main strength of this method is that it does not require hardware or software modifications, nor does it limit the system's temporal resolution. The manuscript is well-written, the data are clearly presented, and the experiments convincingly demonstrate the advantages of the corrective lenses.

      The implementation of these long corrected micro-endoscopes, demonstrated here for deep imaging in the mouse olfactory bulb, will also enable deep imaging in larger mammals such as rats or marmosets.

      We thank the Referee for the positive comments on our study. We address the points indicated by the Referee in the “Recommendation to the authors” section below.

      Reviewer #3 (Public review):

      Summary:

      This work presents the development, characterization, and use of new thin microendoscopes (500µm diameter) whose accessible field of view has been extended by the addition of a corrective optical element glued to the entrance face. Two micro endoscopes of different lengths (6.4mm and 8.8mm) have been developed, allowing imaging of neuronal activity in brain regions >4mm deep. An alternative solution to increase the field of view could be to add an adaptive optics loop to the microscope to correct the aberrations of the GRIN lens. The solution presented in this paper does not require any modification of the optical microscope and can therefore be easily accessible to any neuroscience laboratory performing optical imaging of neuronal activity.

      Strengths:

      (1) The paper is generally clear and well-written. The scientific approach is well structured and numerous experiments and simulations are presented to evaluate the performance of corrected microendoscopes. In particular, we can highlight several consistent and convincing pieces of evidence for the improved performance of corrected micro endoscopes:

      a) PSFs measured with corrected micro endoscopes 75µm from the centre of the FOV show a significant reduction in optical aberrations compared to PSFs measured with uncorrected micro endoscopes.

      b) Morphological imaging of fixed brain slices shows that optical resolution is maintained over a larger field of view with corrected micro endoscopes compared to uncorrected ones, allowing neuronal processes to be revealed even close to the edge of the FOV.

      c) Using synthetic calcium data, the authors showed that the signals obtained with the corrected microendoscopes have a significantly stronger correlation with the ground truth signals than those obtained with uncorrected microendoscopes.

      (2) There is a strong need for high-quality micro endoscopes to image deep brain regions in vivo. The solution proposed by the authors is simple, efficient, and potentially easy to disseminate within the neuroscience community.

      Weaknesses:

      (1) Many points need to be clarified/discussed. Here are a few examples:

      a) It is written in the methods: “The uncorrected microendoscopes were assembled either using different optical elements compared to the corrected ones or were obtained from the corrected

      probes after the mechanical removal of the corrective lens.”

      This is not very clear: the uncorrected microendoscopes are not simply the unmodified GRIN lenses?

      We apologize for not been clear enough on this point. Uncorrected microendoscopes are not simply unmodified GRIN lenses, rather they are GRIN lenses attached to a round glass coverslip (thickness: 100 μm). The glass coverslip was included in ray-trace optical simulations of the uncorrected system and this is the reason why commercial GRIN lenses and corresponding uncorrected microendoscopes have different working distances, as reported in Tables 2-3. To make the text clearer, we added the following sentence at page 27 (last 4 lines):

      “To evaluate the impact of corrective microlenses on the optical performance of GRIN-based microendoscopes, we also simulated uncorrected microendoscopes composed of the same optical elements of corrected probes (glass coverslip and GRIN rod), but in the absence of the corrective microlens”.

      b) In the results of the simulation of neuronal activity (Figure 5A, for example), the neurons in the center of the FOV have a very large diameter (of about 30µm). This should be discussed.

      Thanks for this comment. In synthetic calcium imaging t-series, cell radii were randomly sampled from a Gaussian distribution with mean = 10 µm and standard deviation (SD) = 3 µm. Both values were estimated from the literature (ref. no. 28: Suzuki & Bekkers, Journal of Neuroscience, 2011) as described in the Methods (page 35). In the image shown in Figure 5A, neurons near to the center of the FOV have radius of ~ 20 µm corresponding to the right tail of the distribution (mean + 3SD = 19 µm). It is also important to note that, for corrected microendoscopes, neurons in the central portion of the FOV appear larger than cells located near the edges of the FOV, because the magnification depends on the distance from the optical axis (see Figure 3E, F) and near the center the magnification is > 1 for both microendoscope types.

      Also, why is the optical resolution so low on these images?

      Images shown in Figure 5 are median fluorescence intensity projections of 5 minute-long simulated t-series. Simulated calcium data were generated with pixel size 0.8 μm/pixel and frame rate 30 Hz, similarly to in vivo recordings. In the simulations, pixels not belonging to any cell soma were assigned a value of background fluorescence randomly sampled from a normal distribution with mean and standard deviation estimated from experimental data, as described in the Methods section (page 37). To simulate activity, the mean spiking rate of neurons was set to 0.3 Hz, thus in a large fraction of frames neurons do not show calcium transients. Therefore, the median fluorescence intensity value of somata will be close to their baseline fluorescence value (_F_0). Since in simulations F0 values (~ 45-80 a.u.) were not much higher than the background fluorescence level (~ 45 a.u.), this may generate the appearance of low contrast image in Figure 5A. Finally, we suspect that PDF rendering also contributed to degrade the quality of those images. We will now submit high resolution images alongside the PDF file.

      c) It seems that we can't see the same neurons on the left and right panels of Figure 5D. This should be discussed.

      The Referee is correct. When we intersected the simulated 3D volume of ground truth neurons with the focal surface of microendoscopes, the center of the FOV for the 8.8 mmlong corrected microendoscope was located at a larger depth than the FOV of the 8.8 mm uncorrected microendoscope. This effect was due to the larger field curvature of corrected 8.8 mmlong endoscopes compared to 8.8 mm-long uncorrected endoscopes. This is the reason why different neurons were displayed for uncorrected and corrected endoscopes in Figure 5D. We added this explanation in the text at page 37 (lines 1-4). The text reads:

      “Due to the stronger field curvature of the 8.8 mm-long corrected microendoscope (Figure 1C) compared to 8.8 mm-long uncorrected microendoscopes, the center of the corrected imaging focal surface resulted at a larger depth in the simulated volume compared to the center of the uncorrected focal surface(s). Therefore, different simulated neurons were sampled in the two cases”.

      d) It is not very clear to me why in Figure 6A, F the fraction of adjacent cell pairs that are more correlated than expected increases as a function of the threshold on peak SNR. The authors showed in Supplementary Figure 3B that the mean purity index increases as a function of the threshold on peak SNR for all micro endoscopes. Therefore, I would have expected the correlation between adjacent cells to decrease as a function of the threshold on peak SNR. Similarly, the mean purity index for the corrected short microendoscope is close to 1 for high thresholds on peak SNR: therefore, I would have expected the fraction of adjacent cell pairs that are more correlated than expected to be close to 0 under these conditions. It would be interesting to clarify these points.

      Thanks for raising this point. We defined the fraction of adjacent cell pairs more correlated than expected as the number of adjacent cell pairs more correlated than expected divided by the number of adjacent cell pairs. The reason why this fraction raises as a function of the SNR threshold is shown in Supplementary Figure 2 in the first submission (now Supplementary Figure 5). There, we separately plotted the number of adjacent cell pairs more correlated than expected (numerator) and the number of adjacent cell pairs (denominator) as a function of the SNR threshold. For both microendoscope types, we observed that the denominator more rapidly decreased with peak SNR threshold than the numerator. Therefore, the fraction of adjacent cell pairs more correlated than expected increases with the peak SNR threshold.

      To understand why the denominator decreases with SNR threshold, it should be considered that, due to the deterioration of spatial resolution and attenuation of fluorescent signal collection as a function of the radial distance from the optical axis (see for example fluorescent film profiles in Figure 3A, C), increasing the threshold on the peak SNR of extracted calcium traces implies limiting cell detection to those cells located within smaller distance from the center of the FOV. This information is shown in Figure 5C, F.

      In the manuscript text, this point is discussed at page 12 (lines 1-3 from bottom) and page 13 (lines 1-4):

      “The fraction of pairs of adjacent cells (out of the total number of adjacent pairs) whose activity correlated significantly more than expected increased as a function of the SNR threshold for corrected and uncorrected microendoscopes of both lengths (Fig. 6A, F). This effect was due to a larger decrease of the total number of pairs of adjacent cells as a function of the SNR threshold compared to the decrease in the number of pairs of adjacent cells whose activity was more correlated than expected (Supplementary Figure 5)”.

      e) Figures 6C, H: I think it would be fairer to compare the uncorrected and corrected endomicroscopes using the same effective FOV.

      To address the Reviewer’s concern, we repeated the linear regression of purity index as a function of the radial distance using the same range of radial distances for the uncorrected and corrected case of both microendoscope types. Below, we provide an updated version of Figure 6C, H for the referee’s perusal. Please note that the maximum value displayed on the x-axis of both graphs is now corresponding to the minimum value between the two maximum radial distance values obtained in the uncorrected and corrected case (maximum radial distance displayed: 151.6 µm and 142.1 μm for the 6.4 mm- and the 8.8 mm-long GRIN rod, respectively). Using the same effective FOV, we found that the purity index drops significantly more rapidly with the radial distance for uncorrected microendoscopes compared to the corrected ones, similarly to what observed in the original version of Figure 6. The values of the linear regression parameters and statistical significance of the difference between the slopes in the uncorrected and corrected cases are stated in the Author response image 3 caption below for both microendoscope types. In the manuscript, we would suggest to keep showing data corresponding to all detected cells, as we did in the original submission.

      Author response image 3.

      Linear regression of purity index as a function of the radial distance. A) Purity index of extracted traces with peak SNR > 10 was estimated using a GLM of ground truth source contributions and plotted as a function of the radial distance of cell identities from the center of the FOV for n = 13 simulated experiments with the 6.4 mm-long uncorrected (red) and corrected (blue) microendoscope. Black lines represent the linear regression of data ± 95% confidence intervals (shaded colored areas). Maximum value of radial distance displayed: 151.6 μm. Slopes ± standard error (s.e.): uncorrected, (-0.0015 ± 0.0002) µm-1; corrected, (-0.0006 ± 0.0001) μm-1. Uncorrected, n = 991; corrected, n = 1156. Statistical comparison of slopes, p < 10<sup>-10</sup>, permutation test. B) Same as (A) for n = 15 simulated experiments with the 8.8 mm-long uncorrected and corrected microendoscope. Maximum value of radial distance displayed: 142.1 μm. Slopes ± s.e.: uncorrected, (-0.0014 ± 0.0003) μm-1; corrected, (-0.0010 ± 0.0002) µm-1. Uncorrected, n = 718; corrected, n = 1328. Statistical comparison of slopes, p = 0.0082, permutation test.

      f) Figure 7E: Many calcium transients have a strange shape, with a very fast decay following a plateau or a slower decay. Is this the result of motion artefacts or analysis artefacts?

      Thank you for raising this point about the unusual shapes of the calcium transients in Figure 7E. The observed rapid decay following a plateau or a slower decay is indeed a result of how the data were presented in the original submission. Our experimental protocol consisted of 22 s-long trials with an inter-trial interval of 10 s (see Methods section, page 44). In the original figure, data from multiple trials were concatenated, which led to artefactual time courses and apparent discontinuities in the calcium signals. To resolve this issue, we revised Figure 7E to accurately represent individual concatenated trials. We also added a new panel (please see new Figure 7F) showing examples of single cell calcium responses in individual trials without concatenation, with annotations indicating the timing and identity of presented olfactory stimuli.

      Also, the duration of many calcium transients seems to be long (several seconds) for GCaMP8f. These points should be discussed.

      Author response: regarding the timescale of the calcium signals observed in Figure 7E, we apologize for the confusion caused by a mislabeling we inserted in the manuscript. The experiments presented in Figure 7 were conducted using jGCaMP7f, not jGCaMP8f as previously stated (both indicators were used in this study, but in separate experiments). We have corrected this error in the Results section (caption of Figure 7D, E). It is important to note that jGCaMP7f has a longer half-decay time compared to jGCaMP8f, which could in part account for the slower decay kinetics observed in our data. Furthermore, the prolonged calcium signals can be attributed to the physiological properties of neurons in the piriform cortex. Upon olfactory stimulation, these neurons often fire multiple action potentials, resulting in extended calcium transients that can last several seconds. This sustained activity has been documented in previous studies, such as Roland et al. (eLife 2017, Figure 1C therein) in anesthetized animals and Wang et al. (Neuron 2020, Figure 1E therein) in awake animals, which report similar durations for calcium signals. We cite these references in the text. We believe that these revisions and clarifications address the Reviewer's concern and enhance the overall clarity of our manuscript.

      g) The authors do not mention the influence of the neuropil on their data. Did they subtract the neuropil's contribution to the signals from the somata? It is known from the literature that the presence of the neuropil creates artificial correlations between neurons, which decrease with the distance between the neurons (Grødem, S., Nymoen, I., Vatne, G.H. et al. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. Nat Commun 14, 608 (2023). https://doi.org/10.1038/s41467-023-363243; Keemink SW, Lowe SC, Pakan JMP, Dylda E, van Rossum MCW, Rochefort NL. FISSA: A neuropil decontamination toolbox for calcium imaging signals. Sci Rep. 2018 Feb 22;8(1):3493.

      doi: 10.1038/s41598-018-21640-2. PMID: 29472547; PMCID: PMC5823956)

      This point should be addressed.

      We apologize for not been clear enough in our previous version of the manuscript. The neuropil was subtracted from calcium traces both in simulated and experimental data. Please note that instead of using the term “neuropil”, we used the word “background”. We decided to use the more general term “background” because it also applies to the case of synthetic calcium tseries, where neurons were modeled as spheres devoid of processes. The background subtraction is described in the Methods on page 39:

      F(t) was computed frame-by-frame as the difference between the average signal of pixels in each ROI and the background signal. The background was calculated as the average signal of pixels that: i) did not belong to any bounding box; ii) had intensity values higher than the mean noise value measured in pixels located at the corners of the rectangular image, which do not belong to the circular FOV of the microendoscope; iii) had intensity values lower than the maximum value of pixels within the boxes”.

      h) Also, what are the expected correlations between neurons in the pyriform cortex? Are there measurements in the literature with which the authors could compare their data?

      We appreciate the reviewer's interest in the correlations between neurons in the piriform cortex. The overall low correlations between piriform neurons we observed (Figure 8) are consistent with a published study describing ‘near-zero noise correlations during odor inhalation’ in the anterior piriform cortex of rats, based on extracellular recordings (Miura et al., Neuron 2013). However, to the best of our knowledge, measurements directly comparable to ours have not been described in the literature. Recent analyses of the correlations between piriform neurons were restricted to odor exposure windows, with the goal to quantify odor-specific activation patterns (e.g. Roland et al., eLife 2017; Bolding et al., eLife 2017, Pashkovski et al., Nature 2020; Wang et al., Neuron 2020). Here, we used correlation analyses to characterize the technical advancement of the optimized GRIN lens-based endoscopes. We showed that correlations of pairs of adjacent neurons were independent from radial distance (Figure 8B), highlighting homogeneous spatial resolution in the field of view.

      (2) The way the data is presented doesn't always make it easy to compare the performance of corrected and uncorrected lenses. Here are two examples:

      a) In Figures 4 to 6, it would be easier to compare the FOVs of corrected and uncorrected lenses if the scale bars (at the centre of the FOV) were identical. In this way, the neurons at the centre of the FOV would appear the same size in the two images, and the distances between the neurons at the centre of the FOV would appear similar. Here, the scale bar is significantly larger for the corrected lenses, which may give the illusion of a larger effective FOV.

      We appreciate the Referee’s comment. Below, we explain why we believe that the way we currently present imaging data in the manuscript is preferable:

      (1) current figures show images of the acquired FOV as they are recorded from the microscope (raw data), without rescaling. In this way, we exactly show what potential users will obtain when using a corrected microendoscope.

      (2) In the current version of the figures, the fact that the pixel size is not homogeneous across the FOV, nor equal between uncorrected and corrected microendoscopes, is initially shown in Figure 3E, F and then explicitly stated throughout the manuscript when images acquired with a corrected microendoscope are shown.

      (3) Rescaling images acquired with the corrected endoscopes gives the impression that the acquisition parameters were different between acquisitions with the corrected and uncorrected microendoscopes, which was not the case.

      Importantly, the larger FOV of the corrected microendoscope, which is one of the important technological achievements presented in this study, can be appreciated in the images regardless of the presentation format.

      b) In Figures 3A-D it would be more informative to plot the distances in microns rather than pixels. This would also allow a better comparison of the micro endoscopes (as the pixel sizes seem to be different for the corrected and uncorrected micro endoscopes).

      The Referee is correct that the pixel size is different between the corrected and uncorrected probes. This is because of the different magnification factor introduced by the corrective microlens, as described in Figure 3E, F. The rationale for showing images in Figure 3AD in pixels rather than microns is the following:

      (1) Optical simulations in Figure 1 suggest that a corrective optical element is effective in compensating for some of the optical aberrations in GRIN microendoscopes.

      (2) After fabricating the corrective optical element (Figure 2), in Figure 3A-D we conduct a preliminary analysis of the effect of the corrective optical element on the optical properties of the GRIN lens. We observed that the microfabricated optical element corrected for some aberrations (e.g., astigmatism), but also that the microfabricated optical element was characterized by significant field curvature. This can be appreciated showing distances in pixels.

      (3) The observed field curvature and the aspherical profile of the corrected lens prompted us to characterize the magnification factor of the corrected endoscopes as a function of the radial distance. We found that the magnification factor changed as a function of the radial distance (Figure 3E-F) and that pixel size was different between uncorrected and corrected endoscopes. We also observed that, in corrected endoscopes, pixel size was a function of the radial distance (Figure 3E-F).

      (4) Once all of the above was established and quantified, we assigned precise pixel size to images of uncorrected and corrected endoscopes and we show all following images of the study (Figure 3G on) using a micron (rather than pixel) scale.

      (3) There seems to be a discrepancy between the performance of the long lenses (8.8 mm) in the different experiments, which should be discussed in the article. For example, the results in Figure 4 show a considerable enlargement of the FOV, whereas the results in Figure 6 show a very moderate enlargement of the distance at which the person's correlation with the first ground truth emitter starts to drop.

      Thanks for raising this point and helping us clarifying data presentation. Images in Figure 4B are average z-projections of z-stacks acquired through a mouse fixed brain slice and they were taken with the purpose of showing all the neurons that could be visualized from the same sample using an uncorrected and a corrected microendoscope. In Figure 4B, all illuminated neurons are visible regardless of whether they were imaged with high axial resolution (e.g., < 10 µm as defined in Figure 3J) or poor axial resolution. In contrast, in Figure 6J we evaluated the correlation between the calcium trace extracted from a given ROI and the real activity trace of the first simulated ground truth emitter for that specific ROI. The moderate increase in the correlation for the corrected microendoscope compared to the uncorrected microendoscope (Figure 6J) is consistent with the moderate improvement in the axial resolution of the corrected probe compared to the uncorrected probe at intermediate radial distances (60-100 µm from the optical axis, see Figure 3J). We added a paragraph in the Results section (page 14, lines 8-18) to summarize the points described above.

      a) There is also a significant discrepancy between measured and simulated optical performance, which is not discussed. Optical simulations (Figure 1) show that the useful FOV (defined as the radius for which the size of the PSF along the optical axis remains below 10µm) should be at least 90µm for the corrected microendoscopes of both lengths. However, for the long microendoscopes, Figure 3J shows that the axial resolution at 90µm is 17µm. It would be interesting to discuss the origin of this discrepancy: does it depend on the microendoscope used?

      As the Reviewer correctly pointed out, the size of simulated PSFs at a given radial distance (e.g., 90 µm) tends to be generally smaller than that of the experimentally measured PSFs. This might be due to multiple reasons:

      (1) simulated PSFs are excitation PSFs, i.e. they describe the intensity spatial distribution of focused excitation light. On the contrary, measured PSFs result from the excitation and emission process, thus they are also affected by aberrations of light emitted by fluorescent beads and collected by the microscope.

      (2) in the optical simulations, the Zemax file of the GRIN lenses contained first-order aberrations. High-order aberrations were therefore not included in simulated PSFs.

      (3) intrinsic variability of experimental measurements (e.g., intrinsic variability of the fabrication process, alignment of the microendoscope to the optical axis of the microscope, the distance between the GRIN back end and the objective…) are not considered in the simulations.

      We added a paragraph in the Discussion section (page 17, lines 9-18) summarizing the abovementioned points.

      Are there inaccuracies in the construction of the aspheric corrective lens or in the assembly with the GRIN lens? If there is variability between different lenses, how are the lenses selected for imaging experiments?

      The fabrication yield, i.e. the yield of generating the corrective lenses, using molding was ~ 90% (N > 30 molded lenses). The main limitation of this procedure was the formation of air bubbles between the mold negative and the glass coverslip. Molded lenses were visually inspected with the stereoscope and, in case of air bubble formation, they were discarded.

      The assembly yield, i.e. the yield of correct positioning of the GRIN lens with respect to the coverslip, was 100 % (N = 27 endoscopes).

      We added this information in the Methods at page 29 (lines 1-12), as follows:

      “After UV curing, the microlens was visually inspected at the stereomicroscope. In case of formation of air bubbles, the microlens was discarded (yield of the molding procedure: ~ 90 %, N > 30 molded lenses). The coverslip with the attached corrective lens was sealed to a customized metal or plastic support ring of appropriate diameter (Fig. 2C). The support ring, the coverslip and the aspherical lens formed the upper part of the corrected microendoscope, to be subsequently coupled to the proper GRIN rod (Table 2) using a custom-built opto-mechanical stage and NOA63 (Fig. 2C) 7. The GRIN rod was positioned perpendicularly to the glass coverslip, on the other side of the coverslip compared to the corrective lens, and aligned to the aspherical lens perimeter (Fig. 2C) under the guidance of a wide field microscope equipped with a camera. The yield of the assembly procedure for the probes used in this work was 100 % (N = 27 endoscopes). For further details on the assembly of corrected microendoscope see(7)”.

      Reviewer #1 (Recommendations for the authors):

      (1) Page 4, what is meant by 'ad-hoc" in describing software control?

      With “ad-hoc” we meant “specifically designed”. We revised the text to make this clear.

      (2) It was hard to tell how the PSF was modeled for the simulations (especially on page 34, describing the two spherical shells of the astigmatic PSF and ellipsoids modeled along them). Images or especially videos that show the modeling would make this easier to follow.

      Simulated calcium t-series were generated following previous work by our group (Antonini et al., eLife 2020), as stated in the Methods on page 37 (line 5). In Figure 4A of Antonini et al. eLife 2020, we provided a schematic to visually describe the procedure of simulated data generation. In the present paper, we decided not to include a similar drawing and cite the eLife 2020 article to avoid redundancy.

      (3) Some math symbols are missing from the methods in my version of the text (page 36/37).

      We apologize for the inconvenience. This issue arose in the PDF conversion of our Word document and we did not spot it at the time of submission. We will now make sure the PDF version of our manuscript correctly reports symbols and equations.

      (4) The Z extent of stacks (i.e. number of steps) used to generate images in Figure 4 is missing.

      We thank the Reviewer for the comment and we now revised the caption of Figure 4 and the Methods section as follows:

      “Figure 4. Aberration correction in long GRIN lens-based microendoscopes enables highresolution imaging of biological structures over enlarged FOVs. A) jGCaMP7f-stained neurons in a fixed mouse brain slice were imaged using 2PLSM (λexc = 920 nm) through an uncorrected (left) and a corrected (right) microendoscope based on the 6.4 mm-long GRIN rod. Images are maximum fluorescence intensity (F) projections of a z-stack acquired with a 5 μm step size. Number of steps: 32 and 29 for uncorrected and corrected microendoscope, respectively. Scale bars: 50 μm. Left: the scale applies to the entire FOV. Right, the scale bar refers only to the center of the FOV; off-axis scale bar at any radial distance (x and y axes) is locally determined multiplying the length of the drawn scale bar on-axis by the corresponding normalized magnification factor shown in the horizontal color-coded bar placed below the image (see also Fig. 3, Supplementary Table 3, and Materials and Methods for more details). B) Same results for the microendoscope based on the 8.8 mm-long GRIN rod. Number of steps: 23 and 31 for uncorrected and corrected microendoscope, respectively”.

      We also modified the text in the Methods (page 35, lines 1-2):

      “(1024 pixels x 1024 pixels resolution; nominal pixel size: 0.45 µm/pixel; axial step: 5 µm; number of axial steps: 23-32; frame averaging = 8)”.

      (5) Overall, the text is wordy and a bit repetitive and could be cut down significantly in length without loss of clarity. This is true throughout, but especially when comparing the introduction and discussion.

      We edited the text (Discussion and Introduction), as suggested by the Reviewer.

      (6) Although I don't think it's necessary, I would advise including comparison data with an uncorrected endoscope in the same in vivo preparation.

      We thank the Referee for the suggestion. Below, we list the reasons why we decided not to perform the comparison between the uncorrected and corrected endoscopes in the in vivo preparation:

      (1) We believe that the comparison between uncorrected and corrected endoscopes is better performed in fixed tissue (Figure 4) or in simulated calcium data (Figure 5-6), rather than in vivo recordings (Figure 7). In fact, in the brain of living mice motion artifacts, changes in fluorophore expression level, variation in the optical properties of the brain (e.g., the presence of a blood vessel over the FOV) may make the comparison of images acquired with uncorrected and corrected microendoscopes difficult, requiring a large number of animals to cancel out the contributions of all these factors. Comparing optical properties in fixed tissue is, in contrast, devoid of these confounding factors.

      (2) A major advantage of quantifying how the optical properties of uncorrected and corrected endoscope impact on the ability to extract information about neuronal activity in simulated calcium data is that, under simulated conditions, we can count on a known ground truth as reference (e.g., how many neurons are in the FOV, where they are, and which is their electrical activity). This is clearly not possible under in vivo conditions.

      (3) The proposed experiment requires to perform imaging in the awake mouse with a corrected microendoscope, then anesthetize the animal to carefully remove the corrective microlens using forceps, and finally repeat the optical recordings in awake mice with the uncorrected microendoscope. Although this is feasible (we performed the proposed experiment in Antonini et al. eLife 2020 using a 4.1 mm-long microendoscope), the yield of success of these experiments is low. The low yield is due to the fact that the mechanical force applied on top of the microendoscope to remove the corrective microlens may induce movement of the GRIN lens inside the brain, both in vertical and horizontal directions. This can randomly result in change of the focal plane, death or damage of the cells, tissue inflammation, and bleeding. From our own experience, the number of animals used for this experiment is expected to be high.

      Reviewer #2 (Recommendations for the authors):

      Below, I provide a few minor corrections and suggestions for the authors to consider before final submission.

      (1) Page 5: when referring to Table 1 maybe add "Table 1 and Methods".

      Following the Reviewer’s comment, we revised the text at page 6 (lines 4-5 from bottom) as follows:

      “(see Supplementary Table 1 and Materials and Methods for details on simulation parameters)”.

      (2) Page 8: "We set a threshold of 10 µm on the axial resolution to define the radius of the effective FOV (corresponding to the black triangles in Fig. 3I, J) in uncorrected and corrected microendoscopes. We observed an enlargement of the effective FOV area of 4.7 times and 2.3 times for the 6.4 mm-long micro endoscope and the 8.8 mm-long micro endoscope, respectively (Table 1). These findings were in agreement with the results of the ray-trace simulations (Figure 1) and the measurement of the subresolved fluorescence layers (Figure 3AD)." I could not find the information given in this paragraph, specifically:

      a) Upon examining the black triangles in Figure 3I and J, the enlargement of the effective FOV does not appear to be 4.7 and 2.3 times.

      In Figure 3I, J, black triangles mark the intersections between the curves fitting the data and the threshold of 10 µm on the axial resolution. The values on the x-axis corresponding to the intersections (Table 1, “Effective FOV radius”) represent the estimated radius of the effective FOV of the probes, i.e. the radius within which the microendoscope has spatial resolution below the threshold of 10 μm. The ratios of the effective FOV radii are 2.17 and 1.53 for the 6.4 mm- and the 8.8 mm-long microendoscope, respectively, which correspond to 4.7 and 2.3 times larger FOV (Table 1). To make this point clearer, we modified the indicated sentence as follows (page 10, lines 3-11 from bottom):

      “We set a threshold of 10 µm on the axial resolution to define the radius of the effective FOV (corresponding to the black triangles in Fig. 3I, J) in uncorrected and corrected microendoscopes. We observed a relative increase of the effective FOV radius of 2.17 and 1.53 for the 6.4 mm- and the 8.8 mm-long microendoscope, respectively (Table 1). This corresponded to an enlargement of the effective FOV area of 4.7 times and 2.3 times for the 6.4 mm-long microendoscope and the 8.8

      mm-long microendoscope, respectively (Table 1). These findings were in agreement with the results of the ray-trace simulations (Figure 1) and the measurement of the subresolved fluorescence layers (Figure 3A-D)."

      b) I do not understand how the enlargements in Figure 3I and J align with the ray trace simulations in Figure 1, indicating an enlargement of 5.4 and 5.6.

      In Figure 1C, E of the first submission we showed the Strehl ratio of focal spots focalized after the microendoscope, in the object plane, as a function of radial distance from the optical axis of focal spots focalized in the focal plane at the back end of the GRIN rod (“Objective focal plane” in Figure 1A, B), before the light has traveled along the GRIN lens. After reading the Referee’s comment, we realized this choice does not facilitate the comparison between Figure 1 and Figure 3I, J. We therefore decided to modify Figure 1C, E by showing the Strehl ratio of focal spots focalized after the microendoscope as a function of their radial distance from the optical axis in the objet plane (where the Strehl ratio is computed), after the light has traveled through the GRIN lens (radial distances are still computed on a plane, not along the curved focal surface represented by the “imaging plane” in Figure 1 A, B). Computing radial distances in the object space, we found that the relative increase in the radius of the FOV due to the correction of aberrations was 3.50 and 3.35 for the 6.4 mm- and the 8.8 mm-long microendoscope, respectively. We also revised the manuscript text accordingly (page 7, lines 6-8):

      “The simulated increase in the radius of the diffraction-limited FOV was 3.50 times and 3.35 times for the 6.4 mm-long and 8.8 mm-long probe, respectively (Fig. 1C, E)”. We believe this change should facilitate the comparison of the data presented in Figure 1 and Figure 3.

      Moreover, in comparing results in Figure 1 and Figure 3, it is important to keep in mind that:

      (1) the definitions of the effective FOV radius were different in simulations (Figure 1) and real measurements (Figure 3). In simulations, we considered a theoretical criterion (Maréchal criterion) and set the lower threshold for a diffraction-limited FOV to a Strehl ratio value of 0.8. In real measures, the effective FOV radius obtained from fluorescent bead measurements was defined based on the empirical criterion of setting the upper threshold for the axial resolution to 10 µm.

      (2) the Zemax file of the GRIN lenses contained low-order aberrations and not high-order aberrations.

      (3) the small variability in some of the experimental parameters (e.g., the distance between the GRIN back end and the focusing objective) were not reflected in the simulations.

      Given the reasons listed above, it is expected that the prediction of the simulations do not perfectly match the experimental measurements and tend to predict larger improvements of aberration correction than the experimentally measured ones.

      c) Finally, how can the enlargement in Figure 3I be compared to the measurements of the sub-resolved fluorescence layers in Figures 3A-D? Could the authors please clarify these points?

      When comparing measurements of subresolved fluorescent films and beads it is important to keep in mind that the two measures have different purposes and spatial resolution. We used subresolved fluorescent films to visualize the shape and extent of the focal surface of microendoscopes in a continuous way along the radial dimension (in contrast to bead measurements that are quantized in space). This approach comes at the cost of spatial resolution, as we are using fluorescent layers, which are subresolved in the axial but not in the radial dimension. Therefore, fluorescent film profiles are not used in our study to extract relevant quantitative information about effective FOV enlargement or spatial resolution of corrected microendoscopes. In contrast, to quantitatively characterize axial and lateral resolutions we used measurements of 100 nm-diameter fluorescent beads (therefore subresolved in the x, y, and z dimensions) located at different radial distances from the center of the FOV, using a much smaller nominal pixel size compared to the fluorescent films (beads, lateral resolution: 0.049 µm/pixel, axial resolution: 0.5 µm/pixel; films, lateral resolution: 1.73 µm/pixel, axial resolution: 2 µm/pixel).

      (3) On page 15, the statement "significantly enlarge the FOV" should be more specific by providing the actual values for the increase. It would also be good to mention that this is not a xy lateral increase; rather, as one moves further from the center, more of the imaged cells belong to axially different planes.

      The values of the experimentally determined FOV enlargements (4.7 times and 2.3 times for 6.4 mm- and 8.8 mm-long microendoscope, respectively) are provided in Table 1 and are now referenced on page 10. Following the Referee’s request, we added the following sentence in the discussion (page 18, lines 10-14) to underline that the extended FOV samples on different axial positions because of the field curvature effect:

      “It must be considered, however, that the extended FOV achieved by our aberration correction method was characterized by a curved focal plane. Therefore, cells located in different radial positions within the image were located at different axial positions and cells at the border of the FOV were closer to the front end of the microendoscope”.

      (4) On page 36, most of the formulas appear to be corrupted. This may have occurred during the conversion to the merged PDF. Please verify this and check for similar problems in other equations throughout the text as well.

      We apologize for the inconvenience. This issue arose in the PDF conversion of our Word document and we did not spot it upon submission. We will now make sure the PDF version of our manuscript correctly reports symbols and equations.

      (5) In the discussion, the authors could potentially add comments on how the verified performance of the corrective lenses depends on the wavelength and mention the range within which the wavelength can be changed without the need to redesign a new corrective lens.

      Following this comments and those of other Reviewers, we explored the effect of changing wavelength on the Strehl ratio using new Zemax simulations. We found that the Strehl ratio remains > 0.8 within ± at least 10 nm from λ = 920 nm (new Supplementary Figure 1A-D, left panels), which covers the limited bandwidth of our femtosecond laser. Moreover, these simulations demonstrate that, on a much wider wavelength range (800 - 1040 nm), high Strehl ratio is obtained but at different z planes (new Supplementary Figure 1A-D, right panels). These new results are now described on page 7 (lines 8-10).

      (6) Also, they could discuss if and how the corrective lens could be integrated into fiberscopes for freely moving experiments.

      Following the Referee’s suggestion, we added a short text in the Discussion (page 21, lines 4-7 from bottom). It reads:

      “Another advantage of long corrected microendoscopes described here over adaptive optics approaches is the possibility to couple corrected microendoscopes with portable 2P microscopes(42-44), allowing high resolution functional imaging of deep brain circuits on an enlarged FOV during naturalistic behavior in freely moving mice”.

      (7) Finally, since the main advantage of this approach is its simplicity, the authors should also comment on or outline the steps to follow for potential users who are interested in using the corrective lenses in their systems.

      Thanks for this comment. The Materials and Methods section of this study and that of Antonini et al. eLife 2020 describe in details the experimental steps necessary to reproduce corrective lenses and apply them to their experimental configuration.

      Reviewer #3 (Recommendations for the authors):

      (1) Suggestions for improved or additional experiments, data, or analyses, and Recommendations for improving the writing and presentation:

      See Public Review.

      Please see our point-by-point response above.

      (2) Minor corrections on text and figures: a) Figure 6A: is the fraction of cells expressed in %?

      Author response: yes, that is correct. Thank you for spotting it. We added the “%” symbol to the y label.

      b) Figurer 8A, left: The second line is blue and not red dashed. In addition, it could be interesting to also show a line corresponding to the 0 value.

      Thank you for the suggestions. We modified Figure 8 according to the Referee’s comments.

      c) Some parts of equation (1) and some variables in the Material and Methods section are missing

      We apologize for the inconvenience. This issue arose in the PDF conversion of our Word document and we did not spot it upon submission. We will now make sure the PDF version of our manuscript correctly reports symbols and equations.

      d) In the methods, the authors mention a calibration ruler with ticks spaced every 10 µm along two orthogonal directions and refer to the following product: 4-dot calibration slide, Cat. No. 1101002300142, Motic, Hong Kong. However, this product does not seem to correspond to a calibration ruler.

      We double check. The catalog number 1101002300142 is correct and product details can be found at the following link:

      https://moticmicroscopes.com/products/calibration-slide-4-dots-1101002300142?srsltid=AfmBOorGYx9PcXtAlIMmSs_tEpxS4nX21qIcV8Kfn4qGwizQK3LYOQn3

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for their comments and have included substantial new data to strengthen the work by specifically addressing questions regarding the molecular mechanisms driving the proteomic and phenotypic changes observed in these disease models. We have generated a new ganglioside disease model (GM1 gangliosidosis) and demonstrated that the lysosomal exocytosis mechanism identified for GM2 gangliosidosis is a conserved mechanism that alters the PM proteome (see new Figure 5).

      We have also carried out substantial additional experimental work to address the question of whether specific protein-lipid interactions drive some of these changes. We have preliminary data supporting this (included below) but we are not confident that these data are robust enough for inclusion in this manuscript. This work required substantial in vitro experiments including the expression and purification of several proteins for use in liposome binding assays. Although these data are promising, they have been challenging to reproduce and we would prefer to develop this work further for inclusion in a subsequent paper.

      Although not requested by any reviewers we have also included substantial additional multielectrode array (MEA) data in Figure 4 to further support the phenotypic changes to electrical signalling seen in the Tay Sachs disease model.

      We would like to note that even without these new data the reviewers highlighted that the “high-quality data presented significantly advance the field” and that the work “exposes key conceptual novelties” using “new insight” and “new tools” that shed “light on the complex pathophysiology that links lipid accumulation to neuronal dysfunction”. And that this highlights “an underappreciated dimension of these diseases” allowing them to be “understood better thanks to this study”. More generally the reviewers state that the work is of interest to both “clinicians and basic researchers” and is relevant to “broader fields in cellular and neurodegenerative biology”.

      Point-by-point description of the revisions

      • *

      Reviewer 1

      Confirmation of Neuronal Differentiation: To confirm neuronal differentiation in their i3N cell model, the authors show qPCR results indicating the expression of mature neuronal markers and the downregulation of stem cell markers by day 14. However, single-cell RNA sequencing (scRNA-seq) could provide a more detailed evaluation of the differentiation process, addressing the fine-grained cell-type composition within the cell population. Depending on the results, the authors might more precisely interpret functional data and assess the possible influence of increased GM2 levels on cell fate decisions.

      The accumulation of GM2 may not be identical across all neurons and so it is possible that, although the neuronal populations as a whole display mature differentiation, individual cells may respond differently to the amount of lipid debris. However, there are several technical reasons why obtaining samples for scRNAseq is extremely challenging. By 14 dpi the separation of individual neurons from each other is very difficult as they are in a densely grown and highly attached and interconnected network. Furthermore, the individual neurons have a highly polarized differentiated morphology with long delicate axonal and dendritic projections, that are readily cleaved and lysed in the process of harvesting and dissociation to obtain single cell suspensions for FACS sorting. In neurons, mRNAs are also abundantly localised along the length of their neuritic projections [1], thus these damaged preparations would provide unreliably meaningful data. Alternatively, sufficiently isolated individual neurons show poor survival and do not mature. If these technical difficulties could be overcome, in order to monitor altered differentiation, it would be necessary to determine which timepoint was most relevant to capture differences between day 0 stem cells and day 28 when they are synchronously firing glutamatergic neuron cultures. For this analysis to be robust it would require sample preparation and analysis of multiple stages of the differentiation process. For all the reasons above we cannot address this reviewer’s request.

      Mechanistic Links Between Lipid Accumulation and Proteomic Changes: The authors report specific proteome changes upon HEXA/B KO. What are the mechanistic links between lipid accumulation and proteomic changes? Is the overall degradative performance of lysosomes compromised? The authors note that certain proteins, such as TSPANs, can bind directly to GSL headgroups. Clarifying whether the observed proteomic changes result from specific, direct lipid-protein interactions versus indirect effects could strengthen the argument for targeted lipid-mediated proteomic shifts.

      In response to these questions, we have carried out substantial additional experimental work testing the lipid interactions of some of the proteins that are most altered in their abundance at the PM. We focussed on the top non-lysosomal proteins as we are proposing that the lysosomal ones are primarily changed due to lysosomal exocytosis, suggesting the non-lysosomal are the best candidates for direct GSL-binding. To robustly identify specific lipid-protein interactions is highly challenging but something we have demonstrated previously [2].

      In vitro lipid-binding assays require expression and purification of the proteins of interest to then be used in liposome pulldown experiments using liposomes of defined composition. As we are most interested in the specificity of the headgroup interaction we focussed on producing the extracellular portions of these proteins that would be predicted to bind these headgroups (again this is a strategy we have successfully used previously [2]). We expressed and purified the extracellular domains of three top non-lysosomal hits: CNTNAP4, CNTN5 and NTRK2 (Fig. R1A, provided in attached response document). These purified proteins were used in liposome-binding assays using liposomes composed of different sphingolipids and gangliosides (Fig. R1B). These data demonstrate that the GPI-anchored protein CNTN5 and its potential binding partner CNTNAP4 bind promiscuously to different headgroups. This may be consistent with their being incorporated into GSL-rich membrane microdomains via the GPI-anchor. Interestingly, in this assay NTRK2 demonstrates specific and substantial binding to GM2, with some weaker binding to GD3.

      These data support that the increased abundance of NTRK2 at the PM could be driven by direct interactions with the same lipid that is accumulating at the PM. As exciting and compelling as these data are, we have subsequently been unable to repeat this observation for NTRK2. We are unsure why and have tried several different strategies to test this interaction, but at this stage with only an N=1 for this observation we do not feel confident to include these data in the manuscript.

      We intend to pursue this further using a range of alternative techniques and protein constructs but this will take substantial additional time and effort that we feel go beyond the scope of this current manuscript.

      Additionally, does this phenomenon extend to other sphingolipidoses (e.g., Gaucher disease)? Comparing the proteomes of i3N cells across different sphingolipidoses could reveal whether the accumulation of distinct GSLs produces unique or shared proteomic profiles, highlighting similarities or specificities across lysosomal storage disorders.

      We agree with the reviewer that this is an interesting and important question and had intended to do this as follow-up work in a future publication. However, in the interests of addressing this point here, we are including additional data we have generated from a new i3N model of GM1 gangliosidosis. As for the GM2 gangliosidosis models, we used CRISPRi to knockdown GLB1 and have confirmed this KD by q-PCR. We have also profiled the GSL composition and quantified the increased GM1 abundance. We have followed this up with both whole-cell and PM proteomics. We have presented comparative proteomics of the two models and demonstrated that they both result in significant accumulation of lysosomal proteins both in cells and at the PM. This shared proteomic profile is consistent with lysosomal exocytosis being a conserved mechanism driving altered PM composition in these diseases. We have included this work as an additional results section and an additional figure (Figure 5) as well as expanding the discussion. For this analysis we collected mass spec data at 28 dpi based on our observations in the paper that electrical signalling was synchronised at this point (Fig 4). In the text we discuss additional changes in these new WCP data such as the appearance of other trafficking molecules such as Arl8a that further support a lysosomal exocytosis mechanism.

      In terms of the unique proteomic profiles of these diseases, the read depth of the PMP data in this case was not sufficient to confidently identify differences between the two gangliosidosis models and therefore we intend to pursue this work with additional LSDs in future studies to be included in a follow-up paper.

      In terms of mechanistic links between lipid accumulation and proteome changes, we feel these new data provide substantial additional support that the appearance of lysosomal proteins at the PM is driven by lysosomal exocytosis and have preliminary data supporting that some non-lysosomal protein changes may be driven by altered protein-lipid interactions.

      Impact of Increased PM GM2 Levels on Endocytic Pathways: Along similar lines, the authors show differences in the PM proteome and in the representation of specific PM lipid domain-associated proteins. As some of these proteins are turned over by mechanisms involving lipid domain-dependent endocytosis, the authors might want to examine the effect of increased PM GM2 levels on various endocytic pathways.

      We thank the reviewer for this suggestion and have attempted assays monitoring endocytosis using several approaches including the uptake of fluorescently labelled bovine serum albumin (DQ-BSA) [3–5]. These endocytosis assays are well established in standard cell lines such as HeLa cells. Despite several attempts by us to get this working in neurons using multiple alternative readouts (microscopy and plate-based fluorescence) we have been unable to measure changes in endocytosis. Exploration of alternative methods to probe Clathrin-independent/dynamin-independent endocytosis (CLIC/GEEC) suggests these pathways are difficult to observe by fluorescence microscopy as there is minimal concentration of cargo proteins during the formation of carriers before endocytosis [6]. As an alternative strategy to probe changes in lipid-domain dependent endocytosis we have analysed the proteomics data for changes in galectins but no changes were identified in the data. We also explored available tools for modulating lysosomal exocytosis and monitoring lysosomal movement including activating TRPML1 to trigger exocytosis and activating ABCA3 to drive more lipid accumulation [7–10]. Similarly to the endocytosis assays above, these were not translatable to neurons in our hands due to a range of challenges including increased toxicity of these drugs on this cell type. We have made a substantial effort to try and address these questions and have conferred with colleagues who have also reported difficulties in establishing these assays in neurons. We are keen to continue to pursue this question but due to the technical challenges we feel this work lies beyond the scope of the current manuscript.

      Multifaceted Nature of Gangliosidoses as PM Disorders: The manuscript presents an important perspective by reframing gangliosidoses as multifaceted PM disorders that disrupt neuronal function and membrane composition. By further elaborating on the connection between membrane lipid alterations, neuronal excitability, and synaptic composition, and by exploring the interplay with lysosomal dysfunction, the authors could provide a richer understanding of gangliosidoses and GSL function in general.

      We appreciate that the reviewer agrees with us that reframing gangliosidoses as more complex multifaceted diseases is important. We are not sure if there is a request here for more elaboration in the text but based on the new data included in the paper, we have expanded some of the discussion around these points. We are very enthusiastic to continue to probe the connections and interplay as described by the reviewer and this is the focus of our ongoing studies.

      Reviewer 2

      1. T-tests and one-way ANOVAs were used, but it is not clear if datasets were tested for normality and equal standard deviations. Please add these details. If data are not normal or standard deviations are unequal, other tests will have to be used.

      All graphs were checked for normality and variance in standard deviation and for figure 1F, where the data was not normally distributed, a Kruskal-Wallace test was used in place of a one-way ANOVA. All significantly different results are now labelled on graphs and the relevant tests described in the figure legends. This has also all been updated in the Supplementary data.

      1. It needs to be clearly explained how many data points were used for statistical analyses and what the data points were. E.g., N=3 independent experiments on 3 different days, each done in n=3 different wells, total n=9. Each well can be considered a biological replicate, but it's of lesser value than the "big Ns" done on different days. The authors can choose different ways of defining their N/n numbers, but it has to be transparent. The bar graphs would ideally display the data points.

      All figure legends now clearly explain N and n numbers used in experiments. Individual data points are displayed on qPCR graphs where N and n are mixed, with shapes denoting the biological repeat (N). In addition to clarification in figure legends, N and n numbers are described in the methods sections where appropriate.

      For completeness we also include here details of these N/n numbers.

      • For the q-PCR experiments, technical triplicates (repeats on the same day, n=3) were carried out for 3 separate biological replicates on different days (N=3). We have changed how these data are plotted to clarify this.
      • For the activity assays, N=3 biological replicates were carried out on cell lysates from cultures grown on different days.
      • For the microscopy analysis, coverslips from N=3 biological replicates on different days were used. n=2 coverslips per N were used to generate 15 images per N.
      • For the glycan analysis, N=3 independent cell pellets were prepared on different days.
      • For the proteomics experiments, these were done as N=3 independent cell cultures grown and prepared on different days. Specifically, one of each cell line SCRM, HEXA-1, HEXA-2, HEXB-1 and HEXB-2 were grown and harvested or biotinylated at a time (for WCP or PMP), with repeats on different days. These N=3 were then combined for the ΔHEX-A/B lines to provide N=12 biological repeats for disease cell lines to be compared to N=3 biological repeats for “SCRM” control cell lines.
      • For calcium imaging, n=4 wells for each of SCRM, ΔHEXA-1 and ΔHEXB1 were averaged and the mean from each was used to provide n=3 data points across two biological repeats of this experiment, N=2.
      • For the MEA data, we now include substantially more data than in the original manuscript (see comments at the top of this document). This is now N=3 biological replicates across n=52 wells over a time period from 38-45 dpi.
      • The N/n values and statistical tests have also all been updated in the Supplementary data.
        1. There should be a comment on how statistical power was calculated upfront and if not: how N/n numbers were chosen ("based on similar expts in the past").

      N/n numbers, as detailed above, were chosen based on previous experiments by ourselves and others, as well as recommended practice [2,11–15]. Typically, these papers do not describe the statistical power upfront. We have added statements to this effect and relevant references to the methods section of the manuscript.

      1. "This suggests that some of the proteins that are accumulating in these diseases are specifically products of lipid accumulation rather than a product of general lysosomal dysfunction. In further support of this, several lysosomal proteins including V-type ATPases (ATP6 family), mannose-6-phosphate receptor (M6PR) and biogenesis of lysosomal organelle complex subunits (BLOC1) are quantified in the WCP but are not increased in abundance." This part is confusing. It seems like the authors observe an accumulation of endolysosomes in general (page 6), but then only certain endolysosomal proteins accumulate - and the authors speculate that this is due to decreased degradation or enhanced translation (mRNA levels are unaffected). This question should be addressed better, ideally experimentally: are endolysosomes accumulating in general or not? And what defines the endolysosomal proteins that accumulate vs. those that don't? How is that regulated?

      Recently published work has identified that late endosomes/lysosomes do not possess one composition; they are dynamically remodelled and there is substantial heterogeneity in the composition of different lysosomes [16,17]. While some components, such as LAMP1 and Cathepsin D, are common across all lysosomal compartments there is considerable heterogeneity in the composition of these organelles. These studies also demonstrate that in disease-relevant conditions or upon drug treatment, lysosomes change their protein composition. For example, in a LIPL-4 KO mouse model they observe an increased abundance of Ragulator complex components, similarly to the increase in LAMTOR3 seen in our new 28 dpi WCP data for GM1 and GM2 gangliosidoses. Interestingly, in this study they demonstrate that lysosomal lipolysis leads to bigger changes in lysosomal protein composition than other pro-longevity mechanisms [17]. Another recent paper looking at a different lysosomal storage disease in microglia with accumulating GSLs and cholesterol has also identified abundance changes in a subset of lysosomal proteins including several we observe here including TTYH3, NPC1, PSAP and TSPAN7 [18]. Beyond proteomic analyses, the experimental tools for identifying these different populations are currently very limited, but these published studies support that it is possible to have accumulation of what we define as lysosomes by IF (using LAMP1 or lysotracker) but for the proteomic analysis to identify increased abundance of only a subset of lysosomal proteins.

      These papers do not identify or speculate on how these differences are regulated. Analysis of the changes in our WCP as well as the new data for GM1 gangliosidoses support that the proteins that are most changed in response to GSL accumulation are membrane proteins involved in lipid and cholesterol binding and transport (New Fig 2D and 5E and see response below). This specific enrichment suggests that the changes are directly linked to the lipid changes, thus our suggestion that these accumulate due to a need for the cell to process these lipids but also that they may get “trapped” in the membrane whorls such that they are not efficiently degraded.

      We have included the references above and a more detailed description of lysosomal heterogeneity into the main text to help address the reviewer’s questions.

      1. Fig. 1D: The GO terms are confusing. Why are there more proteins in the category lysosomal membrane than lysosome as a whole? Other categories seem to be overlapping as well.

      We apologize for the confusion; this graph does not display protein counts it is the adjusted P values for the enrichment of the term. To make this clearer, the DAVID analysis graphs are now presented in a new format. We present in this new graph the false discovery rate (FDR) (adjusted P value) which is a measure of the significance of whether that GO term is specifically enriched in the dataset. We have also expanded the GO term analysis to include molecular function and biological process descriptors in addition to the cellular component originally described. For full clarity, to the right of each term we include the number of significant hits that have this term, that being the number of proteins that are contributing to this GO term enrichment.

      1. Fig. 2C/3A: It'd be good to also show the hits that don't match the expectation/pathways of interest.

      We provide a full list in the Supplementary Information of all hits that are considered significant allowing the reader to access this information without having to download the datasets from PRIDE. We did not label all hits in these panels to avoid cluttering the image. In the main text we have focused on those that clearly fall within related categories or pathways as we feel that several “hits” in the same area represents a more compelling and confident assessment of the data. Several of the additional hits not mentioned in the main text do still match the expectations/pathways. For example, one of the top hits not labelled in the WCP is GPR155 (a cholesterol binding protein at the lysosomal membrane) and one of the top unlabelled hits in the PMP data is OPCML (a GPI-anchored protein that clusters in GSL-rich microdomains). There are some, such as KITLG (up in the PMP data), that we don’t currently have a hypothesis for why/how they change, but we are reluctant to describe and speculate upon additional isolated/orphan hits in the main text when these have not been further validated.

      1. Fig. 3: It is not intuitive that synaptic proteins in particular would accumulate at the plasma membrane due to the lipid storage defect. Are they mis-trafficked or are they at synaptic membranes? That could, e.g, be addressed by isolating synaptosomes. And why this selectivity for synaptic proteins? Neurons should have more plasma membrane that is not synaptic. And, e.g, the release of lysosomal material should not happen at synapses (and lysosomes should not deliver synaptic proteins to the PM, unless there is a failure to degrade them).

      We agree that synapses represent a relatively small proportion of the entire PM of neurons, but synapses are particularly enriched with glycosphingolipids where they affect synaptogenesis and synaptic transmission [19–22]. For these reasons we think that some synaptic proteins are particularly sensitive to these lipid changes as they are localised in GSL-rich membrane microdomains. We have now clarified this point in the text. We have also further clarified that we were not proposing that lysosomal proteins are present at the synapses. We observed that lysosomal proteins are enriched at the PM and this may be more generally across the whole PM, while the changes to synaptic proteins may or may not be localised at the synapse. We apologise for the confusion and have modified the text at the end of the PM proteomics results section to make this clearer.

      To try and address experimentally the question of whether these proteins are at synapses, we have attempted synaptosome enrichment. However, lysosomal compartments co-sedimented with synaptosomes during the preparation – LAMP1 staining was enriched in the synaptosome preparations of all samples including SCRM controls. Therefore, we cannot distinguish these compartments which is particularly problematic in this disease model.

      (7. Continued) Or is there an effect on synaptic vesicles? Are there more? Do they deliver their cargo more readily? Or is there a failure to do endocytosis of synaptic proteins, and that's why the accumulate? What is the connection between SVs and endolysosomes? More clarity would be good here.

      We do think that there is an effect on synaptic vesicles particularly as the SV proteins SYT1 and SV2b are significantly increased in abundance at the PM suggesting they are not being internalized normally. Furthermore, the new WCP data going out to 28 dpi for both GM1 and GM2 gangliosidoses have identified a significant increase in Arl8a which plays a shared role in lysosomal and SV anterograde trafficking [23,24]. Whilst previously thought of as discrete pathways, evidence now suggests that endolysosomal and SV recycling pathways form a continuum with several shared proteins involved in the fusion, trafficking and sorting in both pathways [25]. Arl8a provides a good example of an adaptor protein that functions in both pathways and also when overexpressed results in enhanced neurotransmission consistent with our studies [26]. We have adjusted the discussion text to include a description of the links between SVs and endolysosomal trafficking and the potential shared role Arl8a may be playing in both pathways.

      Regarding the question of whether there are more SVs or not, this is hard to determine directly as they are particularly small (~50 nm) and difficult to visualise or specifically stain for using microscopy. Not all SV-associated proteins are increased in the PMP data, for example SNAP25 and several other synaptotagmins are not changed in the 28 dpi data for both gangliosidosis models. We hope in the future to address SV changes more directly with higher resolution imaging such as electron microscopy or cryo-tomography but cannot currently confidently answer these specific questions.

      1. Fig. 4: The assumption that there is more synaptic activity because there are more synaptic proteins at the membrane seems to be plausible, but also speculative at this point.

      We have modified the text at the end of this results section to highlight that this is a speculative link.

      1. The possible contribution of glial cells should at least be discussed.

      We mention potential deleterious effects on bystander cells including other neurons, astrocytes and microglia in the second last paragraph of the discussion. In response to this request we have expanded and modified this text.

      Minor: there are some typos etc.

      Although no specific examples were listed, we have endeavored to find and correct typos, we have also checked for English spelling (not American) throughout.

      Reviewer 3

      1. Results section, 1st paragraph- to develop disease models- -- Please add cellular models as we already have KO mouse models.

      This has been added to the text.

      1. It was not clear what was the percentage of mutation success with their CRISPR technique.

      The CRISPR method employed here was CRISPRi so there is no mutation of the genome. Instead, inactive/dead-Cas9 is targeted to the promotor/early exon of the HEXA or HEXB gene to inhibit mRNA production. We have included qPCR data to demonstrate the extent of the KD for two different guides to each of these genes in Fig 1.

      1. Will the anti-GM2 antibody be available for other researchers? The researcher details needs to be clarified.

      The anti-GM2 antibody is not commercial available and was generated by one of the co-authors. We invite scientists with an interest in this antibody to contact the corresponding author for details.

      1. Hex activity assay was shown in 1C, but it was not clear that it is MUG or MUGS.

      We apologise for this and have relabelled these activity assay graphs and expanded the legend text to clarify how these two substrates were used to distinguish the two different KD lines. We also corrected a small mistake in the methods section.

      1. Is there a significance in Figure 2 B, 4A, 4B,4C and 4E?

      Based on additional requests from reviewer 2 we have added significance indicators and details of significance tests for several panels in Figures 1-5 including 2B and 4B. For 4A we do not state a significant difference, we use these data to select a timepoint (28 dpi) where all cell lines have synchronous (correlated) signal. The data in Figure 4C and D have been substantially updated and expanded. Analysis of the data in 4C is plotted in 4D where we show significance. For 4E we are stating that the applied stimulation (white triangles) stimulates the HEXA cells every time but the SCRM do not respond to each stimulation. It is not clear how we would quantify this difference and there is no precedent for doing this in the MEA literature or by the Axion company who provided the instrument. We have also included additional references for best practice when analysing MEA data.

      REFERENCES

      1. Mofatteh M. mRNA localization and local translation in neurons. AIMS Neurosci. 2020;7: 299–310. doi:10.3934/Neuroscience.2020016
      2. McKie SJ, Nicholson AS, Smith E, Fawke S, Caroe ER, Williamson JC, et al. Altered plasma membrane abundance of the sulfatide-binding protein NF155 links glycosphingolipid imbalances to demyelination. Proc Natl Acad Sci U S A. 2023;120: e2218823120. doi:10.1073/pnas.2218823120
      3. Marwaha R, Sharma M. DQ-Red BSA Trafficking Assay in Cultured Cells to Assess Cargo Delivery to Lysosomes. Bio Protoc. 2017;7: e2571. doi:10.21769/BioProtoc.2571
      4. gustavo.parfitt. Lysosome proteolysis analysis with DQ-BSA. 2022 [cited 13 Feb 2025]. Available: https://www.protocols.io/view/lysosome-proteolysis-analysis-with-dq-bsa-cgjxtupn
      5. Fernandez-Mosquera L, Yambire KF, Couto R, Pereyra L, Pabis K, Ponsford AH, et al. Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis. Autophagy. 2019;15: 1572–1591. doi:10.1080/15548627.2019.1586256
      6. Rennick JJ, Johnston APR, Parton RG. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat Nanotechnol. 2021;16: 266–276. doi:10.1038/s41565-021-00858-8
      7. Pastore N, Annunziata F, Colonna R, Maffia V, Giuliano T, Custode BM, et al. Increased expression or activation of TRPML1 reduces hepatic storage of toxic Z alpha-1 antitrypsin. Molecular Therapy. 2023;31: 2651–2661. doi:10.1016/j.ymthe.2023.06.018
      8. Zhang H, Wang Y, Wang R, Zhang X, Chen H. TRPML1 agonist ML-SA5 mitigates uranium-induced nephrotoxicity via promoting lysosomal exocytosis. Biomedicine & Pharmacotherapy. 2024;181: 117728. doi:10.1016/j.biopha.2024.117728
      9. Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, et al. Lipid Storage Disorders Block Lysosomal Trafficking By Inhibiting TRP Channel and Calcium Release. Nat Commun. 2012;3: 731. doi:10.1038/ncomms1735
      10. Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, et al. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep. 2024;14: 17469. doi:10.1038/s41598-024-67479-8
      11. Zlamalova E, Rodger C, Greco F, Cheers SR, Kleniuk J, Nadadhur AG, et al. Atlastin-1 regulates endosomal tubulation and lysosomal proteolysis in human cortical neurons. Neurobiol Dis. 2024;199: 106556. doi:10.1016/j.nbd.2024.106556
      12. Anderson GSF, Ballester-Beltran J, Giotopoulos G, Guerrero JA, Surget S, Williamson JC, et al. Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood. 2022;139: 2471–2482. doi:10.1182/blood.2021015161
      13. Mossink B, Verboven AHA, Hugte EJH van, Gunnewiek TMK, Parodi G, Linda K, et al. Human neuronal networks on micro-electrode arrays are a highly robust tool to study disease-specific genotype-phenotype correlations in vitro. Stem Cell Reports. 2021;16: 2182–2196. doi:10.1016/j.stemcr.2021.07.001
      14. McCready FP, Gordillo-Sampedro S, Pradeepan K, Martinez-Trujillo J, Ellis J. Multielectrode Arrays for Functional Phenotyping of Neurons from Induced Pluripotent Stem Cell Models of Neurodevelopmental Disorders. Biology. 2022;11: 316. doi:10.3390/biology11020316
      15. Weaver S, Dube S, Mir A, Qin J, Sun G, Ramakrishnan R, et al. Taking qPCR to a higher level: Analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods. 2010;50: 271–276. doi:10.1016/j.ymeth.2010.01.003
      16. Bond C, Hugelier S, Xing J, Sorokina EM, Lakadamyali M. Heterogeneity of late endosome/lysosomes shown by multiplexed DNA-PAINT imaging. J Cell Biol. 2025;224: e202403116. doi:10.1083/jcb.202403116
      17. Yu Y, Gao SM, Guan Y, Hu P-W, Zhang Q, Liu J, et al. Organelle proteomic profiling reveals lysosomal heterogeneity in association with longevity. Elife. 2024;13: e85214. doi:10.7554/eLife.85214
      18. Yasa S, Butz ES, Colombo A, Chandrachud U, Montore L, Tschirner S, et al. Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin turnover. Commun Biol. 2024;7: 1373. doi:10.1038/s42003-024-07057-w
      19. Sipione S, Monyror J, Galleguillos D, Steinberg N, Kadam V. Gangliosides in the Brain: Physiology, Pathophysiology and Therapeutic Applications. Front Neurosci. 2020;14: 572965. doi:10.3389/fnins.2020.572965
      20. Svennerholm L. Gangliosides and Synaptic Transmission. In: Svennerholm L, Mandel P, Dreyfus H, Urban P-F, editors. Structure and Function of Gangliosides. Boston, MA: Springer US; 1980. pp. 533–544. doi:10.1007/978-1-4684-7844-0_46
      21. Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients. 2015;7: 3891–3913. doi:10.3390/nu7053891
      22. Hering H, Lin C-C, Sheng M. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003;23: 3262–3271. doi:10.1523/JNEUROSCI.23-08-03262.2003
      23. Rizalar FS, Lucht MT, Petzoldt A, Kong S, Sun J, Vines JH, et al. Phosphatidylinositol 3,5-bisphosphate facilitates axonal vesicle transport and presynapse assembly. Science. 2023;382: 223–230. doi:10.1126/science.adg1075
      24. Klassen MP, Wu YE, Maeder CI, Nakae I, Cueva JG, Lehrman EK, et al. An Arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron. 2010;66: 710–723. doi:10.1016/j.neuron.2010.04.033
      25. Ivanova D, Cousin MA. Synaptic Vesicle Recycling and the Endolysosomal System: A Reappraisal of Form and Function. Front Synaptic Neurosci. 2022;14: 826098. doi:10.3389/fnsyn.2022.826098
      26. Vukoja A, Rey U, Petzoldt AG, Ott C, Vollweiter D, Quentin C, et al. Presynaptic Biogenesis Requires Axonal Transport of Lysosome-Related Vesicles. Neuron. 2018;99: 1216-1232.e7. doi:10.1016/j.neuron.2018.08.004
      27. Saheki Y, De Camilli P. Synaptic Vesicle Endocytosis. Cold Spring Harb Perspect Biol. 2012;4: a005645. doi:10.1101/cshperspect.a005645
    1. Reviewer #1 (Public review):

      The IBL here presents an important paper that aims to assess potential reproducibility issues in rodent electrophysiological recordings across labs and suggests solutions to these. The authors carried out a series of analyses on data collected across 10 laboratories while mice performed the same decision-making task, and provided convincing evidence that basic electrophysiology features, single-neuron functional properties, and population-level decoding were fairly reproducible across labs with proper preprocessing. This well-motivated large-scale collaboration allowed systematic assessment of lab-to-lab reproducibility of electrophysiological data, and the suggestions outlined in the paper for streamlining preprocessing pipelines and quality metrics will provide general guidance for the field, especially with continued effort to benchmark against standard practices (such as manual curation).

      The authors have carefully incorporated our suggestions. As a result, the paper now better reflects where reproducibility is affected when using common, simple, and more complex analyses and preprocessing methods, and it is more informative-and more reflective of the field overall. We thank the reviewers for this thorough revision. We have 2 remaining suggestions on text clarification:

      (1) Regarding benchmarking the automated metrics to manual curation of units: although we appreciate that a proper comparison may require a lot of effort potentially beyond the scope of the current paper; we do think that explicit discussion regarding this point is needed in the text, to remind the readers (and indeed future generations of electrophysiologists) the pros and cons of different approaches.

      In addition to what the authors have currently stated (line 469-470):<br /> "Another significant limitation of the analysis presented here is that we have not been able to assess the extent to which other choices of quality metrics and inclusion criteria might have led to greater or lesser reproducibility."

      Maybe also add:<br /> "In particular, a thorough comparison of automated metrics against a careful, large, manually-curated dataset, is an important benchmarking step for future studies.

      (2) The authors now include in Figure 3-Figure Supplement 1 that highlight how much probe depth is adjusted by using electrophysiological features such as LFP power to estimate probe and channel depth. This plot is immensely informative for the field, as it implies that there can be substantial variability-sometimes up to 1 mm discrepancy between insertions-in depth estimation based on anatomical DiI track tips alone. Using electrophysiological features in this way for probe depth estimation is currently not standard in the field and has only been made possible with Neuropixels, which span several millimeters. These figures highlight that this should be a critical step in preprocessing pipelines, and the paper provides solid evidence for this.

      Currently, this part of the figure is only subtly referenced to in the text. We think it would be helpful to explicitly reference this particular panel with discussions of its implication in the text.

    2. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editors for their careful read of our paper, and appreciate the thoughtful comments.

      Both reviewers agreed that our work had several major strengths: the large dataset collected in collaboration across ten labs, the streamlined processing pipelines, the release of code repositories, the multi-task neural network, and that we definitively determined that electrode placement is an important source of variability between datasets.

      However, a number of key potential improvements were noted: the reviewers felt that a more standard model-based characterization of single neuron responses would benefit our reproducibility analysis, that more detail was needed about the number of cells, sessions, and animals, and that more information was needed to allow users to deploy the RIGOR standards and to understand their relationship to other metrics in the field.

      We agree with these suggestions and have implemented many major updates in our revised manuscript. Some highlights include:

      (1)  A new regression analysis that specifies the response profile of each neuron, allowing a comparison of how similar these are across labs and areas (See Figure 7 in the new section, “Single neuron coefficients from a regression-based analysis are rep oducible across labs”);

      (2) A new decoding analysis (See Figure 9 in the section, “Decodability of task variables is consistent across labs, but varies by brain region”);

      (3) A new RIGOR notebook to ease useability;

      (4) A wealth of additional information about the cells, animals and sessions in each figure;

      (5) Many new additional figure panels in the main text and supplementary material to clarify the specific points raised by the reviewers.

      Again, we are grateful to the reviewers and editors for their helpful comments, which have significantly improved the work. We are hopeful that the many revisions we have implemented will be sufficient to change the “incomplete” designation that was originally assigned to the manuscript.

      Reviewer #1 (Public review):

      Summary:

      The authors explore a large-scale electrophysiological dataset collected in 10 labs while mice performed the same behavioral task, and aim to establish guidelines to aid reproducibility of results collected across labs. They introduce a series of metrics for quality control of electrophysiological data and show that histological verification of recording sites is important for interpreting findings across labs and should be reported in addition to planned coordinates. Furthermore, the authors suggest that although basic electrophysiology features were comparable across labs, task modulation of single neurons can be variable, particularly for some brain regions. The authors then use a multi-task neural network model to examine how neural dynamics relate to multiple interacting task- and experimenter-related variables, and find that lab-specific differences contribute little to the variance observed. Therefore, analysis approaches that account for correlated behavioral variables are important for establishing reproducible results when working with electrophysiological data from animals performing decision-making tasks. This paper is very well-motivated and needed. However, what is missing is a direct comparison of task modulation of neurons across labs using standard analysis practice in the fields, such as generalized linear model (GLM). This can potentially clarify how much behavioral variance contributes to the neural variance across labs; and more accurately estimate the scale of the issues of reproducibility in behavioral systems neuroscience, where conclusions often depend on these standard analysis methods.

      We fully agree that a comparison of task-modulation across labs is essential. To address this, we have performed two new analyses and added new corresponding figures to the main text (Figures 7 and 9). As the reviewer hoped, this analysis did indeed clarify how much behavioral variance contributes to the variance across labs. Critically, these analyses suggested that our results were more robust to reproducibility than the more traditional analyses would indicate.

      Additional details are provided below (See detailed response to R1P1b).

      Strengths:

      (1) This is a well-motivated paper that addresses the critical question of reproducibility in behavioural systems neuroscience. The authors should be commended for their efforts.

      (2) A key strength of this study comes from the large dataset collected in collaboration across ten labs. This allows the authors to assess lab-to-lab reproducibility of electrophysiological data in mice performing the same decision-making task.

      (3) The authors' attempt to streamline preprocessing pipelines and quality metrics is highly relevant in a field that is collecting increasingly large-scale datasets where automation of these steps is increasingly needed.

      (4) Another major strength is the release of code repositories to streamline preprocessing pipelines across labs collecting electrophysiological data.

      (5) Finally, the application of MTNN for characterizing functional modulation of neurons, although not yet widely used in systems neuroscience, seems to have several advantages over traditional methods.

      Thanks very much for noting these strengths of our work.

      Weaknesses:

      (1) In several places the assumptions about standard practices in the field, including preprocessing and analyses of electrophysiology data, seem to be inaccurately presented:

      a) The estimation of how much the histologically verified recording location differs from the intended recording location is valuable information. Importantly, this paper provides citable evidence for why that is important. However, histological verification of recording sites is standard practice in the field, even if not all studies report them. Although we appreciate the authors' effort to further motivate this practice, the current description in the paper may give readers outside the field a false impression of the level of rigor in the field.

      We agree that labs typically do perform histological verification. Still, our methods offer a substantial improvement over standard practice, and this was critical in allowing us to identify errors in targeting. For instance, we used new software, LASAGNA, which is an innovation over the traditional, more informal approach to localizing recording sites. Second, the requirement that two independent reviewers concur on each proposed location for a recording site is also an improvement over standard practice. Importantly, these reviewers use electrophysiological features to more precisely localize electrodes, when needed, which is an improvement over many labs. Finally, most labs use standard 2D atlases to identify recording location (a traditional approach); our use of a 3D atlas and a modern image registration pipeline has improved the accuracy of identifying the true placement of probes in 3D space.

      Importantly, we don’t necessarily advocate that all labs adopt our pipeline; indeed, this would be infeasible for many labs. Instead, our hope is that the variability in probe trajectory that we uncovered will be taken into account in future studies. Here are 3 example ways in which that could happen. First, groups hoping to target a small area for an experiment might elect to use a larger cohort than previously planned, knowing that some insertions will miss their target. Second, our observation that some targeting error arose because experimenters had to move probes due to blood vessels will impact future surgeries: when an experimenter realizes that a blood vessel is in the way, they might still re-position the probe, but they can also adjust its trajectory (e.g., changing the angle) knowing that even little nudges to avoid blood vessels can have a large impact on the resulting insertion trajectory. Third, our observation of a 7 degree deviation between stereotaxic coordinates and Allen Institute coordinates can be used for future trajectory planning steps to improve accuracy of placement. Uncovering this deviation required many insertions and our standardized pipeline, but now that it is known, it can be easily corrected without needing such a pipeline.

      We thank the reviewer for bringing up this issue and have added new text (and modified existing text) in the Discussion to highlight the innovations we introduced that allowed us to carefully quantify probe trajectory across labs (lines 500 - 515):

      “Our ability to detect targeting error benefited from an automated histological pipeline combined with alignment and tracing that required agreement between multiple users, an approach that greatly exceeds the histological analyses done by most individual labs. Our approach, which enables scalability and standardization across labs while minimizing subjective variability, revealed that much of the variance in targeting was due to the probe entry positions at the brain surface, which were randomly displaced across the dataset. … Detecting this offset relied on a large cohort size and an automated histological pipeline, but now that we have identified the offset, it can be easily accounted for by any lab. Specifically, probe angles must be carefully computed from the CCF, as the CCF and stereotaxic coordinate systems do not define the same coronal plane angle. Minimizing variance in probe targeting is another important element in increasing reproducibility, as slight deviations in probe entry position and angle can lead to samples from different populations of neurons. Collecting structural MRI data in advance of implantation could reduce targeting error, although this is infeasible for most labs. A more feasible solution is to rely on stereotaxic coordinates but account for the inevitable off-target measurements by increasing cohort sizes and adjusting probe angles when blood vessels obscure the desired location.”

      b) When identifying which and how neurons encode particular aspects of stimuli or behaviour in behaving animals (when variables are correlated by the nature of the animals behaviour), it has become the standard in behavioral systems neuroscience to use GLMs - indeed many labs participating in the IBL also has a long history of doing this (e.g., Steinmetz et al., 2019; Musall et al., 2023; Orsolic et al., 2021; Park et al., 2014). The reproducibility of results when using GLMs is never explicitly shown, but the supplementary figures to Figure 7 indicate that results may be reproducible across labs when using GLMs (as it has similar prediction performance to the MTNN). This should be introduced as the first analysis method used in a new dedicated figure (i.e., following Figure 3 and showing results of analyses similar to what was shown for the MTNN in Figure 7). This will help put into perspective the degree of reproducibility issues the field is facing when analyzing with appropriate and common methods. The authors can then go on to show how simpler approaches (currently in Figures 4 and 5) - not accounting for a lot of uncontrolled variabilities when working with behaving animals - may cause reproducibility issues.

      We fully agree with the reviewer's suggestion. We have addressed their concern by implementing a Reduced-Rank Regression (RRR) model, which builds upon and extends the principles of Generalized Linear Models (GLMs). The RRR model retains the core regression framework of GLMs while introducing shared, trainable temporal bases across neurons, enhancing the model’s capacity to capture the structure in neural activity (Posani, Wang, et al., bioRxiv, 2024). Importantly, Posani, Wang et al compared the predictive performance of GLMs vs the RRR model, and found that the RRR model provided (slightly) improved performance, so we chose the RRR approach here.

      We highlight this analysis in a new section (lines 350-377) titled, “Single neuron coefficients from a regression-based analysis are reproducible across labs”. This section includes an entirely new Figure (Fig. 7), where this new analysis felt most appropriate, since it is closer in spirit to the MTNN analysis that follows (rather than as a new Figure 3, as the reviewer suggested). As the reviewer hoped, this analysis provides some reassurance that including many variables when characterizing neural activity furnishes results with improved reproducibility. We now state this in the Results and the Discussion (line 456-457), highlighting that these analyses complement the more traditional selectivity analyses, and that using both methods together can be informative.

      When the authors introduce a neural network approach (i.e. MTNN) as an alternative to the analyses in Figures 4 and 5, they suggest: 'generalized linear models (GLMs) are likely too inflexible to capture the nonlinear contributions that many of these variables, including lab identity and spatial positions of neurons, might make to neural activity'). This is despite the comparison between MTNN and GLM prediction performance (Supplement 1 to Figure 7) showing that the MTNN is only slightly better at predicting neural activity compared to standard GLMs. The introduction of new models to capture neural variability is always welcome, but the conclusion that standard analyses in the field are not reproducible can be unfair unless directly compared to GLMs.

      In essence, it is really useful to demonstrate how different analysis methods and preprocessing approaches affect reproducibility. But the authors should highlight what is actually standard in the field, and then provide suggestions to improve from there.

      Thanks again for these comments. We have also edited the MTNN section slightly to accommodate the addition of the previous new RRR section (line 401-402).

      (2) The authors attempt to establish a series of new quality control metrics for the inclusion of recordings and single units. This is much needed, with the goal to standardize unit inclusion across labs that bypasses the manual process while keeping the nuances from manual curation. However, the authors should benchmark these metrics to other automated metrics and to manual curation, which is still a gold standard in the field. The authors did this for whole-session assessment but not for individual clusters. If the authors can find metrics that capture agreed-upon manual cluster labels, without the need for manual intervention, that would be extremely helpful for the field.

      We thank the reviewer for their insightful suggestions regarding benchmarking our quality control metrics against manual curation and other automated methods at the level of individual clusters. We are indeed, as the reviewer notes, publishing results from spike sorting outputs that have been automatically but not manually verified on a neuron-by-neuron basis. To get to the point where we trust these results to be of publishable quality, we manually reviewed hundreds of recordings and thousands of neurons, refining both the preprocessing pipeline and the single-unit quality metrics along the way. All clusters, both those passing QCs and those not passing QCs, are available to review with detailed plots and quantifications at https://viz.internationalbrainlab.org/app (turn on “show advanced metrics” in the upper right, and navigate to the plots furthest down the page, which are at the individual unit level). We would emphasize that these metrics are definitely imperfect (and fully-automated spike sorting remains a work in progress), but so is manual clustering. Our fully automated approach has the advantage of being fully reproducible, which is absolutely critical for the analyses in the present paper. Indeed, if we had actually done manual clustering or curation, one would wonder whether our results were actually reproducible independently. Nevertheless, it is not part of the present manuscript’s objectives to validate or defend these specific choices for automated metrics, which have been described in detail elsewhere (see our Spike Sorting whitepaper, https://figshare.com/articles/online_resource/Spike_sorting_pipeline_for_the_International_Brain_La boratory/19705522?file=49783080). It would be a valuable exercise to thoroughly compare these metrics against a careful, large, manually-curated set, but doing this properly would be a paper in itself and is beyond the scope of the current paper. We also acknowledge that our analyses studying reproducibility across labs could, in principle, result in more or less reproducibility under a different choice of metrics, which we now describe in the Discussion (line 469-470)”:

      “Another significant limitation of the analysis presented here is that we have not been able to assess the extent to which other choices of quality metrics and inclusion criteria might have led to greater or lesser reproducibility.”

      (3) With the goal of improving reproducibility and providing new guidelines for standard practice for data analysis, the authors should report of n of cells, sessions, and animals used in plots and analyses throughout the paper to aid both understanding of the variability in the plots - but also to set a good example.

      We wholeheartedly agree and have added the number of cells, mice and sessions for each figure. This information is included as new tabs in our quality control spreadsheet (https://docs.google.com/spreadsheets/d/1_bJLDG0HNLFx3SOb4GxLxL52H4R2uPRcpUlIw6n4 n-E/). This is referred to in line 158-159 (as well as its original location on line 554 in the section, “Quality control and data inclusion”).

      Other general comments:

      (1) In the discussion (line 383) the authors conclude: 'This is reassuring, but points to the need for large sample sizes of neurons to overcome the inherent variability of single neuron recording'. - Based on what is presented in this paper we would rather say that their results suggest that appropriate analytical choices are needed to ensure reproducibility, rather than large datasets - and they need to show whether using standard GLMs actually allows for reproducible results.

      Thanks. The new GLM-style RRR analysis in Figure 7, following the reviewer’s suggestion, does indeed indicate improved reproducibility across labs. As described above, we see this new analysis as complementary to more traditional analyses of neural selectivity and argue that the two can be used together. The new text (line 461) states:

      “This is reassuring, and points to the need for appropriate analytical choices to ensure reproducibility.”

      (2) A general assumption in the across-lab reproducibility questions in the paper relies on intralab variability vs across-lab variability. An alternative measure that may better reflect experimental noise is across-researcher variability, as well as the amount of experimenter experience (if the latter is a factor, it could suggest researchers may need more training before collecting data for publication). The authors state in the discussion that this is not possible. But maybe certain measures can be used to assess this (e.g. years of conducting surgeries/ephys recordings etc)?

      We agree that understanding experimenter-to-experimenter variability would be very interesting and indeed we had hoped to do this analysis for some time. The problem is that typically, each lab employed one trainee to conduct all the data collection. This prevents us from comparing outcomes from two different experimenters in the same lab. There are exceptions to this, such as the Churchland lab in which 3 personnel (two postdocs and a technician) collected the data. However, even this fortuitous situation did not lend itself well to assessing experimenter-to-experimenter variation: the Churchland lab moved from Cold Spring Harbor to UCLA during the data collection period, which might have caused variability that is totally independent of experimenter (e.g., different animal facilities). Further, once at UCLA, the postdoc and technician worked closely together- alternating roles in animal training, surgery and electrophysiology. We believe that the text in our current Discussion (line 465-468) accurately characterizes the situation:

      “Our experimental design precludes an analysis of whether the reproducibility we observed was driven by person-to-person standardization or lab-to-lab standardization. Most likely, both factors contributed: all lab personnel received standardized instructions for how to implant head bars and train animals, which likely reduced personnel-driven differences.”

      Quantifying the level of experience of each experimenter is an appealing idea and we share the reviewer’s curiosity about its impact on data quality. Unfortunately, quantifying experience is tricky. For instance, years of conducting surgeries is not an unambiguously determinable number. Would we count an experimenter who did surgery every day for a year as having the same experience as an experimenter who did surgery once/month for a year? Would we count a surgeon with expertise in other areas (e.g., windows for imaging) in the same way as surgeons with expertise in ephys-specific surgeries? Because of the ambiguities, we leave this analysis to be the subject of future work; this is now stated in the Discussion (line 476).

      (3) Figure 3b and c: Are these plots before or after the probe depth has been adjusted based on physiological features such as the LFP power? In other words, is the IBL electrophysiological alignment toolbox used here and is the reliability of location before using physiological criteria or after? Beyond clarification, showing both before and after would help the readers to understand how much the additional alignment based on electrophysiological features adjusts probe location. It would also be informative if they sorted these penetrations by which penetrations were closest to the planned trajectory after histological verification.

      The plots in Figure 3b and 3c reflect data after the probe depth has been adjusted based on electrophysiological features. This adjustment incorporates criteria such as LFP power and spiking activity to refine the trajectory and ensure precise alignment with anatomical landmarks. The trajectories have also been reviewed and confirmed by two independent reviewers. We have clarified this in line 180 and in the caption of Figure 3.

      To address this concern, we have added a new panel c in Figure 3 supplementary 1 (also shown below) that shows the LFP features along the probes prior to using the IBL alignment toolbox. We hope the reviewer agrees that a comparison of panels (a) and (c) below make clear the improvement afforded by our alignment tools.

      In Figure 3 and Figure 3 supplementary 1, as suggested, we have also now sorted the probes by those that were closest to the planned trajectory. This way of visualizing the data makes it clear that as the distance from the planned trajectory increases, the power spectral density in the hippocampal regions becomes less pronounced and the number of probes that have a large portion of the channels localized to VISa/am, LP and PO decreases. We have added text to the caption to describe this. We thank the reviewer for this suggestion and agree that it will help readers to understand how much the additional alignment (based on electrophysiological features) adjusts probe location.

      (4) In Figures 4 and 6: If the authors use a 0.05 threshold (alpha) and a cell simply has to be significant on 1/6 tests to be considered task modulated, that means that they have a false positive rate of ~30% (0.05*6=0.3). We ran a simple simulation looking for significant units (from random null distribution) from these criteria which shows that out of 100.000 units, 26500 units would come out significant (false error rate: 26.5%). That is very high (and unlikely to be accepted in most papers), and therefore not surprising that the fraction of task-modulated units across labs is highly variable. This high false error rate may also have implications for the investigation of the spatial position of task-modulated units (as effects of the spatial position may drown in falsely labelled 'task-modulated' cells).

      Thank you for this concern. The different tests were kept separate, so we did not consider a neuron modulated if it was significant in only one out of six tests, but instead we asked whether a neuron was modulated according to test one, whether it was modulated according to test two, etc., and performed further analyses separately for each test. Thus, we are only vulnerable to the ‘typical’ false positive rate of 0.05 for any given test. We made this clearer in the text (lines 232-236) and hope that the 5% false positive rate seems more acceptable.

      (5) The authors state from Figure 5b that the majority of cells could be well described by 2 PCs. The distribution of R2 across neurons is almost uniform, so depending on what R2 value one considers a 'good' description, that is the fraction of 'good' cells. Furthermore, movement onset has now been well-established to be affecting cells widely and in large fractions, so while this analysis may work for something with global influence - like movement - more sparsely encoded variables (as many are in the brain) may not be well approximated with this suggestion. The authors could expand this analysis into other epochs like activity around stimulus presentation, to better understand how this type of analysis reproduces across labs for features that have a less global influence.

      We thank the reviewer for the suggestion and fully agree that the window used in our original analysis would tend to favor movement-driven neurons. To address this, we repeated the analysis, this time using a window centered around stimulus onset (from -0.5 s prior to stimulus onset until 0.1 s after stimulus onset). As the reviewer suspected, far fewer neurons were active in this window and consequently far fewer were modelled well by the first two PCs, as shown in Author response image 1b (below). Similar to our original analysis using the post-movement window, we found mixed results for the stimulus-centered window across labs. Interestingly, regional differences were weaker in this new analysis compared to the original analysis of the post-movement window. We have added a sentence to the results describing this. Because the results are similar to the post-movement window main figure, we would prefer to restrict the new analysis only to this point-by-point response, in the hopes of streamlining the paper.

      Author response image 1.

      PCA analysis applied to a stimulus-aligned window ([-0.5, 0.1] sec relative to stim onset). Figure conventions as in main text Fig 5. Results are comparable to the post-movement window analysis, however regional differences are weaker here, possibly because fewer cells were active in the pre-movement window. We added panel j here and in the main figure, showing cell-number-controlled results. I.e. for each test, the minimum neuron number of the compared classes was sampled from all classes (say labs in a region), this sampling was repeated 1000 times and p-values combined via Fisher’s method, overall resulting in much fewer significant differences across laboratories and, independently, regions.

      (6) Additionally, in Figure 5i: could the finding that one can only distinguish labs when taking cells from all regions, simply be a result of a different number of cells recorded in each region for each lab? It makes more sense to focus on the lab/area pairing as the authors also do, but not to make their main conclusion from it. If the authors wish to do the comparison across regions, they will need to correct for the number of cells recorded in each region for each lab. In general, it was a struggle to fully understand the purpose of Figure 5. While population analysis and dimensionality reduction are commonplace, this seems to be a very unusual use of it.

      We agree that controlling for varying cell numbers is a valuable addition to this analysis. We added panel j in Fig. 5 showing cell-number-controlled test results of panel i. I.e. for a given statistical comparison, we sample the lowest number of cells of compared classes from the others, do the test, and repeat this sampling 1000 times, before combining the p-values using Fisher’s method. This cell-number controlled version of the tests resulted in clearly fewer significant differences across distributions - seen similarly for the pre-movement window shown in j in Author response image 1. We hope this clarified our aim to illustrate that low-dimensional embedding of cells’ trial-averaged activity can show how regional differences compare with laboratory differences.

      As a complementary statistical analysis to the shown KS tests, we fitted a linear-mixed-effects model (statsmodels.formula.api mixedlm), to the first and second PC for both activity windows (“Move”: [-0.5,1] first movement aligned; “Stim”: [-0.5,0.1] stimulus onset aligned), independently. Author response image 2 (in this rebuttal only) is broadly in line with the KS results, showing more regional than lab influences on the distributions of first PCs for the post-movement window.

      Author response image 2:

      Linear mixed effects model results for two PCs and two activity windows. For the post-movement window (“Move”), regional influences are significant (red color in plots) for all but one region while only one lab has a significant model coefficient for PC1. For PC2 more labs and three regions have significant coefficients. For the pre-movement window (“Stim”) one region for PC1 or PC2 has significant coefficients. The variance due to session id was smaller than all other effects (“eids Var”). “Intercept” shows the expected value of the response variable (PC1, PC2) before accounting for any fixed or random effects. All p-values were grouped as one hypothesis family and corrected for multiple comparisons via Benjamini-Hochberg.

      (7) In the discussion the authors state: " Indeed this approach is a more effective and streamlined way of doing it, but it is questionable whether it 'exceeds' what is done in many labs.

      Classically, scientists trace each probe manually with light microscopy and designate each area based on anatomical landmarks identified with nissl or dapi stains together with gross landmarks. When not automated with 2-PI serial tomography and anatomically aligned to a standard atlas, this is a less effective process, but it is not clear that it is less precise, especially in studies before neuropixels where active electrodes were located in a much smaller area. While more effective, transforming into a common atlas does make additional assumptions about warping the brain into the standard atlas - especially in cases where the brain has been damaged/lesioned. Readers can appreciate the effectiveness and streamlining provided by these new tools without the need to invalidate previous approaches.

      We thank the reviewer for highlighting the effectiveness of manual tracing methods used traditionally. Our intention in the statement was not to invalidate the precision or value of these classical methods but rather to emphasize the scalability and streamlining offered by our pipeline. We have revised the language to more accurately reflect this (line 500-504):

      “Our ability to detect targeting error benefited from an automated histological pipeline combined with alignment and tracing that required agreement between multiple users, an approach that greatly exceeds the histological analyses done by most individual labs. Our approach, which enables scalability and standardization across labs while minimizing subjective variability, revealed that much of the variance in targeting was due to the probe entry positions at the brain surface, which were randomly displaced across the dataset.”

      (8) What about across-lab population-level representation of task variables, such as in the coding direction for stimulus or choice? Is the general decodability of task variables from the population comparable across labs?

      Excellent question, thanks! We have added the new section “Decodability of task variables is consistent across labs, but varies by brain region” (line 423-448) and Figure 9 in the revised manuscript to address this question. In short, yes, the general decodability of task variables from the population is comparable across labs, providing additional reassurance of reproducibility.

      Reviewer #2 (Public review):

      Summary:

      The authors sought to evaluate whether observations made in separate individual laboratories are reproducible when they use standardized procedures and quality control measures. This is a key question for the field. If ten systems neuroscience labs try very hard to do the exact same experiment and analyses, do they get the same core results? If the answer is no, this is very bad news for everyone else! Fortunately, they were able to reproduce most of their experimental findings across all labs. Despite attempting to target the same brain areas in each recording, variability in electrode targeting was a source of some differences between datasets.

      Major Comments:

      The paper had two principal goals:

      (1) to assess reproducibility between labs on a carefully coordinated experiment

      (2) distill the knowledge learned into a set of standards that can be applied across the field.

      The manuscript made progress towards both of these goals but leaves room for improvement.

      (1) The first goal of the study was to perform exactly the same experiment and analyses across 10 different labs and see if you got the same results. The rationale for doing this was to test how reproducible large-scale rodent systems neuroscience experiments really are. In this, the study did a great job showing that when a consortium of labs went to great lengths to do everything the same, even decoding algorithms could not discern laboratory identity was not clearly from looking at the raw data. However, the amount of coordination between the labs was so great that these findings are hard to generalize to the situation where similar (or conflicting!) results are generated by two labs working independently.

      Importantly, the study found that electrode placement (and thus likely also errors inherent to the electrode placement reconstruction pipeline) was a key source of variability between datasets. To remedy this, they implemented a very sophisticated electrode reconstruction pipeline (involving two-photon tomography and multiple blinded data validators) in just one lab-and all brains were sliced and reconstructed in this one location. This is a fantastic approach for ensuring similar results within the IBL collaboration, but makes it unclear how much variance would have been observed if each lab had attempted to reconstruct their probe trajectories themselves using a mix of histology techniques from conventional brain slicing, to light sheet microscopy, to MRI imaging.

      This approach also raises a few questions. The use of standard procedures, pipelines, etc. is a great goal, but most labs are trying to do something unique with their setup. Bigger picture, shouldn't highly "significant" biological findings akin to the discovery of place cells or grid cells, be so clear and robust that they can be identified with different recording modalities and analysis pipelines?

      We agree, and hope that this work may help readers understand what effect sizes may be considered “clear and robust” from datasets like these. We certainly support the reviewer’s point that multiple approaches and modalities can help to confirm any biological findings, but we would contend that a clear understanding of the capabilities and limitations of each approach is valuable, and we hope that our paper helps to achieve this.

      Related to this, how many labs outside of the IBL collaboration have implemented the IBL pipeline for their own purposes? In what aspects do these other labs find it challenging to reproduce the approaches presented in the paper? If labs were supposed to perform this same experiment, but without coordinating directly, how much more variance between labs would have been seen? Obviously investigating these topics is beyond the scope of this paper. The current manuscript is well-written and clear as is, and I think it is a valuable contribution to the field. However, some additional discussion of these issues would be helpful.

      We thank the reviewer for raising this important issue. We know of at least 13 labs that have implemented the behavioral task software and hardware that we published in eLife in 2021, and we expect that over the next several years labs will also implement these analysis pipelines (note that it is considerably cheaper and faster to implement software pipelines than hardware). In particular, a major goal of the staff in the coming years is to continue and improve the support for pipeline deployment and use. However, our goal in this work, which we have aimed to state more clearly in the revised manuscript, was not so much to advocate that others adopt our pipeline, but instead to use our standardized approach as a means of assessing reproducibility under the best of circumstances (see lines 48-52): “A high level of reproducibility of results across laboratories when procedures are carefully matched is a prerequisite to reproducibility in the more common scenario in which two investigators approach the same high-level question with slightly different experimental protocols.”

      Further, a number of our findings are relevant to other labs regardless of whether they implement our exact pipeline, a modified version of our pipeline, or something else entirely. For example, we found probe targeting to be a large source of variability. Our ability to detect targeting error benefited from an automated histological pipeline combined with alignment and tracing that required agreement between multiple users, but now that we have identified the offset, it can be easily accounted for by any lab. Specifically, probe angles must be carefully computed from the CCF, as the CCF and stereotaxic coordinate systems do not define the same coronal plane angle. Relatedly, we found that slight deviations in probe entry position can lead to samples from different populations of neurons. Although this took large cohort sizes to discover, knowledge of this discovery means that future experiments can plan for larger cohort sizes to allow for off-target trajectories, and can re-compute probe angle when the presence of blood vessels necessitates moving probes slightly. These points are now highlighted in the Discussion (lines 500-515).

      Second, the proportion of responsive neurons (a quantity often used to determine that a particular area subserves a particular function), sometimes failed to reproduce across labs. For example, for movement-driven activity in PO, UCLA reported an average change of 0 spikes/s, while CCU reported a large and consistent change (Figure 4d, right most panel, compare orange vs. yellow traces). This argues that neuron-to-neuron variability means that comparisons across labs require large cohort sizes. A small number of outlier neurons in a session can heavily bias responses. We anticipate that this problem will be remedied as tools for large scale neural recordings become more widely used. Indeed, the use of 4-shank instead of single-shank Neuropixels (as we used here) would have greatly enhanced the number of PO neurons we measured in each session. We have added new text to Results explaining this (lines 264-268):

      “We anticipate that the feasibility of even larger scale recordings will make lab-to-lab comparisons easier in future experiments; multi-shank probes could be especially beneficial for cortical recordings, which tend to be the most vulnerable to low cell counts since the cortex is thin and is the most superficial structure in the brain and thus the most vulnerable to damage. Analyses that characterize responses to multiple parameters are another possible solution (See Figure 7).”

      (2) The second goal of the study was to present a set of data curation standards (RIGOR) that could be applied widely across the field. This is a great idea, but its implementation needs to be improved if adoption outside of the IBL is to be expected. Here are three issues:

      (a) The GitHub repo for this project (https://github.com/int-brain-lab/paper-reproducible-ephys/) is nicely documented if the reader's goal is to reproduce the figures in the manuscript. Consequently, the code for producing the RIGOR statistics seems mostly designed for re-computing statistics on the existing IBL-formatted datasets. There doesn't appear to be any clear documentation about how to run it on arbitrary outputs from a spike sorter (i.e. the inputs to Phy).

      We agree that clear documentation is key for others to adopt our standards. To address this, we have added a section at the end of the README of the repository that links to a jupyter notebook (https://github.com/int-brain-lab/paper-reproducible-ephys/blob/master/RIGOR_script.ipynb) that runs the RIGOR metrics on a user’s own spike sorted dataset. The notebook also contains a tutorial that walks through how to visually assess the quality of the raw and spike sorted data, and computes the noise level metrics on the raw data as well as the single cell metrics on the spike sorted data.

      (b) Other sets of spike sorting metrics that are more easily computed for labs that are not using the IBL pipeline already exist (e.g. "quality_metrics" from the Allen Institute ecephys pipeline [https://github.com/AllenInstitute/ecephys_spike_sorting/blob/main/ecephys_spike_sorting/m odules/quality_metrics/README.md] and the similar module in the Spike Interface package [https://spikeinterface.readthedocs.io/en/latest/modules/qualitymetrics.html]). The manuscript does not compare these approaches to those proposed here, but some of the same statistics already exist (amplitude cutoff, median spike amplitude, refractory period violation).

      There is a long history of researchers providing analysis algorithms and code for spike sorting quality metrics, and we agree that the Allen Institute’s ecephys code and the Spike Interface package are the current options most widely used (but see also, for example, Fabre et al. https://github.com/Julie-Fabre/bombcell). Our primary goal in the present work is not to advocate for a particular implementation of any quality metrics (or any spike sorting algorithm, for that matter), but instead to assess reproducibility of results, given one specific choice of spike sorting algorithm and quality metrics. That is why, in our comparison of yield across datasets (Fig 1F), we downloaded the raw data from those comparison datasets and re-ran them under our single fixed pipeline, to establish a fair standard of comparison. A full comparison of the analyses presented here under different choices of quality metrics and spike sorting algorithms would undoubtedly be interesting and useful for the field - however, we consider it to be beyond the scope of the present work. It is therefore an important assumption of our work that the result would not differ materially under a different choice of sorting algorithm and quality metrics. We have added text to the Discussion to clarify this limitation:

      “Another significant limitation of the analysis presented here is that we have not been able to assess the extent to which other choices of quality metrics and inclusion criteria might have led to greater or lesser reproducibility.”

      That said, we still intend for external users to be able to easily run our pipelines and quality metrics.

      (c) Some of the RIGOR criteria are qualitative and must be visually assessed manually. Conceptually, these features make sense to include as metrics to examine, but would ideally be applied in a standardized way across the field. The manuscript doesn't appear to contain a detailed protocol for how to assess these features. A procedure for how to apply these criteria for curating non-IBL data (or for implementing an automated classifier) would be helpful.

      We agree. To address this, we have provided a notebook that runs the RIGOR metrics on a user’s own dataset, and contains a tutorial on how to interpret the resulting plots and metrics (https://github.com/int-brain-lab/paper-reproducible-ephys/blob/master/RIGOR_script.ipynb).

      Within this notebook there is a section focused on visually assessing the quality of both the raw data and the spike sorted data. The code in this section can be used to generate plots, such as raw data snippets or the raster map of the spiking activity, which are typically used to visually assess the quality of the data. In Figure 1 Supplement 2 we have provided examples of such plots that show different types of artifactual activity that should be inspected.

      Other Comments:

      (1) How did the authors select the metrics they would use to evaluate reproducibility? Was this selection made before doing the study?

      Our metrics were selected on the basis of our experience and expertise with extracellular electrophysiology. For example: some of us previously published on epileptiform activity and its characteristics in some mice (Steinmetz et al. 2017), so we included detection of that type of artifact here; and, some of us previously published detailed investigations of instability in extracellular electrophysiological recordings and methods for correcting them (Steinmetz et al. 2021, Windolf et al. 2024), so we included assessment of that property here. These metrics therefore represent our best expert knowledge about the kinds of quality issues that can affect this type of dataset, but it is certainly possible that future investigators will discover and characterize other quality issues.

      The selection of metrics was primarily performed before the study (we used these assessments internally before embarking on the extensive quantifications reported here), and in cases where we refined them further during the course of preparing this work, it was done without reference to statistical results on reproducibility but instead on the basis of manual inspection of data quality and metric performance.

      (2) Was reproducibility within-lab dependent on experimenter identity?

      We thank the reviewer for this question. We have addressed it in our response to R1 General comment 2, as follows:

      We agree that understanding experimenter-to-experimenter variability would be very interesting and indeed we had hoped to do this analysis for some time. The problem is that typically, each lab employed one trainee to conduct all the data collection. This prevents us from comparing outcomes from two different experimenters in the same lab. There are exceptions to this, such as the Churchland lab in which 3 personnel (two postdocs and a technician) collected the data. However, even this fortuitous situation did not lend itself well to assessing experimenter-to-experimenter variation: the Churchland lab moved from Cold Spring Harbor to UCLA during the data collection period, which might have caused variability that is totally independent of experimenter (e.g., different animal facilities). Further, once at UCLA, the postdoc and technician worked closely together- alternating roles in animal training, surgery and electrophysiology. We believe that the text in our current Discussion (line 465-468) accurately characterizes the situation:

      “Our experimental design precludes an analysis of whether the reproducibility we observed was driven by person-to-person standardization or lab-to-lab standardization. Most likely, both factors contributed: all lab personnel received standardized instructions for how to implant head bars and train animals, which likely reduced personnel-driven differences.”

      Quantifying the level of experience of each experimenter is an appealing idea and we share the reviewer’s curiosity about its impact on data quality. Unfortunately, quantifying experience is tricky. For instance, years of conducting surgeries is not an unambiguously determinable number. Would we count an experimenter who did surgery every day for a year as having the same experience as an experimenter who did surgery once/month for a year? Would we count a surgeon with expertise in other areas (e.g., windows for imaging) in the same way as surgeons with expertise in ephys-specific surgeries? Because of the ambiguities, we leave this analysis to be the subject of future work; this is now stated in the Discussion (line 476).

      (3) They note that UCLA and UW datasets tended to miss deeper brain region targets (lines 185-188) - they do not speculate why these labs show systematic differences. Were they not following standardized procedures?

      Thank you for raising this point. All researchers across labs were indeed following standardised procedures. We note that our statistical analysis of probe targeting coordinates and angles did not reveal a significant effect of lab identity on targeting error, even though we noted the large number of mis-targeted recordings in UCLA and UW to help draw attention to the appropriate feature in the figure. Given that these differences were not statistically significant, we can see how it was misleading to call out these two labs specifically. While the overall probe placement surface error and angle error both show no such systematic difference, the magnitude of surface error showed a non-significant tendency to be higher for samples in UCLA & UW, which, compounded with the direction of probe angle error, caused these probe insertions to land in a final location outside LP & PO.

      This shows how subtle differences in probe placement & angle accuracy can lead to compounded inaccuracies at the probe tip, especially when targeting deep brain regions, even when following standard procedures. We believe this is driven partly by the accuracy limit or resolution of the stereotaxic system, along with slight deviations in probe angle, occurring during the setup of the stereotaxic coordinate system during these recordings.

      We have updated the relevant text in lines 187-190 as follows, to clarify:

      “Several trajectories missed their targets in deeper brain regions (LP, PO), as indicated by gray blocks, despite the lack of significant lab-dependent effects in targeting as reported above. These off-target trajectories tended to have both a large displacement from the target insertion coordinates and a probe angle that unfavorably drew the insertions away from thalamic nuclei (Figure 2f).”

      (4) The authors suggest that geometrical variance (difference between planned and final identified probe position acquired from reconstructed histology) in probe placement at the brain surface is driven by inaccuracies in defining the stereotaxic coordinate system, including discrepancies between skull landmarks and the underlying brain structures. In this case, the use of skull landmarks (e.g. bregma) to determine locations of brain structures might be unreliable and provide an error of ~360 microns. While it is known that there is indeed variance in the position between skull landmarks and brain areas in different animals, the quantification of this error is a useful value for the field.

      We thank the reviewer for their thoughtful comment and are glad that they found the quantification of variance useful for the field.

      (5) Why are the thalamic recording results particularly hard to reproduce? Does the anatomy of the thalamus simply make it more sensitive to small errors in probe positioning relative to the other recorded areas?

      We thank the reviewer for raising this interesting question. We believe that they are referring to Figure 4: indeed when we analyzed the distribution of firing rate modulations, we saw some failures of reproducibility in area PO (bottom panel, Figure 4h). However, the thalamic nuclei were not, in other analyses, more vulnerable to failures in reproducibility. For example, in the top panel of Figure 4h, VisAM shows failures of reproducibility for modulation by the visual stimulus. In Fig. 5i, area CA1 showed a failure of reproducibility. We fear that the figure legend title in the previous version (which referred to the thalamus specifically) was misleading, and we have revised this. The new title is, “Neural activity is modulated during decision-making in five neural structures and is variable between laboratories.” This new text more accurately reflects that there were a number of small, idiosyncratic failures of reproducibility, but that these were not restricted to a specific structure. The new analysis requested by R1 (now in Figure 7) provides further reassurance of overall reproducibility, including in the thalamus (see Fig. 7a, right panels; lab identity could not be decoded from single neuron metrics, even in the thalamus).

      Reviewer #1 (Recommendations for the authors):

      (1) Figure font sizes and formatting are variable across panels and figures. Please streamline the presentation of results.

      Thank you for your feedback. We have remade all figures with the same standardized font sizes and formatting.

      (2) Please correct the noncontinuous color scales in Figures 3b and 3d.

      Thank you for pointing this out, we fixed the color bar.

      (3) In Figures 5d and g, the error bars are described as: 'Error bands are standard deviation across cells normalised by the square root of the number of sessions in the region'. How does one interpret this error? It seems to be related to the standard error of the mean (std/sqrt(n)) but instead of using the n from which the standard deviation is calculated (in this case across cells), the authors use the number of sessions as n. If they took the standard deviation across sessions this would be the sem across sessions, and interpretable (as sem*1.96 is the 95% parametric confidence interval of the mean). Please justify why these error bands are used here and how they can be interpreted - it also seems like it is the only time these types of error bands are used.

      We agree and for clarity use standard error across cells now, as the error bars do not change dramatically either way.

      (4) It is difficult to understand what is plotted in Figures 5e,h, please unpack this further and clarify.

      Thank you for pointing this out. We have added additional explanation in the figure caption (See caption for Figure 5c) to explain the KS test.

      (5) In lines 198-201 the authors state that they were worried that Bonferroni correction with 5 criteria would be too lenient, and therefore used 0.01 as alpha. I am unsure whether the authors mean that they are correcting for multiple comparisons across features or areas. Either way, 0.01 alpha is exactly what a Bonferroni corrected alpha would be when correcting for either 5 features or 5 areas: 0.05/5=0.01. Or do they mean they apply the Bonferroni correction to the new 0.01 alpha: i.e., 0.01/5=0.002? Please clarify.

      Thank you, that was indeed written confusingly. We considered all tests and regions as whole, so 7 tests * 5 regions = 35 tests, which would result in a very strong Bonferroni correction. Indeed, if one considers the different tests individually, the correction we apply from 0.05 to 0.01 can be considered as correcting for the number of regions, which we now highlight better. We apply no further corrections of any kind to our alpha=0.01. We clarified this in the manuscript in all relevant places (lines 205-208, 246, 297-298, and 726-727).

      (6) Did the authors take into account how many times a probe was used/how clean the probe was before each recording. Was this streamlined between labs? This can have an effect on yield and quality of recording.

      We appreciate the reviewer highlighting the potential impact of probe use and cleanliness on recording quality and yield. While we did not track the number of times each probe was used, we ensured that all probes were cleaned thoroughly after each use using a standardized cleaning protocol (Section 16: Cleaning the electrode after data acquisition in Appendix 2: IBL protocol for electrophysiology recording using Neuropixels probe). We acknowledge that tracking the specific usage history of each probe could provide additional insights, but unfortunately we did not track this information for this project. In prior work the re-usability of probes has been quantified, showing insignificant degradation with use (e.g. Extended Data Fig 7d from Jun et al. 2017).

      (7) Figure 3, Supplement1: DY_013 missed DG entirely? Was this included in the analysis?

      Thank you for this question. We believe the reviewer is referring to the lack of a prominent high-amplitude LFP band in this mouse, and lack of high-quality sorted units in that region. Despite this, our histology did localize the recording trajectory to DG. This recording did pass our quality control criteria overall, as indicated by the green label, and was used in relevant analyses.

      The lack of normal LFP features and neuron yield might reflect the range of biological variability (several other sessions also have relatively weak DG LFP and yield, though DY_013 is the weakest), or could reflect some damage to the tissue, for example as caused by local bleeding. Because we could not conclusively identify the source of this observation, we did not exclude it.

      (8) Given that the authors argue for using the MTNN over GLMs, it would be useful to know exactly how much better the MTNN is at predicting activity in the held-out dataset (shown in Figure 7, Supplement 1). It looks like a very small increase in prediction performance between MTNN and GLMs, is it significantly different?

      The average variance explained on the held-out dataset, as shown in Figure 8–Figure Supplement 1 Panel B, is 0.065 for the GLMs and 0.071 for the MTNN. As the reviewer correctly noted, this difference is not significant. However, one of the key advantages of the MTNN over GLMs lies in its flexibility to easily incorporate covariates, such as electrophysiological characteristics or session/lab IDs, directly into the analysis. This feature is particularly valuable for assessing effect sizes and understanding the contributions of various factors.

      (9) In line 723: why is the threshold for mean firing rate for a unit to be included in the MTNN results so high (>5Hz), and how does it perform on units with lower firing rates?      

      We thank the reviewer for pointing this out. The threshold for including units with a mean firing rate above 5 Hz was set because most units with firing rates below this threshold were silent in many trials, and reducing the number of units helped keep the MTNN training time reasonable. Based on this comment, we ran the MTNN experiments including all units with firing rates above 1 Hz, and the results remained consistent with our previous conclusions (Figure 8). Crucially, the leave-one-out analysis consistently showed that lab and session IDs had effect sizes close to zero, indicating that both within-lab and between-lab random effects are small and comparable.

      Reviewer #2 (Recommendations for the authors):

      (1) Most of the more major issues were already listed in the above comments. The strongest recommendation for additional work would be to improve the description and implementation of the RIGOR statistics such that non-IBL labs that might use Neuropixels probes but not use the entire IBL pipeline might be able to apply the RIGOR framework to their own data.

      We thank the reviewer for highlighting the importance of making the RIGOR statistics more accessible to a broader audience. We agree that improving the description and implementation of the RIGOR framework is essential for facilitation of non-IBL labs using Neuropixels probes. To address this we created a jupyter notebook with step-by-step guidance that is not dependent on the IBL pipeline. This tool (https://github.com/int-brain-lab/paper-reproducible-ephys/blob/develop/RIGOR_script.ipynb) is publicly available through the repository, accompanied by example datasets and usage tutorials.

      (2) Table 1: How are qualitative features like "drift" defined? Some quantitative statistics like "presence ratio" (the fraction of the dataset where spikes are present) already exist in packages like ecephys_spike_sorting. Who measured these qualitative features? What are the best practices for doing these qualitative analyses?

      At the probe level, we compute the estimate of the relative motion of the electrodes to the brain tissue at multiple depths along the electrode. We overlay the drift estimation over a raster plot to detect sharp displacements as a function of time. Quantitatively, the drift is the cumulative absolute electrode motion estimated during spike sorting (µm). We clarified the corresponding text in Table 1.

      The qualitative assessments were carried out by IBL staff and experimentalists. We have now provided code to run the RIGOR metrics along with an embedded tutorial, to complement the supplemental figures we have shown about qualitative metric interpretation.

      (3) Table 1: What are the units for the LFP derivative?

      We thank the reviewer for noting that the unit was missing. The unit (decibel per unit of space) is now in the table.

      (4) Table 1: For "amplitude cutoff", the table says that "each neuron must pass a metric". What is the metric?

      We have revised the table to include this information. This metric was designed to detect potential issues in amplitude distributions caused by thresholding during deconvolution, which could result in missed spikes. There are quantitative thresholds on the distribution of the low tail of the amplitude histogram relative to the high tail, and on the relative magnitude of the bins in the low tail. We now reference the methods text from the table, which includes a more extended description and gives the specific threshold numbers. Also, the metric and thresholds are more easily understood with graphical assistance; see the IBL Spike Sorting Whitepaper for this (Fig. 17 in that document and nearby text; https://doi.org/10.6084/m9.figshare.19705522.v4). This reference is now also cited in the text.

      (5) Figure 2: In panel A, the brain images look corrupted.

      Thanks; in the revised version we have changed the filetype to improve the quality of the panel image.

      (6) Figure 7: In panel D, make R2 into R^2 (with a superscript)

      Panel D y-axis label has been revised to include superscript (note that this figure is now Figure 8).

      Works Cited

      Julie M.J. Fabre, Enny H. van Beest, Andrew J. Peters, Matteo Carandini, and Kenneth D. Harris. Bombcell: automated curation and cell classification of spike-sorted electrophysiology data, July 2023. URL https://doi.org/10.5281/zenodo.8172822.

      James J. Jun, Nicholas A. Steinmetz, Joshua H. Siegle, Daniel J. Denman, Marius Bauza, Brian Barbarits, Albert K. Lee, Costas A. Anastassiou, Alexandru Andrei, C¸ a˘gatayAydın, Mladen Barbic, Timothy J. Blanche, Vincent Bonin, Jo˜ao Couto, Barundeb Dutta, Sergey L. Gratiy, Diego A. Gutnisky, Michael H¨ausser, Bill Karsh, Peter Ledochowitsch, Carolina Mora Lopez, Catalin Mitelut, Silke Musa, Michael Okun, Marius Pachitariu, Jan Putzeys, P. Dylan Rich, Cyrille Rossant, Wei-lung Sun, Karel Svoboda, Matteo Carandini, Kenneth D. Harris, Christof Koch, John O’Keefe, and Timothy D.Harris. Fully integrated silicon probes for high-density recording of neural activity.Nature, 551(7679):232–236, Nov 2017. ISSN 1476-4687. doi: 10.1038/nature24636. URL https://doi.org/10.1038/nature24636.

      Simon Musall, Xiaonan R. Sun, Hemanth Mohan, Xu An, Steven Gluf, Shu-Jing Li, Rhonda Drewes, Emma Cravo, Irene Lenzi, Chaoqun Yin, Bj¨orn M. Kampa, and Anne K. Churchland. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. Nature Neuroscience, 26(3):495– 505, Mar 2023. ISSN 1546-1726. doi: 10.1038/s41593-022-01245-9. URL https://doi.org/10.1038/s41593-022-01245-9.

      Ivana Orsolic, Maxime Rio, Thomas D Mrsic-Flogel, and Petr Znamenskiy. Mesoscale cortical dynamics reflect the interaction of sensory evidence and temporal expectation during perceptual decision-making. Neuron, 109(11):1861–1875.e10, April 2021. Hyeong-Dong Park, St´ephanie Correia, Antoine Ducorps, and Catherine Tallon-Baudry.Spontaneous fluctuations in neural responses to heartbeats predict visual detection.Nature Neuroscience, 17(4):612–618, Apr 2014. ISSN 1546-1726. doi: 10.1038/nn.3671. URL https://doi.org/10.1038/nn.3671.

      Lorenzo Posani, Shuqi Wang, Samuel Muscinelli, Liam Paninski, and Stefano Fusi. Rarely categorical, always high-dimensional: how the neural code changes along the cortical hierarchy. bioRxiv, 2024. doi: 10.1101/2024.11.15.623878. URL https://www.biorxiv.org/content/early/2024/12/09/2024.11.15.623878.

      Nicholas A. Steinmetz, Christina Buetfering, Jerome Lecoq, Christian R. Lee, Andrew J. Peters, Elina A. K. Jacobs, Philip Coen, Douglas R. Ollerenshaw, Matthew T. Valley, Saskia E. J. de Vries, Marina Garrett, Jun Zhuang, Peter A. Groblewski, Sahar Manavi, Jesse Miles, Casey White, Eric Lee, Fiona Griffin, Joshua D. Larkin, Kate Roll, Sissy Cross, Thuyanh V. Nguyen, Rachael Larsen, Julie Pendergraft, Tanya Daigle, Bosiljka Tasic, Carol L. Thompson, Jack Waters, Shawn Olsen, David J. Margolis, Hongkui Zeng, Michael Hausser, Matteo Carandini, and Kenneth D. Harris. Aberrant cortical activity in multiple gcamp6-expressing transgenic mouse lines. eNeuro, 4(5), 2017. doi: 10.1523/ENEURO.0207-17.2017. URL https://www.eneuro.org/content/4/5/ENEURO.0207-17.2017.

      Nicholas A. Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D. Harris. Distributed coding of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273, Dec 2019. ISSN 1476-4687. doi: 10.1038/s41586-019-1787-x. URL https://doi.org/10.1038/s41586-019-1787-x.

      Nicholas A. Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius Bauza, Maxime Beau, Jai Bhagat, Claudia B¨ohm, Martijn Broux, Susu Chen, Jennifer Colonell, Richard J. Gardner, Bill Karsh, Fabian Kloosterman, Dimitar Kostadinov, Carolina Mora-Lopez, John O’Callaghan, Junchol Park, Jan Putzeys, Britton Sauerbrei, Rik J. J. van Daal, Abraham Z. Vollan, Shiwei Wang, Marleen Welkenhuysen, Zhiwen Ye, Joshua T. Dudman, Barundeb Dutta, Adam W. Hantman,Kenneth D. Harris, Albert K. Lee, Edvard I. Moser, John O’Keefe, Alfonso Renart, Karel Svoboda, Michael H¨ausser, Sebastian Haesler, Matteo Carandini, and Timothy D. Harris. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 372(6539):eabf4588, 2021. doi: 10.1126/science.abf4588.URL https://www.science.org/doi/abs/10.1126/science.abf4588.

      Charlie Windolf, Han Yu, Angelique C. Paulk, Domokos Mesz´ena, William Mu˜noz, Julien Boussard, Richard Hardstone, Irene Caprara, Mohsen Jamali, Yoav Kfir, Duo Xu, Jason E. Chung, Kristin K. Sellers, Zhiwen Ye, Jordan Shaker, Anna Lebedeva, Manu Raghavan, Eric Trautmann, Max Melin, Jo˜ao Couto, Samuel Garcia, Brian Coughlin, Csaba Horv´ath, Rich´ard Fi´ath, Istv´an Ulbert, J. Anthony Movshon, Michael N. Shadlen, Mark M. Churchland, Anne K. Churchland, Nicholas A. Steinmetz, Edward F. Chang, Jeffrey S. Schweitzer, Ziv M. Williams, Sydney S. Cash, Liam Paninski, and Erdem Varol. Dredge: robust motion correction for high-density extracellular recordings across species. bioRxiv, 2023. doi: 10.1101/2023.10.24.563768. URL https://www.biorxiv.org/content/early/2023/10/29/2023.10.24.563768.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews: 

      Reviewer #1 (Public review): 

      The manuscript consists of two separate but interlinked investigations: genomic epidemiology and virulence assessment of Salmonella Dublin. ST10 dominates the epidemiological landscape of S. Dublin, while ST74 was uncommonly isolated. Detailed genomic epidemiology of ST10 unfolded the evolutionary history of this common genotype, highlighting clonal expansions linked to each distinct geography. Notably, North American ST10 was associated with more antimicrobial resistance compared to others. The authors also performed long-read sequencing on a subset of isolates (ST10 and ST74) and uncovered a novel recombinant virulence plasmid in ST10 (IncX1/IncFII/IncN). Separately, the authors performed cell invasion and cytotoxicity assays on the two S. Dublin genotypes, showing differential responses between the two STs. ST74 replicates better intracellularly in macrophages compared to ST10, but both STs induced comparable cytotoxicity levels.

      Comparative genomic analyses between the two genotypes showed certain genetic content unique to each genotype, but no further analyses were conducted to investigate which genetic factors were likely associated with the observed differences. The study provides a comprehensive and novel understanding of the evolution and adaptation of two S. Dublin genotypes, which can inform public health measures. 

      The methodology included in both approaches was sound and written in sufficient detail, and data analysis was performed with rigour. Source data were fully presented and accessible to readers. Certain aspects of the manuscript could be clarified and extended to improve the manuscript. 

      (1) For epidemiology purposes, it is not clear which human diseases were associated with the genomes included in this manuscript. This is important since S. Dublin can cause invasive bloodstream infections in humans. While such information may be unavailable for public sequences, this should be detailed for the 53 isolates sequenced for this study, especially for isolates selected to perform experiments in vitro.

      Thank you for the suggestion. We have added the sample type for the 53 isolates sequenced for this study. These additional details have been added to Supplementary Tables 1, 4, 9 and 10.

      (2) The major AMR plasmid in described S. Dublin was the IncC associated with clonal expansion in North America. While this plasmid is not found in the Australian isolates sequenced in this study, the reviewer finds that it is still important to include its characterization, since it carries blaCMY-2 and was sustainedly inherited in ST10 clade 5. If the plasmid structure is already published, the authors should include the accession number in the Main Results.

      We have provided accessions and context for two of the IncC hybrid plasmids that have been previously reported in the literature in the Introduction. The text now reads:

      “These MDR S. Dublin isolates all type as sequence type 10 (ST10), and the AMR determinants have been demonstrated to be carried on an IncC plasmid that has recombined with a virulence plasmid encoding the spvRABCD operon (12,16,18,19).  This has resulted in hybrid virulence and AMR plasmids circulating in North America including a 329kb megaplasmid with IncX1, IncFIA, IncFIB, and IncFII replicons (isolate CVM22429, NCBI accession CP032397.1) (12,16) and a smaller hybrid plasmid 172,265 bases in size with an IncX1 replicon (isolate N13-01125, NCBI accession KX815983.1) (19).”

      Further characterisation of the IncA/C plasmid circulating in North America was beyond the scope of this study.

      (a) The reviewer is concerned that the multiple annotations missing in  plasmid structures in Supplementary Figures 5 & 6, and  genetic content unique to ST10 and ST74 was due to insufficient annotation by Prokka. I would recommend the authors use another annotation tool, such as Bakta (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743544/) for plasmid annotation, and reconstruction of the pangenome described in Supplementary Figure 10. Since the recombinant virulence plasmid in ST10 is a novel one, I would recommend putting Supplementary Figure 5 as a main figure, with better annotations to show the virulence region, plasmid maintenance/replication, and possible conjugation cluster.

      In the supplementary figures of the plasmids, we sought to highlight key traits on interest on the plasmids, namely plasmid replicons, antimicrobial resistance and heavy metal resistance (Supplementary Figure 5) and virulence genes (Supplementary Figure 6). The inclusion of the accessions of publicly available isolates provide for characterised plasmids such as the S. Dublin virulence plasmid (NCBI accession: CP001143). 

      For the potentially hybrid plasmid with IncN/IncX1/IncFII reported in Supplementary Figure 6, we have undertaken additional analyses of the two Australian isolates to reannotate these isolates with Bakta which provides for more detailed annotations. 

      We have added new text to the methods which reads as: 

      “The final genome assemblies were confirmed as S. Dublin using SISTR and annotated using both Prokka v1.14.6 (69) for consistency with the draft genome assemblies and  Bakta v1.10.1 (93) which provides for more detailed annotations (Supplementary Table 13). Both Prokka and Bakta annotations were in agreement for AMR, HMR and virulence genes, with Bakta annotating between 3-7 additional CDS which were largely ‘hypothetical protein’.”

      For the pangenome analysis of the seven ST74 and ten ST10 isolates, we have continued to use the Prokka annotated draft genome assemblies for input to Panaroo. 

      (4) The authors are lauded for the use of multiple strains of ST10 and ST74 in the in vitro experiment. While results for ST74 were more consistent, readouts from ST10 were more heterogenous (Figure 5, 6). This is interesting as the tested ST10 were mostly clade 1, so ST10 was, as expected, of lower genetic diversity compared to tested ST74 (partly shown in Figure 1D. Could the authors confirm this by constructing an SNP table separately for tested ST10 and ST74? Additionally, the tested ST10 did not represent the phylogenetic diversity of the global epidemiology, and this limitation should be reflected in the Discussion.

      In response to the reviewer’s comments, we have provided a detailed SNP table (Supplementary Table 12) to further clarify the genetic diversity within the tested ST10 and ST74 strains. 

      Additionally, we have expanded on the limitation regarding the phylogenetic diversity of the ST10 isolates in the Discussion, highlighting how the strains used in the in vitro experiments may not fully represent the global epidemiological diversity of S. Dublin ST10. The new text now reads:

      “This study has limitations, including a focus on ST10 isolates from clade 1, which do not represent global phylogenetic diversity. Nonetheless, our pangenome analysis identified >900 uncharacterised genes unique to ST74, offering potential targets for future research. Another limitation is the geographic bias in available genomes, with underrepresentation from Asia and South America. This reflects broader disparities in genomic research resources but may improve as public health genomics capacity expands globally.”

      (5) The comparative genomics between ST10 and ST74 can be further improved to allow more interpretation of the experiments. Why were only SPI-1, 2, 6, and 19 included in the search for virulome, how about other SPIs? ST74 lacks SPI-19 and has truncated SPI-6, so what would explain the larger genome size of ST74? Have the authors screened for other SPIs using more well-annotated databases or references (S. Typhi CT18 or S. Typhimurium ST313)? The mismatching between in silico prediction of invasiveness and phenotypes also warrants a brief discussion, perhaps linked to bigger ST74 genome size (as intracellular lifestyle is usually linked with genome degradation).

      Systematic screening for SPIs with detailed reporting on individual genes and known effectors is still an area of development in Salmonella comparative genomics. In our characterisation of the virulome in this S. Dublin dataset we decided to focus on SPI1, SPI-2, SPI-6 and SPI-19 as these had been identified in previous studies and were considered to be most likely linked to the invasive phenotype of S. Dublin. We thought the truncation of SPI-6 and lack of SPI-19 in ST74 compared to the ST10 isolates would provide a basis to explore genomic differences in the two genotypes, with the screening for individual genes on each SPIs reported in Supplementary Figure 7 and Supplementary Table 9.  

      We have expanded upon the mismatching of the in silico prediction of invasiveness and phenotypes in the Discussion. We now explore the increased genome size and intracellular replication of the ST74 population. We hypothesise that invasiveness has not been studied as thoroughly in zoonotic iNTS as much as human adapted iNTS and S. Typhi, and the increased genome content may be required for survival in different host species. The new text now reads:

      “Our phenotypic data demonstrated a striking difference in replication dynamics between ST10 and ST74 populations in human macrophages. ST74 isolates replicated significantly over 24 hours, whereas ST10 isolates were rapidly cleared after 9 hours of infection. ST74 induced significantly less host cell death during the early-mid stage of macrophage infection, supported by limited processing and release of IL-1ß at 9 hpi. While NTS are generally potent inflammasome activators (60), most supporting data come from laboratory-adapted S. Typhimurium strains. Our findings suggest that ST74 isolates may employ immune evasion mechanisms to avoid host recognition and activation of cell death signaling in early infection stages. Similar trends have been observed with S. Typhimurium ST313, which induces less inflammasome activation than ST19 during murine macrophage infection (61). This could facilitate increased replication and dissemination at later stages of infection. Consistent with this, we observed comparable cytotoxicity between ST10 and ST74 isolates at 24 hpi, suggesting ST74 induces cell death via alternative mechanisms once intracellular bacterial numbers are unsustainable. Further research is needed to identify genomic factors underpinning these observations.”

      (6) On the epidemiology scale, ST10 is more successful, perhaps due to its ongoing adaptation to replication inside GI epithelial cells, favouring shedding. ST74 may tend to cause more invasive disease and less transmission via fecal shedding. The presence of T6SS in ST10 also can benefit its competition with other gut commensals, overcoming gut colonization resistance. The reviewer thinks that these details should be more clearly rephrased in the Discussion, as the results highly suggested different adaptations of two genotypes of the same serovar, leading to different epidemiological success.

      We thank the reviewer for highlighting that we could rephrase this important point. We have added additional text in the Discussion to better interpret the differences in the two genotypes of S. Dublin and how this relates to difference epidemiological success. The new text now reads:

      “While machine learning predicted lower invasiveness for ST74 compared to ST10, the increased genomic content of ST74 may support higher replication in macrophages. We speculate that increased intracellular replication could enhance systemic dissemination, though this requires in vivo validation. Invasiveness of S. enterica is often linked to genome degradation (4,62–64). However, this is mostly based on studies of human-adapted iNTS (ST313) and S. Typhi, leaving open the possibility that the additional genomic content of ST74 supports survival in diverse host species. An uncharacterised virulence factor may underlie this replication advantage. Collectively, these findings highlight phenotypic differences between S. Dublin populations ST10 and ST74. Enhanced intra-macrophage survival of ST74 could promote invasive disease, whereas the prevalence of ST10 may relate to better intestinal adaptation and enhanced faecal shedding. In vivo models are needed to test this hypothesis. Interestingly, the absence of SPI-19 in ST74, which encodes a T6SS, may reflect adaptation to enhanced replication in macrophages. SPI-19 has been linked to intestinal colonisation in poultry (23,56) and mucosal virulence in mice (56). It’s possible that the efficient replication of ST74 in macrophages might compensate for the absence of SPI-19, relying instead on phagocyte uptake via M cells or dendritic cells. The larger pangenome of ST74 compared to ST10 could further enhance survival within hosts. These findings highlight important knowledge gaps in zoonotic NTS host-pathogen interactions and drivers of emerging invasive NTS lineages with broad host ranges.”

      Reviewer #2 (Public review): 

      This is a comprehensive analysis of Salmonella Dublin genomes that offers insights into the global spread of this pathogen and region-specific traits that are important to understanding its evolution. The phenotyping of isolates of ST10 and ST74 also offers insights into the variability that can be seen in S. Dublin, which is also seen in other Salmonella serovars, and reminds the field that it is important to look beyond lab-adapted strains to truly understand these pathogens. This is a valuable contribution to the field. The only limitation, which the authors also acknowledge, is the bias towards S. Dublin genomes from high-income settings. However, there is no selection bias; this is simply a consequence of publically available sequences.

      Reviewer #1 (Recommendations for the authors): 

      (1) The Abstract did not summarize the main findings of the study. The authors should rewrite to highlight the key findings in genomic epidemiology (low AMR generally, novel plasmid of which Inc type, etc.) and the in vitro experiments. The findings clearly illustrate the differing adaptations of the two genotypes. Suggest to omit 'economic burden' and 'livestock' as this study did not specifically address them.

      We agree with the Reviewer and have re-written the abstract to directly reflect the major outcomes of the research. We have also deleted wording such as ‘livestock’, ‘economic burden’ and ‘One Health’ as we did not specifically address these issues as highlighted by the Reviewer. 

      (2) Figure 2: The MCC tree should include posterior support in major internal nodes. The current colour scheme is also confusing to readers (columns 1, 2). Suggest to revise and include additional key information as columns: major AMR genes (blaCMY-2, strAB, floR) and mer locus, so this info can be visualized in the main figure. 

      Thank you for your valuable feedback. We have revised Figure 2 with the MCC tree to include posterior support on the internal nodes. We have also amended the figure legend to explain the additional coloured internal nodes. We have also amended the heatmap in Figure 2 to include additional white space between the columns to make it easier for the readers to distinguish. We didn’t change the colours in this figure as we have used the same colours throughout for the different traits reported in this study. Further, we chose to keep the AMR profiles reported in Figure 2 at the susceptible, resistant or MDR. This was done to convey the overview of the AMR profiles, and we provide detail in the AMR and HMR determinants in the Supplementary Figures and Tables. 

      (3) The manuscript title is not informative, as it did not study the 'dynamics' of the two genotypes. Suggest to revise the study title along the lines of main results.

      Thank you for the feedback on the title. We have amended this to better reflect the main findings of the study, and it now reads as “Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin”

      (4) The co-occurrence of AMR and heavy metal resistance genes (like mer) are quite common in Salmonella and E. coli. This is not a novel finding. The reviewer would suggest shortening the details related to heavy metal resistance in Results and Discussion, to make the writing more streamlined. 

      In line with the Reviewer comments, we have shortened the details in the Results and Discussion on the co-occurrence of AMR and HMR.  

      (5) L185: missing info after n=82. 

      This has been revised to now read as “n=82 from Canada”. 

      (6) I think Vi refers to the capsular antigen, not flagelle. Please double-check this.

      Thank you for highlighting this mistake. We have revised all instances.

      (7) L252-253: which statistic was used to state 'no association'. Also, there is no evidence presented to support 'no fitness cost associated with resistance and virulence."

      We have removed this sentence.

      (8) 320: Figure 6F is a scatterplot, not PCA. Please confirm. 

      The reviewer is correct, this is in fact a scatterplot. We have amended the figure legend and text.

      (9) For Discussion, it would be helpful to compare the phenotype findings with that of other invasive Salmonella like Typhi or Typhimurium ST313.

      Thank you for noting this, we had alluded to findings from ST313 but have now expanded include some further comparisons to S. Typhimurium ST313 and added references for these within the Discussion. The additional text now reads:

      “Similar trends have been observed with S. Typhimurium ST313, which induces less inflammasome activation than ST19 during murine macrophage infection (61). This could facilitate increased replication and dissemination at later stages of infection.”

      "Invasiveness of S. enterica is often linked to genome degradation (4,62–64).

      However, this is mostly based on studies of human-adapted iNTS (ST313) and S. Typhi, leaving open the possibility that the additional genomic content of ST74 supports survival in diverse host species. An uncharacterised virulence factor may underlie this replication advantage.”

      (10) L440: no evidence for "successful colonization" of ST74. Actually, the findings suggested otherwise.

      Thank you for picking this up, we have amended the sentence to better reflect the findings. The amended text now reads as:

      “It’s possible that the efficient replication of ST74 in macrophages might compensate for the absence of SPI-19, relying instead on phagocyte uptake via M cells or dendritic cells. The larger pangenome of ST74 compared to ST10 could further enhance survival within hosts.”

      (11) L460-461: The data did not show an increasing trend of iNTS related to S. Dublin.

      Thank you for identifying this. This sentence has been revised accordingly and now reads as:

      “While the data did not indicate an increasing trend of iNTS associated with S. Dublin, the potential public health risk of this pathogen suggests it may still warrant considering it a notifiable disease, similar to typhoid and paratyphoid fever.”

      (12) L465: Data were not analyzed explicitly in the context of animal vs. human. Suggest omitting 'One Health' from the conclusion.

      Thank you for the suggestion. We have omitted “One Health” from the conclusion

      (13) L500: Was the alignment not checked for recombination using Gubbins? The approach here is inconsistent with the method described in the subtree selected for BEAST analysis (L546).

      We have now applied Gubbins to the phylogenetic tree constructed using IQTREE, and the methods and results have been updated accordingly.

      (14) What was the output of Tempest? Correlation or R2 value? 

      We have now included the R2 value from Tempest and reported this in the manuscript. 

      (15) L556: marginal likelihood to allow evaluation of the best-fit model. Please rephrase to state this clearly.

      We have rephrased this in the manuscript to state this clearly.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Turi, Teng and the team used state-of-the-art techniques to provide convincing evidence on the infraslow oscillation of DG cells during NREM sleep, and how serotonergic innervation modulates hippocampal activity pattern during sleep and memory. First, they showed that the glutamatergic DG cells become activated following an infraslow rhythm during NREM sleep. In addition, the infraslow oscillation in the DG is correlated with rhythmic serotonin release during sleep. Finally, they found that specific knockdown of 5-HT receptors in the DG impairs the infraslow rhythm and memory, suggesting that serotonergic signaling is crucial for regulating DG activity during sleep. Given that the functional role of infraslow rhythm still remains to be studied, their findings deepen our understanding on the role of DG cells and serotonergic signaling in regulating infraslow rhythm, sleep microarchitecture and memory.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated DG neuronal activity at the population and single cell level across sleep/wake periods. They found an infraslow oscillation (0.01-0.03 Hz) in both granule cells (GC) and mossy cells (MC) during NREM sleep. The important findings are 1) the antiparallel temporal dynamics of DG neuron activities and serotonin neuron activities/extracellular serotonin levels during NREM sleep, and 2) the GC Htr1a-mediated GC infraslow oscillation.

      Strengths:

      (1) The combination of polysomnography, Ca-fiber photometry, two-photon microscopy and gene depletion is technically sound. The coincidence of microarousals and dips in DG population activity is convincing. The dip in activity in upregulated cells is responsible for the dip at the population level.

      (2) DG GCs express excitatory Htr4 and Htr7 in addition to inhibitory Htr1a, but deletion of Htr1a is sufficient to disrupt DG GC infraslow oscillation, supporting the importance of Htr1a in DG activity during NREM sleep.

      Weaknesses:

      (1) The current data set and analysis are insufficient to interpret the observation correctly.<br /> a. In Fig 1A, during NREM, the peaks and troughs of GC population activities seem to gradually decrease over time. Please address this point.

      b. In Fig 1F, about 30% of Ca dips coincided with MA (EMG increase) and 60% of Ca dips did not coincide with EMG increase. If this is true, the readers can find 8 Ca dips which are not associated with MAs from Fig 1E. If MAs were clustered, please describe this properly.<br /> c. In Fig 1F, the legend stated the percentage during NREM. If the authors want to include the percentage of wake and REM, please show the traces with Ca dips during wake and REM. This concern applies to all pie charts provided by the authors.

      d. In Fig 1C, please provide line plots connecting the same session. This request applies to all related figures.

      e. In Fig 2C, the significant increase during REM and the same level during NREM are not convincing. In Fig 2A, the several EMG increasing bouts do not appear to be MA, but rather wakefulness, because the duration of the EMG increase is greater than 15 seconds. Therefore, it is possible that the wake bouts were mixed with NREM bouts, leading to the decrease of Ca activity during NREM. In fact, In Fig 2E, the 4th MA bout seems to be the wake bout because the EMG increase lasts more than 15 seconds.

      f. Fig 5D REM data are interesting because the DRN activity is stably silenced during REM. The varied correlation means the varied DG activity during REM. The authors need to address it.

      g. In Fig 6, the authors should show the impact of DG Htr1a knockdown on sleep/wake structure including the frequency of MAs. I agree with the impact of Htr1a on DG ISO, but possible changes in sleep bout may induce the DG ISO disturbance.

      (2) It is acceptable that DG Htr1a KO induces the reduced freezing in the CFC test (Fig. 6E, F), but it is too much of a stretch that the disruption of DG ISO causes impaired fear memory. There should be a correlation.

      (3) It is necessary to describe the extent of AAV-Cre infection. The authors injected AAV into the dorsal DG (AP -1.9 mm), but the histology shows the ventral DG (Supplementary Fig. 4), which reduces the reliability of this study.

      Responses to weaknesses mentioned above have been addressed in the first revision.

      Comments on revisions:

      In the first revision, I pointed out the inappropriate analysis of the EEG/EMG/photometry data and gave examples. The authors responded only to the points raised and did not seem to see the need to improve the overall analysis and description. In this second revision, I would like to ask the authors to improve them. The biggest problem is that the detection criteria and the quantification of the specific event are not described at all in Methods and it is extremely difficult to follow the statement. All interpretations are made by the inappropriate data analysis; therefore, I have to say that the statement is not supported by the data.

      Please read my following concerns carefully and improve them.

      (1) The definition of the event is critical to the detection of the event and the subsequent analysis. In particular, the authors explicitly describe the definition of MA (microarousal), the trough and peak of the population level of intracellular Ca concentrations, or the onset of the decline and surge of Ca levels.

      (1-1) The authors categorized wake bouts of <15 seconds with high EMG activity as MA (in Methods). What degree of high EMG is relevant to MA and what is the lower limit of high EMG? In Fig 1E, there are some EMG spikes, but it was unclear which spike/wave (amplitude/duration) was detected as MA-relevant spike and which spike was not detected. In Fig 2E, the 3rd MA coincides with the EMG spike, but other EMG spikes have comparable amplitude to the 3rd MA-relevant EMG spike. Correct counting of MA events is critical in Fig 1F, 2F, 4C.

      We have added more information about the MA definition in Methods, including EMG amplitude. Furthermore, we have re-analyzed MA and MA-related calcium signals in Fig1 and Fig2. Fig-S1 shows the traces of EMG aptitude for all MA events show in Fig1G and Fig2G.

      (1-2) Please describe the definition of Ca trough in your experiments. In Fig 1G, the averaged trough time is clear (~2.5 s), so I can acknowledge that MA is followed by Ca trough. However, the authors state on page 4 that "30% of the calcium troughs during NREM sleep were followed by an MA epoch". This discrepancy should be corrected.

      We apologize for the misleading statement. We meant 30% of ISO events during NERM sleep. We have corrected this. To detect the calcium trough of ISO, we first calculated a moving baseline (blue line in Fig-S2 below) by smoothing the calcium signals over 60 s, then set a threshold (0.2 standard deviation from the moving baseline) for events of calcium decrease, and finally detected the minimum point (red dots in Fig-S2) in each event as the calcium trough. We have added these in Methods.

      (1-3) Relating comment 1-2, I agree that the latency is between MA and Ca through in page 4, as the authors explain in the methods, but, in Fig 1G, t (latency) is labeled at incorrect position. Please correct this.

      We are sorry for the mistake in describing the latency in the Methods. The latency was defined as the time difference between the onset of calcium decline (see details below in 1-4) and the onset of the MA. We have corrected this in the revised manuscript. Thus, the labeling in Fig1G was correct.

      (1-4) The authors may want to determine the onset of the decline in population Ca activity and the latency between onset and trough (Fig 1G, latency t). If so, please describe how the onset of the decline is determined. In Fig 1G, 2G, S6, I can find the horizontal dashed line and infer that the intersection of the horizontal line and the Ca curve is considered the onset. However, I have to say that the placement of this horizontal line is super arbitrary. The results (t and Drop) are highly dependent on the position of horizontal line, so the authors need to describe how to set the horizontal line.

      Indeed, we used the onset of calcium decline to calculate the latency as mentioned above. First, we defined the baseline (dashed line in Fig1G) by calculating the average of calcium signals in the10s window before the MA (from -15s to -5s in Fig1G). The onset of calcium decline is defined as the timepoint where calcium decrease was larger than 0.05 SD from this baseline. We have added these in Methods.

      (1-5) In order to follow Fig 1F correctly, the authors need to indicate the detection criteria of "Ca dip (in legend)". Please indicate "each Ca dip" in Fig 1E. As a reader, I would like to agree with the Ca dip detection of this Ca curve based on the criteria. Please also indicate "each Ca dip" in Fig 2E and 2F. In the case of the 2nd and 3rd MAs, do they follow a single Ca dip or does each MA follow each Ca dip? This chart is highly dependent on the detection criteria of Ca dip.

      We have indicated each ca dip in Fig 1 and Fig 2.

      As I mentioned above, most of the quantifications are not based on the clear detection criteria. The authors need to re-analyze the data and fix the quantification. Please interpret data and discuss the cellular mechanism of ISO based on the re-analyzed quantification.

      As suggested, we have re-analyzed the MA and MA-related photometry signals. Accordingly, parts of Fig1 and Fig2 have been revised. Although there are some small changes, the main results and conclusions remain unchanged.

      Reviewer #3 (Public review):

      Summary:

      The authors employ a series of well-conceived and well-executed experiments involving photometric imaging of the dentate gyrus and raphe nucleus, as well as cell-type specific genetic manipulations of serotonergic receptors that together serve to directly implicate serotonergic regulation of dentate gyrus (DG) granule (GC) and mossy cell (MC) activity in association with an infra slow oscillation (ISO) of neural activity has been previously linked to general cortical regulation during NREM sleep and microarousals.

      Strengths:

      There are a number of novel and important results, including the modulation of dentage granule cell activity by the infraslow oscillation during NREM sleep, the selective association of different subpopulations of granule cells to microarousals (MA), the anticorrelation of raphe activity with infraslow dentate activity.

      The discussion includes a general survey of ISOs and recent work relating to their expression in other brain areas and other potential neuromodulatory system involvement, as well as possible connections with infraslow oscillations, micro arousals, and sensory sensitivity.

      Weaknesses:

      - The behavioral results showing contextual memory impairment resulting from 5-HT1a knockdown are fine, but are over-interpreted. The term memory consolidation is used several times, as well as references to sleep-dependence. This is not what was tested. The receptor was knocked down, and then 2 weeks later animals were found to have fear conditioning deficits. They can certainly describe this result as indicating a connection between 5-HT1a receptor function and memory performance, but the connection to sleep and consolidation would just be speculation. The fact that 5-HT1a knockdown also impacted DG ISOs does not establish dependency. Some examples of this are:

      – The final conclusion asserts "Together, our study highlights the role of neuromodulation in organizing neuronal activity during sleep and sleep-dependent brain functions, such as memory.", but the reported memory effects (impairment of fear conditioning) were not shown to be explicitly sleep-dependent.

      – Earlier in the discussion it mentions "Finally, we showed that local genetic ablation of 5-HT1a receptors in GCs impaired the ISO and memory consolidation". The effect shown was on general memory performance - consolidation was not specifically implicated.

      – The assertion on page 9 that the results demonstrate "that the 5-HT is directly acting in the DG to gate the oscillations" is a bit strong given the magnitude of effect shown in Fig. 6D, and the absence of demonstration of negative effect on cortical areas that also show ISO activity and could impact DG activity (see requested cortical sigma power analysis).

      – Recent work has shown that abnormal DG GC activity can result from the use of the specific Ca indicator being used (GCaMP6s). (Teng, S., Wang, W., Wen, J.J.J. et al. Expression of GCaMP6s in the dentate gyrus induces tonic-clonic seizures. Sci Rep 14, 8104 (2024). https://doi.org/10.1038/s41598-024-58819-9). The authors of that study found that the effect seemed to be specific to GCaMP6s and that GCaMP6f did not lead to abnormal excitability. Note this is of particular concern given similar infraslow variation of cortical excitability in epilepsy (cf Vanhatalo et al. PNAS 2004). While I don't think that the experiments need to be repeated with a different indicator to address this concern, you should be able to use the 2p GCaMP7 experiments that have already been done to provide additional validation by repeating the analyses done for the GCaMP6s photometry experiments. This should be done anyway to allow appropriate comparison of the 2p and photometry results.

      – While the discussion mentions previous work that has linked ISOs during sleep with regulation of cortical oscillations in the sigma band, oddly no such analysis is performed in the current work even though it is presumably available and would be highly relevant to the interpretation of a number of primary results including the relationship between the ISOs and MAs observed in the DG and similar results reported in other areas, as well as the selective impact of DG 5-HT1a knockdown on DG ISOs. For example, in the initial results describing the cross correlation of calcium activity and EMG/EEG with MA episodes (paragraph 1, page 4), similar results relating brief arousals to the infraslow fluctuation in sleep spindles (sigma band) have been reported also at .02 Hz associated with variation in sensory arousability (cf. Cardis et al., "Cortico-autonomic local arousals and heightened somatosensory arousability during NREMS of mice in neuropathic pain", eLife 2021). It would be important to know whether the current results show similar cortical sigma band correlations. Also, in the results on ISO attenuation following 5-HT1 knockdown on page 7 (fig. 6), how is cortical EEG affected? is ISO still seen in EEG but attenuated in DG?

      – The illustrations of the effect of 5-HT1a knockdown shown in Figure 6 are somewhat misleading. The examples in panels B and C show an effect that is much more dramatic than the overall effect shown in panel D. Panels B and C do not appear to be representative examples. Which of the sample points in panel D are illustrated in panels B, C? it is not appropriate to arbitrarily select two points from different animals for comparison, or worse, to take points from the extremes of the distributions. If the intent is to illustrate what the effect shown in D looks like in the raw data, then you need to select examples that reflect the means shown in panel D. It is also important to show the effect on cortical EEG, particularly in sigma band to see if the effects are restricted to the DG ISOs. It would also be helpful to show that MAs and their correlations as shown in Fig 1 or G as well as broader sleep architecture are not affected.

      – On page 9 of the results it states that GCs and MCs are upregulated during NREM and their activity is abruptly terminated by MAs through a 5-HT mediated mechanism. I didn't see anything showing the 5-HT dependence of the MA activity correlation. The results indicate a reduction in ISO modulation of GC activity but not the MA correlated activity. I would like to see the equivalent of Fig 1,2 G panels with the 5-HT1a manipulation.

      Responses to Revewer#3 have been addressed in the first revision. 

      Reviewer #1 (Recommendations for the authors):

      Minor comment: Several recent publications from different laboratories have shown rhythmic release of norepinephrine (NE) (~0.03 Hz) in the medial prefrontal cortex, the thalamus, and in the locus coeruleus (LC) of the mouse during sleep-wake cycles-> Please add "preoptic area" here

      We have added the citation.

      Reviewer #2 (Recommendations for the authors):

      Minor

      (1) (abstract, page 2 line 9) what kind of "increased activity" did the authors find?

      Increased activity compared to that during wakefulness. We have added this.

      (2) (result, page 4) please define first, early, and late stage of NREM sleep in the methods.

      We have added these in the Methods.

      (3) (result, page 6) please define "the risetime of the phasic increase".

      It refers to the latency between the increase of 5-HT and the MA onset. We have clarified this in the text.

      (4) (supplement Fig 3 legend) please reword "5-HT events" and "5-HT signals" because these are ambiguous.

      We have defined the events in the legend.

      (5) (Fig 5A) please replace the picture without bubbles.

      We have replaced the image in Fig5A.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment

      This neuroimaging and electrophysiology study in a small cohort of congenital cataract patients with sight recovery aims to characterize the effects of early visual deprivation on excitatory and inhibitory balance in visual cortex. While contrasting sight-recovery with visually intact controls suggested the existence of persistent alterations in Glx/GABA ratio and aperiodic EEG signals, it provided only incomplete evidence supporting claims about the effects of early deprivation itself. The reported data were considered valuable, given the rare study population. However, the small sample sizes, lack of a specific control cohort and multiple methodological limitations will likely restrict usefulness to scientists working in this particular subfield.

      We thank the reviewing editors for their consideration and updated assessment of our manuscript after its first revision.

      In order to assess the effects of early deprivation, we included an age-matched, normally sighted control group recruited from the same community, measured in the same scanner and laboratory. This study design is analogous to numerous studies in permanently congenitally blind humans, which typically recruited sighted controls, but hardly ever individuals with a different, e.g. late blindness history. In order to improve the specificity of our conclusions, we used a frontal cortex voxel in addition to a visual cortex voxel (MRS). Analogously, we separately analyzed occipital and frontal electrodes (EEG).

      Moreover, we relate our findings in congenital cataract reversal individuals to findings in the literature on permanent congenital blindness. Note, there are, to the best of our knowledge, neither MRS nor resting-state EEG studies in individuals with permanent late blindness.

      Our participants necessarily have nystagmus and low visual acuity due to their congenital deprivation phase, and the existence of nystagmus is a recruitment criterion to diagnose congenital cataracts.

      It might be interesting for future studies to investigate individuals with transient late blindness. However, such a study would be ill-motivated had we not found differences between the most “extreme” of congenital visual deprivation conditions and normally sighted individuals (analogous to why earlier research on permanent blindness investigated permanent congenitally blind humans first, rather than permanently late blind humans, or both in the same study). Any result of these future work would need the reference to our study, and neither results in these additional groups would invalidate our findings.

      Since all our congenital cataract reversal individuals by definition had visual impairments, we included an eyes closed condition, both in the MRS and EEG assessment. Any group effect during the eyes closed condition cannot be due to visual acuity deficits changing the bottom-up driven visual activation.

      As we detail in response to review 3, our EEG analyses followed the standards in the field.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      In this human neuroimaging and electrophysiology study, the authors aimed to characterise effects of a period of visual deprivation in the sensitive period on excitatory and inhibitory balance in the visual cortex. They attempted to do so by comparing neurochemistry conditions ('eyes open', 'eyes closed') and resting state, and visually evoked EEG activity between ten congenital cataract patients with recovered sight (CC), and ten age-matched control participants (SC) with normal sight.

      First, they used magnetic resonance spectroscopy to measure in vivo neurochemistry from two locations, the primary location of interest in the visual cortex, and a control location in the frontal cortex. Such voxels are used to provide a control for the spatial specificity of any effects, because the single-voxel MRS method provides a single sampling location. Using MR-visible proxies of excitatory and inhibitory neurotransmission, Glx and GABA+ respectively, the authors report no group effects in GABA+ or Glx, no difference in the functional conditions 'eyes closed' and 'eyes open'. They found an effect of group in the ratio of Glx/GABA+ and no similar effect in the control voxel location. They then perform multiple exploratory correlations between MRS measures and visual acuity, and report a weak positive correlation between the 'eyes open' condition and visual acuity in CC participants.

      The same participants then took part in an EEG experiment. The authors selected two electrodes placed in the visual cortex for analysis and report a group difference in an EEG index of neural activity, the aperiodic intercept, as well as the aperiodic slope, considered a proxy for cortical inhibition. Control electrodes in the frontal region did not present with the same pattern. They report an exploratory correlation between the aperiodic intercept and Glx in one out of three EEG conditions.

      The authors report the difference in E/I ratio, and interpret the lower E/I ratio as representing an adaptation to visual deprivation, which would have initially caused a higher E/I ratio. Although intriguing, the strength of evidence in support of this view is not strong. Amongst the limitations are the low sample size, a critical control cohort that could provide evidence for higher E/I ratio in CC patients without recovered sight for example, and lower data quality in the control voxel. Nevertheless, the study provides a rare and valuable insight into experience-dependent plasticity in the human brain.

      Strengths of study

      How sensitive period experience shapes the developing brain is an enduring and important question in neuroscience. This question has been particularly difficult to investigate in humans. The authors recruited a small number of sight-recovered participants with bilateral congenital cataracts to investigate the effect of sensitive period deprivation on the balance of excitation and inhibition in the visual brain using measures of brain chemistry and brain electrophysiology. The research is novel, and the paper was interesting and well written.

      Limitations

      Low sample size. Ten for CC and ten for SC, and further two SC participants were rejected due to lack of frontal control voxel data. The sample size limits the statistical power of the dataset and increases the likelihood of effect inflation.

      In the updated manuscript, the authors have provided justification for their sample size by pointing to prior studies and the inherent difficulties in recruiting individuals with bilateral congenital cataracts. Importantly, this highlights the value the study brings to the field while also acknowledging the need to replicate the effects in a larger cohort.

      Lack of specific control cohort. The control cohort has normal vision. The control cohort is not specific enough to distinguish between people with sight loss due to different causes and patients with congenital cataracts with co-morbidities. Further data from a more specific populations, such as patients whose cataracts have not been removed, with developmental cataracts, or congenitally blind participants, would greatly improve the interpretability of the main finding. The lack of a more specific control cohort is a major caveat that limits a conclusive interpretation of the results.

      In the updated version, the authors have indicated that future studies can pursue comparisons between congenital cataract participants and cohorts with later sight loss.

      MRS data quality differences. Data quality in the control voxel appears worse than in the visual cortex voxel. The frontal cortex MRS spectrum shows far broader linewidth than the visual cortex (Supplementary Figures). Compared to the visual voxel, the frontal cortex voxel has less defined Glx and GABA+ peaks; lower GABA+ and Glx concentrations, lower NAA SNR values; lower NAA concentrations. If the data quality is a lot worse in the FC, then small effects may not be detectable.

      In the updated version, the authors have added more information that informs the reader of the MRS quality differences between voxel locations. This increases the transparency of their reporting and enhances the assessment of the results.

      Because of the direction of the difference in E/I, the authors interpret their findings as representing signatures of sight improvement after surgery without further evidence, either within the study or from the literature. However, the literature suggests that plasticity and visual deprivation drives the E/I index up rather than down. Decreasing GABA+ is thought to facilitate experience dependent remodelling. What evidence is there that cortical inhibition increases in response to a visual cortex that is over-sensitised to due congenital cataracts? Without further experimental or literature support this interpretation remains very speculative.

      The updated manuscript contains key reference from non-human work to justify their interpretation.

      Heterogeneity in patient group. Congenital cataract (CC) patients experienced a variety of duration of visual impairment and were of different ages. They presented with co-morbidities (absorbed lens, strabismus, nystagmus). Strabismus has been associated with abnormalities in GABAergic inhibition in the visual cortex. The possible interactions with residual vision and confounds of co-morbidities are not experimentally controlled for in the correlations, and not discussed.

      The updated document has addressed this caveat.

      Multiple exploratory correlations were performed to relate MRS measures to visual acuity (shown in Supplementary Materials), and only specific ones shown in the main document. The authors describe the analysis as exploratory in the 'Methods' section. Furthermore, the correlation between visual acuity and E/I metric is weak, not corrected for multiple comparisons. The results should be presented as preliminary, as no strong conclusions can be made from them. They can provide a hypothesis to test in a future study.

      This has now been done throughout the document and increases the transparency of the reporting.

      P.16 Given the correlation of the aperiodic intercept with age ("Age negatively correlated with the aperiodic intercept across CC and SC individuals, that is, a flattening of the intercept was observed with age"), age needs to be controlled for in the correlation between neurochemistry and the aperiodic intercept. Glx has also been shown to negatively correlates with age.

      This caveat has been addressed in the revised manuscript.

      Multiple exploratory correlations were performed to relate MRS to EEG measures (shown in Supplementary Materials), and only specific ones shown in the main document. Given the multiple measures from the MRS, the correlations with the EEG measures were exploratory, as stated in the text, p.16, and in Fig.4. yet the introduction said that there was a prior hypothesis "We further hypothesized that neurotransmitter changes would relate to changes in the slope and intercept of the EEG aperiodic activity in the same subjects." It would be great if the text could be revised for consistency and the analysis described as exploratory.

      This has been done throughout the document and increases the transparency of the reporting.

      The analysis for the EEG needs to take more advantage of the available data. As far as I understand, only two electrodes were used, yet far more were available as seen in their previous study (Ossandon et al., 2023). The spatial specificity is not established. The authors could use the frontal cortex electrode (FP1, FP2) signals as a control for spatial specificity in the group effects, or even better, all available electrodes and correct for multiple comparisons. Furthermore, they could use the aperiodic intercept vs Glx in SC to evaluate the specificity of the correlation to CC.

      This caveat has been addressed. The authors have added frontal electrodes to their analysis, providing an essential regional control for the visual cortex location.

      Comments on the latest version:

      The authors have made reasonable adjustments to their manuscript that addressed most of my comments by adding further justification for their methodology, essential literature support, pointing out exploratory analyses, limitations and adding key control analyses. Their revised manuscript has overall improved, providing valuable information, though the evidence that supports their claims is still incomplete.

      We thank the reviewer for suggesting ways to improve our manuscript and carefully reassessing our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The study examined 10 congenitally blind patients who recovered vision through the surgical removal of bilateral dense cataracts, measuring neural activity and neuro chemical profiles from the visual cortex. The declared aim is to test whether restoring visual function after years of complete blindness impacts excitation/inhibition balance in the visual cortex.

      Strengths:

      The findings are undoubtedly useful for the community, as they contribute towards characterising the many ways in which this special population differs from normally sighted individuals. The combination of MRS and EEG measures is a promising strategy to estimate a fundamental physiological parameter - the balance between excitation and inhibition in the visual cortex, which animal studies show to be heavily dependent upon early visual experience. Thus, the reported results pave the way for further studies, which may use a similar approach to evaluate more patients and control groups.

      Weaknesses:

      The main methodological limitation is the lack of an appropriate comparison group or condition to delineate the effect of sight recovery (as opposed to the effect of congenital blindness). Few previous studies suggested that Excitation/Inhibition ratio in the visual cortex is increased in congenitally blind patients; the present study reports that E/I ratio decreases instead. The authors claim that this implies a change of E/I ratio following sight recovery. However, supporting this claim would require showing a shift of E/I after vs. before the sight-recovery surgery, or at least it would require comparing patients who did and did not undergo the sight-recovery surgery (as common in the field).

      We thank the reviewer for suggesting ways to improve our manuscript and carefully reassessing our revised manuscript.

      Since we have not been able to acquire longitudinal data with the experimental design of the present study in congenital cataract reversal individuals, we compared the MRS and EEG results of congenital cataract reversal individuals  to published work in congenitally permanent blind individuals. We consider this as a resource saving approach. We think that the results of our cross-sectional study now justify the costs and enormous efforts (and time for the patients who often have to travel long distances) associated with longitudinal studies in this rare population.

      There are also more technical limitations related to the correlation analyses, which are partly acknowledged in the manuscript. A bland correlation between GLX/GABA and the visual impairment is reported, but this is specific to the patients group (N=10) and would not hold across groups (the correlation is positive, predicting the lowest GLX/GABA ratio values for the sighted controls - opposite of what is found). There is also a strong correlation between GLX concentrations and the EEG power at the lowest temporal frequencies. Although this relation is intriguing, it only holds for a very specific combination of parameters (of the many tested): only with eyes open, only in the patients group.

      Given the exploratory nature of the correlations, we do not base the majority of our conclusions on this analysis. There are no doubts that the reported correlations need replication; however, replication is only possible after a first report. Thus, we hope to motivate corresponding analyses in further studies.

      It has to be noted that in the present study significance testing for correlations were corrected for multiple comparisons, and that some findings replicate earlier reports (e.g. effects on EEG aperiodic slope, alpha power, and correlations with chronological age).

      Conclusions:

      The main claim of the study is that sight recovery impacts the excitation/inhibition balance in the visual cortex, estimated with MRS or through indirect EEG indices. However, due to the weaknesses outlined above, the study cannot distinguish the effects of sight recovery from those of visual deprivation. Moreover, many aspects of the results are interesting but their validation and interpretation require additional experimental work.

      We interpret the group differences between individuals tested years after congenital visual deprivation and normally sighted individuals as supportive of the E/I ratio being impacted by congenital visual deprivation. In the absence of a sensitive period for the development of an E/I ratio, individuals with a transient phase of congenital blindness might have developed a visual system indistinguishable  from normally sighted individuals. As we demonstrate, this is not so. Comparing the results of congenitally blind humans with those of congenitally permanently blind humans (from previous studies) allowed us to identify changes of E/I ratio, which add to those found for congenital blindness.  

      We thank the reviewer for the helpful comments and suggestions related to the first submission and first revision of our manuscript. We are keen to translate some of them into future studies.

      Reviewer #3 (Public review):

      This manuscript examines the impact of congenital visual deprivation on the excitatory/inhibitory (E/I) ratio in the visual cortex using Magnetic Resonance Spectroscopy (MRS) and electroencephalography (EEG) in individuals whose sight was restored. Ten individuals with reversed congenital cataracts were compared to age-matched, normally sighted controls, assessing the cortical E/I balance and its interrelationship and to visual acuity. The study reveals that the Glx/GABA ratio in the visual cortex and the intercept and aperiodic signal are significantly altered in those with a history of early visual deprivation, suggesting persistent neurophysiological changes despite visual restoration.

      First of all, I would like to disclose that I am not an expert in congenital visual deprivation, nor in MRS. My expertise is in EEG (particularly in the decomposition of periodic and aperiodic activity) and statistical methods.

      Although the authors addressed some of the concerns of the previous version, major concerns and flaws remain in terms of methodological and statistical approaches along with the (over)interpretation of the results. Specific concerns include:

      (1 3.1) Response to Variability in Visual Deprivation<br /> Rather than listing the advantages and disadvantages of visual deprivation, I recommend providing at least a descriptive analysis of how the duration of visual deprivation influenced the measures of interest. This would enhance the depth and relevance of the discussion.

      Although Review 2 and Review 3 (see below) pointed out problems in interpreting multiple correlational analyses in small samples, we addressed this request by reporting such correlations between visual deprivation history and measured EEG/MRS outcomes.

      Calculating the correlation between duration of visual deprivation and behavioral or brain measures is, in fact, a common suggestion. The existence of sensitive periods, which are typically assumed to not follow a linear gradual decline of neuroplasticity, does not necessary allow predicting a correlation with duration of blindness. Daphne Maurer has additionally worked on the concept of “sleeper effects” (Maurer et al., 2007), that is, effects on the brain and behavior by early deprivation which are observed only later in life when the function/neural circuits matures.

      In accordance with this reasoning, we did not observe a significant correlation between duration of visual deprivation and any of our dependent variables.

      (2 3.2) Small Sample Size<br /> The issue of small sample size remains problematic. The justification that previous studies employed similar sample sizes does not adequately address the limitation in the current study. I strongly suggest that the correlation analyses should not feature prominently in the main manuscript or the abstract, especially if the discussion does not substantially rely on these correlations. Please also revisit the recommendations made in the section on statistical concerns.

      In the revised manuscript, we explicitly mention that our sample size is not atypical for the special group investigated, but that a replication of our results in larger samples would foster their impact. We only explicitly mention correlations that survived stringent testing for multiple comparisons in the main manuscript.

      Given the exploratory nature of the correlations, we have not based the majority of our claims on this analysis.

      (3 3.3) Statistical Concerns<br /> While I appreciate the effort of conducting an independent statistical check, it merely validates whether the reported statistical parameters, degrees of freedom (df), and p-values are consistent. However, this does not address the appropriateness of the chosen statistical methods.

      We did not intend for the statcheck report to justify the methods used for statistics, which we have done in a separate section with normality and homogeneity testing (Supplementary Material S9), and references to it in the descriptions of the statistical analyses (Methods, Page 13, Lines 326-329 and Page 15, Lines 400-402).

      Several points require clarification or improvement:<br /> (4) Correlation Methods: The manuscript does not specify whether the reported correlation analyses are based on Pearson or Spearman correlation.

      The depicted correlations are Pearson correlations. We will add this information to the Methods.

      (5) Confidence Intervals: Include confidence intervals for correlations to represent the uncertainty associated with these estimates.

      We have added the confidence intervals for all measured correlations to the second revision of our manuscript.

      (6) Permutation Statistics: Given the small sample size, I recommend using permutation statistics, as these are exact tests and more appropriate for small datasets.

      Our study focuses on a rare population, with a sample size limited by the availability of participants. Our findings provide exploratory insights rather than make strong inferential claims. To this end, we have ensured that our analysis adheres to key statistical assumptions (Shapiro-Wilk as well as Levene’s tests, Supplementary Material S9), and reported our findings with effect sizes, appropriate caution and context.

      (7) Adjusted P-Values: Ensure that reported Bonferroni corrected p-values (e.g., p > 0.999) are clearly labeled as adjusted p-values where applicable.

      In the revised manuscript, we have changed Figure 4 to say ‘adjusted p,’  which we indeed reported.

      (8) Figure 2C

      Figure 2C still lacks crucial information that the correlation between Glx/GABA ratio and visual acuity was computed solely in the control group (as described in the rebuttal letter). Why was this analysis restricted to the control group? Please provide a rationale.

      Figure 2C depicts the correlation between Glx/GABA+ ratio and visual acuity in the congenital cataract reversal group, not the control group. This is mentioned in the Figure 2 legend, as well as in the main text where the figure is referred to (Page 18, Line 475).

      The correlation analyses between visual acuity and MRS/EEG measures were only performed in the congenital cataract reversal group since the sighed control group comprised of individuals with vision in the normal range; thus this analyses would not make sense. Table 1 with the individual visual acuities for all participants, including the normally sighted controls, shows the low variance in the latter group.  

      For variables in which no apiori group differences in variance were predicted, we performed the correlation analyses across groups (see Supplementary Material S12, S15).

      We have now highlighted these motivations more clearly in the Methods of the revised manuscript (Page 16, Lines 405-410).

      (9 3.4) Interpretation of Aperiodic Signal

      Relying on previous studies to interpret the aperiodic slope as a proxy for excitation/inhibition (E/I) does not make the interpretation more robust.

      How to interpret aperiodic EEG activity has been subject of extensive investigation. We cite studies which provide evidence from multiple species (monkeys, humans) and measurements (EEG, MEG, ECoG), including studies which pharmacologically manipulated E/I balance.

      Whether our findings are robust, in fact, requires a replication study. Importantly, we analyzed the intercept of the aperiodic activity fit as well, and discuss results related to the intercept.

      Quote:

      “(3.4) Interpretation of aperiodic signal:

      - Several recent papers demonstrated that the aperiodic signal measured in EEG or ECoG is related to various important aspects such as age, skull thickness, electrode impedance, as well as cognition. Thus, currently, very little is known about the underlying effects which influence the aperiodic intercept and slope. The entire interpretation of the aperiodic slope as a proxy for E/I is based on a computational model and simulation (as described in the Gao et al. paper).

      Apart from the modeling work from Gao et al., multiple papers which have also been cited which used ECoG, EEG and MEG and showed concomitant changes in aperiodic activity with pharmacological manipulation of the E/I ratio (Colombo et al., 2019; Molina et al., 2020; Muthukumaraswamy & Liley, 2018). Further, several prior studies have interpreted changes in the aperiodic slope as reflective of changes in the E/I ratio, including studies of developmental groups (Favaro et al., 2023; Hill et al., 2022; McSweeney et al., 2023; Schaworonkow & Voytek, 2021) as well as patient groups (Molina et al., 2020; Ostlund et al., 2021).

      - The authors further wrote: We used the slope of the aperiodic (1/f) component of the EEG spectrum as an estimate of E/I ratio (Gao et al., 2017; Medel et al., 2020; Muthukumaraswamy & Liley, 2018). This is a highly speculative interpretation with very little empirical evidence. These papers were conducted with ECoG data (mostly in animals) and mostly under anesthesia. Thus, these studies only allow an indirect interpretation by what the 1/f slope in EEG measurements is actually influenced.

      Note that Muthukumaraswamy et al. (2018) used different types of pharmacological manipulations and analyzed periodic and aperiodic MEG activity in humans, in addition to monkey ECoG (Muthukumaraswamy & Liley, 2018). Further, Medel et al. (now published as Medel et al., 2023) compared EEG activity in addition to ECoG data after propofol administration. The interpretation of our results are in line with a number of recent studies in developing (Hill et al., 2022; Schaworonkow & Voytek, 2021) and special populations using EEG. As mentioned above, several prior studies have used the slope of the 1/f component/aperiodic activity as an indirect measure of the E/I ratio (Favaro et al., 2023; Hill et al., 2022; McSweeney et al., 2023; Molina et al., 2020; Ostlund et al., 2021; Schaworonkow & Voytek, 2021), including studies using scalp-recorded EEG from humans.

      In the introduction of the revised manuscript, we have made more explicit that this metric is indirect (Page 3, Line 91), (additionally see Discussion, Page 24, Lines 644-645, Page 25, Lines 650-657).

      While a full understanding of aperiodic activity needs to be provided, some convergent ideas have emerged. We think that our results contribute to this enterprise, since our study is, to the best of our knowledge, the first which assessed MRS measured neurotransmitter levels and EEG aperiodic activity. “

      (10) Additionally, the authors state:

      "We cannot think of how any of the exploratory correlations between neurophysiological measures and MRS measures could be accounted for by a difference e.g. in skull thickness."

      (11) This could be addressed directly by including skull thickness as a covariate or visualizing it in scatterplots, for instance, by representing skull thickness as the size of the dots.

      We are not aware of any study that would justify such an analysis.

      Our analyses were based on previous findings in the literature.

      Since to the best of our knowledge, no evidence exists that congenital cataracts go together with changes in skull thickness, and that skull thickness might selectively modulate visual cortex Glx/GABA+ but not NAA measures, we decided against following this suggestion.

      Notably, the neurotransmitter concentration reported here is after tissue segmentation of the voxel region. The tissue fraction was shown to not differ between groups in the MRS voxels (Supplementary Material S4). The EEG electrode impedance was lowered to <10 kOhm in every participant (Methods, Page 13, Line 344), and preparation was identical across groups.

      (12 3.5) Problems with EEG Preprocessing and Analysis

      Downsampling: The decision to downsample the data to 60 Hz "to match the stimulation rate" is problematic. This choice conflates subsequent spectral analyses due to aliasing issues, as explained by the Nyquist theorem. While the authors cite prior studies (Schwenk et al., 2020; VanRullen & MacDonald, 2012) to justify this decision, these studies focused on alpha (8-12 Hz), where aliasing is less of a concern compared of analyzing aperiodic signal. Furthermore, in contrast, the current study analyzes the frequency range from 1-20 Hz, which is too narrow for interpreting the aperiodic signal as E/I. Typically, this analysis should include higher frequencies, spanning at least 1-30 Hz or even 1-45 Hz (not 20-40 Hz).

      As previously mentied in the Methods (Page 15 Line 376) and the previous response, the pop_resample function used by EEGLAB applies an anti-aliasing filter, at half the resampling frequency (as per the Nyquist theorem

      https://eeglab.org/tutorials/05_Preprocess/resampling.html). The upper cut off of the low pass filter set by EEGlab prior to down sampling (30 Hz) is still far above the frequency of interest in the current study  (1-20 Hz), thus allowing us to derive valid results.

      Quote:

      “- The authors downsampled the data to 60Hz to "to match the stimulation rate". What is the intention of this? Because the subsequent spectral analyses are conflated by this choice (see Nyquist theorem).

      This data were collected as part of a study designed to evoke alpha activity with visual white-noise, which ranged in luminance with equal power at all frequencies from 1-60 Hz, restricted by the refresh rate of the monitor on which stimuli were presented (Pant et al., 2023). This paradigm and method was developed by VanRullen and colleagues (Schwenk et al., 2020; Vanrullen & MacDonald, 2012), wherein the analysis requires the same sampling rate between the presented frequencies and the EEG data. The downsampling function used here automatically applies an anti-aliasing filter (EEGLAB 2019) .”

      Moreover, the resting-state data were not resampled to 60 Hz. We have made this clearer in the Methods of the second revision (Page 15, Line 367).

      Our consistent results of group differences across all three EEG conditions, thus, exclude any possibility that they were driven by aliasing artifacts.

      The expected effects of this anti-aliasing filter can be seen in the attached Author response image 1, showing an example participant’s spectrum in the 1-30 Hz range (as opposed to the 1-20 Hz plotted in the manuscript), clearly showing a 30-40 dB drop at 30 Hz. Any aliasing due to, for example, remaining line noise, would additionally be visible in this figure (as well as Figure 3) as a peak.

      Author response image 1.

      Power spectral density of one congenital cataract-reversal (CC) participant in the visual stimulation condition across all channels. The reduced power at 30 Hz shows the effects of the anti-aliasing filter applied by EEGLAB’s pop_resample function.

      As we stated in the manuscript, and in previous reviews, so far there has been no consensus on the exact range of measuring aperiodic activity. We made a principled decision based on the literature (showing a knee in aperiodic fits of this dataset at 20 Hz) (Medel et al., 2023; Ossandón et al., 2023), data quality (possible contamination by line noise at higher frequencies) and the purpose of the visual stimulation experiment (to look at the lower frequency range by stimulating up to 60 Hz, thereby limiting us to quantifying below 30 Hz), that 1-20 Hz would be the fit range in this dataset.

      Quote:

      “(3) What's the underlying idea of analyzing two separate aperiodic slopes (20-40Hz and 1-19Hz). This is very unusual to compute the slope between 20-40 Hz, where the SNR is rather low.

      "Ossandón et al. (2023), however, observed that in addition to the flatter slope of the aperiodic power spectrum in the high frequency range (20-40 Hz), the slope of the low frequency range (1-19 Hz) was steeper in both, congenital cataract-reversal individuals, as well as in permanently congenitally blind humans."

      The present manuscript computed the slope between 1-20 Hz. Ossandón et al. as well as Medel et al. (2023) found a “knee” of the 1/f distribution at 20 Hz and describe further the motivations for computing both slope ranges. For example, Ossandón et al. used a data driven approach and compared single vs. dual fits and found that the latter fitted the data better. Additionally, they found the best fit if a knee at 20 Hz was used. We would like to point out that no standard range exists for the fitting of the 1/f component across the literature and, in fact, very different ranges have been used (Gao et al., 2017; Medel et al., 2023; Muthukumaraswamy & Liley, 2018). “

      (13) Baseline Removal: Subtracting the mean activity across an epoch as a baseline removal step is inappropriate for resting-state EEG data. This preprocessing step undermines the validity of the analysis. The EEG dataset has fundamental flaws, many of which were pointed out in the previous review round but remain unaddressed. In its current form, the manuscript falls short of standards for robust EEG analysis. If I were reviewing for another journal, I would recommend rejection based on these flaws.

      The baseline removal step from each epoch serves to remove the DC component of the recording and detrend the data. This is a standard preprocessing step (included as an option in preprocessing pipelines recommended by the EEGLAB toolbox, FieldTrip toolbox and MNE toolbox), additionally necessary to improve the efficacy of ICA decomposition (Groppe et al., 2009).

      In the previous review round, a clarification of the baseline timing was requested, which we added. Beyond this request, there was no mention of the appropriateness of the baseline removal and/or a request to provide reasons for why it might not undermine the validity of the analysis.

      Quote:

      “- "Subsequently, baseline removal was conducted by subtracting the mean activity across the length of an epoch from every data point." The actual baseline time segment should be specified.

      The time segment was the length of the epoch, that is, 1 second for the resting state conditions and 6.25 seconds for the visual stimulation conditions. This has been explicitly stated in the revised manuscript (Page 13, Line 354).”

      Prior work in the time (not frequency) domain on event-related potential (ERP) analysis has suggested that the baselining step might cause spurious effects (Delorme, 2023) (although see (Tanner et al., 2016)). We did not perform ERP analysis at any stage. One recent study suggests spurious group differences in the 1/f signal might be driven by an inappropriate dB division baselining method (Gyurkovics et al., 2021), which we did not perform.

      Any effect of our baselining procedure on the FFT spectrum would be below the 1 Hz range, which we did not analyze.  

      Each of the preprocessing steps in the manuscript match pipelines described and published in extensive prior work. We document how multiple aspects of our EEG results replicate prior findings (Supplementary Material S15, S18, S19), reports of other experimenters, groups and locations, validating that our results are robust.

      We therefore reject the claim of methodological flaws in our EEG analyses in the strongest possible terms.

      Quote:

      “(3.5) Problems with EEG preprocessing and analysis:

      - It seems that the authors did not identify bad channels nor address the line noise issue (even a problem if a low pass filter of below-the-line noise was applied).

      As pointed out in the methods and Figure 1, we only analyzed data from two occipital channels, O1 and O2 neither of which were rejected for any participant. Channel rejection was performed for the larger dataset, published elsewhere (Ossandón et al., 2023; Pant et al., 2023). As control sites we added the frontal channels FP1 and Fp2 (see Supplementary Material S14)

      Neither Ossandón et al. (2023) nor Pant et al. (2023) considered frequency ranges above 40 Hz to avoid any possible contamination with line noise. Here, we focused on activity between 0 and 20 Hz, definitely excluding line noise contaminations (Methods, Page 14, Lines 365-367). The low pass filter (FIR, 1-45 Hz) guaranteed that any spill-over effects of line noise would be restricted to frequencies just below the upper cutoff frequency.

      Additionally, a prior version of the analysis used spectrum interpolation to remove line noise; the group differences remained stable (Ossandón et al., 2023). We have reported this analysis in the revised manuscript (Page 14, Lines 364-357).

      Further, both groups were measured in the same lab, making line noise (~ 50 Hz) as an account for the observed group effects in the 1-20 Hz frequency range highly unlikely. Finally, any of the exploratory MRS-EEG correlations would be hard to explain if the EEG parameters would be contaminated with line noise.

      - What was the percentage of segments that needed to be rejected due to the 120μV criteria? This should be reported specifically for EO & EC and controls and patients.

      The mean percentage of 1 second segments rejected for each resting state condition and the percentage of 6.25 long segments rejected in each group for the visual stimulation condition have been added to the revised manuscript (Supplementary Material S10), and referred to in the Methods on Page 14, Lines 372-373).

      - The authors downsampled the data to 60Hz to "to match the stimulation rate". What is the intention of this? Because the subsequent spectral analyses are conflated by this choice (see Nyquist theorem).

      This data were collected as part of a study designed to evoke alpha activity with visual white-noise, which changed in luminance with equal power at all frequencies from 1-60 Hz, restricted by the refresh rate of the monitor on which stimuli were presented (Pant et al., 2023). This paradigm and method was developed by VanRullen and colleagues (Schwenk et al., 2020; VanRullen & MacDonald, 2012), wherein the analysis requires the same sampling rate between the presented frequencies and the EEG data. The downsampling function used here automatically applies an anti-aliasing filter (EEGLAB 2019) .

      - "Subsequently, baseline removal was conducted by subtracting the mean activity across the length of an epoch from every data point." The actual baseline time segment should be specified.

      The time segment was the length of the epoch, that is, 1 second for the resting state conditions and 6.25 seconds for the visual stimulation conditions. This has now been explicitly stated in the revised manuscript (Page 14, Lines 379-380).

      - "We excluded the alpha range (8-14 Hz) for this fit to avoid biasing the results due to documented differences in alpha activity between CC and SC individuals (Bottari et al., 2016; Ossandón et al., 2023; Pant et al., 2023)." This does not really make sense, as the FOOOF algorithm first fits the 1/f slope, for which the alpha activity is not relevant.

      We did not use the FOOOF algorithm/toolbox in this manuscript. As stated in the Methods, we used a 1/f fit to the 1-20 Hz spectrum in the log-log space, and subtracted this fit from the original spectrum to obtain the corrected spectrum. Given the pronounced difference in alpha power between groups (Bottari et al., 2016; Ossandón et al., 2023; Pant et al., 2023), we were concerned it might drive differences in the exponent values. Our analysis pipeline had been adapted from previous publications of our group and other labs (Ossandón et al., 2023; Voytek et al., 2015; Waschke et al., 2017).

      We have conducted the analysis with and without the exclusion of the alpha range, as well as using the FOOOF toolbox both in the 1-20 Hz and 20-40 Hz ranges (Ossandón et al., 2023). The findings of a steeper slope in the 1-20 Hz range as well as lower alpha power in CC vs SC individuals remained stable. In Ossandón et al., the comparison between the piecewise fits and FOOOF fits led the authors to use the former, as it outperformed the FOOOF algorithm for their data.

      - The model fits of the 1/f fitting for EO, EC, and both participant groups should be reported.

      In Figure 3 of the manuscript, we depicted the mean spectra and 1/f fits for each group.

      In the revised manuscript, we added the fit quality metrics (average R<sup>2</sup> values > 0.91 for each group and condition) (Methods Page 15, Lines 395-396; Supplementary Material S11) and additionally show individual subjects’ fits (Supplementary Material S11). “

      (14) The authors mention:

      "The EEG data sets reported here were part of data published earlier (Ossandón et al., 2023; Pant et al., 2023)." Thus, the statement "The group differences for the EEG assessments corresponded to those of a larger sample of CC individuals (n=38) " is a circular argument and should be avoided."

      The authors addressed this comment and adjusted the statement. However, I do not understand, why not the full sample published earlier (Ossandón et al., 2023) was used in the current study?

      The recording of EEG resting state data stated in 2013, while MRS testing could only be set up by the second half of 2019. Moreover, not all subjects who qualify for EEG recording qualify for being scanned (e.g. due to MRI safety, claustrophobia)

      References

      Bottari, D., Troje, N. F., Ley, P., Hense, M., Kekunnaya, R., & Röder, B. (2016). Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans. Scientific Reports. https://doi.org/10.1038/srep24683

      Colombo, M. A., Napolitani, M., Boly, M., Gosseries, O., Casarotto, S., Rosanova, M., Brichant, J. F., Boveroux, P., Rex, S., Laureys, S., Massimini, M., Chieregato, A., & Sarasso, S. (2019). The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. NeuroImage, 189(September 2018), 631–644. https://doi.org/10.1016/j.neuroimage.2019.01.024

      Delorme, A. (2023). EEG is better left alone. Scientific Reports, 13(1), 2372. https://doi.org/10.1038/s41598-023-27528-0

      Favaro, J., Colombo, M. A., Mikulan, E., Sartori, S., Nosadini, M., Pelizza, M. F., Rosanova, M., Sarasso, S., Massimini, M., & Toldo, I. (2023). The maturation of aperiodic EEG activity across development reveals a progressive differentiation of wakefulness from sleep. NeuroImage, 277. https://doi.org/10.1016/J.NEUROIMAGE.2023.120264

      Gao, R., Peterson, E. J., & Voytek, B. (2017). Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage, 158(March), 70–78. https://doi.org/10.1016/j.neuroimage.2017.06.078

      Groppe, D. M., Makeig, S., & Kutas, M. (2009). Identifying reliable independent components via split-half comparisons. NeuroImage, 45(4), 1199–1211. https://doi.org/10.1016/j.neuroimage.2008.12.038

      Gyurkovics, M., Clements, G. M., Low, K. A., Fabiani, M., & Gratton, G. (2021). The impact of 1/f activity and baseline correction on the results and interpretation of time-frequency analyses of EEG/MEG data: A cautionary tale. NeuroImage, 237. https://doi.org/10.1016/j.neuroimage.2021.118192

      Hill, A. T., Clark, G. M., Bigelow, F. J., Lum, J. A. G., & Enticott, P. G. (2022). Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Developmental Cognitive Neuroscience, 54, 101076. https://doi.org/10.1016/J.DCN.2022.101076

      Maurer, D., Mondloch, C. J., & Lewis, T. L. (2007). Sleeper effects. In Developmental Science. https://doi.org/10.1111/j.1467-7687.2007.00562.x

      McSweeney, M., Morales, S., Valadez, E. A., Buzzell, G. A., Yoder, L., Fifer, W. P., Pini, N., Shuffrey, L. C., Elliott, A. J., Isler, J. R., & Fox, N. A. (2023). Age-related trends in aperiodic EEG activity and alpha oscillations during early- to middle-childhood. NeuroImage, 269, 119925. https://doi.org/10.1016/j.neuroimage.2023.119925

      Medel, V., Irani, M., Crossley, N., Ossandón, T., & Boncompte, G. (2023). Complexity and 1/f slope jointly reflect brain states. Scientific Reports, 13(1), 21700. https://doi.org/10.1038/s41598-023-47316-0

      Molina, J. L., Voytek, B., Thomas, M. L., Joshi, Y. B., Bhakta, S. G., Talledo, J. A., Swerdlow, N. R., & Light, G. A. (2020). Memantine Effects on Electroencephalographic Measures of Putative Excitatory/Inhibitory Balance in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(6), 562–568. https://doi.org/10.1016/j.bpsc.2020.02.004

      Muthukumaraswamy, S. D., & Liley, D. T. (2018). 1/F electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. NeuroImage, 179(November 2017), 582–595. https://doi.org/10.1016/j.neuroimage.2018.06.068

      Ossandón, J. P., Stange, L., Gudi-Mindermann, H., Rimmele, J. M., Sourav, S., Bottari, D., Kekunnaya, R., & Röder, B. (2023). The development of oscillatory and aperiodic resting state activity is linked to a sensitive period in humans. NeuroImage, 275, 120171. https://doi.org/10.1016/J.NEUROIMAGE.2023.120171

      Ostlund, B. D., Alperin, B. R., Drew, T., & Karalunas, S. L. (2021). Behavioral and cognitive correlates of the aperiodic (1/f-like) exponent of the EEG power spectrum in adolescents with and without ADHD. Developmental Cognitive Neuroscience, 48, 100931. https://doi.org/10.1016/j.dcn.2021.100931

      Pant, R., Ossandón, J., Stange, L., Shareef, I., Kekunnaya, R., & Röder, B. (2023). Stimulus-evoked and resting-state alpha oscillations show a linked dependence on patterned visual experience for development. NeuroImage: Clinical, 103375. https://doi.org/10.1016/J.NICL.2023.103375

      Schaworonkow, N., & Voytek, B. (2021). Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Developmental Cognitive Neuroscience, 47. https://doi.org/10.1016/j.dcn.2020.100895

      Schwenk, J. C. B., VanRullen, R., & Bremmer, F. (2020). Dynamics of Visual Perceptual Echoes Following Short-Term Visual Deprivation. Cerebral Cortex Communications, 1(1). https://doi.org/10.1093/TEXCOM/TGAA012

      Tanner, D., Norton, J. J. S., Morgan-Short, K., & Luck, S. J. (2016). On high-pass filter artifacts (they’re real) and baseline correction (it’s a good idea) in ERP/ERMF analysis. Journal of Neuroscience Methods, 266, 166–170. https://doi.org/10.1016/j.jneumeth.2016.01.002

      Vanrullen, R., & MacDonald, J. S. P. (2012). Perceptual echoes at 10 Hz in the human brain. Current Biology. https://doi.org/10.1016/j.cub.2012.03.050

      Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., & Gazzaley, A. (2015). Age-related changes in 1/f neural electrophysiological noise. Journal of Neuroscience, 35(38). https://doi.org/10.1523/JNEUROSCI.2332-14.2015

      Waschke, L., Wöstmann, M., & Obleser, J. (2017). States and traits of neural irregularity in the age-varying human brain. Scientific Reports 2017 7:1, 7(1), 1–12. https://doi.org/10.1038/s41598-017-17766-4

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their efforts. They have pointed out several shortcomings and made very helpful suggestions. Based on their feedback, we have substantially revised the manuscript and feel the paper has been much improved because of it.

      Notable changes are:

      (1) As our model does not contain feed-back connections, the focus of the study is now more clearly communicated to be on feed-forward processes only, with appropriate justifications for this choice added to the Introduction and Discussion sections. Accordingly, the title has been changed to include the term “feed-forward”.

      (2) The old Figure 5 has been removed in favor of reporting correlation scores to the right of the response profiles in other figures.

      (3) We now discuss changes to the network architecture (new Figure 5) and fine-tuning of the hyperparameters (new Figure 6) in the main text instead of only the Supplementary Information.

      (4) The discussion on qualitative versus quantitative analysis has been extended and given its own subsection entitled “On the importance of experimental contrasts and qualitative analysis of the model”.

      Below, we address each point that the reviewers brought up in detail and outline what improvements we have made in the revision to address them.

      Reviewer #1 (Public Review):

      Summary:

      This study trained a CNN for visual word classification and supported a model that can explain key functional effects of the evoked MEG response during visual word recognition, providing an explicit computational account from detection and segmentation of letter shapes to final word-form identification.

      Strengths:

      This paper not only bridges an important gap in modeling visual word recognition, by establishing a direct link between computational processes and key findings in experimental neuroimaging studies, but also provides some conditions to enhance biological realism.

      Weaknesses:

      The interpretation of CNN results, especially the number of layers in the final model and its relationship with the processing of visual words in the human brain, needs to be further strengthened.

      We have experimented with the number of layers and the number of units in each layer. In the previous version of the manuscript, these results could be found in the supplementary information. For the revised version, we have brought some of these results into the main text and discuss them more thoroughly.

      We have added a figure (Figure 5 in the revised manuscript) showing the impact of the number of convolution and fully-connected layers on the response profiles of the layers, as well as the correlation with the three MEG components.

      We discuss the figure in the Results section as follows:

      “Various variations in model architecture and training procedure were evaluated. We found that the number of layers had a large impact on the response patterns produced by the model (Figure 5). The original VGG-11 architecture defines 5 convolution layers and 3 fully connected layers (including the output layer). Removing a convolution layer (Figure 5, top row), or removing one of the fully connected layers (Figure 5, second row), resulted in a model that did exhibit an enlarged response to noisy stimuli in the early layers that mimics the Type-I response. However, such models failed to show a sufficiently diminished response to noisy stimuli in the later layers, hence failing to produce responses that mimic the Type-II or N400m, a failure which also showed as low correlation scores.

      Adding an additional convolution layer (Figure 5, third row) resulted in a model where none of the layer response profiles mimics that of the Type-II response. The Type-II response is characterized by a reduced response to both noise and symbols, but an equally large response to consonant strings, real and pseudo words. However, in the model with an additional convolution layer, the consonant strings evoked a reduced response already in the first fully connected layer, which is a feature of the N400m rather than the Type-II. These kind of subtleties in the response pattern, which are important for the qualitative analysis, generally did not show quantitatively in the correlation scores, as the fully connected layers in this model correlate as well with the Type-II response as models that did show a response pattern that mimics the Type-II.

      Adding an additional fully connected layer (Figure 5, fourth row) resulted in a model with similar response profiles and correlation with the MEG components as the original VGG-11 architecture (Figure 5, bottom row) The N400m-like response profile is now observed in the third fully connected layer rather than the output layer. However, the decrease in response to consonant strings versus real and pseudo words, which is typical of the N400m, is less distinct than in the original VGG-11 architecture.”

      And in the Discussion section:

      “In the model, convolution units are followed by pooling units, which serve the purpose of stratifying the response across changes in position, size and rotation within the receptive field of the pooling unit. Hence, the effect of small differences in letter shape, such as the usage of different fonts, was only present in the early convolution layers, in line with findings in the EEG literature (Chauncey et al., 2008; Grainger & Holcomb, 2009; Hauk & Pulvermüller, 2004). However, the ability of pooling units to stratify such differences depends on the size of their receptive field, which is determined by the number of convolution-and-pooling layers. As a consequence, the response profiles of the subsequent fully connected layers was also very sensitive to the number of convolution-and-pooling layers. The optimal number of such layers is likely dependent on the input size and pooling strategy. Given the VGG-11 design of doubling the receptive field after each layer, combined with an input size of 225×225 pixels, the optimal number of convolution-andpooling layers for our model was five, or the model would struggle to produce response profiles mimicking those of the Type-II component in the subsequent fully connected layers (Figure 5).”

      Reviewer #1 (Recommendations For The Authors):

      (1) The similarity between CNNs and human MEG responses, including type-I (100ms), type-II (150ms), and N400 (400ms) components, looks like separately, lacking the sequential properties among these three components. Is the recurrent neural network (RNN), which can be trained to process and convert a sequential data input into a specific sequential data output, a better choice?

      When modeling sequential effects, meaning that the processing of the current word is influenced by the word that came before it, such as priming and top-down modulations, we agree that such a model would indeed require recurrency in its architecture. However, we feel that the focus of modeling efforts in reading has been overwhelmingly on the N400 and such priming effects, usually skipping over the pixel-to-letter process. So, for this paper, we were keen on exploring more basic effects such as noise and symbols versus letters on the type-I and type-II responses. And for these effects, a feed-forward model turns out to be sufficient, so we can keep the focus of this particular paper on bottom-up processes during single word reading, on which there is already a lot to say.

      To clarify our focus on feed-forward process, we have modified the title of the paper to be:

      “Convolutional networks can model the functional modulation of the MEG responses associated with feed-forward processes during visual word recognition” furthermore, we have revised the Introduction to highlight this choice, noting:

      “Another limitation is that these models have primarily focused on feed-back lexicosemantic effects while oversimplifying the initial feed-forward processing of the visual input.

      […]

      For this study, we chose to focus on modeling the early feed-forward processing occurring during visual word recognition, as the experimental setup in Vartiainen et al. (2011) was designed to demonstrate.

      […]

      By doing so, we restrict ourselves to an investigation of how well the three evoked components can be explained by a feed-forward CNN in an experimental setting designed to demonstrate feed-forward effects. As such, the goal is not to present a complete model of all aspects of reading, which should include feed-back effects, but rather to demonstrate the effectiveness of using a model that has a realistic form of input when the aim is to align the model with the evoked responses observed during visual word recognition.”

      And in the Discussion section:

      “In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation.”

      (2) There is no clear relationship between the layers that signal needs to traverse in the model and the relative duration of the three components in the brain.

      While some models offer a tentative mapping between layers and locations in the brain, none of the models we are aware of actually simulate time accurately and our model is no exception.

      While we provide some evidence that the three MEG components are best modeled with different types of layers, and the type-I becomes somewhere before type-II and N400m is last in our model, the lack of timing information is a weakness of our model we have not been able to address. In our previous version, this already was the main topic of our “Limitations of the model” section, but since this weakness was pointed out by all reviewers, we have decided to widen our discussion of it:

      “One important limitation of the current model is the lack of an explicit mapping from the units inside its layers to specific locations in the brain at specific times. The temporal ordering of the components is simulated correctly, with the response profile matching that of the type-I occurring the layers before those matching the type-II, followed by the N400m. Furthermore, every component is best modeled by a different type of layer, with the type-I best described by convolution-and-pooling, the type-II by fully-connected linear layers and the N400m by a one-hot encoded layer. However, there is no clear relationship between the number of layers the signal needs to traverse in the model to the processing time in the brain. Even if one considers that the operations performed by the initial two convolution layers happen in the retina rather than the brain, the signal needs to propagate through three more convolution layers to reach the point where it matches the type-II component at 140-200 ms, but only through one more additional layer to reach the point where it starts to match the N400m component at 300-500 ms. Still, cutting down on the number of times convolution is performed in the model seems to make it unable to achieve the desired suppression of noise (Figure 5). It also raises the question what the brain is doing during the time between the type-II and N400m component that seems to take so long. It is possible that the timings of the MEG components are not indicative solely of when the feed-forward signal first reaches a certain location, but are rather dictated by the resolution of feed-forward and feedback signals (Nour Eddine et al., 2024).”

      See also our response to the next comment of the Reviewer, in which we dive more into the effect of the number of layers, which could be seen as a manipulation of time.

      (3) I am impressed by the CNN that authors modified to match the human brain pattern for the visual word recognition process, by the increase and decrease of the number of layers. The result of this part was a little different from the author’s expectation; however, the author didn’t explain or address this issue.

      We are glad to hear that the reviewer found these results interesting. Accordingly, we now discuss these results more thoroughly in the main text.

      We have moved the figure from the supplementary information to the main text (Figure 5 in the revised manuscript). And describe the results in the Results section:

      “Various variations in model architecture and training procedure were evaluated. We found that the number of layers had a large impact on the response patterns produced by the model (Figure 5). The original VGG-11 architecture defines 5 convolution layers and 3 fully connected layers (including the output layer). Removing a convolution layer (Figure 5, top row), or removing one of the fully connected layers (Figure 5, second row), resulted in a model that did exhibit an enlarged response to noisy stimuli in the early layers that mimics the Type-I response. However, such models failed to show a sufficiently diminished response to noisy stimuli in the later layers, hence failing to produce responses that mimic the Type-II or N400m, a failure which also showed as low correlation scores.

      Adding an additional convolution layer (Figure 5, third row) resulted in a model where none of the layer response profiles mimics that of the Type-II response. The Type-II response is characterized by a reduced response to both noise and symbols, but an equally large response to consonant strings, real and pseudo words. However, in the model with an additional convolution layer, the consonant strings evoked a reduced response already in the first fully connected layer, which is a feature of the N400m rather than the Type-II. These kind of subtleties in the response pattern, which are important for the qualitative analysis, generally did not show quantitatively in the correlation scores, as the fully connected layers in this model correlate as well with the Type-II response as models that did show a response pattern that mimics the Type-II.

      Adding an additional fully connected layer (Figure 5, fourth row) resulted in a model with similar response profiles and correlation with the MEG components as the original VGG-11 architecture (Figure 5, bottom row) The N400m-like response profile is now observed in the third fully connected layer rather than the output layer. However, the decrease in response to consonant strings versus real and pseudo words, which is typical of the N400m, is less distinct than in the original VGG-11 architecture.”

      We also incorporated these results in the Discussion:

      “However, the ability of pooling units to stratify such differences depends on the size of their receptive field, which is determined by the number of convolution-andpooling layers. This might also explain why, in later layers, we observed a decreased response to stimuli where text was rendered with a font size exceeding the receptive field of the pooling units (Figure 8). Hence, the response profiles of the subsequent fully connected layers was very sensitive to the number of convolution-and-pooling layers. This number is probably dependent on the input size and pooling strategy. Given the VGG11 design of doubling the receptive field after each layer, combined with an input size of 225x225 pixels, the optimal number of convolution-and-pooling layers for our model was five, or the model would struggle to produce response profiles mimicking those of the type-II component in the subsequent fully connected layers (Figure 5).

      […]

      A minimum of two fully connected layers was needed to achieve this in our case, and adding more fully connected layers would make them behave more like the component (Figure 5).”

      (4) Can the author explain why the number of layers in the final model is optimal by benchmarking the brain hierarchy?

      We have incorporated the figure describing the correlation between each model and the MEG components (previously Figure 5) with the figures describing the response profiles (Figures 4 and 5 in the revised manuscript and Supplementary Figures 2-6). This way, we (and the reader) can now benchmark every model qualitatively and quantitatively.

      As we stated in our response to the previous comment, we have added a more thorough discussion on the number of layers, which includes the justification for our choice for the final model. The benchmark we used was primarily whether the model shows the same response patterns as the Type I, Type II and N400 responses, which disqualifies all models with fewer than 5 convolution and 3 fully connected layers. Models with more layers also show the proper response patterns, however we see that there is actually very little difference in the correlation scores between different models. Hence, our justification for sticking with the original VGG11 architecture is that it produces the qualitative best response profiles, while having roughly the same (decently high) correlation with the MEG components. Furthermore, by sticking to the standard architecture, we make it slightly easier to replicate our results as one can use readily available pre-trained ImageNet weights.

      As well as always discussing the correlation scores in tandem with the qualitative analysis, we have added the following statement to the Results:

      “Based on our qualitative and quantitative analysis, the model variant that performed best overall was the model that had the original VGG11 architecture and was preinitialized from earlier training on ImageNet, as depicted in the bottom rows of Figure 4 and Figure 5.”

      Reviewer #2 (Public Review):

      As has been shown over many decades, many potential computational algorithms, with varied model architectures, can perform the task of text recognition from an image. However, there is no evidence presented here that this particular algorithm has comparable performance to human behavior (i.e. similar accuracy with a comparable pattern of mistakes). This is a fundamental prerequisite before attempting to meaningfully correlate these layer activations to human neural activations. Therefore, it is unlikely that correlating these derived layer weights to neural activity provides meaningful novel insights into neural computation beyond what is seen using traditional experimental methods.

      We very much agree with the reviewer that a qualitative analysis of whether the model can explain experimental effects needs to happen before a quantitative analysis, such as evaluating model-brain correlation scores. In fact, this is one of the intended key points we wished to make.

      As we discuss at length in the Introduction, “traditional” models of reading (those that do not rely on deep learning) are not able to recognize a word regardless of exact letter shape, size, and (up to a point) rotation. In this study, our focus is on these low-level visual tasks rather than high-level tasks concerning semantics. As the Reviewer correctly states, there are many potential computational algorithms able to perform these visual task at a human level and so we need to evaluate the model not only on its ability to mimic human accuracy but also on generating a comparable pattern of mistakes. In our case, we need a pattern of behavior that is indicative of the visual processes at the beginning of the reading pipeline. Hence, rather than relying on behavioral responses that are produced at the very end, we chose the evaluate the model based on three MEG components that provide “snapshots” of the reading process at various stages. These components are known to manifest a distinct pattern of “behavior” in the way they respond to different experimental conditions (Figure 2), akin to what to Reviewer refers to as a “pattern of mistakes”. The model was first evaluated on its ability to replicate the behavior of the MEG components in a qualitative manner (Figure 4). Only then do we move on to a quantitative correlation analysis. In this manner, we feel we are in agreement with the approach advocated by the Reviewer.

      In the Introduction, we now clarify:

      “Another limitation is that these models have primarily focused on feed-back lexicosemantic effects while oversimplifying the initial feed-forward processing of the visual input.

      […]

      We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation, as well as humans can, so essentially perfectly, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain.

      […]

      These variations were first evaluated on their ability to replicate the experimental effects in that study, namely that the type-I response is larger for noise embedded words than all other stimuli, the type-II response is larger for all letter strings than symbols, and that the N400m is larger for real and pseudowords than consonant strings. Once a variation was found that could reproduce these effects satisfactorily, it was further evaluated based on the correlation between the amount of activation of the units in the model and MEG response amplitude.”

      To make this prerequisite more clear, we have removed what was previously Figure 5, which showed the correlation between the various models the MEG components out of the context of their response patterns. Instead, these correlation values are now always presented next to the response patterns (Figures 4 and 5, and Supplementary Figures 2-6 in the revised manuscript). This invites the reader to always consider these metrics in relation to one another.

      One example of a substantial discrepancy between this model and neural activations is that, while incorporating frequency weighting into the training data is shown to slightly increase neural correlation with the model, Figure 7 shows that no layer of the model appears directly sensitive to word frequency. This is in stark contrast to the strong neural sensitivity to word frequency seen in EEG (e.g. Dambacher et al 2006 Brain Research), fMRI (e.g. Kronbichler et al 2004 NeuroImage), MEG (e.g. Huizeling et al 2021 Neurobio. Lang.), and intracranial (e.g. Woolnough et al 2022 J. Neurosci.) recordings. Figure 7 also demonstrates that the late stages of the model show a strong negative correlation with font size, whereas later stages of neural visual word processing are typically insensitive to differences in visual features, instead showing sensitivity to lexical factors.

      We are glad the reviewer brought up the topic of frequency balancing, as it is a good example of the importance of the qualitative analysis. Frequency balancing during training only had a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing had a large impact. We now discuss this more explicitly in the revised Discussion section:

      “Overall, we found that a qualitative evaluation of the response profiles was more helpful than correlation scores. Often, a deficit in the response profile of a layer that would cause a decrease in correlation on one condition would be masked by an increased correlation in another condition. A notable example is the necessity for frequency-balancing the training data when building models with a vocabulary of 10 000. Going by correlation score alone, there does not seem to be much difference between the model trained with and without frequency balancing (Figure 4A, fifth row versus bottom row). However, without frequency balancing, we found that the model did not show a response profile where consonant strings were distinguished from words and pseudowords (Figure 4A, fifth row), which is an important behavioral trait that sets the N400m component apart from the Type-II component (Figure 2D). This underlines the importance of the qualitative evaluation in this study, which was only possible because of a straightforward link between the activity simulated within a model to measurements obtained from the brain, combined with the presence of clear experimental conditions.”

      It is true that the model, even with frequency balancing, only captures letter- and bigramfrequency effects and not the word-frequency effects that we know the N400m is sensitive to. Since our model is restricted to feed-forward processes, this finding adds to the evidence that frequency-modulated effects are driven by feed-back effects as modeled by Nour Eddine et al. (2024, doi:10.1016/j.cognition.2024.105755). See also our response to the next comment by the Reviewer where we discuss feed-back connections. We have added the following to the section about model limitations in the revised Discussion:

      “The fact that the model failed to simulate the effects of word-frequency on the N400m (Figure 8), even after frequency-balancing of the training data, is additional evidence that this effect may be driven by feed-back activity, as for example modeled by Nour Eddine et al. (2024).”

      Like the Reviewer, we initially thought that later stages of neural visual word processing would be insensitive to differences in font size. When diving into the literature to find support for this claim, we found only a few works directly studying the effect of font size on evoked responses, but, surprisingly, what we did find seemed to align with our model. We have added the following to our revised Discussion:

      “The fully connected linear layers in the model show a negative correlation with font size. While the N400 has been shown to be unaffected by font size during repetition priming (Chauncey et al., 2008), it has been shown that in the absence of priming, larger font sizes decrease the evoked activity in the 300–500 ms window (Bayer et al., 2012; Schindler et al., 2018). Those studies refer to the activity within this time window, which seems to encompass the N400, as early posterior negativity (EPN). What possibly happens in the model is that an increase in font size causes an initial stronger activation in the first layers, due to more convolution units receiving input. This leads to a better signal-to-noise ratio (SNR) later on, as the noise added to the activation of the units remains constant whilst the amplitude of the input signal increases. A better SNR translates ultimately in less co-activation of units corresponding to orthographic neighbours in the final layers, hence to a decrease in overall layer activity.”

      Another example of the mismatch between this model and the visual cortex is the lack of feedback connections in the model. Within the visual cortex, there are extensive feedback connections, with later processing stages providing recursive feedback to earlier stages. This is especially evident in reading, where feedback from lexical-level processes feeds back to letter-level processes (e.g. Heilbron et al 2020 Nature Comms.). This feedback is especially relevant for the reading of words in noisy conditions, as tested in the current manuscript, as lexical knowledge enhances letter representation in the visual cortex (the word superiority effect). This results in neural activity in multiple cortical areas varying over time, changing selectivity within a region at different measured time points (e.g. Woolnough et al 2021 Nature Human Behav.), which in the current study is simplified down to three discrete time windows, each attributed to different spatial locations.

      We agree with the Reviewer that a full model of reading in the brain must include feed-back connections and share their sentiment that these feed-back processes play an important role and are a fascinating topic to study. The intent for the model presented in our study is very much to be a stepping stone towards extending the capabilities of models that do include such connections.

      However, there is a problem of scale that cannot be ignored.

      Current models of reading that do include feedback connections fall into the category we refer to in the paper as “traditional models” and all only a few layers deep and operate on very simplified inputs, such as pre-defined line segments, a few pixels, or even a list of prerecognized letters. The Heilbron et al. 2020 study that the Reviewer refers to is a good example of such a model. (This excellent and relevant work was somehow overlooked in our literature discussion in the Introduction. We thank the Reviewer for pointing it out to us.) Models incorporating realistic feed-back activity need these simplifications, because they have a tendency to no longer converge when there are too many layers and units. However, in order for models of reading to be able to simulate cognitive behavior such as resolving variations in font size or typeface, or distinguish text from non-text, they need to operate on something close to the pixel-level data, which means they need many layers and units.

      Hence, as a stepping stone, it is reasonable to evaluate a model that has the necessary scale, but lacks the feed-back connections that would be problematic at this scale, to see what it can and cannot do in terms of explaining experimental effects in neuroimaging studies. This was the intended scope of our study. For the revision, we have attempted to make this more clear.

      We have changed the title to be:

      “Convolutional networks can model the functional modulation of the MEG responses associated with feed-forward processes during visual word recognition” and added the following to the Introduction:

      “The simulated environments in these models are extremely simplified, partly due to computational limitations and partly due to the complex interaction of feed-forward and feed-back connectivity that causes problems with convergence when the model grows too large. Consequently, these models have primarily focused on feed-back lexico-semantic effects while oversimplifying the initial feed-forward processing of the visual input. 

      […]

      This rather high level of visual representation sidesteps having to deal with issues such as visual noise, letters with different scales, rotations and fonts, segmentation of the individual letters, and so on. More importantly, it makes it impossible to create the visual noise and symbol string conditions used in the MEG study to modulate the type-I and type-II components. In order to model the process of visual word recognition to the extent where one may reproduce neuroimaging studies such as Vartiainen et al. (2011), we need to start with a model of vision that is able to directly operate on the pixels of a stimulus. We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation with very high accuracy, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain. For this model, we chose to focus on the early feed-forward processing occurring during visual word recognition, as the experimental setup in the MEG study was designed to demonstrate, rather than feed-back effects

      […]

      By doing so, we restrict ourselves to an investigation of how well the three evoked components can be explained by a feed-forward CNN in an experimental setting designed to demonstrate feed-forward effects. > As such, the goal is not to present a complete model of all aspects of reading, which should include feed-back effects, but rather to demonstrate the effectiveness of using a model that has a realistic form of input when the aim is to align the model with the evoked responses observed during visual word recognition.”

      And we have added the following to the Discussion section:

      “In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation. A promising way forward may be to use a network architecture like CORNet (Kubilius et al., 2019), that performs convolution multiple times in a recurrent fashion, yet simultaneously propagates activity forward after each pass. The introduction of recursion into the model will furthermore align it better with traditional-style models, since it can cause a model to exhibit attractor behavior (McLeod et al., 2000), which will be especially important when extending the model into the semantic domain.

      Furthermore, convolution-and-pooling has recently been explored in the domain of predictive coding models (Ororbia & Mali, 2023), a type of model that seems particularly well suited to model feed-back processes during reading (Gagl et al., 2020; Heilbron et al., 2020; Nour Eddine et al., 2024).”

      We also would like to point out to the Reviewer that we did in fact perform a correlation between the model and the MNE-dSPM source estimate of all cortical locations and timepoints (Figure 7B). Such a brain-wide correlation map confirms that the three dipole groups are excellent summaries of when and where interesting effects occur within this dataset.

      The presented model needs substantial further development to be able to replicate, both behaviorally and neurally, many of the well-characterized phenomena seen in human behavior and neural recordings that are fundamental hallmarks of human visual word processing. Until that point, it is unclear what novel contributions can be gleaned from correlating low-dimensional model weights from these computational models with human neural data.

      We hope that our revisions have clarified the goals and scope of this study. The CNN model we present in this study is a small but, we feel, essential piece in a bigger effort to employ deep learning techniques to further enhance already existing models of reading. In our revision, we have extended our discussion where to go from here and outline our vision on how these techniques could help us better model the phenomena the reviewer speaks of. We agree with the reviewer that there is a long way to go, and we are excited to be a part of it.

      In addition to the changes described above, we now end the Discussion section as follows: 

      “Despite its limitations, our model is an important milestone for computational models of reading that leverages deep learning techniques to encompass the entire computational process starting from raw pixels values to representations of wordforms in the mental lexicon. The overall goal is to work towards models that can reproduce the dynamics observed in brain activity observed during the large number of neuroimaging experiments performed with human volunteers that have been performed over the last few decades. To achieve this, models need to be able to operate on more realistic inputs than a collection of predefined lines or letter banks (for example: Coltheart et al., 2001; Heilbron et al., 2020; Laszlo & Armstrong, 2014; McClelland & Rumelhart, 1981; Nour Eddine et al., 2024). We have shown that even without feed-back connections, a CNN can simulate the behavior of three important MEG evoked components across a range of experimental conditions, but only if unit activations are noisy and the frequency of occurrence of words in the training dataset mimics their frequency of use in actual language.”

      Reviewer #3 (Public Review):

      The paper is rather qualitative in nature. In particular, the authors show that some resemblance exists between the behavior of some layers and some parts of the brain, but it is hard to quantitively understand how strong the resemblances are in each layer, and the exact impact of experimental settings such as the frequency balancing (which seems to only have a very moderate effect according to Figure 5).

      The large focus on a qualitative evaluation of the model is intentional. The ability of the model to reproduce experimental effects (Figure 4) is a pre-requisite for any subsequent quantitative metrics (such as correlation) to be valid. The introduction of frequency balancing is a good example of this. As the reviewer points out, frequency balancing during training has only a moderate impact on correlation scores and from that point of view does not seem impactful. However, when we look at the qualitative evaluation, we see that with a large vocabulary, a model without frequency balancing fails to properly distinguish between consonant strings and (pseudo)words (Figure 4, 5th row). Hence, from the point of view of being able to reproduce experimental effects, frequency balancing has a large impact.

      That said, the reviewer is right to highlight the value of quantitative analysis. An important limitation of the “traditional” models of reading that do not employ deep learning is that they operate in unrealistically simplified environments (e.g. input as predefined line segments, words of a fixed length), which makes a quantitative comparison with brain data problematic. The main benefit that deep learning brings may very well be the increase in scale that makes more direct comparisons with brain data possible. In our revision we attempt to capitalize on this benefit more. The reviewer has provided some helpful suggestions for doing so in their recommendations, which we discuss in detail below.

      We have added the following discussion on the topic of qualitative versus quantitative analysis to the Introduction:

      “We sought to construct a model that is able to recognize words regardless of length, size, typeface and rotation, as well as humans can, so essentially perfectly, whilst producing activity that mimics the type-I, type-II, and N400m components which serve as snapshots of this process unfolding in the brain.

      […]

      These variations were first evaluated on their ability to replicate the experimental effects in that study, namely that the type-I response is larger for noise embedded words than all other stimuli, the type-II response is larger for all letter strings than symbols, and that the N400m is larger for real and pseudowords than consonant strings. Once a variation was found that could reproduce these effects satisfactorily, it was further evaluated based on the correlation between the amount of activation of the units in the model and MEG response amplitude.”

      And follow this up in the Discussion with a new sub-section entitled “On the importance of experimental contrasts and qualitative analysis of the model”

      The experiments only consider a rather outdated vision model (VGG).

      VGG was designed to use a minimal number of operations (convolution-and-pooling, fullyconnected linear steps, ReLU activations, and batch normalization) and rely mostly on scale to solve the classification task. This makes VGG a good place to start our explorations and see how far a basic CNN can take us in terms of explaining experimental MEG effects in visual word recognition. However, we agree with the reviewer that it is easy to envision more advanced models that could potentially explain more. In our revision, we expand on the question of where to go from here and outline our vision on what types of models would be worth investigating and how one may go about doing that in a way that provides insights beyond higher correlation values.

      We have included the following in our Discussion sub-sections on “Limitations of the current model and the path forward”:

      “The VGG-11 architecture was originally designed to achieve high image classification accuracy on the ImageNet challenge (Simonyan & Zisserman, 2015). Although we have introduced some modifications that make the model more biologically plausible, the final model is still incomplete in many ways as a complete model of brain function during reading.

      […]

      In this paper we have restricted our simulations to feed-forward processes. Now, the way is open to incorporate convolution-and-pooling principles in models of reading that simulate feed-back processes as well, which should allow the model to capture more nuance in the Type-II and N400m components, as well as extend the simulation to encompass a realistic semantic representation. A promising way forward may be to use a network architecture like CORNet (Kubilius et al., 2019), that performs convolution multiple times in a recurrent fashion, yet simultaneously propagates activity forward after each pass. The introduction of recursion into the model will furthermore align it better with traditional-style models, since it can cause a model to exhibit attractor behavior (McLeod et al., 2000), which will be especially important when extending the model into the semantic domain. Furthermore, convolution-and-pooling has recently been explored in the domain of predictive coding models (Ororbia & Mali, 2023), a type of model that seems particularly well suited to model feed-back processes during reading (Gagl et al., 2020; Heilbron et al., 2020; Nour Eddine et al., 2024).”

      Reviewer #3 (Recommendations For The Authors):

      (1) The method used to select the experimental conditions under which the behavior of the CNN is the most brain-like is rather qualitative (Figure 4). It would have been nice to have a plot where the noisyness of the activations, the vocab size and the amount of frequency balancing are varied continuously, and show how these three parameters impact the correlation of the model layers with the MEG responses.

      We now include this analysis (Figure 6 in the revised manuscript, Supplementary Figures 47) and discuss these factors in the revised Results section:

      “Various other aspects of the model architecture were evaluated which ultimately did not lead to any improvements of the model. The response profiles can be found in the supplementary information (Supplementary Figures 4–7) and the correlations between the models and the MEG components are presented in Figure 6. The vocabulary of the final model (10 000) exceeds the number of units in its fullyconnected layers, which means that a bottleneck is created in which a sub-lexical representation is formed. The number of units in the fully-connected layers, i.e. the width of the bottleneck, has some effect on the correlation between model and brain (Figure 6A), and the amount of noise added to the unit activations less so (Figure 6B). We already saw that the size of the vocabulary, i.e. the number of wordforms in the training data and number of units in the output layer of the model, had a large effect on the response profiles (Figure 4). Having a large vocabulary is of course desirable from a functional point of view, but also modestly improves correlation between model and brain (Figure 6C). For large vocabularies, we found it beneficial to apply frequency-balancing of the training data, meaning that the number of times a word-form appears in the training data is scaled according to its frequency in a large text corpus. However, this cannot be a one-to-one scaling, since the most frequent words occur so much more often than other words that the training data would consist of mostly the top-ten most common words, with less common words only occurring once or not at all. Therefore, we decided to scale not by the frequency 𝑓 directly, but by 𝑓𝑠, where 0 < 𝑠 < 1, opting for 𝑠 = 0.2 for the final model (Figure 6D).”

      (2) It is not clear which layers exactly correspond to which of the three response components. For this to be clearer, it would have been nice to have a plot with all the layers of VGG on the x-axis and three curves corresponding to the correlation of each layer with each of the three response components.

      This is a great suggestion that we were happy to incorporate in the revised version of the manuscript. Every figure comparing the response patterns of the model and brain now includes a panel depicting the correlation between each layer of the model and each of the three MEG components (Figures 4 & 5, Supplementary Figures 2-5). This has given us (and now also the reader) the ability to better benchmark the different models quantitatively, adding to our discussion on qualitative to quantitative analysis.

      (3) It is not clear to me why the authors report the correlation of all layers with the MEG responses in Figure 5: why not only report the correlation of the final layers for N400, and that of the first layers for type-I?

      We agree with the reviewer that it would have been better to compare the correlation scores for those layers which response profile matches the MEG component. While the old Figure 5 has been merged with Figure 4, and now provides the correlations between all the layers and all MEG components, we have taken the Reviewer’s advice and marked the layers which qualitatively best correspond to each MEG component, so the reader can take that into account when interpreting the correlation scores.

      (4) The authors mention that the reason that they did not reproduce the protocol with more advanced vision models is that they needed the minimal setup capable of yielding the desired experiment effect. I am not fully convinced by this and think the paper could be significantly strengthened by reporting results for a vision transformer, in particular to study the role of attention layers which are expected to play an important role in processing higher-level features.

      We appreciate and share the Reviewer’s enthusiasm in seeing how other model architectures would fare when it comes to modeling MEG components. However, we regard modifying the core model architecture (i.e., a series of convolution-and-pooling followed by fully-connected layers) to be out of scope for the current paper.

      One of the key points of our study is to create a model that reproduces the experimental effects of an existing MEG study, which necessitates modeling the initial feed-forward processing from pixel to word-form. For this purpose, a convolution-and-pooling model was the obvious choice, because these operations play a big role in cognitive models of vision in general. In order to properly capture all experimental contrasts in the MEG study, many variations of the CNN were trained and evaluated. This iterative design process concluded when all experimental contrasts could be faithfully reproduced.

      If we were to explore different model architectures, such as a transformer architecture, reproducing the experimental contrasts of the MEG study would no longer be the end goal, and it would be unclear what the end goal should be. Maximizing correlation scores has no end, and there are a nearly endless number of model architectures one could try. We could bring in a second MEG study with experimental contrasts that the CNN cannot explain and a transformer architecture potentially could and set the end goal to explain all experimental effects in both MEG studies. But even if we had access to such a dataset, this would almost double the length of the paper, which is already too long.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Insects and their relatives are commonly infected with microbes that are transmitted from mothers to their offspring. A number of these microbes have independently evolved the ability to kill the sons of infected females very early in their development; this male killing strategy has evolved because males are transmission dead-ends for the microbe. A major question in the field has been to identify the genes that cause male killing and to understand how they work. This has been especially challenging because most male-killing microbes cannot be genetically manipulated. This study focuses on a male-killing bacterium called Wolbachia. Different Wolbachia strains kill male embryos in beetles, flies, moths, and other arthropods. This is remarkable because how sex is determined differs widely in these hosts. Two Wolbachia genes have been previously implicated in male-killing by Wolbachia: oscar (in moth male-killing) and wmk (in fly male-killing). The genomes of some male-killing Wolbachia contain both of these genes, so it is a challenge to disentangle the two.

      This paper provides strong evidence that oscar is responsible for male-killing in moths. Here, the authors study a strain of Wolbachia that kills males in a pest of tea, Homona magnanima. Overexpressing oscar, but not wmk, kills male moth embryos. This is because oscar interferes with masculinizer, the master gene that controls sex determination in moths and butterflies. Interfering with the masculinizer gene in this way leads the (male) embryo down a path of female development, which causes problems in regulating the expression of genes that are found on the sex chromosomes.

      We would like to thank you for evaluating our manuscript.

      Strengths:

      The authors use a broad number of approaches to implicate oscar, and to dissect its mechanism of male lethality. These approaches include: a) overexpressing oscar (and wmk) by injecting RNA into moth eggs, b) determining the sex of embryos by staining female sex chromosomes, c) determining the consequences of oscar expression by assaying sex-specific splice variants of doublesex, a key sex determination gene, and by quantifying gene expression and dosage of sex chromosomes, using RNASeq, and d) expressing oscar along with masculinizer from various moth and butterfly species, in a silkmoth cell line. This extends recently published studies implicating oscar in male-killing by Wolbachia in Ostrinia corn borer moths, although the Homona and Ostrinia oscar proteins are quite divergent. Combined with other studies, there is now broad support for oscar as the male-killing gene in moths and butterflies (i.e. order Lepidoptera). So an outstanding question is to understand the role of wmk. Is it the master male-killing gene in insects other than Lepidoptera and if so, how does it operate?

      We would like to thank you for evaluating our manuscript. Our data demonstrated that Oscar homologs play important roles in male-killing phenotypes in moths and butterflies; however, the functional relevance of wmk remains uncertain. As you noted, whether wmk acts as a male-killing gene in insects such as flies and beetles—or even in certain lepidopteran species—requires further investigation using diverse insect models, which we are eager to explore in future research.

      Weaknesses:

      I found the transfection assays of oscar and masculinizer in the silkworm cell line (Figure 4) to be difficult to follow. There are also places in the text where more explanation would be helpful for non-experts.

      Thank you for your suggestion. We have revised the section on the cell-based experiment. Further, we revised the manuscript to make it accessible to a broader audience. We believe these revisions have significantly improved the clarity and comprehensiveness of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      Wolbachia are maternally transmitted bacteria that can manipulate host reproduction in various ways. Some Wolbachia induce male killing (MK), where the sons of infected mothers are killed during development. Several MK-associated genes have been identified in Homona magnanima, including Hm-oscar and wmk-1-4, but the mechanistic links between these Wolbachia genes and MK in the native host are still unclear.

      In this manuscript, Arai et al. show that Hm-oscar is the gene responsible for Wolbachia-induced MK in Homona magnanima. They provide evidence that Hm-Oscar functions through interactions with the sex determination system. They also found that Hm-Oscar disrupts sex determination in male embryos by inducing female-type dsx splicing and impairing dosage compensation. Additionally, Hm-Oscar suppresses the function of Masc. The manuscript is well-written and presents intriguing findings. The results support their conclusions regarding the diversity and commonality of MK mechanisms, contributing to our understanding of the mechanisms and evolutionary aspects of Wolbachia-induced MK.

      We would like to thank you for evaluating our manuscript.

      Comments on revisions:

      The authors have already addressed the reviewer's concerns.

      We would like to thank you for evaluating our manuscript.

      Reviewer #3 (Public review):

      Summary:

      Overall, this is a clearly written manuscript with nice hypothesis testing in a non-model organism that addresses the mechanism of Wolbachia-mediated male killing. The authors aim to determine how five previously identified male-killing genes (encoded in the prophage region of the wHm Wolbachia strain) impact the native host, Homona magnanima moths. This work builds on the authors' previous studies in which

      (1) they tested the impact of these same wHm genes via heterologous expression in Drosophila melanogaster

      (2) also examined the activity of other male-killing genes (e.g., from the wFur Wolbachia strain in its native host: Ostrinia furnacalis moths).

      Advances here include identifying which wHm gene most strongly recapitulates the male-killing phenotype in the native host (rather than in Drosophila), and the finding that the Hm-Oscar protein has the potential for male-killing in a diverse set of lepidopterans, as inferred by the cell-culture assays.

      We would like to thank you for evaluating our manuscript.

      Strengths:

      Strengths of the manuscript include the reverse genetics approaches to dissect the impact of specific male-killing loci, and use of a "masculinization" assay in Lepidopteran cell lines to determine the impact of interactions between specific masc and oscar homologs.

      We would like to thank you for evaluating our manuscript.

      Weaknesses:

      It is clear from Figure 1 that the combinations of wmk homologs do not cause male killing on their own here. While I largely agree with the author's conclusions that oscar is the primary MK factor in this system, I don't think we can yet rule out that wmk(s) may work synergistically or interactively with oscar in vivo. This might be worth a small note in the discussion. (eg at line 294 'indicating that wmk likely targets factors other than masc." - this could be downstream of the impacts of oscar; perhaps dependent on oscar-mediated impacts on masc first).

      We sincerely appreciate your suggestion. Whilst wmk genes themselves did not exhibit apparent lethal effects on the native host, as you noted, we cannot entirely rule out the possibility that wmk may be involved in male-killing actions, either directly or indirectly assisting the function of Hb-oscar. Following your suggestion, we have added a brief note in the discussion section regarding the interpretation of wmk functions.

      “In addition, Katsuma et al. (2022) reported that the wmk homologs encoded by wFur did not affect the masculinizing function of masc in vitro, indicating that wmk likely targets factors other than masc. Whilst we cannot rule out the possibility that wmk may work synergistically or interactively with oscar in vivo—potentially acting downstream of oscar’s impact—our results strongly suggested that Wolbachia strains have acquired multiple MK genes through evolution.” (lines 287-292)

      Regarding the perceived male-bias in Figure 2a: I think readers might be interpreting "unhatched" as "total before hatching". You could eliminate ambiguity by perhaps splitting the bars into male and female, and then within a bar, coloring by hatched versus unhatched. But this is a minor point, and I think the updated text helps clarify this.

      Thank you for your suggestion. We have accordingly revised the figure 2a. In addition, we have included more detailed information in the first sentence of the section Males are killed mainly at the embryonic stage.

      “The sex of hatched larvae (neonates) and the remaining unhatched embryos was determined by the presence or absence of W chromatin, a condensed structure of the female-specific W chromosome observed during interphase.” (lines 171-173)

      The new Figure 4b looks to be largely redundant with the oscar information in Figure 1a.

      Thank you for your suggestion. We have removed Figure 4b due to its overlap with Figure 1a and have incorporated relevant figure legends into the Figure 1a legend.

      Updated statistical comparisons for the RNA-seq analysis are helpful. However these analyses are based on single libraries (albeit each a pool of many individuals), so this is still a weaker aspect of the manuscript.

      Thank you for your suggestion. As you noted, the use of single libraries (due to the limited number of available individuals, though each includes approximately 50 males and females) may be a potential limitation of this study. However, as demonstrated in the qPCR assay for the Z-linked gene provided in the previous revision, we believe that our data and conclusion—that Wolbachia/ Hb-oscar disrupts dosage compensation by causing the overexpression of Z-linked genes—are well-supported and robust.

      The new information on masc similarity is useful (Fig 4d) - if the authors could please include a heatmap legend for the colors, that would be helpful. Also, please avoid green and red in the same figure when key for interpretation.

      Thank you for your suggestion. We have accordingly included a heatmap legend and revised the colors.

      Figure 1A "helix-turn-helix" is misspelled. ("tern").

      We have revised.

      Recommendations for the authors:

      Comments from the reviewing editor: I would suggest you address the comments of the reviewer on the revised version.

      We have further revised the manuscript to address all the questions, comments and suggestions provided by the reviewers. We believe that the resulting revisions have significantly enhanced the quality and comprehensiveness of our manuscript.

      Reviewer #1 (Recommendations for the authors):

      Thank you for revising this manuscript. I have a few last recommendations:

      - Line 214: re: 'Statistical data are available in the supplementary data file', it would be more helpful to add a few words here that actually summarize the statistical results

      We would like to thank you for your suggestion. We have revised the sentence to describe the overview of the statistical results.

      “RNA-seq analysis revealed that, in Hm-oscar-injected embryos, Z-linked genes (homologs on the B. mori chromosomes 1 and 15) were more expressed in males than in females (Fig. 3a), which was not observed in the GFP-injected group (Fig. 3b). Similarly, as previously reported by Arai et al. (2023a), high levels of Z-linked gene expression were also observed in wHm-t-infected males, but not in NSR males (Fig. 3c,d). The high (i.e., doubled) Z-linked gene expression in both Hm-oscar-expressed and wHm-t-infected males was further confirmed by quantification of the Z-linked Hmtpi gene (Fig. 3e). These trends were statistically supported, with all data available in the supplementary data file.” (lines 205-213)

      - Figure 1 legend: do you mean 'bridged' instead of 'brigged'?

      We have accordingly revise, thank you for the suggestion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Experiments in model organisms have revealed that the effects of genes on heritable traits are often mediated by environmental factors---so-called gene-by-environment (or GxE) interactions. In human genetics, however, where indirect statistical approaches must be taken to detect GxE, limited evidence has been found for pervasive GxE interactions. The present manuscript argues that the failure of statistical methods to detect GxE may be due to how GxE is modelled (or not modelled) by these methods.

      The authors show, via re-analysis of an existing dataset in Drosophila, that a polygenic ‘amplification’ model can parsimoniously explain patterns of differential genetic effects across environments. (Work from the same lab had previously shown that the amplification model is consistent with differential genetic effects across the sexes for several traits in humans.) The parsimony of the amplification model allows for powerful detection of GxE in scenarios in which it pertains, as the authors show via simulation.

      Before the authors consider polygenic models of GxE, however, they present a very clear analysis of a related question around GxE: When one wants to estimate the effect of an individual allele in a particular environment, when is it better to stratify one’s sample by environment (reducing sample size, and therefore increasing the variance of the estimator) versus using the entire sample (including individuals not in the environment of interest, and therefore biasing the estimator away from the true effect specific to the environment of interest)? Intuitively, the sample-size cost of stratification is worth paying if true allelic effects differ substantially between the environment of interest and other environments (i.e., GxE interactions are large), but not worth paying if effects are similar across environments. The authors quantify this trade-off in a way that is both mathematically precise and conveys the above intuition very clearly. They argue on its basis that, when allelic effects are small (as in highly polygenic traits), single-locus tests for GxE may be substantially underpowered.

      The paper is an important further demonstration of the plausibility of the amplification model of GxE, which, given its parsimony, holds substantial promise for the detection and characterization of GxE in genomic datasets. However, the empirical and simulation examples considered in the paper (and previous work from the same lab) are somewhat “best-case” scenarios for the amplification model, with only two environments, and with these environments amplifying equally the effects of only a single set of genes. It would be an important step forward to demonstrate the possibility of detecting amplification in more complex scenarios, with multiple environments each differentially modulating the effects of multiple sets of genes. This could be achieved via simulations similar to those presented in the current manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Wine et al. describe a framework to view the estimation of gene-context interaction analysis through the lens of bias-variance tradeoff. They show that, depending on trait variance and context-specific effect sizes, effect estimates may be estimated more accurately in context-combined analysis rather than in context-specific analysis. They proceed by investigating, primarily via simulations, implications for the study or utilization of gene-context interaction, for testing and prediction, in traits with polygenic architecture. First, the authors describe an assessment of the identification of context-specificity (or context differences) focusing on “top hits” from association analyses. Next, they describe an assessment of polygenic scores (PGSs) that account for context-specific effect sizes, showing, in simulations, that often the PGSs that do not attempt to estimate context-specific effect sizes have superior prediction performance. An exception is a PGS approach that utilizes information across contexts. Strengths:

      The bias-variance tradeoff framing of GxE is useful, interesting, and rigorous. The PGS analysis under pervasive amplification is also interesting and demonstrates the bias-variance tradeoff.

      Weaknesses:

      The weakness of this paper is that the first part -- the bias-variance tradeoff analysis -- is not tightly connected to, i.e. not sufficiently informing, the later parts, that focus on polygenic architecture. For example, the analysis of “top hits” focuses on the question of testing, rather than estimation, and testing was not discussed within the bias-variance tradeoff framework. Similarly, while the PGS analysis does demonstrate (well) the bias-variance tradeoff, the reader is left to wonder whether a bias-variance deviation rule (discussed in the first part of the manuscript) should or could be utilized for PGS construction.

      We thank the editors and the reviewers for their thoughtful critique and helpful suggestions throughout. In our revision, we focused on tightening the relationship between the analytical single variant bias-variance tradeoff derivation and the various empirical analyses that follow.

      We improved discussion of our scope and what is beyond our scope. For example, our language was insufficiently clear if it suggested to the editor and reviewers that we are developing a method to characterize polygenic GxE. Developing a new method that does so (let alone evaluating performance across various scenarios) is beyond the scope of this manuscript.

      Similarly, we clarify that we use amplification only as an example of a mode of GxE that is not adequately characterized by current approaches. We do not wish to argue it is an omnibus explanation for all GxE in complex traits. In many cases, a mixture of polygenic GxE relationships seems most fitting (as observed, for example, in Zhu et al., 2023, for GxSex in human physiology).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      MAJOR COMMENT

      The amplification model is based on an understanding of gene networks in which environmental variables concertedly alter the effects of clusters of genes, or modules, in the network (e.g., if an environmental variable alters the effect of some gene, it indirectly and proportionately alters the effects of genes downstream of that gene in the network---or upstream if the gene acts as a bottleneck in some pathway). It is clear in this model that (i) multiple environmental variables could amplify distinct modules, and (ii) a single environmental variable could itself amplify multiple separate modules, with a separate amplification factor for each module.

      However, perhaps inspired by their previous work on GxSex interactions in humans, the authors’ focus in the present manuscript is on cases where there are only two environments (“control” and “high-sugar diet” in the Drosophila dataset that they reanalyze, and “A” and “B” in their simulations [and single-locus mathematical analysis]), and they consider models where these environments amplify only a single set of genes, i.e., with a single amplification factor. While it is of course interesting that a single-amplification-factor model can generate data that resemble those in the Drosophila dataset that the authors re-analyze, most scenarios of amplification GxE will presumably be more complex. It seems that detecting amplification in these more complex scenarios using methods such as the authors do in their final section will be correspondingly more difficult. Indeed, in the limit of sufficiently many environmental variables amplifying sufficiently many modules, the scenario would resemble one of idiosyncratic single-locus GxE which, as the authors argue, is very difficult to detect. That more complex scenarios of amplification, with multiple environments separately amplifying multiple modules each, might be difficult to detect statistically is potentially an important limitation to the authors’ approach, and should be tested in their simulations.

      We agree that characterizing GxE when there is a mixture of drivers of context-dependency is difficult. Developing a method that does so across multiple (and perhaps not pre-defined) contexts is of high interest to us but beyond the scope of the current manuscript

      We note that for GxSex, modeling this mixture does generally improve phenotypic prediction, and more so in traits where we infer amplification as a major mode of GxE.

      MINOR COMMENTS

      Lines 88-90: “This estimation model is equivalent to a linear model with a term for the interaction between context and reference allele count, in the sense that context-specific allelic effect estimators have the same distributions in the two models.”

      Does this equivalence require the model with the interaction term also to have an interaction term for the intercept, i.e., the slope on a binary variable for context (since the generative model in Eq. 1 allows for context-specific intercepts)?

      It does require an interaction term for the intercept. This is e_i (and its effect beta_E) in Eq. S2 (line 70 of the supplement).

      Lines 94-96: Perhaps just a language thing, but in what sense does the estimation model described in lines 92-94 “assume” a particular distribution of trait values in the combined sample? It’s just an OLS regression, and one can analyze its expected coefficients with reference to the generative model in Eq. 1, or any other model. To say that it “assumes” something presupposes its purpose, which is not clear from its description in lines 92-94.

      We corrected “assume” to “posit”.

      Lines 115-116: It should perhaps be noted that the weights wA and wB need not sum to 1.

      Indeed; it is now explicitly stated.

      Lines 154-160: I think the role of r could be made even clearer by also discussing why, when VA>>VB, it is better to use the whole-sample estimate of betaA than the sample-A-specific estimate (since this is a more counterintuitive case than the case of VA<<VB discussed by the authors).

      This is addressed in lines 153-154, stating: “Typically, this (VA<<VB) will also imply that the additive estimator is greatly preferable for estimating β_B , as β_B will be extremely noisy”

      Line 243 and Figure 4 caption: The text states that the simulated effects in the high-sugar environment are 1.1x greater than those in the control environment, while the caption states that they are 1.4x greater.

      We have corrected the text to be consistent with our simulations.

      TYPOS/WORDING

      Line 14: “harder to interpret” --> “harder-to-interpret”

      Line 22: We --> we

      Line 40: “as average effect” -> “as the average effect”?

      Line 57: “context specific” --> “context-specific”

      Line 139: “re-parmaterization” --> “re-parameterization”

      Lines 140, 158, 412: “signal to noise” --> “signal-to-noise”

      Figure 3C,D: “pule rate” --> “pulse rate”

      The caption of Figure 3: “conutinous” --> “continuous”

      Line 227: “a variant may fall” --> “a variant may fall into”

      Line 295: “conferring to more GxE” --> “conferring more GxE” or “corresponding to more GxE”? This is very pedantic, but I think “bias-variance” should be “bias--variance” throughout, i.e., with an en-dash rather than a hyphen.

      We have corrected all of the above typos.

      Reviewer #2 (Recommendations For The Authors):

      (This section repeats some of what I wrote earlier).

      - First polygenic architecture part: the manuscript focuses on “top hits” in trying to identify sets of variants that are context-specific. This “top hits” approach seems somewhat esoteric and, as written, not connected tightly enough to the bias-variance tradeoff issue. The first section of the paper which focuses on bias-variance trade-off mostly deals with estimation. The “top hits” section deals with testing, which introduces additional issues that are due to thresholding. Perhaps the authors can think of ways to make the connection stronger between the bias-variance tradeoff part to the “top hits” part, e.g., by introducing testing earlier on and/or discussion estimation in addition to testing in the “top hits” part of the manuscript. The second polygenic architecture part: polygenic scores that account for interaction terms. Here the authors focused (well, also here) on pervasive amplification in simulations. This part combines estimation and testing (both the choice of variants and their estimated effects are important). In pervasive amplification the idea is that causal variants are shared, the results may be different than in a model with context-specific effects and variant selection may have a large impact. Still, I think that these simulations demonstrate the idea developed in the bias-variance tradeoff part of the paper, though the reader is left to wonder whether a bias-variance decision rule should or could be utilized for PGS construction.

      In both of these sections we discuss how the consideration of polygenic GxE patterns alters the conclusions based on the single-variant tradeoff. In the “top hits” section, we show that single-variant classification itself, based on a series of marginal hypothesis tests alone, can be misleading. The PGS prediction accuracy analysis shows that both approaches are beaten by the polygenic GxE estimation approach. Intuitively, this is because the consideration of polygenic GxE can mitigate both the bias and variance, as it leverages signals from many variants.

      We agree that the links between these sections of the paper were not sufficiently clear, and have added signposting to help clarify them (lines 176-180; lines 275-277; lines 316-321).

      - Simulation of GxDiet effects on longevity: the methods of the simulation are strange, or communicated unclearly. The authors’ report (page 17) poses a joint distribution of genetic effects (line 439), but then, they simulated effect estimates standard errors by sampling from summary statistics (line 445) rather than simulated data and then estimating effect and effect SE. Why pose a true underlying multivariate distribution if it isn’t used?

      We rewrote the Methods section “Simulation of GxDiet effects on longevity in Drosophila to make our simulation approach clearer (lines 427-449). We are indeed simulating the true effects from the joint distribution proposed. However, in order to mimic the noisiness of the experiment in our simulations, we sample estimated effects from the true simulated effects, with estimation noise conferring to that estimated in the Pallares et al. dataset (i.e., sampling estimation variances from the squares of empirical SEs).

      - How were the “most significantly associated variants” selected into the PGS in the polygenic prediction part? Based on a context-specific test? A combined-context test of effect size estimates?

      For the “Additive” and “Additive ascertainment, GxE estimation” models (red and orange in Fig. 5, respectively), we ascertain the combined-context set. For the “GxE” and “polygenic GxE” (green and blue in Fig. 5, respectively) models, we ascertain in a context-specific test. We now state this explicitly in lines 280-288 and lines 507-526.

      - As stated, I find the conclusion statement not specific enough in light of the rest of the manuscript. “the consideration of polygenic GxE trends is key” - this is very vague. What does it mean “to consider polygenic GxE trends” in the context of this paper? I can’t tell. “The notion that complex trait analyses should combine observations at top associated loci” - I don’t think the authors really refer to combining “observations”, rather perhaps combine information from top associated loci. But this does not represent the “top hits” approach that merely counts loci by their testing patterns. “It may be a similarly important missing piece...” What does “it” refer to? The top loci? What makes it an important missing piece?

      We rewrote the conclusion paragraph to address these concerns (lines 316-321).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      […] Overall, this is an important paper that demonstrates that one model for transgenerational inheritance in C. elegans is not reproducible. This is important because it is not clear how many of the reported models of transgenerational inheritance reported in C. elegans are reproducible. The authors do demonstrate a memory for F1 embryos that could be a maternal effect, and the authors confirm that this is mediated by a systemic small RNA response. There are several points in the manuscript where a more positive tone might be helpful.

      We would like to correct the statement made in the second to last sentence. The demonstration of an F1 response to PA14 was first reported by Moore et al., (2019) and then by Pereira et al., (2020) using a different behavioral assay. We merely confirmed these results in our hands, and confirmed the observation, first reported by Kaletsky et al., (2020), that sid-1 and sid-2 are required for this F1 response; although we did find that sid-1 and sid-2 are not required for the PA14-induced increase in daf-7p::gfp expression in ASI neurons in the F1 progeny of trained adults, which had not been addressed in the published work.

      Yes, the intergenerational F1 response could be a maternal effect, but the in utero F1 embryos and their precursor germ cells were directly exposed to PA14 metabolites and toxins (non-maternal effect) as well as any parental response, whether mediated by small RNAs, prions, hormones, or other unknown information carriers. While the F1 aversion response does require sid-1 and sid-2, we would not presume that the substrate is therefore an RNA molecule, particularly because the systemic RNAi response supported by sid-1 and sid-2 is via long double-stranded RNA. To date, no evidence suggests that either protein transports small RNAs, particularly single-stranded RNAs.

      Strengths:

      The authors note that the high copy number daf-7::GFP transgene used by the Murphy group displayed variable expression and evidence for somatic silencing or transgene breakdown in the Hunter lab, as confirmed by the Murphy group. The authors nicely use single copy daf-7::GFP to show that neuronal daf-7::GFP is elevated in F1 but not F2 progeny with regards to the memory of PA14 avoidance, speaking to an intergenerational phenotype.

      The authors nicely confirm that sid-1 and sid-2 are generally required for intergenerational avoidance of F1 embryos of moms exposed to PA14. However, these small RNA proteins did not affect daf-7::GFP elevation in the F1 progeny. This result is unexpected given previous reports that single copy daf-7::GFP is not elevated in F1 progeny of sid mutants. Because the Murphy group reported that daf-7 mutation abolishes avoidance for F1 progeny, this means that the sid genes function downstream of daf-7 or in parallel, rather than upstream as previously suggested.

      The published report (Moore et al., 2019) shows only multicopy daf-7p::gfp results and does not address the daf-7p::gfp response in sid-1 or sid-2 mutants. Thus, our discovery that systemic RNAi, exogenous RNAi, and heritable RNAi mutants don’t disrupt elevated daf-7p::gfp in ASI neurons in the F1 progeny of PA14 trained P0’s is only unexpected with respect to the published models (Moore et al., 2019, Kaletsky et al., 2020).

      The authors studied antisense small RNAs that change in Murphy data sets, identifying 116 mRNAs that might be regulated by sRNAs in response to PA14. Importantly, the authors show that the maco-1 gene, putatively targeted by piRNAs according to the Kaletsky 2020 paper, displays few siRNAs that change in response to PA14. The authors conclude that the P11 ncRNA of PA14, which was proposed to promote interkingdom RNA communication by the Murphy group, is unlikely to affect maco-1 expression by generating sRNAs that target maco-1 in C. elegans. The authors define 8 genes based on their analysis of sRNAs and mRNAs that might promote resistance to PA14, but they do not further characterize these genes' role in pathogen avoidance. The Murphy group might wish to consider following up on these genes and their possible relationship with P11.

      Weaknesses:

      This very thorough and interesting manuscript is at times pugnacious.

      We reiterate that we never claimed that Moore et al., (2019) did not obtain their reported results. We simply stated that we could not replicate their results using the published methods and then failed in our search to identify variable(s) that might account for our results. In revising the manuscript, we have striven to make clear, unmuddied statements of facts and state that future investigations may provide independent evidence that supports the original claims and explains our divergent results.

      Please explain more clearly what is High Growth media for E. coli in the text and methods, conveying why it was used by the Murphy lab, and if Normal Growth or High Growth is better for intergenerational heritability assays.

      We added the standard recipes and the following explanations in the methods section to the revised text.

      “NG plates minimally support OP50 growth, resulting in a thin lawn that facilitates visualization of larvae and embryos. HG plates (8X more peptone) support much higher OP50 growth, resulting in a thick bacterial lawn that supports larger worm populations.”

      We have also included the following text in our presentation and discussion of the effects of growth conditions on worm choice in PA14 vs OP50 choice assays.

      “Furthermore, because OP50 pathogenicity is enhanced by increased E. coli nutritive conditions (Garsin et al., 2003, Shi et al., 2006), the growth of F1-F4 progeny on High Growth (HG) plates (Moore et al., 2019; 2021b), which contain 8X more peptone than NG plates and therefore support much higher OP50 growth levels, immediately prior to the F1-F4 choice assays may further contribute to OP50 aversion among the control animals.”

      We don’t know enough to claim that HG or NG media is better than the other for intergenerational assays, but they are different. Thus, switching between the two in a multigenerational experiment likely introduces unknown variability.

      Reviewer #2 (Public Review):

      This paper examines the reproducibility of results reported by the Murphy lab regarding transgenerational inheritance of a learned avoidance behavior in C. elegans. It has been well established by multiple labs that worms can learn to avoid the pathogen pseudomonas aeruginosa (PA14) after a single exposure. The Murphy lab has reported that learned avoidance is transmittable to 4 generations and dependent on a small RNA expressed by PA14 that elicits the transgenerational silencing of a gene in C. elegans. The Hunter lab now reports that although they can reproduce inheritance of the learned behavior by the first generation (F1), they cannot reproduce inheritance in subsequent generations.

      This is an important study that will be useful for the community. Although they fail to identify a "smoking gun", the study examines several possible sources for the discrepancy, and their findings will be useful to others interested in using these assays. The preference assay appears to work in their hands in as much as they are able to detect the learned behavior in the P0 and F1 generations, suggesting that the failure to reproduce the transgenerational effect is not due to trivial mistakes in the protocol. An obvious reason, however, to account for the differing results is that the culture conditions used by the authors are not permissive for the expression of the small RNA by PA14 that the MUrphy lab identified as required for transgenerational inheritance. It would seem prudent for the authors to determine whether this small RNA is present in their cultures, or at least acknowledge this possibility.

      We thank the reviewer for raising this issue and have added the following statement to this effect in the revised manuscript.

      “We note that previous bacterial RNA sequence analysis identified a small non-coding RNA called P11 whose expression correlates with bacterial growth conditions that induce heritable avoidance (Kaletsky et al., 2020). Critically, C. elegans trained on a PA14 ΔP11 strain (which lacks this small RNA) still learn to avoid PA14, but their F1 and F2-F4 progeny fail to show an intergenerational or transgenerational response (Figure 3L in Kaletsky et al., 2020). The fact that we observed an intergenerational (F1) avoidance response is evidence that our PA14 growth conditions induce P11 expression.”

      We believe that this addresses the concern raised here.

      The authors should also note that their protocol was significantly different from the Murphy protocol (see comments below) and therefore it remains possible that protocol differences cumulatively account for the different results.

      As suggested below, we have added to the supplemental documents the protocol we followed for the aversion assay. In our view, this document shows that our adjustments to the core protocol were minor. Furthermore, where possible, these adjustments were explicitly tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and presented in the manuscript.

      To discover the source(s) of discrepancy between our results and the published results we subsequently introduced variations to this core protocol to exclude likely variables (worm and bacteria growth temperatures, assay conditions, worm handling methods, bacterial culture and storage conditions, and some minor developmental timing issues). Again, where possible, the effect of variations was tested in side-by-side experiments for both the aversion assay and the daf-7p::gfp expression assay and were presented in or have now been added to the manuscript.

      It remains possible that we misunderstood the published Murphy lab protocols, but we were highly motivated to replicate the results so we could use these assays to investigate the reported RNAi-pathway dependent steps, thus we read every published version with extreme care.

      Reviewer #3 (Public Review):

      […] Strengths:

      (1) The authors provide a thorough description of their methods, and a marked-up version of a published protocol that describes how they adapted the protocol to their lab conditions. It should be easy to replicate the experiments.

      As noted above in response to a suggestion by reviewer #2, we have replaced the annotated published protocol with the protocol that we followed. This will aid other groups' attempts to replicate our experimental conditions.

      (2) The authors test the source of bacteria, growth temperature (of both C. elegans and bacteria), and light/dark husbandry conditions. They also supply all their raw data, so that the sample size for each testing plate can be easily seen (in the supplementary data). None of these variations appears to have a measurable effect on pathogen avoidance in the F2 generation, with all but one of the experiments failing to exhibit learned pathogen avoidance.

      We note that the parallel analysis of daf-7p::gfp expression in ASI neurons was also tested for several of these conditions and also failed to replicate the published findings.

      (3) The small RNA seq and mRNA seq analysis is well performed and extends the results shown in the original paper. The original paper did not give many details of the small RNA analysis, which was an oversight. Although not a major focus of this paper, it is a worthwhile extension of the previous work.

      (4) It is rare that negative results such as these are accessible. Although the authors were unable to determine the reason that their results differ from those previously published, it is important to document these attempts in detail, as has been done here. Behavioral assays are notoriously difficult to perform and public discourse around these attempts may give clarity to the difficulties faced by a controversial field.

      Thank you for your support. Choosing to pursue publication of these negative results was not an easy decision, and we thank members of the community for their support and encouragement.

      Weaknesses:

      (1) Although the "standard" conditions have been tested over multiple biological replicates, many of the potential confounders that may have altered the results have been tested only once or twice. For example, changing the incubation temperature to 25{degree sign}C was tested in only two biological replicates (Exp 5.1 and 5.2) - and one of these experiments actually resulted in apparent pathogen avoidance inheritance in the F2 generation (but not in the F1). An alternative pathogen source was tested in only one biological replicate (Exp 3). Given the variability observed in the F2 generation, increasing biological replicates would have added to the strengths of the report.

      We agree that our study was not exhaustive in our exploration of variables that might be interfering with our ability to detect F2 avoidance. We also note that some of these variables also failed (with many more independent experiments) to induce elevated daf-7p::gfp expression in ASI neurons in F2 progeny. Our goal was not to show that variation in some growth or assay condition would generate reproducible negative results, but the exploration was designed to tweak conditions to enable detection of a robust F2 response. Given the strength of the data presented in Moore et al., (2019) we expected that adjustment of the problematic variable would produce positive results apparent in a single replicate, which could then be followed up. If we had succeeded, then we would have documented the conditions that enabled robust F2 inheritance and would have explored molecular mechanisms that support this important but mysterious process.

      (2) A key difference between the methods used here and those published previously, is an increase in the age of the animals used for training - from mostly L4 to mostly young adults. I was unable to find a clear example of an experiment when these two conditions were compared, although the authors state that it made no difference to their results.

      We can state firmly that the apparent time delay did not affect P0 learned avoidance (new Figure S1) or, as documented in Table S1, daf-7p::gfp expression in ASI neurons. In our experience, training mostly L4’s on PA14 frequently failed to produce sufficient F1 embryos for both F1 avoidance assays or daf-7p::gfp measurements in ASI neurons and collection of F2 progeny. Indeed, in early attempts to detect heritable PA14 aversion, trained P0 and F1 progeny were not assayed in order to obtain sufficient F2’s for a choice assay. These animals failed to display aversion, but without evidence of successful P0 training or an F1 intergenerational response this was deemed a non-fruitful trouble-shooting approach. We have added supplemental Figure S1 which presents P0 choice assay results from experiments using younger trained animals that failed to produce sufficient F1’s to continue the inheritance experiments.

      The different timing at the start of training between the two protocols may reflect the age of the recovered bleached P0 embryos. It is reasonable to assume that bleaching day 1 adults vs day 2 or 3 adults from the P-1 population could shift the average age of recovered P0 embryos by several hours. The Murphy protocol only states that P0 embryos were obtained by bleaching healthy adults. Regardless, if the hypothesis entertained here is true, that a several hour difference in larval/adult age during 24 hours of training affects F2 inheritance of learned aversion but does not affect P0 learned avoidance, then we would argue that this paradigm for heritable learned avoidance, as described in Moore et al., (2019, 2021), is not sufficiently robust for mechanistic investigations.

      (3) The original paper reports a transgenerational avoidance effect up to the F5 generation. Although in this work the authors failed to see avoidance in the F2 generation, it would have been prudent to extend their tests for more generations in at least a couple of their experiments to ensure that the F2 generation was not an aberration (although this reviewer acknowledges that this seems unlikely to be the case).

      We would point out that we also failed to robustly replicate the F2 response in the daf-7p::gfp expression assays. An F2-specific aberration that affects two different assays seems quite unlikely, and it remains unclear how we would interpret a positive result in F3 and F4 generations without a positive result in the F2 generation. Were we to further extend these investigations, we believe that exploration of additional culture conditions would warrant higher priority than extension of our results to the F3 and F4 generations.

      Reviewing Editor Comments:

      The reviewers' suggestions for improving the manuscript were mostly minor, to change the wording in some places and to add some more explanation regarding the methods.

      What should be highlighted in the section on OP50 growth conditions is that the initial preference for PA14 in the Murphy lab has also been observed by multiple other labs (Bargmann, Kim, Zhang, Abbalay). The fact that this preference was not observed by the Hunter lab is one of several indicators of subtle differences in the environment that might add up to explain the differences in results.

      We agree that subtle known and unknown differences in OP50 and PA14 culture conditions can have measurable effects on the detection of PA14 attraction/aversion relative to OP50 attraction/aversion that could obscure or create the appearance of heritable effects between generations. We have added (see below) to the text a fuller description of the variability in the initial or naive preference observed in different laboratories using similar or variant 2-choice assays and culture conditions. It is worth emphasizing that direct comparison of the OP50 growth conditions specified in Moore et al., (2021) frequently revealed a much larger effect on the naïve choice index than is reported between labs (Figure 4).  

      “Naïve (OP50 grown) worms often show a bias towards PA14 in choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al., 2020; Lalsiamthara and Aballay, 2022). This response, rather than representing an innate attraction to PA14, likely reflects the context of the worm's recent growth on OP50, a mild C. elegans pathogen (Garigan et al., 2002; Garsin et al., 2003; Shi et al., 2006). Thus, the naïve worms presented with a choice between a recently experienced mild pathogen (OP50) and a novel food choice (PA14) initially choose the novel food instead of the known mild pathogen (OP50 aversion).

      In line with our results, some other groups have also reported higher naïve choice index scores (Lee et al., 2017). This variability in naïve choice may reflect differences in growth conditions of either the OP50 or PA14 bacteria. In addition, we note that among the studies that show naïve worm attraction to Pseudomonas (OP50 aversion) there are extensive methodological differences from the methods in Moore et al., (2019; 2021b), including differences in bacterial growth temperature, incubation time, whether the bacteria is diluted or concentrated prior to placement on the choice plates, the concentration of peptone in the choice plates, the length of the choice assay, and the inclusion of sodium azide in the choice assays (Zhang et al., 2005; Ha et al., 2010; Moore et al., 2019; Pereira et al 2020; Lalsiamthara and Aballay, 2022). Thus, the cause of the variability across published reports is not clear.”

      Overall, an emphasis on the absence of robustness of the reported results, rather than failure to reproduce them (which can always have many reasons), is appropriate.

      We agree that an emphasis on robustness is appropriate and have modified the text throughout the manuscript to shift the emphasis to absence of robustness. This includes a change to the manuscript title, which is now, “Reported transgenerational responses to Pseudomonas aeruginosa in C. elegans are not robust”

      A significant experimental addition would be some attempts to determine whether the bacterial PA14 pathogen in the authors' lab produces the P11 small RNA, which has been proposed to have a causal role in initiating the previously reported transgenerational inheritance.

      We acknowledge in the revised manuscript that a subsequent publication (Kaletsky et al., 2020) identified a correlation between PA14 training conditions that induced transgenerational memory and the expression of P11, a P. aeruginosa small non-coding RNA (see our response above to Reviewer #2’s similar query). While testing for the presence of P11 in Harvard culture conditions would be an important assay in any study whose purpose was to investigate the proposed P11-mediated mechanism underlying the transgenerational responses reported by the Murphy Lab, our goal was rather to replicate the robust transgenerational (F2) responses to PA14 training and then to investigate in more detail how sid-1 and sid-2 contribute to transgenerational epigenetic inheritance. Neither sid-1 nor sid-2 are predicted to transport small RNAs or single-stranded RNAs, thus testing for the presence of P11 is less relevant to our goals. Regardless, we note that Figure 3L in Kaletsky et al., (2020) showed that PA14 ΔP11 bacteria failed to induce an F1 avoidance response. Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression.

      Reviewer #1 (Recommendations For The Authors):

      The abstract could be more positive by concluding that 'We conclude that this example of transgenerational inheritance lacks robustness but instead reflects an example of small RNA-mediated intergenerational inheritance.'

      As recommended, we have added additional clarifying information to the abstract and moderated the conclusion sentence.

      “We did confirm that the dsRNA transport proteins SID-1 and SID-2 are required for the intergenerational (F1) inheritance of pathogen avoidance, but not for the F1 inheritance of elevated daf-7 expression. Furthermore, our reanalysis of RNA seq data provides additional evidence that this intergenerational inherited PA14 response may be mediated by small RNAs.”

      “We conclude that this example of transgenerational inheritance lacks robustness, confirm that the intergenerational avoidance response, but not the elevated daf-7p::gfp expression in F1 progeny, requires sid-1 and sid-2, and identify candidate siRNAs and target genes that may mediate this intergenerational response.”

      Differential expression of sRNAs or mRNAs might be better understood quantitatively by presenting data in scatterplots (Reed and Montgomery 2020) rather than in volcano plots.

      We agree and have modified Figure 6A and 6B.

      This statement in the main text might be unnecessary, as it affects the tenor of the conclusion of this significant manuscript. 'We note that none of the raw data for the published figures and unpublished replicate experiments . . . this hampered our ability to fully compare'.

      We have rewritten this paragraph to focus on our goal: to identify the source of the discrepancy between our results and the published results. We considered discarding this statement but ultimately decided that our inability to directly compare our data to that of previously published work is a shortcoming of our study that deserves to be acknowledged and explained.

      “Ideally, we would have compared our results with the published results (Moore et al., 2019), to possibly identify additional experimental parameters for further investigation; for example, a quantitative comparison of naïve choice in the P0 and F1 generations could help to determine the role of bacterial growth in the choice assay response. However, none of the raw data for the published figures and unpublished replicate experiments (Moore et al., 2019) were available on the publisher’s website or provided upon request to the corresponding author. In the absence of a quantitative comparison, it remains possible that an explanation for the discrepancies between our results and those of Moore et al., (2019) has been overlooked.”

      The final sentence of the Discussion could be tempered and more positive by stating 'Thus independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be conducted within the C. elegans community'.

      Thank you. The suggested sentence nicely captures our intention. We now use it, almost verbatim, as our final sentence.

      “Thus, independent reproducibility is of paramount concern, and we have tried to be completely transparent as a model for how heritability research should be presented within the C. elegans community.”

      Reviewer #2 (Recommendations For The Authors):

      Specific comments:

      (1) Protocol: It is difficult to assess from the Methods the exact protocol used by the authors to assay food preference. The annotated Murphy protocol is not sufficient. The authors should provide their own protocol - a detailed lab-ready protocol where every step is outlined, and any steps that deviate from the Murphy lab protocol are called out.

      Thank you for this excellent suggestion. We now include a protocol that documents the precise steps, timings, and controls that we followed (S1_aversion_protocol). We also include footnotes to both explain the reasons behind particular steps and to document known differences to the published protocol. Given the thoroughness of this suggested approach, we have thus removed the annotated version of Moore et al., (2021) from the revised submission.

      (2) The authors imply in the methods that, unlike the Murphy lab, they did NOT use azide in the assay, and instead used 4oC to "freeze" the worms in place - It is not clear whether this method was used throughout all their assays and whether this could be a source of the difference. This change is NOT indicated in the annotated Murphy lab STAR Protocol they provide in the supplement.

      We apologize for the lack of clarity. Concerned that azide may be interfering with our ability to detect heritable silencing we tested and then used cold-induced rigor to preserve worm choice in some choice assay results. This was not a change to the core protocol, but a variation used in some assays to determine whether azide could reduce our ability to detect heritable behavioral responses to PA14 exposure. As Moore et al., (2021) show, too much azide can affect measurement of worm choice. Too little or ineffective azide also can affect measurement of worm choice. Azide also affects bacteria (both OP50 and PA14), which could affect the production of molecules that attract or repel worms, much like performing the assay in light vs dark conditions can influence the measured choice index.

      In our hands, cold-induced rigor worked well and within biological replicates was indistinguishable from azide (Figure S10). Thus, we include those results in our analysis and now indicate in Tables 2 and S2 and in Figures 1 and 3 which experiments used which method. As suggested, we now provide a detailed protocol that includes a note describing our precise method for cold-induced rigor.

      Also, the number of worms used in each assay needs to be specified (same or different from Murphy protocol?), and whether any worms were "censored" as in the Murphy protocol, and if so on what basis.

      While we published the exact number of worms scored in each assay (on each plate) it is unknown how this might compare to the results published in Moore et al., (2019), as the number of animals in the presented choice assays (either per plate or per choice) were not reported. Details on censoring, when to exclude data, and additional criteria to abandon an in-progress experiment are now detailed in the protocol (S1_aversion_protocol)

      (3) Several instances in the text cite changes in the protocol as producing "no meaningful differences" without referring to a specific experiment that supports that statement (for example, line 399 regarding azide).

      We now include data and methods comparing azide and cold-induced rigor (Supplemental document S1_aversion_protocol, Supplemental Figure S10), and data showing the P0 choice index for 48-52 hour post-bleach L4/young adults (Supplemental Figure S1), in addition to the previously noted absence of effects due to differences in embryo bleaching protocols (Figures 2, 3 and Tables 1, 2, S1, and S2).

      (4) If the authors want to claim the irreproducibility of the Murphy lab results, they should use the exact protocol used by the Murphy lab in its entirety. It is not sufficient to show that individual changes do not affect the outcome, since the protocol they use appears to include SEVERAL changes which could cumulatively affect the results. If the authors do not want to do this, they should at least acknowledge and summarize in their discussion ALL their protocol changes.

      We acknowledge these minor differences between the protocols we followed and the published methods but disagree that they invalidate our results. We transparently present the effect of known minimal protocol changes. We also present analysis of possible invalidating variations (number of animals in a choice assay). We emphasize that in our hands both measures of TEI, the choice assay and measurement of daf-7p::gfp in ASI neurons, failed to replicate the published transgenerational results.

      If the protocol is sensitive to how animals are counted, whether bleached embryos are mixed gently or vigorously or a few hours difference in age at training, then in our view this TEI paradigm is not robust.

      See also our response to reviewer #3’s public reviews above.

      (5) The authors acknowledge that "non-obvious growth culture differences" could account for the different results. In this respect, the Murphy lab has proposed that the transgenerational effect requires a small RNA expressed in PA14. The authors should check that this RNA is expressed in the cultures they grow in their lab and use for their experiments. This could potentially identify where the two protocols diverge.

      The bacterial culture conditions and worm training procedures described in Moore et al., (2019) successfully produced trained P0 animals that transmitted a PA14 aversion response to their F1 progeny. In a subsequent publication (Kaletsky et al., 2020), the Murphy lab showed a correlation between the culture conditions that induce heritable avoidance and the expression of P11, a P. aeruginosa small non-coding RNA. As mentioned above in response to Reviewer #2’s public review and the Reviewing Editor’s comments to authors, the Murphy lab showed that PA14 ΔP11 bacteria fail to induce an F1 avoidance response (Figure 3L in Kaletsky et al., (2020)). Thus, the fact that we observed F1 avoidance implies that our culture conditions successfully induced P11 expression. We believe that this addresses the concern raised here. Furthermore, if P11 is not reliably expressed in pathogenic PA14, then the published model is unlikely to be relevant in a natural environment. Again, we thank the reviewer for raising this issue and have added this information to the revised manuscript (see above response to Reviewer #2’s Public Reviews).

      (6) Legend to Figure 1: please clarify which experiments were done with which PA14 isolates especially for A-C. What is the origin of the N2 strain used here?

      These details from Tables 2 and S2 have been added to Figure 1 panels A-C and Figure 3. Bristol N2, obtained from the CGC (reference 257), was used for aversion experiments.

      (7) Growth conditions: "These young adults produced comparable P0 and F1 results (Figure 1, Figure 2, and Figure 3)." It is not clear from the text what specific figure panels need to be compared to examine the effect of the variables described in the text. Please indicate which figure panels should be compared (lines 70-95).

      The information for the daf-7p::gfp expression experiments displayed in Figure 1 and Figure 2 is presented in Table 1 and Table S1. The data for P0 aversion training using younger animals is now presented in Figure S1.

      Reviewer #3 (Recommendations For The Authors):

      While overall I found this easy to follow and well-written, I think the clarity of the figures could be improved by incorporating some of the information from S2 into Figure 3. Besides the figure label listing the experiment (Exp1, Exp2, etc) it would be helpful to add pertinent information about the experiment. For example Exp 1.1 (light, 20{degree sign}C), Exp1.2 (dark, 20{degree sign}C), Exp 5 (25{degree sign}C, light), etc.

      Thank you for the suggestion. These details from Tables 2 and S2 have been added to Figures 1 A-C, and 3.

      Citations

      • Moore, R.S., Kaletsky, R., and Murphy, C.T. (2019). Piwi/PRG-1 Argonaute and TGF-beta Mediate Transgenerational Learned Pathogenic Avoidance. Cell 177, 1827-1841 e1812.

      • Moore, R.S., Kaletsky, R., and Murphy, C.T. (2021). Protocol for transgenerational learned pathogen avoidance behavior assays in Caenorhabditis elegans. STAR Protoc 2, 100384.

      • Kaletsky, R., Moore, R.S., Vrla, G.D., Parsons, L.R., Gitai, Z., and Murphy, C.T. (2020). C. elegans interprets bacterial non-coding RNAs to learn pathogenic avoidance. Nature 586, 445-451.

      • Pereira, A.G., Gracida, X., Kagias, K., and Zhang, Y. (2020). C. elegans aversive olfactory learning generates diverse intergenerational effects. J Neurogenet 34, 378-388.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The crosslinking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.

      Strengths:

      In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.

      Weaknesses:

      The discussion does not provide an overall perspective that correlates the cryoET structural organisation of filaments with the biophysical data.

      The crosslinking nature of ZapD is already established in the field. The work carried out is important to understand the ring assembly of FtsZ. However, the availability of the cryoET observations can be further analysed in detail to derive many measurements that will help validate the model, and obtain new insights.

      We thank the reviewer for these insightful comments on our work. We have edited the manuscript to resolve and clarify most of the issues raised during the review process.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, the authors set out to better understand the mechanism by which the FtsZ-associated protein ZapD crosslinks FtsZ filaments to assemble a large-scale cytoskeletal assembly. For this aim, they use purified proteins in solution and a combination of biochemical, biophysical experiments and cryo-EM. The most significant finding of this study is the observation of FtsZ toroids that form at equimolar concentrations of the two proteins.

      Strengths:

      Many experiments in this paper confirm previous knowledge about ZapD. For example, it shows that ZapD promotes the assembly of FtsZ polymers, that ZapD bundles FtsZ filaments, that ZapD forms dimers and that it reduces FtsZ's GTPase activity. The most novel discovery is the observation of different assemblies as a function of ZapD:FtsZ ratio. In addition, using CryoEM to describe the structure of toroids and bundles, the paper provides some information about the orientation of ZapD in relation to FtsZ filaments. For example, they found that the organization of ZapD in relation to FtsZ filaments is "intrinsic heterogeneous" and that FtsZ filaments were crosslinked by ZapD dimers pointing in all directions. The authors conclude that it is this plasticity that allows for the formation of toroids and its stabilization. Unfortunately, a high-resolution structure of the protein organization was not possible. These are interesting findings that in principle deserve publication.

      We thank the reviewer for this valuable assessment. We have made several changes to the manuscript to improve its readability and comprehensibility. In addition, we have addressed the reviewer’s main concerns in the point-by-point response below.

      Weaknesses:

      While the data is convincing, their interpretation has some substantial weaknesses that the authors should address for the final version of this paper.

      We have addressed most of the aspects highlighted by the reviewer to improve the quality and comprehensibility of our results.

      For example, as the authors are the first to describe FtsZ-ZapD toroids, a discussion why this has not been observed in previous studies would be very interesting, i.e. is it due to buffer conditions, sample preparation?

      Several factors may explain the absence of observed toroidal structures in other studies. FtsZ is a highly dynamic protein, and its behavior varies significantly with different environmental conditions, as detailed in the literature. These environmental factors include pH, salt concentration, protein type, GTP levels, and the purification strategy used. Previous research has employed negative stain electron microscopy (EM) to visualize ZapD-FtsZ structures. It is important to note that FtsZ is sensitive to surface effects when it is bound to or adsorbed onto membranes (Mateos-Gil et al. 2019 FEMS Microbiol Rev - DOI: 10.1093/femsre/fuy039). Therefore, the adsorption of FtsZ and ZapD onto the EM grid may influence the formation of higher order structures. In this study, we used cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) to visualize the 3D organization of ZapD-mediated structures. This approach allows us to avoid staining artifacts and the distortion of structures caused by adsorption or drying of the grid. In addition, we can resolve single filaments. Our buffer conditions also differ slightly from those in previous studies, which may significantly impact the behavior of FtsZ, as illustrated in Supplementary Fig. 3.

      At parts of the manuscript, the authors try a bit too hard to argue for the physiological significance of these toroids. This, however, is at least very questionable, because: The typical diameter is in the range of 0.25-1.0 μm, which requires some flexibility of the filaments to be able to accommodate this. It's difficult to see how a FtsZ-ZapD toroid, which appears to be quite rigid with a narrow size distribution of 502 nm {plus minus} 55 nm could support cell division rather than stalling it at that cell diameter. which the authors say is similar to the E. coli cell.

      The toroidal structures formed by FtsZ and ZapD, with their characteristics similar to those of the bacterial division system, are significant in physiological contexts and warrant further study. The connections mediated by Zaps are expected to play a crucial role in filament organization, which is vital for the machinery enabling cellular constriction. Therefore, characterizing these structures in vitro can provide insight into divisome stabilization, assembly and constriction mechanisms. While we acknowledge the limitations of in vitro systems and do not expect to see the same toroidal structures in vivo, the way ZapD decorates and connects FtsZ filaments in vitro may resemble the processes that occur in the division ring formed inside the cell. This study represents an initial effort to characterize these toroidal structures, which could inspire further research and potentially reveal their physiological relevance.

      Regarding flexibility, it has been previously reported that an arrangement of loosely connected filaments forms the FtsZ ring. Our model is consistent with this observation despite the heterogeneity and density observed in the toroidal structures. We anticipate differences in vivo due to the high complexity of the cytoplasm, interactions with other cellular components, and attachment to the cell membrane, all of which would influence structural outcomes. However, our novel in vitro approach, which allows us to study FtsZ filament organization and connectivity – features that are challenging to explore in vivo and have not been thoroughly investigated before – has the potential to significantly advance our understanding of these structures. Consequently, these structures can aid our understanding of complex macrostructures in vivo, even if we have merely begun to scratch the surface of their characterization.

      Regarding the size of the toroids, we hypothesize that it reflects an optimal condition based on our experimental setup in solution. In vivo, these conditions are altered by interactions with various division partners, attachment to the plasma membrane, and system contraction. 

      We have better reformulated and edited the manuscript to discuss the potential physiological relevance of our toroidal structures.

      For cell division, FtsZ filaments are recruited to the membrane surface via an interaction of FtsA or ZipA the C-terminal peptide of FtsZ. As ZapD also binds to this peptide, the question arises who wins this competition or where is ZapD when FtsZ is recruited to the membrane surface? Can such a toroidal structure of FtsZ filaments form on the membrane surface? Additional experiments would be helpful, but a more detailed discussion on how the authors think ZapD could act on membrane-bound filaments would be essential.

      We appreciate this comment, which was indeed one of our main questions. The complexity of the division system raises many questions about the interaction of FtsZ with the plasma membrane. The competition between division components to interact with FtsZ and thus modulate its behavior is still largely unknown. FtsA and ZipA appear to have a greater affinity for the C-terminal domain (CTD) of FtsZ than ZapD. However, considering all FtsZ monomers forming a filament, we expect FtsZ filaments to interact with many different division partners. The ability of FtsZ to interact with many components is necessary to explain the current model of the system. According to this model, FtsZ filaments would be decorated by many different proteins, anchoring them to the membrane while crosslinking or promoting their disassembly in a spatiotemporally controlled manner. 

      We tried experiments combining FtsA, ZipA, and ZapD on supported lipid membranes and liposomes. However, they proved difficult to perform. We expect similar results to those observed for ZapA (Caldas et al. 2019 Nat Commun - DOI: 10.1038/s41467-019-13702-4). However, competition between proteins for interaction with the CTD of FtsZ adds an extra layer of complexity, making exploring this issue attractive in the future. However, as remarkably pointed out by Reviewer 3, our cryo-ET data of straight bundles provide new insights into how ZapD-FtsZ structures can bind to the plasma membrane. In these straight bundles, the CTDs of two parallel FtsZ filaments are oriented upwards. They can bind the plasma membrane directly or the ZapDs, which decorate the FtsZ filaments from above instead of from the side, as suggested previously (Schumacher et al. 2017 J Biol Chem - DOI: 10.1074/jbc.M116.773192), allowing ZapDs to interact with the membrane.

      The authors conclude that the FtsZ filaments are dynamic, which is essential for cell division. But the evidence for dynamic FtsZ filaments within these toroids seems rather weak, as it is solely the partial reassembly after addition of GTP. As ZapD significantly slows down GTP hydrolysis, I am not sure it's obvious to make this conclusion.

      FtsZ filaments are dynamic, as they can reassemble into macrostructures relatively quickly. Decreased GTPase activity is a good indicator of the formation of lateral interactions between filaments. For instance, under crowding conditions, FtsZ also reduces its GTPase activity, although the bundles disassemble very slowly over time (González et al. 2003 J. Biol. Chem - DOI: 10.1074/jbc.M305230200). We measured the GTPase activity during the first 5 minutes after GTP addition, conditions under which toroidal structures and bundles remain fully assembled. However, we expect GTPase activity to recover as the macrostructures disassemble, considering the reassembly of macrostructures after GTP resupply, which suggests that FtsZ filaments remain active and dynamic.

      On a similar note, on page 5 the authors claim that ZapD would transiently interact with FtsZ filaments. What is the evidence for this? They also say that this transient interaction could have a "mechanistic role in the functionality of FtsZ macrostructures." Could they elaborate?

      We have rephrased the whole paragraph in the revised version to clarify matters (page 10, lines 2434):

      “These results are consistent with the observation that ZapD interacts with FtsZ through its central hub, which provides additional spatial freedom to connect other filaments in different conformations. This flexibility allows different filament organizations and contributes to structural heterogeneity. In addition, these results suggest that these crosslinkers can act as modulators of the dynamics of the ring structure, spacing filaments apart and allowing them to slide in an organized manner. The ability of FtsZ to treadmill directionally, together with the parallel or antiparallel arrangement of short, transiently crosslinked filaments, is considered essential for the functionality of the Z ring and its ability to exert constrictive force34,36–38,50. Thus, Zap proteins can play a critical role in ensuring correct filament placement and stabilization, which is consistent with the toroidal structure formed by ZapD.”

      The author should also improve in putting their findings into the context of existing knowledge. For example:

      The authors observe a straightening of filament bundles with increasing ZapD concentration. This seems consistent with what was found for ZapA, but this is not explicitly discussed (Caldas et al 2019)

      We have discussed this similarity in the revised version of this manuscript (page 12, line 40 - page 13, line 8):

      “Understanding how the associative states of ZapA (as tetramers) and ZapD (as dimers), together with membrane tethering, influence the predominant structures formed in both systems is essential. The complexity of the division system raises important questions about the interaction dynamics between FtsZ and the plasma membrane. The competitive nature of the division components to engage with FtsZ and modulate its functionality remains to be thoroughly elucidated. It is important to note that FtsA and ZipA have a greater affinity for the C-terminal domain of FtsZ than ZapD. Our cryo-ET data on straight bundles provide new perspectives on how ZapD-FtsZ structures can effectively bind to the plasma membrane; in particular, the C-terminal domains of parallel FtsZ filaments are oriented upward, allowing direct membrane binding or interaction with ZapDs that reinforce these filaments from above, rather than from the side, as previously suggested.”

      A paragraph summarizing what is known about the properties of ZapD in vivo would be essential: i.e., what has been found regarding its intracellular copy number, location and dynamics?

      We thank the reviewer for this valuable suggestion. We describe the role of Zap proteins in vivo and the previous studies of ZapD in the introduction (page 2, lines 34 - page 3, line 17). Additionally, we added the estimated number of ZapD copies in the cell in the discussion (page 11, lines 2-7).

      In the introduction, the authors write that "GTP binding and hydrolysis induce a conformational change in each monomer that modifies its binding potential, enabling them to follow a treadmilling behavior". This seems inaccurate, as shown by Wagstaff et al. 2022, the conformational change of FtsZ is not associated with the nucleotide state. In addition, they write that FtsZ polymerization depends on the GTPase activity. It would be more accurate to write that polymerization depends on GTP, and disassembly on GTPase activity.”

      Following the reviewer's suggestions, we have adapted and corrected these text elements as follows (page 2, lines 7-9): 

      “FtsZ undergoes treadmilling due to polymerization-dependent GTP hydrolysis, allowing the ring to exhibit its dynamic behavior.”

      On page 2 they also write that "the mechanism underlying bundling of FtsZ filaments is unknown". I would disagree, the underlying mechanism is very well known (see for example Schumacher, MA JBC 2017), but how this relates to the large-scale organization of FtsZ filaments was not clear.

      We thank the reviewer for this comment. We have corrected and clarified the related text accordingly (page 3, lines 11-12):

      “…the link between FtsZ bundling, promoted by ZapD, and the large-scale organization of FtsZ filaments remains unresolved.”

      The authors describe the toroid as a dense 3D mesh, how would this be compatible with the Z-ring and its role for cell division? I don't think this corresponds to the current model of the Z-ring (McQuillen & Xiao, 2020). Apart from the fact it's a ring, I don't think the organization of FtsZ obviously similar to the current of the Z-ring in the bacterial cell, in particular because it's not obvious how FtsZ filaments can bind ZapD and membrane anchors simultaneously.

      We consider that the intrinsic characteristics of toroidal structures and the bacterial division ring have points in common. As indicated in the answer above, despite the differences and limitations that might result from an in vitro approach, the structures shown after ZapD crosslinking of FtsZ filaments can demonstrate intrinsic features occurring in vivo. The current model of the division ring consists of an arrangement of filaments loosely connected by crosslinkers in the center of the cell, forming a ring. This model is compatible with our findings, although many questions remain about the structural organization of the Z-ring in the cell.

      Reviewer 3 has brought a compelling new perspective to interpreting our cryo-ET data: ZapD decorates FtsZ from above, allowing ZapD or FtsZ to bind to the plasma membrane. We have discussed this point in more detail below. In the case of straight bundles, this favors the stacking of straight FtsZ filaments, whereas in the case of toroids, ZapD can also bind FtsZ filaments laterally and diagonally, and it is this less compact arrangement that could enable FtsZ bending and toroid size adjustment. 

      We have revised the text accordingly to incorporate the interpretation proposed by Reviewer 3 (page 12, lines 24-31):

      “The current model of the division ring consists of an array of filaments loosely connected by crosslinkers at the center of the cell, forming a ring. This model is consistent with our findings, although many questions remain regarding the structural organization of the Z ring within the cell. ZapD binds to FtsZ from above, allowing either ZapD or FtsZ to interact with the plasma membrane. In straight bundles, this facilitates the stacking of straight FtsZ filaments, while for toroids, ZapD can also bind FtsZ filaments diagonally. This less compact arrangement could allow bending of the FtsZ filaments and adjustment of toroid size.”

      The authors write that "most of these modulators" interact with FtsZ's CTP, but then later that ZapD is the only Zap protein that binds CTP. This seems to be inconsistent. Why not write that membrane anchors usually bind the CTP, most Zaps do not, but ZapD is the exception?

      We thank the reviewer for this pertinent suggestion, which we have followed in the revised version of the manuscript (page 2, lines 19-22):

      “Most of these modulators interact with FtsZ through its carboxy-terminal end, which modulates division assembly as a central hub.  ZapD is the only Zap protein known to crosslink FtsZ by binding its C-terminal domain, suggesting a critical Z ring structure stabilizing function.”

      I also have some comments regarding the experiments and their analysis:

      Regarding cryoET: the filaments appear like flat bands, even in the absence of ZapD, which further elongates these bands. Is this due to an anisotropic resolution? This distortion makes the conclusion that ZapD forms bi-spherical dimers unconvincing.

      The missing wedge caused by the limited angular range of the tomography data generates an elongation of the structures by a factor of 2 along the Z axis. This feature is visible in the undecorated FtsZ filament data (Supplementary Fig. 10). The more pronounced elongation along the Z-axis observed in the presence of ZapD indicates the presence of ZapD to connect two parallel FtsZ filaments along the Z-axis (see Supplementary Figs. 8, 9 and 10). We do not have sufficient resolution to precisely resolve ZapD proteins from the FtsZ filaments in the Z-axis, but we also observed bispherical ZapDs in the XY plane (Fig. 4b-d). Unfortunately, our data do not allow for a more detailed characterization.

      The authors say that the cryoET visualization provides crucial information on the length of the filaments within this toroid. How long are they? Could the authors measure it?

      Measuring the length of single filaments is not trivial, given the dense, heterogeneous mesh promoted by ZapD crosslinking. We tried to identify and track them, but the density of filaments and connections made precise measurement very difficult. Nevertheless, we could identify the formation of these toroids by an arrangement of short filaments (Supplementary Fig. 11) instead of continuous circular filaments.

      We have removed the following sentence text in the revised manuscript: “Visualization of ZapDmediated FtsZ toroidal structures by cryo-ET provided crucial information on the 3D organization, connectivity and length of filaments within the toroid.”

      Regarding the dimerization mutant of ZapD: there is actually no direct confirmation that mZapD is monomeric. Did the authors try SEC MALS or AUC? Accordingly, the statement that dimerization is "essential" seems exaggerated (although likely true).

      Unlike the wild-type ZapD protein, the mZapD mutant exists as a mixture of monomers (~15%) and dimers, as AUC assays performed at similar protein concentrations revealed. These results demonstrate that the mutant protein has a lower tendency to form dimers than the native ZapD protein. We have included the AUC data for mZapD in the supplementary material (Supp. Fig. 15a).

      What do the authors mean that toroid formation is compatible with robust persistence length? I.e. What does robust mean? It was recently shown that FtsZ filaments are actually surprisingly flexible, which matches well the fact that the diameter of the Z-ring must continuously decrease during cell division (Dunajova et al Nature Physics 2023).

      We have corrected this sentence in the revised version of the manuscript to improve clarity (page 11, lines 9-10): 

      “The persistence length and curvature of FtsZ filaments are optimized for forming bacterial-sized ring structures.”

      The authors claim that their observations suggest „that crosslinkers ... allows filament sliding in an organized fashion". As far as I know there is no evidence of filament sliding, as FtsZ monomers in living cells and in vitro are static.

      Filament sliding may be one of the factors contributing to the force generation mechanisms involved in cell division (Nguyen et al. 2021 J Bacteriol - DOI: 10.1128/JB.00576-20). Our results indicate that ZapD can separate filaments, creating space between them and facilitating their organization.

      Although the molecular dynamics of cell constriction are not yet fully understood, it is possible that filament sliding plays a role. If this is the case, the crosslinking of short FtsZ filaments in multiple directions by ZapD could provide the necessary flexibility to adjust the diameter of the constriction ring during bacterial division.

      What is the „proto-ring FtsA protein"?

      The proto-ring denotes the first molecular assembly of the Z-ring, which in E. coli consists of FtsZ, FtsA and ZipA (see, for example, Ortiz et al. 2016 FEMS Microbiol Rev - DOI: 10.1093/femsre/fuv040). To simplify matters, we have deleted the term “proto-ring” in the revised version of the MS.

      The authors refer to „increasing evidence" for „alternative network remodeling mechanisms that do not rely on chemical energy consumption as those in which entropic forces act through diffusible crosslinkers, similar to ZapD and FtsZ polymers." A reference should be given, I assume the authors refer to the study by Lansky et al 2015 of PRC on microtubules. However, I am not sure how the authors made the conclusion that this applies to FtsZ and ZapD, on which evidence is this assumption based?

      We refer to cytoskeletal network remodeling mechanisms independent of chemical energy consumption (Braun et al. 2016 Bioessays - DOI: 10.1002/bies.201500183) driven by entropic forces induced by macromolecular crowding agents or diffusible crosslinkers. The latter mechanism leads to an increase in filament overlap length and the contraction of filament networks. These mechanisms complement and act in synergy with energy-consuming processes (such as those involving nucleotide hydrolysis) to modulate actin- and microtubule-based cytoskeleton remodeling. Similarly, crosslinking proteins such as ZapD may contribute to remodeling the FtsZ division ring in the cell. 

      We have revised the corresponding text of the manuscript accordingly (page 13, lines 16-24):  “In addition, our findings could greatly enhance the understanding of how polymeric cytoskeletal networks are remodeled during essential cellular processes such as cell motility and morphogenesis. Although conventional wisdom points to molecular motors as the primary drivers of filament remodeling through energy consumption, there is increasing evidence that there are alternative mechanisms that do not rely on such energy, instead harnessing entropic forces via diffusible crosslinkers. This approach may also be applicable to ZapD and FtsZ polymers, suggesting a promising avenue for optimizing conditions in the reverse engineering of the division ring to enhance force generation in minimally reconstituted systems aimed at achieving autonomous cell division.”

      Some inconsistencies in supplementary figure 3: The normalized absorbances in panel a do not seem to agree with the absolute absorbance shown in panel e, i.e. compare maximum intensity for ZapD = 20 µM and 5 µM in both panels.

      We have corrected these inconsistencies in the revised version.

      It's not obvious to me why the structure formed by ZapD and FtsZ disassembles after some time even before GTP is exhausted, can the authors explain? As the structures disassemble, how is the "steadystate turbidity" defined? Do the structures also disassemble when they use a non-hydrolyzable analog of GTP?

      In the presence of ZapD, FtsZ rapidly forms higher order polymers after the addition of GTP, as shown by turbidity assays at 320 nm (the formation of single- or double-stranded FtsZ filaments in the absence of ZapD does not produce a significant increase in turbidity). Macrostructures formed by FtsZ in the presence of ZapD, while more stable than FtsZ filaments (which rapidly disassemble following GTP consumption), are also dynamic. These assembly reactions are GTP-dependent and considerably modify polymer dynamics. In agreement with our results, previous studies have shown that high concentrations of macromolecular crowders (such as Ficoll or dextran) promote the formation of dynamic FtsZ polymer networks (González et al. 2003 J. Biol. Chem - DOI: 10.1074/jbc.M305230200). In this case, FtsZ GTPase activity was significantly retarded compared with FtsZ filaments, resulting in a decrease in GTPase turnover. Similar mechanisms may apply to assembly reactions in the presence of ZapD.

      Parallel assembly studies replacing GTP with a slowly hydrolyzable GTP analog remain pending. We expect ZapD-containing FtsZ macrostructures to last assembled for longer but still disassemble upon GTP consumption, as occurs with the crowding-induced FtsZ polymer networks formed in the presence of nucleotide analogs.

      Accordingly, we have revised the corresponding text to clarify matters (page 4, line 37 – page 5 line 7). 

      Conclusion: Despite some weaknesses in the interpretation of their findings, I think this paper will likely motivate other structural studies on large scale assemblies of FtsZ filaments and its associated proteins. A systematic comparison of the effects of ZapA, ZapC and ZapD and how their different modes of filament crosslinking can result in different filament networks will be very useful to understand their individual roles and possible synergistic behavior.

      We appreciate the reviewer's remarks and comments, which provided us with valuable information and helped us considerably improve the revised manuscript.

      Reviewer #3 (Public Review):

      Summary:

      The authors provide the first image analysis by cryoET of toroids assembled by FtsZ crosslinked by ZapD. Previously toroids of FtsZ alone have been imaged only in projection by negative stain EM. The authors attempt to distinguish ZapD crosslinks from the underlying FtsZ filaments. I did not find this distinction convincing, especially because it seems inconsistent with the 1:1 stoichiometry demonstrated by pelleting. I was intrigued by one image showing straight filament pairs, which may suggest a new model for how ZapD crosslinks FtsZ filaments.

      We thank the reviewer for these valuable comments, to which we have responded in detail below. 

      Strengths:

      (1) The first image analysis of FtsZ toroids by cryoET.

      (2) The images are accompanied by pelleting assays that convincingly establish a 1:1 stoichiometry of FtsZ:ZapD subunits.

      (3) Fig. 5 shows an image of a pair of FtsZ filaments crosslinked by ZapD. This seems to have higher resolution than the toroids. Importantly, it suggests a new model for the structure of FtsZ-ZapD that resolves previously unrecognized conflicts. (This is discussed below under weaknesses, because it is so far only supported by a single image.)

      We thank the reviewer for this assessment and, in particular, for raising point 3, which provided a new perspective on the interpretation of our data. We have also included a new example of a straight bundle in Supplementary Fig. 13.

      Weaknesses:

      This paper reports a study by cryoEM of polymers and bundles assembled from FtsZ plus ZapD. Although previous studies by other labs have focused on straight bundles of filaments, the present study found toroids mixed with these straight bundles, and they focused most of their study on the toroids. In the toroids they attempt to delineate FtsZ filaments and ZapD crosslinks. A major problem here is with the stoichiometry. Their pelleting assays convincingly established a stoichiometry of 1:1, while the mass densities identified as ZapD are sparse and apparently well below the number of FtsZ (FtsZ subunits are not resolved in the reconstructions, but the continuous sheets or belts seem to have a lot more mass than the identified crosslinks.)  

      Apart from the stoichiometry I don't find the identification of crosslinks to be convincing. It is missing an important control - cryoET of toroids assembled from pure FtsZ, without ZapD.

      However, if I ignore these and jump to Fig. 5, I think there is an important discovery that resolves controversies in the present study as well as previous ones, controversies that were not even recognized. The controversy is illustrated by the Schumacher 2017 model (their Fig. 7), which is repeated in a simplified version in Fig. 1a of the present mss. That model has a two FtsZ filaments in a plane facing ZapD dimers which bridge them. In this planar model the C-terminal linker, and the ctd of FtsZ that binds ZapD facing each other and the ZapD in the middle, with. The contradiction arises because the C-terminus needs to face the membrane in order to attach and generate a bending force. The two FtsZ filaments in the planar model are facing 90{degree sign} away from the membrane. A related contradiction is that Houseman et al 2016 showed that curved FtsZ filaments have the C terminus on the outside of the curve. In a toroid the C termini should all be facing the outside. If the paired filaments had the C termini facing each other, they could not form a toroid because the two FtsZ filaments would be bending in opposite directions.

      Fig. 5 of the present ms seems to resolve this by showing that the two FtsZ filaments and ZapD are not planar, but stacked. The two FtsZ filaments have their C termini facing the same direction, let's say up, toward the membrane, and ZapD binds on top, bridging the two. The spacing of the ctd binding sites on the Zap D dimer is 6.5 nm, which would fit the ~8 nm width of the paired filament complex observed in the present cryoEM (Fig S13). In the Schumacher model the width would be about 20 nm. Importantly, the stack model has the ctd of each filament facing the same direction, so the paired filaments could attach to the membrane and bend together (using ctd's not bound by ZapD). Finally, the new arrangement would also provide an easy way for the complex to extend from a pair of filaments to a sheet of three or four or more. A problem with this new model from Fig. 5 is that it is supported by only a single example of the paired FtsZ-ZapD complex. If this is to be the basis of the interpretation, more examples should be shown. Maybe examples could be found with three or four FtsZ filaments in a sheet.

      We thank the reviewer for asking interesting questions and suggesting a compelling model for how ZapD could bind FtsZ filaments. Cryo-ET of straight bundles revealed that high ZapD density promotes vertical stacking of FtsZ filaments and decoration of FtsZ filaments by ZapD from above. In toroids, FtsZ filaments are vertically decorated by ZapD, which explains the high elongation of the filament structures observed, consisting of FtsZ-ZapD(-FtsZ) units. In addition, we observed a high abundance of diagonal connections between FtsZ filaments of different heights, revealing a certain flexibility/malleability of ZapD to link filaments that are not perfectly aligned vertically. This configuration could give rise to curved filaments and the overall toroid structure.

      The manuscript proposes that ZapD can bind FtsZ filaments in different directions. However, it seems to have a certain tendency to bind to the upper part of FtsZ filaments, stacking them vertically or vertically with a lateral shift (Supplementary Fig. 9). We also observe lateral connections, although the features of the toroidal structures limit their visualization. This enables both the binding to the membrane by ZapD or FtsZ and the formation of higher order FtsZ polymer structures. 

      In summary, ZapD is capable of linking FtsZ filaments in multiple directions, including from the upper part of the filaments as well as laterally or diagonally. At high concentrations of ZapD, the filaments become more compactly arranged, primarily stacking vertically, which results in the loss of curvature. In contrast, at lower concentrations of ZapD, the FtsZ filaments are less tightly packed, leading to curved filaments and an overall toroidal structure that may resemble the in vivo ring structures.

      We have edited our manuscript to accommodate this hypothesis, including the abstract and the cryoET section (page 7, lines 5-16): 

      “The isosurface confirmed the presence of extended structures along the Z-axis, well beyond the elongation expected from the missing wedge effect for single FtsZ filaments (for comparison, see Supplementary Fig. 10). The vertically extended structures appeared to correspond to filaments that were connected or decorated by additional densities along the Z-axis (Supplementary Fig. 9b). Importantly, these densities were only observed in the presence of ZapD (Supplementary Fig. 10b), suggesting that they represent ZapD connections (Fig. 3e and Supplementary Figs. 8e and 9b). We note that the resolution of the data is not sufficient to precisely resolve ZapD proteins from the FtsZ filaments in the Z-axis.

      These results suggest that the toroids are constructed and stabilized by interactions between ZapD and FtsZ, which are mainly formed along the Z-axis but also laterally and diagonally.”

      Page 7, lines 40-42: 

      “Cryo-ET imaging of ZapD-mediated FtsZ toroidal structures revealed a preferential vertical stacking and crosslinking of short ZapD filaments, which are also crosslinked laterally and diagonally, allowing for filament curvature.”

      And in the discussion (page 12, lines 27-31): 

      “ZapD binds to FtsZ from above, allowing either ZapD or FtsZ to interact with the plasma membrane. In straight bundles, this facilitates the stacking of straight FtsZ filaments, while for toroids, ZapD can also bind FtsZ filaments diagonally. This less compact arrangement could allow bending of the FtsZ filaments and adjustment of the toroid size.”

      What then should be done with the toroids? I am not convinced by the identification of ZapD as "connectors." I think it is likely that the ZapD is part of the belts that I discuss below, although the relative location of ZapD in the belts is not resolved. It is likely that the resolution in the toroid reconstructions of Fig. 4, S8,9 is less than that of the isolated pf pair in Fig. 5c.

      We agree with the reviewer's interpretation that ZapD can attach to FtsZ filaments from both above and laterally. The data from the straight bundles, which are more clearly resolved due to their thinner structure, demonstrate that ZapD can decorate FtsZ filaments vertically. Additionally, the toroidal data supports the notion that ZapD can act as a crosslinker between filaments that are not perfectly vertical, allowing for lateral offsets (see, for example, Fig. 4d) or lateral connections (Fig. 4b). 

      We recognize that the resolution and high density of structures in our cryo-ET data make it challenging to accurately annotate proteins or connectors. Despite this difficulty, we have made efforts to label and identify the ZapD proteins and connectors. We employed an arbitrary labeling method to assist with visual interpretation. However, we acknowledge that some errors may exist and that ZapD proteins were not labeled, particularly along the Z-axis, where the missing wedge limits our ability to distinguish between ZapD and FtsZ proteins (page 7, lines 8-13):

      “The vertically extended structures appeared to correspond to filaments that were connected or decorated by additional densities along the Z-axis (Supplementary Fig. 9b). Importantly, these densities were only observed in the presence of ZapD (Supplementary Fig. 10b), suggesting that they represent ZapD connections (Fig. 3e and Supplementary Figs. 8e and 9b). We note that the resolution of the data is not sufficient to precisely resolve ZapD proteins from the FtsZ filaments in the Z-axis. We note that the resolution of the data is not sufficient to precisely resolve ZapD proteins from the FtsZ filaments in the Z-axis.”

      We draw attention to the limitation of our manual segmentation in the text as follows (page 7, lines 20-24):

      “We manually labeled the connecting densities in the toroid isosurfaces to analyze their arrangement and connectivity with the FtsZ filaments. The high density of the toroids and the wide variety of conformations of these densities prevented the use of subtomogram averaging to resolve their structure and spatial arrangement within the toroids.”

      Importantly, If the authors want to pursue the location of ZapD in toroids, I suggest they need to compare their ZapD-containing toroids with toroids lacking ZapD. Popp et al 2009 have determined a variety of solution conditions that favor the assembly of toroids by FtsZ with no added protein crosslinker. It would be very interesting to investigate the structure of these toroids by the present cryoEM methods, and compare them to the FtsZ-ZapD toroids. I suspect that the belts seen in the ZapD toroids will not be found in the pure FtsZ toroids, confirming that their structure is generated by ZapD.

      The only reported toroidal structure of E. coli FtsZ can be found in the literature by Popp et al. (2009 Biopolymers – DOI: 10.1002/bip.21136). It is important to note that methylcellulose (MC) must be added to the working solution to induce the formation of these structures, as FtsZ toroids do not form in the absence of MC. The mechanisms by which MC promotes this assembly process go beyond mere excluded volume effects due to crowding, as the concentration of MC used is very low (less than 1 mg/ml), which is below the typical crowding regime. This suggests that there are additional interactions between MC and FtsZ. Such complexities and secondary interactions prevent the use of this system as a reliable control for the FtsZ toroidal structures reported here. Alternatively, we also considered the toroidal structures of FtsZ from Bacillus subtilis (Huecas et al. 2017 Biophys J - DOI: 10.1016/j.bpj.2017.08.046) and Cyanobacterium synechocystis (Wang et al. 2019 J Biol Chem – DOI: 10.1074/jbc.RA118.005200). However, these structures do not serve as appropriate controls due to the structural and molecular differences between these FtsZ proteins.

      Recommendations for the authors:  

      Reviewing Editor:

      While the three referees recognize and appreciate the importance of this work several technical and interpretational questions have been raised. There was a prolonged discussion amongst the three expert referees, and it was felt that the current version suffers from a number of problems that the authors need to consider. These are to do with 1. Stoichiometry of ZapD-FtsZ 2. the evidence for crosslinks 3. how the cryo-ET data correlates with the biophysical data 4. Physiological relevance of the elucidated structures. Please take note of the public reviews (strengths and weaknesses) as well as "Recommendations to the authors" sections below, if you choose to prepare a revision.

      In reading the reviews very carefully (as well as while following the ensuing robust discussion between the referees) I noticed that all points raised are extremely important to be addressed / reconciled (with experiments and / or discussion) for this study to become an outstanding contribution to bacterial cell biology field. I would therefore urge you to consider these carefully and revise the manuscript accordingly.

      We thank the editorial board and reviewers for their excellent work evaluating and reviewing our manuscript. Their constructive suggestions and comments have been taken into account in preparing the revised version. We have paid particular attention to the four points mentioned above by the reviewing editor. We hope that the new version and this point-by-point rebuttal letter will answer most of the questions and weaknesses raised by the reviewers.

      Reviewer #1 (Recommendations for the authors):

      Suggestions for improvement of the manuscript:

      (1) ZapD to FtsZ ratio:

      i) Page 3: Results section, paragraph 1:

      FtsZ to ZapD shows a 1:2 ratio. How does this explain cross linking by a dimeric species, as this will be equivalent to a 1:1 ratio of FtsZ and ZapD? The crystal structure in the reference cited has FtsZ peptide bound only to one side of the dimer, however a crosslinking effect can happen only if FtsZ binds to both protomers of ZapD dimer. If the decoration is not uniform as given in the toroid model based on cryoET, this should lead to a model with excess of FtsZ in the toroid?

      On page 3 of the original manuscript, we stated that the binding stoichiometry of ZapD to FtsZ was 2:1, based on estimates derived from sedimentation velocity experiments involving the unassembled GDP form of FtsZ. However, upon reanalyzing these experiments, we found that the previous characterization of the association mode was overly simplistic. We determined that there are two predominant molecular species of ZapD:FtsZ complexes in solution, which correspond to ZapD dimers bound to either one or two FtsZ monomers, resulting in stoichiometries of 2:1 and 1:1, respectively. The revised binding stoichiometry data for ZapD and GDP-FtsZ suggests the presence of 1:1 ZapD-FtsZ complexes which aligns with the idea that FtsZ polymers can be crosslinked by dimeric ZapD species. In mixtures where ZapD is present in excess over FtsZ, the crosslinking corresponds to 1:1 binding stoichiometries, leading to the formation of straight macrostructures. Conversely, when the concentration of ZapD is reduced in the reaction mixture, the resulting macrostructures take the form of toroids. In this scenario, there is an excess of FtsZ because only some of the FtsZ molecules within the polymers are crosslinked by ZapD dimers, resulting in a binding stoichiometry of approximately 0.4 ZapD molecules per FtsZ, as quantified by differential sedimentation experiments.

      We have rewritten the corresponding texts in the revised version to explain these matters (page 4 lines 14-18):

      “Sedimentation velocity analysis of mixtures of the two proteins revealed the presence of two predominant molecular species of ZapD:FtsZ complexes in solution. These complexes are compatible with ZapD dimers bound to one or two FtsZ monomers, corresponding to ZapD:FtsZ stoichiometries of 2:1 and 1:1, respectively (Supplementary Fig. 1a (III-IV)). This observation is consistent with the proposed interaction model.”

      ii) How does 40 - 80 uM of ZapD correspond to a molar ratio of approximately 6?

      It was a typo from previous versions. We have corrected it in the revised version. 

      iii) The ratios of ZapD to FtsZ are different when described later in page 4 in the context of the toroid. Are these ratios relevant compared to the contradicting ratios mentioned later in page 4?

      To clarify issues related to the binding of ZapD to FtsZ, we have rewritten the sections on ZapD binding stoichiometries to both FtsZ-GDP and FtsZ polymers in the presence of GTP (see page 4 lines 14-18 and page 5 lines 15-26).

      iv) Supplementary Figure 5:

      In the representative gel shown, the amount of ZapD in the pellet does not appear to be double compared to 10 and 30 uM concentrations. However, the estimated amount in the plot shown in panel (c) appears to indicate that that ZapD has approximately doubled at 30 uM compared to 10 uM. Please re-check the quantification.

      Without prior staining calibration of the gels, there is no simple quantitative relationship between gel band intensities after Coomassie staining and the amount of protein in a band (Darawshe et al. 1993 Anal Biochem - DOI: 10.1006/abio.1993.1581). The latter point precludes a quantitative comparison of pelleting / SDS-PAGE data and analytical sedimentation measurements.

      v) How can a consistent ratio being maintained be explained in an irregular structure of the toroid? The number of ZapD should be much less compared to FtsZ according to the model.

      See answers to points i) and iii)

      (2) GTPase activity and assembly/disassembly of toroids:

      i) Page 3, Results section: last paragraph:

      What is the explanation or hypothesis for decrease in GTPase activity upon ZapD binding? Given that FtsZ core is not involved in the interaction of the higher order assemblies, what is the probable reason on decrease in GTPase activity upon ZapA binding?

      Excluded volume effects caused by macromolecular crowding, such as high concentrations of Ficoll or dextran, promote the formation of dynamic FtsZ polymer networks (González et al. 2003 J. Biol. Chem - DOI: 10.1074/jbc.M305230200). In these conditions, FtsZ GTPase activity is significantly slowed down compared to the activity observed in FtsZ filaments formed without crowding, leading to a decreased GTPase turnover rate. Similar mechanisms may also apply to assembly reactions in the presence of ZapD (see, for example, Durand-Heredia et al. 2012 J Bacteriol - DOI: 10.1128/JB.0017612).

      ii) How is the decrease in GTPase activity compatible with dynamics of disassembly? Please substantiate on why disassembly is linked to transient interaction with ZapD. Shouldn't disassembly and transient interaction be linked to recovery of GTPase activity rates? 

      iii) Does the decrease in GTPase activity imply a reduced turnover of disassembly of FtsZ to monomers? Hence, how is the reduction in turbidity related to the decrease in GTPase activity? How does the GTPase activity change with time? iv) How can the decrease in GTPase activity with increasing ZapD be explained?

      We conducted GTPase activity assays within the first two minutes following GTP addition, a timeframe that promotes bundle formation. Previous studies, such as those by Durand-Heredia et al. (2012 J Bacteriol - DOI: 10.1128/JB.00176-12), have also indicated a reduction in GTPase activity during the initial moments of bundling. The reviewer’s suggestion that GTPase activity should recover after the disassembly of toroids is valid and warrants further investigation. To test this hypothesis, measuring GTPase activity over extended periods would be necessary. When comparing FtsZ filaments observed in vitro, we found that ZapD-containing FtsZ bundles exhibit decreased GTPase activity. Although we did not measure it directly, we anticipate a reduction in the rate of GTP exchange within the polymer, similar to the behavior of FtsZ bundles formed in the presence of crowders (González et al. 2003 J. Biol. Chem - DOI: 10.1074/jbc.M305230200), which also display a delay in GTPase activity. High levels of ZapD enhance bundling, which may explain the decrease in GTPase activity as ZapD levels increase.

      (3) Treadmilling and FtsZ filament organisation:

      If the FtsZ filaments are cross linked antiparallel, how can tread milling behaviour be explained? Doesn't tread milling imply a directionality of filament orientations in the FtsZ bundles?

      Our model can only suggest filament alignment. The latter is compatible with parallel and antiparallel filament organization.

      The correlation between observed effects on GTPase activity, treadmilling and ZapD interaction will provide an interesting insight to the model.

      Establishing a detailed correlation among these three factors could yield valuable insights into the mechanisms and potential physiological implications of the structural organization of FtsZ polymers influenced by crosslinking proteins and ZapD. To precisely characterize these interactions, further time-resolved assays in solution and reconstituted systems would be necessary, which is beyond the scope of this study.

      (4) Toroid dimensions and intrinsic curvature:

      i) Page 4: What is the correlation between the toroid dimensions and the intrinsic curvature of the FtsZ filaments? Given the thickness of ~ 127 nm, please provide an explanation of how the intrinsic curvature of FtsZ is compatible with both the inner and outer diameters of 500 nm and 380 nm.

      We added a paragraph for clarification (page 6, lines 20-24):

      “Previous studies have shown different FtsZ structures at different concentrations and buffer conditions. FtsZ filaments are flexible and can generate different curvatures ranging from mini rings of ~24 nm to intermediate circular filaments of ~300 nm or toroids of ~500 nm in diameter (reviewed in Erickson and Osawa 2017 Subcell Biochem - DOI: 10.1007/978-3-319-53047-5_5, and Wang et al. 2019 J Biol Chem - DOI: 10.1074/jbc.RA119.009621). It is reasonable to assume that FtsZ filaments can accommodate the toroid shape promoted by ZapD crosslinking.”

      ii) For the curvature of FtsZ filaments to be similar, the length of the filaments in the inner circles of the toroid have to be smaller than those in the outer circles? Is this true? Or are the FtsZ filaments of uniform length throughout?

      Due to the limitations in the resolution of the toroidal structure, we could not accurately measure the length or curvature of the filaments. Considering the FtsZ flexibility, these filaments may exhibit various curvatures and lengths, as previously mentioned.

      iii) Is the ZapD density uniform thought the inner and outer regions of the toroid?

      The heterogeneity found in the structures suggests a difference in ZapD binding densities; however, we lack quantitative data to confirm this. The outer regions are likely more exposed to the attachment of free ZapDs in the surrounding environment, which leads to the recruitment of more ZapDs and the formation of straight bundles. Supplementary Fig. 7b (right) features a zoomed-in image of a toroid adorned with globular densities in the outer areas, which may correspond to ZapD oligomers. Similar characteristics appear in the straight filaments illustrated in the panels of this figure. However, these features are absent or present in significantly lower quantities in toroids with a 1:1 ratio and toroids formed under a 1:6 ratio, suggesting that the external decoration is due to ZapD saturation. Unfortunately, we cannot provide further details on the characteristics of these protein associations.

      (5) Regular arrangement and toroid structure:

      i) Page 4: last section, first sentence: What is meant by 'regular' arrangement here? The word regular will imply a periodicity, which is not a feature of the bundles.

      We have rephrased the sentence in the revised manuscript as follows (page 5, lines 35-36): “Previous studies have visualized bundles with similar features using negative-stain transmission electron microscopy.”

      ii) Similarly, page 6 first sentence mentions about a conserved toroid structure. Which aspects of the toroid structure are conserved and what are the other toroids that are compared with?

      We noted several features that are conserved in the ZapD-mediated toroidal structures, including their diameter, thickness, height, and roundness, as shown in Fig. 2d-e and Supplementary Fig. 6b-c. However, the internal organization of the toroid does not exhibit a periodic or regular structure. We have rephrased this to say: “…resulting in a toroidal structure observed for the first time following the interaction between FtsZ and one of its natural partners in vitro.” (page 7, lines 42-43):

      iii) Discussion, para 1, last sentence: How is the toroid structural correlated with the bacterial cell FtsZ ring? What do the authors mean by 'structural compatibility' with the ring?

      The toroidal structures described in this work are consistent with the intermediate curved conformation of FtsZ polymers observed more generally across bacterial species and are likely to be part of the FtsZ structure responsible for constriction-force generation (Erickson and Osawa 2017 Subcell Biochem - DOI: 10.1007/978-3-319-53047-5_5). In the case of E. coli, if we assume an average of around 5000 FtsZ monomers in the polymeric form (two-thirds of the total found in dividing cells), this number of FtsZ molecules would be enough to encircle the cell around 6-8 times (considering the axial spacing between FtsZ monomers and the cell perimeter), which would be compatible with the structure adopting the form of a discontinuous toroidal assembly. 

      The term “structural compatibility” could be confusing, so we have removed it from the revised text. 

      iv) Discussion, para 2:

      Resemblance with the division ring in bacterial cells is mentioned in paragraph 2, however the features that are compared to claim resemblance comes later in the discussion. It will be helpful to rearrange the sections so that these are presented together.

      We have reorganized the sections following the reviewer’s suggestion.

      (6) CryoET of toroid and interpretation of the tomogram:

      i) Supplementary figure 10: It is not convincing that the indicated densities correspond to ZapD. Is the resolution and the quality of the tomogram sufficient to comment on the localisation of ZapD? It is challenging to see any interpretable difference between FtsZ filament dimers in 10a vs FtsZ+ZapD in panel (b).

      We acknowledge that localizing ZapDs in the structure is a challenge due to the limited resolution of the cryo-ET data (page 7, lines 11-13, 21-24). We have manually labeled putative ZapDs in the data and have done our best to identify the structures reasonably while recognizing the limitations of the segmentation. We use different colors to guide the eye without clearly stating what is or is not a ZapD. However, filaments found in 1:1 and 1:6 ratio toroids have a clear difference in thickness to those observed in the absence of ZapD. The filaments in 1:0 ratio toroids provide a reasonable control for elongation due to the missing wedge and allow us to attribute the extra filament thickness to ZapD densities confidently (page 7, lines 5-12).

      ii) How is it quantified that the elongation in Z is beyond the missing wedge effect? Please include the explanation for this in the methods or the relevant data as Supplementary figure panels.

      The missing wedge effect causes an elongation by a factor of 2 along the Z-axis. This elongation is evident in the filaments of the 1:0 ratio toroids. Consequently, the elongation in the filaments of the 1:1 and 1:6 ratio toroids exceed that observed due to the missing wedge effect. We have also added this information to the methods section (page 17, lines 31-33).

      iii) Segmentation analysis of the tomogram and many method details of analysis and interpretation of the tomography data has not been described. This is essential to understand the reliability of the interpretation of the tomography data.

      We provided thresholds for volume extraction as isosurfaces and clarified how the putative ZapDs are colored in the revised methods section (page 17, line 24-30). However, we could not perform quantitative analysis of the segmented structures.

      (7) Quantification of structural features of the toroid:

      i) Page 5 last sentence mentions that it provides crucial information on the connectivity and length of the filaments. Is it possible to show a quantification of these features in the toroid models?

      Based on our data, we hypothesize that ZapD crosslinks filaments by creating a network of short filaments rather than long ones. These short filaments assemble to form a complete ring. However, the current resolution of the data precludes precise quantification of this process.

      In the revised version, we have changed this last sentence to put the emphasis on the crosslinking geometry instead (page 7, lines 40-43):

      “Cryo-ET imaging of ZapD-mediated FtsZ toroidal structures revealed a preferential vertical stacking and crosslinking of short ZapD filaments, which are also crosslinked laterally and diagonally, allowing for filament curvature and resulting in a toroidal structure observed for the first time following the interaction between FtsZ and one of its natural partners in vitro.”

      ii) In toroids with increasing concentrations, will it be possible to quantify the number of blobs which have been interpreted as ZapD? Is this consistent with the data of FtsZ to ZapD ratios?

      These quantifications would assist in interpreting the data. However, due to the limited resolution of the data, we are reluctant to provide estimates.

      iii) What is the average length of the filaments in the toroid? Can this be quantified from the tomography data? Similarly, can there be an estimation of curvature of the filaments from the data?

      Unfortunately, the complexity of the toroidal structure and the limited resolution we achieved prevent us from providing accurate quantification. We attempted to track and measure the length of the filaments, but this proved challenging due to the high concentration of connections. Regarding curvature, the arrangement of the filaments into toroids makes it difficult to measure the curvature of each filament. Additionally, the filaments are not perfectly aligned, which suggests that there may be various curvatures present.

      iv) What is the average distance between the FtsZ filaments in the toroid? Does this correlate with the ZapD dimensions, when a model has been interpreted as ZapD?

      We measured the spacing (not the center-to-center distance) between filaments in the toroids and showed this in Supplementary Fig. 14b (sky blue). We observed that the distances are very similar to those found for straight bundles (light blue), with a slightly greater variability. We should point out here that the distances were measured in the XY plane to simplify the measurements.

      v) What is the estimate of average inter-filament distances within the toroid? (Similar data as in Figure 13 for bundles?) When the distance between filaments is less, is the angle between ZapD and FtsZ filament axis different from 90 degrees? This might help in validation of interpretation of some of the blobs as ZapD.

      The distances between the filaments presented in Supplementary Figure 14b include those for toroids (1:1 ratio, represented in sky blue) and straight bundles (1:6 ratio, shown in light blue). We focused solely on the distance between filaments in the XY plane and did not differentiate based on the connection angle. Although the distance may vary with changes in the angles between filaments, our data does not permit us to make any quantitative measurements regarding these variations.

      vi) How does the inter filament distance in the toroids compare with the dimensions of ZapD dimers, in the toroids and bundles? Is there a role played by the FtsZ linker in deciding the spacing?

      The dimension of a ZapD dimer is ~7 nm along the longest axis. Huecas et al. (2017 Biophys J - DOI: 10.1016/j.bpj.2017.08.046) estimated an interfilament distance of ~6.5-6.7 nm for toroids of FtsZ from Bacillus subtilis. These authors also observed a difference in this spacing as a function of the linker, assuming that linker length would modulate FtsZ-FtsZ interactions. We observe a similar spacing for double filaments (5.9 ± 0.8 nm) and a longer spacing in the presence of ZapD (7.88 ± 2.1 nm). Previous studies with ZapD did not measure the distance between filaments but hypothesized that distances of 6-12 nm are allowed based on the structure of the protein (Schumacher M. 2017 J Biol Chem - DOI: 10.1074/jbc.M116.773192). Longer linkers may also provide additional freedom to spread the filaments further apart and facilitate a higher degree of variability in the connections by ZapD. This discussion has been included in the revised text (page 6, line 10-18).

      (8) Crosslinking by ZapD and toroid reorganisation by transient interactions:

      i) Page 5, paragraph 2: Presence of putative ZapD decorating a single FtsZ': When ZapD is interacting with 2 FtsZ monomers within the same protofilament, it does not have any more valency to crosslink filaments. How do the authors propose that this can connect nearby filaments?

      We thank the reviewer for raising this interesting question. We see examples of ZapD dimers binding a filament through only one of the monomers, occupying one valency of the interaction and leaving one of the monomers available for another binding. We expect to see higher densities of ZapD in the outer regions of toroids simply because there are no longer (or not as frequent) FtsZ filaments available to be attached and join the overall toroid structure. Assuming that a ZapD dimer could bind the same FtsZ filament, this region would not be able to connect to other nearby filaments via these interactions.

      ii) Page 5: How are the authors coming up with the proposal of a reorganisation of toroid structures to a bundle? Given the extensive cross linking, a transition from a toroid to a bundle has to be a cooperative process and may not be driven by transient interactions. I would imagine that the higher concentration of ZapD will directly result in straight bundles because of the increased binding events of a dimer to one filament.

      Theoretically, this is correct. A certain degree of cooperativity linked to multivalent interactions would also favor the establishment of other ZapD connections. Furthermore, the formation of these structures occurs relatively quickly, within the first two minutes following the addition of GTP. We observed various intermediate structures, ranging from sparse filament bundles to toroids and straight filaments. However, the limited data prevents us from proposing a model that eventually explains the formation of higher-order structures over time.

      iii) Given such a highly cross-linked mesh, how can you justify transient interactions and loss of ZapD leading to disassembly? The possibility that ZapD can diffuse out of such a network seems impossible. Hence, what is the significance of a transient interaction? What is the basis of calling the interactions transient?

      We have noted that the term “transient” used to define the interaction between ZapD and FtsZ seems to generate confusion. Therefore, we have decided to replace this term to improve the readability of our manuscript, which has been edited accordingly.

      iv) Does the spacing between ZapD connections decide the curvature of the toroid?

      The FtsZ linker connected to ZapD molecules could modulate filament spacing and curvature, as previously suggested (Huecas et al. 2017 Biophys J - DOI: 10.1016/j.bpj.2017.08.046; Sundararajan and Goley 2017 J Biol Chem - DOI: 10.1074/jbc.M117.809939, and Sundararajan et al. 2018 Mol Microbiol - DOI: 10.1111/mmi.14081). In our structures, we observe a mixture of curvatures in the internal organization of the toroid. Despite the flexibility of FtsZ, filaments have a preferred curvature that FtsZ would initially determine. However, the amount of ZapD connections will eventually force the filament structure to adapt and align with neighboring filaments, facilitating connections with more ZapDs. Thus, the binding density of ZapD molecules significantly impacts FtsZ curvature rather than the ZapD connections themselves. However, the molecular mechanism describing the link between ZapD binding and polymer curvature remains unsolved.

      v) What is the difference in conditions between supplementary figure 6 and 12? Why is it that toroids are not observed in 12, for the same ratios?

      Both figures show images of samples under the same conditions. At high ZapD concentrations in the sample, we observe a mixture of structures ranging from single filaments, bundles, toroids, and straight bundles. In Supplementary Fig. 6, we have selected images of toroids, while in Supplementary Fig. 12, we have focused on single and double filaments. We aim to compare similar structures at different ZapD concentrations.

      (9) Correlation with in vivo observations:

      What is the approximate ratio of ZapD to FtsZ concentrations in the cell? In this context, within a cell which one - a toroid or bundle - will be preferred?

      Previous studies have estimated that E. coli cells contain approximately 5,000 to 15,000 FtsZ protein molecules, resulting in a concentration of around 3 to 10 µM (Rueda et al. 2003 J Bacteriol - DOI: 10.1128/JB.185.11.3344-3351.2003). Furthermore, only about two-thirds of these FtsZ molecules participate in forming the division ring (Stricker et al. 2002 PNAS - DOI: 10.1073/pnas.052595099). In contrast, ZapD is a low-abundance protein, with only around 500 molecules per cell (DurandHeredia et al. 2012 J Bacteriol - DOI: 10.1128/JB.00176-12), making it a relatively small fraction compared to the FtsZ molecules. Under these circumstances, toroidal structures are more likely to form than straight bundles, as the latter would require significantly higher concentrations of ZapD for proper assembly. We have added these considerations in the revised text (page 11, lines 1-7).

      (10) Interpretation of mZapD results:

      i) What is the experimental proof for weakened stability of the dimer? Rather than weakened stability, does this form a population of only monomeric ZapD or a proportion of non-functional or unfolded dimer? This requires to be shown by AUC or SEC to substantiate the claim of a weakened interface.

      We have provided new AUC results indicating that mZapD is partially monomeric, which suggests a weakened dimerization interface (page 9, line 15-16 and Supp. Fig. 15a). The assays revealed no signs of protein aggregation.

      ii) How does a weaker dimer result in thinner bundles and not toroids? A weaker dimer would imply that the number of ZapD linked to FtsZ will be less than the wild type, leading to less cross linking, which should lead to toroid formation rather than thinner bundles.

      This observation provides the most plausible explanation. However, we did not detect any toroidal structures, even at high concentrations of mZapD. This finding indicates that a more potent dimerization interface is essential for promoting the formation of toroidal structures rather than merely the number of ZapD-FtsZ connections. mZapD presumably has a reduced affinity for FtsZ, which, along with a weaker binding interface, may explain mZapD's inability to facilitate toroid formation.

      iii) This observation would imply that the geometry of the dimeric interaction plays a role in the bending of the FtsZ filaments into toroids? Please comment.

      Our data suggest that the binding density of ZapD to FtsZ polymers is a crucial factor governing the transition from toroidal structures to straight bundles. Toroids form when the polymers have excess free FtsZ (that ZapD does not crosslink). Additional factors, such as the orientation of the interactions, the length of the flexible linker, and the strength of the ZapD dimerization interface, are likely to contribute to these structural reorganizations. However, our current data do not allow for further analysis, and future experiments will be necessary to address these questions.

      (11) Curvature and plasticity of toroid:

      i) What are the factors that stabilise curved protofilaments/toroid structures in the absence of a cross linker, based on earlier studies from B. subtilis. A comparison will be insightful. ii) What is the effect of the linker length between FtsZ globular domain and CTP in the toroid spacing?

      Huecas et al. 2017 (Biophys J - DOI: 10.1016/j.bpj.2017.08.046) concluded that the disordered CTL of FtsZ serves as a spacer that modulates the self-organization of FtsZ polymers. They proposed that this intrinsically disordered CTL, which spans the gap between protofilament cores, provides approximately 70 Å of lateral spacing between the curved Bacillus subtilis FtsZ (BsFtsZ), forming toroidal structures. In contrast, the parallel filaments of tailless BsFtsZ mutants, which have a reduced spacing of 50 Å, will likely stick together, resulting in the straight bundles observed. In the full-length BsFtsZ filament, the flexibility allowed by the lateral association favors the coalescence of these curved protofilaments, leading to the formation of toroidal structures. 

      The role of the C-terminal tail of FtsZ in E. coli is critical for its functionality (Buske and Levin 2012 J Biol Chem - DOI: 10.1074/jbc.M111.330324). However, its structural involvement in complex formations remains unclear. Research indicates that any disordered peptide between 43 and 95 amino acids in length can function as a viable linker, while peptides that are significantly shorter or longer impede cell division (Gardner et al. 2013 Mol Microbiol - DOI: 10.1111/mmi.12279). Studies in E. coli and B. subtilis suggest that intrinsically disordered CTLs play a role in determining FtsZ assembly and function in vivo, and this role is dependent on the length, flexibility, and disorder of the tails. These aspects still require further exploration.

      iii) How is it concluded that the concentration of ZapD is modulating the behaviour of the toroid structure? ZapD as a molecule does not have much room for conformational flexibility beyond a few angstroms, in the absence of long flexible regions. Rather, shouldn't the linker length of FtsZ to the CTP decide the plasticity of the toroid?

      The length and flexibility of the linker can significantly influence structural interactions. As previously mentioned, a longer linker will likely enhance the range of interaction distances and orientations. However, specific interaction of ZapD and FtsZ is stronger than non-specific electrostatic FtsZ-FtsZ interactions, and this is not solely due to the flexibility of the linker. Instead, it can modulate the formation of either a toroidal structure or straight bundles.

      iv) "a minor free energy perturbation to bring about significant changes in the geometry of the fibers due to modifications in environmental conditions" - this sentence is not clear to me. How did the data described in the paper relate to minor free energy perturbations and how do environmental conditions affect this?

      This sentence aimed to convey the notion of polymorphism in FtsZ polymers. We acknowledge that the original version may have been unclear, so we have removed it in the new version of the manuscript (page 12, lines 1-2).

      (12) Missing controls:

      i) Supplementary Figure 2a: Interaction between ZapD and FtsZ: what was the negative control used in this experiment? Use of FtsZ with the CTP deletion or ZapD specific mutations will help in confirming that the Kd estimation is indeed driven by a specific interaction.

      Negative controls correspond to FtsZ and ZapD alone.

      ii) In a turbidity measurement, how will you distinguish between ZapD mediated bundling, ZapD independent bundling and FtsZ filaments alone? Here again, having a data with non-interacting mutational partners will make the data more reliable.

      The turbidity signal of individual proteins in the absence and presence of GTP is indistinguishable from that of the buffer. We have indicated this in the figure legend.

      iii) Control experiments to show that mZapD is folded (see point below) and to indeed prove that it is monomeric is missing.

      We have included the missing AUC data in the supplementary information (Supp Fig 15a).

      Minor points:

      -  Page 2, para 4: beta-sheet domain (instead of beta-strand)

      Done.

      -  Fig 2a and b: Why is a ratio mentioned in Figure 2a legend? I understood these images as individual proteins at 10 uM concentrations.

      That was a typing error; it corresponds to two individual proteins at 10 µM concentrations. 

      -  Fig 2. Y-axis - spelling of frequency (change in all figures where applicable)

      Corrected.

      -  Supplementary Figure 5: FtsZ 5 uM - change u to micro symbol. FtsZ - t is missing

      Corrected. 

      -  Molecular weight marker is xx. What does xx stand for?

      Corrected. 

      -  Fig 1: Units for GTPase activity on the y-axis is missing.

      Done.

      -  Suppl Fig 3: How was the normalisation carried out for the turbidity data?

      We have explained it the revised methods section. 

      -  Page 4, line 5: p missing in ZapD

      Done. 

      -  Page 5: paragraph 1, last sentence: stabilised or established?

      Done.

      -  Page 6: 3rd sentence from last: correct the sentence (one ZapD two FtsZ)

      Corrected. 

      -  Page 14: Fluorescence microscopy and FRAP experiments have not been described in the manuscript. Hence, these are not required in the methods.

      Corrected. 

      -  Please include representative gels of purified protein samples used in the assay for sample quality control.

      Controls for each protein are shown in Supplementary Fig. 5a as “control samples” corresponding to 5 µM of each protein before centrifugation.

      Reviewer #3 (Recommendations for the authors):

      Fig. S2a confirms and quantitates the interaction of ZapD with FtsZ-GDP monomers by F.A. It shows a surprisingly high Kd of ~10 µM. This seems important but it is ignored in the overall interpretation. Fig. S2b (FCS) suggests an even weaker interaction, but this may reflect higher order aggregates.

      As the reviewer points out, the interaction between ZapD and FtsZ in the GDP form is weak, consistent with the need for high concentrations of ZapD to form FtsZ macrostructures in the presence of GTP.

      We did not observe the formation of ZapD aggregates, even at higher protein (Author response image 1A) and salt (Author response image 1B) concentrations.

      Author response image 1.

      A) Sedimentation velocity (SV) profiles of ZapD over a concentration range of 2 to 30 µM in 50 mM KCl, 5 mM MgCl2, Tris-HCl pH 7. B) SV profiles of ZapD at 10 µM in different ionic strength concentrations in buffer 50-500 mM KCl, 5 mM MgCl2, 50 mM Tris-HCl pH 7. Abs280 measurements were collected at 48,000 rpm and 20 ºC. 

      Describing their assembly of toroids the authors state "Upon adding equimolar amounts of ZapD, corresponding to the subsaturating ZapD binding densities described in the previous section". My reading of Fig. 1b and S5 is that FtsZ is almost fully saturated at 1:1 concentration; In S5a at 5:5 µM about 25% of each is in the pellet, which is near 1:1 saturation. It is certainly >50% saturated. Shouldn't this be clarified to read "slightly substoichiometric. Of course, that undermines the identification of ZapD as such a substoichiometric number.

      We have rephrased the sentence following the reviewer’s suggestions to clarify matters (page 5, lines 39-40).

      The cryoET images in Fig. 3 are an average of five slices with a total thickness of 32 nm. The circular "short filaments..almost parallel" are therefore not single 5 nm diameter FtsZ filaments but must be alignment of filaments axially into sheets (or belts, the axial structure shown in Fig. S8e, discussed next). Importantly, the authors indicate "connections between filaments" by red arrows. This seems wrong for two reasons. (1) The "connections" are very sparse, and therefore not consistent with the near saturation of FtsZ by ZapD. (2) To show up in the 32 nm averaged slice, connections from multiple filaments would have to be aligned. Fig. 3e is a "view of the segmented toroidal structure." I think it shows sheets of filaments as noted above, and the suggested "crosslinks" are again very sparse and no more convincing.

      We thank the reviewer for pointing this out. This was an error on our part, which we have corrected in the figure legend of the revised version of the manuscript. The tomographic slice shown in Fig. 3a is an average of 5 slices, each with a pixel size of 0.86 nm, corresponding to a pixel size of 4.31 nm. It therefore corresponds to the thickness of a single FtsZ filament. The few red arrows indicate lateral connections between filaments, and as discussed earlier, ZapDs also crosslinks FtsZ filaments vertically, giving rise to the elongated structures observed in the Z-direction.

      All 3-D reconstructions and segmented renditions should have a scale bar. The axial cylindrical sheets seem to be confirmed and qualified in Fig. S8e. The cylindrical sheets are not continuous, but seem to consist of belt-like filaments that are ~8-10 nm wide in the axial direction. Adjacent belts are separated axially by ~5 nm gaps, and radially by 4-20 nm. The densest filaments in the projection image Fig. 3b are probably an axial superposition of 2-3 belts, while the lighter filaments may be individual belts.

      Fig. 4 shows a higher number of crosslinks but nowhere near a 1:1 stoichiometry. Most importantly to me, the identification of crosslinks vs filaments seems completely arbitrary. For example, if one colored grey all of the densities I 4a right panel, I would have no way to duplicate the distinctions shown in red and blue. Even if we accept the authors' distinction, it does not provide much structural insight. Continuous bands or sheets are identified as FtsZ, without any resolution of substructure, and any density outside these bands is ZapD. The spots identified as ZapD seem randomly dispersed and much too sparse to include all the ~1:1 ZapD.

      We appreciate the reviewer's comments. Scale bars are present in the tomographic slices but not in the 3D views, as these are perspective views, and it would be inappropriate to include scale bars. To provide context for the images, we added the dimensions of the toroids and toroid sections to the figure legends. 

      As previously mentioned, the resolution of our data limits our ability to accurately segment ZapD densities, especially in the Z direction. In Fig. 4, we have done our best to segment the ZapD densities at the top and sides of the FtsZ filaments, but many densities have been missed. We have clarified this point in the text and in the figure legend. We have clarified this point in both the text and the figure legends. This preliminary annotated view is meant to help illustrate the formation of the toroids. In Fig. 3, we have labeled only a few arrows to highlight the lateral connections between the FtsZ filaments; however, there are many more connections than those indicated.

      Fig. S12 explores the effect of increasing ZapD to 1:6, and the authors conclude "the high concentration of ZapD molecules increased the number of links between filaments and ultimately promoted the formation of straight bundles." However, the binding sites on FtsZ are already nearly saturated at 10:10.

      We cannot assume that all FtsZ binding sites are present at a 1:1 ratio. Our pelleting assay confirms the presence of both proteins in the pellet, but we should be cautious about quantification due to the limitations of this technique. Based on our cryo-EM experiments, the amount of ZapD associated with these structures is much lower. We hypothesize that ZapD proteins sediment with the large FtsZ structures, acting as an external decoration for the toroids. A single ZapD monomer may be bound to multiple outer filaments of the structures, which could effectively increase the total µM concentration observed in the pelleting assay. This situation may explain the enrichment of ZapD in the pellet at high concentrations, when theoretically only a 1:1 ratio should be possible. We have observed external decorations of ZapD at high concentrations (see Supplementary Fig. 6). We believe that the pelleting assay simplifies the system and should be used to complement the cryo-EM images.

      Minor points.

      In the Intro "..to follow a treadmilling behavior, similar to that of actin filaments.9-13." These refs have little to do with treadmilling. I suggest: Wagstaff..Lowe mBio 2017; Du..Lutkenhaus PNAS 2018; Corbin Erickson BJ 2020; Ruis..Fernandez-Tornero Plos Biol 2022.

      Following the reviewer’s suggestions, we have modified the references in the revised version. 

      The authors responded to a query during review stating that the concentration of ZapD always refers to the monomer subunit. That seems certainly the case for Fig. S1, but the caption to Fig. 1a confuses the stoichiometry issue: "expecting (sic) at around 2:1 FtsZ:ZapD." Perhaps it could be clarified by stating that the Fig. shows only half the FtsZ's occupied. But in Fig. 1b the absorbance reaches its maximum at equimolar FtsZ and ZapD. That means that all FtsZ's are bound to a ZapD monomer. Why not draw the model in 1A show that? Fig. S5 is also consistent with this 1:1 stoichiometry. And this might be the place to contrast the planar model with the stacked model suggested by Fig. 5 where the two FtsZ filaments are ~8 nm apart, and the ZapD bridging them is on top.

      We have revised the legend for Fig. 1a to improve its readability. In Fig. 1b, the absorbance data indicate that most FtsZ proteins form macrostructures; however, this does not imply that all FtsZ proteins are bound to ZapDs. Our findings demonstrate that this binding only occurs in the case of straight bundles.

      It may help to note that some previous studies have expressed the concentration of ZapD as the dimer. E.g., Roach..Khursigara 2016 found maximal pelleting at FtsZ:ZapD(dimer) of 2:1 (their Fig. 3), completely consistent with the 1:1 FtsZ:ZapD(monomer) in the present study.

      We recognize this discrepancy in the literature. Therefore, throughout the manuscript, the molar concentrations of both proteins are expressed in terms of the FtsZ and ZapD monomer species.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public Review):

      The authors make a compelling case for the biological need to exquisitely control RecB levels, which they suggest is achieved by the pathway they have uncovered and described in this work. However, this conclusion is largely inferred as the authors only investigate the effect on cell survival in response to (high levels of) DNA damage and in response to two perturbations - genetic knock-out or over-expression, both of which are likely more dramatic than the range of expression levels observed in unstimulated and DNA damage conditions.

      In the discussion of the updated version of the manuscript, we have clarified the limits of our interpretation of the role of the uncovered regulation.

      Lines 411-417: “It is worth noting that the observed decrease in cell viability upon DNA damage was detected for relatively drastic perturbations such as recB deletion and RecBCD overexpression. Verifying these observations in the context of more subtle changes in RecB levels would be important for further investigation of the biological role of the uncovered regulation mechanism. However, the extremely low numbers of RecB proteins make altering its abundance in a refined, controlled, and homogeneous across cells manner extremely challenging and would require the development of novel synthetic biology tools.”

      Reviewer #3 (Public Review):

      The major weaknesses include a lack of mechanistic depth, and part of the conclusions are not fully supported by the data.

      (1) Mechanistically, it is still unclear why upon DNA damage, translation level of recB mRNA increases, which makes the story less complete. The authors mention in the Discussion that a moderate (30%) decrease in Hfq protein was observed in previous study, which may explain the loss of translation repression on recB. However, given that this mRNA exists in very low copy number (a few per cell) and that Hfq copy number is on the order of a few hundred to a few thousand, it's unclear how 30% decrease in the protein level should resides a significant change in its regulation of recB mRNA.

      We agree that the entire mechanistic pathway controlling recB expression may be not limited to just Hfq involvement. We have performed additional experiments, proposed by the reviewer, suggesting that a small RNA might be involved (see below, response to comments 3&4). However, we consider that the full characterisation of all players is beyond the scope of this manuscript. In addition to describing the new data (see below), we expanded the discussion to explain more precisely why changes in Hfq abundance upon DNA damage may impact RecB translation. 

      Lines 384-391: “A modest decrease (~30%) in Hfq protein abundance has been seen in a proteomic study in E. coli upon DSB induction with ciprofloxacin (DOI: 10.1016/j.jprot.2018.03.002). While Hfq is a highly abundant protein, it has many mRNA and sRNA targets, some of which are also present in large amounts (DOI: 10.1046/j.1365-2958.2003.03734.x). As recently shown, the competition among the targets over Hfq proteins results in unequal (across various targets) outcomes, where the targets with higher Hfq binding affinity have an advantage over the ones with less efficient binding (DOI: 10.1016/j.celrep.2020.02.016). In line with these findings, it is conceivable that even modest changes in Hfq availability could result in significant changes in gene expression, and this could explain the increased translational efficiency of RecB under DNA damage conditions. “

      (2) Based on the experiment and the model, Hfq regulates translation of recB gene through binding to the RBS of the upstream ptrA gene through translation coupling. In this case, one would expect that the behavior of ptrA gene expression and its response to Hfq regulation would be quite similar to recB. Performing the same measurement on ptrA gene expression in the presence and absence of Hfq would strengthen the conclusion and model.

      Indeed, based on our model, we expect PtrA expression to be regulated by Hfq in a similar manner to RecB. However, the product encoded by the ptrA gene, Protease III, (i) has been poorly characterised; (ii) unlike RecB, is located in the periplasm (DOI: 10.1128/jb.149.3.1027-1033.1982); and (iii) is not involved in any DNA repair pathway. Therefore, analysing PtrA expression would take us away from the key questions of our study.

      (3) The authors agree that they cannot exclude the possibility of sRNA being involved in the translation regulation. However, this can be tested by performing the imaging experiments in the presence of Hfq proximal face mutations, which largely disrupt binding of sRNAs.

      (4) The data on construct with a long region of Hfq binding site on recB mRNA deleted is less convincing. There is no control to show that removing this sequence region itself has no effect on translation, and the effect is solely due to the lack of Hfq binding. A better experiment would be using a Hfq distal face mutant that is deficient in binding to the ARN motifs.

      We performed the requested experiments. We included this data in the manuscript in the supplementary figure (Figure S11), and our interpretation in the discussion.

      Lines 354-378: “While a few recent studies have shown evidence for direct gene regulation by Hfq in a sRNA-independent manner (DOI: 10.1101/gad.302547.117; DOI: 10.1111/mmi.14799; DOI: 10.1371/journal.pgen.1004440; DOI: 10.1111/mmi.12961; DOI: 10.1038/emboj.2013.205), we attempted to investigate whether a small RNA could be involved in the Hfq-mediated regulation of RecB expression. We tested Hfq mutants containing point mutations in the proximal and distal sides of the protein, which were shown to disrupt either binding with sRNAs or with ARN motifs of mRNA targets, respectively [DOI: 10.1016/j.jmb.2013.01.006, DOI: 10.3389/fcimb.2023.1282258]. Hfq mutated in either proximal (K56A) or distal (Y25D) faces were expressed from a plasmid in a ∆hfq background. In both cases, Hfq expression was confirmed with qPCR and did not affect recB mRNA levels (Supplementary Figure S11b). When the proximal Hfq binding side (K56A) was disrupted, RecB protein concentration was nearly similar to that obtained in a ∆hfq mutant (Supplementary Figure S11a, top panel). This observation suggests that the repression of RecB translation requires the proximal side of Hfq, and that a small RNA is likely to be involved as small RNAs (Class I and Class II) were shown to predominantly interact with the proximal face of Hfq [DOI: 10.15252/embj.201591569]. When we expressed Hfq mutated in the distal face (Y25D) which is deficient in binding to mRNAs, less efficient repression of RecB translation was detected (Supplementary Figure S11a, bottom panel). This suggests that RecB mRNA interacts with Hfq at this position. We did not observe full de-repression to the ∆hfq level, which might be explained by residual capacity of Hfq to bind its recB mRNA target in the point mutant (Y25D) (either via the distal face with less affinity or via the lateral rim Hfq interface).”

      Taken together, these results suggest that Hfq binds to recB mRNA and that a small RNA might contribute to the regulation although this sRNA has not been identified.

      (5) Ln 249-251: The authors claim that the stability of recB mRNA is not changed in ∆hfq simply based on the steady-state mRNA level. To claim so, the lifetime needs to be measured in the absence of Hfq.

      We measured recB lifetime in the absence of Hfq in a time-course experiment where transcription initiation was inhibited with rifampicin and mRNA abundance was quantified with RT-qPCR. The results confirmed that recB mRNA lifetime in hfq mutants is similar to the one in the wild type (Figure S7d, referred to the line 263 of the manuscript).

      (6) What's the labeling efficiency of Halo-tag? If not 100% labeled, is it considered in the protein number quantification? Is the protein copy number quantification through imaging calibrated by an independent method? Does Halo tag affect the protein translation or degradation?

      Our previous study (DOI: 10.1038/s41598-019-44278-0) described a detailed characterization of the HaloTag labelling technique for quantifying low-copy proteins in single E. coli cells using RecB as a test case. 

      In that study, we showed complete quantitative agreement of RecB quantification between two fully independent methods: HaloTag-based labelling with cell fixation and RecB-sfGFP combined with a microfluidic device that lowers protein diffusion in the bacterial cytoplasm. This second method had previously been validated for protein quantification (DOI: 10.1038/ncomms11641) and provides detection of 80-90% of the labelled protein. Additionally, in our protocol, immediate chemical fixation of cells after the labelling and quick washing steps ensure that new, unlabelled RecB proteins are not produced. We, therefore, conclude that our approach to RecB detection is highly reliable and sufficient for comparing RecB production in different conditions and mutants.

      The RecB-HaloTag construct has been designed for minimal impact on RecB production and function. The HaloTag is translationally fused to RecB in a loop positioned after the serine present at position 47 where it is unlikely to interfere with (i) the formation of RecBCD complex (based on RecBCD structure, DOI: 10.1038/nature02988), (ii) the initiation of translation (as it is far away from the 5’UTR and the beginning of the open reading frame) and (iii) conventional C-terminalassociated mechanisms of protein degradation (DOI: 10.15252/msb.20199208). In our manuscript, we showed that the RecB-HaloTag degradation rate is similar to the dilution rate due to bacterial growth. This is in line with a recent study on unlabelled proteins, which shows that RecB’s lifetime is set by the cellular growth rate (DOI: 10.1101/2022.08.01.502339).

      Furthermore, we have demonstrated (DOI: 10.1038/s41598-019-44278-0) that (i) bacterial growth is not affected by replacing the native RecB with RecB-HaloTag, (ii) RecB-HaloTag is fully functional upon DNA damage, and (iii) no proteolytic processing of the RecB-HaloTag is detected by Western blot. 

      These results suggest that RecB expression and functionality are unlikely to be affected by the translational HaloTag insertion at Ser-47 in RecB.

      In the revised version of the manuscript, we have added information about the construct and discuss the reliability of the quantification.

      Lines 141-152: “To determine whether the mRNA fluctuations we observed are transmitted to the protein level, we quantified RecB protein abundance with singlemolecule accuracy in fixed individual cells using the Halo self-labelling tag (Fig. 2A&B).

      The HaloTag is translationally fused to RecB in a loop after Ser47(DOI: 10.1038/s41598-019-44278-0) where it is unlikely to interfere with the formation of RecBCD complex (DOI: 10.1038/nature02988), the initiation of translation and conventional C-terminal-associated mechanisms of protein degradation (DOI: 10.15252/msb.20199208). Consistent with minimal impact on RecB production and function, bacterial growth was not affected by replacing the native RecB with RecBHaloTag, the fusion was fully functional upon DNA damage and no proteolytic processing of the construct was detected (DOI: 10.1038/s41598-019-44278-0). To ensure reliable quantification in bacteria with HaloTag labelling, the technique was previously verified with an independent imaging method and resulted in > 80% labelling efficiency (DOI: 10.1038/s41598-019-44278-0, DOI: 10.1038/ncomms11641). In order to minimize the number of newly produced unlabelled RecB proteins, labelling and quick washing steps were followed by immediate chemical fixation of cells.”

      Lines 164-168: “Comparison to the population growth rate [in these conditions (0.017 1/min)] suggests that RecB protein is stable and effectively removed only as a result of dilution and molecule partitioning between daughter cells. This result is consistent with a recent high-throughput study on protein turnover rates in E. coli, where the lifetime of RecB proteins was shown to be set by the doubling time (DOI: 10.1038/s41467-024-49920-8).”

      (7) Upper panel of Fig S8a is redundant as in Fig 5B. Seems that Fig S8d is not described in the text.

      We have now stated in the legend of Fig S8a that the data in the upper panel were taken from Fig 5B to visually facilitate the comparison with the results given in the lower panel. We also noticed that we did not specify that in the upper panel in Fig S9a (the data in the upper panel of Fig S9a was taken from Fig 5C for the same reason). We added this clarification to the legend of the Fig S9 as well.

      We referred to the Fig S8d in the main text. 

      Lines 283-284: “We confirmed the functionality of the Hfq protein expressed from the pQE-Hfq plasmid in our experimental conditions (Fig. S8d).”

      Reviewer #1 (Recommendations For The Authors):

      (1) Experimental regime to measure protein and mRNA levels.

      (a) Authors expose cells to ciprofloxacin for 2 hrs. They provide a justification via a mathematical model. However, in the absence of a measurement of protein and mRNA across time, it is unclear whether this single time point is sufficient to make the conclusion on RecB induction under double-strand break.

      In our experiments, we only aimed to compare recB mRNA and RecB protein levels in two steady-state conditions: no DNA damage and DNA damage caused by sublethal levels of ciprofloxacin. We did not aim to look at RecB dynamic regulation from nondamaged to damaged conditions – this would indeed require additional measurements at different time points. We revised this part of the results to ensure that our conclusions are stated as steady-state measurements and not as dynamic changes.

      Line 203-205: “We used mathematical modelling to verify that two hours of antibiotic exposure was sufficient to detect changes in mRNA and protein levels and for RecB mRNA and protein levels to reach a new steady state in the presence of DNA damage.”

      (b) Authors use cell area to account for the elongation under damage conditions. However, it is unclear whether the number of copies of the recB gene are similar across these elongated cells. Hence, authors should report mRNA and protein levels with respect to the number of gene copies of RecB or chromosome number as well.

      Based on the experiments in DNA damaging conditions, our main conclusion is that the average translational efficiency of RecB is increased in perturbed conditions. We believe that this conclusion is well supported by our measurements and that it does not require information about the copy number of the recB gene but only the concentration of mRNA and protein. We did observe lower recB mRNA concentration upon DNA damage in comparison to the untreated conditions, which may be due to a lower concentration of genomic DNA in elongated cells upon DNA damage, as we mention in lines (221-223).

      Our calculation of translation efficiency could be affected by variations of mRNA concentration across cells in the dataset. For example, longer cells that are potentially more affected by DNA damage could have lower concentrations of mRNA. We verified that this is not the case, as recB mRNA concentration is constant across cell size distribution (see the figure below or Figure S5a from Supplementary Information).

      Therefore, we do not think that the measurements of recB gene copy would change our conclusions. We agree that measuring recB gene copies could help to investigate the reason behind the lower recB mRNA concentration under the perturbed conditions as this could be due to lower DNA content or due to shortage of resources (such as RNA polymerases). However, this is a side observation we made rather than a critical result, whose investigation is beyond the scope of this manuscript.

      Author response image 1.

      (2) RecB as a proxy for RecBCD. Authors suggest that RecB levels are regulated by hfq. However, how does this regulatory circuit affect the levels of RecC and RecD? Ratio of the three proteins has been shown to be important for the function of the complex.

      A full discussion of RecBCD complex formation regulation would require a complete quantitative model based on precise information on the dynamic of the complex formation, which is currently lacking. 

      We can however offer the following (speculative) suggestions assuming that all three subunits are present in similar abundance in native conditions (DOI: 10.1038/s41598019-44278-0 for RecB and RecC). As the complex is formed in 1:1:1 ratio (DOI: 10.1038/nature02988), we propose that the regulation mechanism of RecB expression affects complex formation in the following way. If the RecB abundance becomes lower than the level of RecC and RecD subunits, the complex formation would be limited by the number of available RecB subunits and hence the number of functional RecBCDs will be decreased. On the contrary, if the number of RecB is higher than the baseline, then, especially in the context of low numbers, we would expect that the probability of forming a complex RecBC (and then RecBCD) will be increased. Based on this simple explanation, we might speculate that regulation of RecB expression may be sufficient to regulate RecB levels and RecBCD complex formation. However, we feel that this argument is too speculative to be added to the manuscript. 

      (3) Role of Hfq in RecB regulation. While authors show the role of hfq in recB translation regulation in non-damage conditions, it is unclear as to how this regulation occurs under damage conditions.

      (a) Have the author carried out recB mRNA and protein measurement in hfqdeleted cells under ciprofloxacin treatment?

      We attempted to perform experiments in hfq mutants under ciprofloxacin treatment. However, the cells exhibited a very strong and pleiotropic phenotype: they had large size variability and shape changes and were also frequently lysing. Therefore, we did not proceed with mRNA and protein quantification because the data would not have been reliable. 

      (b) How do the authors propose that Hfq regulation is alleviated under conditions of DNA damage, when RecB translation efficiency increases?

      We propose that Hfq could be involved in a more global response to DNA damage as follows. 

      Based on a proteomic study where Hfq protein abundance has been found to decrease (~ 30%) upon DSB induction with ciprofloxacin (DOI: 10.1016/j.jprot.2018.03.002), we suggest that this could explain the increased translational efficiency of RecB. While Hfq is a highly abundant protein, it has many targets (mRNA and sRNA), some of which are also highly abundant. Therefore the competition among the targets over Hfq proteins results in unequal (across various targets) outcomes (DOI: 10.1046/j.13652958.2003.03734.x), where the targets with higher Hfq binding affinity have an advantage over the ones with less efficient binding. We reason that upon DNA damage, a moderate decrease in the Hfq protein abundance (30%) can lead to a similar competition among Hfq targets where high-affinity targets outcompete low-affinity ones as well as low-abundant ones (such as recB mRNAs). Thus, the regulation of lowabundant targets of Hfq by moderate perturbations of Hfq protein level is a potential explanation for the change in RecB translation that we have observed. Potential reasons behind the changes of Hfq levels upon DNA damage would be interesting to explore, however this would require a completely different approach and is beyond the scope of this manuscript.

      We have modified the text of the discussion to explain our reasoning:

      Lines 384-391: “A modest decrease (~30%) in Hfq protein abundance has been seen in a proteomic study in E. coli upon DSB induction with ciprofloxacin (DOI: 10.1016/j.jprot.2018.03.002). While Hfq is a highly abundant protein, it has many mRNA and sRNA targets, some of which are also present in large amounts (DOI: 10.1046/j.1365-2958.2003.03734.x). As recently shown, the competition among the targets over Hfq proteins results in unequal (across various targets) outcomes, where the targets with higher Hfq binding affinity have an advantage over the ones with less efficient binding (DOI: 10.1016/j.celrep.2020.02.016). In line with these findings, it is conceivable that even modest changes in Hfq availability could result in significant changes in gene expression, and this could explain the increased translational efficiency of RecB under DNA damage conditions.”

      (c) Is there any growth phenotype associated with recB mutant where hfq binding is disrupted in damage and non-damage conditions? Does this mutation affect cell viability when over-expressed or under conditions of ciprofloxacin exposure?

      We checked the phenotype and did not detect any difference in growth or cell viability affecting the recB-5 UTR* mutants either in normal conditions or upon exposure to ciprofloxacin. However, this is expected because the repair capacity is associated with RecB protein abundance and in this mutant, while translational efficiency of recB mRNA increases, the level of RecB proteins remains similar to the wild-type (Figure 5E).

      Minor points:

      (1) Introduction - authors should also discuss the role of RecFOR at sites of fork stalling, a likely predominant pathway for break generated at such sites.

      The manuscript focuses on the repair of DNA double-strand breaks (DSBs). RecFOR plays a very important role in the repair of stalled forks because of single-strand gaps but is not involved in the repair of DSBs (DOI: 10.1038/35003501). We have modified the beginning of the introduction to mention the role of RecFOR. 

      Lines 35-39: “For instance, replication forks often encounter obstacles leading to fork reversal, accumulation of gaps that are repaired by the RecFOR pathway (DOI: 10.1038/35003501) or breakage which has been shown to result in spontaneous DSBs in 18% of wild-type Escherichia coli cells in each generation (DOI: 10.1371/journal.pgen.1007256), underscoring the crucial need to repair these breaks to ensure faithful DNA replication.”

      (2) Methods: The authors refer to previous papers for the method used for single RNA molecule detection. More information needs to be provided in the present manuscript to explain how single molecule detection was achieved.

      We added additional information in the method section on the fitting procedure allowing quantifying the number of mRNAs per detected focus.

      Lines 515-530: “Based on the peak height and spot intensity, computed from the fitting output, the specific signal was separated from false positive spots (Fig. S1a). To identify the number of co-localized mRNAs, the integrated spot intensity profile was analyzed as previously described (DOI: 10.1038/nprot.2013.066). Assuming that (i) probe hybridization is a probabilistic process, (ii) binding each RNA FISH probe happens independently, and (iii) in the majority of cases, due to low-abundance, there is one mRNA per spot, it is expected that the integrated intensities of FISH probes bound to one mRNA are Gaussian distributed. In the case of two co-localized mRNAs, there are two independent binding processes and, therefore, a wider Gaussian distribution with twice higher mean and twice larger variance is expected. In fact, the integrated spot intensity profile had a main mode corresponding to a single mRNA per focus, and a second one representing a population of spots with two co-localized mRNAs (Fig. S1b). Based on this model, the integrated spot intensity histograms were fitted to the sum of two Gaussian distributions (see equation below where a, b, c, and d are the fitting parameters), corresponding to one and two mRNA molecules per focus. An intensity equivalent corresponding to the integrated intensity of FISH probes in average bound to one mRNA was computed as a result of multiple-Gaussian fitting procedure (Fig. S1b), and all identified spots were normalized by the one-mRNA equivalent.

      Reviewer #2 (Recommendations For The Authors):

      Overall the work is carefully executed and highly compelling, providing strong support for the conclusions put forth by the authors.

      One point: the potential biological consequences of the post-transcriptional mechanism uncovered in the work would be enhanced if the authors could 1) tune RecB protein levels and 2) directly monitor the role that RecB plays in generating single-standed DNA at DSBs.

      We agree that testing viability of cells in case of tunable changes in RecB levels would be important to further investigate the biological role of the uncovered regulation mechanism. However, this is a very challenging experiment as it is technically difficult to alter the low number of RecB proteins in a controlled and homogeneous across-cell manner, and it would require the development of precisely tunable and very lowabundant synthetic designs. 

      We did monitor real-time RecB dynamics by tracking single molecules in live E. coli cells in a different study (DOI: 10.1101/2023.12.22.573010) that is currently under revision. There, reduced motility of RecB proteins was observed upon DSB induction indicating that RecB is recruited to DNA to start the repair process.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with the strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      (1) The figures could be better labeled.

      Figures will be revised to provide more detailed labeling.

      (2) For Figure 2E, please plot the error bar. Are there any statistics performed to compare the mean responses?

      We did not perform statistical comparisons (between the mean rates across the population). We will add this analysis and the corresponding error bars. 

      (3) For Figure 2D, it will be more informative to plot the percentage of responsive units.

      We will do it.

      (4) Could the similarity in response be explained by the similarity in urine composition? The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine.

      We agree. As we wrote in the Discussion: “Ultimately, lacking knowledge of the chemical space associated with each of the stimuli, this and all the other ideas developed here remain speculative.”

      A better understanding of the chemical distance is an important aspect that we aim to include in our future studies. However, this is far from trivial, as it is not chemical distance per se (which in itself is hard to define), but rather the “projection” of chemical space on the vomeronasal receptor neurons array. That is, knowledge of the chemical composition of the stimuli, lacking full knowledge of which molecules are vomeronasal system ligands, will only provide a partial picture. Despite these limitations, this is an important analysis which we would have done had we access to this data.

      (5) If it is not possible for the authors to obtain these data first-hand, published data on MUPs and chemicals found in these urines may provide some clues.

      Measurements about some classes of molecules may be found for some of the stimuli that we used here, but not for all. We are not aware of any single dataset that contains this information for any type of molecules (e.g., MUPs) across the entire stimulus set that we have used. More generally, pooling results from different studies has limited validity because of the biological and technical variability across studies. In order to reliably interpret our current recordings, it would be necessary to measure the urinary content of the very same samples that were used for stimulation. Unfortunately, we are not able to conduct this analysis at this stage.

      (6) It is not very clear to me whether the female overrepresentation is because there are truly more AOB cells that respond to females than males or because there are only two female samples but 9 male samples.

      It is true that the number of neurons fulfilling each of the patterns depends on the number of individual stimuli that define it. However, our measure of “over-representation” aims to overcome this bias, by using bootstrapping to reveal if the observed number of patterns is larger than expected by chance. We also note that more generally, the higher frequency of responses to female, as compared to male stimuli, is obtained in other studies by others and by us, also when the number of male and female stimuli is matched (e.g., Bansal et al BMC Biol 2021, Ben-Shaul et al, PNAS 2010, Hendrickson et al, JNS, 2008).

      (7) If the authors only select two male samples, let's say ICR Naïve and ICR DOM, combine them with responses to two female samples, and do the same analysis as in Figure 3, will the female response still be overrepresented?

      We believe that the answer is positive, but we can, and will perform this analysis to check.

      (8) In Figure 4B and 4C, the pairwise distance during non-estrus is generally higher than that during estrus, although they are highly correlated. Does it mean that the cells respond to different urines more distinctively during diestrus than in estrus?

      This is an important observation. For the Euclidean distance there might be a simple explanation as the distance depends on the number of units (and there are more units recorded in non-estrus females). However, this simple explanation does not hold for the correlation distance. A higher distance implies higher discrimination during the non-estrus stage, but our other analyses of sparseness and the selectivity indices do not support this idea. We note that absolute values of distance measures should generally be interpreted cautiously, as they may depend on multiple factors including sample size. Also, a small number of non-selective units could increase the correlation in responses among stimuli, and thus globally shift the distances. For these reasons, we focus on comparisons, rather than the absolute values of the correlation distances. In the revised manuscript, we will note and discuss this important observation.

      (9) The correlation analysis is not entirely intuitive when just looking at the figures. Some sample heatmaps showing the response differences between estrous states will be helpful.

      If we understand correctly, the idea is to show the correlation matrices from which the values in 4B and 4C are taken. We can and will do this, probably as a supplementary figure.

      Reviewer #2 (Public review):

      Summary:

      Many aspects of the study are carefully done, and in the grand scheme this is a solid contribution. I have no "big-picture" concerns about the approach or methodology. However, in numerous places the manuscript is unnecessarily vague, ambiguous, or confusing. Tightening up the presentation will magnify their impact.

      We will revise the text with the aim of tightening the presentation.

      Strengths:

      (1) The study includes urine donors from males of three strains each with three social states, as well as females in two states. This diversity significantly enhances their ability to interpret their results.

      (2) Several distinct analyses are used to explore the question of whether AOB MCs are biased towards specific states or different between estrus and non-estrus females. The results of these different analyses are self-reinforcing about the main conclusions of the study.

      (3) The presentation maintains a neutral perspective throughout while touching on topics of widespread interest.

      Weaknesses:

      (1) Introduction:

      The discussion of the role of the VNS and preferences for different male stimuli should perhaps include Wysocki and Lepri 1991

      Agreed. we will refer to this work in our discussion.

      (2) Results:

      a) Given the 20s gap between them, the distinction between sample application and sympathetic nerve trunk stimulation needs to be made crystal clear; in many places, "stimulus application" is used in places where this reviewer suspects they actually mean sympathetic nerve trunk stimulation.

      In this study, we have considered both responses that are triggered by sympathetic trunk activation, and those that occur (as happens in some preparations) immediately following stimulus application (and prior to nerve trunk stimulation). An example of the latter Is provided in the second unit shown in Figure 1D (and this is indicated also in the figure legend). In our revision, we will further clarify this confusing point.

      b) There appears to be a mismatch between the discussion of Figure 3 and its contents. Specifically, there is an example of an "adjusted" pattern in 3A, not 3B.

      True. Thanks for catching this error. We will correct this.

      c) The discussion of patterns neglects to mention whether it's possible for a neuron to belong to more than one pattern. For example, it would seem possible for a neuron to simultaneously fit the "ICR pattern" and the "dominant adjusted pattern" if, e.g., all ICR responses are stronger than all others, but if simultaneously within each strain the dominant male causes the largest response.

      This is true. In the legend to Figure 3B, we actually write: “A neuron may fulfill more than one pattern and thus may appear in more than one row.”, but we will discuss this point in the main text as well.

      (3) Discussion:

      a) The discussion of chemical specificity in urine focuses on volatiles and MUPs (citation #47), but many important molecules for the VNS are small, nonvolatile ligands. For such molecules, the corresponding study is Fu et al 2015.

      We fully agree. We will expand our discussion and refer to Fu et al.

      b) "Following our line of reasoning, this scarcity may represent an optimal allocation of resources to separate dominant from naïve males": 1 unit out of 215 is roughly consistent with a single receptor. Surely little would be lost if there could be more computational capacity devoted to this important axis than that? It seems more likely that dominance is computed from multiple neuronal types with mixed encoding.

      We agree, and we are not claiming that dominance, nor any other feature, is derived using dedicated feature selective neurons.  Our discussion of resource allocation is inevitably speculative. Our main point in this context is that a lack of overrepresentation does not imply that a feature is not important. We will revise our discussion to better clarify our view of this issue.

      (4) Methods:

      a) Male status, "were unambiguous in most cases": is it possible to put numerical estimates on this? 55% and 99% are both "most," yet they differ substantially in interpretive uncertainty.

      This sentence is actually misleading and irrelevant. Ambiguous cases were not considered as dominant for urine collection. We only classified mice as dominant if they were “won” in the tube test and exhibited dominant behavior in the subsequent observation period in the cage. We will correct the wording in the revised manuscript.

      b) Surgical procedures and electrode positioning: important details of probes are missing (electrode recording area, spacing, etc).

      True. We will add these details.

      c) Stimulus presentation procedure: Are stimuli manually pipetted or delivered by apparatus with precise timing?

      They are delivered manually. We will clarify this as well.

      d) Data analysis, "we applied more permissive criteria involving response magnitude": it's not clear whether this is what's spelled out in the next paragraph, or whether that's left unspecified. In either case, the next paragraph appears to be about establishing a noise floor on pattern membership, not a "permissive criterion."

      True, the next paragraph is not the explanation for the more permissive criteria. The more permissive criteria involving response magnitude are actually those described in Figure 3A and 3B. The sentence that was quoted above merely states that before applying those criteria, we had also searched for patterns defined by binary designation of neurons as responsive, or not responsive, to each of the stimuli (this is directly related to the next comment below). Using those binary definitions, we obtained a very small number of neurons for each pattern and thus decided to apply the approach actually used and described in the manuscript.

      e) Data analysis, method for assessing significance: there's a lot to like about the use of pooling to estimate the baseline and the use of an ANOVA-like test to assess unit responsiveness.

      But:

      i) for a specific stimulus, at 4 trials (the minimum specified in "Stimulus presentation procedure") kruskalwallis is questionable. They state that most trials use 5, however, and that should be okay.

      The number of cases with 4 trials is truly a minority, and we will provide the exact numbers in our revision.

      ii) the methods statement suggests they are running kruskalwallis individually for each neuron/stimulus, rather than once per neuron across all stimuli. With 11 stimuli, there is a substantial chance of a false-positive if they used p < 0.05 to assess significance. (The actual threshold was unstated.) Were there any multiple comparison corrections performed? Or did they run kruskalwallis on the neuron, and then if significant assess individual stimuli? (Which is a form of multiple-comparisons correction.)

      First, we indeed failed to mention that our criterion was 0.05. We will correct that in our revision. We did not apply any multiple comparison measures. We consider each neuron-stimulus pair as an independent entity, and we are aware that this leads to a higher false positive rate. On the other hand, applying multiple comparisons would be problematic, as we do not always use the same number of stimuli in different studies. Applying multiple comparison corrections would lead to different response criteria across different studies. Notably, most, if not all, of our conclusions involve comparisons across conditions, and for this purpose we think that our procedure is valid. We do not attach any special meaning to the significance threshold, but rather think of it as a basic criterion that allows us to exclude non-responsive neurons, and to compare frequencies of neurons that fulfill this criterion.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The study by Pinho et al. presents a novel behavioral paradigm for investigating higher-order conditioning in mice. The authors developed a task that creates associations between light and tone sensory cues, driving mediated learning. They observed sex differences in task acquisition, with females demonstrating faster-mediated learning compared to males. Using fiber photometry and chemogenetic tools, the study reveals that the dorsal hippocampus (dHPC) plays a central role in encoding mediated learning. These findings are crucial for understanding how environmental cues, which are not directly linked to positive/negative outcomes, contribute to associative learning. Overall, the study is well-designed, with robust results, and the experimental approach aligns with the study's objectives.

      Strengths:

      (1) The authors develop a robust behavioral paradigm to examine higher-order associative learning in mice.

      (2) They discover a sex-specific component influencing mediated learning, with females exhibiting enhanced learning abilities.

      (3) Using fiber photometry and chemogenetic techniques, the authors identify the dorsal hippocampus but not the ventral hippocampus, which plays a crucial for encoding mediated learning.

      Weaknesses:

      (1) The study would be strengthened by further elaboration on the rationale for investigating specific cell types within the hippocampus.

      We will add more information to better explain the rationale of our experiments and/or manipulations.

      (2) The analysis of photometry data could be improved by distinguishing between early and late responses, as well as enhancing the overall presentation of the data.

      We will provide new photometry analysis to differentiate between early and late responses during stimuli presentations.

      (3) The manuscript would benefit from revisions to improve clarity and readability.

      We will improve the clarity and readability of our manuscript.

      Reviewer #2 (Public review):

      Summary:

      Pinho et al. developed a new auditory-visual sensory preconditioning procedure in mice and examined the contribution of the dorsal and ventral hippocampus to learning in this task. Using photometry they observed activation of the dorsal and ventral hippocampus during sensory preconditioning and conditioning. Finally, the authors combined their sensory preconditioning task with DREADDs to examine the effect of inhibiting specific cell populations (CaMKII and PV) in the DH on the formation and retrieval/expression of mediated learning.

      Strengths:

      The authors provide one of the first demonstrations of auditory-visual sensory preconditioning in male mice. Research on the neurobiology of sensory preconditioning has primarily used rats as subjects. The development of a robust protocol in mice will be beneficial to the field, allowing researchers to take advantage of the many transgenic mouse lines. Indeed, in this study, the authors take advantage of a PV-Cre mouse line to examine the role of hippocampal PV cells in sensory preconditioning.

      Weaknesses:

      (1) The authors report that sensory preconditioning was observed in both male and female mice. However, their data only supports sensory preconditioning in male mice. In female mice, both paired and unpaired presentations of the light and tone in stage 1 led to increased freezing to the tone at test. In this case, fear to the tone could be attributed to factors other than sensory preconditioning, for example, generalization of fear between the auditory and visual stimulus.

      To address the pertinent doubt raised by the reviewer, we will perform new experiments to generate a new unpaired group in female mice through the increase of the temporal interval between light and tone exposure during the preconditioning phase. We believe this new results will bring additional information to better understand the performance of female mice in sensory preconditioning.

      (2) In the photometry experiment, the authors report an increase in neural activity in the hippocampus during both phase 1 (sensory preconditioning) and phase 2 (conditioning). In the subsequent experiment, they inhibit neural activity in the DH during phase 1 (sensory preconditioning) and the probe test, but do not include inhibition during phase 2 (conditioning). It was not clear why they didn't carry forward investigating the role of the hippocampus during phase 2 conditioning. Sensory preconditioning could occur due to the integration of the tone and shock during phase two, or retrieval and chaining of the tone-light-shock memories at test. These two possibilities cannot be differentiated based on the data. Given that we do not know at which stage the mediate learning is occurring, it would have been beneficial to additionally include inhibition of the DH during phase 2.

      We will perform new experiments to generate novel data by inhibiting the CamK-positive neurons of the dorsal hippocampus during the conditioning phase.

      (3) In the final experiment, the authors report that inhibition of the dorsal hippocampus during the sensory preconditioning phase blocked mediated learning. While this may be the case, the failure to observe sensory preconditioning at test appears to be due more to an increase in baseline freezing (during the stimulus off period), rather than a decrease in freezing to the conditioned stimulus. Given the small effect, this study would benefit from an experiment validating that administration of J60 inhibited DH cells. Further, given that the authors did not observe any effect of DREADD inhibition in PV cells, it would also be important to validate successful cellular silencing in this protocol.

      By combining chemogenetic and fiber photometry approaches, we will perform a control experiments to demonstrate that our chemogenetic experiments are decreasing CAMK- or PV-dependent activity in dorsal and ventral hippocampus.

      Reviewer #3 (Public review):

      Summary:

      Pinho et al. investigated the role of the dorsal vs ventral hippocampus and the gender differences in mediated learning. While previous studies already established the engagement of the hippocampus in sensory preconditioning, the authors here took advantage of freely-moving fiber photometry recording and chemogenetics to observe and manipulate sub-regions of the hippocampus (dorsal vs. ventral) in a cell-specific manner. The authors first found sex differences in the preconditioning phase of a sensory preconditioning procedure, where males required more preconditioning training than females for mediating learning to manifest, and where females displayed evidence of mediated learning even when neutral stimuli were never presented together within the session.

      After validation of a sensory preconditioning procedure in mice using light and tone neutral stimuli and a mild foot shock as the unconditioned stimulus, the authors used fiber photometry to record from all neurons vs. parvalbumin_positive_only neurons in the dorsal hippocampus or ventral hippocampus of male mice during both preconditioning and conditioning phases. They found increased activity of all neurons, as well as PV+_only neurons in both sub-regions of the hippocampus during both preconditioning and conditioning phases. Finally, the authors found that chemogenetic inhibition of CaMKII+ neurons in the dorsal, but not ventral, hippocampus specifically prevented the formation of an association between the two neutral stimuli (i.e., light and tone cues), but not the direct association between the light cue and the mild foot shock. This set of data: (1) validates the mediated learning in mice using a sensory preconditioning protocol, and stresses the importance of taking sex effect into account; (2) validates the recruitment of dorsal and ventral hippocampi during preconditioning and conditioning phases; and (3) further establishes the specific role of CaMKII+ neurons in the dorsal but not ventral hippocampus in the formation of an association between two neutral stimuli, but not between a neutral-stimulus and a mild foot shock.

      Strengths:

      The authors developed a sensory preconditioning procedure in mice to investigate mediated learning using light and tone cues as neutral stimuli, and a mild foot shock as the unconditioned stimulus. They provide evidence of a sex effect in the formation of light-cue association. The authors took advantage of fiber-photometry and chemogenetics to target sub-regions of the hippocampus, in a cell-specific manner and investigate their role during different phases of a sensory conditioning procedure.

      Weaknesses:

      The authors went further than previous studies by investigating the role of sub-regions of the hippocampus in mediated learning, however, there are several weaknesses that should be noted:

      (1) This work first validates mediated learning in a sensory preconditioning procedure using light and tone cues as neutral stimuli and a mild foot shock as the unconditioned stimulus, in both males and females. They found interesting sex differences at the behavioral level, but then only focused on male mice when recording and manipulating the hippocampus. The authors do not address sex differences at the neural level.

      As discussed above, we will perform additional experiment to evaluate the presence of a reliable sensory preconditioning in female mice. In addition, although observing sex differences at the neural level can be very interesting, we think that it is out of the scope of the present work. However, we will mention this issue/limitation in the Discussion in the new version of the manuscript.

      (2) As expected in fear conditioning, the range of inter-individual differences is quite high. Mice that didn't develop a strong light-->shock association, as evidenced by a lower percentage of freezing during the Probe Test Light phase, should manifest a low percentage of freezing during the Probe Test Tone phase. It would interesting to test for a correlation between the level of freezing during mediated vs test phases.

      We will provide correlations between the behavioral responses in both probe tests.

      (3) The use of a synapsin promoter to transfect neurons in a non-specific manner does not bring much information. The authors applied a more specific approach to target PV+ neurons only, and it would have been more informative to keep with this cell-specific approach, for example by looking also at somatostatin+ inter-neurons.

      We will better justify the use of specific promoters and the targeting of PV-positive neurons. We will also add discussion on potential interesting future experiments such as the targeting of other GABAergic subtypes.

      (4) The authors observed event-related Ca2+ transients on hippocampal pan-neurons and PV+ inter-neurons using fiber photometry. They then used chemogenetics to inhibit CaMKII+ hippocampal neurons, which does not logically follow. It does not undermine the main finding of CaMKII+ neurons of the dorsal, but not ventral, hippocampus being involved in the preconditioning, but not conditioning, phase. However, observing CaMKII+ neurons (using fiber photometry) in mice running the same task would be more informative, as it would indicate when these neurons are recruited during different phases of sensory preconditioning. Applying then optogenetics to cancel the observed event-related transients (e.g., during the presentation of light and tone cues, or during the foot shock presentation) would be more appropriate.

      We will perform new experiments to analyze the activity of CAMK-positive neurons during light-tone associations during the preconditioning phase in male mice.

      (5) Probe tests always start with the "Probe Test Tone", followed by the "Probe Test Light". "Probe Test Tone" consists of an extinction session, which could affect the freezing response during "Probe Test Light" (e.g., Polack et al. (http://dx.doi.org/10.3758/s13420-013-0119-5)). Preferably, adding a group of mice with a Probe Test Light with no Probe Test Tone could help clarify this potential issue. The authors should at least discuss the possibility that the tone extinction session prior to the "Probe Test Light" could have affected the freezing response to the light cue.

      We will add discussion on this issue raised by the reviewer.

      Reviewer #4 (Public review):

      Summary

      Pinho et al use in vivo calcium imaging and chemogenetic approaches to examine the involvement of hippocampal sub-regions across the different stages of a sensory preconditioning task in mice. They find clear evidence for sensory preconditioning in male but not female mice. They also find that, in the male mice, CaMKII-positive neurons in the dorsal hippocampus: (1) encode the audio-visual association that forms in stage 1 of the task, and (2) retrieve/express sensory preconditioned fear to the auditory stimulus at test. These findings are supported by evidence that ranges from incomplete to convincing. They will be valuable to researchers in the field of learning and memory.

      Abstract

      Please note that sensory preconditioning doesn't require the stage 1 stimuli to be presented repeatedly or simultaneously.

      We will correct this wrong sentence in the abstract.

      "Finally, we combined our sensory preconditioning task with chemogenetic approaches to assess the role of these two hippocampal subregions in mediated learning."

      This implies some form of inhibition of hippocampal neurons in stage 2 of the protocol, as this is the only stage of the protocol that permits one to make statements about mediated learning. However, it is clear from what follows that the authors interrogate the involvement of hippocampal sub-regions in stages 1 and 3 of the protocol - not stage 2. As such, most statements about mediated learning throughout the paper are potentially misleading (see below for a further elaboration of this point). If the authors persist in using the term mediated learning to describe the response to a sensory preconditioned stimulus, they should clarify what they mean by mediated learning at some point in the introduction. Alternatively, they might consider using a different phrase such as "sensory preconditioned responding".

      Through the text, we will avoid the term “mediated learning” and we will replace it with more accurate terms. In addition, we will interrogate the role of dHPC in Stage 2 as commented above.

      Introduction

      "Low-salience" is used to describe stimuli such as tone, light, or odour that do not typically elicit responses that are of interest to experimenters. However, a tone, light, or odour can be very salient even though they don't elicit these particular responses. As such, it would be worth redescribing the "low-salience" stimuli in some other terms.

      We will substitute “low-salience” for “innocuous”.

      "These higher-order conditioning processes, also known as mediated learning, can be captured in laboratory settings through sensory preconditioning procedures2,6-11."

      Higher-order conditioning and mediated learning are not interchangeable terms: e.g., some forms of second-order conditioning are not due to mediated learning. More generally, the use of mediated learning is not necessary for the story that the authors develop in the paper and could be replaced for accuracy and clarity. E.g., "These higher-order conditioning processes can be studied in the laboratory using sensory preconditioning procedures2,6-11."

      Through the text, we will avoid the term “mediated learning” and we will replace it with more accurate terms.

      In reference to Experiment 2, it is stated that: "However, when light and tone were separated on time (Unpaired group), male mice were not able to exhibit mediated learning response (Figure 2B) whereas their response to the light (direct learning) was not affected (Figure 2D). On the other hand, female mice still present a lower but significant mediated learning response (Figure 2C) and normal direct learning (Figure 2E). Finally, in the No-Shock group, both male (Figure 2B and 2D) and female mice (Figure 2C and 2E) did not present either mediated or direct learning, which also confirmed that the exposure to the tone or light during Probe Tests do not elicit any behavioral change by themselves as the presence of the electric footshock is required to obtain a reliable mediated and direct learning responses."<br /> The absence of a difference between the paired and unpaired female mice should not be described as "significant mediated learning" in the latter. It should be taken to indicate that performance in the females is due to generalization between the tone and light. That is, there is no sensory preconditioning in the female mice. The description of performance in the No-shock group really shouldn't be in terms of mediated or direct learning: that is, this group is another control for assessing the presence of sensory preconditioning in the group of interest. As a control, there is no potential for them to exhibit sensory preconditioning, so their performance should not be described in a way that suggests this potential.

      We will re-write the text to clarify the right comments raised by the Reviewer.

      Methods - Behavior

      I appreciate the reasons for testing the animals in a new context. This does, however, raise other issues that complicate the interpretation of any hippocampal engagement: e.g., exposure to a novel context may engage the hippocampus for exploration/encoding of its features - hence, it is engaged for retrieving/expressing sensory preconditioned fear to the tone. This should be noted somewhere in the paper given that one of its aims is to shed light on the broader functioning of the hippocampus in associative processes.

      We will further discuss this aspect on the manuscript.

      This general issue - that the conditions of testing were such as to force engagement of the hippocampus - is amplified by two further features of testing with the tone. The first is the presence of background noise in the training context and its absence in the test context. The second is the fact that the tone was presented for 30 s in stage 1 and then continuously for 180s at test. Both changes could have contributed to the engagement of the hippocampus as they introduce the potential for discrimination between the tone that was trained and tested.

      We will consider the aspect raised by the reviewer on the manuscript.

      Results - Behavior

      The suggestion of sex differences based on differences in the parameters needed to generate sensory preconditioning is interesting. Perhaps it could be supported through some set of formal analyses. That is, the data in supplementary materials may well show that the parameters needed to generate sensory preconditioning in males and females are not the same. However, there needs to be some form of statistical comparison to support this point. As part of this comparison, it would be neat if the authors included body weight as a covariate to determine whether any interactions with sex are moderated by body weight.

      We will add statistical comparisons between male and female mice.

      What is the value of the data shown in Figure 1 given that there are no controls for unpaired presentations of the sound and light? In the absence of these controls, the experiment cannot have shown that "Female and male mice show mediated learning using an auditory-visual sensory preconditioning task" as implied by its title. Minimally, this experiment should be relabelled.

      We will relabel Figure 1.

      "Altogether, this data confirmed that we successfully set up an LTSPC protocol in mice and that this behavioral paradigm can be used to further study the brain circuits involved in higher-order conditioning."

      Please insert the qualifier that LTSPC was successfully established in male mice. There is no evidence of LTSPC in female mice.

      We will generate new experiments to try to demonstrate that SPC can be also observed in female mice.

      Results - Brain

      "Notably, the inhibition of CaMKII-positive neurons in the dHPC (i.e. J60 administration in DREADD-Gi mice) during preconditioning (Figure 4B), but not before the Probe Test 1 (Figure 4B), fully blocked mediated, but not direct learning (Figure 4D)."

      The right panel of Figure 4B indicates no difference between the controls and Group DPC in the percent change in freezing from OFF to ON periods of the tone. How does this fit with the claim that CaMKII-positive neurons in the dorsal hippocampus regulate associative formation during the session of tone-light exposures in stage 1 of sensory preconditioning?

      We will rephrase and add more Discussion regarding this section of the results to stick to what the graphs are showing. We will clarify that the group where dHPC activity is inhibited during preconditioning is the only one where the % of change is not significantly different from 0 (compared to the control or the group where the dHPC activity was modulated during the test).

      Discussion

      "When low salience stimuli were presented separated on time or when the electric footshock was absent, mediated and direct learning were abolished in male mice. In female mice, although light and tone were presented separately during the preconditioning phase, mediated learning was reduced but still present, which implies that female mice are still able to associate the two low-salience stimuli."

      This doesn't quite follow from the results. The failure of the female unpaired mice to withhold their freezing to the tone should not be taken to indicate the formation of a light-tone association across the very long interval that was interpolated between these stimulus presentations. It could and should be taken to indicate that, in female mice, freezing conditioned to the light simply generalized to the tone (i.e., these mice could not discriminate well between the tone and light).

      We will rewrite this part depending on the results observed in female mice.

      "Indeed, our data suggests that when hippocampal activity is modulated by the specific manipulation of hippocampal subregions, this brain region is not involved during retrieval."

      Does this relate to the results that are shown in the right panel of Figure 4B, where there is no significant difference between the different groups? If so, how does it fit with the results shown in the left panel of this figure, where differences between the groups are observed?

      We will re-write it to clearly describe our results and we will also revise all the statistical analysis.

      "In line with this, the inhibition of CaMKII-positive neurons from the dorsal hippocampus, which has been shown to project to the restrosplenial cortex56, blocked the formation of mediated learning."

      Is this a reference to the findings shown in Figure 4B and, if so, which of the panels exactly? That is, one panel appears to support the claim made here while the other doesn't. In general, what should the reader make of data showing the percent change in freezing from stimulus OFF to stimulus ON periods?

      We will rewrite the text to clearly describe our results, and we will also revise all the statistical analysis. In addition, we will better explain the data showing the % of change.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This work considers the biases introduced into pathogen surveillance due to congregation effects, and also models homophily and variants/clades. The results are primarily quantitative assessments of this bias but some qualitative insights are gained e.g. that initial variant transmission tends to be biased upwards due to this effect, which is closely related to classical founder effects.

      Strengths:

      The model considered involves a simplification of the process of congregation using multinomial sampling that allows for a simpler and more easily interpretable analysis.

      Weaknesses:

      This simplification removes some realism, for example, detailed temporal transmission dynamics of congregations.

      We appreciate Reviewer #1's comments. We hope our framework, like the classic SIR model, can be adapted in the future to build more complex and realistic models.

      Reviewer #2 (Public review):

      Summary:

      In "Founder effects arising from gathering dynamics systematically bias emerging pathogen surveillance" Bradford and Hang present an extension to the SIR model to account for the role of larger than pairwise interactions in infectious disease dynamics. They explore the impact of accounting for group interactions on the progression of infection through the various sub-populations that make up the population as a whole. Further, they explore the extent to which interaction heterogeneity can bias epidemiological inference from surveillance data in the form of IFR and variant growth rate dynamics. This work advances the theoretical formulation of the SIR model and may allow for more realistic modeling of infectious disease outbreaks in the future.

      Strengths:

      (1) This work addresses an important limitation of standard SIR models. While this limitation has been addressed previously in the form of network-based models, those are, as the authors argue, difficult to parameterize to real-world scenarios. Further, this work highlights critical biases that may appear in real-world epidemiological surveillance data. Particularly, over-estimation of variant growth rates shortly after emergence has led to a number of "false alarms" about new variants over the past five years (although also to some true alarms).

      (2) While the results presented here generally confirm my intuitions on this topic, I think it is really useful for the field to have it presented in such a clear manner with a corresponding mathematical framework. This will be a helpful piece of work to point to to temper concerns about rapid increases in the frequency of rare variants.

      (3) The authors provide a succinct derivation of their model that helps the reader understand how they arrived at their formulation starting from the standard SIR model.

      (4) The visualizations throughout are generally easy to interpret and communicate the key points of the authors' work.

      (5) I thank the authors for providing detailed code to reproduce manuscript figures in the associated GitHub repo.

      Weaknesses:

      (1) The authors argue that network-based SIR models are difficult to parameterize (line 66), however, the model presented here also has a key parameter, mainly P_n, or the distribution of risk groups in the population. I think it is important to explore the extent to which this parameter can be inferred from real-world data to assess whether this model is, in practice, any easier to parameterize.

      (2) The authors explore only up to four different risk groups, accounting for only four-wise interactions. But, clearly, in real-world settings, there can be much larger gatherings that promote transmission. What was the justification for setting such a low limit on the maximum group size? I presume it's due to computational efficiency, which is understandable, but it should be discussed as a limitation.

      (3) Another key limitation that isn't addressed by the authors is that there may be population structure beyond just risk heterogeneity. For example, there may be two separate (or, weakly connected) high-risk sub-groups. This will introduce temporal correlation in interactions that are not (and can not easily be) captured in this model. My instinct is that this would dampen the difference between risk groups shown in Figure 2A. While I appreciate the authors's desire to keep their model relatively simple, I think this limitation should be explicitly discussed as it is, in my opinion, relatively significant.

      We appreciate Reviewer 2's thoughtful comments and wish to address some of the weaknesses:

      We agree that inferring P_n from real data will be challenging, but think this is an important direction for future research. Further, we’d like to reframe our claim that our approach is "easier to parameterize" than network models. Rather, P_n has fewer degrees of freedom than analogous network models, just as many different networks can share the same degree distribution. Fewer degrees of freedom mean that we expect our model to suffer from fewer identifiability issues when fitting to data, though non-identifiability is often inescapable in models of this nature (e.g., \beta and \gamma in the SIR model are not uniquely identifiable during exponential growth). Whether this is more or less accurate is another question. Classic bias-variance tradeoffs argue that a model with a moderate complexity trained on one data set can better fit future data than overly simple or overly complex models.

      We chose four risk groups for purposes of illustration, but this can be increased arbitrarily. It should be noted that the simulation bottleneck when increasing the numbers of risk groups is numerical due the stiffness of the ODEs. This arises because the nonlinearity of infection terms scales with the number of risk groups (e.g., ~ \beta * S * I^3 for 4 risk groups). As such, a careful choice of numerical solvers may be required when integrating the ODEs. Meanwhile, this is not an issue for stochastic, individual based implementation (e.g., Gillespie). As for how well this captures super-spreading, we believe choosing smaller risk groups does not hinder modeling disease spread at large gatherings. Consider a statistical interpretation, where individuals at a large gathering engage in a series of smaller interactions over time (e.g., 2/3/4/etc person conversations). The key determinants of the resulting gathering size distribution at any one large gathering are the number of individuals within some shared proximity over time and the infectiousness/dispersal of the pathogen. Of course, whether this interpretation is a sufficient approximation for classic super-spreading events (e.g., funerals during 2014-2015 West Africa Ebola outbreak) is a matter of debate. Our framework is best interpreted at a population level where the effects of any single gathering are washed out by the overall gathering distribution, P_n. As the prior weakness highlighted, establishing P_n is challenging, but we believe empirically measuring proxies of it may provide future insight in how behavior impacts disease spread. For example, prior work has combined contact tracing and co-location data from connection to WiFi networks to estimate the distribution of contacts per individual, and its degree of overdispersion (Petros et al. Med 2022).

      We chose to introduce our framework in a simple SIR context familiar to many readers. This decision does not in any way limit applying it to settings with more population structure. Rather, we believe our framework is easily adaptable and that our presentation (hopefully) makes it clear how to do this. For example, two weakly connected groups could be easily achieved by (for each gathering) first sampling the preferred group and then sampling from the population in a biased manner. The biased sampling could even be a function of gathering sizes, time, etc. The resulting infection terms are still (sums of) multinomials. More generally, the sampling probabilities for an individual of some type need not be its frequency (e.g., S/N, I/N). Indeed, we believe generating models with complex social interactions is both simplified and made more robust by focusing on modeling the generative process of attending gatherings.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This paper uses single-molecule FRET to investigate the molecular basis for the distinct activation mechanisms between 2 GPCR responding to the chemokine CXCL12 : CXCR4, that couples to G-proteins, and ACKR3, which is G-protein independent and displays a higher basal activity.

      Strengths:

      It nicely combines the state-of-the-art techniques used in the studies of the structural dynamics of GPCR. The receptors are produced from eukaryotic cells, mutated, and labeled with single molecule compatible fluorescent dyes. They are reconstituted in nanodiscs, which maintain an environment as close as possible to the cell membrane, and immobilized through the nanodisc MSP protein, to avoid perturbing the receptor's structural dynamics by the use of an antibody for example.

      The smFRET data are analysed using the HHMI technique, and the number of states to be taken into account is evaluated using a Bayesian Information Criterion, which constitutes the state-of-the-art for this task.

      The data show convincingly that the activation of the CXCR4 and ACKR3 by an agonist leads to a shift from an ensemble of high FRET states to an ensemble of lower FRET states, consistent with an increase in distance between the TM4 and TM6. The two receptors also appear to explore a different conformational space. A wider distribution of states is observed for ACKR3 as compared to CXCR4, and it shifts in the presence of agonists toward the active states, which correlates well with ACKR3's tendency to be constitutively active. This interpretation is confirmed by the use of the mutation of Y254 to leucine (the corresponding residue in CXCR4), which leads to a conformational distribution that resembles the one observed with CXCR4. It is correlated with a decrease in constitutive activity of ACKR3.

      Weaknesses:

      Although the data overall support the claims of the authors, there are however some details in the data analysis and interpretation that should be modified, clarified, or discussed in my opinion

      Concerning the amplitude of the changes in FRET efficiency: the authors do not provide any structural information on the amplitude of the FRET changes that are expected. To me, it looks like a FRET change from ~0.9 to ~0.1 is very important, for a distance change that is expected to be only a few angstroms concerning the movement of the TM6. Can the authors give an explanation for that? How does this FRET change relate to those observed with other GPCRs modified at the same or equivalent positions on TM4 and TM6?

      The large FRET change in our system was initially unexpected. However, the reviewer is mistaken that the expected distance change is only a few angstroms. Crystal structures of the homologous beta2 adrenergic receptor (β<sub>2</sub>AR) in inactive and active conformations reveal that the cytoplasmic end of TM6 moves outwards by 16 angstroms during activation (Rasmussen et al., 2011, ref 47).  Consistent with this, smFRET studies of β<sub>2</sub>AR labeled in TM4 and TM6 (as here) showed that the donor-acceptor (D-A) distance was 14 angstroms longer in the active conformation (Gregorio et al., ref 38).  Surprisingly, the apparent distance change in our system (calculated for our FRET probes, A555/Cy5, using FPbase.com) is almost 30 angstroms. A possible explanation is that the fluorophore attached to TM6 interacts with lipids within the nanodisc when TM6 moves outwards, which could stretch the fluorophore linker and thereby increase the D-A distance (lipids were absent in the β<sub>2</sub>AR study). Such an interaction could also constrain the fluorophore in an unfavorable orientation for energy transfer, also leading to lower than expected FRET efficiencies and inflated distance calculations. Regardless, it is important to emphasize that none of the interpretations or conclusions of our study are based on computed D-A distances. Rather, we resolved different receptor conformations and quantified their relative populations based on the measured FRET efficiency distributions.

      Finally, we note that a recent smFRET study of the glucagon receptor (labeled in TM4 and TM6, as here) also revealed a large difference in apparent FRET efficiencies between inactive (E<sub>app</sub> = 0.83) and active (E<sub>app</sub> = 0.32) conformations (Kumar et al., ref. 39). Thus, the large change in FRET efficiency observed in our study is not unprecedented.

      Concerning the intermediate states: the authors observe several intermediate states.

      (1) First I am surprised, looking at the time traces, by the dwell times of the transitions between the states, which often last several seconds. Is such a long transition time compatible with what is known about the kinetic activation of these receptors?

      We too were surprised by the apparent kinetics of the receptors in our system. However, it was previously noted that purified systems, including nanodiscs, lead to slower activation times for GPCRs compared to cellular membrane systems (Lohse et al, Curr. Opin. Cell Biology, 27, 8792, 2014). Indeed, slow transitions among different FRET states (dwell times in the seconds range) were also observed in recent smFRET studies of the mu opioid receptor (Zhao et al., 2024, ref. 41) and the glucagon receptor (Kumar et al., 2023, ref. 39). These studies are consistent with the observed time scale of the FRET transitions reported here.

      (2) Second is it possible that these “intermediate” states correspond to differences in FRET efficiencies, that arise from different photophysical states of the dyes? Alexa555 and Cy5 are Cyanines, that are known to be very sensitive to their local environment. This could lead to different quantum yields and therefore different FRET efficiencies for a similar distance. In addition, the authors use statistical labeling of two cysteines, and have therefore in their experiment a mixture of receptors where the donor and acceptor are switched, and can therefore experience different environments. The authors do not speculate structurally on what these intermediate states could be, which is appreciated, but I think they should nevertheless discuss the potential issue of fluorophore photophysics effects.

      The reviewer is correct that the intermediate FRET states could, in principle, arise from a conformational change of the receptor that alters the local environment of the donor and/or acceptor fluorophores, rather than a change in donor-acceptor distance. This caveat is now included in the discussion on Pg. 10:

      “In principle, the intermediates in CXCR4 and ACKR3 could represent partial movements of TM6 from the inactive to active conformation or more subtle conformational changes altering the photophysical characteristics of the probes without drastically altering the donor-acceptor distance. Either possibility leads to detectable changes in apparent FRET efficiency and reflect discrete conformational steps on the activation pathway; however, it is not possible to resolve specific structural changes from the data.”

      Regarding the second possibility, it is true that our labeling methodology leads to a statistical mixture of labeled species (D on TM6 and A on TM4, D on TM4 and A on TM6). If the photophysical properties of the fluorophores were markedly different for the two labeling orientations, this would produce two different FRET efficiencies for a given receptor conformation. Assuming two receptor conformations, this scenario would produce four distinct FRET states: E<sub>1</sub> (inactive receptor, labeling configuration 1), E<sub>2</sub> (active receptor, labeling configuration 1), E<sub>3</sub> (inactive receptor, labeling configuration 2) and E<sub>4</sub> (active receptor, labeling configuration 2), with two cross peaks in the TDP plots, corresponding to E<sub>1</sub> ↔ E<sub>2</sub> and E<sub>3</sub> ↔ E<sub>4</sub> transitions. Notably, E<sub>2</sub> ↔ E<sub>3</sub> cross peaks would not be present, since states E<sub>2</sub> and E<sub>3</sub> exist on separate molecules. Instead, we see all states inter-connected sequentially, R ↔ R’ ↔ R* in CXCR4 and R ↔ R’ ↔ R*’ ↔ R* in ACKR3 (Fig. 2), suggesting that the resolved FRET states represent interconnected conformational states.

      We added the following text to the Results section on Pg. 6:

      “Two-dimensional transition density probability (TDP) plots revealed that the three FRET states were connected in a sequential fashion (Figs. 2A & B), indicating that the transitions occurred within the same molecules. Notably, these observations exclude the possibility that the midFRET state arises from different local fluorophore environments (hence FRET efficiencies) for the two possible labeling orientations of the introduced cysteines: assuming two receptor conformations, this model would produce four distinct FRET states, but only two cross peaks in the TDP plot.”

      (3) It would also have been nice to discuss whether these types of intermediate states have been observed in other studies by smFRET on GPCR labeled at similar positions.

      Intermediate states have also been reported in previous smFRET studies of other GPCRs. For example, in the glucagon receptor (also labeled in TM4 and TM6), a third FRET state (E<sub>app</sub> =  0.63) was resolved between the inactive (E<sub>app</sub>  = 0.85) and active (E<sub>app</sub>  = 0.32) states (Kumar et al., Ref. 39).  Discrete intermediate receptor conformations were also observed in the A<sub>2A</sub>R labeled in TM4 and TM6 (Fernandes et al., Ref 40). These examples are now cited in the Discussion.

      On line 239: the authors talk about the R↔R' transitions that are more probable. In fact it is more striking that the R'↔R* transition appears in the plot. This transition is a signature of the behavior observed in the presence of an agonist, although IT1t is supposed to be an inverse agonist. This observation is consistent with the unexpected (for an inverse agonist) shift in the FRET histogram distribution. In fact, it appears that all CXCR4 antagonists or inverse agonists have a similar (although smaller) effect than the agonist. Is this related to the fact that these (antagonist or inverse agonist) ligands lead to a conformation that is similar to the agonists, but cannot interact with the G-protein ?? Maybe a very interesting experiment would be here to repeat these measurements in the presence of purified G-protein. G-protein has been shown to lead to a shift of the conformational space explored by GPCR toward the active state (using smFRET on class A and class C GPCR). It would be interesting to explore its role on CXCR4 in the presence of these various ligands. Although I am aware that this experiment might go beyond the scope of this study, I think this point should be discussed nevertheless.

      We thank the reviewer for this observation and the possible explanation offered.  In response, we have added the following text to the Results section on Pg. 7:

      “The small-molecule ligand IT1t is reported to act as an inverse agonist of CXCR4 (54-56). However, the conformational distribution of CXCR4 showed little change to the overall apparent

      FRET profile, although R’ ↔ R* transitions appeared in the TDP plot (Figs. 3A & B, Fig. S8). This suggests that the small molecule does not suppress CXCR4 basal signaling by changing the conformational equilibrium. Instead IT1t appears to increase transition probabilities which may impair G protein coupling by CXCR4.”

      We have also added the following text to the Results on Pg. 8:

      “Despite the ability of CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> to stabilize the active R* conformation of CXCR4, both variants are known to act as antagonists (20). This suggests that the CXCL12 mutants inhibit CXCR4 coupling to G proteins not by suppressing the active receptor population but rather by increasing the dynamics of the receptor state transitions. Our results suggest that the helical movements considered classic signatures of the active state may not be sufficient for CXCR4 to engage productively with G proteins.”

      In addition, we have added the following text to the Discussion on Pg. 11:

      “The chemokine variants CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> are reported to act as antagonists of CXCR4 (19, 20), and the small molecule IT1t acts as an inverse agonist (54-56). Surprisingly, none of these ligands inhibit formation of the active R* conformation of CXCR4. In fact, the chemokine variants both stabilize and increase this state to some degree, although less effectively than CXCL12<sub>WT</sub>. Thus, the antagonism and inverse agonism of these ligands does not appear to be linked exclusively to receptor conformation, suggesting that the ligands inhibit coupling of G proteins to CXCR4 or disrupt the ligand-receptor-G protein interaction network required for signaling (Fig. S10) (21, 23).  Interestingly, these ligands also increase the probabilities of state-to-state transitions (Figs. 3B & 4B), suggesting that enhanced conformational exchange prevents the receptor from productively engaging G proteins. Similarly, ACKR3 is naturally dynamic and lacks G protein coupling, suggesting a common mechanism of G protein antagonism.”

      Finally, we also agree that experiments with G proteins could be informative. In fact, we initiated such experiments during the course of this study.  However, it soon became apparent that significant optimization would be required to identify fluorophore labeling positions that report receptor conformation without inhibiting G protein coupling. Accordingly, we decided that G protein experiments would be the subject of future studies.

      However, we added the following text to the Discussion on Pg. 12:

      “Future smFRET studies performed in the presence of G proteins should be informative in this regard”.

      The authors also mentioned in Figure 6 that the energetic landscape of the receptors is relatively flat ... I do not really agree with this statement. For me, a flat conformational landscape would be one where the receptors are able to switch very rapidly between the states (typically in the submillisecond timescale, which is the timescale of protein domain dynamics). Here, the authors observed that the transition between states is in the second timescale, which for me implies that the transition barrier between the states is relatively high to preclude the fast transitions.

      We thank the reviewer for the comment. We have modified the description of the energy landscapes of ACKR3 and CXCR4 in the discussion on Pg. 10 as follows:

      “These observations imply that ACKR3 has a relatively flat energy landscape, with similar energy minima for the different conformations, whereas the energy landscape of CXCR4 is more rugged (Fig. 6). For both receptors, the energy barriers between states are sufficiently high that transitions occur relatively slowly with seconds long dwell times (Figs. 1C and S2).”

      Reviewer #2 (Public Review):

      Summary:

      his manuscript uses single-molecule fluorescence resonance energy transfer (smFRET) to identify differences in the molecular mechanisms of CXCR4 and ACKR3, two 7transmembrane receptors that both respond to the chemokine CXCL12 but otherwise have very different signaling profiles. CXCR4 is highly selective for CXCL12 and activates heterotrimeric G proteins. In contrast, ACKR3 is quite promiscuous and does not couple to G proteins, but like most G protein-coupled receptors (GPCRs), it is phosphorylated by GPCR kinases and recruits arrestins. By monitoring FRET between two positions on the intracellular face of the receptor (which highlights the movement of transmembrane helix 6 [TM6], a key hallmark of GPCR activation), the authors show that CXCR4 remains mostly in an inactive-like state until CXCL12 binds and stabilizes a single active-like state. ACKR3 rapidly exchanges among four different conformations even in the absence of ligands, and agonists stabilize multiple activated states.

      Strengths:

      The core method employed in this paper, smFRET, can reveal dynamic aspects of these receptors (the breadth of conformations explored and the rate of exchange among them) that are not evident from static structures or many other biophysical methods. smFRET has not been broadly employed in studies of GPCRs. Therefore, this manuscript makes important conceptual advances in our understanding of how related GPCRs can vary in their conformational dynamics.

      Weaknesses:

      (1) The cysteine mutations in ACKR3 required to site-specifically install fluorophores substantially increase its basal and ligand-induced activity. If, as the authors posit, basal activity correlates with conformational heterogeneity, the smFRET data could greatly overestimate the conformational heterogeneity of ACKR3.

      The change in basal ACKR3 activity with the Cys introductions are modest in comparison and insignificantly different as determined by extra-sum-of-squares F test (P=0.14).

      (2) The probes used cannot reveal conformational changes in other positions besides TM6. GPCRs are known to exhibit loose allosteric coupling, so the conformational distribution observed at TM6 may not fully reflect the global conformational distribution of receptors. This could mask important differences that determine the ability of intracellular transducers to couple to specific receptor conformations.

      We agree that the overall conformational landscape of the receptors has not been investigated and we have added this caveat to the discussion on Pg. 12.

      “An important caveat is that our study does not report on the dynamics of the other TM helices and H8, some of which are known to participate in arrestin interactions.”

      (3) While it is clear that CXCR4 and ACKR3 have very different conformational dynamics, the data do not definitively show that this is the main or only mechanism that contributes to their functional differences. There is little discussion of alternative potential mechanisms.

      The main functional difference between CXCR4 and ACRK3 is their effector coupling: CXCR4 couples to G proteins, whereas ACKR3 only couples to arrestins (following phosphorylation of the C-terminal tail by GRKs). As currently noted in the discussion, ACKR3 has many features that may contribute to its lack of G protein coupling, including lack of a well-ordered intracellular pocket due to conformational dynamics, lack of an N-term-ECL3 disulfide, different chemokine binding mode, and the presence of Y257. Steric interference due to different ICL loop structures may also interfere with G protein activation. No one thing has proven to confer ACKR3 with G protein activity including swapping all of the ICLs to those of canonical chemokine receptor, suggesting it is a combination of these different factors. The following has been added to the discussion on Pg. 13 to clearly note that any one feature is unlikely to drive the atypical behavior of ACKR3:

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.”

      (4) The extent to which conformational heterogeneity is a characteristic feature of ACKRs that contributes to their promiscuity and arrestin bias is unclear. The key residue the authors find promotes ACKR3 conformational heterogeneity is not conserved in most other ACKRs, but alternative mechanisms could generate similar heterogeneity.

      Despite the commonalities in the roles of the ACKRs, they all appear to have evolved independently. Thus, we do not believe that all features observed and described for one ACKR will explain the behavior of another. We have carefully avoided expanding our observations to other ACKRs to avoid suggesting common mechanisms.

      (5) There are no data to confirm that the two receptors retain the same functional profiles observed in cell-based systems following in vitro manipulations (purification, labeling, nanodisc reconstitution).

      We agree this is an important point. All labeled receptors responded to agonist stimulation as expected. As only properly folded receptors are able to make the extensive interactions with ligands necessary for conformational changes (for instance, CXCL12 interacts with all TMs and ECLs), this suggests that the proteins are folded correctly and functional following all manipulations.

      Reviewer #3 (Public Review):

      Summary:

      This is a well-designed and rigorous comparative study of the conformational dynamics of two chemokine receptors, the canonical CXCR4 and the atypical ACKR3, using single-molecule fluorescence spectroscopy. These receptors play a role in cell migration and may be relevant for developing drugs targeting tumor growth in cancers. The authors use single-molecule FRET to obtain distributions of a specific intermolecular distance that changes upon activation of the receptor and track differences between the two receptors in the apo state, and in response to ligands and mutations. The picture emerging is that more dynamic conformations promote more basal activity and more promiscuous coupling of the receptor to effectors.

      Strengths:

      The study is well designed to test the main hypothesis, the sample preparation and the experiments conducted are sound and the data analysis is rigorous. The technique, smFRET, allows for the detection of several substates, even those that are rarely sampled, and it can provide a "connectivity map" by looking at the transition probabilities between states. The receptors are reconstituted in nanodiscs to create a native-like environment. The examples of raw donor/acceptor intensity traces and FRET traces look convincing and the data analysis is reliable to extract the sub-states of the ensemble. The role of specific residues in creating a more flat conformational landscape in ACKR3 (e.g., Y257 and the C34-C287 bridge) is well documented in the paper.

      Weaknesses:

      The kinetics side of the analysis is mentioned, but not described and discussed. I am not sure why since the data contains that information. For instance, it is not clear if greater conformational flexibility is accompanied by faster transitions between states or not.

      The reviewer is correct that kinetic information is available, in principle, from smFRET experiments. However, a detailed kinetic analysis will require a much larger data set than we currently possess, to adequately sample all possible transitions and the dwell times of each FRET state. We intend to perform such an analysis in the future as more data becomes available. The purpose of this initial study was to explore the conformational landscapes of CXCR4 and ACKR3 and to reveal differences between them. To this end, we have documented major differences in conformational preferences and response to ligands of the two receptors that are likely relevant to their different biological behavior. Future kinetic information will add further detail, but is not expected to alter the conclusions drawn here.

      The method to choose the number of states seems reasonable, but the "similarity" of states argument (Figures S4 and S6) is not that clear.

      We thank the reviewer for noting a need for further clarification. We qualitatively compared the positions of the various FRET peaks across treatments to gain insight into the consistency of the conformations and avoid splitting real states by overfitting the data. For instance, fitting the ACKR3 treatments with three states leads to three distinct FRET populations for the R’ intermediate. Adding a fourth state results in two intermediates that are fairly well overlapping. In contrast, the two-intermediate model for CXCR4 appears to split the R* state of the CXCL12 treated sample and causes a general shift in both intermediate states to lower FRET values when CXCL12 is present. As we assume that the conformations are consistent throughout the treatments, we conclude that this represents an overfitting artifact and not a novel CXCL12CXCR4 R*’ state. Additional sentences have been added to the supplemental figure legend to better describe the comparative analysis.

      “(Top) With the 3-state model, the R’ states for apo-CXCR4 and for CXCL12- and IT1t-bound receptor overlapped well with similar apparent FRET values across all of the tested conditions. In the case of the four-state model, the R*’ (Middle) and R’ (Bottom) states were substantially different across the ligand treatments. In particular, the R*’ state with CXCL12 treatment appears to arise from a splitting of the R* conformation, indicating that the model was overfitting the data.”

      Also, the "dynamics" explanation offered for ACKR3's failure to couple and activate G proteins is not very convincing. In other studies, it was shown that activation of GPCRs by agonists leads to an increase in local dynamics around the TM6 labelling site, but that did not prevent G protein coupling and activation.

      We agree with the reviewer that any single explanation for ACKR3 bias, including the dynamics argument presented here, is insufficient to fully characterize the ACKR3 responses. As noted by the reviewer, the TM6 movement and dynamics is generally correlated with G protein coupling, whereas other dynamics studies (Wingler et al. Cell 2019) have noted that arrestinbiased ligands do not lead to the same degree of TM6 movement. We have added the following statement to the discussion on Pg. 13:

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.” 

      Recommendations for the authors:  

      Reviewer #1 (Recommendations For The Authors):

      I would like to raise a technical point about the calculation and reporting of the FRET efficiency. The authors report the FRET efficiency as E=IA/(IA+ID). There is now a strong recommendation from the FRET community (https://doi.org/10.1038/s41592-018-0085-0) to use the term “FRET efficiency” only when a proper correction procedure of all correction factors has been applied, which is not the case here (gamma factor has not been calculated). The authors should therefore use the term “Apparent FRET Efficiency” and  E<sub>app</sub> in all the manuscripts.

      Also, it would be nice to indicate directly on the figures whether a ligand that is used is an agonist, antagonist, inverse agonist, etc...

      We thank the reviewer for suggesting this clarification in terminology. We now refer to apparent FRET efficiency (or E<sub>app</sub>) throughout the manuscript and in the figures. In addition, we have added ligand descriptions to the relevant figures.

      Reviewer #2 (Recommendations For The Authors):

      (1) M159(4.40)C/Q245(6.28)C ACKR3 appears to have higher constitutive activity than ACKR3 Wt (Fig. S1). While the vehicle point itself is likely not significant due to the error in the Wt, the overall trend is clear and arguably even stronger than the effect of Y257(6.40)L (Fig. S9). While this is an inherent limitation of the method used, it should be clearly acknowledged; the comment in lines 162-164 seems to skirt the issue by only saying that arrestin recruitment is retained. It would be helpful and more rigorous to report the curve fit parameters (basal, E<sub>max</sub>, EC50) for the arrestin recruitment experiments and the associated errors/significance (see https://www.graphpad.com/guides/prism/latest/statistics/stat_qa_multiple_comparisons_ after_.htm for a discussion).

      The Emin, E<sub>max</sub>, and EC50 for M159<sup>4</sup>.<sup>40</sup>C/Q245<sup>6</sup>.<sup>28</sup>C ACKR3 were compared against the values for WT ACKR3 from Fig. S1 and only the E<sub>max</sub> was determined to be significantly different by the extra sum of squares F test. A note has been added to the text to reflect these results on Pg. 5.

      “Only the E<sub>max</sub> for arrestin recruitment to CXCL12-stimulated ACKR3 was significantly altered by the mutations, while all other pharmacological parameters were the same as for WT receptors.”

      (2) The methods do not specify the reactive group of the dyes used for labeling (i.e., AlexaFluor 555-maleimide and Cy5-maleimide?).

      We regret the omission and have added the necessary details to the materials and methods.

      (3) Were any of the native Cys residues removed from ACKR3 and CXCR4 in the constructs used for smFRET? ACKR3 appears to have two additional Cys residues in the N-terminus besides the one involved in the second disulfide bridge, and these would presumably be solvent-exposed. If so, please specify in the Methods and clarify whether the constructs tested in functional assays included these. (Also, please specify if the human receptors were used.)

      No additional cysteine residues were mutated in either receptor. All exposed cysteines are predicted to form disulfides. The residues in the N-terminus that the reviewer alludes to, C21 and C26, form a disulfide (Gustavsson et al. Nature Communications 2017) and are thus protected from our probes. Consistent with these expectations, neither WT CXCR4 nor ACKR3 exhibited significant fluorophore labeling (now mentioned in the text on Pg. 5). The species of origin has been added to the material and methods.

      (4) There are a few instances where the data seem to slightly diverge from the proposed models that may be helpful to comment on explicitly in the text:

      - Figure 4E (ACKR3/CXCL12(P2G)): As noted in the legend, despite stabilizing R*/R*', CXCL12(P2G) reduces transitions between these states compared to Apo. This is more similar to the effects of VUF16840 (Figure 3D) than the other ACKR3 agonists. The authors note the difference between CXCL12(LHRQ) and CXCL12(P2G) (but not vs Apo) in this regard. There might be some other information here regarding the relative importance of the conformational equilibrium vs transition rates for receptor activity.

      Although the TDPs for CXCL12<sub>P2G</sub> and VUF16840 are similar, as noted by the reviewer, the overall FRET envelopes are drastically different.

      The differences in transition probabilities for R ↔ R’ and R*’ « R* transitions observed in the presence of CXCL12<sub>P2G</sub> or CXCL12<sub>LRHQ</sub> relative to the apo receptor are now explicitly noted in the Results.

      - The conformational distributions of ACKR3 apo and ACKR3 Y257L CXCL12 are very similar (Figure 5A,D). However, there is a substantial difference in the basal activity of WT vs CXCL12stimulated Y257L (Figure S9).

      The mutation Y257L appears to promote the highest and lowest FRET states at the expense of the intermediates. Although the distribution appears similar between Apo-WT and CXCL12Y257L, the depopulation of the R’ state may lead to the observed activation in cells.

      (5) There are inconsistent statements regarding the compatibility of G protein binding to the "active-like" ACKR3 conformation observed in the authors' previous structures (Yen et al, Sci Adv 2022). In the introduction, the authors seem to be making the case that steric clashes cannot account for its lack of coupling; in the discussion, they seem to consider it a possibility.

      The introduction to previous research on the molecular mechanisms governing the lack of ACKR3-G protein coupling was not intended to be all encompassing, but rather to highlight previous efforts to elucidate this process and justify our study of the role  of dynamics. Due to the positions of the probes, we can only comment on the impact on TM6 movements and not other conformational changes. The steric clash reported in Yen et al. was in ICL2 and not directly tested here, so our observations do not preclude changes occurring in this region. We also do not claim that the active-like state resolved in our previous structures matches any specific state isolated here by smFRET.

      (6) Line 83-85: "Having excluded other mechanisms we therefore surmised that the inability of ACKR3 to activate G proteins may be due to differences in receptor dynamics."

      Line 400-402: "It is possible that the active receptor conformation clashes sterically with the G protein as suggested by docking of G proteins to structures of ACKR3."

      As mentioned above, we suspect the mechanisms governing the inability of  ACKR3 to couple to G proteins may be more complex than one particular feature but instead due to a combination of several factors. Accordingly, we have not completely eliminated a contribution of steric hindrance as we described in Yen et al. Sci Adv 2022 and instead include it as a possibility. Following the line highlighted here, we list several alternatives: 

      “Alternatively, the receptor dynamics and conformational transitions revealed here may prevent formation of productive contacts between ACKR3 and G protein that are required for coupling, even though G proteins appear to constitutively associate with the receptor.”

      And, at the end of the paragraph, we have added the following sentence: 

      “The atypical activation of ACKR3 does not appear to be dependent on any singular receptor feature and is likely a combination of several factors.”

      (7) If the authors believe that the various ligands/mutations are only altering the distribution/dynamics of the same 3/4 conformations of CXCR4/ACKR3, respectively, is there a reason each FRET efficiency histogram is fit independently instead of constraining the individual components to Gaussian components with the same centroids, and/or globally fitting all datasets for the same receptor?

      We performed global analysis across all data sets for each sample and condition. Since the peak positions of the various FRET states recovered in this way were consistent across treatments (Fig. S4,S6), we did not feel it was necessary to perform a further global analysis across all samples for a given receptor.

      Reviewer #3 (Recommendations For The Authors):

      The manuscript is well-written, the arguments are easy to follow and the figures are helpful and clear. Here are a few questions/suggestions that the authors might want to address before the paper will be published:

      (1) Include a table with kinetic rates between states in SI and have a brief discussion in the main text to support the trends observed in transition probabilities.

      As noted above, determining rate constants for each of the state-to-state transitions will require a much larger set of experimental smFRET data than is currently available and will be the subject of future studies.

      (2) The argument of state similarity (Figure S4 and S6)... why are the profiles not Gaussian, like in the fits on Figures S3 and S5, repectively? I would also suggest that once the number of states is chosen to do a global fit, where the FRET values of a certain sub-state across different conditions for one receptor are shared.

      The state distributions presented in Figs. S4 and S6 (as well as throughout the rest of the paper) are derived from HMM fitting of the time traces themselves, and are not constrained to be Gaussian, whereas the GMM analysis in Figs. S3 and S5 are Gaussian fits to the final apparent FRET efficiency histograms.

      Similar to our response to Review 2 above, due to the consistency of the fitted peak positions obtained across different conditions for a given sample, we did not feel that further global analysis was necessary.

      (3) It is shown FRET changes from ~0.85 in the inactive (closed) state to ~0.25 in the active (open) state. How do these values match the expectations based on crystal structure and dye properties?

      As noted in our response to Reviewer 1, translating the apparent FRET values using the assumed Förster distances for A555/Cy5 (per FPbase) suggest a change in D-A distance of ~30 angstroms, whereas the expected change from structures is ~16 Å. We suspect this discrepancy is due to the lipids immediately adjacent to the fluorophores, which may lead to the probes being constrained in an extended position when TM6 moves outwards, thus also reporting the linker length in the distance change. Additionally, such interactions may constrain the donor and acceptor in unfavorable orientations for energy transfer, which would also reduce the FRET efficiency in the active state. Since the calculated D-A distance changes appear too large for GPCR activation, we have opted to not make any structural interpretations. Instead, all of our conclusions are based on resolving individual conformational states and quantifying their relative populations, which is based directly on the measured FRET efficiency distributions, not computed distances.

      (4) The results on the effect of CXCL12-P2G on CXCR4 are confusing...despite being an antagonist, this ligand stabilizes the "active state"...I am not sure if the explanation offered is sufficient that the opening of the intracellular cleft is not sufficient to drive the G protein coupling/activation.

      We agree that the explanation related to the opening of the intracellular cleft being insufficient to drive G protein coupling/activation is speculative and we have removed that text. We now simply propose that the CXCL12 variants inhibit coupling of G proteins to CXCR4 or disrupt interactions necessary for signaling, as stated in the following text to the results on Pg. 8:

      “Despite the ability of CXCL12<sub>P2G</sub> and CXCL12<sub>LRHQ</sub> to stabilize the active R* conformation of CXCR4, both variants are known to act as antagonists (20). This suggests that the CXCL12 mutants inhibit CXCR4 coupling to G proteins not by suppressing the active receptor population but rather by increasing the dynamics of the receptor state-to-state transitions. Our results suggest that the helical movements considered classic signatures of the active state may not be sufficient for CXCR4 to engage productively with G proteins.”

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      • We thank the reviewers for their useful suggestions regarding how to improve our manuscript.
      • Reviewer 3 declared that s/he did not find and evaluate the provided Supplementary Materials. As a result, many of her/his criticisms seem invalid: the requested data, validations etc. were already there in the Supplementary Figures and Tables.
      • To avoid confusion, we renamed the transgene that is commonly used as a readout for STAT-activated transcription from 10xStat92E-GFP to 10xStat92E DNA binding site-GFP (please see comments by Reviewer 2 that show how easily one can think that Stat92E protein levels go up because of the misleading name of this transgene).
      • One co-author, Martin Csordós was among the authors by mistake. Although first considered, his contribution was not included in either the original or the current manuscript version, so we removed his name from the revised version with his permission.
      • We prefer to use colour coding for Sections 2., 3. and 4. in our responses to Reviewer comments rather than splitting the responses to queries in separate sections, because many of our answers contain a mixture of planned experiments (labeled as bold), already available data (labeled as underlined), and *explanations why we think that no additional analyses are necessary* (between asterisks). Data already provided in the original submission but missed by Reviewers has white background in our responses. Reviewer comments

      Reviewer 1

      Major comments:

      R1/1. ”Figure 6E seems to indicate that a subset of Su(var)2-10/PIAS isoforms may bind to ATG8 (directly or indirectly). This leads to the straightforward prediction that this subset should be differentially affected by the selective autophagy at the center of the manuscript. That could be tested to strengthen that point. “

      Response:

      The Atg8a-binding subset of Su(var)2-10/PIAS isoforms could indeed be differentially affected by selective autophagy__. To test this, we will analyze in vivo Su(var)2-10 isoform abundance on western blots with an anti- Su(var)2-10 antibody in __Atg8aΔ12and ____Atg8aK48A/Y49A (Atg8aLDS) mutants.

      Minor comments:

      R1/2. “ in Fig S1B,C the colocalization between GFP reporters for STAT92E and AP-1 activity and glia marker does not seem convincing, indicating other cell types may be expressing them as well.”

      *Response: *

      *The overlap between glia labelling and STAT92E and AP-1 transcriptional readout reporter expression is indeed not complete. First of all, epithelial cells in the wing display both STAT92E and AP-1 activity even in uninjured conditions when glial expression of these reporters is not yet observed. Transcriptional reporter activity outside of the wing nerve was previously indicated in figures with arrowheads, now the epithelium is labeled and the regions containing nerve glia are outlined everywhere. *

      The fiber-like reporter expression after injury in the wing nerve could correspond to either glia or axons1–3. Glia in the wing nerve have a filament-like appearance resembling axons in confocal images, even glial nuclei are flat/elongated1. Importantly, STAT92E enhancer-driven GFP also labels the nucleus in expressing cells, as opposed to glially driven mtdTomato that is membrane-tethered (and thus excluded from the nucleus: see Fig. S1B, C). Of note, TRE-GFP and Stat-GFP are not expressed in neurons because the cell bodies and nuclei of wing vein neurons are never GFP-positive, see Fig. 2C, Figs. S1, S4 in Neukomm et al.1 and Figure 1 for Reviewers. We also explain this better now in the revised manuscript (please see the legend of Fig. S1).

      Nonetheless, we plan to analyze colocalization of mtdTomato-labeled neurons and TRE-GFP and Stat-GFP around the neuronal cell bodies to unequivocally show their different identities. Additionally, we will include transverse confocal sections of the genotypes in Fig. S1B, C that may better illustrate the colocalization.

      Fig. 1 for Reviewers. Neuronal (nSyb+) and Stat92E-GFP+ cell morphology in the L1 vein at the anterior wing margin around the neuronal cell bodies which occupy a stereotypical position at the sensilla1. The location and shape of neuronal nuclei (left panel) are different from Stat-GFP+ cell nuclei (right panel, please see also Fig. S1B, C) based on the circumferential GFP signal. Therefore, cells expressing TRE-GFP and Stat-GFP in injured wing nerves are glia and not neurons.

      R1/3. “p.7 Instead of "Su(var)2-10 is mainly nuclear due to its transcriptional repressor and chromatin organizer functions" It may be better to say" .. .consistent with its transcriptional repressor and chromatin organizer functions"”

      Response:

      We have modified the manuscript accordingly.

      R1/4. It is not clear whether the differences in Su(var)2-10/PIAS accumulation between Atg16 and Atg101 RNAi indicate functional differences of blocking autophagy at different stages or simply differences in RNAi efficiency (Atg16) versus the Atg101 mutant.”

      Response:

      We have added glial Atg1 (the catalytic subunit of the autophagy initiation complex that also includes Atg101) knockdown experiments that show the same lack of Su(var)2-10 accumulation in uninjured conditions as seen in the Atg101 null mutant (please see Fig. S6C). Please note that Atg16-Atg5-Atg12 dependent conjugation of LC3/Atg8a is involved in various vesicle trafficking pathways in addition to autophagy4–6, alterations of which may perturb baseline Su(var)2-10 levels in uninjured animals.

      Significance:

      R1/5. “STAT92E-dependent glial upregulation of vir-1, but not Draper, is shown, but consequences for glial functions in nerve injury are not tested.”

      Response:

      We will test antimicrobial peptide (AMP) expression in glia after nerve injury and whether this is affected by STAT92E and vir-1. Certain AMPs such as Attacin C are known to be regulated by both the Stat and NF-____κΒpathways7, and AMPs can be generally upregulated in response to brain injury8,9. This could serve pathogen clearance functions after defence lines such as the epithelium and blood-brain barrier are compromised. In addition, we will test the recruitment of glial processes into the antennal lobe after olfactory nerve injury in animals with glial STAT92E or vir-1 deficiency. Glial invasion is an adaptive response to axon injury and a first step towards debris clearance10.

      R1/6. “experiments indicate a role for Su(var)2-10/PIAS SUMOylation activity in tis autophagic degradation, but it is not clear whether the critical substrata Su(var)2-10/PIAS itself or another protein.”

      “binding of Su(var)2-10/PIAS to ATG8 is indicated, but no in vitro experiment performed to test whether this is direct and perhaps SUMOylation dependent.”

      Response:

      *We aimed to answer this question by using a point mutant form of Su(var)2-10: CTD2, which is unable to properly autoSUMOylate itself11, see Fig. 6D. CTD2 mutant Su(var)2-10 levels increased in S2 cells transfected with the mutant construct relative to the wild-type, similar to lysosome inhibition affecting the wild-type protein level but not the mutant variant. Importantly, wild-type Su(var)2-10 is present in CTD2 mutant Su(var)2-10-transfected cells, which can still SUMOylate other Su(var)2-10 targets. It is thus the intrinsic SUMOylation defect of the CTD2 mutant that results in its impaired degradation. It is firmly established that increased Su(var)2-10/PIAS levels repress STAT92E activity12, mammalian example: Liu et al., 199813, pointing to Su(var)2-10 as the critical substrate for autophagy during STAT92E derepression.*

      We will further address this point and investigate if Su(var)2-10 directly binds to Atg8a by in vitro SUMOylation of GST-Su(var)2-10 and subsequent GST pulldown assay with HA-Atg8a. In vitro SUMOylation reaction with purified GST-Su(var)2-10 and negative controls are available via in-house collaboration11. We will incubate the resulting proteins and non-SUMOylated counterparts with in vitro transcribed /translated HA-Atg8a, and interactions will be tested by anti-HA western blotting with quantitative fluorescent LICOR Odyssey CLX detection.

      Reviewer 2

      Major comments:

      R2/1. The working hypothesis is that upon injury, Su(var)2-10 is degraded by autophagy and, as a consequence, Stat92E induces vir-1 expression.

      Could the authors clarify why do Stat92E levels increase upon injury? Does Stat92E stability increase upon ATG mediated Su(var)2-10 degradation? Or does it expression/nuclear translocation change?“

      Response:

      We did not state that Stat92E levels increase during injury - we only used the 10xStat92E DNA binding site-GFP reporter (we have renamed it as such in our revised manuscript to avoid confusion) that is commonly referred to as 10xStat92E-GFP in the literature14, as a readout for Stat92E-dependent transcription.

      To address these questions, we will use an endogenous promoter-driven STAT92E::GFP::FLAG protein-protein fusion transgene (https://flybase.org/reports/FBti0147707.htm) to test if STAT92E stability/expression or translocation is altered during injury or upon disruption of selective autophagy. We have already tested this reporter and it is detected in the wing nerve nuclei after injury (Figure 2 for Reviewers, panel A).

      As the Atg8aLDS mutation specifically impairs selective autophagy, we will use this mutant and wild-type controls to assess STAT92E::GFP::FLAG abundance on western blots from fly lysates with anti-GFP antibody. To assess STAT92E::GFP::FLAG nuclear translocation as well as stability/expression, we will use independently Atg8aLDS and Su(var)2-10 RNAi in glia to perturb STAT92E -dependent transactivation and visualize glia cell membrane by membrane-tethered tdTomato, glial nuclei by DAPI/anti-Repo and STAT92E with the STAT92E::GFP::FLAG fusion transgene in dissected brains. We can also evaluate STAT92E nuclear translocation with the same genotypes in the injured wing nerve glia. Of note, studies in mammals failed to identify an obvious effect of PIAS1 on STAT1 abundance13, please see Figure 2B from this paper as Figure 2 for Reviewers, panel B. Rather, PIAS family proteins bind tyrosine-phosporylated STAT dimers and impair their DNA binding thereby their transcriptional activation function15.

      A.

      Proc. Natl. Acad. Sci. USA Vol. 95, pp. 10626–10631

      https://doi.org/10.1073/pnas.95.18.10626.

      Fig. 2 for Reviewers.

      1. Stat92E::GFP::FLAG expression and nuclear appearance in the wing nerve before and after injury
      2. Increasing PIAS1 (Su(var)2-10 ortholog) levels does not affect STAT1 abundance in mammalian cells R2/2. Also, since Su(var) levels increase upon ATG RNAi, independently of injury, do ATG levels increase upon injury? It does not seem to be the case from Fig 6D, but then, if the ATG levels do not increase, how to explain the injury mediated effects of Su(var)2-10? “

      Response:

      *We have not seen an effect of injury on the rate of autophagic degradation (flux) using the common flux reporter GFP-mCherry -Atg8a in glia after injury (shown in Fig. S2D – not 6D). Also, levels of the typical autophagic cargo p62/Ref(2)P and core autophagy proteins such as Atg12, Atg5, Atg16 do not change after nervous system injury16suggesting no change in general autophagic turnover. *

      *An increase in general autophagy would be one option to promote degradation of a given cargo. Just as for the ubiquitin-proteasome system, in selective autophagy the labelling of the cargo/substrate for degradation is a regulated process. Dynamic ubiquitylation of a cargo often promotes its autophagic degradation17. We hypothesize that SUMO may fulfil a similar role in labelling cargo for elimination and this may be promoted by injury in the case of Su(var)2-10, which warrants future studies. *

      R2/3. “Su(var)2-10 levels in control and injured wings are different between ATG18RNAi and ATG101 mutant (Fig 5). Could the authors explain the rational for using two ATG mutants? and the meaning of this difference? Also, why comparing data using the RNAi approach and a mutation?”

      Response:

      This issue was also raised in R1/4 and we refer the Reviewer/Editor to that section for our new Atg1 knockdown data and explanations.

      *There is a consensus in the autophagy community that mutants for multiple Atg genes should always be used to ensure that it is indeed canonical autophagy that is affected (because Atg proteins can have non-autophagic roles, as is the case for Atg16 in regulation of phagosome maturation - LAP). *

      R2/4. “Fig 6 What is the relevance of the Atg8, Sumo and Su(var)2-10 colocalization at puncta, since there is a lot of colocalization outside the puncta and also lots of Su(var)2-10 or Atg8 labeling that does not colocalize? “

      Response:

      *Su(var)2-10 orthologs PIAS1-4 localize to the nuclear matrix and certain foci in the chromatin and may play roles in heterochromatin formation, DNA repair, and repression of transposable elements in addition to transcriptional repression18–20. SUMO-modified proteins accumulate in response to PIAS activity in phase-separated foci also referred to as SUMO glue21. We show colocalization of Atg8a with similar Su(var)2-10 and SUMO double positive structures in foci. *

      *We do not expect a full overlap between Su(var)2-10 and Atg8a labeling for a number of reasons. First, Su(var)2-10 has many different roles that may not be regulated by autophagy. Second, Atg8a+ autophagosomes in the cytoplasm deliver not only indidivual proteins such as Su(var)2-10 for degradation but also many other cellular components. Third, nuclear Atg8a is implicated in the removal of the Sequoia transcriptional repressor from autophagy genes that is unlikely to involve Su(var)2-1022. Now we include these points in the Discussion section.*

      R2/5. “The statement made in the first sentence of the discussion is very strong: 'we have uncovered an activation mechanism for Stat92E', without sufficient supporting evidence.”

      Response:

      We have rephrased this section as follows:

      Here we have uncovered the autophagy-dependent clearance of a direct repressor of the Stat92E transcription factor. This, synergistically with injury-induced Stat92E phosphorylation, may ensure proper Stat92E-dependent responses in glia after nerve injury to promote glial reactivity.

      R2/6. “Could the authors validate (some) expression data by in situ hybridization experiments?”

      Response:

      *Our gene expression data were derived from wing nerve imaging or wing tissue. Unfortunately, in situ hybridization is not feasible in this organ because probes do not penetrate the thick chitin-based cuticule and wax cover of the wing (and the same is true for wing immunostaining).* We do provide independent evidence for vir-1 upregulation in the wing after injury via quantitative PCR (qPCR) in Fig. S5C. To corroborate reporter-based data, we will also analyze drpr in qPCR using wing material after injury at the same time points.

      R2/7. “Could the authors validate the RNAi lines molecularly (or refer to published data on these lines?”

      Response:

      *Almost all RNAi lines have already been validated by qPCR, western blot, or immunostaining in Szabo et al., 202316 and other publications23–25. The only exception is Su(var)2-10JF03384 and we show that it is indistinguishable from the validated Su(var)2-10HMS00750 RNAi line (which causes 95% transcript reduction): it also strongly derepresses STAT activity. These reagents have also been widely used in the community (e.g. https://flybase.org/reports/FBal0242556.htm, https://flybase.org/reports/FBal0233496.htm).*

      R2/8. „Clarifying the role of Su(var)2-10 on Stat92E would benefit to the presented work. Does Atg8-Su(var)2-10 binding affect Stat92E accumulation, expression, translocation to the nucleus? Some of these experiments could be obtained in S2 cell transfection assays, if too complex in vivo.”

      Response:

      As explained in R2/1, we will use an endogenous promoter-driven STAT92E::GFP::FLAG protein-protein fusion transgene to test if STAT92E stability/expression or translocation is altered upon disruption of selectiveautophagy (in Atg8aLDS mutant flies).

      R2/9. „Also, what happens to the axons in the mutant conditions described in the manuscript? This would higher the impact of the work, but would require in vivo work with fly stocks containing several transgenes.”

      Response:

      We have already published in our previous paper, Szabo et al., 202316 that the mutants used in the current study display normal axon morphology__. There are only two mutants that we did not test in that paper: Atg8aLDS and our new Atg8anull and we will examine these remaining two during the revision, __but we already published in the above paper that axons appear normal in Atg8aΔ4, a widely used Atg8a mutant allele.

      R2/10. „It has been published that Draper is involved in the response to injury in the adult wing nerve. See for example Neukomm et al (2014). The authors should discuss how this fits with their hypothesis and data. In this respect, Fig S4B, which should support the hypothesis, should be improved. It is rather hard to interpret it.”

      Response:

      Fig. S3 (draper protein trap-Gal4 driven GFP-RFP reporter expression) and S4B (intronic STAT92E binding site of the draper gene driven GFP-RFP reporter expression) show similar results: drpr is already expressed in wing nerve glia before injury, which is in line with Draper’s crucial role in the injury response because Draper-mediated glial signaling triggers glial reactivity. This has been added to the Discussion.

      Minor comments:

      R2/11. „Rubicon is also a negative regulator of autophagy (doi:10.1038/s41598-023-44203-6). in (Fig2 B, D) we have a higher GFP intensity in both uninjured and injured, and the difference between Injured/uninjured is less significant compared to control. It is possible that Rubicon KD causes more autophagy leading to a higher activation of Stat92E even in control. I wouldn't take the results as a proof of canonical autophagy implication and not LC3-associated phagocytosis”

      Response:

      Loss of Rubicon could indeed potentially remove more Su(var)2-10 via increased autophagy, leading to higher Stat92E activity. However, there is no statistically significant difference between injured and uninjured controls and injured and uninjured Rubicon knockdown, respectively, in Fig2 B, D (p=0.6975 and >0.9999 for each comparison). We are puzzled by the statement that the reviewer „wouldn't take the results as a proof of canonical autophagy implication and not LC3-associated phagocytosis”. We analyzed Rubicon as a factor critical for LAP and its deficiency does not prevent Stat transcriptional activity following injury unlike the loss of Atg8a, Atg16, Atg13 and Atg5. We will further support this result with a mutant of Atg16 with part of the WD40 domain deleted, because this region is critical for LAP but not for autophagy.16,26,27

      R2/12. „The rationale for using both repoGal4 and repoGS is unclear. If, as mentioned, the goal is to avoid developmental defects, repoGS should be consistently used. Especially I don't understand how both were utilized to knock down the same genes, such as Atg16”

      Response:

      *We had to use repoGS (a drug-inducible Gal4 active in glia) because knocking down Su(var)2-10 with repoGal4 resulted in no viable adult progeny. Su(var)2-10 is an essential gene as opposed to most autophagy genes and its absence results in embryonic lethality24. Thus all Su(var)2-10 silencing experiments were done with repoGS. Similarly, Stat92E is involved in various developmental processes and its loss is embryonic lethal. repoGal4 was used for genes generally not having an adverse effect when absent during development16 in the first two figures. In Fig. 4D, we silenced Atg16 by repoGS because it is one of the controls for testing a genetic epistasis between Su(var)2-10 and Atg16. Please note that we see exactly the same phenotype in case of Atg16 knockdown when using either Gal4 version.* This has been explained in the revised methods section.

      R2/13. „In the third paragraph of the introduction, I am confused whether Stat92E regulates drpr of the reverse”

      Response:

      Upon antennal injury, Drpr receptor binding to phagocytic cargo initiates a positive feedback loop in glial cells to promote its own transcription28. Drpr receptor in the plasma membrane regulates Stat92E and AP-1 activity via signal transduction. Stat92E and AP-1, in turn, increases drpr transcription10,28–30 that will result in more plasma membrane Drpr protein expression. We have explained this more clearly in the revised Introduction.

      R2/14. „I cannot find the evidence for vir-1 being expressed in glia and target of Gcm in the refences that have been cited.”

      Response:

      We apologize for not explaining this better: vir-1 is called CG5453 in Freeman et al., 200331. It is listed in Table 1 as a Gcm target since there is no detectable CG5453 expression in a Gcm null mutant, please see below. We have updated the manuscript with this gene name.

      .....

      .....

      Part of Table 1 from Freeman et al., 200331.

      R2/15. „The presence of a Stat92E binding site on the vir-1 promoter has already bene described in the paper from Imler and collaborators, Nature immunology 2005. Actually, if this site is present in their transgenic line, it would help the authors strengthen the argument that Stat92E has a direct role on vir1 (for which they make a very strong statement in the discussion, with no direct evidence).”

      Response:

      *The evidence that Stat92E may have a direct role in vir-1 transcription in glia comes exactly from the same reporter transgene described by Imler and collaborators in the mentioned paper32. We received this transgenic line from the Imler group and monitored its expression after injury upon depletion of Stat92E (Fig. 3B). It thus contains the studied Stat binding site. This was referenced in the Methods and in all relevant sections of the main text, and we now explicitly state this in the revised text.*

      R2/16. In the Fig S2D, I do not see a lot of GFP+ (Glia) cells. I see more Atg8a in injured 3 dpi regardless of colocalization with glia”

      Response:

      Fig S2D uses one of the standard assays for autophagic turnover, which we now explain in more detail in the Results section. Basically, the dual tagged GFP::mCherry::Atg8a transgene is expressed in glia, and GFP is quenched in lysosomes after delivery by autophagy while mCherry remains fluorescent. So, in addition to double positive dots (autophagosomes), there are mCherry dots lacking GFP (autolysosomes) if autophagy is functional. All of these dots are in glia but the cell boudaries are not visible.

      The images shown are single optical slices. The number of mCherry+ puncta are around 7-8 per field in both uninjured and injured (3 dpi) conditions, but puncta brightness is always variable. Since most mCherry+ puncta were rather bright in the original 3 dpi image, we changed it to a more representative image.

      R2/17. „The quantification of the signals is made in a specific region of the wing, I guess throughout the nerve thickness. This could be represented more carefully in a schematic and It would also help defining colocalization in the first figure, by using a transverse section.”

      Response:

      The quantification method is described in Materials and Methods and we have added that quantification was done on single optical slices. The imaged region is depicted in Fig. S1A, where we indicated the rectangular region used in Fiji for image quantification. We will add transverse sections of wings as suggested.

      R2/18. „A number of ATG genes are considered in the manuscript, but the rational for using them is not always clear. Showing a schematic would help clarify this. „

      Response:

      We have added a table showing the different steps of autophagy where the studied Atg genes/proteins function (now Supplementary Table 1). We also added whether the gene is considered specific for autophagy or can play a role in another process, e.g. LAP. We studied different autophagy genes in line with the assumption that disabling distinct autophagic complexes should produce the same phenotype if this process is indeed autophagy (and not LC3-associated phagocytosis for example).

      R2/19. „Fig 7 is not cited and its legend is very short.”

      Response:

      We have now cited Fig 7 and expanded its legend.

      R2/20. „Clarify the color coding in Fig S1E”

      Response:

      We added that red is injured, black is uninjured.

      R2/21. „What is the tandem tagged autophagic fly reporter in fig S2D?”

      Response:

      This is one of the most common tools to study autophagy, please see the updated explanation above at your first question regarding Fig. S2D.

      R2/22. „Add a schematic on the vir-1 isoforms.”

      Response:

      We have added a a schematic showing the vir-1 isoforms in Fig. S5B.

      R2/23. „Fig S6B and Fig 5 relate on the levels of Su(var)2-10 upon Atg16 RNAi, but the scale is not the same, why?”

      Response:

      *The scales are different because these two images measure different things. Fig. 5 indeed displays quantification of Su(var)2-10 levels in brain glia. However, Fig S6B shows quantification of Stat92E-induced GFP reporter levels (as a proxy of Stat92E transcriptional activity) in the wing nerve upon Atg16 knockdown. *

      Reviewer 3

      R3/1. „The claim that the negative regulator of Stat92E signaling is removed by selective autophagy, involving selective autophagy receptors different from/in addition to Ref(2)P/p62 is not convincingly shown. This claim probably needs to be softened.”

      Response:

      *We have rephrased this sentence as follows: *

      „These data suggest that selective autophagy is involved in Stat92E-dependent transcriptional activation in glia.”

      R3/2. „The reporter that was used (10xSTAT92E-eGFP) is not a dynamic reporter of STAT92E activity. It accumulates in glia and is highly stable. The appropriate reporter to look at dynamic changes would be 10XSTAT92E-dGFP, which has a degradable (unstable) GFP that is required to see dynamic changes even in the CNS. All of the claims about STAT92E regulation use this reporter, so they are questionable.”

      Response:

      10XSTAT92E-dGFP featuring destabilized GFP could be a more appropriate tool for monitoring dynamic changes in transcription when short term- e.g. few hours - changes are investigated. However, we did not see any expression of 10XSTAT92E-dGFP (we tried 2 different transgenic insertions) in the wing nerve, please see Figure 3 for Reviewers. In the brain, dGFP expression with this reporter is also several times lower than stable GFP, please compare Fig. 4A and B in Doherty et al28.

      The use of 10xSTAT92E-eGFP to follow dynamic expression changes is justified by many lines of evidence. First, there is no 10xSTAT92E-EGFP expression in uninjured wing nerves (Fig. S1D,E). Injury induces EGFP expression in the wing nerve with a sustained activation from 1 to 3 dpi (days post injury), and the EGFP expression returns to the baseline by 5 dpi (Fig. S1D, E). Second, the initial Stat-dependent upregulation of drpr and the 10XSTAT92E-dGFP signal in the brain both occur in the first 24 hours after injury and are sustained for 72 hours28 similar to our results with 10xSTAT92E-EGFP ((Fig. S1D,E). These results indicate that the dynamics of 10xSTAT92E-EGFP expression allows monitoring changes in Stat-dependent transcription occurring over days.

      Figure 3 for Reviewers. Lack of 10XSTAT92E-dGFP signal in the wing nerve from two independent insertions of the same transgene at the indicated time points after wing injury.

      R3/3. „The claim that glial drpr is not upregulated by wing injury and drpr accumulation is not apparently a prerequisite for efficient debris processing within the wing is weak. First, they did not stain for Draper using antibodies, rather they used expression constructs. Dee7 is a promoter that was found to be injury activated in the CNS (were they able to replicate that result? I did not receive the supplemental data), but it might not be the crucial regulator in the periphery. The MIMIC line that was converted is better, but might not represent the full spectrum of regulatory events at the draper locus. Finally, they never actually test for endogenous RNA changes, or use the antibody on westerns. Their lack of evidence is not as compelling as it could be.”

      Response:

      The__ original Supplemental Material already provides answers for this and subsequent questions of Reviewer 3__. We deposited the Supplemental Material to bioRxiv at the time of the first Review Commons submission and it was/is available at https://www.biorxiv.org/content/10.1101/2024.08.28.610109v2.supplementary-material.

      Figs. S3 and S4 show in the wing and the brain (using two different drpr reporters for its transcriptional regulation) that drpr expression does not change much in the wing after nerve injury, as opposed to the brain.

      *We did indeed replicate that dee7-Gal4 expression is induced in the brain after antennal injury using UAS- TransTimer (Fig. S4A). In contrast, wing cell nuclei already show expression of both fluorescent proteins in uninjured conditions, and RFP+ nucleus numbers do no change after wing injury (Fig. S4B, C). drpr-Gal4 was generated by conversion of a MiMIC gene trap element into a Gal4 that traps all transcripts. drprMI07659 is in an intron that is common in all drpr isoforms so it should capture the regulation of all transcript isoforms. *

      We will further analyze drpr expression via independent methods during the revision: qPCR amplification of a common region of drpr transcripts, and western blot with anti-Drpr antibody to compare injured and uninjured wing material. Of note, we see no upregulation of drpr 2 days after wing injury in our (unpublished) RNAseq results either.

      *Unfortunately, immunostaining of the adult wing is not feasible because antibodies do not penetrate the thick chitin-based cuticle and wax cover of the wing.*

      R3/4. „The authors claim autophagy contributes to glial reactive states in part by acting on JAK-STAT pathway via regulation of Stat92E. They did not investigate other potential STAT92E targets. Does Atg16 knockdown alter STAT92E expression? Apparently Vir1 is still upregulated in the absence of Atg16 following injury, but they don’t show STAT92E changes.”

      Response:

      We did investigate other potential STAT92E targets besides vir-1. This is referred to in the text as „*immunity-related gene reporters” and it again can be found in the Supplemental Material (____Supplementary Table 2). None of these genes showed glia-specific upregulation following injury. *

      We will investigate STAT92E expression with the STAT92E::GFP::FLAG protein-protein fusion transgene after disrupting autophagy as also suggested by Reviewer 2. Please see our detailed answer to the first comment of Reviewer 2.

      *We do not agree with the comment that „Vir1 is still upregulated in the absence of Atg16 following injury” because Fig. 3F,G show that lack of Atg16 abolishes the upregulation of the vir-1 reporter: the change from uninjured to injured becomes statistically not significant and the mean GFP intensities are practically identical. *

      R3/5. „The authors claim Su(var)2-10 is an autophagic cargo. They should better characterize Su(var)2-10 degradation and its regulation, and image quality needs to be improved (better images, merged examples, and clearer indication of what they are highlighting. There are many arrows in figures that I don't know what they are pointing to. Much of the labeling in Fig 1 (and others) looks like axons. Could TRE-GFP be turned on in neurons? How did they discriminate?”

      Response:

      As also explained to Reviewer 1’s last comment, we will carry out experiments to address whether SUMOylated Su(var)2-10 binds Atg8a, which can provide evidence for a direct SUMO-dependent autophagic elimination of Su(var)2-10. Please see our detailed response there.

      We will further improve image quality for brain images and we already incorporated new images in Fig. S6. *Merged images were missing only in Fig 5, which we have included in the current version. Arrows and arrowheads were used as described in Figure legends, but instead of those, we now clearly label the epithelium and we outlined the region of wing nerve glia in all images. *

      Please see our response to the first minor comment of Reviewer 1 regarding the expression of reporters in wing tissues.

      R3/6. „The authors claim interaction of Su(var)2-10 with Atg8a in the nucleus and cytoplasm can trigger autophagic breakdown, involving Su(var)2-10 SUMOylation. The paper would benefit from showing direct SUMOylation of Su(var)2-10 after injury. Is there any way to examine this in vivo?”

      Response:

      We will test direct SUMOylation of Su(var)2-10 using a recently described method by Andreev et al., 202233. FLAG-GFP-Smt3 (SUMO)____ is expressed under SUMO transcriptional regulation and we will immunoprecipitate FLAG-GFP-SUMO and GFP alone as negative control with GFPTrap beads from lysates of heads subjected to traumatic brain injury that results in glial reactivity16____, and also from uninjured head lysates. We will use anti-____Su(var)2-10 ____western blotting to visualize SUMOylated Su(var)2-10 and whether its levels are modulated by brain injury.

      R3/7. „The authors state in discussion "we find that draper is highly expressed in wing nerve glia already in uninjured conditions and it is not further induced by wing transection - indicating high phagocytic capacity in wing glia ... axon debris clearance takes substantially longer in the wing nerve than in antennal lobe glomeruli, thus draper levels may not readily predict actual phagocytic activity in glia". However, they never actually assess this in their experiments. All the conclusions about Draper are made from promoter fusions of integrated reporters, which are imperfect. This conclusion cannot be made.”

      Response:

      As described in our response to R3/3, we will further test drpr expression changes after wing injury using two independent methods: qPCR and western blot .

      We deleted this part from the Discussion that were criticized by the reviewer because these are not important for the main message of our manuscript.

      R3/8. „Both STAT92E and Jun are activated by a stress response. Could this be a stress response to disrupting autophagy that is somehow enhance by injury?”

      Response:

      *Stress responses are indeed relayed by AP-1 and Stat signaling, and impaired autophagy could be a source of stress. We would like to emphasize, though, that the main finding of our manuscript is that disrupting autophagy suppresses Stat-dependent transcription. Autophagy inhibition does not increase Stat signaling in uninjured wing nerves and while control flies upregulate Stat activity upon injury, autophagy-deficient animals fail to do so (Fig. 1). Thus, Stat signaling is not activated by loss of autophagy – it is activated by injury (that is the stress) and Stat activation requires autophagy in this setting.*

      R3/9. „Minor:

      I don't think that "glially" is a word.”

      Response:

      Online dictionaries such as Wiktionary list glially as a word, and many scientific articles use it: https://doi.org/10.1016/j.conb.2022.102653, https://doi.org/10.1016/j.yexcr.2013.08.016,https://doi.org/10.1016/j.jpain.2006.04.001*, to give some examples. *

      We nonetheless refrain from using it in the updated text.

      References

      1. Neukomm, L.J., Burdett, T.C., Gonzalez, M.A., Züchner, S., and Freeman, M.R. (2014). Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila. Proc National Acad Sci 111, 9965–9970. https://doi.org/10.1073/pnas.1406230111.
      2. Giangrande, A., Murray, M.A., and Palka, J. (1993). Development and organization of glial cells in the peripheral nervous system of Drosophila melanogaster. Development 117, 895–904. https://doi.org/10.1242/dev.117.3.895.
      3. Stork, T., Engelen, D., Krudewig, A., Silies, M., Bainton, R.J., and Klämbt, C. (2008). Organization and Function of the Blood–Brain Barrier in Drosophila. J. Neurosci. 28, 587–597. https://doi.org/10.1523/jneurosci.4367-07.2008.
      4. Figueras-Novoa, C., Timimi, L., Marcassa, E., Ulferts, R., and Beale, R. (2024). Conjugation of ATG8s to single membranes at a glance. J. Cell Sci. 137, jcs261031. https://doi.org/10.1242/jcs.261031.
      5. Galluzzi, L., and Green, D.R. (2019). Autophagy-Independent Functions of the Autophagy Machinery. Cell 177, 1682–1699. https://doi.org/10.1016/j.cell.2019.05.026.
      6. Nieto-Torres, J.L., Leidal, A.M., Debnath, J., and Hansen, M. (2021). Beyond Autophagy: The Expanding Roles of ATG8 Proteins. Trends Biochem Sci 46, 673–686. https://doi.org/10.1016/j.tibs.2021.01.004.
      7. Huang, Z., Kingsolver, M.B., Avadhanula, V., and Hardy, R.W. (2013). An Antiviral Role for Antimicrobial Peptides during the Arthropod Response to Alphavirus Replication. J. Virol. 87, 4272–4280. https://doi.org/10.1128/jvi.03360-12.
      8. Purice, M.D., Ray, A., Münzel, E.J., Pope, B.J., Park, D.J., Speese, S.D., and Logan, M.A. (2017). A novel Drosophila injury model reveals severed axons are cleared through a Draper/MMP-1 signaling cascade. Elife 6, e23611. https://doi.org/10.7554/elife.23611.
      9. Alphen, B. van, Stewart, S., Iwanaszko, M., Xu, F., Li, K., Rozenfeld, S., Ramakrishnan, A., Itoh, T.Q., Sisobhan, S., Qin, Z., et al. (2022). Glial immune-related pathways mediate effects of closed head traumatic brain injury on behavior and lethality in Drosophila. Plos Biol 20, e3001456. https://doi.org/10.1371/journal.pbio.3001456.
      10. MacDonald, J.M., Beach, M.G., Porpiglia, E., Sheehan, A.E., Watts, R.J., and Freeman, M.R. (2006). The Drosophila Cell Corpse Engulfment Receptor Draper Mediates Glial Clearance of Severed Axons. Neuron 50, 869–881. https://doi.org/10.1016/j.neuron.2006.04.028.
      11. Bence, M., Jankovics, F., Kristó, I., Gyetvai, Á., Vértessy, B.G., and Erdélyi, M. (2024). Direct interaction of Su(var)2‐10 via the SIM‐binding site of the Piwi protein is required for transposon silencing in Drosophila melanogaster. FEBS J. 291, 1759–1779. https://doi.org/10.1111/febs.17073.
      12. Betz, A., Lampen, N., Martinek, S., Young, M.W., and Darnell, J.E. (2001). A Drosophila PIAS homologue negatively regulates stat92E. Proc. Natl. Acad. Sci. 98, 9563–9568. https://doi.org/10.1073/pnas.171302098.
      13. Liu, B., Liao, J., Rao, X., Kushner, S.A., Chung, C.D., Chang, D.D., and Shuai, K. (1998). Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. 95, 10626–10631. https://doi.org/10.1073/pnas.95.18.10626.
      14. Bach, E.A., Ekas, L.A., Ayala-Camargo, A., Flaherty, M.S., Lee, H., Perrimon, N., and Baeg, G.-H. (2007). GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 7, 323–331. https://doi.org/10.1016/j.modgep.2006.08.003.
      15. Hu, X., li, J., Fu, M., Zhao, X., and Wang, W. (2021). The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target. Ther. 6, 402. https://doi.org/10.1038/s41392-021-00791-1.
      16. Szabó, Á., Vincze, V., Chhatre, A.S., Jipa, A., Bognár, S., Varga, K.E., Banik, P., Harmatos-Ürmösi, A., Neukomm, L.J., and Juhász, G. (2023). LC3-associated phagocytosis promotes glial degradation of axon debris after injury in Drosophila models. Nat. Commun. 14, 3077. https://doi.org/10.1038/s41467-023-38755-4.
      17. Goodall, E.A., Kraus, F., and Harper, J.W. (2022). Mechanisms underlying ubiquitin-driven selective mitochondrial and bacterial autophagy. Mol. Cell 82, 1501–1513. https://doi.org/10.1016/j.molcel.2022.03.012.
      18. Zhang, T., Yang, H., Zhou, Z., Bai, Y., Wang, J., and Wang, W. (2022). Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nat. Commun. 13, 5133. https://doi.org/10.1038/s41467-022-32920-x.
      19. Chen, Z., Zhang, Y., Guan, Q., Zhang, H., Luo, J., Li, J., Wei, W., Xu, X., Liao, L., Wong, J., et al. (2021). Linking nuclear matrix–localized PIAS1 to chromatin SUMOylation via direct binding of histones H3 and H2A.Z. J. Biol. Chem. 297, 101200. https://doi.org/10.1016/j.jbc.2021.101200.
      20. Brown, J.R., Conn, K.L., Wasson, P., Charman, M., Tong, L., Grant, K., McFarlane, S., and Boutell, C. (2016). SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1. J. Virol. 90, 5939–5952. https://doi.org/10.1128/jvi.00426-16.
      21. Gutierrez-Morton, E., and Wang, Y. (2024). The role of SUMOylation in biomolecular condensate dynamics and protein localization. Cell Insight 3, 100199. https://doi.org/10.1016/j.cellin.2024.100199.
      22. Jacomin, A.-C., Petridi, S., Monaco, M.D., Bhujabal, Z., Jain, A., Mulakkal, N.C., Palara, A., Powell, E.L., Chung, B., Zampronio, C., et al. (2020). Regulation of Expression of Autophagy Genes by Atg8a-Interacting Partners Sequoia, YL-1, and Sir2 in Drosophila. Cell Reports 31, 107695. https://doi.org/10.1016/j.celrep.2020.107695.
      23. Maimon, I., Popliker, M., and Gilboa, L. (2014). Without children is required for Stat-mediated zfh1 transcription and for germline stem cell differentiation. Development 141, 2602–2610. https://doi.org/10.1242/dev.109611.
      24. Ninova, M., Chen, Y.-C.A., Godneeva, B., Rogers, A.K., Luo, Y., Tóth, K.F., and Aravin, A.A. (2020). Su(var)2-10 and the SUMO Pathway Link piRNA-Guided Target Recognition to Chromatin Silencing. Mol. Cell 77, 556-570.e6. https://doi.org/10.1016/j.molcel.2019.11.012.
      25. Pircs, K., Nagy, P., Varga, A., Venkei, Z., Erdi, B., Hegedus, K., and Juhasz, G. (2012). Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila. PLoS ONE 7, e44214. https://doi.org/10.1371/journal.pone.0044214.
      26. Fletcher, K., Ulferts, R., Jacquin, E., Veith, T., Gammoh, N., Arasteh, J.M., Mayer, U., Carding, S.R., Wileman, T., Beale, R., et al. (2018). The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes. EMBO J 37, e97840. https://doi.org/10.15252/embj.201797840.
      27. Rai, S., Arasteh, M., Jefferson, M., Pearson, T., Wang, Y., Zhang, W., Bicsak, B., Divekar, D., Powell, P.P., Nauman, R., et al. (2018). The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy 15, 1–14. https://doi.org/10.1080/15548627.2018.1534507.
      28. Doherty, J., Sheehan, A.E., Bradshaw, R., Fox, A.N., Lu, T.-Y., and Freeman, M.R. (2014). PI3K Signaling and Stat92E Converge to Modulate Glial Responsiveness to Axonal Injury. PLoS Biol 12, e1001985. https://doi.org/10.1371/journal.pbio.1001985.
      29. Logan, M.A., Hackett, R., Doherty, J., Sheehan, A., Speese, S.D., and Freeman, M.R. (2012). Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury. Nat. Neurosci. 15, 722–730. https://doi.org/10.1038/nn.3066.
      30. MacDonald, J.M., Doherty, J., Hackett, R., and Freeman, M.R. (2013). The c-Jun kinase signaling cascade promotes glial engulfment activity through activation of draper and phagocytic function. Cell Death Differ 20, 1140–1148. https://doi.org/10.1038/cdd.2013.30.
      31. Freeman, M.R., Delrow, J., Kim, J., Johnson, E., and Doe, C.Q. (2003). Unwrapping Glial Biology Gcm Target Genes Regulating Glial Development, Diversification, and Function. Neuron 38, 567–580. https://doi.org/10.1016/s0896-6273(03)00289-7.
      32. Dostert, C., Jouanguy, E., Irving, P., Troxler, L., Galiana-Arnoux, D., Hetru, C., Hoffmann, J.A., and Imler, J.-L. (2005). The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat. Immunol. 6, 946–953. https://doi.org/10.1038/ni1237.
      33. Andreev, V.I., Yu, C., Wang, J., Schnabl, J., Tirian, L., Gehre, M., Handler, D., Duchek, P., Novatchkova, M., Baumgartner, L., et al. (2022). Panoramix SUMOylation on chromatin connects the piRNA pathway to the cellular heterochromatin machinery. Nat. Struct. Mol. Biol. 29, 130–142. https://doi.org/10.1038/s41594-022-00721-x.
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #3

      Evidence, reproducibility and clarity

      In this study the authors explore a potential role for STAT92E and Su(var)2-10 in glial responses to injury in the adult Drosophila wing. The major claims are that canonical autophagy and not LAP sustains STAT92E signaling after in jury. The negative regulator STAT92E is removed by selective autophagy, but this is not ref(2)p/p62 (perhaps). Glial draper expression is not upregulated and Draper accumulation is not apparently a prerequisite for efficient debris clearance in the wing. Su(var)2-10 is an autophagic cargo, mediator of STAT92E-dependennt transcription; and interacts with Atg8a, perhaps sumoylating targets. In general, the model is reasonable, but the data do not support the conclusions, and the quality of the data needs improvement before firm conclusions can be reached. Concerns include:

      1. The claim that the negative regulator of Stat92E signaling is removed by selective autophagy, involving selective autophagy receptors different from/in addition to Ref(2)P/p62 is not convincingly shown. This claim probably needs to be softened.
      2. The reporter that was used (10xSTAT92E-eGFP) is not a dynamic reporter of STAT92E activity. It accumulates in glia and is highly stable. The appropriate reporter to look at dynamic changes would be 10XSTAT92E-dGFP, which has a degradable (unstable) GFP that is required to see dynamic changes even in the CNS. All of the claims about STAT92E regulation use this reporter, so they are questionable.
      3. The claim that glial drpr is not upregulated by wing injury and drpr accumulation is not apparently a prerequisite for efficient debris processing within the wing is weak. First, they did not stain for Draper using antibodies, rather they used expression constructs. Dee7 is a promoter that was found to be injury activated in the CNS (were they able to replicate that result? I did not receive the supplemental data), but it might not be the crucial regulator in the periphery. The MIMIC line that was converted is better, but might not represent the full spectrum of regulatory events at the draper locus. Finally, they never actually test for endogenous RNA changes, or use the antibody on westerns. Their lack of evidence is not as compelling as it could be.
      4. The authors claim autophagy contributes to glial reactive states in part by acting on JAK-STAT pathway via regulation of Stat92E. They did not investigate other potential STAT92E targets. Does Atg16 knockdown alter STAT92E expression? Apparently Vir1 is still upregulated in the absence of Atg16 following injury, but they don't show STAT92E changes.
      5. The authors claim Su(var)2-10 is an autophagic cargo. They should better characterize Su(var)2-10 degradation and its regulation, and image quality needs to be improved (better images, merged examples, and clearer indication of what they are highlighting. There are many arrows in figures that I don't know what they are pointing to. Much of the labeling in Fig 1 (and others) looks like axons. Could TRE-GFP be turned on in neurons? How did they discriminate?
      6. The authors claim interaction of Su(var)2-10 with Atg8a in the nucleus and cytoplasm can trigger autophagic breakdown, involving Su(var)2-10 SUMOylation. The paper would benefit from showing direct SUMOylation of Su(var)2-10 after injury. Is there any way to examine this in vivo? The authors state in discussion "we find that draper is highly expressed in wing nerve glia already in uninjured conditions and it is not further induced by wing transection - indicating high phagocytic capacity in wing glia ... axon debris clearance takes substantially longer in the wing nerve than in antennal lobe glomeruli, thus draper levels may not readily predict actual phagocytic activity in glia". However, they never actually assess this in their experiments. All the conclusions about Draper are made from promoter fusions of integrated reporters, which are imperfect. This conclusion cannot be made. Both STAT92E and Jun are activated by a stress response. Could this be a stress response to disrupting autophagy that is somehow enhance by injury?

      Minor:

      I don't think that "glially" is a word.

      Significance

      Based on the quality of the data, it is hard to consider this manuscript having made a major step forward. A significant amount of work needs to be done to firm up the conclusions. In its present form, the major contributions are the identification vir-1 as upregualted (maybe) and a potential role for autophagy.

    1. Author response:

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary:

      In this manuscript, Hammond et al. study robustness of the vertebrate segmentation clock against morphogenetic processes such as cell ingression, cell movement and cell division to ask whether the segmentation clock and morphogenesis are modular or not. The modularity of these two would be important for evolvability of the segmenting system. The authors adopt a previously proposed 3D model of the presomitic mesoderm (Uriu et al. 2021 eLife) and include new elements; different types of cell ingression, tissue compaction and cell cycles. Based on the results of numerical simulations that synchrony of the segmentation clock is robust, the authors conclude that there is a modularity in the segmentation clock and morphogenetic processes. The presented results support the conclusion. The manuscript is clearly written. I have several comments that could help the authors further strengthen their arguments.

      Major comment: 

      [Optional] In both the current model and Uriu et al. 2021, coupling delay in phase oscillator model is not considered. Given that several previous studies (e.g. Lewis 2003, Herrgen et al. 2010, Yoshioka-Kobayashi et al. 2020) suggested the presence of coupling delays in DeltaNotch signaling, could the authors analyze the effect of coupling delay on robustness of the segmentation clock against morphogenetic processes?

      We thank the reviewer for the suggestion. Owing to the computational demands of including such a delay in the model, we cannot feasibly repeat every simulation analysed here in the presence of delay, and would like to note that the increased computational demand that delays put on the simulations is also the reason why Uriu et al 2021 did not include it, as stated in their published exchange with reviewers. However, analogous to our analysis in figure 7, we can analyse how varying the position of progenitor cell ingression affects synchrony in the presence of the coupling delay measured in zebrafish by Herrgen et al. (2010). We show this analysis in a new figure 8 (8B, specifically), on page 21, and discuss its implications in the text on pages 2022. Our analysis reveals that the model cannot recover synchrony using the default parameters used by Uriu et al. (2021) and reveal a much stronger dependence on the rate of cell mixing (vs) than shown in the instantaneous coupling case (cf. figure 7). However, by systematically varying the value of the delay we find that a relatively minor increase in the delay is sufficient to recover synchrony using the parameter set of Uriu et al. (see figure 8C). Repeating this across the three scenarios of cell ingression we see that the combination of coupling strength and delay determine the robustness of synchrony to varying position of cell ingression. This suggests that the combination of these two parameters constrain the evolution of morphogenesis.

      Minor comments: 

      -  PSM radius and oscillation synchrony are both denoted by the same alphabet r. The authors should use different alphabets for these two to avoid confusion.

      We thank the reviewer for spotting this. This has now been changed throughout to rT, as shorthand for ‘radius of tissue’.

      -  page 5 Figure 1 caption: (x-x_a/L) should be (x-x_a)/L.

      We thank the reviewer for spotting this. This has now been corrected.

      -  Figure 3C: Description of black crosses in the panels is required in the figure legend.

      Thank you for spotting this. The legend has now been corrected.

      -  Figure 3C another comment: In this panel, synchrony r at the anterior PSM is shown. It is true that synchrony at anterior PSM is most relevant for normal segment formation. However, in this case, the mobility profile is changed, so it may be appropriate to show how synchrony at mid and posterior PSM would depend on changes in mobility profile. Is synchrony improved by cell mobility at the region where cell ingression happens?

      We thank the reviewer for the suggestion. We have now plotted the synchrony along the AP axis for varying motility profiles, and this can be seen in figure 3 supplement 1, and is briefly discussed in the text on page 11. We show that while the synchrony varies with x-position (as already expected, see figure 2), there is no trend associated with the shape of the motility profile.

      -  In page 12, the authors state that "the results for the DP and DP+LV cases are exactly equal for L = 185 um, as .... and the two ingression methods are numerically equivalent in the model". I understood that in this case two ingression methods are equivalent, but I do not understand why the results are "exactly" equal, given the presence of stochasticity in the model.

      These results can be exactly equal despite the simulations being stochastic because they were both initialised using the same ‘seed’ in the source code. However, we now see that this might be confusing to the reader, and we have re-generated this figure but this time initialising the simulations for each ingression scenario using a different seed value. This is now reflected in the text on page 12 and in figure 4.

      -  The authors analyze the effect of cell density on oscillation synchrony in Fig. 4 and they mention that higher density increases robustness of the clock by increasing the average number of interacting neighbours. I think it would be helpful to plot the average number of neighbouring cells in simulations as a function of density to quantitatively support the claim.

      We thank the reviewer for their suggestion. Distributions of neighbour numbers for exemplar simulations with varying density can now be found in  figure 4 supplementary figure 1 and are referred to in the text on page 11.

      -  The authors analyze the effect of PSM length on synchrony in Fig. 4. I think kymographs of synchrony r as shown in Fig. 2D would also be helpful to show that indeed cells get synchronized while advecting through a longer PSM.

      We thank the reviewer for their suggestion and agree that visualising the data in this way is an excellent idea. We have generated the suggested kymographs and added them to figure 4 as supplements 2 and 4, and discussed these results in the text on page 12.

      -  I understand that cells in M phase can interact with neighboring cells with the same coupling strength kappa in the model, although their clocks are arrested. If so, this aspect should be also mentioned in the main text in page 16, as this coupling can be another noise source for synchrony.

      We agree this is an important clarification. We explicitly state this, and briefly justify our choice, in the text on page 16.

      -  Figure 5-figure supplement 2: panel labels A, B, C are missing. 

      Thank you for bringing this to our attention. These have now been added.

      – Figure 5-figure supplement 3: panel labels A, B, C are missing.

      Thank you for bringing this to our attention. These have now been added.

      Reviewer #1 (Significance):

      Synchronization of the segmentation clock has been studied by mathematical modeling, but most previous studies considered cells in a static tissue without morphogenesis. In the previous study by Uriu et al. 2021, morphogenetic processes such as cell advection due to tissue elongation, tissue shortening, and cell mobility were considered in synchronization. The current manuscript provides methodological advances in this aspect by newly including cell ingression, tissue compaction and cell cycle. In addition, the authors bring a concept of modularity and evolvability to the field of the vertebrate segmentation clock, which is new. On the other hand, the manuscript confirms that the synchronization of the segmentation clock is robust by careful simulations, but it does not propose or reveal new mechanisms for making it robust or modular. The main targets of the manuscript will be researchers working on somitogenesis and evolutionary biologists who are interested in evolution of developmental systems. The manuscript will also be interested by broader audiences, like developmental biologists, biophysicists, and physicists and computer scientists who are working on dynamical systems.

      We thank the reviewer for their interest in our manuscript and for acknowledging us as one of the first to address the modularity and evolvability of somitogenesis. We hope that this work will encourage others to think about these concepts in this system too.  

      In the original submission, we identified a high enough coupling strength as the main mechanism underlying the identified modularity in somitogenesis. Since, we have included an analysis of the coupling delay and find that it is the interplay between coupling strength and coupling delay that mediate the identified modularity, allowing PSM morphogenesis and the segmentation clock to evolve independently in regions of parameter space that are constrained and determined by the interplay between these two parameters. We have now added an extra figure (figure 8) where we explore this interplay and have discussed it at length in the last section of the results and in the discussion. We again thank the reviewer for encouraging us to include delays in our analysis.

      Reviewer #2 (Evidence, reproducibility and clarity):

      SUMMARY 

      The manuscript from Hammond et al., investigates the modularity of the segmentation clock and morphogenesis in early vertebrate development, focusing on how these processes might independently evolve to influence the diversity of segment numbers across vertebrates.

      Methodology: The study uses a previously published computational model, parameterized for zebrafish, to simulate and analyse the interactions between the segmentation clock and the morphogenesis of the pre-somitic mesoderm (PSM). Their model integrates cell advection, motility, compaction, cell division, and the synchronization of the embryo clock. Three alternative scenarios of PSM morphogenesis were modeled to examine how these changes affect the segmentation clock.

      Model System: The computational model system combines a representation of cell movements and the phase oscillator dynamics of the segmentation clock within a three-dimensional horseshoe-shaped domain mimicking the geometry of the vertebrate embryo PSM. The parameters used for the mathematical model are mostly estimated from previously published experimental findings.

      Key Findings and Conclusions: (1) The segmentation clock was found to be broadly robust against variations in morphogenetic processes such as cell ingression and motility; (2) Changes in the length of the PSM and the strength of phase coupling within the clock significantly influenced the system's robustness; (3) The authors conclude that the segmentation clock and PSM morphogenesis exhibited developmental modularity (i.e. relative independence), allowing these two phenomena to evolve independently, and therefore possibly contributing to the diverse segment numbers observed in vertebrates.

      MAJOR COMMENTS

      (1) The key conclusion drawn by the authors (that there is robustness, and therefore modularity, between the morphogenetic cellular processes modeled and the embryo clock synchronization) stems directly from the modeling results appropriately presented and discussed in the manuscript. The model comprises some strong assumptions, however all have been clearly explained and the parameterization choices are supported by experimental findings, providing biological meaning to the model. Estimated parameters are well explained and seem reasonable assumptions (from the embryology perspective).

      We thank the reviewer for their positive comments about our work

      (2) This study, as is, achieves its proposed goal of evaluating the potential robustness of the embryo clock to changes in (some) morphogenetic processes. The authors do not claim that the model used is complete, and they properly identify some limitations, including the lack of cellcell interactions. Given the recognized importance of cellular physical interactions for successful embryo development, including them in the model would be a significant addition in future studies.

      We would like to clarify that the model does include cell-cell interactions as cells interact with their neighbours’ clock phase to synchronise and to avoid occupying the same physical space. 

      (3) The authors have deposited all the code used for analysis in a public GitHub repository that is updated and available for the research community.

      We support open source coding practices.

      (4) In page 6, the authors justify their choice of clock parameters for cells ingressing the PSM: "As ingressing cells do not appear to express segmentation clock genes (Mara et al. (2007)), the position at which cells ingress into the PSM can create challenges for clock patterning, as only in the 'off' phase of the clock will ingressing cells be in-phase with their neighbours."  However, there are several lines of evidence (in chick and mouse), that some oscillatory clock genes are already being expressed as early as in the gastrulation phase (so prior to PSM ingression) (Feitas et al, 2001 [10.1242/dev.128.24.5139]; Jouve et al, 2002 [10.1242/dev.129.5.1107]; Maia-Fernandes at al, 2024 [10.1371/journal.pone.0297853]) Question: Is this also true in zebrafish? (I.e. is there any recent experimental evidence that the clock genes are not expressed at ingression, since the paper cited to support this assumption is from 2007). If they are expressed in zebrafish (as they are in mouse and chick), then the cell addition should have random clock gene periods when they enter the PSM and not start all with a constant initial phase of zero. Probably this will not impact the results since the cells will also be out of phase with their neighbours when they "ingress", however, it will model more closely the biological scenario (and avoid such criticism).

      We thank the reviewer for their comments. While it is known that in zebrafish the clock begins oscillating during epiboly and before the onset of segmentation (Riedel-Kruse et al., 2007), to our knowledge no-one has examined whether posteriorly or laterally ingressing progenitor cells express clock genes prior to their ingression into the PSM, which occurs later in development than the first oscillations which give rise to the first somites. We have not found any published evidence of her/hes gene expression in the dorsal donor tissues or lateral tissues surrounding the PSM, however we acknowledge that this has not been actively studied before and our assumption relies on an absence of evidence, rather than evidence of absence. 

      However, we agree with the reviewer that one should include such an analysis for completeness, and we have now generated additional simulations where progenitor cells ingress with a random clock phase. This data is presented in figure 2 supplement 1 and mentioned in the main text on page 9.

      MINOR COMMENTS 

      (1) The citations are appropriate and cover the major labs that have published work related to this study (although with some overrepresentation of the lab that published the model used).

      We have cited the vast literature on somitogenesis to the best of our ability and do recognise that the work of the Oates lab appears prominently, but this is probably because their experimental data were originally used to parametrise the model in Uriu et al. 2021.

      (2) The text is clear, carefully written, and both the methods and the reasoning behind them are clearly explained and supported by proper citations.

      We are very glad to see that the reviewer found that the manuscript was clearly presented.

      (3) The figures are comprehensive, properly annotated, with explanatory self-contained legends. I have no comments regarding the presentation of the results.

      Thank you

      (4) Minor suggestions: 

      a. Page 26: In the Cell addition sub-section of the Methods section, correct all instances where the word domain is used, but subdomain should be used (for clarity and coherence with the description of the model, stated as having a single domain comprising 3 subdomains).

      We thank the reviewer for raising this, this is a good point. We have now corrected to ‘subdomain’ where appropriate.

      b. Page 32: Table 1. Parameter values used in our work, unless otherwise stated -> Suggestion: Add a column with the individual citations used for each parameter (to facilitate the confirmation of each corresponding reference).

      Thank you for the suggstion, we have now done this (see table 1 page 36).

      Reviewer #2 (Significance):

      GENERAL ASSESSMENT 

      This study uses a previously published model to simulate alternative scenarios of morphogenetic parameters to infer the potential independence (termed here modularity) between the segmentation clock and a set of morphogenetic processes, arguing that such modularity could allow the evolution of more flexible body plans, therefore partially explaining the variability in the number of segments observed in the vertebrates. This question is fundamental and relevant, yet still poorly researched. This work provides a comprehensive simulation with a model that tries to simplify the many morphogenetic processes described in the literature, reducing it to a few core fundamental processes that allow drawing the conclusions seeked. It provides theoretical insight to support a conceptual advance in the field of evolutionary vertebrate embryology.

      ADVANCE

      This study builds on a model recently published by Uriu et al. (eLife, 2021) that incorporates quantitative experimental data within a modeling framework including cell and tissue-level parameters, allowing the study of multiscale phenomena active during zebrafish embryo segmentation. Uriu's publication reports many relevant and often non-intuitive insights uncovered by the model, most notably the description of phase vortices formed by the synchronizing genetic oscillators interfering with the traveling-wave front pattern.  However, this model can be further explored to ask additional questions beyond those described in the original paper. A good example is the present study, which uses this mathematical framework to investigate the potential independence between two of the modeled processes, thereby extracting extra knowledge from it. Accordingly, the present study represents a step forward in the direction of using relevant theoretical frameworks to quantitatively explore the landscape of complex molecular hypotheses in silico, and with it shed some light on fundamental open questions or inform the design of future experiments in the lab.

      The study incorporates a wide range of existing literature on the developmental biology of vertebrates. It comprehensively cites prior work, such as the foundational studies by Cooke and Zeeman on the segmentation clock and the role of FGF signaling in PSM development as discussed by Gomez et al. The literature properly covers the breadth of knowledge in this field.

      AUDIENCE

      Target audience | This study is relevant for fundamental research in developmental biology, specifically targeting researchers who focus on early embryo development and morphogenesis from both experimental and theoretical perspectives. It is also relevant for evolutionary biologists investigating the genetic factors that influence vertebrate evolution, as well as to computational biologists and bioinformatics researchers studying developmental processes and embryology.

      Developmental researchers studying the segmentation clock in other vertebrate model organisms (namely mouse and chick), will find this publication especially valuable since it provides insights that can help them formulate new hypotheses to elucidate the molecular mechanisms of the clock (for example finding a set of evolutionarily divergent genes that might interfere with PSM length). Additionally, this study provides a set of cellular parameters that have yet to be measured in mouse and chick, therefore guiding the design of future experiments to measure them, allowing the simulation of the same model with sets of parameters from different vertebrate model organisms, therefore testing the robustness of the findings reported for zebrafish.

      Reviewer #3 (Evidence, reproducibility and clarity): 

      In this manuscript, Verd and colleagues explored how various biologically relevant factors influence the robustness of clock dynamics synchronization among neighboring cells within the context of somatogenesis, adapting a mathematical model presented by Urio et. al in 2021 in a similar context. Specifically they show that clock dynamics is robust to different biological mechanisms such as cell infusion, cellular motility, compaction-extension and cell-division. On the other hand , the length of Presomitic Mesoderm (PSM) and density of cells in it has a significant role in the robustness of clock dynamics. While the manuscript is well-written and provides clear descriptions of methods and technical details, it tends to be somewhat lengthy.

      Below are the comments I would like the authors to address:

      (1) The authors mention that "...the model is three dimensional and so can quantitatively recapture the rates of cell mixing that we observe in the PSM". I am not convinced with this justification of using a 3D model. None of the effects the authors explore in this manuscript requires a three dimensional model or full physical description of the cellular mechanics such as excluded volume interaction etc. A one-dimensional model characterized by cell position along the arclength of PSM and somatic region and segmentation clock phase θ can incorporate all the physics authors described in this manuscript as well as significantly computationally cheap allowing the authors to explore the effect of different parameters in greater detail.

      One of the main objectives of the work we present in this manuscript is to assess how the evolution of PSM morphogenesis affects, or does not affect, segment patterning. The PSM is a three-dimensional tissue with differing cell rearrangement dynamics along its anterior-posterior axis. In addition, PSM dimension, density, the rearrangement rate, and patterns of cell ingression all vary across vertebrate species, and they are functional, especially cell mixing as it promotes synchronisation and drives elongation. In order to answer questions on the modularity of somitogenesis we therefore consider it absolutely necessary to include a three-dimensional representation of the PSM that captures single cells and their movements. In addition, this will allow us, as Reviewer #2 also pointed out, to reparametrize our model using species-specific data as it becomes available. 

      While the reviewer is right in that lower dimensional representations would be computationally more efficient, and are generally more tractable, it would not be possible to represent cell mixing in one dimension, as this happens in three dimensions. One could perhaps encode the synchrony-promoting effect of cell mixing via some coupling function κ(x) that increases towards the posterior, however it is unclear what existing biological data one could use to parameterise this function or determine its form. Cell mixing can be modelled in a two-dimensional framework, however this cannot quantitatively recapture the rate of cell mixing observed in vivo, which is an advantage of this model. 

      Furthermore, it is unclear how one would simulate processes such as compactionextension using a one-dimensional model. The two different scenarios of cell ingression which we consider can also not be replicated in a one-dimensional model, as having a population of cells re-acquiring synchrony on the dorsal surface of the tissue while new material is added to the ventral side, creating asynchrony, is qualitatively different than a one-dimensional scenario where cells are introduced continuously along the spatial axis.

      (2) I am not sure about the justification for limiting the quantification of phase synchrony in a very limited (one cell diameter wide) region at one end of the somatic part (Page 33 below Fig. 9). From my understanding of the manuscript, the segments appear in significant length anterior to this region. Wouldn't an ensemble average of multiple such one cell diameter wide regions in the somatic region be a more accurate metric for quantifying synchrony?

      Indeed, such a metric (e.g. as that used by Uriu et al. to quantify synchrony along the xaxis) would be more accurate for determining synchrony within the PSM. However, as per the clock and wavefront model of somitogenesis, only synchrony at the very anterior of the PSM (or at the wavefront, equivalently) is functional for somitogenesis and thus evolution. Therefore, we restrict our analysis to the anterior-most region of the PSM. We now further justify this in the main text on page 9.

      (3) While studying the effect of cellular ingression, the authors study three discrete modes- random, DP and DP+LV and show that in the DP+LV mode the clock synchrony becomes affected. I would like the authors to explore this in a continuous fashion from a pure DP ingression to Pure LV ingression and intermediates.

      We thank the reviewer for this suggestion; this is a very interesting question. We are currently working on a related computational and experimental project to address the question of how PSM morphogenesis can change over evolutionary time to evolve the different modes that we see across species. As part of this work, we are running precisely the simulations suggested by the reviewer to find regions of parameter space in which all the relevant morphogenetic processes can freely evolve.  While interesting, this work is however outside the scope of the current manuscript.

      (4) While studying the effect of length and density of cells in PSM on cellular synchrony, the authors restrict to 3 values of density and 6 values of PSM length keeping the other parameter constant. I would be interested to see a phase diagram similar to Fig. 7 in the two-dimensional parameter space of L and ρ0. I am curious if a scaling relation exists for the parameter values that partition the parameter space with and without synchrony.

      We thank the reviewer for their suggestion and agree that this would constitute an interesting addition to the manuscript. We have now generated these data, which are shown in figure 4 supplement 5 and mentioned on page 13. We see no clear relationship between these two variables when co-varying in the presence of random ingression. 

      (5) Both in the abstract and introduction, the authors discuss at a great length about the variability in the number of segments. I am curious how the number and width of the segments observed depend on different parameters related to cellular mechanics and the segmentation clock ?

      We thank the reviewer for this question. It was not clear to us if this was something the reviewer wants us to address in the study’s background and introduction, or an analysis we should include in the results. Therefore, we have responded to both comprehensively below:

      The prevailing conceptual framework for understanding this is the clock and wavefront model (Cooke and Zeeman, 1976), which posits that the somite length is inversely proportional to the frequency of the clock relative to the speed of the wavefront, and that the total number of segments is the relative frequency multiplied by the total duration of somitogenesis.

      Experimentally we know that the frequency is determined in part by the coupling strength (Liao, Jorg, and Oates, 2016), and from comparative embryological studies (Gomez et al., 2008; Steventon et al., 2016) we know that changes in the elongation dynamics of the PSM correlate with changes in somite number, presumably by altering the total duration of somitogenesis (Gomez et al., 2009). These changes in elongation are thought to be driven by the changes in cell and tissue mechanics we test in our manuscript. 

      Within our model, we cannot in general predict how the number of segments responds to changes in either clock parameters or cell mechanical parameters, as we lack understanding of what causes somitogenesis to cease; this is thus not encoded in our model and segmentation can in principle proceed indefinitely. Therefore, we have not performed this analysis.

      Similarly, we have not included an analysis of somite length. This is for two reasons: 1) as per the clock and wavefront model, the frequency at the PSM anterior (which we analyse) is equivalent to this measurement, as we assume (in general) the wavefront ($x = x_{a}$) is inertial. 2) the length of the nascent somite is not thought to be of much relevance to the adult phenotype, and by extension evolution. Somites undergo cell division and growth soon after their patterning by the segmentation clock, therefore their final size does not majorly depend on the dynamics of the segmentation clock. Rather, the main function of the clock is to control their number (and polarity).

      (6) The authors assume that the phase dynamics of the chemical network may be described by an oscillator with constant frequency. For the completeness of the manuscript, the author should discuss in detail, for which chemical networks this is a good assumption.

      We thank the reviewer for their suggestion and now justify this assumption in the methods on page 31. 

      Such an assumption is appropriate for the segmentation clock, as the clock in the posterior of the PSM is thought to oscillate with a constant frequency, at least for the majority of somitogenesis although the frequency of somite formation slows towards the end of this process in zebrafish (Giudicelli et al., 2007, PLoS Biol.). In addition, PSM cells isolated and cultured in the presence of FGF (thus replicating the signalling environment of the posterior PSM) will continue to exhibit her1 oscillations with an apparently constant frequency (Webb et al., 2016). 

      We note that such formulations are widely used within the segmentation clock literature (e.g. Riedel-Kruse et al., 2007, Morelli et al., 2009).

      (7) Figure 3 and the associated text shows no effect of the cellular motility profile in the synchrony of the segmentation clock. This may be moved to the supplementary considering the length of this manuscript.

      Thank you for the suggestion. However, we would argue that the lack of effect is a crucial result when discussing modularity. Reviewer #2 agrees with this assessment.

      Reviewer #3 (Significance): 

      The manuscript answers some important questions in the synchrony of segmentation clock in the vertebrates utilizing a model published earlier. However, the presented result is incomplete in some aspects (points 2 to 5 of section A) and that could be overcome by a more detailed analysis using a simpler one dimensional (point 1 of section A). I believe this manuscript could be of interest to an intersecting audience of developmental biologists, systems biologists, and physicists/engineers interested in dynamical systems.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript reports an fMRI study looking at whether there is animacy organization in a non-primate, mammal, the domestic dog, that is similar to that observed in humans and non-human primates (NHPs). A simple experiment was carried out with four kinds of stimulus videos (dogs, humans, cats, and cars), and univariate contrasts and RSA searchlight analysis was performed. Previous studies have looked at this question or closely associated questions (e.g. whether there is face selectivity in dogs). The import of the present study is that it looks at multiple types of animate objects, dogs, humans, and cats, and tests whether there was overlapping/similar topography (or magnitude) of responses when these stimuli were compared to the inanimate reference class of cars. The main finding was of some selectivity for animacy though this was primarily driven by the dog stimuli, which did overlap with the other animate stimulus types, but far less so than in humans.

      Strengths:

      I believe that this is an interesting study in so far as it builds on other recent work looking at category-selectivity in the domestic dog. Given the limited number of such studies, I think it is a natural step to consider a number of different animate stimuli and look at their overlap. While some of the results were not wholly surprising (e.g. dog brains respond more selectively for dogs than humans or cats), that does not take away from their novelty, such as it is. The findings of this study are useful as a point of comparison with other recent work on the organization of high-level visual function in the brain of the domestic dog.

      Weaknesses:

      (1) One challenge for all studies like this is a lack of clarity when we say there is organization for "animacy" in the human and NHP brains. The challenge is by no means unique to the present study, but I do think it brings up two more specific topics.

      First, one property associated with animate things is "capable of self-movement". While cognitively we know that cars require a driver, and are otherwise inanimate, can we really assume that dogs think of cars in the same way? After all, just think of some dogs that chase cars. If dogs represent moving cars as another kind of self-moving thing, then it is not clear we can say from this study that we have a contrast between animate vs inanimate. This would not mean that there are no real differences in neural organization being found. It was unclear whether all or some of the car videos showed them moving. But if many/most do, then I think this is a concern.

      Second, there is quite a lot of potential complexity in the human case that is worth considering when interpreting the results of this study. In the human case, some evidence suggests that animacy may be more of a continuum (Sha et al. 2015), which may reflect taxonomy (Connolly et al. 2012, 2016). However moving videos seem to be dominated more by signals relevant to threat or predation relative to taxonomy (Nastase et al. 2017). Some evidence suggests that this purported taxonomic organization might be driven by gradation in representing faces and bodies of animals based on their relative similarity to humans (Ritchie et al. 2021). Also, it may be that animacy organization reflects a number of (partially correlated) dimensions (Thorat et al. 2019, Jozwik et al. 2022). One may wonder whether the regions of (partial) overlap in animate responses in the dog brain might have some of these properties as well (or not).

      (2) It is stated that previous studies provide evidence that the dog brain shows selectivity to "certain aspects of animacy". One of these already looked at selectivity for dog and human faces and bodies and identified similar regions of activity (Boch et al. 2023). An earlier study by Dilks et al. (2015), not cited in the present work (as far as I can tell), also used dynamic stimuli and did not suffer from the above limitations in choosing inanimate stimuli (e.g. using toy and scene objects for inanimate stimuli). But it only included human faces as the dynamic animate stimulus. So, as far as stimulus design, it seems the import of the present study is that it included a *third* animate stimulus (cats) and that the stimuli were dynamic.

      (3) I am concerned that the univariate results, especially those depicted in Figure 3B, include double dipping (Kriegesorte et al. 2009). The analysis uses the response peak for the A > iA contrast to then look at the magnitude of the D, H, C vs iA contrasts. This means the same data is being used for feature selection and then to estimate the responses. So, the estimates are going to be inflated. For example, the high magnitudes for the three animate stimuli above the inanimate stimuli are going to inherently be inflated by this analysis and cannot be taken at face value. I have the same concern with the selectivity preference results in Figure 3E.

      I think the authors have two options here. Either they drop these analyses entirely (so that the total set of analyses really mirrors those in Figure 4), or they modify them to address this concern. I think this could be done in one of two ways. One would be to do a within-subject standard split-half analysis and use one-half of the data for feature selection and the other for magnitude estimation. The other would be to do a between-subject design of some kind, like using one subject for magnitude estimation based on an ROI defined using the data for the other subjects.

      (4) There are two concerns with how the overlap analyses were carried out. First, as typically carried out to look at overlap in humans, the proportion is of overlapping results of the contrasts of interest, e.g, for face and body selectivity overlap (Schwarlose et al. 2006), hand and tool overlap (Bracci et al. 2012), or more recently, tool and food overlap (Ritchie et al. 2024). There are a number of ways of then calculating the overlap, with their own strengths and weaknesses (see Tarr et al. 2007). Of these, I think the Jaccard index is the most intuitive, which is just the intersection of two sets as a proportion of their union. So, for example, the N of overlapping D > iA and H > iA active voxels is divided by the total number of unique active voxels for the two contrasts. Such an overlap analysis is more standard and interpretable relative to previous findings. I would strongly encourage the authors to carry out such an analysis or use a similar metric of overlap, in place of what they have currently performed (to the extent the analysis makes sense to me).

      Second, the results summarized in Figure 3A suggest multiple distinct regions of animacy selectivity. Other studies have also identified similar networks of regions (e.g. Boch et al. 2023). These regions may serve different functions, but the overlap analysis does not tell us whether there is overlap in some of these portions of the cortex and not in others. The overlap is only looked at in a very general sense. There may be more overlap locally in some portions of the cortex and not in others.

      (5) Two comments about the RSA analyses. First, I am not quite sure why the authors used HMAX rather than layers of a standardly trained ImageNet deep convolutional neural network. This strikes me also as a missed opportunity since many labs have looked at whether later layers of DNNs trained on object categorization show similar dissimilarity structures as category-selective regions in humans and NHPs. In so far as cross-species comparisons are the motivation here, it would be genuinely interesting to see what would happen if one did a correlation searchlight with the dog brain and layers of a DNN, a la Cichy et al. (2016).

      Second, from the text is hard to tell what the models for the class- and category-boundary effects were. Are there RDMs that can be depicted here? I am very familiar with RSA searchlight and I found the description of the methods to be rather opaque. The same point about overlap earlier regarding the univariate results also applies to the RSA results. Also, this is again a reason to potentially compare DNN RDMs to both the categorical models and the brains of both species.

      (6) There has been emphasis of late on the role of face and body selective regions and social cognition (Pitcher and Ungerleider, 2021, Puce, 2024), and also on whether these regions are more specialized for representing whole bodies/persons (Hu et al. 2020, Taubert, et al. 2022). It may be that the supposed animacy organization is more about how we socialize and interact with other organisms than anything about animacy as such (see again the earlier comments about animacy, taxonomy, and threat/predation). The result, of a great deal of selectivity for dogs, some for humans, and little for cats, seems to readily make sense if we assume it is driven by the social value of the three animate objects that are presented. This might be something worth reflecting on in relation to the present findings.

    2. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      Farkas and colleagues conducted a comparative neuroimaging study with domestic dogs and humans to explore whether social perception in both species is underpinned by an analogous distinction between animate and inanimate entities an established functional organizing principle in the primate and human brain. Presenting domestic dogs and humans with clips of three animate classes (dogs, humans, cats) and one inanimate control (cars), the authors also set out to compare how dogs and humans perceive their own vs other species. Both research questions have been previously studied in dogs, but the authors used novel dynamic stimuli and added animate and inanimate classes, which have not been investigated before (i.e., cats and cars). Combining univariate and multivariate analysis approaches, they identified functionally analogous areas in the dog and human occipitotemporal cortex involved in the perception of animate entities, largely replicating previous observations. This further emphasizes a potentially shared functional organizing principle of social perception in the two species. The authors also describe between- species divergencies in the perception of the different animate classes, arguing for a less generalized perception of animate entities in dogs, but this conclusion is not convincingly supported by the applied analyses and reported findings.

      Strengths

      Domestic dogs represent a compelling model species to study the neural bases of social perception and potentially shared functional organizing principles with humans and primates. The field of comparative neuroimaging with dogs is still young, with a growing but still small number of studies, and the present study exemplifies the reproducibility of previous research. Using dynamic instead of static stimuli and adding new stimuli classes, Farkas and colleagues successfully replicated and expanded previous findings, adding to the growing body of evidence that social perception is underpinned by a shared functional organizing principle in the dog and human occipito-temporal cortex.

      Weaknesses

      The study design is imbalanced, with only one category of inanimate objects vs. three animate entities. Moreover, based on the example videos, it appears that the animate stimuli also differed in the complexity of the content from the car stimuli, with often multiple agents interacting or performing goal-directed actions. Moreover, while dogs are familiar with cars, they are definitely of lower relevance and interest to them than the animate stimuli. Thus, to a certain extent, the results might also reflect differences in attention towards/salience of the stimuli.

      We agree with the Reviewer and were aware that using only one class of inanimate objects but three classes of animate entities, along with the differences in complexity and relevance between the animate and the inanimate stimuli potentially elicited more attention to the inanimate condition and may have thus introduced a confound. We are revising the related limitation in the discussion to acknowledge this and to emphasize why we believe these differences do not compromise our main findings.

      The methods section and rationale behind the chosen approaches were often difficult to follow and lacked a lot of information, which makes it difficult to judge the evidence and the drawn conclusions, and it weakens the potential for reproducibility of this work. For example, for many preprocessing and analysis steps, parameters were missing or descriptions of the tools used, no information on anatomical masks and atlas used in humans was provided, and it is often not clear if the authors are referring to the univariate or multivariate analysis.

      We acknowledge the concerns regarding the clarity and completeness of the methods section and are significantly revising the descriptions of the methods. Of note, in humans, the Harvard-Oxford Cortical Structural Atlas (Frazier et al., 2005; Makris et al., 2006; Desikan et al., 2006; Goldstein et al., 2007), implemented within the FSL software package, was used for anatomical masks, while the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) was used for assigning labels.

      In regard to the chosen approaches and rationale, the authors generally binarize a lot of rich information. Instead of directly testing potential differences in the neural representations of the different animate entities, they binarize dissimilarity maps for, e.g. animate entity > inanimate cars and then calculate the overlap between the maps.

      We thank the Reviewer for these comments and ideas. We also appreciate the second Reviewer for their related concerns and suggestions about the overlap calculation. Since the neural processing of different animate entities in the dog brain is largely unexplored, in some of our analyses we aimed to provide a straightforward and directly comparable characterization of animacy perception in the two species. We believe that a measure of how overlapping the neural representations of different animate classes are in the dog vs. the human visual cortex is a simple but meaningful and insightful characterization of how animacy perception is structured in the two species, despite the lack of spatial detail. Our decision to use binarization was based on these considerations. In response to this Reviewer’s request for providing richer information, in our revised manuscript, we will present more details and additional non-binarized calculations. Specifically, we are going to use nonbinarized data to present the response profiles of a broad, anatomically defined set of regions that have been related in other works to visual functions, to thus show where there is significant difference and overlap between the neural responses for the three animate classes in each species.

      The comparison of the overlap of these three maps between species is also problematic, considering that the human RSA was constricted to the occipital and temporal cortex (there is now information on how they defined it) vs. whole-brain in dogs.

      We thank this Reviewer for raising yet another relevant point about overlap calculation. We note that the overlap calculation for univariate results used the visually responsive cortex in both dogs and humans. The decision to restrict the multivariate analysis to the occipital and temporal lobes in humans, where the visual areas are, was to reduce computational load. Since RSA in dogs yielded significant voxels almost exclusively in the occipital and temporal cortices, we believe this decision did not introduce major bias in our results. This concern will also be discussed in our revised submission.

      Of note, in the category- and class-boundary test, as for the other multivariate tests, the occipital and temporal cortex of humans was delineated based on the MNI atlas.

      Considering that the stimuli do differ based on low-level visual properties (just not significantly within a run), the RSA would also allow the authors to directly test if some of the (dis)similarities might be driven by low-level visual features like they, e.g. did with the early visual cortex model. I do think RSA is generally an excellent choice to investigate the neural representation of animate (and inanimate) stimuli, but the authors should apply it more appropriately and use its full potential.

      We thank the Reviewer for this suggestion. While this study did not aim to investigate the correlation between low-level visual features and animacy, the data is available, and the suggested analysis can be conducted in the future. This issue will also be discussed in our revised submission.

      The authors localized some of the "animate areas" also with the early visual cortex model (e.g. ectomarginal gyrus, mid suprasylvian); in humans, it only included the known early visual cortex - what does this mean for the animate areas in dogs?

      We thank the Reviewer for raising this point. Although the labels are the same, both EMG and mSSG are relatively large gyri, and the clusters revealed by each of the two analyses hardly overlap, with peak coordinates more than 12 mm apart for R EMG, and in different hemispheres for mSSG (but more than 11 mm apart even if projected on the same hemisphere). We will detail the differences and the overlaps in the revised submission.

      The results section also lacks information and statistical evidence; for example, for the univariate region-of-interest (ROI) analysis (called response profiles) comparing activation strength towards each stimulus type, it is not reported if comparisons were significant or not, but the authors state they conducted t-tests. The authors describe that they created spheres on all peaks reported for the contrast animate > inanimate, but they only report results for the mid suprasylvian and occipital gyrus (e.g. caudal suprasylvian gyrus is missing).

      We thank this Reviewer for catching these errors. The missing statistics will be provided in the revised manuscript. Also, we mistakenly named the peak in caudal suprasylvian gyrus occipital gyrus on the figure depicting the response profiles. This will also be corrected.

      Furthermore, considering that the ROIs were chosen based on the contrast animate > inanimate stimuli, activation strength should only be compared between animate entities (i.e., dogs, humans, cats), while cars should not be reported (as this would be double dipping, after selecting voxels showing lower activation for that category).

      We thank both Reviewers for raising this relevant point about potential double dipping. The aim of this analysis was to describe the relationship between the neural response elicited by the three animate stimulus classes, to show that the animacy-sensitive peaks are not the results of the standalone greater response to a single animate class. We conducted t-tests only to assess significant difference between these three animate conditions and no stats were performed or reported for any animate class vs. inanimate comparisons in these ROIs. In addition to providing the missing t-tests (comparing animate classes), we will present response profiles and corresponding statistics for a broad set of additional, independent ROIs, defined either anatomically or functionally by other studies in the revised version.

      The descriptive data in Figure 3B (pending statistical evidence) suggests there were no strong differences in activation for the three species in dog and human animate areas. Thus, the ROI analysis appears to contradict findings from the binary analysis approach to investigate species preference, but the authors only discuss the results of the latter in support of their narrative for conspecific preference in dogs and do not discuss research from other labs investigating own-species preference.

      Studying conspecific-preference was not the primary aim of this study. We only used our data to characterize the animate-sensitive regions from this aspect. The species-preference test provides an overall characterization of the entire animate-sensitive region, revealing a higher number of voxels with a maximal response to conspecific than other stimuli in dogs (and a similar tendency in humans), confirming previous evidence on neural conspecific preference in visual areas in both species. The response profiles presented so far describe only the ROIs around the main animate-sensitive peaks and, as the Reviewer points out, in most cases reveal no significant conspecific bias. We believe there is no contradiction here: the entire animate-sensitive region may weakly but still be conspecific-preferring, whereas the main animate-sensitive peaks are not; the centers of conspecific preference may be located elsewhere in the visual cortex and may be supported by mechanisms other than animacy-sensitivity. In the revised manuscript, we will elaborate more on this. Additionally, in response to other comments, and for a better and more coherent characterization of species preference (and animacy sensitivity) across the visual cortex, we will present response profiles for other, independently defined regions and explore conspecific-sensitivity in those additional regions as well. Furthermore, we will discuss related own-species preference literature in greater detail.

      The authors also unnecessarily exaggerate novelty claims. Animate vs inanimate and own vs other species perceptions have both been investigated before in dogs (and humans), so any claims in that direction seem unsubstantiated - and also not needed, as novelty itself is not a sign of quality; what is novel, and a sign of theoretical advance besides the novelty, are as said the conceptual extension and replication of previous work.

      We agree with this Reviewer regarding novelty claims in general, and we confirm that we had no intention to overstate the uniqueness of our results. We also did not mean to imply that this work would be the first one on animacy perception in dogs, which it obviously is not. But we understand that we could have been more explicit presenting our work as a conceptual extension and replication of previous works, and we are revising the wording of the discussion from this aspect.

      Overall, more analyses and appropriate tests are needed to support the conclusions drawn by the authors, as well as a more comprehensive discussion of all findings.

      We are thankful for all comments. We will revise the methods section to provide sufficient detail and ensure replicability; conduct additional analyses as detailed above; and provide a more comprehensive discussion of all findings.

      Reviewer #2 (Public review):

      Summary:

      The manuscript reports an fMRI study looking at whether there is animacy organization in a non-primate, mammal, the domestic dog, that is similar to that observed in humans and non-human primates (NHPs). A simple experiment was carried out with four kinds of stimulus videos (dogs, humans, cats, and cars), and univariate contrasts and RSA searchlight analysis was performed. Previous studies have looked at this question or closely associated questions (e.g. whether there is face selectivity in dogs). The import of the present study is that it looks at multiple types of animate objects, dogs, humans, and cats, and tests whether there was overlapping/similar topography (or magnitude) of responses when these stimuli were compared to the inanimate reference class of cars. The main finding was of some selectivity for animacy though this was primarily driven by the dog stimuli, which did overlap with the other animate stimulus types, but far less so than in humans.

      Strengths:

      I believe that this is an interesting study in so far as it builds on other recent work looking at category-selectivity in the domestic dog. Given the limited number of such studies, I think it is a natural step to consider a number of different animate stimuli and look at their overlap. While some of the results were not wholly surprising (e.g. dog brains respond more selectively for dogs than humans or cats), that does not take away from their novelty, such as it is. The findings of this study are useful as a point of comparison with other recent work on the organization of high-level visual function in the brain of the domestic dog.

      Weaknesses:

      (1) One challenge for all studies like this is a lack of clarity when we say there is organization for "animacy" in the human and NHP brains. The challenge is by no means unique to the present study, but I do think it brings up two more specific topics.

      First, one property associated with animate things is "capable of self-movement". While cognitively we know that cars require a driver, and are otherwise inanimate, can we really assume that dogs think of cars in the same way? After all, just think of some dogs that chase cars. If dogs represent moving cars as another kind of selfmoving thing, then it is not clear we can say from this study that we have a contrast between animate vs inanimate. This would not mean that there are no real differences in neural organization being found.

      It was unclear whether all or some of the car videos showed them moving. But if many/most do, then I think this is a concern.

      We thank this Reviewer for raising this relevant point about the potential animacy of cars for dogs and its implication for our results. Of note, two-thirds of our car stimuli showed a car moving (slow, accelerating, or fast). We acknowledge that these stimuli contained motionbased animacy cues, and in this regard, there was no clear difference between our animate and inanimate conditions, and possibly between some of the representations they elicited. However, our animate and inanimate stimuli differed in other key factors accounting for animacy organization, such as visual features including the presence of faces, bodies, body parts, postures, and certain aspects of biological motion. So we believe that this limitation does not compromise our main conclusions. We will elaborate on this point further in the revised discussion, also considering how dogs’ differential behavioral responses to cars and animate entities may provide additional insights in this regard.

      Second, there is quite a lot of potential complexity in the human case that is worth considering when interpreting the results of this study. In the human case, some evidence suggests that animacy may be more of a continuum (Sha et al. 2015), which may reflect taxonomy (Connolly et al. 2012, 2016). However moving videos seem to be dominated more by signals relevant to threat or predation relative to taxonomy (Nastase et al. 2017). Some evidence suggests that this purported taxonomic organization might be driven by gradation in representing faces and bodies of animals based on their relative similarity to humans (Ritchie et al. 2021). Also, it may be that animacy organization reflects a number of (partially correlated) dimensions (Thorat et al. 2019, Jozwik et al. 2022). One may wonder whether the regions of (partial) overlap in animate responses in the dog brain might have some of these properties as well (or not).

      We agree that it would be interesting to dissect which animacy-related factor(s) contribute to the observed animacy sensitivity in different regions, and although this was not the original aim of the study, we agree that we could have made better use of the variation in our stimuli to discuss this aspect. Specifically, some animacy features are shared by all three animate stimulus classes, namely the presence of biological motions, faces, and bodies. In contrast, animate classes differed in some other aspects, for example in how dogs perceived dogs, humans, and cats as social agents and in their potential behavioral goals towards them. It can therefore be argued that regions with two- and especially three-way overlapping activations are more probably involved in processing biological motion, face and body aspects, and non-overlapping ones the social agency- and behavioural goal-related aspects. In line with this, the shared animacy features are indeed ones that have been reported to be central in human animacy representation and that may have made the overlaps in human brain responses greater. We will provide a more detailed discussion of the results from this viewpoint in the revised manuscript.

      (2) It is stated that previous studies provide evidence that the dog brain shows selectivity to "certain aspects of animacy". One of these already looked at selectivity for dog and human faces and bodies and identified similar regions of activity (Boch et al. 2023). An earlier study by Dilks et al. (2015), not cited in the present work (as far as I can tell), also used dynamic stimuli and did not suffer from the above limitations in choosing inanimate stimuli (e.g. using toy and scene objects for inanimate stimuli). But it only included human faces as the dynamic animate stimulus. So, as far as stimulus design, it seems the import of the present study is that it included a *third* animate stimulus (cats) and that the stimuli were dynamic.

      We agree with this Reviewer that the findings of Dilks et al. (2015) are relevant to our study and have therefore cited them. However, the citation itself was imprecise and will be corrected in the revised manuscript.

      (3) I am concerned that the univariate results, especially those depicted in Figure 3B, include double dipping (Kriegesorte et al. 2009). The analysis uses the response peak for the A > iA contrast to then look at the magnitude of the D, H, C vs iA contrasts. This means the same data is being used for feature selection and then to estimate the responses. So, the estimates are going to be inflated. For example, the high magnitudes for the three animate stimuli above the inanimate stimuli are going to inherently be inflated by this analysis and cannot be taken at face value. I have the same concern with the selectivity preference results in Figure 3E.

      I think the authors have two options here. Either they drop these analyses entirely (so that the total set of analyses really mirrors those in Figure 4), or they modify them to address this concern. I think this could be done in one of two ways. One would be to do a within- subject standard split-half analysis and use one-half of the data for feature selection and the other for magnitude estimation. The other would be to do a between-subject design of some kind, like using one subject for magnitude estimation based on an ROI defined using the data for the other subjects.

      We thank both Reviewers again for raising this important point about potential double dipping. We also thank this Reviewer for specific suggestions for split-half analyses – we agree that, had our original analyses involved double dipping, such a modification would be necessary. But, as we explained in our response above, this was not the case. Indeed, whereas we do visualize all four conditions in Fig. 3B, we only conducted t-tests to assess differences between the three animate conditions (the corresponding stats have been missing from the original manuscript but will be added during revision). So, importantly, we did not evaluate the magnitude of the D, H, C vs iA contrasts in any of the ROIs defined by animate-sensitive peaks; therefore, we believe that these analyses do not involve double dipping. This holds for the species preference results in Fig. 3E as well. We will clarify this in the revised manuscript. Of note, in response to a request by the other reviewer and to provide richer information about the univariate results, we will also provide response profiles and corresponding stats for a broad set of additional ROIs, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023).

      (4) There are two concerns with how the overlap analyses were carried out. First, as typically carried out to look at overlap in humans, the proportion is of overlapping results of the contrasts of interest, e.g, for face and body selectivity overlap (Schwarlose et al. 2006), hand and tool overlap (Bracci et al. 2012), or more recently, tool and food overlap (Ritchie et al. 2024). There are a number of ways of then calculating the overlap, with their own strengths and weaknesses (see Tarr et al. 2007). Of these, I think the Jaccard index is the most intuitive, which is just the intersection of two sets as a proportion of their union. So, for example, the N of overlapping D > iA and H > iA active voxels is divided by the total number of unique active voxels for the two contrasts. Such an overlap analysis is more standard and interpretable relative to previous findings. I would strongly encourage the authors to carry out such an analysis or use a similar metric of overlap, in place of what they have currently performed (to the extent the analysis makes sense to me).

      We agree with this Reviewer that the Jaccard index is an intuitive and straightforward overlap measure. Importantly, for our overlap calculations we already use this measure (and a very similar one) – but we acknowledge that this was not clear from the original description. Specifically, for the multivariate overlap test, we used the Jaccard index exactly as described by this Reviewer. For the univariate overlap test, we use a very similar measure, with the only difference that there, to reference the search space, the intersection of specific animate-inanimate contrasts was divided by the total voxel number of animate-sensitive areas (which is highly similar to the union of the specific animate-inanimate contrasts). In the revised submission we will provide a more detailed explanation of the overlap calculations, making it explicit that we used the Jaccard index (and a variant of it).

      Second, the results summarized in Figure 3A suggest multiple distinct regions of animacy selectivity. Other studies have also identified similar networks of regions (e.g. Boch et al. 2023). These regions may serve different functions, but the overlap analysis does not tell us whether there is overlap in some of these portions of the cortex and not in others. The overlap is only looked at in a very general sense. There may be more overlap locally in some portions of the cortex and not in others.

      We thank this Reviewer for this comment, we agree that adding spatial specificity to these results will improve the manuscript. Therefore, during revision, we will assess the anatomical distribution of the overlap results, making use of a broad set of ROIs potentially relevant for animacy perception, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023 for dogs).

      (5) Two comments about the RSA analyses. First, I am not quite sure why the authors used HMAX rather than layers of a standardly trained ImageNet deep convolutional neural network. This strikes me also as a missed opportunity since many labs have looked at whether later layers of DNNs trained on object categorization show similar dissimilarity structures as category-selective regions in humans and NHPs. In so far as cross-species comparisons are the motivation here, it would be genuinely interesting to see what would happen if one did a correlation searchlight with the dog brain and layers of a DNN, a la Cichy et al. (2016).

      We thank the Reviewer for this comment and suggestion. At the start of the project, HMAX was the most feasible model to implement given our time and expertise constrains. Additionally, the biologically motivated HMAX was also an appropriate choice, as it simulates the selective tuning of neurons in the primary visual cortex (V1) of primates, which is considered homologous with V1 in carnivores (Boch et al., 2024).

      Although we agree that using DNNs have recently been extensively and successfully used to explore object representations and could provide valuable additional insights for dogs’ visual perception as well, we believe that adding a large set of additional analyses would stretch the frames of this manuscript, disproportionately shifting its focus from our original research question. Also, our experiment, designed with a different, more specific aim in mind, did not provide a large enough stimulus variety of animate stimuli for a general comparison of the cortical hierarchy underlying object representations in dog and human brains and thus our data are not an optimal starting point for such extensive explorations. Having said that, we are thankful for this Reviewer for the idea and will consider using a DNN to uncover dog’ visual cortical hierarchy in future studies with a better suited stimulus set. Furthermore, in accordance with eLife’s data-sharing policies, we will make the current dataset publicly available so further hypothesis and models can be tested.

      Second, from the text is hard to tell what the models for the class- and categoryboundary effects were. Are there RDMs that can be depicted here? I am very familiar with RSA searchlight and I found the description of the methods to be rather opaque. The same point about overlap earlier regarding the univariate results also applies to the RSA results. Also, this is again a reason to potentially compare DNN RDMs to both the categorical models and the brains of both species.

      In the revised manuscript we will provide a more detailed explanation of the methods used to determine class- and category-boundary effects. In short, the analysis we performed here followed Kriegeskorte et al. (2008), and the searchlight test looked for regions in which between-class/category differences were greater than within-class/category differences. We will also include RDMs. Additionally, we will provide anatomical details for the overlap results for RSA, just as for the univariate results, using the same independently defined broad set of ROIs, defined either anatomically or functionally by other studies (e.g., Boch et al., 2023 for dogs).

      (6) There has been emphasis of late on the role of face and body selective regions and social cognition (Pitcher and Ungerleider, 2021, Puce, 2024), and also on whether these regions are more specialized for representing whole bodies/persons (Hu et al. 2020, Taubert, et al. 2022). It may be that the supposed animacy organization is more about how we socialize and interact with other organisms than anything about animacy as such (see again the earlier comments about animacy, taxonomy, and threat/predation). The result, of a great deal of selectivity for dogs, some for humans, and little for cats, seems to readily make sense if we assume it is driven by the social value of the three animate objects that are presented. This might be something worth reflecting on in relation to the present findings.

      We thank the Reviewer for this suggestion. The original manuscript already discussed how motion-related animacy cues involved in social cognition may explain that animacysensitive regions reported in our study extend beyond those reported previously and also the role of biological motion in the observed across-species differences. This discussion of the role of visual diagnostic features and features that involved in perceiving social agents will be extended in the revised discussion, also in response to the first comment of this Reviewer, to reflect on how social cognition-related animacy cues may have affected our results in dogs.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      *Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary: This manuscript authored by Kakui and colleagues aims to understand on how mitotic chromosomes get their characteristic, condensed X shape, which is functionally important to ensure faithful chromosome segregation and genome inheritance to both daughter cells. The authors focus on the condensin complex, a central player in chromosome condensation. They ask whether it condenses chromosomes through a now broadly popular "loop-extrusion" mechanism, in which a chromatin-bound condensin complex reels chromatin into loops until it dissociates or encounters a roadblock on the polymer (another condensin or some other protein complex), or through an alternative, "diffusion-capture" mechanism, in which a chromatin-bound condensin complex forms loops by encountering another chromatin-bound condensin until they dissociate from DNA (or from each other.) The authors measured the progressive changes in the shape of mitotic chromosomes by taking samples at given time points from synchronized and mitotically arrested cells and found that while all chromosomes become more condensed and shorter, their width correlated with the length of the chromosome arms. They also observed that chromosome compaction/shortening evolves on a time scale much longer than the interval between the onset of chromosome condensation and the start of chromosome segregation, suggesting that chromatin condensation does not reach its steady-state during an unperturbed mitosis. The observed width-length correlation could be described by a power law with an exponent that increases with the time (i.e. chromosome condensation). The authors also performed polymer simulations of the diffusion-capture mechanism and found that the simulations semi-quantitatively recapitulate their experimental observations. Major Comments My most substantial comments focus on somewhat technical details of the image analysis approaches taken and the polymer models employed. However, as all reported data are derived from those details, I feel it is crucial to address them. *

      We thank the reviewer for their suggestions on how to improve our image analysis and polymer modelling experiments. We are keen to develop both aspects of our manuscript with additional experiments as detailed below.

      1. * Definition/measurement of chromatin arms width and length. The approach taken to manually threshold an "arm" object and then fitting it with a same-area ellipse is not an ideal approach to gauge length and width of the arm, for the following reasons: (1) An ellipse appears to do a poor job approximating many of the objects that we see in the zoom-in insets of Fig.1. Importantly, for somewhat bent shapes we see in the insets it likely strongly underestimates the length of the arms; this approach also presents potential problems for measuring width as well (see 2 and 3 here). (2) One concern is that, due to the diffraction limit, a cylindrical fluorescent object could appear somewhat wider at the mid-length than the real underlying cylinder or the poles; this effect could become more pronounced as the object gets brighter and shorter. (3) Forcing the fit to an ellipse to objects that are not truly rod-shaped can drive an overestimation of the width of the object, and I suspect that this effect also might correlate with the length and brightness of the object. (4) Given 1-3 above, I think the approach the authors used for the first two time points, while not perfect, is better suited and likely more robust while avoiding these caveats. Moreover, why the authors cannot use this same approach (but just for each arm separately) for the later (30+ min) time points as they used for first two is unclear. This point is underscored by the observation that there is a drastic difference in the results between the first two and all subsequent points. When the authors compared the two approaches at the 30 min time point (where width-length dependence is still weak) in different cell lines they did indeed see different results (Fig. S2), although they concluded that the difference was acceptable. * While the manuscript was under review, we have developed an improved pipeline to measure chromosome widths. As suggested by the reviewer, this approach is based on the method used for the first two time points. An additional improvement allows us to take automated measurements along the entire chromosome arm length, instead of being restricted to straight segments. We propose to use the improved algorithm to repeat the measurements at later time points.

      * Along these lines, the difference between short and long arms for the chromosome in the insets of Fig.1 are quite subtle, except maybe at 180 and 240 min. On a related note, it might be informative to compare data for the two sister chromatid arms (as the underlying polymer has the same length) long vs long and short vs short and long vs short to help establish the robustness of the approach. *

      The chromosome arm width differences are clear and measurable. We will select insets that illustrate the arm width differences in a more representative way, and we will furthermore conduct the suggested analyses on subsets of chromosome arms to test the robustness of our approach.

      * Regarding the power-law distribution, it is hard to judge based on the presented data whether it is a really good description of the data or not. In Fig.1c, the points for a given time can barely be distinguished, while in Fig.1b the authors plot individual time points in the panels, but the fits and points are overlapping so much that it is challenging to the main trends described by the clouds. The most informative approach for the reader would be to provide confidence intervals of the best fit parameters for all parameters that were varied in the fit. As the authors make some conclusions based on the power-law exponent values they observed, it would be helpful to know how confident we are in those values. *

      Confidence intervals of the power law exponents will be provided.

      * The conclusion that short arms equilibrate faster based on Fig.3a is not fully convincing. For example, in a scenario where ~1.5 microns is the equilibrium length for all arms, and that the longest arms equilibrate the fastest - you would see the same qualitative pattern for quantiles, not much change in low percentiles, while you would observe a decrease in the values for the high percentiles. The authors might be right, but Fig. 3A does not unambiguously demonstrate that it is so based on this evidence alone. *

      Our reasoning is based on the observation that the shortest percentiles do not change or do not change rapidly after 30 minutes, while the longest percentiles are clearly still relaxing towards a steady state. We will repeat this analysis with the new measurements, obtained in response to point 1.

      * As for chromosome roundness, typically in image analysis, roundness is defined through the ratio of (perimeter)2/area; it might be better to use "aspect ratio" for the metrics used by the authors. And, perhaps, one should expect that shorter (measured, not necessarily by polymer contour length) arms should have a higher width/length ratio? If one selects for more round objects, there should be no surprise that the width and length get almost proportional. Given all of this, I am not sure whether width/aspect ratio serves as a good proxy for the chromatin condensation progression, which is how the authors are employing this data in the manuscript as written. *

      We thank the reviewer for alerting us to an alternatively used definition of ‘roundness’. We will consider this concern, with one solution being to use ‘width-length ratio’ in its place.

      * For the diffusion-capture model simulations, I think the results of the simulation would strongly depend on the assumptions of the probability to associate and the time scale of dissociation of the beads representing the condensin complex. For example, for a very strong association one might expect that all condensin will end up in one big condensate, even in the case of a long polymer. This is not explored/discussed at all. Did the authors optimize their model in any way? If not, how have they estimated the values they used? Moreover, perhaps this is an opportunity to learn/predict something about condensin properties, but the authors do not take advantage of this opportunity. *

      We in fact explored the consequences of altering diffusion capture on and off rates when we initially developed the loop capture simulations, and we will report on the robustness of our model to the probability of dissociation as part of our revisions.

      * In addition, the authors did some checks to show that the steady-state results of the simulations do not depend on the initial conditions. However, as some of the results reported concern the polymer evolution to the steady state (Fig.6b-c), they also need to examine whether these results depend on the chosen initial conditions (or not), and if they do, what is the rationale for the choices the authors have made? *

      The current manuscript contains a comparison of steady states reached after simulations were started from elongated or random walk initial states (see Supplementary Figure 4). We will provide better justification for the choice of a 4x elongated initial state, which approximates the initial state observed in vivo.

      * A more thorough discussion of other possible models, beyond diffusion-capture model considered here, would be beneficial to the reader. First, the authors practically discard the possibility of the loop-extrusion model to explain their observations (although they never explicitly state this in the abstract or discussion). However, they neither leveraged simulations to rigorously compare models nor included some other substantiated arguments to explain why they prefer their model. This is important, as one of the major findings here is that the chromatin never reaches steady state for condensation, making it challenging to intuit what one should expect in this very dynamic state. Second, the authors, while briefly mentioning that there might be some other mechanisms contributing to the mitotic chromosome reshaping, do not really discuss those possibilities in a scholarly way. For example, work by the Kleckner group has suggested an involvement of bridges between sister chromatids into their shortening dynamics (Chu et al. Mol Cell 2020). Third, the authors do not discuss how they envision the interplay between the different SMC complexes - cohesin, condensin I and condensin II - as they act on the same chromatin polymer, or at least acknowledge a possible role that this interplay might contribute to the observed time dependencies. The reviewer raises important points, which we are keen to explore by performing loop extrusion simulations, as well as in an expanded discussion section.

      Reviewer #1 (Significance (Required)):

      Significance: The question the authors are trying to address is fundamental and important. While loop extrusion-driven mitotic chromosome organization is a popular model, considering alternative models is always crucial, especially when one can find experimental observations that allow us to discriminate between possible models. The main limitations are: 1) the performance of the approach the authors take to measure chromosome shape is in question and 2) the main competitive model (loop extrusion) is not modeled. If all shortcomings are addressed this work may provide strong evidence for the diffusion-capture model and thus advance our mechanistic understanding of mitotic processes, which will be of broad interest to the fields of genome and chromosome biology. We are happy to hear that the reviewer agrees that our work ‘may provide strong evidence for the diffusion-capture model and thus advance our mechanistic understanding of mitotic processes’. See above for how we propose to address the two main limitations.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      SUMMARY The authors tracked the progression of mitotic chromosome compaction over time by imaging chromatin spreads from HeLa cells that were released from G2/M arrest. By measuring the mitotic chromosome arms' width and length at different times post-release, the authors demonstrated that the speed at which the chromosome arms reach an equilibrium state is dependent on their length. The authors were able to recapitulate this observation using polymer simulations that they previously developed, supporting the model of loop capture as the mechanism for mitotic chromosome compaction.

      MAIN COMMENTS This is a straightforward paper that supports an alternative mechanism (relative to the highly popular loop-extrusion) model for chromosome compaction. My comments are meant to help the manuscript reach a wider audience.

      I suggest that "equilibrium" be replaced with "equilibrium length" since it is the only equilibrium parameter of concern. *

      The reviewer is correct, and we will implement this change, also taking into account the reasoning of reviewer 3 that ‘steady state’ is a better term to describe a final shape that is maintained by an active process.*

      In the results, it may help to describe how loop capture and loop extrusion are incorporated into the simulations, using terminology that non-experts can understand. Such a description should be accompanied by figures that can be related to the other figures (color scheme, nomenclature if possible). *

      Following from the reviewer’s suggestion, we will provide schematics of the loop capture and loop extrusion mechanisms.*

      OTHER COMMENTS P5: Is it possible the chromosome-spread processing may distort the structures of the chromosomes? *

      We will compare chromosome dimension in live cells with those following spreading to investigate this possibility.*

      Please clarify whether mitosis can complete after drug removal at the various treatment intervals. *

      Drug treatment and removal is often used as an experimental tool. We will perform a control experiment to explore whether mitosis can indeed complete after drug removal under our experimental conditions.*

      P6: "Our records are not, therefore, meant as an accurate absolute measure of individual arms. Rather, fitting allows us to sample all chromosome arms and deduce overall trends of chromosome shape changes over time" It would be better to state this sentence earlier in this paragraph, or earlier in the section so that readers' expectations are curbed when they're reading the detailed analysis plan. *

      Note that we will employ an additional image analysis method, in response to comments from reviewer 1, which should lead to more reliable width measurements.*

      P6: "As soon as individual chromosome arms become discernible (30 minutes), longer chromosome arms were wider, a trend that became more pronounced as time progressed." Implies that at early time points, when the lengths of the arms were unknown, the longer arms were equal or narrower than the short arms. I think it's more accurate to say that as soon as the arms were resolved, the longer arms appeared wider. *

      We will adopt the reviewers’ more accurate wording.*

      P7: Is there a functional consequence to the long arms not equilibrating before anaphase onset? *

      The reviewer raises an interesting question, which we will explore in our revised discussion. One consequence of not reaching ‘steady state’ is that ‘time in mitosis’ becomes a key parameter that defines compaction at anaphase onset.*

      P13: "In a loop capture scenario, we can envision how condensin II sets up a coarse rosette architecture, with condensin I inserting a layer of finer-grained rosettes." This should be illustrated in a figure. *

      We will consider such a figure, though the roles of two condensin complexes is peripheral to our current study. Investigating the consequences of two distinct condensins for chromosome formation will provide fertile ground for future investigations. *

      FIGURES Fig. 1: "...while insets show chromosomes at increasing magnification over time" sounds like the microscope magnification is changing over time. Please change "magnification" to "enlargement". Alternatively, if the goal of the figure is to illustrate the shape/dimensions change of the chromosomes over time, wouldn't it be better to keep all the enlargements at the same scale? *

      During the revisions, we will explore whether to show the insets at the same magnification, or to adjust the wording as suggested by the reviewer.*

      Fig. 2a plot: Does the distribution of normalized intensities really justify a Gaussian fit? I see a double Gaussian. *

      The chosen example indeed resembles a double Gaussian. We will explore whether this is due to noise in the measurement and a poor choice of an example, or whether a double Gaussian fit is indeed merited.*

      Please label the structures that resemble "rosettes". Good idea, which we will implement.

      Lu Gan

      Reviewer #2 (Significance (Required)):

      General - This is a simulation-centric study of mammalian chromosome compaction that supports the loop-capture mechanism. It may be viewed as provocative by some readers because loop-extrusion has dominated the chromosome-compaction literature in the past decade. The only limitation, which is best addressed by future studies, is the absence of more direct molecular evidence of loop capture in situ. Though this same limitation applies to studies of the loop-extrusion mechanism.

      Advance - It is valuable for the field to consider alternative mechanisms. In my opinion, the dominant one has been studied to death by indirect methods without a direct molecular-resolution readout in situ. While the field awaits better experimental tools, more mechanisms should be explored.

      Audience - The chromosome-biology community (both bacterial and eukaryotic) will be interested.

      Expertise - My lab uses cryo-ET to study chromatin in situ.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Kakui et al. measured the length/width relationships of mitotic chromosomes in human cells that had entered mitosis for different durations. This simple measurement revealed very interesting behaviors of mitotic chromosomes. They found that the longer chromosome arms were wider than shorter ones. Mitotic chromosoms became progressively wider over time, with shorter ones reached the final state faster than the longer ones. They then built a loop-capture polymer model, which explained the time-dependent increase of width/length ration rather well, but did not quite explain the final roundness of chromosomes.

      I suggest the following points for the authors to consider.

      Major points (1) There is no experimental evidence that the loop capture mechanism is condensin-depdendent. Can the authors deplete condensin I or II or both and measure chromosome length and width in similar assays? This will link their models to molecular players. *

      Such analyses have been conducted by others, and we will provide a brief survey with relevant references to the literature in our revised introduction.*

      (2) It seems rather intuitive to me that if one defines the spacing the condensin-binding sites, then the loop sizes will be the same between shorter and longer chromosomes. It then follows that shorter chromosomes are rounder. Is it that simple? If not, can the authors provide a better explanation. *

      The reviewer makes an interesting point that roundness (width-length ratio), is greater for shorter chromosome arms, even if chromosome width is constant. We will make this clear in the revised manuscript.*

      (3) If the loop sizes are the same between shorter and longer chromosomes, why can't loop extrusion model explain this phenomenon? If one assumes that condensin is stopped by the same barrier element and has the same distrution at the loop base, this should produce the same outcome as loop capture. *

      The key feature of loop extrusion is the formation of a linear condensin backbone, resulting in a bottle brush-shaped chromosome. This arrangement prevents further equilibration of loops into a wider structure, as occurs in the loop capture mechanism by rosette rearrangements. These differences will be better explained, using a schematic, in the revised manuscript.*

      Minor points (1) "We are aware that this approximation underestimates the length of the longest chromosome arms and overestimates the length of the shortest arms." should be "We are aware that this approximation underestimates the length of the longer chromosome (q) arms and overestimates the length of the shorter (p) arms.". Right? *

      In fact, this comparison applies to all longer and shorter arms, not only pairs of p and q arms, which we will clarify.*

      (2) Some scientists argue that the final chromosome conformation might be kinetically driven. Even if the short chromosomes have reached the final roundness, this doesn't necessarily mean that they have reached equilibrium in cells. "Steady state" might be a better term to describe the chromosomes in vivo, as there are clearly energy-burning processes. *

      The reviewer is right that the term ‘equilibrium’ can be seen as misleading, which we will replace with ‘steady state’.*

      Reviewer #3 (Significance (Required)):

      I find the paper intellectually stimulating and a pleasure to read. It suggests a plausible explanation for mitotic chromosome formation. As such, it will be of great interest to scientists in the chromatin field.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      The take home message of this study is that chromosome structure can be attained through mechanisms of looping that do not require an explicit loop extrusion function. As the authors states, alternative models of loop capture have been proposed, dating from 2015-2016. THese models show DNA chains through simply Brownian diffusion can adopt a loop structure (citation 27, 28 and similarly Entropy gives rise to topologically associating domains Vasquez et al 2016 DOI: 10.1093/nar/gkw510).*

      The reviewer makes an excellent point in that entropy considerations, e.g. depletion attraction, likely contribute to the efficiency of loop capture. We will refer to this principle, including a citation to the Vasquez et al. study, in the revised manuscript.

      * In this study, the authors go through careful and well-documented chromosome length measurements through prophase and metaphase. The modeling studies clearly show that loop capture provides a tenable mechanism that accounts for the biological results. The results are clearly written and propose an important alternative narrative for the foundation of chromosome organization.

      Reviewer #4 (Significance (Required)):

      The study is important because it takes a reductionist approach using just Brownian motion and loop capture to ask how well the fundamental processes will recapitulate the biological outcome. The fact that loop capture can account for the arm length to width relationships on biological time scales is important to report to the community. The work is extremely well done and the analysis of chromosome features is thorough and well-documented.*

      • *
    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      The authors tracked the progression of mitotic chromosome compaction over time by imaging chromatin spreads from HeLa cells that were released from G2/M arrest. By measuring the mitotic chromosome arms' width and length at different times post-release, the authors demonstrated that the speed at which the chromosome arms reach an equilibrium state is dependent on their length. The authors were able to recapitulate this observation using polymer simulations that they previously developed, supporting the model of loop capture as the mechanism for mitotic chromosome compaction.

      Main Comments

      This is a straightforward paper that supports an alternative mechanism (relative to the highly popular loop-extrusion) model for chromosome compaction. My comments are meant to help the manuscript reach a wider audience.

      I suggest that "equilibrium" be replaced with "equilibrium length" since it is the only equilibrium parameter of concern.

      In the results, it may help to describe how loop capture and loop extrusion are incorporated into the simulations, using terminology that non-experts can understand. Such a description should be accompanied by figures that can be related to the other figures (color scheme, nomenclature if possible).

      Other comments

      P5: Is it possible the chromosome-spread processing may distort the structures of the chromosomes?

      Please clarify whether mitosis can complete after drug removal at the various treatment intervals.

      P6: "Our records are not, therefore, meant as an accurate absolute measure of individual arms. Rather, fitting allows us to sample all chromosome arms and deduce overall trends of chromosome shape changes over time" It would be better to state this sentence earlier in this paragraph, or earlier in the section so that readers' expectations are curbed when they're reading the detailed analysis plan.

      P6: "As soon as individual chromosome arms become discernible (30 minutes), longer chromosome arms were wider, a trend that became more pronounced as time progressed." Implies that at early time points, when the lengths of the arms were unknown, the longer arms were equal or narrower than the short arms. I think it's more accurate to say that as soon as the arms were resolved, the longer arms appeared wider.

      P7: Is there a functional consequence to the long arms not equilibrating before anaphase onset?

      P13: "In a loop capture scenario, we can envision how condensin II sets up a coarse rosette architecture, with condensin I inserting a layer of finer-grained rosettes." This should be illustrated in a figure.

      Figures

      Fig. 1: "...while insets show chromosomes at increasing magnification over time" sounds like the microscope magnification is changing over time. Please change "magnification" to "enlargement". Alternatively, if the goal of the figure is to illustrate the shape/dimensions change of the chromosomes over time, wouldn't it be better to keep all the enlargements at the same scale?

      Fig. 2a plot: Does the distribution of normalized intensities really justify a Gaussian fit? I see a double Gaussian.

      Please label the structures that resemble "rosettes".

      Lu Gan

      Significance

      General This is a simulation-centric study of mammalian chromosome compaction that supports the loop-capture mechanism. It may be viewed as provocative by some readers because loop-extrusion has dominated the chromosome-compaction literature in the past decade. The only limitation, which is best addressed by future studies, is the absence of more direct molecular evidence of loop capture in situ. Though this same limitation applies to studies of the loop-extrusion mechanism.

      Advance It is valuable for the field to consider alternative mechanisms. In my opinion, the dominant one has been studied to death by indirect methods without a direct molecular-resolution readout in situ. While the field awaits better experimental tools, more mechanisms should be explored.

      Audience The chromosome-biology community (both bacterial and eukaryotic) will be interested.

      Expertise My lab uses cryo-ET to study chromatin in situ.

    3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #1

      Evidence, reproducibility and clarity

      Summary: This manuscript authored by Kakui and colleagues aims to understand on how mitotic chromosomes get their characteristic, condensed X shape, which is functionally important to ensure faithful chromosome segregation and genome inheritance to both daughter cells. The authors focus on the condensin complex, a central player in chromosome condensation. They ask whether it condenses chromosomes through a now broadly popular "loop-extrusion" mechanism, in which a chromatin-bound condensin complex reels chromatin into loops until it dissociates or encounters a roadblock on the polymer (another condensin or some other protein complex), or through an alternative, "diffusion-capture" mechanism, in which a chromatin-bound condensin complex forms loops by encountering another chromatin-bound condensin until they dissociate from DNA (or from each other.)

      The authors measured the progressive changes in the shape of mitotic chromosomes by taking samples at given time points from synchronized and mitotically arrested cells and found that while all chromosomes become more condensed and shorter, their width correlated with the length of the chromosome arms. They also observed that chromosome compaction/shortening evolves on a time scale much longer than the interval between the onset of chromosome condensation and the start of chromosome segregation, suggesting that chromatin condensation does not reach its steady-state during an unperturbed mitosis. The observed width-length correlation could be described by a power law with an exponent that increases with the time (i.e. chromosome condensation). The authors also performed polymer simulations of the diffusion-capture mechanism and found that the simulations semi-quantitatively recapitulate their experimental observations.

      Major Comments

      My most substantial comments focus on somewhat technical details of the image analysis approaches taken and the polymer models employed. However, as all reported data are derived from those details, I feel it is crucial to address them. 1. Definition/measurement of chromatin arms width and length. The approach taken to manually threshold an "arm" object and then fitting it with a same-area ellipse is not an ideal approach to gauge length and width of the arm, for the following reasons: (1) An ellipse appears to do a poor job approximating many of the objects that we see in the zoom-in insets of Fig.1. Importantly, for somewhat bent shapes we see in the insets it likely strongly underestimates the length of the arms; this approach also presents potential problems for measuring width as well (see 2 and 3 here). (2) One concern is that, due to the diffraction limit, a cylindrical fluorescent object could appear somewhat wider at the mid-length than the real underlying cylinder or the poles; this effect could become more pronounced as the object gets brighter and shorter. (3) Forcing the fit to an ellipse to objects that are not truly rod-shaped can drive an overestimation of the width of the object, and I suspect that this effect also might correlate with the length and brightness of the object. (4) Given 1-3 above, I think the approach the authors used for the first two time points, while not perfect, is better suited and likely more robust while avoiding these caveats. Moreover, why the authors cannot use this same approach (but just for each arm separately) for the later (30+ min) time points as they used for first two is unclear. This point is underscored by the observation that there is a drastic difference in the results between the first two and all subsequent points. When the authors compared the two approaches at the 30 min time point (where width-length dependence is still weak) in different cell lines they did indeed see different results (Fig. S2), although they concluded that the difference was acceptable. Along these lines, the difference between short and long arms for the chromosome in the insets of Fig.1 are quite subtle, except maybe at 180 and 240 min. On a related note, it might be informative to compare data for the two sister chromatid arms (as the underlying polymer has the same length) long vs long and short vs short and long vs short to help establish the robustness of the approach. 2. Regarding the power-law distribution, it is hard to judge based on the presented data whether it is a really good description of the data or not. In Fig.1c, the points for a given time can barely be distinguished, while in Fig.1b the authors plot individual time points in the panels, but the fits and points are overlapping so much that it is challenging to the main trends described by the clouds. The most informative approach for the reader would be to provide confidence intervals of the best fit parameters for all parameters that were varied in the fit. As the authors make some conclusions based on the power-law exponent values they observed, it would be helpful to know how confident we are in those values. 3. The conclusion that short arms equilibrate faster based on Fig.3a is not fully convincing. For example, in a scenario where ~1.5 microns is the equilibrium length for all arms, and that the longest arms equilibrate the fastest - you would see the same qualitative pattern for quantiles, not much change in low percentiles, while you would observe a decrease in the values for the high percentiles. The authors might be right, but Fig. 3A does not unambiguously demonstrate that it is so based on this evidence alone. 4. As for chromosome roundness, typically in image analysis, roundness is defined through the ratio of (perimeter)2/area; it might be better to use "aspect ratio" for the metrics used by the authors. And, perhaps, one should expect that shorter (measured, not necessarily by polymer contour length) arms should have a higher width/length ratio? If one selects for more round objects, there should be no surprise that the width and length get almost proportional. Given all of this, I am not sure whether width/aspect ratio serves as a good proxy for the chromatin condensation progression, which is how the authors are employing this data in the manuscript as written. 5. For the diffusion-capture model simulations, I think the results of the simulation would strongly depend on the assumptions of the probability to associate and the time scale of dissociation of the beads representing the condensin complex. For example, for a very strong association one might expect that all condensin will end up in one big condensate, even in the case of a long polymer. This is not explored/discussed at all. Did the authors optimize their model in any way? If not, how have they estimated the values they used? Moreover, perhaps this is an opportunity to learn/predict something about condensin properties, but the authors do not take advantage of this opportunity. In addition, the authors did some checks to show that the steady-state results of the simulations do not depend on the initial conditions. However, as some of the results reported concern the polymer evolution to the steady state (Fig.6b-c), they also need to examine whether these results depend on the chosen initial conditions (or not), and if they do, what is the rationale for the choices the authors have made? 6. A more thorough discussion of other possible models, beyond diffusion-capture model considered here, would be beneficial to the reader. First, the authors practically discard the possibility of the loop-extrusion model to explain their observations (although they never explicitly state this in the abstract or discussion). However, they neither leveraged simulations to rigorously compare models nor included some other substantiated arguments to explain why they prefer their model. This is important, as one of the major findings here is that the chromatin never reaches steady state for condensation, making it challenging to intuit what one should expect in this very dynamic state. Second, the authors, while briefly mentioning that there might be some other mechanisms contributing to the mitotic chromosome reshaping, do not really discuss those possibilities in a scholarly way. For example, work by the Kleckner group has suggested an involvement of bridges between sister chromatids into their shortening dynamics (Chu et al. Mol Cell 2020). Third, the authors do not discuss how they envision the interplay between the different SMC complexes - cohesin, condensin I and condensin II - as they act on the same chromatin polymer, or at least acknowledge a possible role that this interplay might contribute to the observed time dependencies.

      Significance

      The question the authors are trying to address is fundamental and important. While loop extrusion-driven mitotic chromosome organization is a popular model, considering alternative models is always crucial, especially when one can find experimental observations that allow us to discriminate between possible models. The main limitations are: 1) the performance of the approach the authors take to measure chromosome shape is in question and 2) the main competitive model (loop extrusion) is not modeled. If all shortcomings are addressed this work may provide strong evidence for the diffusion-capture model and thus advance our mechanistic understanding of mitotic processes, which will be of broad interest to the fields of genome and chromosome biology.

    1. Here we are introduced to the “normal world.” Now, the normal world may exist in a far future on an interstellar starship, or it may be set in a suburban ranch house with a swing set in the back yard, but the audience will give us great latitude as we establish the definition of “normal.”

      Reading this part just made me think about how authors can write a more dull or normal exposition if they want to have a bigger effect on their tension. Like if the world or introduction they have is very mundane, but not enough to have the reader lose interest, they can make their tension seem more intense than it really is. Shift their perspective if that makes sense.

    1. Editor’s Note: As Director of the Office of Scientific Research and Development, Dr. Vannevar Bush has coordinated the activities of some six thousand leading American scientists in the application of science to warfare. In this significant article he holds up an incentive for scientists when the fighting has ceased. He urges that men of science should then turn to the massive task of making more accessible our bewildering store of knowledge. For years inventions have extended man's physical powers rather than the powers of his mind. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but not the end results, of modern science. Now, says Dr. Bush, instruments are at hand which, if properly developed, will give man access to and command over the inherited knowledge of the ages. The perfection of these pacific instruments should be the first objective of our scientists as they emerge from their war work. Like Emerson's famous address of 1837 on "The American Scholar," this paper by Dr. Bush calls for a new relationship between thinking man and the sum of our knowledge.

      Hay que poner atención a que no haya saturación de informración y eso pueda llegar a abrumar al lector

    2. Trip hammers that multiply the fists, microscopes that sharpen the eye, and engines of destruction and detection are new results, but not the end results, of modern science.

      It overlooks the ethical and social implications of these developments, which shape their true impact beyond mere scientific achievement.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weaknesses:

      INTRODUCTION & THEORY

      (1) Can the authors please clarify why the first trial of extinction in a standard protocol does NOT produce the retrieval-extinction effect? Particularly as the results section states: "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." The importance of this point comes through at several places in the paper:

      1A. "In the current study, fear recovery was tested 30 minutes after extinction training, whereas the effect of memory reconsolidation was generally evident only several hours later and possibly with the help of sleep, leaving open the possibility of a different cognitive mechanism for the short-term fear dementia related to the retrieval-extinction procedure." ***What does this mean? The two groups in study 1 experienced a different interval between the first and second CS extinction trials; and the results varied with this interval: a longer interval (10 min) ultimately resulted in less reinstatement of fear than a shorter interval. Even if the different pattern of results in these two groups was shown/known to imply two different processes, there is absolutely no reason to reference any sort of cognitive mechanism or dementia - that is quite far removed from the details of the present study.

      Indeed, the only difference between the standard extinction paradigm and the retrieval-extinction paradigm is the difference between the first and second CS extinction trials. It has been shown before that a second CS+ presented 1 hour after the initial retrieval CS+ resulted in the dephosphorylation of GluR1 in rats, which was indicative of memory destabilization. The second CS+ presented only 3 minutes after the initial retrieval CS+, as in the standard extinction training, did not cause the GluR1 dephosphorylation effect (Monfils et al., 2009). Therefore, an isolated presentation of the CS+ seems to be important in preventing the return of fear expression. Behaviorally, when the CSs were presented in a more temporally spaced (vs. mass presentation) or a more gradual manner in the extinction training, the fear amnesia effects were more salient (Cain et al., 2003, Gershman et al., 2013). It has also been suggested that only when the old memory and new experience (through extinction) can be inferred to have been generated from the same underlying latent cause, the old memory can be successfully modified (Gershman et al., 2017). On the other hand, if the new experiences are believed to be generated by a different latent cause, then the old memory is less likely to be subject to modification. Therefore, the way the first and 2nd CS are temporally organized (retrieval-extinction or standard extinction) might affect how the latent cause is inferred and lead to different levels of fear expression from a theoretical perspective. These findings, together with studies in both fear and drug memories using the retrieval-extinction paradigm (Liu et al., 2014, Luo et al., 2015, Schiller et al., 2010, Xue et al., 2012), seem to suggest that the retrieval-extinction and the standard extinction procedures engage different cognitive and molecular mechanisms that lead to significant different behavioral outcomes. 

      In our study, we focus on the short-term and long-term amnesia effects of the retrieval-extinction procedure but also point out the critical role of retrieval in eliciting the short-term effect.

      1B. "Importantly, such a short-term effect is also retrieval dependent, suggesting the labile state of memory is necessary for the short-term memory update to take effect (Fig. 1e)." ***As above, what is "the short-term memory update"? At this point in the text, it would be appropriate for the authors to discuss why the retrieval-extinction procedure produces less recovery than a standard extinction procedure as the two protocols only differ in the interval between the first and second extinction trials. References to a "short-term memory update" process do not help the reader to understand what is happening in the protocol.

      Sorry for the lack of clarity here. By short-term memory update we meant the short-term amnesia in fear expression.

      (2) "Indeed, through a series of experiments, we identified a short-term fear amnesia effect following memory retrieval, in addition to the fear reconsolidation effect that appeared much later."

      ***The only reason for supposing two effects is because of the differences in responding to the CS2, which was subjected to STANDARD extinction, in the short- and long-term tests. More needs to be said about how and why the performance of CS2 is affected in the short-term test and recovers in the long-term test. That is, if the loss of performance to CS1 and CS2 is going to be attributed to some type of memory updating process across the retrieval-extinction procedure, one needs to explain the selective recovery of performance to CS2 when the extinction-to-testing interval extends to 24 hours. Instead of explaining this recovery, the authors note that performance to CS1 remains low when the extinction-to-testing interval is 24 hours and invoke something to do with memory reconsolidation as an explanation for their results: that is, they imply (I think) that reconsolidation of the CS1-US memory is disrupted across the 24-hour interval between extinction and testing even though CS1 evokes negligible responding just minutes after extinction.

      In our results, we did not only focus on the fear expression related to CS2. In fact, we also demonstrated that the CS1 related fear expression diminished in the short-term memory test but re-appeared in the long-term memory after the CS1 retrieval-extinction training.

      The “…recovery of performance to CS2 when the extinction-to-testing interval extends to 24 hours…” is a result that has been demonstrated in various previous studies (Kindt and Soeter, 2018, Kindt et al., 2009, Nader et al., 2000, Schiller et al., 2013, Schiller et al., 2010, Xue et al., 2012). That is, the reconsolidation framework stipulates that the pharmacological or behavioral intervention during the labile states of the reconsolidation window only modifies the fear memory linked to the reminded retrieval cue, but not for the non-reminded CS-US memory expression (but also see (Liu et al., 2014, Luo et al., 2015) for using the unconditioned stimulus as the reminder cue and the retrieval-extinction paradigm to prevent the return of fear memory associated with different CS).  In fact, we hypothesized the temporal dynamics of CS1 and CS2 related fear expressions were due to the interplay between the short-term and long-term (reconsolidation) effects of the retrieval-extinction paradigm in the last figure (Fig. 6). 

      (3) The discussion of memory suppression is potentially interesting but, in its present form, raises more questions than it answers. That is, memory suppression is invoked to explain a particular pattern of results but I, as the reader, have no sense of why a fear memory would be better suppressed shortly after the retrieval-extinction protocol compared to the standard extinction protocol; and why this suppression is NOT specific to the cue that had been subjected to the retrieval-extinction protocol.

      We discussed memory suppression as one of the potential mechanisms to account for the three characteristics of the short-term amnesia effects: cue-independence, temporal dynamics (short-term) and thought-control-ability relevance. According to the memory suppression theory, the memory suppression effect is NOT specific to the cue and this effect was demonstrated via the independent cue test in a variety of studies (Anderson and Floresco, 2022, Anderson and Green, 2001, Gagnepain et al., 2014, Zhu et al., 2022). Therefore, we suggest in the discussion that it might be possible the CS1 retrieval cue prompted an automatic suppression mechanism and yielded the short-term fear amnesia consistent with various predictions from the memory suppression theory:

      “In our experiments, subjects were not explicitly instructed to suppress their fear expression, yet the retrieval-extinction training significantly decreased short-term fear expression. These results are consistent with the short-term amnesia induced with the more explicit suppression intervention (Anderson et al., 1994; Kindt and Soeter, 2018; Speer et al., 2021; Wang et al., 2021; Wells and Davies, 1994). It is worth noting that although consciously repelling unwanted memory is a standard approach in memory suppression paradigm, it is possible that the engagement of the suppression mechanism can be unconscious. For example, in the retrieval-induced forgetting (RIF) paradigm, recall of a stored memory impairs the retention of related target memory and this forgetting effect emerges as early as 20 minutes after the retrieval procedure, suggesting memory suppression or inhibition can occur in a more spontaneous and automatic manner (Imai et al., 2014). Moreover, subjects with trauma histories exhibited more suppression-induced forgetting for both negative and neutral memories than those with little or no trauma (Hulbert and Anderson, 2018). Similarly, people with higher self-reported thought-control capabilities showed more severe cue-independent memory recall deficit, suggesting that suppression mechanism is associated with individual differences in spontaneous control abilities over intrusive thoughts (Küpper et al., 2014). It has also been suggested that similar automatic mechanisms might be involved in organic retrograde amnesia of traumatic childhood memories (Schacter et al., 2012; Schacter et al., 1996).”

      3A. Relatedly, how does the retrieval-induced forgetting (which is referred to at various points throughout the paper) relate to the retrieval-extinction effect? The appeal to retrieval-induced forgetting as an apparent justification for aspects of the present study reinforces points 2 and 3 above. It is not uninteresting but needs some clarification/elaboration.

      We introduced the retrieval-induced forgetting (RIF) to make the point that RIF was believed to be related to the memory suppression mechanism and the RIF effect can appear relatively early, consistent with what we observed in the short-term amnesia effect. We have re-written the manuscript to make this point clearer:

      “It is worth noting that although consciously repelling unwanted memory is a standard approach in memory suppression paradigm, it is possible that the engagement of the suppression mechanism can be unconscious. For example, in the retrieval-induced forgetting (RIF) paradigm, recall of a stored memory impairs the retention of related target memory and this forgetting effect emerges as early as 20 minutes after the retrieval procedure, suggesting memory suppression or inhibition can occur in a more spontaneous and automatic manner (Imai et al., 2014). Moreover, subjects with trauma histories exhibited more suppression-induced forgetting for both negative and neutral memories than those with little or no trauma (Hulbert and Anderson, 2018). Similarly, people with higher self-reported thought-control capabilities showed more severe cue-independent memory recall deficit, suggesting that suppression mechanism is associated with individual differences in spontaneous control abilities over intrusive thoughts (Küpper et al., 2014).”

      (4) Given the reports by Chalkia, van Oudenhove & Beckers (2020) and Chalkia et al (2020), some qualification needs to be inserted in relation to reference 6. That is, reference 6 is used to support the statement that "during the reconsolidation window, old fear memory can be updated via extinction training following fear memory retrieval". This needs a qualifying statement like "[but see Chalkia et al (2020a and 2020b) for failures to reproduce the results of 6]."

      https://pubmed.ncbi.nlm.nih.gov/32580869/

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115860/

      We have incorporated the reviewer’s suggestion into the revised manuscript in both the introduction:

      “Pharmacological blockade of protein synthesis and behavioral interventions can both eliminate the original fear memory expression in the long-term (24 hours later) memory test ( Lee, 2008; Lee et al., 2017; Schiller et al., 2013; Schiller et al., 2010), resulting in the cue-specific fear memory deficit (Debiec et al., 2002; Lee, 2008; Nader, Schafe, & LeDoux, 2000). For example, during the reconsolidation window, retrieving a fear memory allows it to be updated through extinction training (i.e., the retrieval-extinction paradigm (Lee, 2008; Lee et al., 2017; Schiller et al., 2013; Schiller et al., 2010), but also see (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; D. Schiller, LeDoux, & Phelps, 2020)”

      And in the discussion:

      “It should be noted that while our long-term amnesia results were consistent with the fear memory reconsolidation literatures, there were also studies that failed to observe fear prevention (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; Schroyens et al., 2023). Although the memory reconsolidation framework provides a viable explanation for the long-term amnesia, more evidence is required to validate the presence of reconsolidation, especially at the neurobiological level (Elsey et al., 2018). While it is beyond the scope of the current study to discuss the discrepancies between these studies, one possibility to reconcile these results concerns the procedure for the retrieval-extinction training. It has been shown that the eligibility for old memory to be updated is contingent on whether the old memory and new observations can be inferred to have been generated by the same latent cause (Gershman et al., 2017; Gershman and Niv, 2012). For example, prevention of the return of fear memory can be achieved through gradual extinction paradigm, which is thought to reduce the size of prediction errors to inhibit the formation of new latent causes (Gershman, Jones, et al., 2013). Therefore, the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause. Furthermore, other studies highlighted the importance of memory storage per se and suggested that memory retention was encoded in the memory engram cell ensemble connectivity whereas the engram cell synaptic plasticity is crucial for memory retrieval (Ryan et al., 2015; Tonegawa, Liu, et al., 2015; Tonegawa, Pignatelli, et al., 2015). It remains to be tested how the cue-independent short-term and cue-dependent long-term amnesia effects we observed could correspond to the engram cell synaptic plasticity and functional connectivity among engram cell ensembles (Figure 6). This is particularly important, since the cue-independent characteristic of the short-term amnesia suggest that either different memory cues fail to evoke engram cell activities, or the retrieval-extinction training transiently inhibits connectivity among engram cell ensembles. Finally, SCR is only one aspect of the fear expression, how the retrieval-extinction paradigm might affect subjects’ other emotional (such as the startle response) and cognitive fear expressions such as reported fear expectancy needs to be tested in future studies since they do not always align with each other (Kindt et al., 2009; Sevenster et al., 2012, 2013).”

      5A. What does it mean to ask: "whether memory retrieval facilitates update mechanisms other than memory reconsolidation"? That is, in what sense could or would memory retrieval be thought to facilitate a memory update mechanism?

      It is widely documented in the literatures that memory retrieval renders the old memory into a labile state susceptible for the memory reconsolidation process. However, as we mentioned in the manuscript, studies have shown that memory reconsolidation requires the de novo protein synthesis and usually takes hours to complete. What remains unknown is whether old memories are subject to modifications other than the reconsolidation process. Our task specifically tested the short-term effect of the retrieval-extinction paradigm and found that fear expression diminished 30mins after the retrieval-extinction training. Such an effect cannot be accounted for by the memory reconsolidation effect.

      5B. "First, we demonstrate that memory reactivation prevents the return of fear shortly after extinction training in contrast to the memory reconsolidation effect which takes several hours to emerge and such a short-term amnesia effect is cue independent (Study 1, N = 57 adults)."

      ***The phrasing here could be improved for clarity: "First, we demonstrate that the retrieval-extinction protocol prevents the return of fear shortly after extinction training (i.e., when testing occurs just min after the end of extinction)." Also, cue-dependence of the retrieval-extinction effect was assessed in study 2.

      We thank the reviewer and have modified the phrasing of the sentence:

      “First, we demonstrate that memory retrieval-extinction protocol prevents the return of fear expression shortly after extinction training and this short-term effect is memory reactivation dependent (Study 1, N = 57 adults).”

      5C. "Furthermore, memory reactivation also triggers fear memory reconsolidation and produces cue-specific amnesia at a longer and separable timescale (Study 2, N = 79 adults)." ***In study 2, the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction. This result is interesting but cannot be easily inferred from the statement that begins "Furthermore..." That is, the results should be described in terms of the combined effects of retrieval and extinction, not in terms of memory reactivation alone; and the statement about memory reconsolidation is unnecessary. One can simply state that the retrieval-extinction protocol produced a cue-specific disruption in responding when testing occurred 24 hours after the end of extinction.

      We have revised the text according to the reviewer’s comment.

      “Furthermore, across different timescales, the memory retrieval-extinction paradigm triggers distinct types of fear amnesia in terms of cue-specificity and cognitive control dependence, suggesting that the short-term fear amnesia might be caused by different mechanisms from the cue-specific amnesia at a longer and separable timescale (Study 2, N = 79 adults).”

      5D. "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that both memory retrieval and intact prefrontal cortex functions were necessary for the short-term fear amnesia."

      ***This could be edited to better describe what was shown: E.g., "...we directly manipulated brain activities in the dorsolateral prefrontal cortex and found that intact prefrontal cortex functions were necessary for the short-term fear amnesia after the retrieval-extinction protocol."

      Edited:

      “Finally, using continuous theta-burst stimulation (Study 3, N = 75 adults), we directly manipulated brain activity in the dorsolateral prefrontal cortex, and found that both memory reactivation and intact prefrontal cortex function were necessary for the short-term fear amnesia after the retrieval-extinction protocol.”

      5E. "The temporal scale and cue-specificity results of the short-term fear amnesia are clearly dissociable from the amnesia related to memory reconsolidation, and suggest that memory retrieval and extinction training trigger distinct underlying memory update mechanisms."

      ***The pattern of results when testing occurred just minutes after the retrieval-extinction protocol was different from that obtained when testing occurred 24 hours after the protocol. Describing this in terms of temporal scale is unnecessary, and suggesting that memory retrieval and extinction trigger different memory update mechanisms is not obviously warranted. The results of interest are due to the combined effects of retrieval+extinction and there is no sense in which different memory update mechanisms should be identified with retrieval (mechanism 1) and extinction (mechanism 2).

      We did not argue for different memory update mechanisms for the “retrieval (mechanism 1) and extinction (mechanism 2)” in our manuscript. Instead, we proposed that the retrieval-extinction procedure, which was mainly documented in the previous literatures for its association with the reconsolidation-related fear memory retention (the long-term effect), also had a much faster effect (the short-term effect). These two effects differed in many aspects, suggesting that different memory update mechanisms might be involved.

      5F. "These findings raise the possibility of concerted memory modulation processes related to memory retrieval..."

      ***What does this mean?

      As we mentioned in our response to the previous comment, we believe that the retrieval-extinction procedure triggers different types of memory update mechanisms working on different temporal scales.

      (6) "...suggesting that the fear memory might be amenable to a more immediate effect, in addition to what the memory reconsolidation theory prescribes..."

      ***What does it mean to say that the fear memory might be amenable to a more immediate effect?

      We intended to state that the retrieval-extinction procedure can produce a short-term amnesia effect and have thus revised the text.

      (7) "Parallel to the behavioral manifestation of long- and short-term memory deficits, concurrent neural evidence supporting memory reconsolidation theory emphasizes the long-term effect of memory retrieval by hypothesizing that synapse degradation and de novo protein synthesis are required for reconsolidation."

      ***This sentence needs to be edited for clarity.

      We have rewritten this sentence:

      “Corresponding to the long-term behavioral manifestation, concurrent neural evidence supporting memory reconsolidation hypothesis emphasizes that synapse degradation and de novo protein synthesis are required for reconsolidation.”

      (8) "previous behavioral manipulations engendering the short-term declarative memory effect..."

      ***What is the declarative memory effect? It should be defined.

      We meant the amnesia on declarative memory research, such as the memory deficit caused by the think/no-think paradigms. Texts have been modified for clarity:

      “On the contrary, previous behavioral manipulations engendering the short-term amnesia on declarative memory, such as the think/no-think paradigm, hinges on the intact activities in brain areas such as dorsolateral prefrontal cortex (cognitive control) and its functional coupling with specific brain regions such as hippocampus (memory retrieval) (Anderson and Green, 2001; Wimber et al., 2015).”

      (9) "The declarative amnesia effect emerges much earlier due to the online functional activity modulation..."

      ***Even if the declarative memory amnesia effect had been defined, the reference to online functional activity modulation is not clear.

      We have rephrased the sentence:

      “The declarative amnesia effect arises much earlier due to the more instant modulation of functional connectivity, rather than the slower processes of new protein synthesis in these brain regions.”

      (10) "However, it remains unclear whether memory retrieval might also precipitate a short-term amnesia effect for the fear memory, in addition to the long-term prevention orchestrated by memory consolidation."

      ***I found this sentence difficult to understand on my first pass through the paper. I think it is because of the phrasing of memory retrieval. That is, memory retrieval does NOT precipitate any type of short-term amnesia for the fear memory: it is the retrieval-extinction protocol that produces something like short-term amnesia. Perhaps this sentence should also be edited for clarity.

      We have changed “memory retrieval” to “retrieval-extinction” where applicable.

      I will also note that the usage of "short-term" at this point in the paper is quite confusing: Does the retrieval-extinction protocol produce a short-term amnesia effect, which would be evidenced by some recovery of responding to the CS when tested after a sufficiently long delay? I don't believe that this is the intended meaning of "short-term" as used throughout the majority of the paper, right?

      By “short-term”, we meant the lack of fear expression in the test phase (measured by skin conductance responses) shortly after the retrieval-extinction procedure (30 mins in studies 1 & 2 and 1 hour in study 3). It does not indicate that the effect is by itself “short-lived”.

      (11) "To fully comprehend the temporal dynamics of the memory retrieval effect..."<br /> ***What memory retrieval effect? This needs some elaboration.

      We’ve changed the phrase “memory retrieval effect” to “retrieval-extinction effect” to refer to the effect of retrieval-extinction on fear amnesia.

      (12) "We hypothesize that the labile state triggered by the memory retrieval may facilitate different memory update mechanisms following extinction training, and these mechanisms can be further disentangled through the lens of temporal dynamics and cue-specificities."

      ***What does this mean? The first part of the sentence is confusing around the usage of the term "facilitate"; and the second part of the sentence that references a "lens of temporal dynamics and cue-specificities" is mysterious. Indeed, as all rats received the same retrieval-extinction exposures in Study 2, it is not clear how or why any differences between the groups are attributed to "different memory update mechanisms following extinction".

      As the reviewer mentioned, if only one time point data were collected, we cannot differentiate whether different memory update mechanisms are involved. In study 2, however, the 3 groups only differed on the time onsets the reinstatement test was conducted. Accordingly, our results showed that the fear amnesia effects for CS1 and CS2 cannot be simply explained by forgetting: different memory update mechanisms must be at work to explain the characteristics of the SCR related to both CS1 and CS2 at three different time scales (30min, 6h and 24h). It was based on these results, together with the results from the TMS study (study 3), that we proposed the involvement of a short-term memory update mechanism in addition to the reconsolidation related fear amnesia (which should become evident much later) induced by the retrieval-extinction protocol.

      (13) "In the first study, we aimed to test whether there is a short-term amnesia effect of fear memory retrieval following the fear retrieval-extinction paradigm."

      ***Again, the language is confusing. The phrase, "a short-term amnesia effect" implies that the amnesia itself is temporary; but I don't think that this implication is intended. The problem is specifically in the use of the phrase "a short-term amnesia effect of fear memory retrieval." To the extent that short-term amnesia is evident in the data, it is not due to retrieval per se but, rather, the retrieval-extinction protocol.

      We have changed the wordings and replaced “memory retrieval” with “retrieval-extinction” where applicable.

      (14) The authors repeatedly describe the case where there was a 24-hour interval between extinction and testing as consistent with previous research on fear memory reconsolidation. Which research exactly? That is, in studies where a CS re-exposure was combined with a drug injection, responding to the CS was disrupted in a final test of retrieval from long-term memory which typically occurred 24 hours after the treatment. Is that what the authors are referring to as consistent? If so, which aspect of the results are consistent with those previous findings? Perhaps the authors mean to say that, in the case where there was a 24-hour interval between extinction and testing, the results obtained here are consistent with previous research that has used the retrieval-extinction protocol. This would clarify the intended meaning greatly.

      Our 24 hour test results after the retrieval-extinction protocol was consistent with both pharmacological and behavioral intervention studies in fear memory reconsolidation studies (Kindt and Soeter, 2018, Kindt et al., 2009, Liu et al., 2014, Luo et al., 2015, Monfils et al., 2009, Nader et al., 2000, Schiller et al., 2013, Schiller et al., 2010, Xue et al., 2012) since the final test phase typically occurred 24 hours after the treatment. At the 24-hour interval, the memory reconsolidation effect would become evident either via drug administration or behavioral intervention (extinction training).

      DATA

      (15) Points about data:

      5A. The eight participants who were discontinued after Day 1 in study 1 were all from the no-reminder group. Can the authors please comment on how participants were allocated to the two groups in this experiment so that the reader can better understand why the distribution of non-responders was non-random (as it appears to be)?

      15B. Similarly, in study 2, of the 37 participants that were discontinued after Day 2, 19 were from Group 30 min, and 5 were from Group 6 hours. Can the authors comment on how likely these numbers are to have been by chance alone? I presume that they reflect something about the way that participants were allocated to groups, but I could be wrong.

      We went back and checked out data. As we mentioned in the supplementary materials, we categorized subjects as non-responders if their SCR response to any CS was less than 0.02  in Day 1 (fear acquisition). Most of the discontinued participants (non-responders) in the no-reminder group (study 1) and the 30min & 24 h groups (study 2) were when the heating seasons just ended or were yet to start, respectively. It has been documented that human body thermal conditions were related to the quality of the skin conductance response (SCR) measurements (Bauer et al., 2022, Vila, 2004). We suspect that the non-responders might be related to the body thermal conditions caused by the lack of central heating.

      15C. "Post hoc t-tests showed that fear memories were resilient after regular extinction training, as demonstrated by the significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group (t26 = 7.441, P < 0.001; Fig. 1e), while subjects in the reminder group showed no difference of fear recovery between CS+ and CS- (t29 = 0.797, P = 0.432, Fig. 1e)."

      ***Is the fear recovery index shown in Figure 1E based on the results of the first test trial only? How can there have been a "significant difference between fear recovery indexes of the CS+ and CS- for the no-reminder group" when the difference in responding to the CS+ and CS- is used to calculate the fear recovery index shown in 1E? What are the t-tests comparing exactly, and what correction is used to account for the fact that they are applied post-hoc?

      As we mentioned in the results section of the manuscript, the fear recovery index was defined as “the SCR difference between the first test trial and the last extinction trial of a specific CS”. We then calculated the “differential fear recovery index” (figure legends of Fig. 1e) between CS+ and CS- for both the reminder and no-reminder groups. The post-hoc t-tests were used to examine whether there were significant fear recoveries (compare to 0) in both the reminder (t<sub>29</sub> = 0.797, P = 0.432, Fig. 1e) and no-reminder (t<sub>26</sub> = 7.441, P  < 0.001; Fig. 1e) groups. We realize that the description of Bonferroni correction was not specified in the original manuscript and hence added in the revision where applicable.

      15D. "Finally, there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (t55 = -2.022, P = 0.048; Fig. 1c, also see Supplemental Material for direct test for the test phase)."

      ***Is this statement correct - i.e., that there is no statistically significant difference in fear recovery to the CS+ in the reminder and no reminder groups? I'm sure that the authors would like to claim that there IS such a difference; but if such a difference is claimed, one would be concerned by the fact that it is coming through in an uncorrected t-test, which is the third one of its kind in this paragraph. What correction (for the Type 1 error rate) is used to account for the fact that the t-tests are applied post-hoc? And if no correction, why not?

      We are sorry about the typo.  The reviewer was correct that we meant to claim here that “… there is a significant difference between the differential fear recovery indexes between CS+ in the reminder and no-reminder groups (t<sub>55</sub> =- 2.022, P = 0.048; Fig. 1e)”.  Note that the t-test performed here was a confirmatory test following our two-way ANOVA with main effects of group (reminder vs. no-reminder) and time (last extinction trial vs. first test trial) on the differential CS SCR response (CS+ minus CS-) and we found a significant group x time interaction effect (F<sub>1.55</sub> = 4.087, P = 0.048, η<sup>2</sup> = 0.069). The significant difference between the differential fear recovery indexes was simply a re-plot of the interaction effect mentioned above and therefore no multiple correction is needed. We have reorganized the sequence of the sentences such that this t-test now directly follows the results of the ANOVA:

      “The interaction effect was confirmed by the significant difference between the differential fear recovery indexes between CS1+ and CS2+ in the reminder and no-reminder groups (t<sub>55</sub> \= -2.022, P \= 0.048; Figure 1E, also see Supplemental Material for the direct test of the test phase).”

      15E. In study 2, why is responding to the CS- so high on the first test trial in Group 30 min? Is the change in responding to the CS- from the last extinction trial to the first test trial different across the three groups in this study? Inspection of the figure suggests that it is higher in Group 30 min relative to Groups 6 hours and 24 hours. If this is confirmed by the analysis, it has implications for the fear recovery index which is partly based on responses to the CS-. If not for differences in the CS- responses, Groups 30 minutes and 6 hours are otherwise identical.

      Following the reviewer’s comments, we went back and calculated the mean SCR difference of CS- between the first test trial and the last extinction trial for all three studies (see Author response image 1 below). In study 1, there was no difference in the mean CS- SCR (between the first test trial and last extinction trial) between the reminder and no-reminder groups (Kruskal-Wallis test , panel a), though both groups showed significant fear recovery even in the CS- condition (Wilcoxon signed rank test, reminder: P = 0.0043, no-reminder: P = 0.0037). Next, we examined the mean SCR for CS- for the 30min, 6h and 24h groups in study 2 and found that there was indeed a group difference (one-way ANOVA,F<sub>2.76</sub> = 5.3462, P = 0.0067, panel b), suggesting that the CS- related SCR was influenced by the test time (30min, 6h or 24h). We also tested the CS- related SCR for the 4 groups in study 3 (where test was conducted 1 hour after the retrieval-extinction training) and found that across TMS stimulation types (PFC vs. VER) and reminder types (reminder vs. no-reminder) the ANOVA analysis did not yield main effect of TMS stimulation type (F<sub>1.71</sub> = 0.322, P = 0.572) nor main effect of reminder type (F<sub>1.71</sub> = 0.0499, P = 0.824, panel c). We added the R-VER group results in study 3 (see panel c) to panel b and plotted the CS- SCR difference across 4 different test time points and found that CS- SCR decreased as the test-extinction delay increased (Jonckheere-Terpstra test, P = 0.00028). These results suggest a natural “forgetting” tendency for CS- related SCR and highlight the importance of having the CS- as a control condition to which the CS+ related SCR was compared with.

      Author response image 1.

      15F. Was the 6-hour group tested at a different time of day compared to the 30-minute and 24-hour groups; and could this have influenced the SCRs in this group?

      For the 30min and 24h groups, the test phase can be arranged in the morning, in the afternoon or at night. However, for the 6h group, the test phase was inevitably in the afternoon or at night since we wanted to exclude the potential influence of night sleep on the expression of fear memory (see Author response table 1 below). If we restricted the test time in the afternoon or at night for all three groups, then the timing of their extinction training was not matched.

      Author response table 1.

      Nevertheless, we also went back and examined the data for the subjects only tested in the afternoon or at nights in the 30min and 24h groups to match with the 6h group where all the subjects were tested either in the afternoon or at night. According to Author response table 1 above, we have 17 subjects for the 30min group (9+8),18 subjects for the 24h group (9 + 9) and 26 subjects for the 6h group (12 + 14). As Author response image 2 shows, the SCR patterns in the fear acquisition, extinction and test phases were similar to the results presented in the original figure.

      Author response image 2.

      15G. Why is the range of scores in "thought control ability" different in the 30-minute group compared to the 6-hour and 24-hour groups? I am not just asking about the scale on the x-axis: I am asking why the actual distribution of the scores in thought control ability is wider for the 30-minute group?

      We went back and tested whether the TCAQ score variance was the same across three groups. We found that there was significant difference in the variance of the TCAQ score distribution across three groups (F<sub>2.155</sub> = 4.324, P = 0.015, Levene test). However, post-hoc analyses found that the variance of TCAQ is not significantly different between the 30min and 6h groups (F<sub>26.25</sub> = 0.4788, P = 0.0697), nor between the 30min and 24h groups (i>F<sub>26.25</sub> = 0.4692, P = 0.0625). To further validate our correlational results between the TCAQ score and the fear recovery index, we removed the TCAQ scores that were outside the TCAQ score range of the 6h & 24h groups from the 30min group (resulting in 4 “outliner” TCAQ scores in the 30min group, panel a in Author response image 3 below) and the Levene test confirmed that the variance of the TCAQ scores showed no difference across groups after removing the 4 “outliner” data points in the 30min group (i>F<sub>2.147</sub> = 0.74028, P = 0.4788). Even with the 4 “outliers” removed from the 30min group, the correlational analysis of the TCAQ scores and the fear recovery index still yielded significant result in the 30min group (beta = -0.0148, t = -3.731, P = 0.0006, see panel b below), indicating our results were not likely due to the inclusion of subjects with extreme TCAQ scores.

      Author response image 3.

      (16) During testing in each experiment, how were the various stimuli presented? That is, was the presentation order for the CS+ and CS- pseudorandom according to some constraint, as it had been in extinction? This information should be added to the method section.

      We mentioned the order of the stimuli in the testing phase in the methods section “… For studies 2 & 3, …a pseudo-random stimulus order was generated for fear acquisition and extinction phases of three groups with the rule that no same trial- type (CS1+, CS2+ and CS-) repeated more than twice. In the test phase, to exclude the possibility that the difference between CS1+ and CS2+ was simply caused by the presentation sequence of CS1+ and CS2+, half of the participants completed the test phase using a pseudo-random stimuli sequence and the identities of CS1+ and CS2+ reversed in the other half of the participants.”

      (17) "These results are consistent with previous research which suggested that people with better capability to resist intrusive thoughts also performed better in motivated dementia in both declarative and associative memories."

      ***Which parts of the present results are consistent with such prior results? It is not clear from the descriptions provided here why thought control ability should be related to the present findings or, indeed, past ones in other domains. This should be elaborated to make the connections clear.

      In the 30min group, we found that subjects’ TCAQ scores were negatively correlated with their fear recovery indices. That is, people with better capacity to resist intrusive thoughts were also less likely to experience the return of fear memory, which are consistent with previous results. Together with our brain stimulation results, the short-term amnesia is related to subject’s cognitive control ability and intact dlPFC functions. It is because of these similarities that we propose that the short-term amnesia might be related to the automatic memory suppression mechanism originated from the declarative memory research. Since we have not provided all the evidence at this point of the results section, we briefly listed the connections with previous declarative and associative memory research.

      Reviewer #2 (Public Review):

      The fear acquisition data is converted to a differential fear SCR and this is what is analysed (early vs late). However, the figure shows the raw SCR values for CS+ and CS- and therefore it is unclear whether the acquisition was successful (despite there being an "early" vs "late" effect - no descriptives are provided).

      As the reviewer mentioned, the fear acquisition data was converted to a differential fear SCR and we conducted a two-way mixed ANOVA (reminder vs. no-reminder) x time (early vs. late part of fear acquisition) on the differential SCRs. We found a significant main effect of time (early vs. late; F<sub>1.55</sub> = 6.545, P = 0.013, η<sup>2</sup> = 0.106), suggesting successful fear acquisition in both groups. Fig. 1c also showed the mean differential SCR for the latter half of the acquisition phase in both the reminder and no-reminder groups and there was no significant difference in acquired SCRs between groups (early acquisition: t<sub>55</sub> = -0.063, P = 0.950; late acquisition: t<sub>55</sub> = -0.318, P = 0.751; Fig. 1c).

      In Experiment 1 (Test results) it is unclear whether the main conclusion stems from a comparison of the test data relative to the last extinction trial ("we defined the fear recovery index as the SCR difference between the first test trial and the last extinction trial for a specific CS") or the difference relative to the CS- ("differential fear recovery index between CS+ and CS-"). It would help the reader assess the data if Figure 1e presents all the indexes (both CS+ and CS-). In addition, there is one sentence that I could not understand "there is no statistical difference between the differential fear recovery indexes between CS+ in the reminder and no reminder groups (P=0.048)". The p-value suggests that there is a difference, yet it is not clear what is being compared here. Critically, any index taken as a difference relative to the CS- can indicate recovery of fear to the CS+ or absence of discrimination relative to the CS-, so ideally the authors would want to directly compare responses to the CS+ in the reminder and no-reminder groups. The latter issue is particularly relevant in Experiment 2, in which the CS- seems to vary between groups during the test and this can obscure the interpretation of the result.

      In all the experiments, the fear recovery index (FRI) was defined as the SCR difference between the first test trial and the last extinction trial for any CS. Subsequently, the differential fear recovery index (FRI) was defined between the FRI of a specific CS+ and the FRI of the CS-. The differential FRI would effectively remove the non-specific time related effect (using the CS- FRI as the baseline). We have revised the text accordingly.

      As we responded to reviewer #1, the CS- fear recovery indices (FIR) for the reminder and no-reminder groups were not statistically different (Kruskal-Wallis test , panel a, Author response image 1), though both groups showed significant fear recovery even in the CS- condition (Wilcoxon signed rank test, reminder: P = 0.0043, no-reminder: P = 0.0037, panel a). Next, we examined the mean SCR for CS- for the 30min, 6h and 24h groups in study 2 and found that there was indeed a group difference (one-way ANOVA,  one-way ANOVA,F<sub>2.76</sub> = 5.3462, P = 0.0067, panel b), suggesting that the CS- SCR was influenced by the test time delay. We also tested the CS- SCR for the 4 groups in study 3 and found that across TMS stimulation types (PFC vs. VER) and reminder types (reminder vs. no-reminder) the ANOVA analysis did not yield main effect of TMS stimulation type (F<sub>1.71</sub> = 0.322, P = 0.572) nor main effect of reminder type (F<sub>1.71</sub> = 0.0499, P = 0.824, panel c). We added the R-VER group results in study 3 (see panel c) to panel b and plotted the CS- SCR difference across 4 different test time points and found that CS- SCR decreased as the test-extinction delay increased (Jonckheere-Terpstra test, P = 0.00028). These results suggest a natural “forgetting” tendency for the CS- fear recovery index and highlight the importance of having the CS- as a control condition to compare the CS+ recovery index with (resulting in the Differential recovery index). Parametric and non-parametric analyses were adopted based on whether the data met the assumptions for the parametric analyses.

      In Experiment 1, the findings suggest that there is a benefit of retrieval followed by extinction in a short-term reinstatement test. In Experiment 2, the same effect is observed on a cue that did not undergo retrieval before extinction (CS2+), a result that is interpreted as resulting from cue-independence, rather than a failure to replicate in a within-subjects design the observations of Experiment 1 (between-subjects). Although retrieval-induced forgetting is cue-independent (the effect on items that are suppressed [Rp-] can be observed with an independent probe), it is not clear that the current findings are similar. Here, both cues have been extinguished and therefore been equally exposed during the critical stage.

      We appreciate the reviewer’s insight on this issue. Although in the discussion we raised the possibility of memory suppression to account for the short-term amnesia effect, we did not intend to compare our paradigm side-by-side with retrieval-induced forgetting. In our previous work (Wang et al., 2021), we reported that active suppression effect of CS+ related fear memory during the standard extinction training generalized to other CS+, yielding a cue-independent effect. In the current experiments, we did not implement active suppression; instead, we used the CS+ retrieval-extinction paradigm. It is thus possible that the CS+ retrieval cue may function to facilitate automatic suppression. Indeed, in the no-reminder group (standard extinction) of study 1, we did observe the return of fear expression, suggesting the critical role of CS+ reminder before the extinction training. Based on the results mentioned above, we believe our short-term amnesia results were consistent with the hypothesis that the retrieval CS+ (reminder) might prompt subjects to adopt an automatic suppress mechanism in the following extinction training, yielding cue-independent amnesia effects.

      The findings in Experiment 2 suggest that the amnesia reported in Experiment 1 is transient, in that no effect is observed when the test is delayed by 6 hours. The phenomena whereby reactivated memories transition to extinguished memories as a function of the amount of exposure (or number of trials) is completely different from the phenomena observed here. In the former, the manipulation has to do with the number of trials (or the total amount of time) that the cues are exposed to. In the current study, the authors did not manipulate the number of trials but instead the retention interval between extinction and test. The finding reported here is closer to a "Kamin effect", that is the forgetting of learned information which is observed with intervals of intermediate length (Baum, 1968). Because the Kamin effect has been inferred to result from retrieval failure, it is unclear how this can be explained here. There needs to be much more clarity on the explanations to substantiate the conclusions.

      Indeed, in our studies, we did not manipulate the amount of exposure (or number of trials) but only the retention interval between extinction and test. Our results demonstrated that the retrieval-extinction protocol yielded the short-term amnesia on fear memory, qualitatively different from the reconsolidation related amnesia proposed in the previous literatures. After examining the temporal dynamics, cue-specificity and TCAQ association with the short-term amnesia, we speculated that the short-term effect might be related to an automatic suppression mechanism. Of course, further studies will be required to test such a hypothesis.

      Our results might not be easily compared with the “Kamin effect”, a term coined to describe the “retention of a partially learned avoidance response over varying time intervals” using a learning-re-learning paradigm (Baum, 1968, Kamin, 1957). However, the retrieval-extinction procedure used in our studies was different from the learning-re-learning paradigm in the original paper (Kamin, 1957) and the reversal-learning paradigm the reviewer mentioned (Baum, 1968).

      There are many results (Ryan et al., 2015) that challenge the framework that the authors base their predictions on (consolidation and reconsolidation theory), therefore these need to be acknowledged. Similarly, there are reports that failed to observe the retrieval-extinction phenomenon (Chalkia et al., 2020), and the work presented here is written as if the phenomenon under consideration is robust and replicable. This needs to be acknowledged.

      We thank the reviewer pointing out the related literature and have added a separate paragraph about other results in the discussion (as well as citing relevant references in the introduction) to provide a full picture of the reconsolidation theory to the audience:

      “It should be noted that while our long-term amnesia results were consistent with the fear memory reconsolidation literatures, there were also studies that failed to observe fear prevention (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; Schroyens et al., 2023). Although the memory reconsolidation framework provides a viable explanation for the long-term amnesia, more evidence is required to validate the presence of reconsolidation, especially at the neurobiological level (Elsey et al., 2018). While it is beyond the scope of the current study to discuss the discrepancies between these studies, one possibility to reconcile these results concerns the procedure for the retrieval-extinction training. It has been shown that the eligibility for old memory to be updated is contingent on whether the old memory and new observations can be inferred to have been generated by the same latent cause (Gershman et al., 2017; Gershman and Niv, 2012). For example, prevention of the return of fear memory can be achieved through gradual extinction paradigm, which is thought to reduce the size of prediction errors to inhibit the formation of new latent causes (Gershman, Jones, et al., 2013). Therefore, the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause. Furthermore, other studies highlighted the importance of memory storage per se and suggested that memory retention was encoded in the memory engram cell ensemble connectivity whereas the engram cell synaptic plasticity is crucial for memory retrieval (Ryan et al., 2015; Tonegawa, Liu, et al., 2015; Tonegawa, Pignatelli, et al., 2015). It remains to be tested how the cue-independent short-term and cue-dependent long-term amnesia effects we observed could correspond to the engram cell synaptic plasticity and functional connectivity among engram cell ensembles (Figure 6). This is particularly important, since the cue-independent characteristic of the short-term amnesia suggest that either different memory cues fail to evoke engram cell activities, or the retrieval-extinction training transiently inhibits connectivity among engram cell ensembles. Finally, SCR is only one aspect of the fear expression, how the retrieval-extinction paradigm might affect subjects’ other emotional (such as the startle response) and cognitive fear expressions such as reported fear expectancy needs to be tested in future studies since they do not always align with each other (Kindt et al., 2009; Sevenster et al., 2012, 2013).”

      The parallels between the current findings and the memory suppression literature are speculated in the general discussion, and there is the conclusion that "the retrieval-extinction procedure might facilitate a spontaneous memory suppression process". Because one of the basic tenets of the memory suppression literature is that it reflects an "active suppression" process, there is no reason to believe that in the current paradigm, the same phenomenon is in place, but instead, it is "automatic". In other words, the conclusions make strong parallels with the memory suppression (and cognitive control) literature, yet the phenomena that they observed are thought to be passive (or spontaneous/automatic).

      Ultimately, it is unclear why 10 mins between the reminder and extinction learning will "automatically" suppress fear memories. Further down in the discussion, it is argued that "For example, in the well-known retrieval-induced forgetting (RIF) phenomenon, the recall of a stored memory can impair the retention of related long-term memory and this forgetting effect emerges as early as 20 minutes after the retrieval procedure, suggesting memory suppression or inhibition can occur in a more spontaneous and automatic manner". I did not follow with the time delay between manipulation and test (20 mins) would speak about whether the process is controlled or automatic.

      In our previous research, we showed that the memory suppression instruction together with the extinction procedure successfully prevented the return of fear expression in the reinstatement test trials 30mins after the extinction training (Wang et al., 2021). In the current experiments, we replaced the suppression instruction with the retrieval cue before the extinction training (retrieval-extinction protocol) and observed similar short-term amnesia effects. These results prompted us to hypothesize in the discussion that the retrieval cue might facilitate an automatic suppression process. We made the analogy to RIF phenomenon in the discussion to suggest that the suppression of (competing) memories could be unintentional and fast (20 mins), both of which were consistent with our results. We agree with the reviewer that this hypothesis is more of a speculation (hence in the discussion), and more studies are required to further test such a hypothesis. However, what we want to emphasize in this paper is the report of the short-term amnesia effects which were clearly not related to the memory reconsolidation effect in a variety of aspects.

      Among the many conclusions, one is that the current study uncovers the "mechanism" underlying the short-term effects of retrieval extinction. There is little in the current report that uncovers the mechanism, even in the most psychological sense of the mechanism, so this needs to be clarified. The same applies to the use of "adaptive".

      Whilst I could access the data on the OFS site, I could not make sense of the Matlab files as there is no signposting indicating what data is being shown in the files. Thus, as it stands, there is no way of independently replicating the analyses reported.

      We have re-organized data on the OFS site, and they should be accessible now.

      The supplemental material shows figures with all participants, but only some statistical analyses are provided, and sometimes these are different from those reported in the main manuscript. For example, the test data in Experiment 1 is analysed with a two-way ANOVA with the main effects of group (reminder vs no-reminder) and time (last trial of extinction vs first trial of the test) in the main report. The analyses with all participants in the sup mat used a mixed two-way ANOVA with a group (reminder vs no reminder) and CS (CS+ vs CS-). This makes it difficult to assess the robustness of the results when including all participants. In addition, in the supplementary materials, there are no figures and analyses for Experiment 3.

      We are sorry for the lack of clarity in the supplementary materials. We have supplementary figures Fig. S1 & S2 for the data re-analysis with all the responders (learners + non-learners). The statistical analyses performed on the responders in both figures yielded similar results as those in the main text. For other analyses reported in the supplementary materials, we specifically provided different analysis results to demonstrate the robustness of our results. For example, to rule out the effects we observed in two-way ANOVA in the main text may be driven by the different SCR responses on the last extinction trial, we only tested the two-way ANOVA for the first trial SCR of test phase and these analyses provided similar results. Please note we did not include non-learners in these analyses (the texts of the supplementary materials).

      Since we did not exclude any non-learners in study 3, all the results were already reported in the main text.

      One of the overarching conclusions is that the "mechanisms" underlying reconsolidation (long term) and memory suppression (short term) phenomena are distinct, but memory suppression phenomena can also be observed after a 7-day retention interval (Storm et al., 2012), which then questions the conclusions achieved by the current study.

      As we stated before, the focus of the manuscript was to demonstrate a novel short-term fear amnesia effect following the retrieval-extinction procedure. We discussed memory suppression as one of the potential mechanisms for such a short-term effect. In fact, the durability of the memory suppression effect is still under debate. Although Storm et al. (2012) suggested that the retrieval-induced forgetting can persist for as long as a week, other studies, however, failed to observe long-term forgetting (after 24 hrs; (Carroll et al., 2007, Chan, 2009). It is also worth noting that Storm et al. (2012) tested RIF one week later using half of the items the other half of which were tested 5 minutes after the retrieval practice. Therefore, it can be argued that there is a possibility that the long-term RIF effect is contaminated by the test/re-test process on the same set of (albeit different) items at different time onsets (5mins & 1 week).

      Reviewer #3 (Public Review):

      (1) The entire study hinges on the idea that there is memory 'suppression' if (1) the CS+ was reminded before extinction and (2) the reinstatement and memory test takes place 30 minutes later (in Studies 1 & 2). However, the evidence supporting this suppression idea is not very strong. In brief, in Study 1, the effect seems to only just reach significance, with a medium effect size at best, and, moreover, it is unclear if this is the correct analysis (which is a bit doubtful, when looking at Figure 1D and E). In Study 2, there was no optimal control condition without reminder and with the same 30-min interval (which is problematic, because we can assume generalization between CS1+ and CS2+, as pointed out by the authors, and because generalization effects are known to be time-dependent). Study 3 is more convincing, but entails additional changes in comparison with Studies 1 and 2, i.e., applications of cTBS and an interval of 1 hour instead of 30 minutes (the reason for this change was not explained). So, although the findings of the 3 studies do not contradict each other and are coherent, they do not all provide strong evidence for the effect of interest on their own.

      Related to the comment above, I encourage the authors to double-check if this statement is correct: "Also, our results remain robust even with the "non-learners" included in the analysis (Fig. S1 in the Supplemental Material)". The critical analysis for Study 1 is a between-group comparison of the CS+ and CS- during the last extinction trial versus the first test trial. This result only just reached significance with the selected sample (p = .048), and Figures 1D and E even seem to suggest otherwise. I doubt that the analysis would reach significance when including the "non-learners" - assuming that this is what is shown in Supplemental Figure 1 (which shows the data from "all responded participants").

      Our subjects were categorized based on the criteria specified in supplementary table S1. More specifically, we excluded the non-responders (Mean CS SCR < 0.02 uS  in the fear acquisition phase), and non-learners and focused our analyses on the learners. Non-responders were dismissed after day 1 (the day of fear acquisition), but both learners and non-learners finished the experiments. This fact gave us the opportunity to examine data for both the learners and the responders (learners + non-learners). What we showed in fig. 1D and E were differential SCRs (CS+ minus CS-) of the last extinction trials and the differential fear recovery indices (CS+ minus CS-), respectively. We have double checked the figures and both the learners (Fig. 1) and the responders (i.e. learners and non-learners, supplementary Fig. 1) results showed significant differences between the reminder and no-reminder groups on the differential fear recovery index.

      Also related to the comment above, I think that the statement "suggesting a cue-independent short-term amnesia effect" in Study 2 is not correct and should read: "suggesting extinction of fear to the CS1+ and CS2+", given that the response to the CS+'s is similar to the response to the CS-, as was the case at the end of extinction. Also the next statement "This result indicates that the short-term amnesia effect observed in Study 2 is not reminder-cue specific and can generalize to the non-reminded cues" is not fully supported by the data, given the lack of an appropriate control group in this study (a group without reinstatement). The comparison with the effect found in Study 1 is difficult because the effect found there was relatively small (and may have to be double-checked, see remarks above), and it was obtained with a different procedure using a single CS+. The comparison with the 6-h and 24-h groups of Study 2 is not helpful as a control condition for this specific question (i.e., is there reinstatement of fear for any of the CS+'s) because of the large procedural difference with regard to the intervals between extinction and reinstatement (test).

      In Fig. 2e, we showed the differential fear recovery indices (FRI) for the CS+ in all three groups. Since the fear recovery index (FRI) was calculated as the SCR difference between the first test trial and the last extinction trial for any CS, the differential fear recovery indices (difference between CS+ FRI and CS- FRI) not significantly different from 0 should be interpreted as the lack of fear expression in the test phase. Since spontaneous recovery, reinstatement and renewal are considered canonical phenomena in demonstrating that extinction training does not really “erase” conditioned fear response, adding the no-reinstatement group as a control condition would effectively work as the spontaneous recovery group and the comparison between the reinstatement and no-instatement groups turns into testing the difference in fear recovery using different methods (reinstatement vs. spontaneous recovery).

      (2) It is unclear which analysis is presented in Figure 3. According to the main text, it either shows the "differential fear recovery index between CS+ and CS-" or "the fear recovery index of both CS1+ and CS2+". The authors should clarify what they are analyzing and showing, and clarify to which analyses the ** and NS refer in the graphs. I would also prefer the X-axes and particularly the Y-axes of Fig. 3a-b-c to be the same. The image is a bit misleading now. The same remarks apply to Figure 5.

      We are sorry about the lack of clarity here. Figures 3 & 5 showed the correlational analyses between TCAQ and the differential fear recovery index (FRI) between CS+ and CS-. That is, the differential FRI of CS1+ (CS1+ FRI minus CS- FRI) and the differential FRI of CS2+ (CS2+ FRI minus CS- FRI).

      We have rescaled both X and Y axes for figures 3 & 5 (please see the revised figures). 

      (3) In general, I think the paper would benefit from being more careful and nuanced in how the literature and findings are represented. First of all, the authors may be more careful when using the term 'reconsolidation'. In the current version, it is put forward as an established and clearly delineated concept, but that is not the case. It would be useful if the authors could change the text in order to make it clear that the reconsolidation framework is a theory, rather than something that is set in stone (see e.g., Elsey et al., 2018 (https://doi.org/10.1037/bul0000152), Schroyens et al., 2022 (https://doi.org/10.3758/s13423-022-02173-2)).

      In addition, the authors may want to reconsider if they want to cite Schiller et al., 2010 (https://doi.org/10.1038/nature08637), given that the main findings of this paper, nor the analyses could be replicated (see, Chalkia et al., 2020 (https://doi.org/10.1016/j.cortex.2020.04.017; https://doi.org/10.1016/j.cortex.2020.03.031).

      We thank the reviewer’s comments and have incorporated the mentioned papers into our revised manuscript by pointing out the extant debate surrounding the reconsolidation theory in the introduction:

      “Pharmacological blockade of protein synthesis and behavioral interventions can both eliminate the original fear memory expression in the long-term (24 hours later) memory test ( Lee, 2008; Lee et al., 2017; Schiller et al., 2013; Schiller et al., 2010), resulting in the cue-specific fear memory deficit (Debiec et al., 2002; Lee, 2008; Nader, Schafe, & LeDoux, 2000). For example, during the reconsolidation window, retrieving a fear memory allows it to be updated through extinction training (i.e., the retrieval-extinction paradigm (Lee, 2008; Lee et al., 2017; Schiller et al., 2013; Schiller et al., 2010), but also see (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; D. Schiller, LeDoux, & Phelps, 2020). ”

      As well as in the discussion:

      “It should be noted that while our long-term amnesia results were consistent with the fear memory reconsolidation literatures, there were also studies that failed to observe fear prevention (Chalkia, Schroyens, et al., 2020; Chalkia, Van Oudenhove, et al., 2020; Schroyens et al., 2023). Although the memory reconsolidation framework provides a viable explanation for the long-term amnesia, more evidence is required to validate the presence of reconsolidation, especially at the neurobiological level (Elsey et al., 2018). While it is beyond the scope of the current study to discuss the discrepancies between these studies, one possibility to reconcile these results concerns the procedure for the retrieval-extinction training. It has been shown that the eligibility for old memory to be updated is contingent on whether the old memory and new observations can be inferred to have been generated by the same latent cause (Gershman et al., 2017; Gershman and Niv, 2012). For example, prevention of the return of fear memory can be achieved through gradual extinction paradigm, which is thought to reduce the size of prediction errors to inhibit the formation of new latent causes (Gershman, Jones, et al., 2013). Therefore, the effectiveness of the retrieval-extinction paradigm might depend on the reliability of such paradigm in inferring the same underlying latent cause. Furthermore, other studies highlighted the importance of memory storage per se and suggested that memory retention was encoded in the memory engram cell ensemble connectivity whereas the engram cell synaptic plasticity is crucial for memory retrieval (Ryan et al., 2015; Tonegawa, Liu, et al., 2015; Tonegawa, Pignatelli, et al., 2015). It remains to be tested how the cue-independent short-term and cue-dependent long-term amnesia effects we observed could correspond to the engram cell synaptic plasticity and functional connectivity among engram cell ensembles (Figure 6). This is particularly important, since the cue-independent characteristic of the short-term amnesia suggest that either different memory cues fail to evoke engram cell activities, or the retrieval-extinction training transiently inhibits connectivity among engram cell ensembles. Finally, SCR is only one aspect of the fear expression, how the retrieval-extinction paradigm might affect subjects’ other emotional (such as the startle response) and cognitive fear expressions such as reported fear expectancy needs to be tested in future studies since they do not always align with each other (Kindt et al., 2009; Sevenster et al., 2012, 2013).”

      Relatedly, it should be clarified that Figure 6 is largely speculative, rather than a proven model as it is currently presented. This is true for all panels, but particularly for panel c, given that the current study does not provide any evidence regarding the proposed reconsolidation mechanism.

      We agree with the reviewer that Figure 6 is largely speculative. We realize that there are still debates regarding the retrieval-extinction procedure and the fear reconsolidation hypothesis. We have provided a more elaborated discussion and pointed out that figure 6 is only a working hypothesis and more work should be done to test such a hypothesis:

      “Although mixed results have been reported regarding the durability of suppression effects in the declarative memory studies (Meier et al., 2011; Storm et al., 2012), future research will be needed to investigate whether the short-term effect we observed is specifically related to associative memory or the spontaneous nature of suppression (Figure 6C).”

      Lastly, throughout the paper, the authors equate skin conductance responses (SCR) with fear memory. It should at least be acknowledged that SCR is just one aspect of a fear response, and that it is unclear whether any of this would translate to verbal or behavioral effects. Such effects would be particularly important for any clinical application, which the authors put forward as the ultimate goal of the research.

      Again, we agree with the reviewer on this issue, and we have acknowledged that SCR is only one aspect of the fear response and caution should be exerted in clinical application:

      “Finally, SCR is only one aspect of the fear expression, how the retrieval-extinction paradigm might affect subjects’ other emotional (such as the startle response) and cognitive fear expressions such as reported fear expectancy needs to be tested in future studies since they do not always align with each other (Kindt et al., 2009; Sevenster et al., 2012, 2013).”

      (4) The Discussion quite narrowly focuses on a specific 'mechanism' that the authors have in mind. Although it is good that the Discussion is to the point, it may be worthwhile to entertain other options or (partial) explanations for the findings. For example, have the authors considered that there may be an important role for attention? When testing very soon after the extinction procedure (and thus after the reminder), attentional processes may play an important role (more so than with longer intervals). The retrieval procedure could perhaps induce heightened attention to the reminded CS+ (which could be further enhanced by dlPFC stimulation)?

      We thank the reviewer for this suggestion and have added more discussion on the potential mechanisms involved. Unfortunately, since the literature on attention and fear recovery is rather scarce, it is even more of a speculation given our study design and results are mainly about subjects’ skin conductance responses (SCR).

      (5) There is room for improvement in terms of language, clarity of the writing, and (presentation of the) statistical analyses, for all of which I have provided detailed feedback in the 'Recommendations for the authors' section. Idem for the data availability; they are currently not publicly available, in contrast with what is stated in the paper. In addition, it would be helpful if the authors would provide additional explanation or justification for some of the methodological choices (e.g., the 18-s interval and why stimulate 8 minutes after the reminder cue, the choice of stimulation parameters), and comment on reasons for (and implications of) the large amount of excluded participants (>25%).

      We have addressed the data accessibility issue and added the justifications for the methodological choices as well as the excluded participants. As we mentioned in the manuscript and the supplementary materials, adding the non-learners into data analysis did not change the results. Since the non-responders discontinued after Day 1 due to their non-measurable spontaneous SCR signals towards different CS, it’s hard to speculate whether or how the results might have changed. However, participants’ exclusion rate in the SCR studies were relatively high (Hu et al., 2018, Liu et al., 2014, Raio et al., 2017, Schiller et al., 2010, Schiller et al., 2012, Wang et al., 2021). The non-responders were mostly associated with participants being tested in the winter in our tasks. Cold weather and dry skins in the winter are likely to have caused the SCR hard to measure (Bauer et al., 2022, Vila, 2004). Different intervals between the reinstating US (electric shock) and the test trials were used in the previous literature such as 10min (Schiller et al., 2010, Schiller et al., 2013) and 18 or 19s (Kindt and Soeter, 2018, Kindt et al., 2009, Wang et al., 2021). We stuck with the 18s reinstatement interval in the current experiment. For the cTBS stimulation, since the stimulation itself lasted less than 2mins, we started the cTBS 8min after the onset of reminder cue to ensure that any effect caused by the cTBS stimulation occurred during the hypothesized time window, where the old fear memory becomes labile after memory retrieval. All the stimulation parameters were determined based on previous literature, which showed that with the transcranial magnetic stimulation (TMS) on the human dorsolateral prefrontal cortex could disrupt fear memory reconsolidation (Borgomaneri et al., 2020, Su et al., 2022).

      Finally, I think several statements made in the paper are overly strong in light of the existing literature (or the evidence obtained here) or imply causal relationships that were not directly tested.

      We have revised the texts accordingly.

      Reviewer #2 (Recommendations For The Authors):

      On numerous occasions there are typos and the autocorrect has changed "amnesia" for "dementia".

      We are sorry about this mistake and have revised the text accordingly.

      Reviewer #3 (Recommendations For The Authors):

      *"Neither of the studies reported in this article was preregistered. The data for both studies are publicly accessible at https://osf.io/9agvk". This excerpt from the text suggests that there are 2 studies, but there are 3 in the paper. Also, the data are only accessible upon request, not publicly available. I haven't requested them, as this could de-anonymize me as a reviewer.

      We are sorry for the accessibility of the link. The data should be available to the public now.

      *Please refrain from causal interpretations when they are not supported by the data:

      - Figure 3 "thought-control ability only affected fear recovery"; a correlation does not provide causal evidence.

      - "establishing a causal link between the dlPFC activity and short-term fear amnesia." I feel this statement is too strong; to what extent do we know for sure what the applied stimulation of (or more correct: near) the dlPFC does exactly?

      We thank the reviewer for the suggestion and have changed the wording related to figure 3. On the other hand, we’d like to argue that the causal relationship between the dlPFC activity and short-term fear amnesia is supported by the results from study 3. Although the exact functional role of the TMS on dlPFC can be debated, the fact that the TMS stimulation on the dlPFC (compared to the vertex group) brought back the otherwise diminished fear memory expression can be viewed as the causal evidence between the dlPFC activity and short-term fear amnesia.

      *The text would benefit from language editing, as it contains spelling and grammar mistakes, as well as wording that is vague or inappropriate. I suggest the authors check the whole text, but below are already some excerpts that caught my eye:

      "preludes memory reconsolidation"; "old fear memory can be updated"; "would cause short-term memory deficit"; "the its functional coupling"; "Subjects (...) yielded more severe amnesia in the memory suppression tasks"; "memory retrieval might also precipitate a short-term amnesia effect"; "more SEVERE amnesia in the memory suppression tasks"; "the effect size of reinstatement effect"; "the previous literatures"; "towards different CS"; "failed to show SCR response to the any stimuli"; "significant effect of age of TMS"; "each subject' left hand"; "latter half trials"; "Differntial fear recovery"; "fear dementia"; "the fear reinstatement effects at different time scale is related to"; "fear reocery index"; "thought-control abiliites"; "performed better in motivated dementia"; "we tested that in addition to the memory retrieval cue (reminder), whether the"; "during reconsolidation window"; "consisitent with the short-term dementia"; "low level of shock (5v)"

      We thank the reviewer for thorough reading and sorry about typos in the manuscript. We have corrected typos and grammar mistakes as much as we can find.

      *In line with the remark above, there are several places where the text could still be improved.

      - The last sentence of the Abstract is rather vague and doesn't really add anything.

      - Please reword or clarify: "the exact functional role played by the memory retrieval remains unclear".

      - Please reword or clarify: "the unbinding of the old memory trace".

      - "suggesting that the fear memory might be amenable to a more immediate effect, in addition to what the memory reconsolidation theory prescribes" shouldn't this rather read "in contrast with"?

      We have modified the manuscript.

      - In the Introduction, the authors state: "Specifically, memory reconsolidation effect will only be evident in the long-term (24h) memory test due to its requirement of new protein synthesis and is cue-dependent". They then continue about the more immediate memory update mechanisms that they want to study, but it is unclear from how the rationale is presented whether (and why (not)) they also expect this mechanism to be cue-dependent.

      Most of the previous studies on the fear memory reconsolidation using CS as the memory retrieval cues have demonstrated that the reconsolidation effect is cue-dependent (Kindt and Soeter, 2018, Kindt et al., 2009, Monfils et al., 2009, Nader et al., 2000, Schiller et al., 2013, Schiller et al., 2010, Xue et al., 2012). However, other studies using unconditioned stimulus retrieval-extinction paradigm showed that such protocol was able to prevent the return of fear memory expression associated with different CSs (Liu et al., 2014, Luo et al., 2015). In our task, we used CS+ as the memory retrieval cues and our results were consistent with results from previous studies using similar paradigms.

      - "The effects of cTBS over the right dlPFC after the memory reactivation were assessed using the similar mixed-effect four-way ANOVA". Please clarify what was analyzed here.<br /> - "designing novel treatment of psychiatric disorders". Please make this more concrete or remove the statement.

      This sentence was right after a similar analysis performed in the previous paragraph. While the previous graph focused on how the SCRs in the acquisition phase were modulated by factors such as CS+ (CS1+ and CS2+), reminder (reminder vs. no-reminder), cTBS site (right dlPFC vs. vertex) and trial numbers, this analysis focused instead on the SCR responses in the extinction training phase. We have made the modifications as the reviewer suggested.

      *I have several concerns related to the (presentation) of the statistical analyses/results:<br /> - Some statistical analyses, as well as calculation of certain arbitrary indices (e.g., differential fear recovery index) are not mentioned nor explained in the Methods section, but only mentioned in the Results section.

      We have added the explanation of the differential fear recovery index into the methods section:

      “To measure the extent to which fear returns after the presentation of unconditioned stimuli (US, electric shock) in the test phase, we defined the fear recovery index as the SCR difference between the first test trial and the last extinction trial for a specific CS for each subject. Similarly, in studies 2 and 3, differential fear recovery index was defined as the difference between fear recovery indices of CS+ and CS- for both CS1+ and CS2+.”

      - Figure 1C-E: It is unclear what the triple *** mean. Do they have the same meaning in Figure 1C and Figure 1E? I am not sure that that makes sense. The meaning is not explained in the figure caption (I think it is different from the single asterisk*) and is not crystal clear from the main text either.

      We explained the triple *** in the figure legend (Fig. 1): ***P < 0.001. The asterisk placed within each bar in Figure 1C-E indicates the statistical results of the post-hoc test of whether each bar was significant. For example, the *** placed inside bars in Figure 1E indicates that the differential fear recovery index is statistically significant in the no-reminder group (P < 0.001).

      - Supplemental Figure 1: "with all responded participants" Please clarify how you define 'responded participants' and include the n's.

      We presented the criteria for both the responder/non-responder and the learner/non-learner in the table of the supplementary materials and reported the number of subjects in each category (please see supplement Table 1).

      - "the differential SCRs (difference between CS+ and CS-) for the CS+". Please clarify what this means and/or how it is calculated exactly.

      Sorry, it means the difference between the SCRs invoked by CS+ and CS- for both CS1+ (CS1+ minus CS-) and CS2+ (CS2+ minus CS-).

      *I suggest that the authors provide a bit more explanation about the thought-control ability questionnaire. For example, the type of items, etc, as this is not a very commonly used questionnaire in the fear conditioning field.

      We provided a brief introduction to the thought-control ability questionnaire in the methods section:

      “The control ability over intrusive thought was measured by the 25-item Thought-Control Ability Questionnaire (TCAQ) scle(30). Participants were asked to rate on a five-point Likert-type scale the extent to which they agreed with the statement from 1 (completely disagree) to 5 (completely agree). At the end of the experiments, all participants completed the TCAQ scale to assess their perceived control abilities over intrusive thoughts in daily life(17).”

      We have added further description of the item types to the TCAQ scale.

      *The authors excluded more than 25% of the participants. It would be interesting to hear reasons for this relatively large number and some reflection on whether they think this selection affects their results (e.g., could being a (non)responder in skin conductance influence the susceptibility to reactivation-extinction in some way?).

      Participants exclusion rate in the SCR studies were relatively high (Hu et al., 2018, Liu et al., 2014, Raio et al., 2017, Schiller et al., 2010, Schiller et al., 2012, Wang et al., 2021). The non-responders were mostly associated with participants being tested in the winter in our tasks. Cold weather and dry skins in the winter are likely to have caused the SCR hard to measure (Bauer et al., 2022, Vila, 2004).

      *Minor comments that the authors may want to consider:

      - Please explain abbreviations upon first use, e.g., TMS.

      - In Figure 6, it is a bit counterintuitive that the right Y-axis goes from high to low.

      We added the explanation of TMS:

      “Continuous theta burst stimulation (cTBS), a specific form of repetitive transcranial magnetic stimulation (rTMS)…”

      We are sorry and agree that the right Y-axis was rather counterintuitive. However, since the direction of the fear recovery index (which was what we measured in the experiment) and the short/long-term amnesia effect are of the opposite directions, plotting one index from low to high would inevitably cause the other index to go from high to low.

      Reference:

      Anderson, M. C. and Floresco, S. B. 2022. Prefrontal-hippocampal interactions supporting the extinction of emotional memories: The retrieval stopping model. Neuropsychopharmacology, 47, 180-195.

      Anderson, M. C. and Green, C. 2001. Suppressing unwanted memories by executive control. Nature, 410, 366-9.

      Bauer, E. A., Wilson, K. A. and Macnamara, A. 2022. 3.03 - cognitive and affective psychophysiology. In: ASMUNDSON, G. J. G. (ed.) Comprehensive clinical psychology (second edition). Oxford: Elsevier.

      Baum, M. 1968. Reversal learning of an avoidance response and the kamin effect. J Comp Physiol Psychol, 66, 495-7.

      Borgomaneri, S., Battaglia, S., Garofalo, S., Tortora, F., Avenanti, A. and Di Pellegrino, G. 2020. State-dependent tms over prefrontal cortex disrupts fear-memory reconsolidation and prevents the return of fear. Curr Biol, 30, 3672-3679.e4.

      Cain, C. K., Blouin, A. M. and Barad, M. 2003. Temporally massed cs presentations generate more fear extinction than spaced presentations. J Exp Psychol Anim Behav Process, 29, 323-33.

      Carroll, M., Campbell-Ratcliffe, J., Murnane, H. and Perfect, T. 2007. Retrieval-induced forgetting in educational contexts: Monitoring, expertise, text integration, and test format. European Journal of Cognitive Psychology, 19, 580-606.

      Chan, J. C. K. 2009. When does retrieval induce forgetting and when does it induce facilitation? Implications for retrieval inhibition, testing effect, and text processing. Journal of Memory and Language, 61, 153-170.

      Gagnepain, P., Henson, R. N. and Anderson, M. C. 2014. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition. Proc Natl Acad Sci U S A, 111, E1310-9.

      Gershman, S. J., Jones, C. E., Norman, K. A., Monfils, M. H. and Niv, Y. 2013. Gradual extinction prevents the return of fear: Implications for the discovery of state. Front Behav Neurosci, 7, 164.

      Gershman, S. J., Monfils, M. H., Norman, K. A. and Niv, Y. 2017. The computational nature of memory modification. Elife, 6.

      Hu, J., Wang, W., Homan, P., Wang, P., Zheng, X. and Schiller, D. 2018. Reminder duration determines threat memory modification in humans. Sci Rep, 8, 8848.

      Kamin, L. J. 1957. The retention of an incompletely learned avoidance response. J Comp Physiol Psychol, 50, 457-60.

      Kindt, M. and Soeter, M. 2018. Pharmacologically induced amnesia for learned fear is time and sleep dependent. Nat Commun, 9, 1316.

      Kindt, M., Soeter, M. and Vervliet, B. 2009. Beyond extinction: Erasing human fear responses and preventing the return of fear. Nat Neurosci, 12, 256-8.

      Liu, J., Zhao, L., Xue, Y., Shi, J., Suo, L., Luo, Y., Chai, B., Yang, C., Fang, Q., Zhang, Y., Bao, Y., Pickens, C. L. and Lu, L. 2014. An unconditioned stimulus retrieval extinction procedure to prevent the return of fear memory. Biol Psychiatry, 76, 895-901.

      Luo, Y.-X., Xue, Y.-X., Liu, J.-F., Shi, H.-S., Jian, M., Han, Y., Zhu, W.-L., Bao, Y.-P., Wu, P., Ding, Z.-B., Shen, H.-W., Shi, J., Shaham, Y. and Lu, L. 2015. A novel ucs memory retrieval-extinction procedure to inhibit relapse to drug seeking. Nature Communications, 6, 7675.

      Monfils, M. H., Cowansage, K. K., Klann, E. and Ledoux, J. E. 2009. Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324, 951-5.

      Nader, K., Schafe, G. E. and Le Doux, J. E. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature, 406, 722-6.

      Raio, C. M., Hartley, C. A., Orederu, T. A., Li, J. and Phelps, E. A. 2017. Stress attenuates the flexible updating of aversive value. Proc Natl Acad Sci U S A, 114, 11241-11246.

      Schiller, D., Kanen, J. W., Ledoux, J. E., Monfils, M. H. and Phelps, E. A. 2013. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proc Natl Acad Sci U S A, 110, 20040-5.

      Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., Ledoux, J. E. and Phelps, E. A. 2010. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463, 49-53.

      Schiller, D., Raio, C. M. and Phelps, E. A. 2012. Extinction training during the reconsolidation window prevents recovery of fear. J Vis Exp, e3893.

      Su, S., Deng, J., Yuan, K., Gong, Y., Zhang, Y., Li, H., Cao, K., Huang, X., Lin, X., Wu, P., Xue, Y., Bao, Y., Shi, J., Shi, L. and Lu, L. 2022. Continuous theta-burst stimulation over the right dorsolateral prefrontal cortex disrupts fear memory reconsolidation in humans. iScience, 25, 103614.

      Vila, J. 2004. Psychophysiological assessment. In: SPIELBERGER, C. D. (ed.) Encyclopedia of applied psychology. New York: Elsevier.

      Wang, Y., Zhu, Z., Hu, J., Schiller, D. and Li, J. 2021. Active suppression prevents the return of threat memory in humans. Commun Biol, 4, 609.

      Xue, Y. X., Luo, Y. X., Wu, P., Shi, H. S., Xue, L. F., Chen, C., Zhu, W. L., Ding, Z. B., Bao, Y. P., Shi, J., Epstein, D. H., Shaham, Y. and Lu, L. 2012. A memory retrieval-extinction procedure to prevent drug craving and relapse. Science, 336, 241-5.

      Zhu, Z., Anderson, M. C. and Wang, Y. 2022. Inducing forgetting of unwanted memories through subliminal reactivation. Nature communications, 13, 6496-6496.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements

      We thank the reviewers for their thorough evaluation of this manuscript. We are pleased that overall, they found our work and results valuable for the scientific community. Based on their feedback, we performed additional experiments and made several changes to strengthen the manuscript and expand the target audience.

      *All three reviewers pointed out that the manuscript lacked demonstration of OneSABER method applicability across sample types (i.e., its claimed versatility) and other whole-mount systems beyond the Macrostomum lignano flatworm. *

      We now include an additional results section with accompanying figures (Figs. 6 and 7) that demonstrate the application of OneSABER in whole-mount samples of another flatworm, the planarian Schmidtea mediterranea (Fig. 6), which is much larger than M. lignano, and in formalin-fixed paraffin-embedded (FFPE) mouse small intestine tissue sections (Fig. 7). We believe that these additional experiments on different sample types demonstrate the versatility of the OneSABER approach.

      Please note that two more authors, Jan Freark de Boer and Folkert Kuipers, have been added for their contribution to mouse FFPE sections.

      Furthermore, two reviewers asked for an additional main figure with a comparison of the signal strengths between the different OneSABER methods.

      We have addressed this comment by including an additional results section and its adjacent figure (Fig. 5), where we provide a comparison of fluorescent signals from the same probes and gene but different OneSABER development methods.

      Additionally, to implement the revisions, we modified Fig. 1 and Supplementary Fig. 6 and broadened Supplementary Tables S1-S2, S4-S6.

      2. Point-by-point description of the revisions

      Reviewer #1

      1) “Fig.1 seems to suggest that the protocol for in vitro swapping of 3' concatemers happens in two consecutive PCR steps. I recommend indicating in the figure that the switching can be conducted in a single in vitro reaction.”

      We have changed Fig. 1 to make this clearer.

      2) “Is it possible to multiplex the switching in one single reaction? For example, perform p27 to p28 and p29 to p30 simultaneously? This will be crucial for the split-probe methodology.”

      We did not test it. This should be possible if there is no overlap between the 3’ initiator sequences. However, it seems counterproductive as the elongation efficiencies of switching reactions from the 3’ initiator sequences to another concatemer may vary (Supplementary Fig. S6). Running independent extension/switch reactions and performing equimolar mixing of purified extended probes could be a better solution.

      3) “Did the authors encounter any switching hairpins sequence that does not work? If not, can they postulate, what are the requirements for the design of switching sequences.”

      The design criteria followed the requirements postulated in the original SABER article and its Supplementary Materials (Kishi et al 2019). All switching hairpins we tested in the pairs of the 3 used 3’ initiator sequences (p27, p28 and p30) worked, but elongation efficiencies varied (see an example in Supplementary Fig. S6).

      4) “Is there cross hybridization between the switched and original hairpins? For example, can the authors show that the signals from p27 and p30 do not overlaps?”

      The in situ hybridization results with swapped primary probes are shown in Fig. 6B (multiplexed HCR in S. mediterranea). All probes were originally designed using a p27 PER initiator. We swapped Smed-vit-1 with p30 and Smedwi-1 with p28. We also updated Fig. S6, by adding the second section (B) showing the in vitro results after concatemer swapping, as well as hybridization specificity of the secondary imager probes.

      5) “Can the authors quantify results from the direct, AP, TSA, and HCR? What do you mean by 'narrow anatomical structures like neural chords (syt11) or muscles (tnnt2) seem less visible'?”

      *“I agree with reviewer #2 regarding the lack of comparison to standard SABER.” *

      A comparison of fluorescent signals from the same probes/genes but different OneSABER development methods is shown in Fig. 5.

      We have rephrased the sentence for clarity. From “As a result, despite higher intracellular resolution, some narrow anatomical structures like neural chords (syt11) or muscles (tnnt2) seem less visible for the human eye after SABER HCR (Figs. 3, 4).” to “As a result, despite higher intracellular resolution, some fine anatomical structures like neural chords (syt11) or muscles (tnnt2) are less resolved by widefield fluorescence microscopy after SABER HCR FISH compared to SABER TSA FISH”

      Reviewer #2

      1) “This work is building on standard SABER (a set of PER-extended primary probes that serve as landing pads for secondary fluorescently-labeled readout oligos) and pSABER (the readout oligo carries HRP instead of a dye for downstream TSA). The novelty of the work presented here is introducing additional variations of signal amplification, i.e. by using an hapten-labeled oligo to recruit a tertiary readout probe (antibodies conjugated with HRP or AP) or using SABER in combination with HCR. Since SABER can be seen as the underlying platform and pSABER was (arguably) also already introduced as a new platform by Attar et al. 2023, it seems difficult to introduce OneSABER as yet another new platform, of which standard SABER and pSABER are a part of. The reviewer encourages the authors to overthink the conceptual introduction, which in view of its certainly distinct novel features might allow a clearer distinction to previous work.”

      We agree with the reviewer’s comments. We have added additional information in the Introduction section to clarify the novelty and key distinct features of OneSABER that justify its separation from other SABER protocols.

      2) “Although the authors take care in tributing prior work, some of the studies are only mentioned in the results section, one of such cases is pSABER by Attar et al. 2023. The close relation between pSABER and SABER TSA (HRP on readout oligo vs. hapten on readout oligo + HRP-conjugated antibody) needs to be better positioned in the introduction, clearly framing earlier work, inspirations drawn etc.. This is in line with my previous point.”

      The pSABER preprint article by Attar et al. 2023 (now published in a peer-reviewed journal as Attar et al. 2025) is now mentioned in the Introduction, and its inspirational impact on our research is clearly stated.

      3) “Fig. 1 lists the individual modules of the OneSABER platform: i) standard SABER, ii) AP SABER, iii) SABER TSA, iv) pSABER (TSA FISH) (would recommend leaving it with original name when introducing it and include additional explanation in parentheses) and iv) SABER HCR. The main figures feature only AP SABER, SABER TSA and SABER HCR, for standard SABER and pSABER one must look up the SI. Since the authors describe the limited performance of standard SABER for one of their targets of interest (syt11) and since they have tested this target for all five conditions, it would be valuable to include a comparative view of all five platform modules in a single figure for syt11 or even also piwi, which also seems to have been tested for all five. Comparing the signal strength would be useful for the community, at least of each SABER variation compared to standard SABER.”

      We agree with the reviewer’s comments. Except for pSABER, a comparison of fluorescence signals from the same probes/genes but different OneSABER development methods is shown in Fig. 5. To make the comparison as objective as possible, all FISH developments were re-done using available “far red” fluorophores, except for pSABER. Unfortunately, our directly labeled HRP oligonucleotides for pSABER lost their activity after a year of storage at +4oC. These conjugated oligonucleotides are very expensive and, given their limited shelf life, we cannot justify ordering a new batch for this experiment. Therefore, we only have the data for pSABER syt11 with FITC green tyramide, which is not comparable to “far red” fluorophore signals. This issue has also been discussed in the main text.

      In addition, we have modified Fig. 1, as suggested.

      4) “The description of how the authors designed their probes is very detailed and they also provide a nice step-by-step protocol for their individual commands using Oligominer and BLAT software. This reviewer is wondering how the authors chose their PER sequences that they appended to their mined set of homologous in situ hybridization probes (p27,p28,p30). This is a general problem of multiplexed ISH approaches with single-stranded overhang, could the author's comment on potential self-interaction of the appended sequence with the homologous part, which might limit the PER efficiency, or elaborate on their choice?”

      As being ourselves novice to SABER when we started our work, we based our selection of the p27, p28, and p30 PER sequences on their multiple co-occurrences in previous publications (Amamoto et al. 2019, doi: 10.7554/eLife.51452; Saka et al. 2019, doi: 10.1038/s41587-019-0207-y; Wang et al. 2020, doi: 10.1016/j.omtm.2020.10.003; Salinas-Saavedra et al. 2023, doi: 10.1016/j.celrep.2023.112687; and Attar et al. 2023, doi: 10.1101/2023.01.30.526264). We did not consider the potential interference between PER concatemers and homologous primary probe-binding sequences. However, as all PER concatemers were specifically designed to lack G nucleotides to keep them from self-annealing (Kishi et al. 2019, doi: 10.1038/s41592-019-0404-0), we assumed that it would also reduce potential annealing to the homologous part of the probe.

      5) “Fig.1 and l. 125 describe straightforward in vitro switching of the concatemer sequence for an existing set of primary probes as a central feature of the OneSABER platform. However, the authors to my knowledge do not show such experiments themselves and only cite the original SABER paper by Kishi et al. 2019. This reviewer would be grateful to be pointed toward where in Kishi et al. 2019 this was demonstrated, however in view of this central part of the swopping scheme in the OneSABER platform an experiment showing this swopping is missing.”

      In the article by Kishi et al. 2019, concatemer switching/swapping is termed as “primer remapping”. We found this term confusing because it does not describe the essence of the reaction. The in situ hybridization results with swapped primary probes are shown in Fig. 6B (multiplexed HCR in S. mediterranea). All probes were originally designed using a p27 PER initiator. We swapped Smed-vit-1 with p30 and Smewi-1 with p28. We also updated Fig. S6, by adding the second section (B) showing the in vitro results after concatemer swapping, as well as hybridization specificity of the secondary imager probes.

      6) “the description of Table S6 could use additional information in the legend such that the reader does not have to scroll down to Section S1 to retrieve the information (PER reaction, gel conditions, ladder is dsDNA, what are the individual bands)”

      Probably, the reviewer meant Fig. S6. We now wrote a more detailed caption for the figure and extended it with a second panel (B) to illustrate the results of 3’ concatemer swapping.

      7) “the manuscript features an extensive set of resources in main body, supplementary materials and protocols. It is important and usually not merited sufficiently making the effort to compare orthogonal approaches for a given aim. This reviewer particularly appreciates the detailed strengths & weaknesses discussion in Table S6.”

      We thank the reviewer for the appreciation of our work.

      8) “Minor comments:

      -Definitions should be consistent, in Fig. 1 all approaches are defined with FISH added, but this definition is not followed consistently in the main text.”

      These definitions are now made consistent throughout the text.

      9) “Optional:

      -The authors describe several newly developed optimization steps during sample preparation for M. lignano ISH experiments compared to established ones. If the data exists, they include a supplementary figure showing improvements of optimized protocol steps”

      As almost every step and the buffer recipes were different from the original ISH protocol by Pfister et al. (2007) because of the use of liquid-exchange columns, different probes, and development chemistry, we believe that a comparison would be excessive. We think that the key difference points are already substantially highlighted in the results section.

      Reviewer #3

      1) “Despite including a whole figure (Figure 1) featuring the operation scheme of the OneSABER platform, the figure as well as the associated text fall short with respect to clearly stating the advantage of the different aspects of the platform. Consider a clearer and more thorough explanation of the different aspects of the platfrom.”

      Details on the advantages and disadvantages of using different OneSABER methods in terms of their experimental application and cost efficiency are described in Supplementary Tables S4-S6 of the submitted manuscript. However, we agree that the description in Fig. 1 was too concise and also did not refer to these tables. We have expanded the description in Fig. 1.

      2) “Related to the first comment: A more detailed description of the similarities and/or differences of this platform relative to similar applications such as the study by Hall et al, 2024”

      The mere point of mentioning the preprint of Hall et al. 2024 (now peer-reviewed, https://doi.org/10.1016/j.celrep.2024.114892) was to acknowledge that in M. lignano the HCR technology has been previously applied (although only once), while all other previously published works on M. lignano utilized canonical antisense RNA probes colorimetric in situ hybridization. We have extensively mentioned the HCR approach and its working principles throughout the submitted manuscript.

      3) “The authors describe the probes used as short, synthetic DNA probes targeting short RNA transcripts. Are these probes Oligopaints (Beliveau et al, 2015)? Why is that not more clearly stated in the text?”

      Oligopaints use oligo libraries as a renewable source of FISH probes, and these libraries are amplified with fluorophore-conjugated PCR primers. We used synthetic DNA probes directly. In this sense, our probe sets are not oligopaints. However, we used the OligoMiner pipeline of Oligopaints for the design of the probes, and thus used the same tiling strategy as oligopaints. We believe that this has been explained in the manuscript. Please refer to comment 4 of Reviewer 2.

      4) “Line 105, p5: The authors state that the number of probes depends on the target RNA length and its expression strength. This data should be in the main text and described in detail since it is a major aspect of the platform design.”

      We believe that this statement is common sense, as one cannot design more than 5x 30-50 bp probes for 200 nt transcripts, while for a 2000 bp mRNA, the theoretical limit is ~50 probes. Similarly, weakly expressed genes (regardless of their length) would require either more probes to reach the detection threshold or stronger amplification through choice of concatemer length and/or signal developing techniques. We have rephrased this sentence in the main text to reflect this.

      5) “Figure 2 showcases one of the most compelling data supporting the versatility of the platform. Can the signals in each panel be quantified and compared to 1. Published Ab staining? Is there a clear correlation in the intensity of the signals? 2. Between Vector Blue and NBT? 3. Chemical staining and FISH signals?”

      Since M. lignano is a relatively new model, there are no published antibody stainings for M. lignano genes used in this study. Furthermore, colorimetric precipitate methods are not quantitative but rather qualitative, because their signal strength is proportional to both the target RNA level and the development time; thus, signals from weakly expressed transcripts can be “boosted” simply by longer development. Therefore, a correct quantitative comparison with colorimetric methods, as requested by the reviewer, was not possible. However, with some corrections on fluorophore differences and animal-to-animal variability, it is possible to roughly compare peak saturation intensities for FISH methods if the experiments are designed for this aim. We performed these experiments, and a comparison of fluorescent signals from the same probes/genes but different OneSABER development methods is shown in Fig. 5.

      Minor comments:

      6) “The whole mount images and signals are often diffuse, can they be visualized using a DIC where the morphology of the organism is clearer?”

      We are unsure which images appear to be diffused to the reviewer. The other reviewers have not pointed out similar issues. Perhaps the question resolves once full-resolution uncompressed images are uploaded.

      7) “In order to support the claim that this is a universal approach for whole-mount staining, can the authors show an example of applicability to C. elegans?”

      This is now addressed. We included two additional results sections with two accompanying figures (Figs. 6 and 7) that demonstrate OneSABER’s application in whole-mount samples of a much larger than M. lignano model flatworm, the planarian Schmidtea mediterranea (Fig. 6), as well as in formalin-fixed paraffin-embedded (FFPE) small intestine tissue sections of a mouse model (Fig. 7).

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1:

      The authors have thoroughly changed the manuscript and addressed most of my concerns. I appreciate adding the activity assays of the C115/120S mutants, however, I suggest that the authors embed and also discuss these data more clearly. It also escaped my attention earlier that the positioning of the disulfide bond is 117-122 in the deposited PDBs instead of 115-120. The authors should carefully check which positioning is correct here.

      We thank reviewer #1 for his or her careful assessment of our revised manuscript. As suggested, we detailed the results section “CrSBPase enzymatic activity” with additional numerical values, and discussed more clearly the comparisons of results for activity assays of mutants C115S and C120S in the section “Oligomeric states of CrSBPase”. Residues numbering was carefully proof-checked throughout the manuscript for correctness and homogeneity. C115 and C120 are numbered according to best databases consensus, ie. GenBank and Uniprot, and may differ from one database to another (including PDB) due to varying numbering rules. We clarified the chosen nomenclature in methods section “Cloning and mutagenesis of CrSBPase expression plasmids”.

      Line 246-250: I think it is evident that the two SBPase structures superpose well given the sequence identity of more than 70%. However, it would be great to include a superposition of the two structures in Figure 1, especially with regard to the region harboring C115 and C120.

      We added a panel showing superimposition of CrSBPase 7b2o and PpSBPase 5iz3 and made a close-up view around the region C115-C120 in supplementary figure 5. Given the density in information of figure 1 we prefer not to add additional images on it. Supplementary figure 5 was initially intended to illustrate sequence conservation/variation among homologs, thus fitting with the objective to compare past and present XRC results.

      Line 255-266: I am again missing a panel in Figure 1 here, e.g. a side-by-side view of Xray vs AF2/3 structure.

      We added another panel in supplementary figure 5 to visually compare side-by-side SBPase crystallographic structure 7b2o and our AF3 model. Again, for the sake of clarity we prefer not to overload figure 1 with additional panels. This will also enable thorough comparison of past XRC of PpSBPase, present XRC of CrSBPase, and various AF models (see below, oligomer comparisons).

      Line 261-266: Did the authors predict dimers and tetramers using AF3? What are the confidence metrics in this case? Do the authors see differences to the monomer prediction in case a multimer is confidently predicted?

      We modeled dimers and tetramers using AF3 and added them on supplementary figure 5 side by side with protomer of XRC model 7b2o and with monomer predicted by AF3. Color code for supplementary figure 5 panels F-H is according to AF standard representation of plDDT. Confidence metrics per residue correspond to very high reliability (navy blue) or, locally, confident prediction (cyan) and overall prediction scores range from pTM=0.85-0.91, a high-quality prediction. Interface prediction score is high for both dimer (ipTM=0.9) and tetramer (ipTM=0.82). We reported these data in supplementary figure 5 and corresponding updated legend. XRC and AF models all align with RMSD<0.5 Å, indicating a globally unchanged structure of the protomer in the various methods and oligomeric states.

      Line 441: How does the oligomeric equilibrium change in C115/120S mutants? This information should be added for the mutants. Besides, the mAU units in Fig. 6 could be normalized to allow an easier comparison between the chromatograms of wt and mutants.

      Change in oligomeric equilibrium is assessed by size-exclusion chromatography of WT and mutants C115S, C120S as reported in figure 6A. We made quantitative estimation of WT, and C115S and C120S mutants equilibrium by comparing maximal peak intensity and added this information in the text. Briefly, the oligomer ratio on a scale of 100 is 9:48:43 for WT, 42:25:33 for mutant C115S, and 29:17:54 for mutant C120S (ratio expressed as tetramer:dimer:monomer). We prefer not to normalize values of absorbance, but rather keep the actual measurement of absorbance at 280 nm on the chromatogram of figure 6, for the sake of consistency with the added text and for a more transparent report of the experiment.

      Line 447: WT activity is 12.15+-2.15 and both mutants have a higher activity. The authors should check if their values (96% and 107%) are correct. Besides, did the authors check if the increase in C120S is statistically significant? My impression is that both mutants have a higher activity than the wildtype, in both correlating with increased fractions of the tetramer. This would also make sense, as the corresponding region is part of the tetramer interface in the crystal packing.

      The reported activity values were checked for correctness. Wild-type SBPase specific activity at 12.5 ±2.15 µmol(NADPH) min<sup>-1</sup> mg(SBPase)<sup>-1</sup> was obtained by pre-incubating the enzyme with 1 µM CrTRXf2 supplemented with 1 mM DTT and 10 mM Mg<sup>2+</sup>, while the results of supplementary figure 14 reporting the comparison of activation of WT and mutants, with a variation of 107 or 96 %, were obtained with a slightly different protocol for pre-incubation of the enzyme with 10 mM DTT and 10 mM Mg<sup>2+</sup>. Please note that whether WT enzyme was assayed in 10 mM DTT 10 mM Mg or in 1 µM TRX 1 mM DTT 10 mM Mg, its specific activity appears equal within experimental error. Both mutants have nearly the same activity than the WT in the assay reported in supplementary figure 14: we fully agree that 107% (and 96%) variation is indeed not significant considering the uncertainty of the measurement (see error bars representing standard deviations of the mean in supplementary figure 14). We added this important information in the text. Even though both mutations stabilize the most active tetramer in untreated recombinant protein, we think that after reducting treatment both WT and mutants all reach the same maximal activity because they all form an equivalent proportion of the active tetramer versus alternative oligomeric states. We furhter interprete this piece of data as a decoupling of reduction and catalysis: in physiological conditions we assume that SBPase would initiate activation upon the reduction of disulfide bridges, including but not limited to C115-C120 that restricts the entry into fully active tetramer, at which point SBPase in reduced form reaches maximal activity until another post-translational signal eventually changes its conformation and oligomerisation.

      We thank again reviewer 1 for his or her assessment and valuable suggestions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors used a subset of a very large, previously generated 16S dataset to:<br /> (1) Assess age-associated features; and (2) develop a fecal microbiome clock, based on an extensive longitudinal sampling of wild baboons for which near-exact chronological age is known. They further seek to understand deviation from age-expected patterns and uncover if and why some individuals have an older or younger microbiome than expected, and the health and longevity implications of such variation. Overall, the authors compellingly achieved their goals of discovering age-associated microbiome features and developing a fecal microbiome clock. They also showed clear and exciting evidence for sex and rank-associated variation in the pace of gut microbiome aging and impacts of seasonality on microbiome age in females. These data add to a growing understanding of modifiers of the pace of age in primates, and links among different biological indicators of age, with implications for understanding and contextualizing human variation. However, in the current version, there are gaps in the analyses with respect to the social environment, and in comparisons with other biological indicators of age. Despite this, I anticipate this work will be impactful, generate new areas of inquiry, and fuel additional comparative studies.

      Thank you for the supportive comments and constructive reviews.

      Strengths:

      The major strengths of the paper are the size and sampling depth of the study population, including the ability to characterize the social and physical environments, and the application of recent and exciting methods to characterize the microbiome clock. An additional strength was the ability of the authors to compare and contrast the relative age-predictive power of the fecal microbiome clock to other biological methods of age estimation available for the study population (dental wear, blood cell parameters, methylation data). Furthermore, the writing and support materials are clear, informative and visually appealing.

      Weaknesses:

      It seems clear that more could be done in the area of drawing comparisons among the microbiome clock and other metrics of biological age, given the extensive data available for the study population. It was confusing to see this goal (i.e. "(i) to test whether microbiome age is correlated with other hallmarks of biological age in this population"), listed as a future direction, when the authors began this process here and have the data to do more; it would add to the impact of the paper to see this more extensively developed.

      Comparing the microbiome clock to other metrics of biological age in our population is a high priority (these other metrics of biological age are in Table S5 and include epigenetic age measured in blood, the non-invasive physiology and behavior clock (NPB clock), dentine exposure, body mass index, and blood cell counts (Galbany et al. 2011; Altmann et al. 2010; Jayashankar et al. 2003; Weibel et al. 2024; Anderson et al. 2021)). However, we have opted to test these relationships in a separate manuscript. We made this decision because of the complexity of the analytical task: these metrics were not necessarily collected on the same subjects, and when they were, each metric was often measured at a different age for a given animal. Further, two of the metrics (microbiome clock and NPB clock) are measured longitudinally within subjects but on different time scales (the NPB clock is measured annually while microbiome age is measured in individual samples). The other metrics are cross-sectional. Testing the correlations between them will require exploration of how subject inclusion and time scale affect the relationships between metrics.

      We now explain the complexity of this analysis in the discussion in lines 447-450. In addition, we have added the NPB clock (Weibel et al. 2024) to the text in lines 260-262 and to Table S5.

      An additional weakness of the current set of analyses is that the authors did not explore the impact of current social network connectedness on microbiome parameters, despite the landmark finding from members of this authorship studying the same population that "Social networks predict gut microbiome composition in wild baboons" published here in eLife some years ago. While a mother's social connectedness is included as a parameter of early life adversity, overall the authors focus strongly on social dominance rank, without discussion of that parameter's impact on social network size or directly assessing it.

      Thank you for raising this important point, which was not well explained in our manuscript. We find that the signatures of social group membership and social network proximity are only detectable our population for samples collected close in time. All of the samples analyzed in  Tung et al. 2015 (“Social networks predict gut microbiome composition in wild baboons”) were collected within six weeks of each other. By contrast, the data set analyzed here spans 14 years, with very few samples from close social partners collected close in time. Hence, the effects of social group membership and social proximity are weak or undetectable. We described these findings in Grieneisen et al. 2021 and Bjork et al. 2022, and we now explain this logic on line 530, which states, “We did not model individual social network position because prior analyses of this data set find no evidence that close social partners have more similar gut microbiomes, probably because we lack samples from close social partners sampled close in time (Grieneisen et al. 2021; Björk et al. 2022).”

      We do find small effects of social group membership, which is included as a random effect in our models of how each microbiome feature is associated with host age (line 529) and our models predicting microbiome Dage (line 606; Table S6).

      Reviewer #2 (Public review):

      Summary:

      Dasari et al present an interesting study investigating the use of 'microbiota age' as an alternative to other measures of 'biological age'. The study provides several curious insights into biological aging. Although 'microbiota age' holds potential as a proxy of biological age, it comes with limitations considering the gut microbial community can be influenced by various non-age related factors, and various age-related stressors may not manifest in changes in the gut microbiota. The work would benefit from a more comprehensive discussion, that includes the limitations of the study and what these mean to the interpretation of the results.

      We agree and have text to the discussion that expands on the limitations of this study and what those limitations mean for the interpretation of the results. For instance, lines 395-400 read, “Despite the relative accuracy of the baboon microbiome clock compared to similar clocks in humans, our clock has several limitations. First, the clock’s ability to predict  individual age is lower than for age clocks based on patterns of DNA methylation—both for humans and baboons (Horvath 2013; Marioni et al. 2015; Chen et al. 2016; Binder et al. 2018; Anderson et al. 2021). One reason for this difference may be that gut microbiomes can be influenced by several non-age-related factors, including social group membership, seasonal changes in resource use, and fluctuations in microbial communities in the environment”

      In addition, lines 405-411 now reads, “Third, the relationships between potential socio-environmental drivers of biological aging and the resulting biological age predictions were inconsistent. For instance, some sources of early life adversity were linked to old-for-age gut microbiomes (e.g., males born into large social groups), while others were linked to young-for-age microbiomes (e.g., males who experienced maternal social isolation or early life drought), or were unrelated to gut microbiome age (e.g., males who experienced maternal loss; any source of early life adversity in females).”

      Strengths:

      The dataset this study is based on is impressive, and can reveal various insights into biological ageing and beyond. The analysis implemented is extensive and high-level.

      Weaknesses:

      The key weakness is the use of microbiota age instead of e.g., DNA-methylation-based epigenetic age as a proxy of biological ageing, for reasons stated in the summary. DNA methylation levels can be measured from faecal samples, and as such epigenetic clocks too can be non-invasive. I will provide authors a list of minor edits to improve the read, to provide more details on Methods, and to make sure study limitations are discussed comprehensively.

      Thank you for this point. In response, we have deleted the text from the discussion that stated that non-invasive sampling is an advantage of microbiome clocks. In addition, we now propose a non-invasive epigenetic clock from fecal samples as an important future direction for our population (see line 450).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Abstract - The opening 2 sentences are not especially original or reflective of the potential value/ premise of the study. Members of this team have themselves measured variation in biological age in many different ways, and the implication that measuring a microbiome clock is easy or straightforward is not compelling. This paper is very interesting and provides unique insight, but I think overall there is a missed opportunity in the abstract to emphasize this, given the innovative science presented here. Furthermore, the last 2 sentences of the abstract are especially interesting - but missing a final statement on the broader significance of research outside of baboons.

      We appreciate these comments and have revised the Abstract accordingly. The introductory sentences now read, “Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age.” (lines 31-34). The last two sentences of the abstract now read, “Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.” (lines 40-43).

      If possible, it would be highly useful to present some comments on concordance in patterns at different levels. Are all ASVs assessed at both the family and genus levels? Do they follow similar patterns when assessed at different levels? What can we learn about the system by looking at different levels of taxonomic assignment?

      The section on relationships between host age and individual microbiome features is already lengthy, so we have not added an analysis of concordance between different taxonomic levels. However, we added a justification for why we tested for age signatures in different levels of taxa to line 171, which reads, “We tested these different taxonomic levels in order to learn whether the degree to which coarse and fine-grained designations categories were associated with host age.”

      To calculate the delta age - please clarify if this was done at the level of years, as suggested in Figure 3C, or at the level of months or portion months, etc?

      Delta age is measured in years. This is now clarified in lines 294, 295, and 578.

      Spelling mistake in table S12, cell B4 (Octovber)

      Thank you. This typo has been corrected.

      Given the start intro with vertebrates, the second paragraph needs some tweaking to be appropriate. Perhaps, "At least among mammals, one valuable marker of biological aging may lie in the composition and dynamics of the mammalian gut microbiome (7-10)." Or simply remove "mammalian".

      We have updated this sentence based on your suggestions in line 54. It reads, “In mammals, one valuable marker of biological aging may lie in the composition and dynamics of the gut microbiome (Claesson et al. 2012; Heintz and Mair 2014; O’Toole and Jeffery 2015; Sadoughi et al. 2022).”

      A rewrite at the end of the introduction is needed to avoid the almost direct repetition in lines 115-118 and 129-131 (including lit cited). One potentially effective way to approach this is to keep the predictions in the earlier paragraph and then more clearly center the approach and the overarching results statement in the latter paragraph. (I.e., "we find that season and social rank have stronger effects on microbiome age than early life events. Further, microbiome age does not predict host development or mortality.").

      Thank you for pointing this out. We have re-organized the predictions in the introduction based on your suggestion. The alternative “recency effects” model now appears in the paragraph that starts in line 110. The final paragraph then centers on the overall approach and the results statement (lines 128-140)

      Be clear in each case where taxon-level trends are discussed if it's at Family, Genus, or other level. It's there most, but not all, of the time.

      We have gone through the text and clarified what taxa or microbiome feature was the subject of our analyses in any places where this was not clear.

      In the legend for Figure 2, add clarification for how values to right versus left of the centered value should be interpreted with respect to age (e.g. "values to x of the center are more abundant in older individuals").

      We now clarify in Figure 2C and 2D that “Positive values are more abundant in older hosts”.

      Figure 3 - Are Panels A, B, and C all needed - can the value for all individuals not also be overlaid in the panel showing sex differences and the same point showing individuals with "old" and "young" microbiomes be added in the same plot if it was slightly larger?

      We agree and have simplified Figure 3. We reduced the number of panels from three to two, and we added the information about how to calculate delta age to Panel A. We also moved the equation from the top of Panel C to the bottom right of Panel A.

      Reviewer #2 (Recommendations for the authors):

      Dasari et al present an interesting study investigating the use of 'microbiota age' as an alternative to other measures of 'biological age'. The study provides several curious insights which in principle warrant publication. However, I do think the manuscript should be carefully revised. Below I list some minor revisions that should be implemented. Importantly, the authors should discuss in the Discussion the pros and cons of using 'microbiota age' as a proxy of 'biological age'. Further, the authors should provide more information on Methods, to make sure the study can be replicated.

      Thank you for these important points. Based on your comments and those of the first reviewer, we have expanded our discussion of the limitations of using microbiota age as a proxy for biological age (see edits to the paragraph starting in line 395).

      We have also expanded our methods around sample collection, DNA extraction, and sequencing to describe our sampling methods, strategies to mitigate and address possible contamination, and batch effects. See lines 483-490 and our citations to the original papers where these methods are described in detail.

      (1) Lines 85-99: I think this paragraph could be revisited to make the assumptions clearer. For instance, the last sentence is currently a little confusing: are authors expecting males to exhibit old-for-age microbiomes already during the juvenile period?

      This prediction has been clarified. Line 96 now reads, “Hence, we predicted that adult male baboons would exhibit gut microbiomes that are old-for-age, compared to adult females (by contrast, we expected no sex effects on microbiome age in juvenile baboons).”

      (2) Lines 118-121: Could the authors discuss this assumption in relation to what has been observed e.g., in humans in terms of delays in gut microbiome development? Delayed/accelerated gut microbiome development has been studied before, so this assumption would be stronger if related to what we know from previous studies.

      This comment refers to the sentence which originally stated, “However, we also expected that some sources of early life adversity might be linked to young-for-age gut microbiota. For instance, maternal social isolation might delay gut microbiome development due to less frequent microbial exposures from conspecifics.” We have slightly expanded the text here (line 117) to explain our logic. We now include citations for our predictions. We did not include a detailed discussion of prior literature on microbiome development in the interest of keeping the same level of detail across all sections on our predictions.

      (3) As the authors discuss, various adversities can lead to old-for-age but also young-for-age microbiome composition. This should be discussed in the limitations.

      We agree. This is now discussed in the sentence starting at line 371, which reads, “…deviations from microbiome age predictions are explained by socio-environmental conditions experienced by individual hosts, especially recent conditions, although the effect sizes are small and are not always directionally consistent.” In addition, the text starting at line 405 now reads, “Third, the relationships between potential socio-environmental drivers of biological aging and the resulting biological age predictions were inconsistent. For instance, some sources of early life adversity were linked to old-for-age gut microbiomes (e.g., males born into large social groups), while others were linked to young-for-age microbiomes (e.g., males who experienced maternal social isolation or early life drought), or were unrelated to gut microbiome age (e.g., males who experienced maternal loss; any source of early life adversity in females).”

      (4) In various places, e.g., lines 129-131, it is a little unclear at what chronological age authors are expecting microbiota to appear young/old-for-age.

      This sentence was removed while responding to the comments from the first reviewer.

      (5) Lines 132-133: this statement could be backed by stating that this is because the gut microbiota can change rapidly e.g., when diet changes (or whatever the authors think could be behind this).

      We have added an expository sentence at line 123, including new citations. This sentence reads, “Indeed, gut microbiomes are highly dynamic and can change rapidly in response to host diet or other aspects of host physiology, behavior, or environments”.

      We now cite:

      · Hicks, A.L., et al. (2018). Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nature Communications 9, 1786.

      · Kolodny, O., et al. (2019). Coordinated change at the colony level in fruit bat fur microbiomes through time. Nature Ecology & Evolution 3, 116-124.

      · Risely, A., et al. (2021) Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat Commun 12, 6017.

      (6) Lines 135-137: current or past season and social rank? This paragraph introduces the idea that it could be past rather than current socio-environmental factors that might predict microbiota age, so the authors should clarify this sentence.

      We have clarified the information in this sentence. line 135 now reads, “In general, our results support the idea that a baboon’s current socio-environmental conditions, especially their current social rank and the season of sampling, have stronger effects on microbiome age than early life events—many of which occurred many years prior to sampling.”

      (7) Lines 136-137: this sentence could include some kind of a conclusion of this finding. What might this mean?

      We have added a sentence at line 138, which speculates that, “…the dynamism of the gut microbiome may often overwhelm and erase early life effects on gut microbiome age.”

      (8) Use 'microbiota' or 'microbiome' across the manuscript; currently, the terms are used interchangeably. I don't have a strong opinion on this, although typically 'microbiota' is used when data comes from 16S rRNA.

      We have updated the text to replace any instance of “microbiota” with “microbiome”. We use the term microbiome in the sense of this definition from the National Human Genome Research Institute, which defines a microbiome as “the community of microorganisms (such as fungi, bacteria and viruses) that exists in a particular environment”.

      (9) Figure 1 legend: make sure to unify formatting; e.g., present sample sizes as N= or n=, rather than both, and either include or do not include commas in 4-digit values (sample sizes).

      We have checked the formatting related to sample sizes and the use of commas in 4-digits in the main text and supplement. The formats are now consistent.

      (10) Line 166: relative abundances surely?

      Following Gloor et al. (2017), our analyses use centered log-ratio (CLR) transformations of read counts, which is the recommended approach for compositional data such as 16S rRNA amplicon read counts. CLR transformations are scale-invariant, so the same ratio is obtained in a sample with few read versus many reads. We now cite Gloor et al. (2017) at line 169 and in the methods in line 517, which reads “centered log ratio (CLR) transformed abundances (i.e., read counts) of each microbial phyla (n=30), family (n=290), genus (n=747), and amplicon sequence variance (ASV) detected in >25% of samples (n=358). CLR transformations are a recommended approach for addressing the compositional nature of 16S rRNA amplicon read count data (Gloor et al. 2017).”  

      (11) Lines 167-172: were technical factors, e.g., read depth or sequencing batch, included as random effects?

      Thank you for catching this oversight in the text. We did model sequencing depth and batch effects. The sentence starting at line 173 now reads, “For each of these 1,440 features, we tested its association with host age by running linear mixed effects models that included linear and quadratic effects of host age and four other fixed effects: sequencing depth, the season of sample collection (wet or dry), the average maximum temperature for the month prior to sample collection, and the total rainfall in the month prior to sample collection (Grieneisen et al. 2021; Björk et al. 2022; Tung et al. 2015). Baboon identity, social group membership, hydrological year of sampling, and sequencing plate (as a batch effect) were modeled as random effects.”

      (12) Lines 175-180: When discussing how these alpha diversity results relate to previous findings, the authors should be clear about whether they talk about weighted or non-weighted measures of alpha diversity. - also maybe this should be included in the discussion rather than the results? Please consider this when revisiting the manuscript (see how it reads after edits).

      Richness is the only unweighted metric, which we now clarify in line 181. We opted to retain the interpretation in the text in its original location to maintain the emphasis in the discussion on the microbiome clock results.

      (13) Table S1 is very hard to interpret in the provided PDF format as columns are not presented side-by-side. It is currently hard to check model output for e.g., specific families. This needs to be revisited.

      We agree. We believe that eLife’s submission portal automatically generates a PDF for any supplementary item. However, we also include the supplementary tables as an Excel workbook which has the columns presented side-by-side.

      (14) Line 184: taxa meaning what? Unclear what authors refer to with this sentence, taxa across taxonomic levels, or ASVs, or what does the 51.6% refer to?

      We have edited line 191 to clarify that this sentence refers to taxa at all taxonomic levels (phyla to ASVs).

      (15) Line 191: a punctuation mark missing after ref (81).

      We have added the missing period at the end of this sentence.

      (16) Lines 189-197: this should go into the discussion in my opinion.

      We have opted to retain this interpretation, now at line 183.

      (17) Lines 215-219: Not sure what this means; do the authors mean features were not restricted to age-associated taxa, ie also e.g., diversity and other taxa-independent patterns were included? If so, the rest of the highlighted lines should be revisited to make this clear, currently to me it is very unclear what 'These could include features that are not strongly age-correlated in isolation' means. Currently, that sounds like some features included were only age-associated in combination with other features, but unclear how this relates to taxa-dependency/taxa-independency.

      We agree this was not clear. We have revised line 224 to read, “We included all 9,575 microbiome features in our age predictions, as opposed to just those that were statistically significantly associated with age because removing these non-significant features could exclude features that contribute to age prediction via interactions with other taxa.”

      (18) Line 403-407: There is now a paper showing epigenetic clocks can be built with faecal samples, so this argument is not valid. Please revisit in light of this publication: https://onlinelibrary.wiley.com/doi/epdf/10.1111/mec.17330

      Thank you for bringing this paper to our attention. We deleted the text that describes epigenetic clocks as invasive, and we now cite this paper in line 450, which reads, “We also hope to measure epigenetic age in fecal samples, leveraging methods developed in Hanski et al. 2024.”

      (19) Line 427: a punctuation mark/semicolon missing before However.

      We have corrected this typo.

      (20) Lines 419-428: I don't quite understand this speculation. Why would the priority of access to food lead to an old-looking gut microbiome? This paragraph needs stronger arguments, currently unclear and also not super convincing.

      We agree this was confusing. We have revised this text to clarify the explanation. The text starting at line 424 now reads, “This outcome points towards a shared driver of high social status in shaping gut microbiome age in both males and females. While it is difficult to identify a plausible shared driver, one benefit shared by both high-ranking males and females is priority of access to food. This access may result in fewer foraging disruptions and a higher quality, more stable diet. At the same time, prior research in Amboseli suggests that as animals age, their diets become more canalized and less variable (Grieneisen et al. 2021). Hence aging and priority of access to food might both be associated with dietary stability and old-for-age microbiomes. However, this explanation is speculative and more work is needed to understand the relationship between rank and microbiome age.”

      (21) Line 434: remove 'be'.

      We have corrected this typo.

      (22) Line 478: add information on how samples were collected; e.g., were samples collected from the ground? How was cross-contamination with soil microbiota minimised? Were samples taken from the inner part of depositions? These factors can influence microbiota samples quite drastically so detailed info is needed. Also what does homogenisation mean in this context? How soon were samples freeze-dried after sample collection?

      We have expanded our methods with respect to sample collection. This text starts in line 483 and reads, “Samples were collected from the ground within 15 minutes of defecation. For each sample, approximately 20 g of feces was collected into a paper cup, homogenized by stirring with a wooden tongue depressor, and a 5 g aliquot of the homogenized sample was transferred to a tube containing 95% ethanol. While a small amount of soil was typically present on the outside of the fecal sample, mammalian feces contains 1000 times the number of microbial cells in a typical soil sample (Sender, Fuchs, and Milo 2016; Raynaud and Nunan 2014), which overwhelms the signal of soil bacteria in our analyses (Grieneisen et al. 2021). Samples were transported from the field in Amboseli to a lab in Nairobi, freeze-dried, and then sifted to remove plant matter prior to long term storage at -80°C.”

      (23) Line 480 onwards: were negative controls included in extraction batches? Were samples randomised into extraction batches?

      Yes, we included extraction blanks. These are now described in lines 495-500. This text reads, “We included one extraction blank per batch, which had significantly lower DNA concentrations than sample wells (t-test; t=-50, p < 2.2x10-16; Grieneisen et al. 2021). We also included technical replicates, which were the same fecal sample sequenced across multiple extraction and library preparation batches. Technical replicates from different batches clustered with each other rather than with their batch, indicating that true biological differences between samples are larger than batch effects.”

      (24) Were extraction, library prep, and sequencing negative controls included? Is data available?

      We included extraction blanks (described above) and technical replicates, which were the same sample sequenced across multiple extraction and library preparation batches. Technical replicates from different batches clustered with each other rather than with their batch, indicating that true biological differences between samples are larger than batch effects.

      We have updated the data availability statement to read, “All data for these analyses are available on Dryad at https://doi.org/10.5061/dryad.b2rbnzspv. The 16S rRNA gene sequencing data are deposited on EBI-ENA (project ERP119849) and Qiita (study 12949). Code is available at the following GitHub repository: https://github.com/maunadasari/Dasari_etal-GutMicrobiomeAge”.

      (25) Line 562: how were corrected microbiome delta ages calculated? Currently, the authors state x, y and z factors were corrected for, but it is unclear how this was done.

      The paragraph starting at line 577 describes how microbiome delta age was calculated. We have made only a few changes to this text because we were not sure which aspects of these methods confused the reviewer. However, briefly, we calculated sample-specific microbiome Dage in years as the difference between a sample’s microbial age estimate, age<sub>m</sub> from the microbiome clock, and the host’s chronological age in years at the time of sample collection, age<sub>c</sub>. Higher microbiome Dages indicate old-for-age microbiomes, as age<sub>m</sub> > age<sub>c</sub>, and lower values (which are often negative) indicate a young-for-age microbiome, where age<sub>c</sub> > age<sub>m</sub> (see Figure 3).

      (26) Line 579: typo 'as'.

      We have corrected this typo.

      Works Cited

      Altmann, Jeanne, Laurence Gesquiere, Jordi Galbany, Patrick O Onyango, and Susan C Alberts. 2010. “Life History Context of Reproductive Aging in a Wild Primate Model.” Annals of the New York Academy of Sciences 1204:127–38. https://doi.org/10.1111/j.1749-6632.2010.05531.x.

      Anderson, Jordan A, Rachel A Johnston, Amanda J Lea, Fernando A Campos, Tawni N Voyles, Mercy Y Akinyi, Susan C Alberts, Elizabeth A Archie, and Jenny Tung. 2021. “High Social Status Males Experience Accelerated Epigenetic Aging in Wild Baboons.” Edited by George H Perry. eLife 10 (April):e66128. https://doi.org/10.7554/eLife.66128.

      Binder, Alexandra M., Camila Corvalan, Verónica Mericq, Ana Pereira, José Luis Santos, Steve Horvath, John Shepherd, and Karin B. Michels. 2018. “Faster Ticking Rate of the Epigenetic Clock Is Associated with Faster Pubertal Development in Girls.” Epigenetics 13 (1): 85–94. https://doi.org/10.1080/15592294.2017.1414127.

      Björk, Johannes R., Mauna R. Dasari, Kim Roche, Laura Grieneisen, Trevor J. Gould, Jean-Christophe Grenier, Vania Yotova, et al. 2022. “Synchrony and Idiosyncrasy in the Gut Microbiome of Wild Baboons.” Nature Ecology & Evolution, June, 1–10. https://doi.org/10.1038/s41559-022-01773-4.

      Chen, Brian H., Riccardo E. Marioni, Elena Colicino, Marjolein J. Peters, Cavin K. Ward-Caviness, Pei-Chien Tsai, Nicholas S. Roetker, et al. 2016. “DNA Methylation-Based Measures of Biological Age: Meta-Analysis Predicting Time to Death.” Aging (Albany NY) 8 (9): 1844–59. https://doi.org/10.18632/aging.101020.

      Claesson, Marcus J., Ian B. Jeffery, Susana Conde, Susan E. Power, Eibhlís M. O’Connor, Siobhán Cusack, Hugh M. B. Harris, et al. 2012. “Gut Microbiota Composition Correlates with Diet and Health in the Elderly.” Nature 488 (7410): 178–84. https://doi.org/10.1038/nature11319.

      Galbany, Jordi, Jeanne Altmann, Alejandro Pérez-Pérez, and Susan C. Alberts. 2011. “Age and Individual Foraging Behavior Predict Tooth Wear in Amboseli Baboons.” American Journal of Physical Anthropology 144 (1): 51–59. https://doi.org/10.1002/ajpa.21368.

      Gloor, Gregory B., Jean M. Macklaim, Vera Pawlowsky-Glahn, and Juan J. Egozcue. 2017. “Microbiome Datasets Are Compositional: And This Is Not Optional.” Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.02224.

      Grieneisen, Laura E., Mauna Dasari, Trevor J. Gould, Johannes R. Björk, Jean-Christophe Grenier, Vania Yotova, David Jansen, et al. 2021. “Gut Microbiome Heritability Is Nearly Universal but Environmentally Contingent.” Science 373 (6551): 181–86. https://doi.org/10.1126/science.aba5483.

      Hanski, Eveliina, Susan Joseph, Aura Raulo, Klara M. Wanelik, Áine O’Toole, Sarah C. L. Knowles, and Tom J. Little. 2024. “Epigenetic Age Estimation of Wild Mice Using Faecal Samples.” Molecular Ecology 33 (8): e17330. https://doi.org/10.1111/mec.17330.

      Heintz, Caroline, and William Mair. 2014. “You Are What You Host: Microbiome Modulation of the Aging Process.” Cell 156 (3): 408–11. http://dx.doi.org/10.1016/j.cell.2014.01.025.

      Horvath, Steve. 2013. “DNA Methylation Age of Human Tissues and Cell Types.” Genome Biology 14 (10): R115. https://doi.org/10.1186/gb-2013-14-10-r115.

      Jayashankar, Lakshmi, Kathleen M. Brasky, John A. Ward, and Roberta Attanasio. 2003. “Lymphocyte Modulation in a Baboon Model of Immunosenescence.” Clinical and Vaccine Immunology 10 (5): 870–75. https://doi.org/10.1128/CDLI.10.5.870-875.2003.

      Marioni, Riccardo E., Sonia Shah, Allan F. McRae, Brian H. Chen, Elena Colicino, Sarah E. Harris, Jude Gibson, et al. 2015. “DNA Methylation Age of Blood Predicts All-Cause Mortality in Later Life.” Genome Biology 16 (1): 25. https://doi.org/10.1186/s13059-015-0584-6.

      O’Toole, Paul W., and Ian B. Jeffery. 2015. “Gut Microbiota and Aging.” Science 350 (6265): 1214–15. https://doi.org/10.1126/science.aac8469.

      Raynaud, Xavier, and Naoise Nunan. 2014. “Spatial Ecology of Bacteria at the Microscale in Soil.” PLOS ONE 9 (1): e87217. https://doi.org/10.1371/journal.pone.0087217.

      Sadoughi, Baptiste, Dominik Schneider, Rolf Daniel, Oliver Schülke, and Julia Ostner. 2022. “Aging Gut Microbiota of Wild Macaques Are Equally Diverse, Less Stable, but Progressively Personalized.” Microbiome 10 (1): 95. https://doi.org/10.1186/s40168-022-01283-2.

      Sender, Ron, Shai Fuchs, and Ron Milo. 2016. “Revised Estimates for the Number of Human and Bacteria Cells in the Body.” PLoS Biology 14 (8): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

      Tung, J, L B Barreiro, M B Burns, J C Grenier, J Lynch, L E Grieneisen, J Altmann, S C Alberts, R Blekhman, and E A Archie. 2015. “Social Networks Predict Gut Microbiome Composition in Wild Baboons.” Elife 4. https://doi.org/10.7554/eLife.05224.

      Weibel, Chelsea J., Mauna R. Dasari, David A. Jansen, Laurence R. Gesquiere, Raphael S. Mututua, J. Kinyua Warutere, Long’ida I. Siodi, Susan C. Alberts, Jenny Tung, and Elizabeth A. Archie. 2024. “Using Non-Invasive Behavioral and Physiological Data to Measure Biological Age in Wild Baboons.” GeroScience 46 (5): 4059–74. https://doi.org/10.1007/s11357-024-01157-5.

    1. Author response:

      The issue of a control without blue light illumination was raised. Clearly without the light we will not obtain any signal in the fluorescence microscopy experiments, which would not be very informative. Instead, we changed the level of blue light illumination in the fluorescence microscopy experiments (figure 4A) and the response of the bacteria scales with dosage. It is very hard to find an alternative explanation, beyond that the blue light is stressing the bacteria and modulating their membrane potentials.

      One of the referees refuses to see wavefronts in our microscopy data. We struggle to understand whether it is an issue with definitions (Waigh has published a tutorial on the subject in Chapter 5 of his book ‘The physics of bacteria: from cells to biofilms’, T.A.Waigh, CUP, 2024 – figure 5.1 shows a sketch) or something subtler on diffusion in excitable systems. We stand by our claim that we observe wavefronts, similar to those observed by Prindle et al<sup>1</sup> and Blee et al<sup>2</sup> for B. subtilis biofilms.

      The referee is questioning our use of ThT to probe the membrane potential. We believe the Pilizota and Strahl groups are treating the E. coli as unexcitable cells, leading to their problems. Instead, we believe E. coli cells are excitable (containing the voltage-gated ion channel Kch) and we now clearly state this in the manuscript. Furthermore, we include a section here discussing some of the issues with ThT.


      Use of ThT as a voltage sensor in cells

      ThT is now used reasonably widely in the microbiology community as a voltage sensor in both bacterial [Prindle et al]1 and fungal cells [Pena et al]12. ThT is a small cationic fluorophore that loads into the cells in proportion to their membrane potential, thus allowing the membrane potential to be measured from fluorescence microscopy measurements.

      Previously ThT was widely used to quantify the growth of amyloids in molecular biology experiments (standardized protocols exist and dedicated software has been created)13 and there is a long history of its use14. ThT fluorescence is bright, stable and slow to photobleach.

      Author response figure 1 shows a schematic diagram of the ThT loading in E. coli in our experiments in response to illumination with blue light. Similar results were previously presented by Mancini et al15, but regimes 2 and 3 were mistakenly labelled as artefacts.

      Author response figure 1. Schematic diagram of ThT loading during an experiment with E. coli cells under blue light illumination i.e. ThT fluorescence as a function of time. Three empirical regimes for the fluorescence are shown (1, 2 and 3).

      The classic study of Prindle et al on bacterial biofilm electrophysiology established the use of ThT in B. subtilis biofilms by showing similar results occurred with DiSc3 which is widely used as a Nernstian voltage sensor in cellular biology1 e.g. with mitochondrial membrane potentials in eukaryotic organisms where there is a large literature. We repeated such a comparative calibration of ThT with DiSc3 in a previous publication with both B. subtilis and P. aeruginosa cells2. ThT thus functioned well in our previous publications with Gram positive and Gram negative cells.

      However, to our knowledge, there are now two groups questioning the use of ThT and DiSc3 as voltage sensors with E. coli cells15-16. The first by the Pilizota group claims ThT only works as a voltage sensor in regime 1 of Author response figure 1 using a method based on the rate of rotation of flagellar motors. Another slightly contradictory study by the Strahl group claims DiSc316 only acts as a voltage sensor with the addition of an ionophore for potassium which allows free movement of potassium through the E. coli membranes.

      Our resolution to this contradiction is that ThT does indeed work reasonably well with E. coli. The Pilizota group’s model for rotating flagellar motors assumes the membrane voltage is not varying due to excitability of the membrane voltage (otherwise a non-linear Hodgkin Huxley type model would be needed to quantify their results) i.e. E. coli cells are unexcitable. We show clearly in our study that ThT loading in E. coli is a function of irradiation with blue light and is a stress response of the excitable cells. This is in contradiction to the Pilizota group’s model. The Pilizota group’s model also requires the awkward fiction of why cells decide to unload and then reload ThT in regimes 2 and 3 of Author response figure 1 due to variable membrane partitioning of the ThT. Our simple explanation is that it is just due to the membrane voltage changing and no membrane permeability switch needs to be invoked. The Strahl group’s16 results with DiSc3 are also explained by a neglect of the excitable nature of E. coli cells that are reacting to blue light irradiation. Adding ionophores to the E. coli membranes makes the cells unexcitable, reduces their response to blue light and thus leads to simple loading of DiSc3 (the physiological control of K+ in the cells by voltage-gated ion channels has been short circuited by the addition of the ionophore).

      Further evidence of our model that ThT functions as a voltage sensor with E. coli include:

      1) The 3 regimes in Author response figure 1 from ThT correlate well with measurements of extracellular potassium ion concentration using TMRM i.e. all 3 regimes in Author response figure 1 are visible with this separate dye (figure 1d).

      2) We are able to switch regime 3 in Author response figure 1, off and then on again by using knock downs of the potassium ion channel Kch in the membranes of the E. coli and then reinserting the gene back into the knock downs. This cannot be explained by the Pilizota model.

      We conclude that ThT works reasonably well as a sensor of membrane voltage in E. coli and the previous contradictory studies15-16 are because they neglect the excitable nature of the membrane voltage of E. coli cells in response to the light used to make the ThT fluoresce.

      Three further criticisms of the Mancini et al method15 for calibrating membrane voltages include:

      1) E. coli cells have clutches that are not included in their models. Otherwise the rotation of the flagella would be entirely enslaved to the membrane voltage allowing the bacteria no freedom to modulate their speed of motility.

      2) Ripping off the flagella may perturb the integrity of the cell membrane and lead to different loading of the ThT in the E. coli cells.

      3) Most seriously, the method ignores the activity of many other ion channels (beyond H+) on the membrane voltage that are known to exist with E. coli cells e.g. Kch for K+ ions. The Pilizota groups uses a simple Nernstian battery model developed for mitochondria in the 1960s. It is not adequate to explain our results.

      An additional criticism of the Winkel et al study17 from the Strahl group is that it indiscriminately switches between discussion of mitochondria and bacteria e.g. on page 8 ‘As a consequence the membrane potential is dominated by H+’. Mitochondria are slightly alkaline intracellular organelles with external ion concentrations in the cytoplasm that are carefully controlled by the eukaryotic cells. E. coli are not i.e. they have neutral internal pHs, with widely varying extracellular ionic concentrations and have reinforced outer membranes to resist osmotic shocks (in contrast mitochondria can easily swell in response to moderate changes in osmotic pressure).

      A quick calculation of the equilibrium membrane voltage of E. coli can be easily done using the Nernst equation dependent on the extracellular ion concentrations defined by the growth media (the intracellular ion concentrations in E. coli are 0.2 M K+ and 10-7 M H+ i.e. there is a factor of a million fewer H+ ions). Thus in contradiction to the claims of the groups of Pilizota15 and Strahl17, H+ is a minority determinant to the membrane voltage of E. coli. The main determinant is K+. For a textbook version of this point the authors can refer to Chapter 4 of D. White, et al’s ‘The physiology and biochemistry of prokaryotes’, OUP, 2012, 4th edition.

      Even in mitochondria the assumption that H+ dominates the membrane potential and the cells are unexcitable can be questioned e.g. people have observed pulsatile depolarization phenomena with mitochondria18-19. A large number of K+ channels are now known to occur in mitochondrial membranes (not to mention Ca2+ channels; mitochondria have extensive stores of Ca2+) and they are implicated in mitochondrial membrane potentials. In this respect the seminal Nobel prize winning research of Peter Mitchell (1961) on mitochondria needs to be amended20. Furthermore, the mitochondrial work is clearly inapplicable to bacteria (the proton motive force, PMF, will instead subtly depend on non-linear Hodgkin-Huxley equations for the excitable membrane potential, similar to those presented in the current article). A much more sophisticated framework has been developed to describe electrophysiology by the mathematical biology community to describe the activity of electrically excitable cells (e.g. with neurons, sensory cells and cardiac cells), beyond Mitchell’s use of the simple stationary equilibrium thermodynamics to define the Proton Motive Force via the electrochemical potential of a proton (the use of the word ‘force’ is unfortunate, since it is a potential). The tools developed in the field of mathematical electrophysiology8 should be more extensively applied to bacteria, fungi, mitochondria and chloroplasts if real progress is to be made.


      Related to the previous point, we now cite articles from the Pilizota and Strahl groups in the main text (one from each group). Unfortunately, the space constraints of eLife mean we cannot make a more detailed discussion in the main article.

      In terms of modelling the ion channels, the Hodgkin-Huxley type model proposes that the Kch ion channel can be modelled as a typical voltage-gated potassium ion channel i.e. with a 𝑛<sup>4</sup> term in its conductivity. The literature agrees that Kch is a voltage-gated potassium ion channel based on its primary sequence<sup>3</sup>. The protein has the typical 6 transmembrane helix motif for a voltage-gated ion channel. The agent-based model assumes little about the structure of ion channels in E. coli, other than they release potassium in response to a threshold potassium concentration in their environment. The agent based model is thus robust to the exact molecular details chosen and predicts the anomalous transport of the potassium wavefronts reasonably well (the modelling was extended in a recent Physical Review E article(<sup>4</sup>). Such a description of reaction-anomalous diffusion phenomena has not to our knowledge been previously achieved in the literature<sup>5</sup> and in general could be used to describe other signaling molecules.

      1. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527, 59.

      2. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17, 036001.

      3. Milkman, R., An E. col_i homologue of eukaryotic potassium channel proteins. _PNAS 1994, 91, 3510-3514.

      4. Martorelli, V.; Akabuogu, E. U.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Electrical signaling in three-dimensional bacterial biofilms using an agent-based fire-diffuse-fire model. Physical Review E 2024, 109, 054402.

      5. Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86, 126601.

      6. Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 1952, 117, 500.

      7. Dawson, S. P.; Keizer, J.; Pearson, J. E., Fire-diffuse-fire model of dynamics of intracellular calcium waves. PNAS 1999, 96, 606.

      8. Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.

      9. Coombes, S., The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bulletin of Mathematical Biology 2001, 63, 1.

      10. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100, 052401.

      11. Gorochowski, T. E.; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K., BSim: an agent-based tool for modelling bacterial populations in systems and synthetic biology. PloS One 2012, 7, 1.

      12. Pena, A.; Sanchez, N. S.; Padilla-Garfias, F.; Ramiro-Cortes, Y.; Araiza-Villaneuva, M.; Calahorra, M., The use of thioflavin T for the estimation and measurement of the plasma membrane electric potential difference in different yeast strains. Journal of Fungi 2023, 9 (9), 948.

      13. Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z., Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science 2017, 4, 160696.

      14. Meisl, G.; Kirkegaard, J. B.; Arosio, P.; Michaels, T. C. T.; Vendruscolo, M.; Dobson, C. M.; Linse, S.; Knowles, T. P. J., Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols 2016, 11 (2), 252-272.

      15. Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 4-14.

      16. Buttress, J. A.; Halte, M.; Winkel, J. D. t.; Erhardt, M.; Popp, P. F.; Strahl, H., A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiology 2022, 168, 001227.

      17. Derk te Winkel, J.; Gray, D. A.; Seistrup, K. H.; Hamoen, L. W.; Strahl, H., Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Frontiers in Cell and Developmental Biology 2016, 4, 29.

      18. Schawarzlander, M.; Logan, D. C.; Johnston, I. G.; Jones, N. S.; Meyer, A. J.; Fricker, M. D.; Sweetlove, L. J., Pulsing of membrane potential in individual mitochondria. The Plant Cell 2012, 24, 1188-1201.

      19. Huser, J.; Blatter, L. A., Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochemistry Journal 1999, 343, 311-317.

      20. Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191 (4784), 144-148.

      21. Baba, T.; Ara, M.; Hasegawa, Y.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K. A.; Tomita, M.; Wanner, B. L.; Mori, H., Construction of Escherichia Coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology 2006, 2, 1.

      22. Schinedlin, J.; al, e., Fiji: an open-source platform for biological-image analysis. Nature Methods 2012, 9, 676.

      23. Hartmann, R.; al, e., Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology 2021, 6 (2), 151.


      The following is the authors’ response to the original reviews.

      Critical synopsis of the articles cited by referee 2:

      (1) ‘Generalized workflow for characterization of Nernstian dyes and their effects on bacterial physiology’, L.Mancini et al, Biophysical Journal, 2020, 118, 1, 4-14.

      This is the central article used by referee 2 to argue that there are issues with the calibration of ThT for the measurement of membrane potentials. The authors use a simple Nernstian battery (SNB) model and unfortunately it is wrong when voltage-gated ion channels occur. Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model. Instead a Hodgkin Huxley model is needed, as shown in our eLife manuscript and multiple other studies (see above). Arrhenius kinetics are assumed in the SNB model for pumping with no real evidence and the generalized workflow involves ripping the flagella off the bacteria! The authors construct an elaborate ‘work flow’ to insure their ThT results can be interpreted using their erroneous SNB model over a limited range of parameters.

      (2) ‘Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load’, C.J.Lo, et al, Biophysical Journal, 2007, 93, 1, 294.

      An odd de novo chimeric species is developed using an E. coli  chassis which uses Na+ instead of H+ for the motility of its flagellar motor. It is not clear the relevance to wild type E. coli, due to the massive physiological perturbations involved. A SNB model is using to fit the data over a very limited parameter range with all the concomitant errors.

      (3) Single-cell bacterial electrophysiology reveals mechanisms of stress-induced damage’, E.Krasnopeeva, et al, Biophysical Journal, 2019, 116, 2390.

      The abstract says ‘PMF defines the physiological state of the cell’. This statement is hyperbolic. An extremely wide range of molecules contribute to the physiological state of a cell. PMF does not even define the electrophysiology of the cell e.g. via the membrane potential. There are 0.2 M of K+ compared with 0.0000001 M of H+ in E. coli, so K+ is arguably a million times more important for the membrane potential than H+ and thus the electrophysiology!

      Equation (1) in the manuscript assumes no other ions are exchanged during the experiments other than H+. This is a very bad approximation when voltage-gated potassium ion channels move the majority ion (K+) around!

      In our model Figure 4A is better explained by depolarisation due to K+ channels closing than direct irreversible photodamage. Why does the THT fluorescence increase again for the second hyperpolarization event if the THT is supposed to be damaged? It does not make sense.

      (4) ‘The proton motive force determines E. coli robustness to extracellular pH’, G.Terradot et al, 2024, preprint.

      This article expounds the SNB model once more. It still ignores the voltage-gated ion channels. Furthermore, it ignores the effect of the dominant ion in E. coli, K+. The manuscript is incorrect as a result and I would not recommend publication.

      In general, an important problem is being researched i.e. how the membrane potential of E. coli is related to motility, but there are serious flaws in the SNB approach and the experimental methodology appears tenuous.

      Answers to specific questions raised by the referees

      Reviewer #1 (Public Review):

      Summary:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      Strengths:

      - The authors report original data.

      - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.

      - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.

      - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.

      - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.

      We thank the referee for their positive evaluations and agree with these statements.

      Weaknesses:

      - Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.

      The electrical responses occur almost instantaneously when the stimulation with blue light begins i.e. it is too fast to be a build of pH. We are not sure what the referee means by Redox potential since it is an attribute of all chemicals that are able to donate/receive electrons. The electrical response to stress appears to be caused by ROS, since when ROS scavengers are added the electrical response is removed i.e. pH plays a very small minority role if any.

      - Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.

      >>We were enthusiastic at the start of the project to use the PROPs system in E. coli as presented by J.M.Krajl et al, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, Science, 2011, 333, 6040, 345. However, the people we contacted in the microbiology community said that it had some technical issues and there have been no subsequent studies using PROPs in bacteria after the initial promising study. The fluorescent protein system recently presented in PNAS seems more promising, ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 120, 3, e2208348120.

      - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.

      We have presented a more detailed account of the electrical wavefront modelling work and it is currently under review in a physical journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.

      Our recent electrical impedance spectroscopy publication provides further evidence that Kch is associated with large changes in conductivity as expected for a voltage-gated ion channel (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      - The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.

      That Kch has a photoprotective role is our current working hypothesis. The hypothesis fits with the data, but we are not saying we have proven it beyond all possible doubt.

      - The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).

      Our model is agnostic with respect to the mechanosensitivity of the ion channels, although we deduce that mechanosensitive ion channels contribute to ion channel Q.

      - Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.

      This is always an issue with electrophysiological modelling (compared with most heart and brain modelling studies we are very conservative in the choice of parameters for the bacteria). In terms of predicting the different phenomena observed, we believe the model is very successful.

      Reviewer #2 (Public Review):

      Summary of what the authors were trying to achieve:

      The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.

      We believe the Pilizota work is scientifically flawed.

      Major strengths and weaknesses of the methods and results:

      The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.

      The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.

      We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.

      I now go over each results section in the manuscript.

      Result section 1: Blue light triggers electrical spiking in single E. coli cells

      I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).

      The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.

      Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com]), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com]).

      We think the proton effect is a million times weaker than that due to potasium i.e. 0.2 M K+ versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.

      If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430 [ncbi.nlm.nih.gov]/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.

      The vast majority of cells continue to be viable. We do not think membrane damage is dominating.

      The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086 [pubmed.ncbi.nlm.nih.gov]/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2 [biorxiv.org]). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21 [journals.asm.org]), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] is membrane potential related, but not in a way that is characteristic of Nernstian dye.

      Our understanding of the literature is CCCP poisons the whole metabolism of the bacterial cells. The ATP driven K+ channels will stop functioning and this is the dominant contributor to membrane potential.

      Result section 2: Membrane potential dynamics depend on the intercellular distance

      In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signalling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com]) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.

      Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee’s comments thus seem tenable.

      Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms

      In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2 [sciencedirect.com], the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191 [pubmed.ncbi.nlm.nih.gov]/), so such cytoplasmic staining seems possible.

      >>It is very easy to see if the illumination is flat (Köhler illumination) by comparing the intensity of background pixels on the detector. It was flat in our case. Protons have little to do with our work for reasons highlighted before. Differential membrane permittivity is a speculative phenomenon not well supported by any evidence and with no clear molecular mechanism.

      Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.

      The referee now contradicts themselves and wants a scale bar to be more visible. We have changed the scale bar.

      Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli

      First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.

      In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x [onlinelibrary.wiley.com]). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.

      The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibriate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.

      The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.

      We have good evidence form electrical impedance spectroscopy experiments that Kch increases the conductivity of biofilms  (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli

      In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com] especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.

      The simple Nernstian battery model proposed by Pilizota et al is erroneous in our opinion for reasons outlined above. We believe it will prove to be a dead end for bacterial electrophysiology studies.

      Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics

      This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.

      This is an erroneous niche opinion. Protons have little say in the membrane potential since there are so few of them. The membrane potential is mostly determined by K+.

      I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gK*n^4 for potassium, gNa*m^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).

      In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.

      Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144 [journals.plos.org])

      The reference is to a slightly more modern version of a simple Nernstian battery model. The model will not oscillate and thus will not help modelling membrane potentials in bacteria. We are unsure where the equilibrium requirement comes from (inadequate modelling of the dynamics?)

      Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.

      The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.

      The evidence for permeability changes in the membranes seems to be tenuous.

      A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113 [pnas.org]). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.

      We have reworded the discussion of Mscs since the literature appears to be ambiguous. We will try to run some electrical impedance spectroscopy experiments on the Msc mutants in the future to attempt to remove the ambiguity.

      Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.

      I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.

      Ok, but we disagree on the use of ThT.

      Aims achieved/results support their conclusions:

      The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      I do not think this publication should be published in its current format. It should be revised in light of the previous literature as discussed in detail above. I believe presenting it in it's current form on eLife pages would create unnecessary confusion.

      We believe many of the Pilizota group articles are scientifically flawed and are causing the confusion in the literature.

      Any other comments:

      I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 [journals.asm.org] found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.

      >>ThT was used successfully in previous studies of normal B. subtilis cells (by our own group and A.Prindle, ‘Spatial propagation of electrical signal in circular biofilms’, J.A.Blee et al, Physical Review E, 2019, 100, 052401, J.A.Blee et al, ‘Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light’, Physical Biology, 2020, 17, 2, 036001, A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 59-63). The connection to low metabolism pore research seems speculative.

      Reviewer #3 (Public Review):

      It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.

      In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.

      (1) An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.

      ThT is a very bright fluorophore (much brighter than a GFP). It is clear from the images of non-stained samples that autofluorescence provides a negligible contribution to the fluorescence intensity in an image.

      (2) The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).

      Photobleaching was negligible over the course of the experiments. We employed techniques such as reducing sample exposure time and using the appropriate light intensity to minimize photobleaching.

      (3) It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.

      Unfortunately the fluorescent baseline is too weak to measure cleanly in this experiment. It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal (measurements in the eLife article and new potentiometry measurements).

      (4) The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.

      We think the PMF plays a minority role in determining the membrane potential in E. coli. For reasons outlined before (H+ is a minority ion in E. coli compared with K+).

      (5) Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.

      >>Both strains of bacterial has similar growth curve and also engaged in membrane potential dynamics for the duration of the experiment. We were interested in bacterial cells that observed membrane potential dynamics in the presence of the stress. Bacterial cells need to be alive to engage in membrane potential  dynamics (hyperpolarize) under stress conditions. Cells that engaged in membrane potential dynamics and later stained red were only counted after the entire duration. We believe that the wildtype handles the light stress better than the ∆kch mutant as measured with the PI.

      (6) Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.

      Kirchhoff & Cypionka 2017 J Microbial Methods, using fluorescence microscopy, suggested that changes in membrane potential dynamics can introduce experimental bias when propidium iodide is used to confirm the viability of tge bacterial strains, B subtilis (DSM-10) and Dinoroseobacter shibae, that are starved of oxygen (via N2 gassing) for 2 hours. They attempted to support their findings by using CCCP in stopping the membrane potential dynamics (but never showed any pictoral or plotted data for this confirmatory experiment). In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia. We believe that the accumulation of PI in ∆kch mutant is not due to high membrane potential dynamics but is attributed to the PI, unbiasedly showing damaged/dead cells. We think that propidium iodide is good for this experiment. Propidium iodide is a dye that is extensively used in life sciences. PI has also been used in the study of bacterial electrophysiology (https://pubmed.ncbi.nlm.nih.gov/32343961/, ) and no membrane potential related bias was reported.

      Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.

      Comparison of small changes in the absolute intensities is problematic in such fluorescence experiments. We mean the shape of the traces is similar and they can be modelled using a HH model with similar parameters.

      The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.

      In our experiment, TMRM was used to confirm the dynamics observed using ThT. However, ThT appear to be more photostable than TMRM (especially towars the 2nd peak). The most interesting observation is that with both dyes, all phases of the membrane potential dynamics were conspicuous (the first peak, the quiescent period and the second peak). The time periods for these three episodes were also similar.

      A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.

      The key point is the comparison of standard errors on the standard deviation.

      In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.

      The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.

      We appreciate the reviewer for this important observation. We have made changes to the figures to address this confusion. The cell cover has no influence on the observed membrane potential dynamics. The entire biofilm was exposed to the same blue light at each time. Therefore all parts of the biofilm received equal amounts of the blue light intensity. The membrane potential dynamics was not influenced by cell density (see Fig 2C). 

      The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).

      A visual inspection of Video S6B shows a fast rise, a decrease in fluorescence and a second rise (supplementary figure 4B). The data for the fluorescence was carefully obtained using the imaris software. We created a curved geometry on each slice of the confocal stack. We analyzed the surfaces of this curved plane along the z-axis. This was carried out in imaris.

      3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.

      The analysis is considered in more detail in a more expansive modelling article, currently under peer review in a physics journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:

      (1) In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.

      We have worded this differently to properly convey our results.

      (2) In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.

      The calcium transients observed were not due to noise or artefacts.

      (3) The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.

      The confusion stated here has now been addressed. Also it should be noted that while Fig 2.1 was obtained with LED light source, Fig S4A was obtained using a laser light source. While obtaining the confocal images (for Fig S4A ), the light intensity was controlled to further minimize photobleaching. Most importantly, there is an evidence of slow rise to the 2nd peak in Fig S4B. The first peak, quiescence and slow rise to second peak are evident.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Scientific recommendations:

      - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of cell membrane potential in the biofilm, it is important to rule out the contribution of variations in environmental parameters. I understand that for technical reasons, the flow of fresh medium must be stopped during image acquisition. Therefore, I suggest performing control experiments, where the flow is stopped before image acquisition (15min, 30min, 45min, and 1h before). If there is no significant contribution from environmental variations (pH, RedOx), the dynamics of the electrical response should be superimposed whatever the delay between stopping the flow stop and switching on the light.

      In this current research study, we were focused on studying how E. coli cells and biofilms react to blue light stress via their membrane potential dynamics. This involved growing the cells and biofilms, stopping the media flow and obtaining data immediately. We believe that stopping the flow not only helped us to manage data acquisition, it also helped us reduce the effect of environmental factors. In our future study we will expand the work to include how the membrane potential dynamics evolve in the presence of changing environmental factors for example such induced by stopping the flow at varied times.

      - Since TMRM signal exhibits a linear increase after the first response peak (Supplementary Figure 1D), I recommend mitigating the statement at line 78.

      - To improve the spatial analysis of the electrical response, I suggest plotting kymographs of the intensity profiles across the biofilm. I have plotted this kymograph for Video S3 and it appears that there is no electrical propagation for the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Figure 7E).

      See the dedicated simulation article for more details. https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Line 152: To assess the variability of the latency, the authors should consider measuring the variance divided by the mean instead of SD, which may depend on the average value.

      We are happy with our current use of standard error on the standard deviation. It shows what we claim to be true.

      - Line 154-155: To truly determine whether the amplitude of the "action potential" is independent of biofilm size, the authors should not normalise the signals.

      Good point. We qualitatively compared both normalized and unnormalized data. Recent electrical impedance spectroscopy measurements (unpublished) indicate that the electrical activity is an extensive quantity i.e. it scales with the size of the biofilms.

      - To precise the role of K+ in the habituation response, I suggest using valinomycin at sub-inhibitory concentrations (10µM). Besides, the high concentration of CCCP used in this study completely inhibits cell activity. Not surprisingly, no electrical response to light stimulation was observed in the presence of CCCP. Finally, the Kch complementation experiment exhibits a "drop after the first peak" on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there is indeed a first and a second peak.

      An interesting experiment for the future.

      - Line 237-238: There are only two points suggesting that the dynamics of hyperpolarization are faster at higher irradiance(Fig 4A). The authors should consider adding a third intermediate point at 17µW/mm^2 to confirm the statement made in this sentence.

      Multiple repeats were performed. We are confident of the robustness of our data.

      - Line 249 + Fig 4E: It seems that the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, the data should be normalised by the total population size to compare survival probabilities under the two conditions. It would also be great to measure these probabilities (for WT and ∆kch) in the presence of ROS scavengers.

      - To distinguish between model fitting and model predictions, the authors should clearly state which parameters are taken from the literature and which parameters are adjusted to fit the experimental data.

      - Supplementary Figure 4A: why can't we see any wavefront in this series of images?

      For the experimental data, the wavefront was analyzed by employing the imaris software. We systematically created a ROI with a curved geometry within the confocal stack (the biofilm). The fluorescence of ThT was traced along the surface of the curved geometry was analyzed along the z-axis.

      - Fig 7B: Could the authors explain why the plateau is higher in the simulations than in the biofilm experiments? Could they add noise on the firing activities?

      See the dedicated Martorelli modelling article. In general we would need to approach stochastic Hodgkin-Huxley modelling and the fluorescence data (and electrical impedance spectroscopy data) presented does not have extensive noise (due to collective averaging over many bacteria cells).

      - Supplementary Figure 4B: Why can't we see the second peak in confocal images?

      The second peak is present although not as robust as in Fig 2B. The confocal images were obtained with a laser source. Therefore we tried to create a balance between applying sufficient light stress on the bacterial cells and mitigating photobleaching.

      Editing recommendations:

      The editing recommendations below has been applied where appropriate

      - Many important technical details are missing (e.g. R^2, curvature, and 445nm irradiance measurements). Error bars are missing from most graphs. The captions should clearly indicate if these are single-cell or biofilm experiments, strain name, illumination conditions, number of experiments, SD, or SE. Please indicate on all panels of all figures in the main text and in the supplements, which are the conditions: single cell vs. biofilm, strains, medium, centrifugal vs centripetal etc..., where relevant. Please also draw error bars everywhere.

      We have now made appropriate changes. We specifically use cells when we were dealing with single cells and biofilms when we worked on biofilms. We decided to describe the strain name either on the panel or the image description.

      - Line 47-51: The way the paragraph is written suggests that no coordinated electrical oscillations have been observed in Gram-negative biofilms. However, Hennes et al (referenced as 57 in this manuscript) have shown that a wave of hyperpolarized cells propagates in Neisseria gonorrhoea colony, which is a Gram-negative bacterium.

      We are now aware of this work. It was not published when we first submitted our work and the authors claim the waves of activity are due to ROS diffusion NOT propagating waves of ions (coordinated electrical wavefronts).

      - Line 59: "stressor" -> "stress" or "perturbation".

      The correction has been made.

      - Line 153: Please indicate in the Material&Methods how the size of the biofilm is measured.

      The biofilm size was obtained using BiofilmQ and the step by step guide for using BiofilmQ were stated..

      - Figure 2A: Please provide associated brightfield images to locate bacteria.

      - Line 186: Please remove "wavefront" from the caption. Fig2B only shows the average signal as a function of time.

      This correction has been implemented.

      - Fig 3B,C: Please indicate single cell and biofilm on the panels and also WT and ∆kch.

      - Line 289: I suggest adding "in single cell experiments" to the title of this section.

      - Fig 5A: blue light is always present at regular time intervals during regime I and II. The presence of blue light only in regime I could be misleading.

      - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. The curve given by the model, should be compared with the average curve presented in Fig 1D.

      - Fig 6A, B, and C: These figures could be moved to supplements.

      - Line 392: Replace "turgidity" with "turgor pressure".

      - Fig 7C,E: Please use a log-log scale to represent these data and indicate the line of slope 1.

      - Fig 7E: The x-axis has been cropped.

      - Please provide a supplementary movie for the data presented in Fig 7E.

      - Line 455: E. Coli biofilms do not express ThT.

      - Line 466: "\gamma is the anomalous exponent". Please remove anomalous (\gamma can equal 1 at this stage).

      - Line 475: Please replace "section" with "projection".

      - Line 476: Please replace "spatiotemporal" with "temporal". There is no spatial dependency in either figure.

      - Line 500: Please define Eikonal approximation.

      - Fig 8 could be moved to supplements.

      - Line 553: "predicted" -> "predict".

      - Line 593: Could the authors explain why their model offers much better quantitative agreement?

      - Line 669: What does "universal" mean in that context?

      - Line 671: A volume can be pipetted but not a concentration.

      - Line 676: Are triplicates technical or biological replicates?

      - Sup Fig1: Please use minutes instead of seconds in panel A.

      - Model for membrane dynamics: "The fraction of time the Q+ channel is open" -> "The dynamics of Q+ channel activity can be written". Ditto for K+ channel...

      - Model for membrane dynamics: "the term ... is a threshold-linear". This function is not linear at all. Why is it called linear? Also, please describe what \sigma is.

      - ABFDF model: "releasing a given concentration" -> "releasing a local concentration" or "a given number" but it's not \sigma anymore. Besides, this \sigma is unlikely related to the previous \sigma used in the model of membrane potential dynamics in single cells. Please consider renaming one or the other. Also, ions are referred to as C+ in the text and C in equation 8. Am I missing something?

      Reviewer #2 (Recommendations For The Authors):

      I have included all my comments as one review. I have done so, despite the fact that some minor comments could have gone into this section, because I decided to review each Result section. I thus felt that not writing it as one review might be harder to follow. I have however highlighted which comments are minor suggestions or where I felt corrections.

      However, while I am happy with all my comments being public, given their nature I think they should be shown to authors first. Perhaps the authors want to go over them and think about it before deciding if they are happy for their manuscript to be published along with these comments, or not. I will highlight this in an email to the editor. I question whether in this case, given that I am raising major issues, publishing both the manuscript and the comments is the way to go as I think it might just generate confusion among the audience.

      Reviewer #3 (Recommendations For The Authors):

      I was unable to find any legends for any of the supplemental videos in my review materials, and I could not open supplemental video 5.

      I made some comments in the public review about the analysis and interpretation of the time-to-fire data. One of the other challenges in this data set is that the time resolution is limited- it seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      In the public review, I mentioned the possible impact of high membrane potential on PI permeability. To address this, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      In the public review, I mentioned the possible combined toxicity of ThT and blue light. Live/dead experiments after blue light exposure with and without ThT could be used to test for such effects, and/or the growth curve experiment in Figure 1F could be repeated with blue light exposure at a comparable irradiance used in the experiment.

      Throughout the paper and figure legends, it would help to have more methodological details in the main text, especially those that are critical for the interpretation of the experiment. The experimental details in the methods section are nicely described, but the data analysis section should be expanded significantly.

      At the end of the results section, the authors suggest a critical biofilm size of only 4 µm for wavefront propagation (not much larger than a single cell!). The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger. Are there data for cell clusters above and below this size that could support this claim more directly?

      The authors mention image registration as part of their analysis pipeline, but the 3D data sets in Video S6B and Fig. S4A do not appear to be registered- were these registered prior to the velocity analysis reported in Fig. 8?

      One of the most challenging claims to demonstrate in this paper is that these membrane potential wavefronts are involved in coordinating a large, biofilm-scale response to blue light. One possible way to test this might be to repeat the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the Kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions.

      Line 140: How is "mature biofilm" defined? Also on this same line, what does "spontaneous" mean here?

      Line 151: "much smaller": Given that the reported time for 3D biofilms is 2.73 {plus minus} 0.85 min and in microclusters is 3.27 {plus minus} 1.77 min, this seems overly strong.

      Line 155: How is "biofilm density" characterized? Additionally, the data in Figure 2C are presented in distance units (µm), but the text refers to "areal coverage"- please define the meaning of these distance units in the legend and/or here in the text (is this the average radius?).

      Lines 161-162: These claims seem strong given the data presented before, and the logic is not very explicit. For example, in the second sentence, the idea that this signaling is used to "coordinate long-range responses to light stress" does not seem strongly evidenced at this point in the paper. What is meant by a long-range response to light stress- are there processes to respond to light that occur at long-length scales (rather than on the single-cell scale)? If so, is there evidence that these membrane potential changes could induce these responses? Please clarify the logic behind these conclusions.

      Lines 235-236: In the lower irradiance conditions, the responses are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. Could a more prominent second peak be observed in these cases if the measurement time was extended?

      Line 242-243: The overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises some minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also reflect the first peak- is this surprising given that the Kch channel has no effect on this peak?

      Line 255-256: Again, this seems like a very strong claim. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential, but does not obviously indicate that these membrane potential fluctuations mitigate ROS levels or help the cells respond to ROS stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no-light control I mention in the public review.

      Lines 313-315: "The model predicts... the external light stress". Please clarify this section. Where this prediction arises from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      Line 322: I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later in lines 327-8 the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      Line 365-366: This section title seems confusing- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants- is this expected? This seems to imply that these ion channels also have a blue light independent effect.

      Lines 368, 371: Should be VGCCs rather than VGGCs.

      Line 477: I believe the figure reference here should be to Figure 7B, not 6B.

      Line 567-568: "The initial spike is key to registering the presence of the light stress." What is the evidence for this claim?

      Line 592-594: "We have presented much better quantitative agreement..." This is a strong claim; it is not immediately evident to me that the agreement between model and prediction is "much better" in this work than in the cited work. The model in Figure 4 of reference 57 seems to capture the key features of their data. Clarification is needed about this claim.

      Line 613: "...strains did not have any additional mutations." This seems to imply that whole genome sequencing was performed- is this the case?

      Line 627: I believe this should refer to Figure S2A-B rather than S1.

      Line 719: What percentage of cells did not hyperpolarize in these experiments?

      Lines 751-754: As I mentioned above, significant detail is missing here about how these measurements were made. How is "radius" defined in 3D biofilms like the one shown in Video S6B, which looks very flat? What is meant by the distance from the substrate to the core, since usually in this biofilm geometry, the core is directly on the substrate? Most importantly, this only describes the process of sectioning the data- how were these sections used to compute the velocity of ThT signal propagation?

      I also have some comments specifically on the figure presentation:

      Normalization from 0 to 1 has been done in some of the ThT traces in the paper, but not all. The claims in the paper would be easiest to evaluate if the non-normalized data were shown- this is important for the interpretation of some of the claims.

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Throughout the paper, I am a bit confused by the time axis; the data consistently starts at 1 minute. This is not intuitive to me, because it seems that the blue light being applied to the cells is also the excitation laser for ThT- in that case, shouldn't the first imaging frame be at time 0 (when the blue light is first applied)? Or is there an additional exposure of blue light 1 minute before imaging starts? This is consequential because it impacts the measured time to the first spike. (Additionally, all of the video time stamps start at 0).

      Please increase the size of the scale bars and bar labels throughout, especially in Figure 2A and S4A.

      In Figure 1B and D, it would help to decrease the opacity on the individual traces so that more of them can be discerned. It would also improve clarity to have data from the different experiments shown with different colored lines, so that variability between experiments can be clearly visualized.

      Results in Figure 1E would be easier to interpret if the frequency were normalized to total N. It is hard to tell from this graph whether the edges and bin widths are the same between the data sets, but if not, they should be. Also, it would help to reduce the opacity of the sparse cell data set so that the full microcluster data set can be seen as well.

      Biofilm images are shown in Figures 2A, S3A, and Video S3- these are all of the same biofilm. Why not take the opportunity to show different experimental replicates in these different figures? The same goes for Figure S4A and Video S6B, which again are of the same biofilm.

      Figure 2C would be much easier to read if the curves were colored in order of their size; the same is true for Figure 4A and irradiance.

      The complementation data in Figure S3D should be moved to the main text figure 3 alongside the data about the corresponding knockout to make it easier to compare the curves.

      Fig.ure S3E: Is the Y-axis in this graph mislabeled? It is labeled as ThT fluorescence, but it seems that it is reporting fluorescence from the calcium indicator?

      Video S6B is very confusing - why does the video play first forwards and then backwards? Unless I am looking very carefully at the time stamps it is easy to misinterpret this as a rise in the intensity at the end of the experiment. Without a video legend, it's hard to understand this, but I think it would be much more straightforward to interpret if it only played forward. (Also, why is this video labeled 6B when there is no video 6A?)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this article, Nedbalova et al. investigate the biochemical pathway that acts in circulating immune cells to generate adenosine, a systemic signal that directs nutrients toward the immune response, and S-adenosylmethionine (SAM), a methyl donor for lipid, DNA, RNA, and protein synthetic reactions. They find that SAM is largely generated through the uptake of extracellular methionine, but that recycling of adenosine to form ATP contributes a small but important quantity of SAM in immune cells during the immune response. The authors propose that adenosine serves as a sensor of cell activity and nutrient supply, with adenosine secretion dominating in response to increased cellular activity. Their findings of impaired immune action but rescued larval developmental delay when the enzyme Ahcy is knocked down in hemocytes are interpreted as due to effects on methylation processes in hemocytes and reduced production of adenosine to regulate systemic metabolism and development, respectively. Overall this is a strong paper that uses sophisticated metabolic techniques to map the biochemical regulation of an important systemic mediator, highlighting the importance of maintaining appropriate metabolite levels in driving immune cell biology.

      Strengths:

      The authors deploy metabolic tracing - no easy feat in Drosophila hemocytes - to assess flux into pools of the SAM cycle. This is complemented by mass spectrometry analysis of total levels of SAM cycle metabolites to provide a clear picture of this metabolic pathway in resting and activated immune cells.

      The experiments show that the recycling of adenosine to ATP, and ultimately SAM, contributes meaningfully to the ability of immune cells to control infection with wasp eggs.

      This is a well-written paper, with very nice figures showing metabolic pathways under investigation. In particular, the italicized annotations, for example, "must be kept low", in Figure 1 illustrate a key point in metabolism - that cells must control levels of various intermediates to keep metabolic pathways moving in a beneficial direction.

      Experiments are conducted and controlled well, reagents are tested, and findings are robust and support most of the authors' claims.

      Weaknesses:

      The authors posit that adenosine acts as a sensor of cellular activity, with increased release indicating active cellular metabolism and insufficient nutrient supply. It is unclear how generalizable they think this may be across different cell types or organs.

      In the final part of the Discussion, we elaborate slightly more on a possible generalization of our results, while being aware of the limited space in this experimental paper and therefore intend to address this in more detail and comprehensively in a subsequent perspective article.

      The authors extrapolate the findings in Figure 3 of decreased extracellular adenosine in ex vivo cultures of hemocytes with knockdown of Ahcy (panel B) to the in vivo findings of a rescue of larval developmental delay in wasp egg-infected larvae with hemocyte-specific Ahcy RNAi (panel C). This conclusion (discussed in lines 545-547) should be somewhat tempered, as a number of additional metabolic abnormalities characterize Ahcy-knockdown hemocytes, and the in vivo situation may not mimic the ex vivo situation. If adenosine (or inosine) measurements were possible in hemolymph, this would help bolster this idea. However, adenosine at least has a very short half-life.

      We agree with the reviewer, and in the 4th paragraph of the Discussion we now discuss more extensively the limitations of our study in relation to ex vivo adenosine measurements and the importance of the SAM pathway on adenosine production.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors wish to explore the metabolic support mechanisms enabling lamellocyte encapsulation, a critical antiparasitic immune response of insects. They show that S-adenosylmethionine metabolism is specifically important in this process through a combination of measurements of metabolite levels and genetic manipulations of this metabolic process.

      Strengths:

      The metabolite measurements and the functional analyses are generally very strong and clearly show that the metabolic process under study is important in lamellocyte immune function.

      Weaknesses:

      The gene expression data are a potential weakness. Not enough is explained about how the RNAseq experiments in Figures 2 and 4 were done, and the representation of the data is unclear.

      The RNAseq data have already been described in detail in our previous paper (doi.org/10.1371/journal.pbio.3002299), but we agree with the reviewer that we should describe the necessary details again here. The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      The paper would also be strengthened by the inclusion of some measure of encapsulation effectiveness: the authors show that manipulation of the S-adenosylmethionine pathway in lamellocytes affects the ability of the host to survive infection, but they do not show direct effects on the ability of the host to encapsulate wasp eggs.

      The reviewer is correct that wasp egg encapsulation and host survival may be different (the host can encapsulate and kill the wasp egg and still not survive) and we should also include encapsulation efficiency. This is now added to Figure 3D, which shows that encapsulation efficiency is reduced upon Ahcy-RNAi, which is consistent with the reduced number of lamellocytes.

      Reviewer #3 (Public review):

      Summary:

      The authors of this study provide evidence that Drosophila immune cells show upregulated SAM transmethylation pathway and adenosine recycling upon wasp infection. Blocking this pathway compromises the lamellocyte formation, developmental delay, and host survival, suggesting its physiological relevance.

      Strengths:

      Snapshot quantification of the metabolite pool does not provide evidence that the metabolic pathway is active or not. The authors use an ex vivo isotope labelling to precisely monitor the SAM and adenosine metabolism. During infection, the methionine metabolism and adenosine recycling are upregulated, which is necessary to support the immune reaction. By combining the genetic experiment, they successfully show that the pathway is activated in immune cells.

      Weaknesses:

      The authors knocked down Ahcy to prove the importance of SAM methylation pathway. However, Ahcy-RNAi produces a massive accumulation of SAH, in addition to blocking adenosine production. To further validate the phenotypic causality, it is necessary to manipulate other enzymes in the pathway, such as Sam-S, Cbs, SamDC, etc.

      We are aware of this weakness and have addressed it in a much more detailed discussion of the limitations of our study in the 6th paragraph of the Discussion.

      The authors do not demonstrate how infection stimulates the metabolic pathway given the gene expression of metabolic enzymes is not upregulated by infection stimulus.

      Although the goal of this work was to test by 13C tracing whether the SAM pathway activity is upregulated, not to analyze how its activity is regulated, we certainly agree with the reviewer that an explanation of possible regulation, especially in the context of the enzyme expressions we show, should be included in our work. Therefore, we have supplemented the data with methyltransferase expressions (Figure 2-figure supplement 3. And S3_Data) and better describe the changes in expression of some SAM pathway genes, which also support stimulation of this pathway by changes in expression. The enzymes of the SAM transmethylation pathway are highly expressed in hemocytes, and it is known that the activity of this pathway is primarily regulated by (1) increased methionine supply to the cell and (2) the actual utilization of SAM by methyltransferases. Therefore, a possible increase in SAM transmethylation pathway in our work can be suggested (1) by increased expression of 4 transporters capable of transporting methionine, (2) by decreased expression of AhcyL2 (dominant-negative regulator of Ahcy) and (3) by increased expression of 43 out of 200 methyltransferases. This was now added to the first section of Results.

      Recommendations for the authors:

      Reviewing Editor Comments:

      In the discussion with the reviewers, two points were underlined as very important:

      (1) Knocking down Ahyc and other enzymes in the SAM methylation pathway may give very distinct phenotypes. Generalising the importance of "SAM methyaltion" only by Ahcy-RNAi is a bit cautious. The authors should be aware of this issue and probably mention it in the Discussion part.

      We are aware of this weakness and have addressed it in a much more detailed discussion of the limitations of our study in the 6th paragraph of the Discussion.

      (2) Sample sizes should be indicated in the Figure Legends. Replicate numbers on the RNAseq are important - were these expression levels/changes seen more than once?

      Sample sizes are shown as scatter plots with individual values wherever possible and all graphs are supplemented with S1_Data table with raw data. The RNAseq data have already been described in detail in our previous paper (doi.org/10.1371/journal.pbio.3002299), but we agree with the reviewers that we should describe the necessary details again here. The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      Reviewer #1 (Recommendations for the authors):

      Major points:

      (1) Please provide sample sizes in the legends rather than in a supplementary table.

      Sample sizes are shown either as scatter plots with individual values or added to figure legends now.

      (2) More details in the methods section are needed:

      For hemocyte counting, are sessile and circulating hemocytes measured?

      We counted circulating hemocytes (upon infection, most sessile hemocytes are released into the circulation). While for metabolomics all hemocyte types were included, for hemocyte counting we were mainly interested in lamellocytes. Therefore, we counted them 20 hours after infection, when most of the lamellocytes from the first wave are fully differentiated but still mostly in circulation, as they are just starting to adhere to the wasp egg. This was added to the Methods section.

      How were levels of methionine and adenosine used in ex vivo cultures selected? This is alluded to in lines 158-159, but no references are provided.

      The concentrations are based on measurements of actual hemolymph concentrations in wild-type larvae in the case of methionine, and in the case of adenosine, we used a slightly higher concentration than measured in the adgf-a mutant to have a sufficiently high concentration to allow adenosine to flow into the hemocytes. This is now added to the Methods section.

      Minor points:

      Response to all minor points:  Thank you, errors has now been fixed.

      (1) Line 186 - spell out MTA - 5-methylthioadenosine.

      (2) Lines 196-212 (and elsewhere) - spelling out cystathione rather than using the abbreviation CTH is recommended because the gene cystathione gamma-lyase (Cth) is also discussed in this paragraph. Using the full name of the metabolite will reduce confusion.

      We rather used cystathionine γ-lyase as a full name since it is used only three times while CTH many more times, including figures.

      (3) Figure 2 - supplement 2: please include scale bars.

      (4) Line 303 - spelling error: "trabsmethylation" should be "transmethylation".

      (5) Line 373 - spelling error: "higer" should be "higher".

      Reviewer #2 (Recommendations for the authors):

      For the RNAseq data, it's unclear whether the gene expression data in Figures 2 and 4 include biological replicates, so it's unclear how much weight we should place on them.

      The replicate numbers for RNAseq data were added to figure legends, the TPM values for the selected genes shown in figures are in S1_Data and new S4_Data file with complete RNAseq data (TPM and DESeq2) was added to this revised version.

      The representation of these data is also a weakness: Figure 2 shows measurements of transcripts per million, but we don't know what would be high or low expression on this scale.

      We have added the actual TPM values for each cell in the RNAseq heatmaps in Figure 2, Figure 2-figure supplement 3, and Figure 4 to make them more readable. Although it is debatable what is high or low expression, to at least have something for comparison, we have added the following information to the figure legends that only 20% of the genes in the presented RNAseq data show expression higher than 15 TPM.

      Figure 4 is intended to show expression changes with treatment, but expression changes should be shown on a log scale (so that increases and decreases in expression are shown symmetrically) and should be normalized to some standard level (such as uninfected lamellocytes).

      The bars in Figure 4C,D show the fold change (this is now stated in the y-axis legend) compared to 0 h (=uninfected) Adk3 samples - the reason for this visualization is that we wanted to show (1) the differences in levels between Adk3 and Adk2 and in levels between Ak1 and Ak2, respectively, and at the same time (2) the differences between uninfected and infected Adk3 and Ak1. In our opinion, these fold change differences are also much more visible in normal rather than log scale.

      Reviewer #3 (Recommendations for the authors):

      (1) It might be interesting to test how general this finding would be. How about Bacterial or fungal infection? The authors may also try genetic activation of immune pathways, e.g. Toll, Imd, JAK/STAT.

      Although we would also like to support our results in different systems, we believe that our results are already strong enough to propose the final hypothesis and publish it as soon as possible so that it can be tested by other researchers in different systems and contexts than the Drosophila immune response.

      (2) How does the metabolic pathway get activated? Enzyme activity? Transporters? Please test or at least discuss the possible mechanism.

      The response is already provided above in the Reviewer #3 (Public review) section.

      (3) The authors might test overexpression or genetic activation of the SAM transmethylation pathway.

      Although we agree that this would potentially strengthen our study, it may not be easy to increase the activity of the SAM transmethylation pathway - simply overexpressing the enzymes may not be enough, the regulation is primarily through the utilization of SAM by methyltransferases and there are hundreds of them and they affect numerous processes. 

      (4) Supplementation of adenosine to the Ahcy-RNAi larvae would also support their conclusion.

      Again, this is not an easy experiment, dietary supplementation would not work, direct injection of adenosine into the hemolymph would not last long enough, adenosine would be quickly removed.

      (5) It is interesting to test genetically the requirement of some transporters, especially for gb, which is upregulated upon infection.

      Although this would be an interesting experiment, it is beyond the scope of this study; we did not aim to study the role of the SAM transmethylation pathway itself or its regulation, only its overall activity and its role in adenosine production.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary of what the authors were trying to achieve:

      In this manuscript, the authors investigated the role of β-CTF on synaptic function and memory. They report that β-CTF can trigger the loss of synapses in neurons that were transiently transfected in cultured hippocampal slices and that this synapse loss occurs independently of Aβ. They confirmed previous research (Kim et al, Molecular Psychiatry, 2016) that β-CTF-induced cellular toxicity occurs through a mechanism involving a hexapeptide domain (YENPTY) in β-CTF that induces endosomal dysfunction. Although the current study also explores the role of β-CTF in synaptic and memory function in the brain using mice chronically expressing β-CTF, the studies are inconclusive because potential effects of Aβ generated by γ-secretase cleavage of β-CTF were not considered. Based on their findings, the authors suggest developing therapies to treat Alzheimer's disease by targeting β-CTF, but did not address the lack of clinical improvement in trials of several different BACE1 inhibitors, which target β-CTF by preventing its formation.

      We would like to thank the reviewer for his/her suggestions. We have addressed the specific comments in following sections.

      Major strengths and weaknesses of the methods and results:

      The conclusions of the in vitro experiments using cultured hippocampal slices were well supported by the data, but aspects of the in vivo experiments and proteomic studies need additional clarification.

      (1) In contrast to the in vitro experiments in which a γ-secretase inhibitor was used to exclude possible effects of Aβ, this possibility was not examined in in-vivo experiments assessing synapse loss and function (Figure 3) and cognitive function (Figure 4). The absence of plaque formation (Figure 4B) is not sufficient to exclude the possibility that Aβ is involved. The potential involvement of Aβ is an important consideration given the 4-month duration of protein expression in the in vivo studies.

      We appreciate the reviewer for raising this question. While our current data did not exclude the potential involvement of Aβ-induced toxicity in the synaptic and cognitive dysfunction observed in mice overexpressing β-CTF, addressing this directly remains challenging. Treatment with γ-secretase inhibitors could potentially shed light on this issue. However, treatments with γ-secretase inhibitors are known to lead to brain dysfunction by itself likely due to its blockade of the γ-cleavage of other essential molecules, such as Notch[1, 2]. Therefore, this approach is unlikely to provide a clear answer, which prevents us from pursuing it further experimentally in vivo. We hope the reviewer understands this limitation. We have included additional discussion (page 14 of the revised manuscript) to highlight this question.

      (2) The possibility that the results of the proteomic studies conducted in primary cultured hippocampal neurons depend in part on Aβ was also not taken into consideration.

      We thank the reviewer for raising this question. In the revised manuscript, we examined the protein levels of synaptic proteins after treatment with γ-secretase inhibitors and found that the levels of certain synaptic proteins were further reduced in neurons expressing β-CTF (Supplementary figure 5A-B). These results do not support Aβ as a major contributor of the proteomic changes induced by β-CTF.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      The authors' use of sparse expression to examine the role of β-CTF on spine loss could be a useful general tool for examining synapses in brain tissue.

      We thank the reviewer for these comments.

      Additional context that might help readers interpret or understand the significance of the work:

      The discovery of BACE1 stimulated an international effort to develop BACE1 inhibitors to treat Alzheimer's disease. BACE1 inhibitors block the formation of β-CTF which, in turn, prevents the formation of Aβ and other fragments. Unfortunately, BACE1 inhibitors not only did not improve cognition in patients with Alzheimer's disease, they appeared to worsen it, suggesting that producing β-CTF actually facilitates learning and memory. Therefore, it seems unlikely that the disruptive effects of β-CTF on endosomes plays a significant role in human disease. Insights from the authors that shed further light on this issue would be welcome.

      Response: We would like to express our gratitude to the reviewer for raising this question. It remains puzzling why BACE1 inhibition has failed to yield benefits in AD patients, while amyloid clearance via Aβ antibodies are able to slow down disease progression. One possible explanation is that pharmacological inhibition of BACE1 may not be as effective as its genetic removal. Indeed, genetic depletion of BACE1 leads to the clearance of existing amyloid plaques[3], whereas its pharmacological inhibition prevents the formation of new plaques but does not deplete the existing ones[4]. We think the negative results of BACE1 inhibitors in clinical trials may not be sufficient to rule out the potential contribution of β-CTF to AD pathogenesis. Given that cognitive function continues to deteriorate rapidly in plaque-free patients after 1.5 years of treatment with Aβ antibodies in phase three clinical studies[5], it is important to consider the potential role of other Aβ-related fragments in AD pathogenesis, such as β-CTF. We included further discussion in the revised manuscript (page 15 of the revised manuscript) to discusss this question.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigate the potential role of other cleavage products of amyloid precursor protein (APP) in neurodegeneration. They combine in vitro and in vivo experiments, revealing that β-CTF, a product cleaved by BACE1, promotes synaptic loss independently of Aβ. Furthermore, they suggest that β-CTF may interact with Rab5, leading to endosomal dysfunction and contributing to the loss of synaptic proteins.

      We would like to thank the reviewer for his/her suggestions. We have addressed the specific comments in following sections.

      Weaknesses:

      Most experiments were conducted in vitro using overexpressed β-CTF. Additionally, the study does not elucidate the mechanisms by which β-CTF disrupts endosomal function and induces synaptic degeneration.

      We would like to thank the reviewer for this comment. While a significant portion of our experiments were conducted in vitro, the main findings were also confirmed in vivo (Figure 3 and 4). Repeating all the experiments in vivo would be challenging and may not be possible because of technical difficulties. Regarding the use of overexpressed β-CTF, we acknowledge that this represents a common limitation in neurodegenerative disease studies. These diseases progress slowly over decades in patients. To model this progression in cell or mouse models within a time frame feasible for research, overexpression of certain proteins is often inevitable. Since β-CTF levels are elevated in AD patients[6], its overexpression is not a irrelevant approach to investigate its potential effects.

      We did not further investigate the mechanisms by which β-CTF disrupted endosomal function because our preliminary results align with previous findings that could explain its mechanism. Kim et al. demonstrated that β-CTF recruits APPL1 (a Rab5 effector) via the YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. However, this paper did not show whether this Rab5 overactivation-induced endosomal dysfunction leads to any damages in synapses. In our study, we observed that co-expression of Rab5<sub>S34N</sub> with β-CTF effectively mitigated β-CTF-induced spine loss in hippocampal slice cultures (Figures 6L-M), indicating that Rab5 overactivation-induced endosomal dysfunction contributed to β-CTF-induced spine loss. We included further discussion in the revised manuscript to clarify this (page 15 of the revised manuscript).

      Reviewer #3 (Public Review):

      Summary:

      Most previous studies have focused on the contributions of Abeta and amyloid plaques in the neuronal degeneration associated with Alzheimer's disease, especially in the context of impaired synaptic transmission and plasticity which underlies the impaired cognitive functions, a hallmark in AD. But processes independent of Abeta and plaques are much less explored, and to some extent, the contributions of these processes are less well understood. Luo et all addressed this important question with an array of approaches, and their findings generally support the contribution of beta-CTF-dependent but non-Abeta-dependent process to the impaired synaptic properties in the neurons. Interestingly, the above process appears to operate in a cell-autonomous manner. This cell-autonomous effect of beta-CTF as reported here may facilitate our understanding of some potentially important cellular processes related to neurodegeneration. Although these findings are valuable, it is key to understand the probability of this process occurring in a more natural condition, such as when this process occurs in many neurons at the same time. This will put the authors' findings into a context for a better understanding of their contribution to either physiological or pathological processes, such as Alzheimer's. The experiments and results using the cell system are quite solid, but the in vivo results are incomplete and hence less convincing (see below). The mechanistic analysis is interesting but primitive and does not add much more weight to the significance. Hence, further efforts from the authors are required to clarify and solidify their results, in order to provide a complete picture and support for the authors' conclusions.

      We would like to thank the reviewer for the suggestions. We have addressed the specific comments in following sections.

      Strengths:

      (1) The authors have addressed an interesting and potentially important question

      (2) The analysis using the cell system is solid and provides strong support for the authors' major conclusions. This analysis has used various technical approaches to support the authors' conclusions from different aspects and most of these results are consistent with each other.

      We would like to thank the reviewer for these comments.

      Weaknesses:

      (1) The relevance of the authors' major findings to the pathology, especially the Abeta-dependent processes is less clear, and hence the importance of these findings may be limited.

      We would like to thank the reviewer for this question. Phase 3 clinical trial data from Aβ antibodies show that cognitive function continues to decline rapidly, even in plaque-free patients, after 1.5 years of treatment[5]. This suggests that plaque-independent mechanisms may drive AD progression. Therefore, it is crucial to consider the potential contributions of other Aβ species or related fragments, such as alternative forms of Aβ and β-CTF. While it is early to predict how much β-CTF contributes to AD progression, it is notable that β-CTF induced synaptic deficits in mice, which recapitulates a key pathological feature of AD. Ultimately, the contribution of β-CTF in AD pathogenesis can only be tested through clinical studies in the future.

      (2) In vivo analysis is incomplete, with certain caveats in the experimental procedures and some of the results need to be further explored to confirm the findings.

      We would like to thank the reviewer for this suggestion. We have corrected these caveats in the revised manuscript.

      (3) The mechanistic analysis is rather primitive and does not add further significance.

      We would like to thank the reviewer for this comment. We did not delve further into the underlying mechanisms because our analysis indicates that Rab5 overactivation-induced endosomal dysfunction underlies β-CTF-induced synaptic dysfunction, which is consistent with another study and has been addressed in our study[6]. We hope the reviewer could understand that our focus in this paper is on how β-CTF triggers synaptic deficits, which is why we did not investigate the mechanisms of β-CTF-induced endosomal dysfunction further.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses:

      (1) In Figures 4H, 4J, 4K and Supplemental Figures 3C, 3E, and 3G, it was unclear whether a repeated measures 2-way ANOVA, rather than a 2-way ANOVA, followed by appropriate post-hoc analyses was used to strengthen the conclusion that there were significant effects in the behavioral tests.

      We appreciate the reviewer for raising this point and apologize for the lack of clear description in the manuscript. In those figures mentioned above, we use a repeated measures 2-way ANOVA to analyze the data by Graphpad Prism. In Figure 4H, fear conditioning tests were conducted. The same cohort of mice were used in the baseline, contextual and cued tests. Firstly, baseline freezing was tested; then these mice underwent tone and foot shock training, followed by contextual test and cued test. So, a repeated measures 2-way ANOVA is more appropriate for the experiment.

      In water T maze tests (Figure 4J and K), the same cohort of mice were trained and tested each day. So, it’s also appropriate to use a repeated measures 2-way ANOVA.

      In Supplementary figure 3C, 3E and 3G, OFT was conducted. In this experiment, the locomotion of the same cohort of mice were recorded. Also, it’s appropriate to use a repeated measures 2-way ANOVA.

      Clearer description for these experiments has been provided in the revised manuscript.

      (2) Including gender analyses would be helpful.

      The mice we used in this study were all males.

      Minor corrections to text and figures:

      (1) Quantitative analyses in Figures 5A-C, 5H, 6G, 6H, and Supplementary Figures 4 and 5C would be helpful.

      We have provided quantitative analysis of these results (Figure 5D, 5J, 6K, Supplementary figure 4D, 5F) mentioned above in the revised manuscript.

      (2) Percent correct (%) in Figures 4J and 4K should be labeled as 0, 50, and 100 instead of 0.0, 0.5, and 1.0.

      We would like to thank the reviewer for pointing out this. We have made corrections in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      In the study conducted by Luo et al, it was observed that the fragment of amyloid precursor protein (APP) cleaved by beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), known as β-CTF, plays a crucial role in synaptic damage. The study found increasing expression of β-CTF in neurons could induce synapse loss both in vitro and in vivo, independent of Aβ. Mechanistically, they explored how β-CTF could interfere with the endosome system by interacting with RAB5. While this study is intriguing, there are several points that warrant further investigation:

      (1) The study involved overexpressing β-CTF in neurons. It would be valuable to know if the levels of β-CTF are similarly increased in Alzheimer's disease (AD) patients or AD mouse models.

      We would like to thank the reviewer for the suggestion. It’s reported β-CTF levels were significantly elevated in the AD cerebral cortex[6]. Most AD mouse models are human APP transgenic mouse models with elevated β-CTF levels[7].

      (2) The study noted that β-CTF in neurons is a membranal fragment, but the overexpressed β-CTF was not located in the membrane. It is important to ascertain whether the membranal β-CTF and cytoplasmic β-CTF lead to synapse loss in a similar manner.

      We apologize for not clearly explaining the localization of β-CTF in the original manuscript. β-CTF is produced from APP through β-cleavage, a process that occurs in organelles such as endo-lysosomes[8]. The overexpressed β-CTF is also primarily localized in the endo-lysosomal systems (Figure 5C and Supplementary figure 4C), similar to those generated by APP cleavage.

      (3) The study found a significant decrease in GluA1, a subunit of AMPA receptors, due to β-CTF. It would be beneficial to investigate whether there are systematic alterations in NMDA receptors, including GluN2A and GluN2B.

      We would like to express our gratitude to the reviewer for bringing up this question. The protein levels of GluN2A and GluN2B are also reduced in neurons expressing β-CTF (Figure 6E-F)

      (4) The study showed a significant decrease in the frequency of miniature excitatory postsynaptic currents (mEPSC), indicating disrupted presynaptic vesicle neurotransmitter release. It would be pertinent to test whether the expression level of the presynaptic SNARE complex, which is required for vesicle release, is altered by β-CTF.

      We would like to express our gratitude to the reviewer for bringing up this question. The protein level of the presynaptic SNARE complex, such as VAMP2, is also reduced in neurons expressing β-CTF (Figure 6E, G).

      (5) Since AMPA receptors are glutamate receptors, it is important to determine whether the ability of glutamate release is altered by β-CTF. In vivo studies using a glutamate sensor should be conducted to examine glutamate release.

      We would like to express our gratitude to the reviewer for this suggestion. It will be interesting to use glutamate sensors to assess the ability of glutamate release in the future.

      (6) The quality of immunostaining associated with Figures 4B and 4C was noted to be suboptimal.

      We apologize for the suboptimal quality of these images. The immunostaining in Figures 4B and 4C were captured using the stitching function of a confocal microscope to display larger areas, including the entire hemisphere and hippocampus. We have reprocessed the images to obtain higher-quality versions.

      (7) It would be insightful to investigate whether treatment with a BACE1 inhibitor in the study could reverse synaptic deficits mediated by β-CTF.

      We would like to thank the reviewer for this sggestion. In Figure 1I-M, we constructed an APP mutant (APP<sub>MV</sub>), which cannot be cleaved by BACE1 to produce β-CTF and Aβ but has no impact on β’-cleavage. When co-expressed with BACE1, APP<sub>MV</sub> failed to induce spine loss, supporting the effect of β-CTF. We think these results domonstrate that β-CTF underlies the synaptic deficits. It would be interesting to test the effects of BACE1 inhibition in the future.

      (8) Considering the potential implications for therapeutics, it is worth exploring whether extremely low levels of β-CTF have beneficial effects in regulating synaptic function or promoting synaptogenesis at a physiological level.

      We would like to thank the reviewer for raising this question. We found that when the plasmid amount was reduced to 1/8 of the original dose, β-CTF no longer induced a decrease in dendritic spine density (Supplementary figure 2E-F). It’s reported APP-Swedish mutation in familial AD increased synapse numbers and synaptic transmission, whereas inhibition of BACE1 lowered synapse numbers, suppressed synaptic transmission in wild type neurons, suggesting that at physiological level, β-CTF might be synaptogenic[9].

      (9) The molecular mechanism through which β-CTF interferes with Rab5 function should be elucidated.

      We would like to thank the reviewer for raising this question. Kim et al have elucidated the mechanism through which β-CTF interferes with Rab5 function. β-CTF recruited APPL1 (a Rab5 effector) via YENPTY motif to Rab5 endosomes, where it stabilizes active GTP-Rab5, leading to pathologically accelerated endocytosis, endosome swelling and selectively impaired transport of Rab5 endosomes[6]. We have included additional discussion for this question in the revised manuscript (page 15 of the revised manuscript).

      (10) The study could compare the role of β-CTF and Aβ in neurodegeneration in AD mouse models.

      We would like to thank the reviewer for raising this point. While it is easier to dissect the role of Aβ and β-CTF in vitro, some of the critical tools are not applicabe in vivo, such as γ-secretase inhibitors, which lead to severe side effects because of their inhibition on other γ substrates[1, 2]. Therefore it will be difficult to deomonstrate their different roles in vivo. There are studies showing that β-CTF accumulation precedes Aβ deposition in model mice and mediates Aβ independent intracellular pathologies[10, 11], consistent with our results.

      (11) Based on the findings, it would be valuable to discuss possible explanations for the failure of most BACE1 inhibitors in recent clinical trials for humans.

      Response: We would like to express our gratitude to the reviewer for raising this recommendation. It is a big puzzle why BACE1 inhibition failed to provide beneficial effects in AD patients whereas clearance of amyloid by Aβ antibodies could slow down the AD progress. One potential answer is that pharmacological inhibition of BACE1 might be not as effective as its genetic removal. Indeed, genetic depletion of BACE1 leads to clearance of existing amyloid plaques[3], whereas pharmacological inhibition of BACE1 could not stop growth of existing plaques, although it prevents formation of new plaques[4]. The negative result of BACE1 inhibitors might not be sufficient to exclude the possibility that β-CTF could also contribute to the AD pathogenesis. We have included additional discussion for this question in the revised manuscript (page 15 of the revised manuscript).

      Reviewer #3 (Recommendations For The Authors):

      Major:

      (1) The cell experiments were performed at DIV 9, do the authors know whether at this age, the neurons are still developing and spine density has not reached a pleated yet? If so, the observed effect may reflect the impact on development and/or maturation, rather than on the mature neurons. The authors should be more specific about this issue.

      We would like to thank the reviewer for pointing out this question. These slice cultures were made from 1-week-old rats. DIV 9 is about two weeks old. These neurons are still developing and spine density has not reached a plateau yet[12]. In addition, we also investigated the effects of β-CTF on the synapses of mature neurons in two-month-old mice (Figure 3). So we think the observed effect reflects the impact on both immature and mature neurons.

      (2) mEPSCs shown in Figure 3D were of small amplitudes, perhaps also indicating that these synapses are not yet mature.

      In Figure 3D, the mEPSC results were obtained from pyramidal neurons in the CA1 region of two-month-old mice. At the age of two months, neurotransmitter levels and synaptic density have reached adult levels[13].

      (3) There was no data on the spine density or mEPSCs in the mice OE b-CTF, hence it is unclear whether a primary impact of this manipulation (b-CTF effect) on the synaptic transmission still occurs in vivo.

      In Figure 3, we examined the density of dendritic spines and mEPSCs from CA1 pyramidal neurons infected with lentivirus expressing β-CTF in mice and showed that those neurons expressing additional amount of β-CTF exhibited lower spine density and less mEPSCs, supporting that β-CTF also damaged synaptic transmission in vivo.

      (4) OE of b-CTF should lead to the production of Abeta, although this may not lead to the formation of significant plaques. How do the authors know whether their findings on behavioral and cognitive impairments were not largely mediated by Abeta, which has been widely reported by previous studies?

      We would like to thank the reviewer for pointing out this question. Indeed, our in vivo data could not exclude the potential involvement of Aβ in the pathology, despite the absence of amyloid plaque formation. It will be difficult to demonstrate this question in vivo because of the severe side effects from γ inhibition.

      (5) Figure 4H, the freezing level in the cued fear conditioning was very high, likely saturated; this may mask a potential reduction in the b-CTF OE mice (there is a hint for that in the results). The authors should repeat the experiments using less strong footshock strength (hence resulting in less freezing, <70%).

      We would like to express our gratitude to the reviewer for bringing up this question. The contextual fear conditioning test assesses hippocampal function, while the cued fear conditioning test assesses amygdala function. We hope the reviewer understands that our primary goal is to assess hippocampus-related functions in this experiment and we did see a significant difference between GFP and β-CTF groups. Therefore, we think the intensity of footshock we used was suitable to serve the primary purpose of this experiment.

      (6) Why was the deficit in the Morris water maze in the b-CTF OE mice only significant in the training phase?

      We would like to thank the reviewer for rasing this question and apologize for not describing the test clearly. This is a water T maze test, not Morris water maze test.

      To make the behavioral paradigm of the water T maze test easier to understand, we have provided a more detailed description of the methods in the new version of the manuscript.

      The acquisition phase of the Water T Maze (WTM) evaluates spatial learning and memory, where mice use spatial cues in the environment to navigate to a hidden platform and escape from water, while the reversal learning measures cognitive flexibility in which mice must learn a new location of the hidden platform[14]. In reversal learning task (Figure 4J-K), the learning curves of the two groups of mice did not show any significant differences, indicating that the expression of β-CTF only damages spatial learning and memory but not cognitive flexibility. This is consistent with a previous report using APP/PS1 mice[15].

      (7) Will the altered Rab5 in the b-CTF OE condition also affect the level of other proteins?

      We would like to express our gratitude to the reviewer for raising this interesting question.  Expression of Rab5<sub>S34N</sub> in β-CTF-expressing neurons did not alter the levels of synapse-related proteins that were reduced in these neurons (Supplementary figure 5G-H), suggesting Rab5 overactivation did not contribute to these protein expression changes induced by β-CTF.

      (8) How do the authors reconcile their findings with the well-established findings that Abeta affects synaptic transmission and spine density? Do they think these two processes may occur simultaneously in the neurons, or, one process may dominate in the other?

      APP, Aβ, and presenilins have been extensively studied in mouse models, providing convincing evidence that high Aβ concentrations are toxic to synapses[16]. Moreover, addition of Aβ to murine cultured neurons or brain slices is toxic to synapses[17]. However, Aβ-induced synaptotoxicity was not observed in our study. A major difference between our study and others is that our study used a isolated expression system that apply Aβ only to individual neurons surrounded by neurons without excessive amount of Aβ, whereas the rest studies generally apply Aβ to all the neurons. Therefore, we predict that Aβ does not lead to synaptic deficits from individual neurons in cell autonomous manners, whereas β-CTF does. Aβ and β-CTF represent two parallel pathways of action. Additional discussion for this question has been included in the revised manuscript (page 14 of the revised manuscript).

      Minor:

      Fig 2F-G, "prevent" rather than "reverse"?

      We would like to thank the reviewer for pointing this out. We have made corrections in the revised manuscript.

      Reference:

      (1) GüNER G, LICHTENTHALER S F. The substrate repertoire of γ-secretase/presenilin [J]. Seminars in cell & developmental biology, 2020, 105: 27-42.

      (2) DOODY R S, RAMAN R, FARLOW M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease [J]. The New England journal of medicine, 2013, 369(4): 341-50.

      (3) HU X, DAS B, HOU H, et al. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions [J]. The Journal of experimental medicine, 2018, 215(3): 927-40.

      (4) PETERS F, SALIHOGLU H, RODRIGUES E, et al. BACE1 inhibition more effectively suppresses initiation than progression of β-amyloid pathology [J]. Acta neuropathologica, 2018, 135(5): 695-710.

      (5) SIMS J R, ZIMMER J A, EVANS C D, et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial [J]. Jama, 2023, 330(6): 512-27.

      (6) KIM S, SATO Y, MOHAN P S, et al. Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer's disease [J]. Molecular psychiatry, 2016, 21(5): 707-16.

      (7) MONDRAGóN-RODRíGUEZ S, GU N, MANSEAU F, et al. Alzheimer's Transgenic Model Is Characterized by Very Early Brain Network Alterations and β-CTF Fragment Accumulation: Reversal by β-Secretase Inhibition [J]. Frontiers in cellular neuroscience, 2018, 12: 121.

      (8) ZHANG X, SONG W. The role of APP and BACE1 trafficking in APP processing and amyloid-β generation [J]. Alzheimer's research & therapy, 2013, 5(5): 46.

      (9) ZHOU B, LU J G, SIDDU A, et al. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer's disease [J]. Science translational medicine, 2022, 14(667): eabn9380.

      (10) LAURITZEN I, PARDOSSI-PIQUARD R, BAUER C, et al. The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, 32(46): 16243-1655a.

      (11) KAUR G, PAWLIK M, GANDY S E, et al. Lysosomal dysfunction in the brain of a mouse model with intraneuronal accumulation of carboxyl terminal fragments of the amyloid precursor protein [J]. Molecular psychiatry, 2017, 22(7): 981-9.

      (12) HARRIS K M, JENSEN F E, TSAO B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1992, 12(7): 2685-705.

      (13) SEMPLE B D, BLOMGREN K, GIMLIN K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species [J]. Progress in neurobiology, 2013, 106-107: 1-16.

      (14) GUARIGLIA S R, CHADMAN K K. Water T-maze: a useful assay for determination of repetitive behaviors in mice [J]. Journal of neuroscience methods, 2013, 220(1): 24-9.

      (15) ZOU C, MIFFLIN L, HU Z, et al. Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease [J]. Cell reports, 2020, 33(10): 108447.

      (16) CHAPMAN P F, WHITE G L, JONES M W, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice [J]. Nature neuroscience, 1999, 2(3): 271-6.

      (17) WANG Z, JACKSON R J, HONG W, et al. Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2017, 37(49): 11947-66.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      A number of modifications/additions have been made to the text which help to clarify the background and details of the study and I feel have improved the study.

      NAD deficiency induced using the dietary/Haao null model showed a window of susceptibility at E7.5-10.5. Further, HAAO enymze activity data has been added at E11.5 and the minimal HAAO activity in the embryo act E11.5 supports the hypothesis that the NAD synthesis pathway from kynurenine is not functional until the liver starts to develop.

      The caveat to this is that absence of expression/activity in embryonic cells at E7.5-10/5 relies on previous scRNA-seq data. Both reviewers commented that analysis of RNA and/or protein expression at these stages (E7.5-10.5) would be necessary to rule this out, and would strongly support the conclusions regarding the necessity for yolk sac activity.

      There are a number of antibodies for HAAO, KNYU etc so it is surprising if none of these are specific for the mouse proteins, while an alternative approach in situ hydridisation would also be possible.

      We have tested 2 anti-HAAO antibodies, 2 anti-KYNU antibodies and 1 anti-QPRT antibody on adult liver and various embryonic tissues.

      Given that all tested antibodies only detected a specific band in tissues with very high expression and abundant target protein levels (adult liver), they were determined to be unsuitable to conclusively prove that these proteins of the NAD _de novo_synthesis pathway are absent in embryos prior to the development of a functional liver. They were also unsuitable for IHC experiments to determine which cell types (if any) have these proteins.

      The antibodies, tested assays and samples, and the results obtained were as follows:

      Anti-HAAO antibody (ab106436, Abcam, UK) 

      • Was tested in western blots of liver, E11.5-E14.5 yolk sac, E14.5 placenta, and E14.5 and E16.5 embryonic liver lysates from wild-type (WT) and Haao-/- mice. The target band (32.5 KD) was visible in the WT liver samples and absent in_Haao_-/- livers, and faintly visible in E11.5-E14.5 WT yolk sac, with intensity gradually increasing in E12.5 and E13.5 WT yolk sac. Multiple strong non-specific bands occurred in all samples, requiring cutting off the >50 KD area of the blots.

      • Was re-tested in western blots comparing WT, Haao-/-, and Kynu-/- E9.5-E11.5 embryo, E9.5 yolk sac, and adult liver tissues. It detected the target band faintly only in WT and Kynu-/- liver lysates. No target band could be resolved in E9.5 yolk sac or embryo lysates. Due to the low sensitivity of the antibody, it is unsuitable to conclusively determine whether HAAO is present or absent in E9.5 yolk sacs and E9.5-E11.5 embryos.

      • Was tested in IHC with DAB and IF, producing non-specific staining on both WT and Haao-/- liver and kidney tissue. 

      Anti-HAAO antibody (NBP1-77361, Novus Biologicals, LLC, CO, USA)

      • Was tested in western blots and detected a very faint target band in WT liver lysate that was absent in Haao-/- lysate, with stronger non-specific bands occurring in both genotypes.

      • Was tested in IHC with DAB, producing non-specific staining on both WT and Haao-/- liver and kidney tissue 

      Anti-L-Kynurenine Hydrolase antibody (11796-1-AP, Proteintech Group, IL, USA)

      • Was tested in western blots and detected a faint target band (52 KD) in E11.5, E12.5 E13.5, and E14.5 yolk sac lysates. Detected a weak band in E14.5 liver, a stronger band in E16.5 liver, but not in E14.5 placenta. The target band was only resolved with normal ECL substrate and extended exposure when the >75 KD part of the blot was cut off. 

      • Was re-tested in western blots comparing WT, Haao-/-, and Kynu-/- E9.5-E11.5 embryo, E9.5 yolk sac, and adult liver tissues. It detected the target band only in WT and Haao-/- liver lysates, requiring Ultra Sensitive Substrate. No target band could be resolved in yolk sac or embryo lysates of any genotype.

      Anti-L-Kynurenine Hydrolase antibody (ab236980, Abcam, UK)

      • Was tested in western blots and detected a very faint target band (52 KD) in WT liver lysates and no band in Kynu-/- liver lysates. Multiple non-specific bands occurred irrespective of the Kynu genotype of the lysate.

      • Was tested in IHC with DAB and IF, producing non-specific staining on both WT and Kynu-/- liver and kidney tissue 

      Anti-QPRT (orb317756, Biorbyt, NC, USA)

      • Was tested in western blots and detected a faint target band (31 KD) with multiple other bands between 25-75 KD and an extremely strong band around 150 KD on WT liver lysates.

      The following is the authors’ response to the original reviews.

      Reviewer 1 Public Review:

      The current dietary study narrows the period when deficiency can cause malformations (analysed at E18.5), and altered metabolite profiles (eg, increased 3HAA, lower NAD) are detected in the yolk sac and embryo at E10.5. However, without analysis of embryos at later stages in this experiment it is not known how long is needed for NAD synthesis to be recovered - and therefore until when the period of exposure to insufficient NAD lasts. This information would inform the understanding of the developmental origin of the observed defects.

      Our previous published work (Cuny et al 2023 https://doi.org/10.1242/dmm.049647) indicates that the timing of NAD de novo synthesis pathway precursor availability and consequently the timing of NAD deficiency during organogenesis drives which organs are affected in their development. Furthermore, experimental data of another project (manuscript submitted) shows that mouse embryos (from mothers on an NAD precursor restricted diet that induces CNDD) were NAD deficient at E9.5 and E11.5, but embryo NAD levels were fully recovered at E14.5 when compared to same-stage embryos from mothers on precursor-sufficient diet. This was observed irrespective of the embryos’ Haao genotype. In the current study, NAD precursor provision was only restricted until E10.5. Thus, we expect that our embryos phenotyped at E18.5 had recovered their NAD levels back to normal by E14.5 at the latest.  More research, beyond the scope of the current manuscript, is required to spatio-temporally link embryonic NAD deficiency to the occurrence of specific defect types and elucidate the mechanistic origin of the defects. To acknowledge this, we updated the respective Discussion paragraph on page 7 and added the following statement: “This observation supports our hypothesis that the timing of NAD deficiency during organogenesis determines which organs/tissues are affected (Cuny et al., 2023), but more research is needed to fully characterise the onset and duration of embryonic NAD deficiency in dietary NAD precursor restriction mouse models.”

      More importantly, there is still a question of whether in addition to the yolk sac, there is HAAO activity within the embryo itself prior to E12.5 (when it has first been assayed in the liver - Figure 1C). The prediction is that within the conceptus (embryo, chorioallantoic placenta, and visceral yok sac) the embryo is unlikely to be the site of NAD synthesis prior to liver development. Reanalysis of scRNA-seq (Fig 1B) shows expression of all the enzymes of the kynurenine pathway from E9.5 onwards. However, the expression of another available dataset at E10.5 (Fig S3) suggested that expression is 'negligible'. While the expression in Figure 1B, Figure S1 is weak this creates a lack of clarity about the possible expression of HAAO in the hepatocyte lineage, or especially elsewhere in the embryo prior to E10.5 (corresponding to the period when the authors have demonstrated that de novo NAD synthesis in the conceptus is needed). Given these questions, a direct analysis of RNA and/or protein expression in the embryos at E7.5-10.5 would be helpful. 

      We now have included additional data showing that whole embryos at E11.5 and embryos with their livers removed at E14.5 have negligible HAAO enzyme activity. The observed lack of HAAO activity in the embryo at E11.5 is consistent with the absence of a functional embryonic liver at that stage. Thus, it confirms that the embryo is dependent of extraembryonic tissues (the yolk sac) for NAD de novo synthesis prior to E12.5. The additional datasets are now included in Supplementary Table S1 and as Supplementary Figure 2. The Results section on page 2 has been updated to refer to these datasets.

      Reviewer #2 (Public Review): 

      Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency. 

      We now provide more information about the malformation types in the Results on page 4. Also, Table S4 now defines the missing vertebral, sternum, and kidney descriptors.

      Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway? 

      This is a good comment, highlighting that further research, beyond the scope of this manuscript, is needed to better understand the underlying mechanisms of CNDD causation. We have expanded the Discussion paragraph “NAD deficiency in early organogenesis is sufficient to cause CNDD” to indicate that while the timing of NAD deficiency during embryogenesis explains variability in phenotypes among the CNDD spectrum, it is unknown why other organs/tissues are seemingly not affected by NAD deficiency.

      To answer the reviewer’s questions and elucidate the underlying cellular and molecular processes in individual organs affected by NAD deficiency, a multiomic approach is required. This is because NAD is involved in hundreds of molecular and cellular processes affecting gene expression, protein levels, metabolism, etc. For details of NAD functions that have relevance to embryogenesis, the reviewer may refer to our recent review article (Dunwoodie et al 2023 https://doi.org/10.1089/ars.2023.0349). 

      Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis. 

      We have tested antibodies against HAAO, KYNU, and QPRT in adult mouse liver samples (the main site of NAD de novo synthesis) but these produced non-specific bands in western blotting experiments. Therefore, immunostaining studies on embryonic tissues were not feasible. 

      However, we agree that histological methods such as in situ hybridisation would provide secondary validation of the exact cell types that express these genes. To acknowledge this, we have updated a sentence on page 5 referring to the data shown in Figure 6C as follows: “While histological methods such as in situ hybridisation would be required to confirm the exact cell types expressing these genes, the available expression data indicates that the genes encoding those enzymes required to convert L-kynurenine to NAD (kynurenine pathway) are exclusively expressed in the yolk sac endoderm lineage from the onset of organogenesis (E8.0-8.5).”

      Absolute functional proof of the yolk sac endoderm as being essential and required for NAD synthesis in the context of CNDD might require conditional deletion of Haao in the yolk sac versus embryo using appropriate Cre driver lines or in the absence of a conditional allele, could be performed by tetraploid embryo-ES cell complementation approaches. But temporal dietary intervention can also approximate the same thing by perturbing NAD synthesis Shen the yolk sac is the primary source versus when the liver becomes the primary source in the embryo. 

      Reviewer 1 has made a similar comment about confirming that indeed NAD de novo synthesis activity is limited to extraembryonic tissues (=yolk sacs) and absent in the embryo prior to development of an embryonic liver. We now have included additional data showing that whole embryos at E11.5 and embryos with their livers removed at E14.5 have negligible HAAO enzyme activity. The observed lack of HAAO activity in the embryo at E11.5 is consistent with the absence of a functional embryonic liver at that stage. We think this provides enough proof that the embryo is dependent of extraembryonic tissues (the yolk sac) for NAD de novo synthesis prior to E12.5. The additional datasets are now included in Supplementary Table S1 and as Supplementary Figure 2. The Results section on page 2 has been updated to refer to these data.

      Reviewer #1 (Recommendations For The Authors): 

      (1) Introduction (page 1) introduces mouse models with defects in the kynurenine pathway "confirming that NAD de novo synthesis is required during embryogenesis ...". This requirement is revealed by the imposition of maternal dietary deficiency and more detail (or a more clear link to the following sentences) here would help the reader who is not familiar with the previous papers using the HAAO mice and dietary modulation.

      We have updated this paragraph in the Introduction to better indicate that the requirement of NAD de novo synthesis for embryogenesis was confirmed in mouse models by modulating the maternal dietary NAD precursor provision during pregnancy.

      (2) Discussion - throughout the introduction and results the authors refer to the NAD de novo synthesis pathway, with the study focussing on the effects of HAAO loss of function. Data implies that the kynurenine pathway is active in the yolk sac but whether de novo synthesis from L-tryptophan occurs has not been addressed. The first sub-heading of the discussion could be more accurate referring to the kynurenine pathway, or synthesis from kynurenine. 

      We agree that our manuscript needed to make better distinction between NAD de novo synthesis starting from kynurenine and starting from tryptophan. We removed “from Ltryptophan” from the sub-heading in the Discussion and clarified in this paragraph which genes are required to convert tryptophan to kynurenine and which genes to convert kynurenine to NAD. We also updated two Results paragraphs (page 2, 2nd paragraph; page 5, 5th paragraph) to improve clarity.

      It is worth noting that our statement in the Discussion “this is the first demonstration of NAD de novo synthesis occurring in a tissue outside of the liver and kidney.” is valid because vascular smooth muscle cells express Tdo2 and in combination with the other requisite genes expressed in endoderm cells, the yolk sac has the capability to synthesise NAD de novo from L-tryptophan.

      (3) Outlook - While this section is designed to be looking ahead to the potential implications of the work, the last section on gene therapy of the yolk sac seems far removed from the paper content and highly speculative. I feel this could detract from the main points of the study and could be removed. 

      We have updated the Outlook paragraph and shortened the final part to “Further research is required to better understand the mechanisms of CNDD causation and of other causes of adverse pregnancy outcomes involving the yolk sac.”

      (4) In Figure 2D it would be useful to label the clusters as the colours in the legend are difficult to match to the heatmap. 

      We now have labelled the clusters with lowercase letters above the heatmap to make it easier to match the clusters in Figure 2D to the colours used for designating tissues and genotypes. These labels are described in the figure’s key and the figure legend.  

      Reviewer #2 (Recommendations For The Authors): 

      Page 4 and Table S4. The descriptors for malformations of organs such as the kidney and vertebrae are quite vague and uninformative. More specific details are required to convey the type and range of anomalies observed as a consequence of NAD deficiency. 

      We now provide more information about the malformation types in the Results on page 4. Also, Table S4 now defines the missing vertebral, sternum, and kidney descriptors.

      Can the authors define whether the role of the NAD pathway in a couple of tissue or organ systems is the same? By this I mean is the molecular or cellular effect of NAD deficiency is the same in the vertebrae and organs such as the kidney. What unifies the effects on these specific tissues and organs and are all tissues and organs affected? If some are not, can the authors explain why they escape the need for the NAD pathway? 

      This is a good comment, highlighting that further research, beyond the scope of this manuscript, is needed to better understand the underlying mechanisms of CNDD causation. We have expanded the Discussion paragraph “NAD deficiency in early organogenesis is sufficient to cause CNDD” to indicate that while the timing of NAD deficiency during embryogenesis explains variability in phenotypes among the CNDD spectrum, it is unknown why other organs/tissues are seemingly not affected by NAD deficiency.

      To answer the reviewer’s questions and elucidate the underlying cellular and molecular processes in individual organs affected by NAD deficiency, a multiomic approach is required. This is because NAD is involved in hundreds of molecular and cellular processes affecting gene expression, protein levels, metabolism, etc. For details of NAD functions that have relevance to embryogenesis, the reviewer may refer to our recent review article (Dunwoodie et al 2023 https://doi.org/10.1089/ars.2023.0349). 

      Page 5 and Figure 6C. The expectation and conclusion for whether specific genes are expressed in particular cell types in scRNA-seq datasets depend on the number of cells sequenced, the technology (methodology) used, the depth of sequencing, and also the resolution of the analysis. It is therefore essential to perform secondary validation of the analysis of scRNA-seq data. At a minimum, the authors should perform in situ hybridization or immunostaining for Tdo2, Afmid, Kmo, Kynu, Haao, Qprt, and Nadsyn1 or some combination thereof at multiple time points during early mouse embryogenesis to truly understand the spatiotemporal dynamics of expression and NAD synthesis. 

      We have tested antibodies against HAAO, KYNU, and QPRT in adult mouse liver samples (the main site of NAD de novo synthesis) but these produced non-specific bands in western blotting experiments. Therefore, immunostaining studies on embryonic tissues were not feasible. 

      However, we agree that histological methods such as in situ hybridisation would provide secondary validation of the exact cell types that express these genes. To acknowledge this, we have updated a sentence on page 5 referring to the data shown in Figure 6C as follows: “While histological methods such as in situ hybridisation would be required to confirm the exact cell types expressing these genes, the available expression data indicates that the genes encoding those enzymes required to convert L-kynurenine to NAD (kynurenine pathway) are exclusively expressed in the yolk sac endoderm lineage from the onset of organogenesis (E8.0-8.5).”

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      In this paper by Brickwedde et al., the authors observe an increase in posterior alpha when anticipating auditory as opposed to visual targets. The authors also observe an enhancement in both visual and auditory steady-state sensory evoked potentials in anticipation of auditory targets, in correlation with enhanced occipital alpha. The authors conclude that alpha does not reflect inhibition of early sensory processing, but rather orchestrates signal transmission to later stages of the sensory processing stream. However, there are several major concerns that need to be addressed in order to draw this conclusion.

      First, I am not convinced that the frequency tagging method and the associated analyses are adequate for dissociating visual vs auditory steady-state sensory evoked potentials.

      Second, if the authors want to propose a general revision for the function of alpha, it would be important to show that alpha effects in the visual cortex for visual perception are analogous to alpha effects in the auditory cortex for auditory perception.

      Third, the authors propose an alternative function for alpha - that alpha orchestrates signal transmission to later stages of the sensory processing stream. However, the supporting evidence for this alternative function is lacking. I will elaborate on these major concerns below.

      (1) Potential bleed-over across frequencies in the spectral domain is a major concern for all of the results in this paper. The fact that alpha power, 36Hz and 40Hz frequency-tagged amplitude and 4Hz intermodulation frequency power is generally correlated with one another amplifies this concern. The authors are attaching specific meaning to each of these frequencies, but perhaps there is simply a broadband increase in neural activity when anticipating an auditory target compared to a visual target?

      We appreciate the reviewer’s insightful comment regarding the potential bleed-over across frequencies in the spectral domain. We fully acknowledge that the trade-off between temporal and frequency resolution is a challenge, particularly given the proximity of the frequencies we are examining.

      To address this concern, we performed additional analyses to investigate whether there is indeed a broadband increase in neural activity when anticipating an auditory target as compared to a visual target, as opposed to distinct frequency-specific effects. Our results show that the bleed-over between frequencies is minimal and does not significantly affect our findings. Specifically, we repeated the analyses using the same filter and processing steps for the 44 Hz frequency. At this frequency, we did not observe any significant differences between conditions.

      These findings suggest that the effects we report are indeed specific to the 40 Hz frequency band and not due to a general broadband increase in neural activity. We hope this addresses the reviewer’s concern and strengthens the validity of our frequency-specific results.

      Author response image 1.

      Illustration of bleeding over effects over a span of 4 Hz. A, 40 Hz frequency-tagging data over the significant cluster differing between when expecting an auditory versus a visual target (identical to Fig. 9 in the manuscript). B, 44 Hz signal over the same cluster chosen for A. The analysis was identical with the analysis performed in  A, apart from the frequency for the band-pass filter.

      We do, however, not specifically argue against the possibility of a broadband increase when anticipating an auditory compared to a visual target. But even a broadband-increase would directly contradict the alpha inhibition hypothesis, which poses that an increase in alpha completely disengages the whole cortex. We will clarify this point in the revised manuscript.

      (2) Moreover, 36Hz visual and 40Hz auditory signals are expected to be filtered in the neocortex. Applying standard filters and Hilbert transform to estimate sensory evoked potentials appears to rely on huge assumptions that are not fully substantiated in this paper. In Figure 4, 36Hz "visual" and 40Hz "auditory" signals seem largely indistinguishable from one another, suggesting that the analysis failed to fully demix these signals.

      We appreciate the reviewer’s insightful concern regarding the filtering and demixing of the 36 Hz visual and 40 Hz auditory signals, and we share the same reservations about the reliance on standard filters and the Hilbert transform method.

      To address this, we would like to draw attention to Author response image 1, which demonstrates that a 4 Hz difference is sufficient to effectively demix the signals using our chosen filtering and Hilbert transform approach. We believe that the reason the 36 Hz visual and 40 Hz auditory signals show similar topographies lies not in incomplete demixing but rather in the possibility that this condition difference reflects sensory integration, rather than signal contamination.

      This interpretation is further supported by our findings with the intermodulation frequency at 4 Hz, which also suggests cross-modal integration. Furthermore, source localization analysis revealed that the strongest condition differences were observed in the precuneus, an area frequently associated with sensory integration processes. We will expand on this in the discussion section to better clarify this point.

      (3) The asymmetric results in the visual and auditory modalities preclude a modality-general conclusion about the function of alpha. However, much of the language seems to generalize across sensory modalities (e.g., use of the term 'sensory' rather than 'visual').

      We thank the reviewer for pointing this out and agree that in some cases we have not made a good enough distinction between visual and sensory. We will make sure, that when using ‘sensory’, we either describe overall theories, which are not visual-exclusive or refer to the possibility of a broad sensory increase. However, when directly discussing our results and the interpretation thereof, we will now use ‘visual’ in the revised manuscript.

      (4) In this vein, some of the conclusions would be far more convincing if there was at least a trend towards symmetry in source-localized analyses of MEG signals. For example, how does alpha power in the primary auditory cortex (A1) compare when anticipating auditory vs visual target? What do the frequency-tagged visual and auditory responses look like when just looking at the primary visual cortex (V1) or A1?

      We thank the reviewer for this important suggestion and have added a virtual channel analysis. We were however, not interested in alpha power in primary auditory cortex, as we were specifically interested in the posterior alpha, which is usually increased when expecting an auditory compared to a visual target (and used to be interpreted as a blanket inhibition of the visual cortex). We will improve upon the clarity concerning this point in the manuscript.

      We have however, followed the reviewer’s suggestion of a virtual channel analysis, showing that the condition differences are not observable in primary visual cortex for the 36 Hz visual signal and in primary auditory cortex for the 40 Hz auditory signal. Our data clearly shows that there is an alpha condition difference in V1, while there no condition difference for 36 Hz in V1 and for 40 Hz in Heschl’s Gyrus (see Author response image 2).

      Author response image 2.

      Virtual channels for V1 and Helschl’s gyrus. A, alpha power for the virtual channel created in V1 (Calcerine_L and Calcerine_R from AAL atlas; Tzourio-Mazoyer et al., 2002, NeuroImage). A cluster permutation analysis over time (between -2 and 0) revealed a significant condition difference between ~ -2 and -1.7 s (p = 0.0449). B, 36 Hz frequency-tagging signal for the virtual channel created in V1 (equivalent to the procedure in A). The same cluster permutation as performed in A revealed no significant condition differences. C, 40 Hz frequency-tagging signal for the virtual channel created in Heschl’s gryrus (Heschl_L and Heschl_R from AAL atlas; Tzourio-Mazoyer et al., 2002, NeuroImage). The same cluster permutation as performed in A revealed no significant condition differences.

      (5) Blinking would have a huge impact on the subject's ability to ignore the visual distractor. The best thing to do would be to exclude from analysis all trials where the subjects blinked during the cue-to-target interval. The authors mention that in the MEG experiment, "To remove blinks, trials with very large eye-movements (> 10 degrees of visual angle) were removed from the data (See supplement Fig. 5)." This sentence needs to be clarified since eye-movements cannot be measured during blinking. In addition, it seems possible to remove putative blink trials from EEG experiments as well, since blinks can be detected in the EEG signals.

      We thank the reviewer for mentioning that we were making this point confusing. From the MEG-data, we removed eyeblinks using ICA. Alone for the supplementary Fig. 5 analysis, we used the eye-tracking data to confirm that participants were in fact fixating the centre of the screen. For this analysis, we removed trials with blinks (which can be seen in the eye-tracker as huge amplitude movements or as large eye-movements in degrees of visual angle; see Author response image 3 below to show a blink in the MEG data and the according eye-tracker data in degrees of visual angle). We will clarify this in the methods section.

      As for the concern closed eyes to ignore visual distractors, in both experiments we can observe highly significant distractor cost in accuracy for visual distractors, which we hope will convince the reviewer that our visual distractors were working as intended.

      Author response image 3.

      Illustration of eye-tracker data for a trial without and a trial with a blink. All data points recorded during this trial are plottet. A, ICA component 1, which reflects blinks and its according data trace in a trial. No blink is visible. B, eye-tracker data transformed into degrees of visual angle for the trial depicted in A. C, ICA component 1, which reflects blinks and its according data trace in a trial. A clear blink is visible. D, eye-tracker data transformed into degrees of visual angle for the trial depicted in C.

      (6) It would be interesting to examine the neutral cue trials in this task. For example, comparing auditory vs visual vs neutral cue conditions would be indicative of whether alpha was actively recruited or actively suppressed. In addition, comparing spectral activity during cue-to-target period on neutral-cue auditory correct vs incorrect trials should mimic the comparison of auditory-cue vs visual-cue trials. Likewise, neutral-cue visual correct vs incorrect trials should mimic the attention-related differences in visual-cue vs auditory-cue trials.

      We thank the reviewer for this suggestion. We have analysed the neutral cue trials in the EEG dataset (see suppl. Fig. 1) and will expand this figure to show all conditions. There were no significant differences to auditory or visual cues, but descriptively alpha power was higher for neutral cues compared to visual cues and lower for neutral cues compared to auditory cues. While this may suggest that for visual trials alpha is actively suppressed and for auditory trials actively recruited, we do not feel comfortable to make this claim, as the neutral condition may not reflect a completely neutral state. The neutral task can still be difficult, especially because of the uncertainty of the target modality.

      As for the analysis of incorrect versus correct trials, we love the idea, but unfortunately the accuracy rate was quite high so that the number of incorrect trials would not be sufficient to perform a reliable analysis.

      (7) In the abstract, the authors state that "This implies that alpha modulation does not solely regulate 'gain control' in early sensory areas but rather orchestrates signal transmission to later stages of the processing stream." However, I don't see any supporting evidence for the latter claim, that alpha orchestrates signal transmission to later stages of the processing stream. If the authors are claiming an alternative function to alpha, this claim should be strongly substantiated.

      We thank the reviewer for pointing out, that we have not sufficiently explained our case. The first point refers to gain control akin to the alpha inhibition hypothesis, which claims that increases in alpha disengage a whole cortical area. Since we have confirmed the alpha increase in our data to originate from primary visual cortex through source analysis, this should lead to decreased visual processing. The increase in 36 Hz visual processing therefore directly contradicts the alpha inhibition hypothesis. We propose an alternative explanation for the functionality of alpha activity in this task. Through pulsed inhibition, information packages of relevant visual information could be transmitted down the processing stream, thereby enhancing relevant visual signal transmission. We believe the fact that the enhanced visual 36 Hz signal we found correlated with visual alpha power on a trial-by-trial basis, and did not originate from primary visual cortex, but from areas known for sensory integration supports our claim.

      We will make this point clearer in our revised manuscript.

      Reviewer #2 (Public review):

      Brickwedde et al. investigate the role of alpha oscillations in allocating intermodal attention. A first EEG study is followed up with a MEG study that largely replicates the pattern of results (with small to be expected differences). They conclude that a brief increase in the amplitude of auditory and visual stimulus-driven continuous (steady-state) brain responses prior to the presentation of an auditory - but not visual - target speaks to the modulating role of alpha that leads them to revise a prevalent model of gating-by-inhibition.

      Overall, this is an interesting study on a timely question, conducted with methods and analysis that are state-of-the-art. I am particularly impressed by the author's decision to replicate the earlier EEG experiment in MEG following the reviewer's comments on the original submission. Evidently, great care was taken to accommodate the reviewer's suggestions.

      We thank the reviewer for the positive feedback and expression of interest in the topic of our manuscript.

      Nevertheless, I am struggling with the report for two main reasons: It is difficult to follow the rationale of the study, due to structural issues with the narrative and missing information or justifications for design and analysis decisions, and I am not convinced that the evidence is strong, or even relevant enough for revising the mentioned alpha inhibition theory. Both points are detailed further below.

      We thank the reviewer for raising this important point. We will revise our introduction and results in line with the reviewer’s suggestions, hoping that our rationale will then be easier to follow and that our evidence will be more convincing.

      Strength/relevance of evidence for model revision: The main argument rests on 1) a rather sustained alpha effect following the modality cue, 2) a rather transient effect on steady-state responses just before the expected presentation of a stimulus, and 3) a correlation between those two. Wouldn't the authors expect a sustained effect on sensory processing, as measured by steady-state amplitude irrespective of which of the scenarios described in Figure 1A (original vs revised alpha inhibition theory) applies? Also, doesn't this speak to the role of expectation effects due to consistent stimulus timing? An alternative explanation for the results may look like this: Modality-general increased steady-state responses prior to the expected audio stimulus onset are due to increased attention/vigilance. This effect may be exclusive (or more pronounced) in the attend-audio condition due to higher precision in temporal processing in the auditory sense or, vice versa, too smeared in time due to the inferior temporal resolution of visual processing for the attend-vision condition to be picked up consistently. As expectation effects will build up over the course of the experiment, i.e., while the participant is learning about the consistent stimulus timing, the correlation with alpha power may then be explained by a similar but potentially unrelated increase in alpha power over time.

      We thank the reviewer for raising these insightful questions and suggestions.

      It is true that our argument rests on a rather sustained alpha effect and a rather transient effect on steady-state responses and a correlation between the two. However, this connection would not be expected under the alpha inhibition hypothesis, which states that alpha activity would inhibit a whole cortical area (when irrelevant to the task), exerting “gain control”. This notion directly contradicts our results of the “irrelevant” visual information a) being transmitted at all and b) increasing.

      However, it has been shown on many occasions that alpha activity exerts pulsed inhibition, so we proposed an alternative theory of an involvement in signal transmission. In this case, the cyclic inhibition would serve as an ordering system, which only allows for high-priority information to pass, resulting in higher signa-to-noise. We do not make a claim about how fast or when these signals are transmitted in relation to alpha power. For instance, it could be that alpha power increases as a preparatory state even before signal is actually transmitted.  Zhigalov (2020 Hum. Brain M.) has shown that in V1, frequency-tagging responses were up-and down regulated with attention – independent of alpha activity.

      But we do believe that the fact that visual alpha power correlates on a trial-by-trial level with visual 36 Hz frequency-tagging increases and (a relationship which has not been found in V1, see Zhigalov 2020, Hum. Brain Mapp.) suggest a strong connection. Furthermore, the fact that the alpha modulation originates from early visual areas and occurs prior to any frequency-tagging changes, while the increase in frequency-tagging can be observed in areas which are later in the processing stream (such as the precuneus) is strongly indicative for an involvement of alpha power in the transmission of this signal. We cannot fully exclude alternative accounts and mechanisms which effect both alpha power and frequency-tagging responses. 

      We do believe that the alternative account described by the reviewer does not contradict our theory, as we do believe that the alpha power modulation may reflect an expectation effect (and the idea that it could be related to the resolution of auditory versus visual processing is very interesting!). It is also possible that this expectation is, as the reviewer suggests, related to attention/vigilance and might result in a modality-general signal increase. And indeed, we can observe an increase in the frequency-tagging response in sensory integration areas. Accordingly, we believe that the alternative explanation provided by the reviewer contradicts the alpha inhibition hypothesis, but not necessarily our alternative theory.

      We will revise the discussion, which we hope will make our case stronger and easier to follow. Additionally, we will mention the possibility for alternative explanations as well as the possibility, that alpha networks fulfil different roles in different locations/task environments.

      Structural issues with the narrative and missing information: Here, I am mostly concerned with how this makes the research difficult to access for the reader. I list the major points below:

      In the introduction the authors pit the original idea about alpha's role in gating against some recent contradictory results. If it's the aim of the study to provide evidence for either/or, predictions for the results from each perspective are missing. Also, it remains unclear how this relates to the distinction between original vs revised alpha inhibition theory (Fig. 1A). Relatedly if this revision is an outcome rather than a postulation for this study, it shouldn't be featured in the first figure.

      We agree with the reviewer that we have not sufficiently clarified our goal as well as how different functionalities of alpha oscillations would lead to different outcomes. We will revise the introduction and restructure the results and hope that it will be easier to follow.

      The analysis of the intermodulation frequency makes a surprise entrance at the end of the Results section without an introduction as to its relevance for the study. This is provided only in the discussion, but with reference to multisensory integration, whereas the main focus of the study is focussed attention on one sense. (Relatedly, the reference to "theta oscillations" in this sections seems unclear without a reference to the overlapping frequency range, and potentially more explanation.) Overall, if there's no immediate relevance to this analysis, I would suggest removing it.

      We thank the reviewer for pointing this out and will add information about this frequency to the introduction part. We believe that the intermodulation frequency analysis is important, as it potentially supports the notion that condition differences in the visual-frequency tagging response are related to downstream processing rather than overall visual information processing in V1. We would therefore prefer to leave this analysis in the manuscript.

      Reviewer #3 (Public review):

      Brickwedde et al. attempt to clarify the role of alpha in sensory gain modulation by exploring the relationship between attention-related changes in alpha and attention-related changes in sensory-evoked responses, which surprisingly few studies have examined given the prevalence of the alpha inhibition hypothesis. The authors use robust methods and provide novel evidence that alpha likely exhibits inhibitory control over later processing, as opposed to early sensory processing, by providing source-localization data in a cross-modal attention task.

      This paper seems very strong, particularly given that the follow-up MEG study both (a) clarifies the task design and separates the effect of distractor stimuli into other experimental blocks, and (b) provides source-localization data to more concretely address whether alpha inhibition is occurring at or after the level of sensory processing, and (c) replicates most of the EEG study's key findings.

      We are very grateful to the reviewer for their positive feedback and evaluation of our work.

      There are some points that would be helpful to address to bolster the paper. First, the introduction would benefit from a somewhat deeper review of the literature, not just reviewing when the effects of alpha seem to occur, but also addressing how the effect can change depending on task and stimulus design (see review by Morrow, Elias & Samaha (2023).

      We thank the reviewer for this suggestion and agree. We will add a paragraph to the introduction which refers to missing correlation studies and the impact of task design.

      Additionally, the discussion could benefit from more cautionary language around the revision of the alpha inhibition account. For example, it would be helpful to address some of the possible discrepancies between alpha and SSEP measures in terms of temporal specificity, SNR, etc. (see Peylo, Hilla, & Sauseng, 2021). The authors do a good job speculating as to why they found differing results from previous cross-modal attention studies, but I'm also curious whether the authors think that alpha inhibition/modulation of sensory signals would have been different had the distractors been within the same modality or whether the cues indicated target location, rather than just modality, as has been the case in so much prior work?

      We thank the reviewer for suggesting these interesting discussion points and will include a paragraph in our discussion which goes deeper into these topics.

      Overall, the analyses and discussion are quite comprehensive, and I believe this paper to be an excellent contribution to the alpha-inhibition literature.

    1. Author response:

      The following is the authors’ response to the original reviews.

      General Response to Public Reviews

      We thank the three reviewers for their positive evaluation of our work, which presents the first molecular characterization of type-II NB lineages in an insect outside the fly Drosophila. They seem convinced of our finding of an additional type-II NB and increased proliferation during embryogenesis in the red flour beetle. The reviewers expressed hesitations on our interpretation that the observed quantitative differences of embryonic lineages can directly be linked to the embryonic development of the central complex in Tribolium. While we still believe that a connection of both observations is a valid and likely hypothesis, we acknowledge that due the lack of functional experiments and lineage tracing a causal link has not directly been shown. We have therefore changed the manuscript to an even more careful wording that on one hand describes the correlation between increased embryonic proliferation with the earlier development of the Cx but on the other hand also stresses the need for additional functional and lineage tracing experiments to test this hypothesis. We have also strengthened the discussion on alternative explanations of the increased lineage size and emphasize the less disputed elements like presence and conservation of type-II NB lineages. 

      While our manuscript could in conclusion not directly show that the reason of the heterochronic shift lies in the progenitor behaviour, we still provide a first approach to answering the question of the developmental basis of this shift and testable hypotheses directly emerge from our work. We agree with reviewer#1 that functional work is best suited to test our hypothesis and we are planning to do so. However, we believe that the presented work is already rich in novel data and significantly advances our understanding on the conservation and divergence of type-II NBs in insects. We would also like to stress that most transgenic tools for which genome-wide collections exist for Drosophila have to be created for Tribolium and doing so can be quite time consuming. Conducting RNAi experiments is certainly possible in Tribolium but observing phenotypes in this defined cellular context will need laborious optimization. We have for example tried knocking down Tc-fez/erm but could not see any embryonic phenotype which might be due to an escaper effect in which only mildly affected or wild type-like embryos survive while the others die in early embryogenesis. Due to pleiotropic functions of the involved genes a cell-specific knockdown might be necessary and we are working towards establishing a system to do that in the red flour beetle. For the stated reasons, we see our work as an important basis to inspire future functional studies that build up on the framework that we introduced. 

      In response to these common points, we have made the following changes to the manuscript

      -        The title has been changed from ‘being associated’ to ‘correlate’

      -        The conclusions part of the abstract has been changed

      -        We deleted the statement ‘…thus providing the material for the early central complex formation…’

      -        Rephrased to saying that the two observations just correlate

      -        The part of the discussion ‘Divergent timing of type-II NB activity and heterochronic development of the central complex’ has been extensively rewritten and now discusses several alternative explanations that were suggested by the reviewers. It also stresses the need for further functional work and lineage tracing (line 859-862 (608-611)).

      In addition, we have made numerous changes to the manuscript to account for more specific comments of the reviewers and to the recommendations for the authors.

      Our responses to the individual comments can be found in the following. 

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      Insects inhabit diverse environments and have neuroanatomical structures appropriate to each habitat. Although the molecular mechanism of insect neural development has been mainly studied in Drosophila, the beetle, Tribolium castaneum has been introduced as another model to understand the differences and similarities in the process of insect neural development. In this manuscript, the authors focused on the origin of the central complex. In Drosophila, type II neuroblasts have been known as the origin of the central complex. Then, the authors tried to identify those cells in the beetle brain. They established a Tribolium fez enhancer trap line to visualize putative type II neuroblasts and successfully identified 9 of those cells. In addition, they also examined expression patterns of several genes that are known to be expressed in the type II neuroblasts or their lineage in Drosophila. They concluded that the putative type II neuroblasts they identified were type II neuroblasts because those cells showed characteristics of type II neuroblasts in terms of genetic codes, cell diameter, and cell lineage. 

      Strengths: 

      The authors established a useful enhancer trap line to visualize type II neuroblasts in Tribolium embryos. Using this tool, they have identified that there are 9 type II neuroblasts in the brain hemisphere during embryonic development. Since the enhancer trap line also visualized the lineage of those cells, the authors found that the lineage size of the type II neuroblasts in the beetle is larger than that in the fly. They also showed that several genetic markers are also expressed in the type II neuroblasts and their lineages as observed in Drosophila. 

      Weaknesses: 

      I recommend the authors reconstruct the manuscript because several parts of the present version are not logical. For example, the author should first examine the expression of dpn, a well-known marker of neuroblast. Without examining the expression of at least one neuroblast marker, no one can say confidently that it is a neuroblast. The purpose of this study is to understand what makes neuroanatomical differences between insects which is appropriate to their habitats. To obtain clues to the question, I think, functional analyses are necessary as well as descriptive analyses. 

      The expression of an exclusive type-II neuroblast marker would indeed have been the most convincing evidence. However, asense is absent from type-II NBs and deadpan is not specific enough as it is expressed in many other cells of the developing protocerebrum. The gene pointed, although also expressed elsewhere, emerged as the the most specific marker. Therefore, we start with pointed and fez/erm to describe the first appearance and developmental progression of the cells and then add further evidence that these cells are indeed type-II neuroblasts. Further evidence is provided in the following chapters.  We have discussed the need for functional work in the general response. 

      Reviewer #2 (Public Review): 

      The authors address the question of differences in the development of the central complex (Cx), a brain structure mainly controlling spatial orientation and locomotion in insects, which can be traced back to the neuroblast lineages that produce the Cx structure. The lineages are called type-II neuroblast (NB) lineages and are assumed to be conserved in insects. While Tribolium castaneum produces a functional larval Cx that only consists of one part of the adult Cx structure, the fan-shaped body, in Drosophila melanogaster a non-functional neuropile primordium is formed by neurons produced by the embryonic type-II NBs which then enter a dormant state and continue development in late larval and pupal stages. 

      The authors present a meticulous study demonstrating that type-II neuroblast (NB) lineages are indeed present in the developing brain of Tribolium castaneum. In contrast to type-I NB lineages, type-II NBs produce additional intermediate progenitors. The authors generate a fluorescent enhancer trap line called fez/earmuff which prominently labels the mushroom bodies but also the intermediate progenitors (INPs) of the type-II NB lineages. This is convincingly demonstrated by high-resolution images that show cellular staining next to large pointed labelled cells, a marker for type-II NBs in Drosophila melanogaster. Using these and other markers (e.g. deadpan, asense), the authors show that the cell type composition and embryonic development of the type-II NB lineages are similar to their counterparts in Drosophila melanogaster. Furthermore, the expression of the Drosophila type-II NB lineage markers six3 and six4 in subsets of the Tribolium type-II NB lineages (anterior 1-4 and 1-6 type-II NB lineages) and the expression of the Cx marker skh in the distal part of most of the lineages provide further evidence that the identified NB lineages are equivalent to the Drosophila lineages that establish the central complex. However, in contrast to Drosophila, there are 9 instead of 8 embryonic type-II NB lineages per brain hemisphere and the lineages contain more progenitor cells compared to the Drosophila lineages. The authors argue that the higher number of dividing progenitor cells supports the earlier development of a functional Cx in Tribolium. 

      While the manuscript clearly shows that type-II NB lineages similar to Drosophila exist in Tribolium, it does not considerably advance our understanding of the heterochronic development of the Cx in these insects. First of all, the contribution of these lineages to a functional larval Cx is not clear. For example, how do the described type-II NB lineages relate to the DM1-4 lineages that produce the columnar neurons of the Cx? What is the evidence that the embryonically produced type-II NB lineage neurons contribute to a functional larval Cx? The formation of functional circuits could rely on larval neurons (like in Drosophila) which would make a comparison of embryonic lineages less informative with respect to understanding the underlying variations of the developmental processes. Furthermore, the higher number of progenitors (and consequently neurons) in Tribolium could simply reflect the demand for a higher number of cells required to build the fan-shaped body compared to Drosophila. In addition, the larger lineages in Tribolium, including the higher number of INPs could be due to a greater number of NBs within the individual clusters, rather than a higher rate of proliferation of individual neuroblasts, as suggested. What is the evidence that there is only one NB per cluster? The presented schemes (Fig. 7/12) and description of the marker gene expression and classification of progenitor cells are inconsistent but indicate that NBs and immature INPs cannot be consistently distinguished. 

      We thank this reviewer for pointing out the inconsistency in our classification of cells within the lineages as one central part of our manuscript. These were due to a confusion in the used terms (young vs. immature). We have corrected this mistake and have changed the naming of the INP subtypes to immature-I and immature-II. We are confident that based on the analysed markers, type-II NBs and immature INPs can actually be distinguished with confidence.

      We agree that a functional link of increased proliferation to heterochronic CX development is not shown although we consider it to be likely. As stated in the general response we have changed the manuscript to saying that the two observations (higher number of progenitors and larger lineages/more INPs) correlate but that a causal link can only be hypothesized for the time being. At the same time, we have strengthened the discussion on alternative explanations.

      We would like to remain with our statement of an increased number of embryonic progeny of Tribolium type-II NBs. We counted the total number of progenitor cells emerging from the anterior median cluster and divided this by the number of type II NBs in that cluster. Hence, the shown increased number of cells represents an average per NB but is not influenced by the increased number of NBs. On the same line, we have never seen indication for the presence of additional NBs within any cluster while one type-II NB is what we regularly found. Hence, we are confident that we know the number of respective NBs. The fact that the fly data included also neurons and was counted at a later stage indicates that the observed differences are actually minimum estimates.

      We have discussed that based on the position and comparison to the grasshopper we believe that Tribolium type-II NB 1-4 contribute to the x, y, z and w tracts. To confirm this, lineage tracing experiments would be necessary, for which tools remain to be developed. 

      We agree that the role of larvally born neurons and the fate of Tribolium neuroblasts through the transition from embryo to larva and pupa need to be further studied.

      Available data suggests that the adult fan shaped body in Tribolium does not hugely differ in size from the Drosophila counterpart, although no data in terms of cell number is available. In the larva, however, no fan shaped body or protocerebral bridge can be distinguished in flies while in beetle larvae, these structures are clearly developed. Hence, we think that it is more likely that differences observed in the embryo reflect differences in the larval central complex. We discuss the need for further investigation of larval stages.

      The main difference between Tribolium and Drosophila Cx development with regards to the larval functionality might be that Drosophila type-II NB lineage-derived neurons undergo quiescence at the end of embryogenesis so that the development of the Cx is halted, while a developmental arrest does not occur in Tribolium. However, this needs to be confirmed (as the authors rightly observe). 

      Indeed, there is evidence that cells contributing to the CX go into quiescence in flies – hence, this certainly is one of the mechanisms. However, based on our data we would suggest that in addition, the balance of embryonic versus larval proliferation of type-II lineages is different between the two insects: The increased embryonic proliferation and development leads to a functional larval CX in beetles while in flies, postembryonic proliferation may be increased in order to catch up.

      Reviewer #3 (Public Review):

      Summary: 

      In this paper, Rethemeier et al capitalize on their previous observation that the beetle central complex develops heterochronically compared to the fly and try to identify the developmental origin of this difference. For this reason, they use a fez enhancer trap line that they generated to study the neuronal stem cells (INPs) that give rise to the central complex. Using this line and staining against Drosophila type-II neuroblast markers, they elegantly dissect the number of developmental progression of the beetle type II neuroblasts. They show that the NBs, INPs, and GMCs have a conserved marker progression by comparing to Drosophila marker genes, although the expression of some of the lineage markers (otd, six3, and six4) is slightly different. Finally, they show that the beetle type II neuroblast lineages are likely longer than the equivalent ones in Drosophila and argue that this might be the underlying reason for the observed heterochrony. 

      Strengths: 

      - A very interesting study system that compares a conserved structure that, however, develops in a heterochronic manner. 

      - Identification of a conserved molecular signature of type-II neuroblasts between beetles and flies. At the same time, identification of transcription factors expression differences in the neuroblasts, as well as identification of an extra neuroblast. 

      - Nice detailed experiments to describe the expression of conserved and divergent marker genes, including some lineaging looking into the co-expression of progenitor (fez) and neuronal (skh) markers. 

      Weaknesses: 

      - Comparing between different species is difficult as one doesn't know what the equivalent developmental stages are. How do the authors know when to compare the sizes of the lineages between Drosophila and Tribolium? Moreover, the fact that the authors recover more INPs and GMCs could also mean that the progenitors divide more slowly and, therefore, there is an accumulation of progenitors who have not undergone their programmed number of divisions. 

      We understand the difficulty of comparing stages between species, but we feel that our analysis is on the save side. At stages comparable with respect to overall embryonic development (retracting or retracted germband), the fly numbers are clearly smaller. To account for potential heterochronic shifts in NB activity, we have selected the stages to compare based on the criteria given: In Drosophila the number of INPs goes down after stage 16, meaning that they reach a peak at the selected stages. In Tribolium the chosen stages also reflect the phase when lineage size is larger than in all previous stages. Therefore, we believe that the conclusion that Tribolium has larger lineages and more INPs is well founded. Lineage size in Tribolium might further increase just before hatching (stage 15) but we were for technical reasons not able to look at this. As lineage size goes down in the last stage of Drosophila embryogenesis the number of INPs goes down and type-II NB enter quiescence, we think it is highly unlikely that the ratio between Tribolium and Drosophila INPs reverses at this stage, but a study of the behaviour of type-II NB in Tribolium and whether there is a stage of quiescence is still needed.

      - The main conclusion that the earlier central complex development in beetles is due to the enhanced activity of the neuroblasts is very handwavy and is not the only possible conclusion from their data. 

      As discussed in the general response we have made several changes to the manuscript to account for this criticism and discuss alternative explanations for the observations.

      - The argument for conserved patterns of gene expression between Tribolium and Drosophila type-II NBs, INPs, and GMCs is a bit circular, as the authors use Drosophila markers to identify the Tribolium cells. 

      We tested the hypothesis that in Tribolium there are type-II NBs with a molecular signature similar to flies. Our results are in line with that hypothesis. If pointed had not clearly marked cells with NB-morphology or fez/erm had not marked dividing cells adjacent to these NBs, we would have concluded that no such cells/lineages exist in the Tribolium embryo, or that central complex producing lineages exist but express different markers. Therefore, we regard this a valid scientific approach and hence find this argument not problematic.  

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions: Based on the above, I believe that the authors, despite advancing significantly, fall short of identifying the reasons for the divergent timing of central complex development between beetle and fly. 

      We agree that based on the available data, we cannot firmly make that link and we have changed the text accordingly.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors): 

      In addition to these descriptive analyses, functional analyses can be included. RNAi is highly effective in this beetle. 

      We agree that functional analyses of some of the studied genes and possible effects of gene knockdowns on the studied cell lineages and on central complex development could be highly informative. However, when studying specific cell types or organs these experiments are less straight forward than it may seem as knockdowns often lead to pleiotropic effects, sterility or lethality. All the genes involved are expressed in additional cells and may have essential functions there. Given the systemic RNAi of Tribolium, it is challenging to unequivocally assign phenotypes to one of the cell groups. Overcoming these challenges is often possible but needs extensive optimization. Our study, though descriptive is already rich in data and is the first description of NB-II lineages in Tribolium central complex development. We see it as a basis for future studies on central complex development that will include functional experiments.

      (1) Introduction 

      For these reasons the beetle... 

      Could you explain the differences in the habitats between Tribolium and Drosophila? or What is the biggest difference between these two species at the ecological aspect? 

      We have added a short characterisation of the main differences.

      The insect central complex is an anterior... 

      The author should explain why they focus on the structure. 

      Added

      It is however not known how these temporal... 

      If the authors want to get the answer to the question, they need to conduct functional analyses. 

      While we agree with the importance of functional work (see above) we believe that detailed descriptions under the inclusion of molecular markers as presented here is very informative by itself for understanding developmental processes and sets the foundation for the analysis of mutant/RNAi- phenotypes in future studies.

      CX - Central complex? 

      We have opted to not use this abbreviation anymore for clarity.

      “because intermediate cycling progenitors have also been...” 

      Is the sentence correct? 

      We have included ‘INPs’ in the sentence to make clear what the comparison refers to and added a comma

      “However, molecular characterization of such lineage in another...” 

      The authors should explain why molecular characterization is necessary. 

      We have done so

      (2) Results 

      a) Figure 8. Could you delineate the skh/eGFP expression region? 

      We have added brackets to figure 1 panel A to indicate the extent of skh and other gene expressions within the lineages.

      b) This section should be reorganized for better logical flow. 

      There certainly are different ways to organize this part and we have considered different structures of the results part. We eventually subjectively concluded that the chosen one is the best fit for our data (also see comment below on dpn-expression).

      c) For the tables. The authors should mention what statistical analysis they have conducted. 

      The tables themselves are just listing the raw numbers. They are the basis for the graph in figure 9. Statistical tests (t-test) are mentioned in the legend of that figure and now also in the Methods sections.

      “We also found that the large Tc-pnt...” 

      The authors could examine the mitotic index using an anti-pH3 antibody. 

      We have used the anti-pH3 antibody to detect mitoses (figure 3C, table 1 and 3) but as data on mitoses based on this antibody is only a snapshot it would require a lot of image data to reliably determine an index in this specific cells. While mitotic activity over time possibly combined with live imaging might be very interesting in this system also with regards to the timing of development, for this basic study we are satisfied with the statement that the type-II NB are indeed dividing at these stages.

      “Based on their position by the end of embryogenesis...” 

      How can the authors conclude that they are neuroblasts without examining the expression of NB markers? 

      Type-II NB do not express asense as the key marker for type I neuroblasts. To corroborate our argument that the cells are neuroblasts we have used several criteria:

      - We have used the same markers that are used in Drosophila to label type-II NBs (pnt, dpn, six4). We are not aware of any other marker that would be more specific.

      - We have shown that these cells are larger and have larger nuclei than neighbouring cells and they are dividing

      - We have shown that these cells through their INP lineages give rise to central complex neuropile

      We believe that these features taken together leave little doubt that the described cells are indeed neuroblasts. 

      “We found that the cells they had assigned as...” 

      How did the authors distinguish that they are really neuroblasts? 

      We see the difficulty that we first describe the position and development of these cells (e.g. fig 3) and then add further evidence (cell size, additional marker dpn) that these are neuroblasts (also see above). However, without previous knowledge on position (and on pnt expression as the most specific marker) the type-II NB could not have been distinguished from other NBs based on cell size or expression of other markers.

      “Conserved patterns of gene expression...” 

      This must be the first (especially dpn). 

      Dpn is not specific to type-II NB because it is also expressed in type-1 NBs, mature INPs and possibly other neural cells. It is therefore impossible to identify type-II NBs based on this gene alone. We therefore first used the most specific marker, pnt, in addition to adjacent fez expression to identify candidates for type-II lineages. Then we mapped expression of further genes on these lineages to support the interpretation (and show homology to the Drosophila lineages). Although of course the structure of a paper does not necessarily have to reflect the sequence in which experiments were done we would find putting dpn expression first misleading as it would not be clear why exactly a certain part of the expression should belong to type-II NB. Also, our pnt-fez expression data shows the position of the NB-II in the context of the whole head lobe whereas the other gene expressions are higher magnifications focussing on details. We therefore believe that the structure we chose best fits our data and the other reviewers seemed to find it acceptable as well.  

      “As type-II NBs contribute to central...” 

      Before the sentence, the author could explain differences in the central complex structure between Tribolium and Drosophila in terms of cell number and tissue size. 

      We have added references on the comparisons of tissue sizes, but unfortunately there is no Tribolium data that can be directly compared to available Drosophila resources in terms of cell number.  

      “We conclude that the embryonic development of...” 

      How did the authors conclude? They must explain their logic. 

      Actually, before this sentence, I only found the description of the comparison between Tribolium NBs and Drosophila once. 

      We agree that this conclusion is not fully evident from the presented data. We have therefore changed this part to stating that there is a correlation with the earlier central complex development described in Tribolium. See also response to the general reviewer comments.

      “Hence, we wondered...” 

      The authors need to do a functional assessment of the genes they mentioned. 

      We agree that the goals originally stated at the beginning of this paragraph can only be achieved with functional experiments. We have therefore rephrased this part.

      (3) Discussion

      “A beetle enhancer trap line...” 

      This part should be moved elsewhere (it does not seem to be a discussion) 

      In accordance with this comment and reviewer#2’s similar comment we have removed this section. We have added a statement on the importance of testing the expression of an enhancer trap line to the results part and an added the use of CRISPR-Cas9 for line generation to the introduction. 

      “We have identified a total...” 

      The authors emphasized that they discovered 9 type II NBs. The authors should clarify how important this it

      We have added some discussion on the importance of this finding.

      Dpn is a neural marker - Is this correct? 

      According to Bier et al 1992 (now added as reference) dpn is a pan-neural marker. Reviewer#2 also recommended calling dpn a neural marker.

      “Previous work described a heterochronic...” - reference? 

      Reference have been added

      “By contrast, we show that Tribolium...” 

      What about the number of neurons in the central complex in Tribolium and Drosophila? 

      Does the lineage size of type II NBs reflect the number? 

      Unfortunately, we do not have numbers for that.  

      Reviewer #2 (Recommendations For The Authors): 

      I recommend using page and line numbers to make reviewing and revising less timeconsuming. 

      We apologize for this oversight. We include a line numbering system into our resubmission.

      (1) Abstract 

      "These neural stem cells are believed to be conserved among insects, but their molecular characteristics and their role in brain development in other insect neurogenetics models, such as the beetle Tribolium castaneum have so far not been studied." 

      I recommend explaining the importance of studying Tribolium with regard to the evolution of brain centres rather than just stating that data are lacking. 

      We have now emphasized the importance of Tribolium as model for the evolution of brain centres.

      "Intriguingly, we found 9 type-II neuroblast lineages in the Tribolium embryo while Drosophila produces only 8 per brain hemisphere." 

      It should be made clear that the 9 lineages also refer to brain hemispheres. 

      We have added this information

      (2) Introduction 

      I would remove the first paragraph of the introduction; the use of Tribolium as model representative for insects is too general. The authors should focus on the specific question, i.e. the introduction should start with paragraph 2. 

      While we can relate to the preference for short and concise writing, we feel that giving some background on Tribolium might be important as we expect that many of our readers might be primarily Drosophila researchers. Keeping this paragraph also seems in line with a recommendation of reviewer#1 to add some additional information on Tribolium ecology.  

      "Several NBs of the anterior-most part of the neuroectoderm contribute to the CX and compared…”

      The abbreviation has not been introduced. 

      For clarity we have now opted to not use this abbreviation but to always spell out central complex.

      "Several NBs of the anterior-most part of the neuroectoderm contribute to the CX and compared to the ventral ganglia produced by the trunk segments, it is of distinctively greater complexity..." 

      Puzzling statement. Why would you compare a brain center with ventral ganglia? I recommend removing this. 

      We have changed this statement to just emphasizing the complexity of the brain structure.

      "The dramatically increased number of neural cells that are produced by individual type-II lineages, and the fact that one lineage can produce different types of neurons..."  In my opinion, this statement is too vague and unprofessional in style. Instead of "dramatically increased" use numbers. 

      We have removed ‘dramatically increased’ and now give a numeric example.

      "The dramatically increased number of neural cells that are produced by individual type-II lineages, and the fact that one lineage can produce different types of neurons, leads to the generation of increased neural complexity within the anterior insect brain when compared to the ventral nerve cord.." 

      I assume that this statement relates to the comparison of type I and II nb lineages. However, type I NB lineages also produce different types of neurons due to GMC temporal identity, and neuronal hemi-lineage identity. 

      We have rephrased and tried to make clear that the second part of the statement is not specific to type-II NB only. In line with the comment above we have also removed the reference to the ventral nerve cord.

      "In addition, in Drosophila brain tumours have been induced from type-II NBs lineages [34], opening up the possibility of modelling tumorigenesis in an invertebrate brain, thus making these lineages one of the most intriguing stem cell models in invertebrates [35,36]." 

      This statement is misplaced here; it should be mentioned at the start (if at all). 

      We have moved this statement up.

      "However, molecular characterisation of such lineages in another insect but the fly and a thorough comparison of type-II NBs lineages and their sub-cell-types between fly and beetle are still lacking" 

      The background information should include what is known about type-II NB lineages in Tribolium, including marker gene expression, e.g. Farnworth et al. 

      We refer to He et al 2019, Farnworth et al 2020 and Garcia-Perez 2021. All these publications speculate about a contribution of type-II NBs to Tribolium central complex development but do not show evidence of it. As we emphasize throughout the manuscript, the present work is the first description of type-II NB in Tribolium. 

      "The ETS-transcription factor pointed (pnt) marks type-II NBs [40,41], which do not express the type-I NB marker asense (ase) but the pro-neural gene deadpan (dpn)"  Deadpan is considered a pan-neural gene. To avoid confusion, I would remove "proneural" throughout.

      We have done so throughout the manuscript.

      "We further found that, like the type-II NBs itself, the youngest Tc-pnt-positive but fezmm-eGFP-negative INPs neither express Tc-ase (Fig. 5D, pink arrowheads)."  What is the evidence that these are the youngest pnt positive cells? Position? This needs to be explained. 

      We have clarified that ‘youngest pnt-positive cells’ refers to the position of these cells close to the type-II NB.

      "Therefore these neural markers can be used for a classification of type II NBs (Tc-pnt+, Tcase-), young INPs (Tc-pnt+, Tc-fez/erm-, Tc-ase-), immature INPs (Tc-pnt+, Tcfez/erm+, Tcase+), mature INPs (Tc-dpn+, Tc-ase+, Tc-fez/erm+, Tc-pros+), and GMCs (Tc-ase+, Tcfez/ erm+, Tc-pros+, Tc-dpn). This classification is summarized in Fig. 7 A-B." 

      This is not the best classification and not in line with the schemes in Figure 7 - the young INPs are also immature. What is the difference? It needs to be explained what "mature" means (dividing?). 

      Thank you for pointing this out. We have corrected the error in this part that confused the two original groups (young and immature). To take the immaturity of both types of INPs into account we have then also changed our naming of INP subtypes into immature-I and immature-II and throughout the manuscript). Figure 7 and figure 12 were also changed accordingly. While our classification if primarily based on gene expression the available data indicates that both types of immature INPs are not dividing, whereas mature INPs are. We have added a statement on that to this part.

      "In beetles a single-unit functional central complex develops during embryogenesis while in flies the structure is postembryonic." 

      This statement is vague - the authors need to explain what is meant by "single-unit". The phrase "The structure is postembryonic" also needs more explanation. The Drosophila CX neuroblasts lineages originate in the embryo and the neurons form a commissural tract that becomes incorporated into the fan-shaped body of the Cx. 

      We have explained single-unit central complex and have improved our summary of known differences in central complex development between fly and beetle.

      "To assess the size of the embryonic type-II NBs lineages in beetles we counted the Tc- fez/erm positive (fez-mm-eGFP) cells (INPs and GMCs) associated with a Tc-pntexpressing type-II NBs of the anterior medial group (type-II NBs lineages 1-7).  It is not clear what is meant by "with a Tc-pnt-expressing type-II NBs". Is this a typo?" 

      We have removed this bit.

      (3) Discussion 

      I would remove the first paragraph "A beetle enhancer trap lines reflects Tc-fez/earmuff expression". This is a repetition of the methods rather than a discussion. 

      This part has been removed also in line with reviewer#1’s comment.

      (4) Figures 

      Figure 2 

      To which developing structure do the strongly labelled areas in Figure 2D correspond? 

      We believe that these areas from the protocerebrum including central complex, mushroom bodies and optic lobe. We have added this to the text and to the figure legend.

      Figure 7 

      What do A and B represent? Different stages? 

      A and B show the same lineage but map the expression of different additional markers for clarity. We have added an explanation of this. 

      The classification contradicts the description in the section "Conserved patterns of gene expression mark Tribolium type-II NBs, different stages of INPs and GMCs" (last sentence) where young INPs are first in the sequence and described as pnt+, erm-, ase- and immature INPs as pnt+ erm+ and ase+. 

      We have corrected this mistake and changed the names of the subtypes into immatureI and immature-II (see above).

      "We conclude that the evolutionary ancient six3 territory gives rise to the neuropile of the z, y, x and w tracts." 

      Please clarify if six3 is also expressed in the corresponding grasshopper NB lineages or if your conclusion is based on the comparison of Drosophila and Tribolium and you assume that this is the ancestral condition. 

      Six3 expression has not been studied in grasshoppers. Owing to the highly conserved nature of an anterior median six3 domain in arthropods and bilaterian animals in general, we would expect it to be expressed anterior-medially in grasshoppers as well. In Drosophila the gene is expressed in the anterior-medial embryonic region where the type-II NBs are expected to develop, but to our knowledge it has not been specifically studied which type-II NB lineages are located within this domain. We have clarified in our text that we do not claim that the origin of anterior-medial type-II NB 1-4 and the X,Y, Z and W lineages from the six3 territory is highly conserved but only the territory itself. As far as we know our work is the first to analyse the relationship of type-II lineages and the conserved head patterning genes six3 and otd. We have added some clarification of this into this part of the discussion.

      (5) Methods 

      The methods section should include the methods for cell counting, as well as cell and nuclei size measurements including statistics (e.g. how many embryos, how many NB lineages). The comparison of the Tribolium NB lineage cell numbers to published Drosophila data should include a brief description of the method used in Drosophila (in addition to the method used here in Tribolium) so that the reader can understand how the data compare. 

      We have added a separate section on this to the Methods part which also includes the criteria used in Drosophila. We have also included some more information to the results part on the inclusion of neurons in the Drosophila counts that may only be partially included in our numbers. This does however not change the results in terms of larger numbers of progenitor cells in Tribolium.

      (6) Typos and minor errors 

      Abstract 

      “However, little is known on the developmental processes that create this diversity” 

      Change to ... little is known about

      Changed.

      NBs lineages 

      Change to NB lineages throughout. 

      We have used text search to find and replace all position where this was used erroneously,

      Results 

      "Schematic drawing of expression different markers in type-II NB lineages.." 

      Schematic drawing of expression of different markers 

      Corrected

      Discussion 

      "However, the type-II NB 7, which is we assigned to the anterior medial group but which..." 

      .... which we assigned.... 

      corrected

      "......might be the one that does not have a homologue in the fly embryo The identification of more..."  Full stop missing. 

      Added.

      "Adult like x, y, and w tracts as well as protocerebral bridge are...." 

      Change to "The adult like x, y, and w tracts as well as the protocerebral bridge are.... 

      This part has been removed with the rewriting of this paragraph.  

      Reviewer #3 (Recommendations For The Authors): 

      (1) Suggestions for improved or additional experiments, data, or analyses: 

      a) The analysis of nuclear size is wrong. The authors compare the largest cell of a cluster of cells with a number of random cells from the same brain. It is obvious that the largest cell of a cluster will be larger than the average cell of the same brain. A better control would be to compare the largest cell of the pnt+ cluster with the largest cell of a random sample of cells, although this also comes with biases. Personally, I have no doubt that the authors are looking at neuroblasts, based on the markers they are using, so I would recommend completely eliminating Figure 4.

      We agree that we produced a somewhat biased and expected result when we select the largest cell of a cluster for size comparison. However, we found it important to show based on a larger sample that these cells are also statistically larger than the average cell of a brain, which we think our assessment shows. We do not claim that type-II NBs are the largest cells of a brain, or that they are larger than type-I NBs, therefore in a random sample there might be cells that are equally big (see also distribution of the control sample shown in figure 4, and we have added a note on this to the text). We are happy to hear that this reviewer has no doubts we are looking at neural stem cells. However, reviewer#1 did express some hesitations and therefore we think it is important to keep the information on cell size as part of our argument that we are indeed looking at type-II NBs (gene expression, cell size, dividing, part of a neural lineage).

      b) The comparison of NB, INP, and GMC numbers between Drosophila and Trbolium (section "The Tribolium embryonic lineages of type-II NBs are larger and contain more mature INPs than those of Drosophila") compares an experiment that the authors did with published data. I would suggest that the authors repeat the Drosophila stainings and compare themselves to avoid cases of batch effects, inconsistent counting, etc.

      None of the authors is a Drosophila expert or has any experience at working with this model and reassessing the lineage size would require a number of combinatorial staining. Therefore, we feel that using the published data produced by experts and which also includes repeat experiments is for us the more reliable approach.

      c) In Figure 10, there are some otd+ GFP+ cells laterally. What are these? 

      We believe that these cells contribute to the eye anlagen. We have added this information to the legend.

      (2) Minor corrections to the text and figures: 

      a) There are some typos in the text: e.g. "pattering" in the abstract. 

      We have carefully checked the text for typos and hope that we have found everything.

      b) The referencing of figures in the text is inconsistent (eg "Figure 5 panel A" vs "Figure 5D" on page 12). 

      We have checked throughout the manuscript and made sure to always refer to a panel correctly.

      c) In Figure 3C, the white staining (anti-PH3) is not indicated in the Figure. 

      The label has been added in the figure.

      d) Moreover, in Figure 3, green is not very visible in the images. 

      We have improved the colour intensity where possible.

      e) In the figures, it might be better to outline the cells with color-coded dashed circles instead of using arrows. 

      We think that this would obscure some details of the stainings and create a rather artificial representation. We also feel that doing this consistently in all our images is an amount of work not justified by the degree of expected improvement to the figures

      NOTE: We are submitting a revised version of the supplementary material which only contains two minor changes: a headline was added to Table S4 (Antibodies and staining reagents) and a typo was corrected in line one of table S5 (TC to Tc).

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      When different groups (populations, species) are presented with similar environmental pressures, how similar are the ultimate targets (genes, pathways)? This study sought to illuminate this broader question via experimental evolution in D. simulans and quantifying gene-expression changes, specifically in the context of standing genetic variation (and not de novo mutation). Ultimately, the authors showed pleiotropy and standing-genetic variation play a significant role in the "predictability" of evolution.

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

      Yes, the reviewer is correct that our results for the direct effects of pleiotropy were not consistent for both measures of pleiotropy. We highlight this in the discussion:” Only tissue specificity had a significant direct effect, which was even larger than the indirect effect (Table 2). No significant direct effect was found for network connectivity. The discrepancy between the two measures of pleiotropy is particularly interesting given their significant correlation (Supplementary Figure 1). This suggests that both measures capture aspects of pleiotropy that differ in their biological implications.”

      Reviewer #2 (Public review):

      Summary:

      Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes which expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?

      They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. And such effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effect through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).

      Weaknesses:

      The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.

      We are very happy to read that the reviewer finds our conclusions to be supported by the data.

      Major comment:

      The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.

      Yes, we think that gene expression parallelism can be explained by polygenic adaptation.

      The authors argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Fig1 b). In previous publications the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.

      In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not a SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by polygenic basis, because again the trait is gene expression itself. And, actually the results of the simulations show that high polygenicity = less trait parallelism (Fig4).

      We agree with the reviewer that it is important to consider different hierarchies when talking about the implications of polygenic adaptation. The lowest hierarchical level is SNP variation and the highest level is fitness. In-between these extreme hierarchical levels is gene expression. While gene expression is a trait itself, as correctly pointed out by the reviewer, it is possible that selection is not favoring a specific trait value, because selection targets a trait on a higher hierarchical level. This implies that not only SNPs, but also intermediate traits such as gene expression can exhibit redundancy. Considering a simple example of one selected trait (e.g. body size), which is affected by the expression level of two genes A and B, each regulated by SNP A1, A2 and B1, B2. It is now possible to modulate the focal trait by allele frequency changes of A1, which in turn will only affect gene A. Alternatively, SNP B2 may change, modifying the expression of gene B, leading to the same change in body size. Hence, we could have redundancy both at the SNP level as well as on the gene expression level (although higher redundancy is expected on the SNP level). Most importantly, this redundancy at intermediate hierarchical levels is not pure theory, but it is supported by empirical evidence. We have shown that redundancy exists not only for gene expression (10.1111/mec.16274) but also for metabolite concentrations (10.1093/gbe/evad098).

      Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTL are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.

      This is clearly an interesting proposed research project, but we doubt that it would result in the expected outcome. Since most of the adaptive gene expression changes are not having a simple genetic basis (10.1093/gbe/evae077) and most expression variation is determined by trans-regulatory effects (10.1038/s41576-020-00304-w), eQTL mapping will most likely not identify all contributing loci. Large effect loci are more easily identified, but they are also expected to be more parallel.

      The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.

      We thank the reviewer for the suggestion, but prefer to stick to our interpretation of the data.

      Comments on revisions: The authors didn't really address any of the comments made by any of the reviewers - basically nothing was changed in the main text. Therefore, I leave my original review unchanged.

      We modestly disagree, in our point to point reply, we respond to all reviewers’ comments. Since, we did not identify any major problem in our manuscript, we only modified the wording in some parts where we felt that a clarification could resolve the misunderstanding of the reviewers. In response to the reviewers’ comments, we added a new paragraph in the discussion and generated a new figure.

      Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      The manuscript is well written and the hypotheses are clearly delineated at the onset.

      The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      The accuracy of the estimate of ancestral phenotypic variation in gene expression is likely low because estimated from a small sample of 20 males from a reconstructed outbred line. It might not constitute a robust estimate of the genetic variation of the evolved lines under study.

      We agree with the reviewer that variation estimates based on 20 samples are not very precise. Nevertheless, we demonstrated that the estimated variance in gene expression was highly correlated between two independent samples from the same ancestral population. Furthermore, we identified a significant correlation of expression variance with evolutionary parallelism. In other words, the biological signal has been sufficiently strong despite the variance estimate has been noisy.

      There are no estimates of the standing genetic variation of expression levels of the genes under study, only estimates of their phenotypic variation. I wished the authors had been clear about that limitation and had refrained from equating phenotypic variation in expression level with standing genetic variation.

      The reviewer is right that we did not estimate genetic variation of gene expression, but use expression variation as a proxy for the standing genetic variation. There are two potential problems with this approach. First, a large expression variation could be caused by a single large effect variant segregating at intermediate frequency. Such large effect variants will exhibit a highly parallel selection response-contrary to our empirical results. Since we have shown previously (10.1093/gbe/evae077) that adaptive gene expression changes are mostly polygenic we do not consider this extreme scenario to be very relevant in our study. Rather, we would like to emphasize that neither a SNP analysis of the 5’ region nor an eQTL study will provide an unbiased estimator of genetic variation of gene expression. The second problem arises if gene expression noise differs among genes, hence more noisy genes will appear to have more standing genetic variation than genes with less noise. Since, we average across many different cells and cell types, gene expression noise is expected to be levelled out- this aspect is discussed in detail in the manuscript.

      In other words, despite these two potential limitations, we consider our approach superior to alternative approaches of estimating genetic variation in gene expression.

      Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The authors do not present evidence that sequence variation correlates with expression variation.

      Gene expression is determined by the joint effects of cis-regulatory and trans-regulatory variation. Hence, recombination can create more extreme phenotypes than the one of the parental lines (in quantitative genetics this is called transgressive segregation). It is unclear to what extent this constitutes a problem for our analyses. Nevertheless, we would like to point out that eQTL mapping will miss many trans-acting variants and therefore we doubt that the requested empirical evidence for correlation between genetic variation (estimated by eQTL mapping) and observed expression variation is as straight forward as suggested by the reviewer.

      Nevertheless, we reference an empirical study, which showed a positive correlation between expression variation and cis-regulatory variation.

      The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes their conclusion regarding the role of synergistic pleiotropy rather speculative.

      The reviewer is correct that we did not demonstrate synergistic pleiotropy, but we discuss this as a possible explanation for the observed direct effects of pleiotropy.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The results of this manuscript look at the interplay between pleiotropy, standing genetic variation, and parallelism (i.e. predictability of evolution) in gene expression. Ultimately, their results suggest that (a) pleiotropic genes typically have a smaller range in variation/expression, and (b) adaptation to similar environments tends to favor changes in pleiotropic genes, which leads to parallelism in mechanisms (though not dramatically). However, it is still uncertain how much parallelism is directly due to pleiotropy, instead of a complex interplay between them and ancestral variation.

      I have a few things that I was uncertain about. It may be these things are easily answered but require more discussion or clarity in the manuscript.

      (1) The variation being talked about in this manuscript is expression levels, and not SNPs within coding regions (or elsewhere). The cause of any specific gene having a change in expression can obviously be varied - transcription factors, repressors, promoter region variation, etc. Is this taken into account within the "network connectivity" measurement? I understand the network connectivity is a proxy for pleiotropy - what I'm asking is, conceptually, what can be said about how/why those highly pleiotropic genes have a change (or not) in expression. This might be a question for another project/paper, but it feels like a next step worth mentioning somewhere.

      In current study, we are only able to detect significant and repeatable expression changes but unable to identify the underlying causal variants. An eQTL study in the founder population in combination with genomic resequencing for both evolved and ancestral populations would be required to address this question.

      (2) The authors do have a passing statement in line 361 about cis-regulatory regions. Is the assumption that genetic variation in promoter regions is the ultimate "mechanism" driving any change in expression? In the same vein, the authors bring up a potential confounding factor, though they dismiss it based on a specific citation (lines 476-481; citation 65). I'm of the mindset that in order to more confidently disregard this "issue" based on previous evidence, it requires more than one citation. Especially since the one citation is a plant. That specific point jumps out to me as needing a more careful rebuttal.

      It was not our intention to claim that the expression changes in our experiment are caused by cis-regulatory variation only. We believe that the observed expression variation has both cis- and trans-genetic components, where as some studies tend to estimate much higher cisvariation for gene expression in Drosophila populations (e.g. [1, 2]). We mentioned the positive correlation between cis-regulatory polymorphism and expression variation to (1) highlight the genetic control of gene expression and (2) make the connection between polygenic adaptation and gene expression evolutionary parallelism.

      (3) I feel like there isn't enough exploration of tissue specificity versus network connectivity. Tissue specificity was best explained by a model in which pleiotropy had both direct and indirect effects on parallelism; while network connectivity was best explained (by a small margin) via the model which was mostly pleiotropy having a direct effect on ancestral variation, that then had a direct effect on parallelism. When the strengths of either direct/indirect effects were quantified, tissue specificity showed a stronger direct effect, while network connectivity had none (i.e. not significant). My confusion is with the last point - if network connectivity is explained by a direct effect in the best-supported model, how does this work, since the direct effect isn't significant? Perhaps I am misunderstanding something.

      To clarify, for network connectivity, there’s a significant “indirect” effect on parallelism (i.e. network connectivity affect ancestral gene expression and ancestral gene expression affect parallelism). Hence, in table 2, the direct effect of network connectivity on parallelism is weak and not significant while the indirect effect via ancestral variation is significant.

      Also, network connectivity might favor the most pleiotropic genes being transcription factor hubs (or master regulators for various homeostasis pathways); while the tissue specificity metric perhaps is a kind of a space/time element. I get that a gene having expression across multiple tissues does fit the definition of pleiotropy in the broad sense, but I'm wondering if some important details are getting lost - I'm just thinking about the relative importance of what tissue specificity measurements say versus the network connectivity measurement.

      We examined the statistical relationship between the two measures and found a moderate positive correlation on the basis of which we argued that the two measures may capture different aspects of pleiotropy. We appreciate the reviewer’s suggestions about the biological basis of the two estimates of pleiotropy, but we think that without further experimental insights, an extended discussion of this topic is too premature to provide meaningful insights to the readership.

      Reviewer #2 (Public review):

      Summary:

      Lai and collaborators use a previously published RNAseq dataset derived from an experimental evolution set up to compare the pleiotropic properties of genes whose expression evolved in response to fluctuating temperature for over 100 generations. The authors correlate gene pleiotropy with the degree of parallelisms in the experimental evolution set up to ask: are genes that evolved in multiple replicates more or less pleiotropic?

      They find that, maybe counter to expectation, highly pleiotropic genes show more replicated evolution. Such an effect seems to be driven by direct effects (which the authors can only speculate on) and indirect effects through low variance in pleiotropic genes (which the authors indirectly link to genetic variation underlying gene expression variance).

      Weaknesses:

      The results offer new insights into the evolution of gene expression and into the parameters that constrain such evolution, i.e., pleiotropy. Although the conclusions are supported by the data, I find the interpretation of the results a little bit complicated.

      Major comment:

      The major point I ask the authors to address is whether the connection between polygenic adaptation and parallelism can indeed be used to interpret gene expression parallelism. If the answer is not, please rephrase the introduction and discussion, if the answer is yes, please make it explicit in the text why it is so.

      Our answer is yes, we interpreted gene expression parallelism (high ancestral variance -> less parallelism) using the same framework that links polygenic adaptation and parallelism (high polygenicity = less trait parallelism). We believe that our response covers several of the reviewer’s concerns.

      The authors' argument: parallelism in gene expression is the same as parallelism in SNP allele frequency (AFC) (see L389-383 here they don't mention that this explanation is derived from SNP parallelism and not trait parallelism, and see Figure 1 b). In previous publications, the authors have explained the low level of AFC parallelism using a polygenic argument. Polygenic traits can reach a new trait optimum via multiple SNPs and therefore although the trait is parallel across replicates, the SNPs are not necessarily so.

      Importantly, our rationale is based on the idea that gene expression is rarely the direct target of selection, but rather an intermediate trait [3]. Recently, we have specifically tested this assumption for gene expression and metabolite concentrations and our analysis showed that both traits were are redundant [4], as previously shown for DNA sequences [5]. The important implication for this manuscript is that gene expression is also redundant, so that adaptation can be achieved by distinct changes in gene expression in replicate populations adapting to the same selection pressure. This implies that we can use the same simulation framework for gene expression as for sequencing data. In our case different SNP frequencies correspond to different expression levels (averaged across individuals from a population), which in turn increases fitness by modifying the selected trait. Importantly, the selected trait in our simulations is not gene expression, but a not defined high level phenotype. A key insight from our simulations is that with increasing polygenicity the expression of a gene is more variable in the ancestral population.

      In the current paper, they seem to be exchanging SNP AFC by gene expression, and to me, those are two levels that cannot be interchanged. Gene expression is a trait, not an SNP, and therefore the fact that a gene expression doesn't replicate cannot be explained by a polygenic basis, because again the trait is gene expression itself. And, actually, the results of the simulations show that high polygenicity = less trait parallelism (Figure 4).

      As detailed above, because adaptation can be reached by changes in gene expression at different sets of genes, redundancy is also operating on the expression level not just on the level of SNPs. To clarify, the x-axis of Fig. 4 is the expression variation in the ancestral population.

      Now, if the authors focus on high parallel genes (present in e.g. 7 or more replicates) and they show that the eQTLs for those genes are many (highly polygenic) and the AFC of those eQTLs are not parallel, then I would agree with the interpretation. But, given that here they just assess gene expression and not eQTL AFC, I do not think they can use the 'highly polygenic = low parallelism' explanation.

      The interpretation of the results to me, should be limited to: genes with low variance and high pleiotropy tend to be more parallel, and the explanation might be synergistic pleiotropy.

      While we understand the desire to model the full hierarchy from eQTLs to gene expression and adaptive traits, we raise caution that this would be a very challenging task. eQTLs very often underestimate the contribution of trans-acting factors, hence the understanding of gene expression evolution based on eQTLs is very likely incomplete and cannot explain the redundancy of gene expression during adaptation. Hence, we think that the focus on redundant gene expression is conceptually simpler and thus allows us to address the question of pleiotropy without the incorporation of allele frequency changes.  

      Reviewer #3 (Public review):

      The authors aim to understand how gene pleiotropy affects parallel evolutionary changes among independent replicates of adaptation to a new hot environment of a set of experimental lines of Drosophila simulans using experimental evolution. The flies were RNAsequenced after more than 100 generations of lab adaptation and the changes in average gene expression were obtained relative to ancestral expression levels from reconstructed ancestral lines. Parallelism of gene expression change among lines is evaluated as variance in differential gene expression among lines relative to error variance. Similarly, the authors ask how the standing variation in gene expression estimated from a handful of flies from a reconstructed outbred line affects parallelism. The main findings are that parallelism in gene expression responses is positively associated with pleiotropy and negatively associated with expression variation. Those results are in contradiction with theoretical predictions and empirical findings. To explain those seemingly contradictory results the authors invoke the role of synergistic pleiotropy and correlated selection, although they do not attempt to measure either.

      Strengths:

      (1) The study uses highly replicated outbred laboratory lines of Drosophila simulans evolved in the lab under a constant hot regime for over 100 generations. This allows for robust comparisons of evolutionary responses among lines.

      (2) The manuscript is well written and the hypotheses are clearly delineated at the onset.

      (3) The authors have run a causal analysis to understand the causal dependencies between pleiotropy and expression variation on parallelism.

      (4) The use of whole-body RNA extraction to study gene expression variation is well justified.

      Weaknesses:

      (1) It is unclear how well phenotypic variation in gene expression of the evolved lines has been estimated by the sample of 20 males from a reconstructed outbred line not directly linked to the evolved lines under study. I see this as a general weakness of the experimental design.

      Our intention was not to measure the phenotypic variance of the evolved lines, but rather to estimate the phenotypic variance at the beginning of the experiment. Hence, we measured and investigated the variation of gene expression in the ancestral population since this was the beginning of the replicated experimental evolution. Furthermore, since the ancestral population represents the natural population in Florida, the gene expression variation reflects the history of selection history acting on it.

      (2) There are no estimates of standing genetic variation of expression levels of the genes under study, only phenotypic variation. I wished the authors had been clear about that limitation and had discussed the consequences of the analysis. This also constitutes a weakness of the study.

      The reviewer is correct that we do not aim to estimate the standing genetic variation, which is responsible for differences in gene expression. While we agree that it could be an interesting research question to use eQTL mapping to identify the genetic basis of gene expression, we caution that trans-effects are difficult to estimate and therefore an important component of gene expression evolution will be difficult to estimate. Hence, we consider that our focus on variation in gene expression without explicit information about the genetic basis is simpler and sufficient to address the question about the role of pleiotropy.

      (3) Moreover, since the phenotype studied is gene expression, its genetic basis extends beyond expressed sequences. The phenotypic variation of a gene's expression may thus likely misrepresent the genetic variation available for its evolution. The genetic variation of gene expression phenotypes could be estimated from a cross or pedigree information but since individuals were pool-sequenced (by batches of 50 males), this type of analysis is not possible in this study.

      We agree with the reviewer that gene expression variation may also have a non-genetic basis, we discuss this in depth in the discussion of the manuscript.  

      (4) The authors have not attempted to estimate synergistic pleiotropy among genes, nor how selection acts on gene expression modules. It makes any conclusion regarding the role of synergistic pleiotropy highly speculative.

      We mentioned synergistic pleiotropy as a possible explanation for our results. A positive correlation between the fitness effect of gene expression variation would predict more replicable evolutionary changes. A similar argument has been made by [6]. 

      I don't understand the reason why the analysis would be restricted to significantly differentially expressed genes only. It is then unclear whether pleiotropy, parallelism, and expression variation do play a role in adaptation because the two groups of adaptive and non-adaptive genes have not been compared. I recommend performing those comparisons to help us better understand how "adaptive" genes differentially contribute to adaptation relative to "nonadaptive" genes relative to their difference in population and genetic properties.

      We agree with the reviewer that the comparison between the pleiotropy of adaptive and nonadaptive genes is interesting. We performed the analysis but omitted from the current manuscript for simplicity. Similar to the results in [6], non-adaptive genes are more pleiotropic than the adaptive genes. For adaptive genes we find a positive correlation between the level of pleiotropy and evolutionary parallelism. Thus, high pleiotropy limits the evolvability of a gene, but moderate and potentially synergistic pleiotropy increases the repeatability of adaptive evolution. We included this result in the revised manuscript and discuss it.

      There is a lack of theoretical groundings on the role of so-called synergistic pleiotropy for parallel genetic evolution. The Discussion does not address this particular prediction. It could be removed from the Introduction.

      We modestly disagree with the reviewer, synergistic pleiotropy is covered by theory and empirical results also support the importance of synergistic pleiotropy. 

      References

      (1) Genissel A, McIntyre LM, Wayne ML, Nuzhdin SV. Cis and trans regulatory effects contribute to natural variation in transcriptome of Drosophila melanogaster. Molecular biology and evolution. 2008;25(1):101-10. Epub 20071112. doi: 10.1093/molbev/msm247. PubMed PMID: 17998255.

      (2) Osada N, Miyagi R, Takahashi A. Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of Drosophila melanogaster. Genetics. 2017;206(4):2139-48. Epub 20170614. doi: 10.1534/genetics.117.201459. PubMed PMID: 28615283; PubMed Central PMCID: PMCPMC5560811.

      (3) Barghi N, Hermisson J, Schlötterer C. Polygenic adaptation: a unifying framework to understand positive selection. Nature reviews Genetics. 2020;21(12):769-81. Epub 2020/07/01. doi: 10.1038/s41576-020-0250-z. PubMed PMID: 32601318.

      (4) Lai WY, Otte KA, Schlötterer C. Evolution of Metabolome and Transcriptome Supports a Hierarchical Organization of Adaptive Traits. Genome biology and evolution. 2023;15(6). Epub 2023/05/26. doi: 10.1093/gbe/evad098. PubMed PMID: 37232360; PubMed Central PMCID: PMCPMC10246829.

      (5) Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte KA, et al. Genetic redundancy fuels polygenic adaptation in Drosophila. PLoS biology. 2019;17(2):e3000128. Epub 2019/02/05. doi: 10.1371/journal.pbio.3000128. PubMed PMID: 30716062.

      (6) Rennison DJ, Peichel CL. Pleiotropy facilitates parallel adaptation in sticklebacks. Molecular ecology. 2022;31(5):1476-86. Epub 2022/01/09. doi: 10.1111/mec.16335. PubMed PMID: 34997980; PubMed Central PMCID: PMCPMC9306781.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Point 1 of public reviews and point 2 of recommendations to authors. 

      Temporal ambiguity in credit assignment: While the current design provides clear task conditions, future studies could explore more ambiguous scenarios to further reflect real-world complexity…. The role of ambiguity is very important for the credit assignment process. However, in the current task design, the instruction of the task design almost eliminates the ambiguity of which the trial's choice should be assigned credit to. The authors claim the realworld complexity of credit assignment in this task design. However, the real-world complexity of this type of temporal credit assignment involves this type of temporal ambiguity of responsibility as causal events. I am curious about the consequence of increasing the complexity of the credit assignment process, which is closer to the complexity in the real world.

      We agree that the structure of causal relationships can be more ambiguous in real-world contexts. However, we also believe that there are multiple ways in which a task might approach “real-world complexity”. One way is by increasing the ambiguity in the relationships between choices and outcomes (as done by Jocham et al., 2016). Another is by adding interim decisions that must be completed between viewing the outcome of a first choice, which mimics task structures such as the cooking tasks described in the introduction. In such tasks, the temporal structure of the actions maybe irrelevant, but the relationship between choice identities and the actions is critical to be effective in the task (e.g., it doesn’t matter whether I add spice before or after the salt, all I need to know that adding spice will result in spicy soup).  While ambiguity about either form of causal relation is clearly an important part of real-world complexity, and would make credit assignment harder, our study focuses on how links between outcomes and specific past choice identities are created at the neural level when they are known to be causal. 

      We consequently felt it necessary to resolve temporal ambiguity for participants. Instructing participants on the structure of the task allowed us to make assumptions about how credit assignment for choice identities should proceed (assign credit to the choice made N trials back) and allowed us make positive predictions about the content of representations in OFC when viewing an outcome. This gave the highest power to detect multivariate information about the causal choice and the highest interpretability of such findings. 

      In contrast, if we had not resolved this ambiguity, it would be difficult to tell if incorrect decoding from the classifier resulted from noise in the neural signal, or if on that trial participants were assigning credit to non-causal choices that they erroneously believed to have caused the outcome due to the perceived temporal structure. We believe this would have ultimately decreased our power to determine whether representations of the causal choice were present at the time of outcome because we would have to make assumptions about what counts as a “true” causal representation. 

      We have commented on this in the discussions (p.13): 

      “While our study was designed to focus on the complexity of assigning credit in tasks with different known causal structures, another important component of real-world credit assignment is temporal ambiguity. To isolate the mechanisms which create associations between specific choices and specific outcomes, we instructed participants on the causal structure of each task, removing temporal ambiguity about the causal choice.  However, our results are largely congruent with previously reported results in tasks that dissolved the typical experimental trial structure, producing temporal ambiguity, and which observed more pronounced spreading of effect, in addition to appropriate credit assignment (Jocham et al, 2016).  Namely, this study found that activation in the lOFC increased only when participants received rewards contingent on a previous action, an effect that was more pronounced in subjects whose behavior reflected more accurate credit assignment. This suggests a shared lOFC mechanism for credit assignment in different types of complex environments. Whether these mechanisms extend to situations where the temporal causal structure is completely unknown remains an important question.”

      Point 2 of public reviews and point 1 of recommendations to authors

      Role of task structure understanding: The difference in task comprehension between human subjects in this study and animal subjects in previous studies offers an interesting point of comparison…. The credit assignment involves the resolution of the ambiguity in which the causal responsibility of an outcome event is assigned to one of the preceding events. In the original study of Walton and his colleagues, the monkey subjects could not be instructed on the task structure defining the causal relationships of the events. Then, the authors of the original study observed the spreading of the credit assignments to the "irrelevant" events, which did not occur in the same trial of the outcome event but to the events (choices) in neighbouring trials. This aberrant pattern of the credit assignment can be due to the malfunctions of the credit assignment per se or the general confusion of the task structure on the part of the monkey subjects. In the current study design, the subjects are humans and they are not confused about the task structure. Consistently, it is well known that human subjects rarely show the same patterns of the "spreading of credit assignment". So the implicit mechanism of the credit assignment process involves the understanding of the task structure. In the current study, there are clearly demarked task conditions that almost resolve the ambiguity inherent in the credit assignment process. Yet, the focus of the current analysis stops short of elucidating the role of understanding the task structure. It would be great if the authors could comment on the general difference in the process between the conditions, whether it is behavioral or neural.

      We would like to thank the reviewer for making this important point. We believe that understanding the structure of the credit-assignment problem above is quite important, at least for the type of credit assignment described here. That is, because participants know that the outcome viewed is caused by the choice they made, 0 or 1 trials into the past, they can flexibly link choice identities to the newly observed outcomes as the probabilities change. Note, however, that this is already very challenging in the 1-back condition because participants need to track the two independently changing probabilities. We believe this is critical to address the questions we aimed to answer with this experiment, as described above. 

      We agree that this might be quite different from previous studies done with non-human primates, which also included many more training trials and lesions to the lOFC. Both of these aspects could manifest as difference in task performance and processing at behavioural and neural levels, respectively. Consistent with this possibility, in our task, we found no differences in credit spreading between conditions, suggesting that humans were quite precise in both, despite causal relationships being harder to track in the “indirect transition condition”. This lack of credit spreading could be because humans better understood the task-structure compared to macaques or be due to differences in functioning of the OFC and other regions. Because all participants were trained to understand, and were cued with explicit knowledge of, the task structure, it is difficult to isolate its role as we would need another condition in which they were not instructed about the task structure. This would also be an interesting study, and we leave it to future research to parse the contributions of task-structure ambiguity to credit assignment. 

      Point 3 of public reviews. 

      The authors used a sophisticated method of multivariate pattern analysis to find the neural correlate of the pending representation of the previous choice, which will be used for the credit assignment process in the later trials. The authors tend to use expressions that these representations are maintained throughout this intervening period. However, the analysis period is specifically at the feedback period, which is irrelevant to the credit assignment of the immediately preceding choice. This task period can interfere with the ongoing credit assignment process. Thus, rather than the passive process of maintaining the information of the previous choice, the activity of this specific period can mean the active process of protecting the information from interfering and irrelevant information. It would be great if the authors could comment on this important interpretational issue.

      We agree that lFPC is likely actively protecting the pending choice representation from interference with the most recent choice for future credit assignment. This interpretation is largely congruent with the idea of “prospective memory” (e.g., Burgess, Gonen-Yaacovi, Volle, 2011), in which the lFPC can be thought of as protecting information that will be needed in the future but is not currently needed for ongoing behavior. That said, from our study alone it is difficult to make claims about whether the information maintained in frontal pole is actively protecting this information because of potentially interfering processes. Our “indirect transition condition” only contains trials where there is incoming, potentially interfering information about new outcomes, but no trials that might avoid interference (e.g., an interim choice made but there is nothing to be learned from it). We comment on this important future direction on page 14:  

      “One interpretation of these results is that the lFPC actively protects information about causal choices when potentially interfering information must be processed. Future studies will be needed to determine if the lFPC’s contributions are specific to these instances of potential interference, and whether this is a passive or active process”

      Point 3 of recommendation to authors 

      A slightly minor, but still important issue is the interpretation of the role of lOFC. The authors compared the observed patterns of the credit assignment to the ideal patterns of credit assignment. Then, the similarity between these two matrices is used to find the associated brain region. In the assumption that lOFC is involved in the optimal credit assignment, the result seems reasonable. But as mentioned above, the current design involves the heavy role of understanding the task structure, it is debatable whether the lOFC is just involved in the credit assignment process or a more general role of representing the task structure.

      We agree that this is an important distinction to make, and it is very likely that multiple regions of the OFC carry information about the task structure, and the extent to which participants understood this structure may be reflected in behavioral estimates of credit assignment or the overall patterns of the matrices (though all participants verbalized the correct structure prior to the task). However, we believe that in our task the lOFC is specifically involved in credit-assignment because of the content of the information we decoded. We demonstrated that the lOFC and HPC carry information about the causal choice during the outcome. These results cannot be explained by differences in understanding of the task structure because that understanding would have been consistent across trials where participants choose either shape identity. Thus, a classifier could not use this to separate these types of trials and would reflect chance decoding.   

      One interpretation of the lOFC’s role in credit assignment is that it is particularly important when a model of the task structure has to be used to assign credit appropriately. Here, we show lOFC the reinstates specific causal representations precisely at the time credit needs to be assigned, which are appropriate to participants’ knowledge of the task structure.  These representations may exist alongside representations of the task structure, in the lOFC and other regions of the brain (Park et al., 2020; Boorman et al., 2021; Seo and Lee, 2010; Schuck et al., 2016). We have added the following sentences to clarify our perspective on this point in the discussion (p. 13):

      “Our results from the “indirect transition” condition show that these patterns are not merely representations of the most recent choice but are representations of the causal choice given the current task structure, and may exist alongside representations of the task structure, in the lOFC and elsewhere (Boorman et al., 2021; Park et al., 2020; Schuck et al., 2016; Seo & Lee, 2010).”

      Point 4 of public reviews and point 4 of recommendation to authors

      Broader neural involvement: While the focus on specific regions of interest (ROIs) provided clear results, future studies could benefit from a whole-brain analysis approach to provide a more comprehensive understanding of the neural networks involved in credit assignment… Also, given the ROI constraint of the analysis, the other neural structure may be involved in representing the task structure but not detected in the current analysis

      Given our strong a priori hypotheses about regions of interest (ROIs) in this study, we focused on these specific areas. This choice was based on theoretical and empirical grounds that guided our investigation. However, we thank the reviewer for pointing this out and agree that there could be other unexplored areas that are critical to credit-assignment which we did not examine. 

      We conducted the same searchlight decoding procedure on a whole brain map and corrected for multiple comparisons using TFCE. We found no significant regions of the brain in the “direct transition condition” but did find other significant regions in our information connectivity analysis of the “indirect transition condition”. In addition to replicating the effects in lOFC and HPC, we also found a region of mOFC which showed a strong correlation with pending choice in lFPC. It’s difficult to say whether this region is involved in credit assignment per se, because we did not see this region in the “direct transition condition” and so we cannot say that it is consistently related to this process. However, the mOFC is thought to be critical to representing the current task state (Schuck et al., 2016), and the task structure (Park et al., 2020). In our task, it could be a critical region for communicating how to assign credit given the more complex task structure of the “indirect transition condition” but more evidence would be needed to support this interpretation. 

      For now, we have added the results of this whole brain analysis to a new supplementary figure S7 (page 41), and all unthresholded maps have been deposited in a Neurovault repository, which is linked in the paper, for interested readers to assess.  

      Minor points:

      There are some missing and confusing details in the Figure reference in the main text. For example, references to Figure 3 are almost missing in the section "Pending item representations in FPl during indirect transitions predict credit assignment in lOFC". For readability, the authors should improve this point in this section and other sections.

      Thank you to the reviewer for pointing this out. We have now added references to Figure 3 on page 8:

      “Our analysis revealed a cluster of voxels specifically within the right lFPC ([x,y,z] = [28, 54, 8], t(19) = 3.74, pTFCE <0.05 ROI-corrected; left hemisphere all pTFCE > 0.1, Fig. 3A)”

      And on page 10: 

      Specifically, we found significant correlations in decoding distance between lFPC and bilateral lOFC ([x,y,z] = [-32,24, -22], t(19) = 3.81, [x,y,z] = [20, 38, -14], t(19) = 3.87, pTFCE <0.05 ROI corrected]) and bilateral HC ([x,y,z] = [-28, -10, -24], t(19) = 3.41, [x,y,z] = [22, -10, -24], t(19) = 4.21, pTFCE <0.05 ROI corrected]), Fig. 3C).

      Task instructions for the two conditions (direct and indirect) play important roles in the study. If possible, please include the following parts in the figures and descriptions in the introduction and/or results sections.

      We have now included a short description of the condition instructions beginning on page 5: 

      “Participants were instructed about which condition they were in with a screen displaying “Your latest choice” in the direct transition condition, and “Your previous choice” in the indirect condition.”

      And have modified Figure 1 to include the instructions in the title of each condition. We thought this to be the most parsimonious solution so that the choice options in the examples were not occluded. 

      The subject sample size might be slightly too small in the current standards. Please give some justifications.

      We originally selected the sample size for this study to be commensurate with previous studies that looked for similar behavioral and neural effects (see Boorman et al., 2016; Howard et al., 2015; Jocham et al., 2016). This has been mentioned in the “methods” section on page 24.  

      However, to be thorough, we performed a power analysis of this sample size using simulations based on an independently collected, unpublished data set. In this data set, 28 participants competed an associative learning task similar to the task in the current manuscript. We trained a classifier to decode causal choice option at the time of feedback, using the same searchlight and cross-validation procedures described in the current manuscript, for the same lateral OFC ROI. We calculated power for various sample sizes by drawing N participants with replacement 1000 times, for values of N ranging from 15 to 25. After sampling the participants, we tested for significant decoding for the causal choice within the subset of data, using smallvolume TFCE correction to correct for multiple comparisons. Finally, we calculated the proportion of these samples that were significant at a level of pTFCE <.05.  

      The results of this procedure show that an N of 20 would result in 84.2% power, which is slightly above the typically acceptable level of 80%. We have added the following sentences to the methods section on page 25: 

      “Using an independent, unpublished data set, we conducted a power analysis for the desire neural effect in lOFC. We found that this number of participants had 84% power to detect this effect (Fig. S8).” 

      We also added the following figure to the supplemental figures page (42):

      Reviewer 2:

      I have several concerns regarding the causality analyses in this study. While Multivariate analyses of information connectivity between regions are interesting and appear rigorous, they make some assumptions about the nature of the input data. It is unclear if fMRI with its poor temporal resolution (in addition to possible region-specific heterogeneity in the readouts), can be coupled with these casual analysis methods to meaningfully study dynamics on a decision task where temporal dynamics is a core component (i.e., delay). It would be helpful to include more information/justification on the methods for inferring relationships across regions from fMRI data. Along this line, discussing the reported findings in light of these limitations would be essential.

      We agree that fMRI is limited for capturing fast neural dynamics, and that it can be difficult to separate events that occur within a few seconds. However, we designed the information connectivity analysis to maximally separate the events in question – the representations of the causal choice being held in a pending state, and the representation of the causal choice during credit assignment. These events were separated by at least 10 seconds and by 15 seconds on average, which is commensurate with recommended intervals for disentangling information in such analysis (Mumford et al., 2012, 2014, also see van Loon et al., 2018, eLife; as example of fluctuations in decodability over time). This feature of our task design may not have been clear because information connectivity analyses are typically performed in the same task period. We clarify this point on page 32:

      “Note that the decoding fidelity metric at each time point represents the decodability of the same choice at different phases of the task. These phases were separated by at least 10 seconds and 15 seconds on average, which can be sufficient for disentangling unique activity (Mumford et al., 2012, 2014).”

      However, we agree with the reviewer that the limitations of fMRI make it difficult to precisely determine how roles of the OFC and lFPC might change over time, and whether other regions may contribute to information transfer at times scales which cannot be detected by fMRI. Further, we do not wish to imply causality between lFPC and lOFC (something we believe we do not claim in the paper), only that information strength in lFPC predicts subsequent strength of the same information in the OFC and HC. We have clarified this limitation on page 14:

      “Although we show evidence that lFPC is involved in maintaining specific content about causal choices during interim choices, the limited temporal resolution of fMRI makes it difficult to tell if other regions may be supporting the learning processes at timescales not detectable in the BOLD response. Thus, it is possible that the network of regions supporting credit assignment in complex tasks may be much larger. Our results provide a critical first stem in discerning the nature of interactions between cognitive subsystems that make different contributions to the learning process in these complex tasks.”

      Reviewer 3:  

      Point 1 of public reviews:

      They do find (not surprisingly) that the one-back task is harder. It would be good to ensure that the reason that they had more trouble detecting direct HC & lOFC effects on the harder task was not because the task is harder and thus that there are more learning failures on the harder oneback task. (I suspect their explanation that it is mediated by FPl is likely to be correct. But it would be nice to do some subsampling of the zero-back task [matched to the success rate of the one-back task] to ensure that they still see the direct HC and lOFC there).

      We would like to thank the reviewer for this comment and agree that the “indirect transition condition” is more difficult than the direct transition condition. However, in this task it is difficult to have an explicit measure of learning failures per se because the “correctness” of a choice is to some extent subjective (i.e., based on the gift card preference and the computational model). We could infer when learning failures occur through the computational model by looking at trials in which participants made choices that the model would consider improbable, (i.e., non-reward maximizing) while accounting for outcome preference. However, there are also a myriad of other possible explanations for these choices, such as exploratory/confirmatory strategies, lapses in attention etc. Thus, we could not guarantee that the two conditions would be uniquely matched in difficulty with specific regard to learning even if we subsampled these trials. We feel it would be better left to future experiments which can specifically compare learning failures to tackle this issue. We have now addressed this point when discussing the model on page 31:  

      “Note that learning failures are not trivial to identify in our paradigm and model, because every choice is based on a participant’s preference between gift card outcomes, and the ability of the computational model to accurately estimate participants’ beliefs in the stimulus-outcome transition probabilities.”

      Point 2 of public reviews:

      The evidence that they present in the main text (Figure 3) that the HC and lOFC are mediated by FPl is a correlation. I found the evidence presented in Supplemental Figure 7 to be much more convincing. As I understand it, what they are showing in SF7 is that when FPl decodes the cue, then (and only then) HC and lOFC decode the cue. If my understanding is correct, then this is a much cleaner explanation for what is going on than the secondary correlation analysis. If my understanding here is incorrect, then they should provide a better explanation of what is going on so as to not confuse the reader.

      SF7 (now Figures 3C and 3D) does show that positive decoding in the HC and lOFC are more likely to occur when there is positive decoding in lFPC. However, the analysis shown in these figures are only meant to be control analysis to further characterise what is being captured, but not necessarily implied, by the information connectivity analysis. For example, in principle the classifier might never correctly decode a choice label in the lOFC or HC while still getting closer to the hyperplane when the lFPC patterns are correctly decoded. This would lead to a positive correlation, but a difficult to interpret result since patterns in lOFC and HPC are incorrect. Figure SF7A (now Fig. 3C) shows that this is not the case. Lateral OFC and HC have higher than chance positive decoding when lFPC has positive decoding. Figure SF7B (now Fig. 3D) shows that we can decode that information even if a new hyperplane is constructed. However, both cases have less information about the relationship between these regions because they do not include the trials where lOFC/HC and lFPC classifiers were incorrect at the same time. The correlation in Figure 3B includes these failures, giving a more wholistic picture of the data. We therefore try to concisely clarify this point on page 10:

      “These signed distances allow us to relate both success in decoding information, as well as failures, between regions.”

      And here on page 10: 

      “Subsequent analyses confirmed that this effect was due to these regions showing a significant increase in positive (correct) decoding in trials where pending information could be positively (correctly) decoded in lFPC, and not simply due to a reduction in incorrect information fidelity (see Fig. 3C & 3D).”

      And have integrated these figures on page 9:

      Point 3 of public reviews:

      I like the idea of "credit spreading" across trials (Figure 1E). I think that credit spreading in each direction (into the past [lower left] and into the future [upper right]) is not equivalent. This can be seen in Figure 1D, where the two tasks show credit spreading differently. I think a lot more could be studied here. Does credit spreading in each of these directions decode in interesting ways in different places in the brain?

      We agree that this an interesting question because each component of the off diagonal (upper and lower triangles) may reflect qualitatively different processes of credit spreading. However, we believe this analysis is difficult to carry out with the current dataset for two reasons. First, we designed this study to ask specifically about the information represented in key credit assignment regions during precise credit assignment, meaning we did not optimize the task to induce credit spreading at any point. Indeed, our efforts to train participants on the task were to ensure they would correctly assign credit as much as possible. Figure 1F shows that the regression coefficients representing credit spreading in each condition are near zero (in the negative direction), with little individual differences compared to the credit assignment coefficients. Thus, any analysis aiming to test for credit spreading would unfortunately be poorly powered. Studies such as Jocham et al. (2016), with more variability in causal structures, or studies with ambiguity about the causal structure by dissolving the typical trial structure would be better suited to address this interesting question. The second reason why such an analysis would be challenging is that due to our design, it is difficult to intuitively determine what kind of information should be coded by neural regions when credit spreads to the upper diagonal, since these cells reflect current outcomes that are being linked to future choices. 

      Replace all the FPl with LFPC (lateral frontal polar cortex)

      We have no replace “FPl” with “LFPC” throughout the text and figures

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Barlow and coauthors utilized the high-parameter imaging platform of CODEX to characterize the cellular composition of immune cells in situ from tissues obtained from organ donors with type 1 diabetes, subjects presented with autoantibodies who are at elevated risk, or non-diabetic organ donor controls. The panels used in this important study were based on prior publications using this technology, as well as a priori and domain-specific knowledge of the field by the investigators. Thus, there was some bias in the markers selected for analysis. The authors acknowledge that these types of experiments may be complemented moving forward with the inclusion of unbiased tissue analysis platforms that are emerging that can conduct a more comprehensive analysis of pathological signatures employing emerging technologies for both high-parameter protein imaging and spatial transcriptomics.

      Strengths:

      In terms of major findings, the authors provide important confirmatory observations regarding a number of autoimmune-associated signatures reported previously. The high parameter staining now increases the resolution for linking these features with specific cellular subsets using machine learning algorithms. These signatures include a robust signature indicative of IFN-driven responses that would be expected to induce a cytotoxic T-cell-mediated immune response within the pancreas. Notable findings include the upregulation of indolamine 2,3-dioxygenase-1 in the islet microvasculature. Furthermore, the authors provide key insights as to the cell:cell interactions within organ donors, again supporting a previously reported interaction between presumably autoreactive T and B cells.

      Weaknesses:

      These studies also highlight a number of molecular pathways that will require additional validation studies to more completely understand whether they are potentially causal for pathology, or rather, epiphenomenon associated with increased innate inflammation within the pancreas of T1D subjects. Given the limitations noted above, the study does present a rich and integrated dataset for analysis of enriched immune markers that can be segmented and annotated within distinct cellular networks. This enabled the authors to analyze distinct cellular subsets and phenotypes in situ, including within islets that peri-islet infiltration and/or intra-islet insulitis.

      Despite the many technical challenges and unique organ donor cohort utilized, the data are still limited in terms of subject numbers - a challenge in a disease characterized by extensive heterogeneity in terms of age of onset and clinical and histopathological presentation. Therefore, these studies cannot adequately account for all of the potential covariates that may drive variability and alterations in the histopathologies observed (such as age of onset, background genetics, and organ donor conditions). In this study, the manuscript and figures could be improved in terms of clarifying how variable the observed signatures were across each individual donor, with the clear notion that non-diabetic donors will present with some similar challenges and variability.

      Thank you to all reviewers and editors for their thoughtful and constructive engagement with our manuscript. We agree that patient heterogeneity and the sample size limited the impact of this study. In the future, more cases with insulitis will become available and spatial technologies will become more scalable.

      Given these constraints, we have made a significant effort to illustrate the individual heterogeneity of the disease by using the same color for each nPOD case ID throughout the manuscript and showing individual donors whenever feasible (e.g. Figures 1D-E, 2C, 2I, 3E, 3G, 4B-C, 5C, and 5F). For figures related to insulitis, we do not typically include non-T1D controls since they did not have any insulitis (Figure 2C). We also explicitly discuss the differences in the two autoantibody-positive, non-T1D cases: one closely resembled the T1D cases with respect to multiple features and the other more closely resembled the non-T1D, autoantibody-negative controls.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to characterize the cellular phenotype and spatial relationship of cell types infiltrating the islets of Langerhans in human T1D using CODEX, a multiplexed examination of cellular markers

      Strengths:

      Major strengths of this study are the use of pancreas tissue from well-characterized tissue donors, and the use of CODEX, a state-of-the-art detection technique of extensive characterization and spatial characterization of cell types and cellular interactions. The authors have achieved their aims with the identification of the heterogeneity of the CD8+ T cell populations in insulitis, the identification of a vasculature phenotype and other markers that may mark insulitis-prone islets, and the characterization of tertiary lymphoid structures in the acinar tissue of the pancreas. These findings are very likely to have a positive impact on our understanding (conceptual advance) of the cellular factors involved in T1D pathogenesis which the field requires to make progress in therapeutics.

      Weaknesses:

      A major limitation of the study is the cohort size, which the authors directly state. However, this study provides avenues of inquiry for researchers to gain further understanding of the pathological process in human T1D.

      Thank you for your analysis. We point the reader to our above description of our efforts to faithfully report the patient variability despite the small sample size.

      Reviewer #3 (Public review):

      Summary:

      The authors applied an innovative approach (CO-Detection by indEXing - CODEX) together with sophisticated computational analyses to image pancreas tissues from rare organ donors with type 1 diabetes. They aimed to assess key features of inflammation in both islet and extra-islet tissue areas; they reported that the extra-islet space of lobules with extensive islet infiltration differs from the extra-islet space of less infiltrated areas within the same tissue section. The study also identifies four sub-states of inflamed islets characterized by the activation profiles of CD8+T cells enriched in islets relative to the surrounding tissue. Lymphoid structures are identified in the pancreas tissue away from islets, and these were enriched in CD45RA+ T cells - a population also enriched in one of the inflamed islet sub-states. Together, these data help define the coordination between islets and the extra-islet pancreas in the pathogenesis of human T1D.

      Strengths:

      The analysis of tissue from well-characterized organ donors, provided by the Network for the Pancreatic Organ Donor with Diabetes, adds strength to the validity of the findings.

      By using their innovative imaging/computation approaches, key known features of islet autoimmunity were confirmed, providing validation of the methodology.

      The detection of IDO+ vasculature in inflamed islets - but not in normal islets or islets that have lost insulin-expression links this expression to the islet inflammation, and it is a novel observation. IDO expression in the vasculature may be induced by inflammation and may be lost as disease progresses, and it may provide a potential therapeutic avenue.

      The high-dimensional spatial phenotyping of CD8+T cells in T1D islets confirmed that most T cells were antigen-experienced. Some additional subsets were noted: a small population of T cells expressing CD45RA and CD69, possibly naive or TEMRA cells, and cells expressing Lag-3, Granzyme-B, and ICOS.

      While much attention has been devoted to the study of the insulitis lesion in T1D, our current knowledge is quite limited; the description of four sub-clusters characterized by the activation profile of the islet-infiltrating CD8+T cells is novel. Their presence in all T1D donors indicates that the disease process is asynchronous and is not at the same stage across all islets. Although this concept is not novel, this appears to be the most advanced characterization of insulitis stages.

      When examining together both the exocrine and islet areas, which is rarely done, authors report that pancreatic lobules affected by insulitis are characterized by distinct tissue markers. Their data support the concept that disease progression may require crosstalk between cells in the islet and extra-islet compartments. Lobules enriched in β-cell-depleted islets were also enriched in nerves, vasculature, and Granzyme-B+/CD3- cells, which may be natural killer cells.

      Lastly, authors report that immature tertiary lymphoid structures (TLS) exist both near and away from islets, where CD45RA+ CD8+T cells aggregate, and also observed an inflamed islet-subcluster characterized by an abundance of CD45RA+/CD8+ T cells. These TLS may represent a point of entry for T cells and this study further supports their role in islet autoimmunity.

      Weaknesses:

      As the authors themselves acknowledge, the major limitation is that the number of donors examined is limited as those satisfying study criteria are rare. Thus, it is not possible to examine disease heterogeneity and the impact of age at diagnosis. Of 8 T1D donors examined, 4 would be considered newly diagnosed (less than 3 months from onset) and 4 had longer disease durations (2, 2, 5, and 6 years). It was unclear if disease duration impacted the results in this small cohort. In the introduction, the authors discuss that most of the pancreata from nPOD donors with T1D lack insulitis. This is correct, yet it is a function of time from diagnosis. Donors with shorter duration will be more likely to have insulitis. A related point is that the proportion of islets with insulitis is low even near diagnosis, Finally, only one donor was examined that while not diagnosed with T1D, was likely in the preclinical disease stage and had autoantibodies and insulitis. This is a critically important disease stage where the methodology developed by the investigators could be applied in future efforts.

      While this was not the focus of this investigation, it appears that the approach was very much immune-focused and there could be value in examining islet cells in greater depth using the methodology the authors developed.

      Additional comments:

      Overall, the authors were able to study pancreas tissues from T1D donors and perform sophisticated imaging and computational analysis that reproduce and importantly extend our understanding of inflammation in T1D. Despite the limitations associated with the small sample size, the results appear robust, and the claims well-supported.

      The study expands the conceptual framework of inflammation and islet autoimmunity, especially by the definition of different clusters (stages) of insulitis and by the characterization of immune cells in and outside the islets.

      Thank you for your feedback. We agree that it would be very informative to expand on our analysis of autoantibody-positive cases and look at additional non-immune features. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Do any of the observed cellular or structural features correlate with age of onset or disease duration? While numbers of subjects are low, considering these as continuous variables may clarify some of the findings.

      Thank you for the suggestion. In Supplemental Figure 5B-C, we plotted the key immune signatures from the manuscript against the diabetes duration and age of onset.

      (2) The IDO is an interesting observation and has prior support in the literature. The authors speculate this may be induced as a feature of IFNg expressed by lymphocytes in the local microenvironment. Can any of these concepts be further validated by staining for transcription factors or surrogate downstream markers associated with Th1 skewing (e.g., Tbet, CXCR3, etc)?

      The only other interferon-stimulated gene in our panel is HLA-ABC. We updated Supplemental Figure 2F to include HLA-ABC expression in IDO- and IDO+ islets (within the “Inflamed” group). Consistent with the hypothesis that IDO is stimulated by interferon, HLA-ABC is also significantly higher in IDO+ islets than IDO- islets. PDL1, another interferon-stimulated gene. was included in the panel but we did not detect any signal. This antibody was very weak during testing in the tonsil, so we couldn’t confidently claim that PDL1 was not expressed.

      (3) The authors discuss the potential that CD45RA may be expressed in Temra populations. This could use additional clarification and a distinction from Tscm if possible.

      Unfortunately, we did not have the appropriate markers to distinguish naïve, TEMRA, or Tscm cells from each other. We updated the text in the discussion to include this consideration (Line 432).

      (4) Supplemental Figure 5 is not informative in the current display.

      Thank you, we replotted these data.

      (5) Supplemental Table 1 could be expanded with additional metadata of interest, including the genetic features of the donors (e.g, class II diplotype and GRS2 values) that are published and available in the nPOD program.

      Some genetic data are only available to nPOD investigators. We think it is more appropriate to request the data directly from them.

      Reviewer #2 (Recommendations for the authors):

      (1) I had only a few specific comments. I think the statement in Lines 317 and 318 is too strong. It implies that each lobe is always homogeneous for having all islets with insulitis or not having insulitis. Some lobes are certainly enriched for islets with insulitis but insulin+ islets without insulitis in some lobes in some T1D donors are seen. Please soften that statement.

      We apologize for our lack of clarity. We have edited the text (line 305-309) to better articulate that organ donors fall on a spectrum. Thank you for raising this point as we think the motivation for our analysis is much clearer after these revisions.

      (2) Please cite and discuss In't Veld Diabetes 20210 PMID: 20413508. While the main point of the paper is that there is beta cell replication after prolonged life support, another observation is that there is a correlation between prolonged life support and CD45+ cells in the pancreas parenchyma. This might indicate that not all immune cells in the parenchyma are T1D associated in donors with T1D.

      Thank you, we have added this citation to our discussion of the importance of duration of stay in the ICU (Line 471).

      (3) Can you rule out that CD46RA+/CD69+ CD8+ T cells in the islets are not TSCM?

      (See above)

      Reviewer #3 (Recommendations for the authors):

      Similar studies in experimental models may afford increased opportunity to evaluate the significance of these findings and model their potential relevance for disease staging and therapeutic targeting.

      We agree that the lack of experimental data limits the ability to interpret and validate the significance of our findings. We hope that our study motivates and helps inform such experiments.

    1. Reviewer #1 (Public review):

      The revision by Ruan et al clarifies several aspects of the original manuscript that were difficult to understand, and I think it presents some useful and interesting ideas. I understand that the authors are distinguishing their model from the standard Wright-Fisher model in that the population size is not imposed externally, but is instead a consequence of the stochastic reproduction scheme. Here, the authors chose a branching process but in principle any Markov chain can probably be used. Within this framework, the authors are particularly interested in cases where the variance in reproductive success changes through time, as explored by the DDH model, for example. They argue with some experimental results that there is a reason to believe that the variance in reproductive success does change over time.

      One of the key aspects of the original manuscript that I want to engage with is the DDH model. As the authors point out, their equations 5 and 6 are assumptions, and not derived from any principles. In essence, the authors are positing that that the variance in reproductive success, given by 6, changes as a function of the current population size. There is nothing "inherent" to a negative binomial branching mechanism that results in this: in fact, the the variance in offspring number could in principle be the same for all time. As relates to models that exist in the literature, I believe that this is the key difference: unlike Cannings models, the authors allow for a changing variance in reproduction through time.

      This is, of course, an interesting thing to consider, and I think that the situation the authors point out, in which drift is lower at small population sizes and larger at large population sizes, is not appreciated in the literature. However, I am not so sure that there is anything that needs to be resolved in Paradox 1. A very strong prediction of that model is that Ne and N could be inversely related, as shown by the blue line in Fig 3b. This suggests that you could see something very strange if you, for example, infer a population size history using a Wright-Fisher framework, because you would infer a population *decline* when there is in fact a population *expansion*. However, as far as I know there are very few "surprising population declines" found in empirical data. An obvious case where we know there is very rapid population growth is human populations; I don't think I've ever seen an inference of recent human demographic history from genetic data that suggests anything other than a massive population expansion. While I appreciate the authors empirical data supporting their claim of Paradox 1 (more on the empirical data later), it's not clear to me that there's a "paradox" in the literature that needs explaining so much as this is a "words of caution about interpreting inferred effective population sizes". To be clear, I think those words of caution are important, and I had never considered that you might be so fundamentally misled as to infer decline when there is growth, but calling it a "paradox" seems to suggest that this is an outstanding problem in the literature, when in fact I think the authors are raising a *new* and important problem. Perhaps an interesting thing for the authors to do to raise the salience of this point would be to perform simulations under this model and then infer effective population sizes using e.g. dadi or psmc and show that you could identify a situation in which the true history is one of growth, but the best fit would be one of decline

      The authors also highlight that their approach reflects a case where the population size is determined by the population dynamics themselves, as opposed to being imposed externally as is typical in Cannings models. I agree with the authors that this aspect of population regulation is understudied. Nonetheless, several manuscripts have dealt with the case of population genetic dynamics in populations of stochastically fluctuating size. For example, Kaj and Krone (2003) show that under pretty general conditions you get something very much like a standard coalescent; for example, combining their theorem 1 with their arguments on page 36 and 37, they find that exchangeable populations with stochastic population dynamics where the variance does not change with time still converge to exactly the coalescent you would expect from Cannings models. This is strongly suggestive that the authors key result isn't about stochastic population dynamics per se, but instead related to arguing that variance in reproductive success could change through time. In fact, I believe that the result of Kaj and Krone (2003) is substantially more general than the models considered in this manuscript. That being said, I believe that the authors of this manuscript do a much better job of making the implications for evolutionary processes clear than Kaj and Krone, which is important---it's very difficult to understand from Kaj and Krone the conditions under which effective population sizes will be substantially impacted by stochastic population dynamics.

      I also find the authors exposition on Paradox 3 to be somewhat strange. First of all, I'm not sure there's a paradox there at all? The authors claim that the lack of dependence of the fixation probability on Ne is a paradox, but this is ultimately not surprising---fixation of a positively selected allele depends mostly on escaping the boundary layer, which doesn't really depend on the population size (see Gillespie's book "The Causes of Molecular Evolution" for great exposition on boundary layer effects). Moreover, the authors *use a Cannings-style argument* to get gain a good approximation of how the fixation probability changes when there is non-Poisson reproduction. So it's not clear that the WFH model is really doing a lot of work here. I suppose they raise the interesting point that the particularly simple form of p(fix) = 2s is due to the assumption that variance in offspring is equal to 1.

      In addition, I raised some concerns about the analysis of empirical results on reproductive variance in my original review, and I don't believe that the authors responded to it at all. I'm not super worried about that analysis, but I think that the authors should probably respond to me.

      Overall, I feel like I now have a better understanding of this manuscript. However, I think it still presents its results too strongly: Paradox 1 contains important words of caution that reflect what I am confident is an under appreciated possibility, and Paradox 3 is, as far as I'm concerned, not a paradox at all. I have not addressed Paradox 2 very much because I think that another reviewer had solid and interesting comments on that front and I am leaving it to them. That being said, I do think Paradox 2 actually presents a deep problem in the literature and that the authors' argument may actually represent a path toward a solution.

      This manuscript can be a useful contribution to the literature, but as it's presented at the moment, I think most of it is worded too strongly and it continues to not engage appropriately with the literature. Theoretical advances are undoubtedly important, and I think the manuscript presents some interesting things to think about, but ultimately needs to be better situated and several of the claims strongly toned down.

      References:<br /> Kaj, I., & Krone, S. M. (2003). The coalescent process in a population with stochastically varying size. Journal of Applied Probability, 40(1), 33-48.

    2. Author response:

      The following is the authors’ response to the previous reviews.

      eLife Assessment (divided into 3 parts)

      This study presents a useful modification of a standard model of genetic drift by incorporating variance in reproductive success, claiming to address several paradoxes in molecular evolution. ……

      It is crucial to emphasize that our model is NOT a modification of the standard model. The Haldane model, which is generalized here for population regulation, is based on the branching process. The Haldane model and the WF model which is based on population sampling are fundamentally different. We referred to our model as the integrated WF-H model because the results obtained from the WF model over the last 90 years are often (but not always) good approximations for the Haldane model. The analogy would be the comparisons between the Diffusion model and the Coalescence model. Obviously, the results from one model are often good approximations for the other.  But it is not right to say that one is a useful modification of the other.

      We realize that it is a mistake to call our model the integrated WFH model, thus causing confusions over two entirely different models. Clearly, the word “integrated” did not help. We have now revised the paper by using the more accurate name for the model – the Generalized Haldane (GH) model. The text explains clerarly that the original Haldane model is a special case of the GH model.

      Furthermore, we present the paradoxes and resolve them by the GH model.  We indeed overreached by claiming that WF models could not resolve them. Whether the WF models have done enough to resolve the paradoxes or at least will be able to resolve them should not be a central point of our study. Here is what we state at the end of this study.:

      “We understand that further modifications of the WF models may account for some or all of these paradoxes. However, such modifications have to be biologically feasible and, if possible, intuitively straightforward. Such possible elaborations of WF models are beyond the scope of this study. We are only suggesting that the Haldane model can be extensively generalized to be an alternative approach to genetic drift. The GH model attempts to integrate population genetics and ecology and, thus, can be applied to genetic systems far more complex than those studied before. The companion study is one such example.”

      ….. However, some of the claimed "paradoxes" seem to be overstatements, as previous literature has pointed out the limitations of the standard model and proposed more advanced models to address those limitations….

      As stated in the last paragraph of the paper, it is outside of the scope of our study to comment on whether the earlier WF models can resolve these paradoxes.  So, all such statements have been removed or at least drastically toned down in the formal presentation.  That said, editors and reviewers may ask whether we are re-inventing the wheels.  The answers are as follows:

      First, two entirely different models reaching the same conclusion are NOT the re-invention of wheels. The coalescence theory does not merely rediscover the results obtained by the diffusion models. The process of obtaining the results is itself a new invention.  This would lead to the next question: is the new process more rigorous and more efficient?  I think the Haldane model is indeed more efficient in comparisons with the very complex modifications of the WF models. 

      Second, we are not sure that the paradoxes have been resolved, or even can be resolved.  Note that these skepticisms have been purged from the formal presentation. Thefore, I am presenting the arguments outside of the paper for a purely intellectual discourse. Below, please allow us to address the assertions that the WF models can resolve the paradoxes. 

      The first paradox is that the drift strength in relation to N is often opposite of the WF model predictions.  Since the WF models (standard or modified) do not generate N from within the model, how can it resolve the paradox?  In contrast, the Generalized Haldane model generates N within the model. It is the regulation of N near the carrying capacity that creates the paradox – When N increases, drift also increases.

      The second paradox that the same locus experiences different drifts in males and females is accepted by the reviewers.  Nevertheless, we would like to point out that this second paradox echoed the first one as newly stated in the Discussion section “The second paradox of sex-dependent drift is about different V(K)’s between sexes (generally Vm > Vf) but the same E(K) between them. In the conventional models of sampling, it is not clear what sort of biological sampling scheme could yield V(K) ≠ E(K), let alone two separate V(K)’s with one single E(K). Mathematically, given separate K distributions for males and females, it is unlikely that E(K) for the whole population could be 1, hence, the population would either explode in size or decline to zero. In short, N regulation has to be built into the genetic drift model as the GH model does to avoid this paradox.”

      The third paradox stems from the fact that drift is operating even for genes under selection. But then the drift strength, 2s/V(K) for an advantage of s, is indepenent of N or Ne. Since the determinant of drift strength in the WF model is ALWAYS Ne, how is Paradox 3 not a paradox for the WF model?

      The 4th paradox about multi-copy gene systems is the subject of the companion paper (Wang et al.). Note that the WF model cannot handle systems of evolution that experience totally different sorts of drift within vs. between hosts (viruses, rDNAs etc).  This paradox can be understood by the GH model and and will be addressed in the next paper.

      While the modified model presented in this paper yields some intriguing theoretical predictions, the analysis and simulations presented are incomplete to support the authors' strong claims, and it is unclear how much the model helps explain empirical observations.

      The objections appear to be that our claims of “paradox resolution” being too strong.  We interpret this objection is based on the view (which we agree) that these paradoxes are intrisicallly difficult to resolve by the WF models. Since our model has been perceived to be a modified WF model, the claim of resolution is clearly too strong.  However, the GH model is conceptually and operationally entirely different from the WF models as we have emphasized above. In case our reading of the editorial comments is incorrect, would it be possible for some clarifications on the nature of “incomplete support”?  We would be grateful for the help.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents evidence of ’vocal style’ in sperm whale vocal clans. Vocal style was defined as specific patterns in the way that rhythmic codas were produced, providing a fine-scale means of comparing coda variations. Vocal style effectively distinguished clans similar to the way in which vocal repertoires are typically employed. For non-identity codas, vocal style was found to be more similar among clans with more geographic overlap. This suggests the presence of social transmission across sympatric clans while maintaining clan vocal identity.

      Strengths:

      This is a well-executed study that contributes exciting new insights into cultural vocal learning in sperm whales. The methodology is sound and appropriate for the research question, building on previous work and ground-truthing much of their theories. The use of the Dominica dataset to validate their method lends strength to the concept of vocal style and its application more broadly to the Pacific dataset. The results are framed well in the context of previous works and clearly explain what novel insights the results provide to the current understanding of sperm whale vocal clans. The discussion does an overall great job of outlining why horizontal social learning is the best explanation for the results found.

      Weaknesses:

      The primary issues with the manuscript are in the technical nature of the writing and a lack of clarity at times with certain terminology. For example, several tree figures are presented and ’distance’ between trees is key to the results, yet ’distance’ is not clearly defined in a way for someone unfamiliar with Markov chains to understand. However, these are issues that can easily be dealt with through minor revisions with a view towards making the manuscript more accessible to a general audience.

      I also feel that the discussion could focus a bit more on the broader implications - specifically what the developed methods and results might imply about cultural transmission in other species. This is specifically mentioned in the abstract but not really delved into in detail during the discussion.

      We are grateful for the Reviewer’s recognition of the study’s contributions to understanding cultural vocal learning in sperm whales. In response to the concerns regarding clarity and accessibility, we have revised the manuscript to improve the definition of key concepts, such as the notion of “distance” between subcoda trees. This adjustment ensures clarity for readers unfamiliar with the technical details of Markov chains. Additionally, we have expanded the discussion to highlight broader implications of our findings, particularly their relevance to understanding cultural transmission in other species, as suggested.

      Reviewer #2 (Public review):

      Summary:

      The current article presents a new type of analytical approach to the sequential organisation of whale coda units.

      Strengths:

      The detailed description of the internal temporal structure of whale codas is something that has been thus far lacking.

      Weaknesses:

      It is unclear how the insight gained from these analyses differs or adds to the voluminous available literature on how codas varies between whale groups and populations. It provides new details, but what new aspects have been learned, or what features of variation seem to be only revealed by this new approach? The theoretical basis and concepts of the paper are problematical and indeed, hamper potentially the insights into whale communication that the methods could offer. Some aspects of the results are also overstated.

      We appreciate the Reviewer’s acknowledgment of the novelty in describing the internal temporal structure of whale codas. Regarding the concern about the unique contributions of this approach, we have further emphasized in the revised manuscript how our methodology reveals previously uncharacterized dimensions of coda structure. Specifically, our work highlights how non-identity codas, which have received limited attention, play a significant role in inter-clan acoustic interactions. By leveraging Variable Length Markov Chains, we provide a nuanced understanding of coda subunits that complements existing studies and demonstrates the value of this analytical approach.

      Reviewer #3 (Public review):

      Summary:

      The study presented by Leitao et al., represents an important advancement in comprehending the social learning processes of sperm whales across various communicative and socio-cultural contexts. The authors introduce the concept of ”vocal style” as an addition to the previously established notion of ”vocal repertoire,” thereby enhancing our understanding of sperm whale vocal identity.

      Strengths:

      A key finding of this research is the correlation between the similarity of clan vocal styles for non-ID codas and spatial overlap (while no change occurs for ID codas), suggesting that social learning plays a crucial role in shaping symbolic cultural boundaries among sperm whale populations. This work holds great appeal for researchers interested in animal cultures and communication. It is poised to attract a broad audience, including scholars studying animal communication and social learning processes across diverse species, particularly cetaceans.

      Weaknesses:

      In terms of terminology, while the authors use the term ”saying” to describe whale vocalizations, it may be more conservative to employ terms like ”vocalize” or ”whale speech” throughout the manuscript. This approach aligns with the distinction between human speech and other forms of animal communication, as outlined in prior research (Hockett, 1960; Cheney & Seyfarth, 1998; Hauser et al., 2002; Pinker & Jackendoff, 2005; Tomasello, 2010).

      We thank the Reviewer for recognizing the importance of our findings and their appeal to broader audiences interested in animal cultures and communication. In response to the suggestion regarding terminology, we have adopted a more conservative language to align with distinctions between human and non-human communication systems. For example, terms like “vocalize” and “vocal repertoire” are used in place of anthropomorphic terms such as “saying”. This ensures consistency with established conventions while maintaining clarity for a broad readership.

      Reviewer #1 (Recommendations):

      Comment 1

      Lines 11-13: As mentioned above, the implications for comparing communication systems and cultural transmission in other species isn’t really discussed much and I think it’s a really interesting component of the study’s broader implications.

      Thank you for the comment.

      Action - We added a few more sentences to the discussion regarding this.

      Comment 2

      Figure 1: More information on the figure of these trees would help. What do the connecting lines represent? What do the plain black dots and the black dot with the white dot represent? Especially since the ”distance between trees” is a key result, it’s important that someone unfamiliar with Markov chains can understand the basics of how this is calculated and what it represents. It is explained in the methods, but a brief explanation here would make the results and the figure a lot clearer since the methods are the last section of the manuscript.

      These were omitted as we believed that attempting to introduce the mathematical structure and the methodology to compare two instances, in a figure caption, would have caused more ambiguity than necessary.

      Action - Added an informal introduction to these concepts on the figure caption. Also added a pointer to the Supplementary Materials.

      Comment 3

      Table 1: A definition of dICIs should be included here.

      Added the definition of discrete ICI to the table.

      Comment 4

      Figure 2: The placement of the figures is a bit confusing because they are quite far from the text that references them.

      We thank the reviewer for pointing this out, we tried to edit the manuscript to improve this issue, but this part of the editing is more within the journal’s powers than our own.

      Action - Moved images closes to the corresponding text in manuscript.

      Comment 5

      Line 117: Probabilistic distance needs to be briefly explained earlier when you first mention distance (see Lines 11-13 comments).

      Action - Clarifications added in the caption of figure 1. as per comment on Lines 11-13

      Comment 6

      Figure 4: Is order considered in these pairwise comparisons? It looks like there are two dots for each pairwise comparison. Additionally, why is the overlap different in these two comparisons? For example, short:four-plus has an overlap of 0.6, while four-plus:short has an overlap of 0.95.

      The x-axis of the plots in Figure 4 is geographical clan overlap. This is calculated as per (Hersh et al., 2022) and is described in our Methods (see “Measuring clan overlap” section). Given two clans—for example, the Four-Plus and the Short clan—spatial overlap is calculated twice: as the proportion of the Four-Plus clan’s repertoires that were recorded within 1,000 km of at least one of the Short clan’s repertoires, and as the proportion of the Short clan’s repertoires that were recorded within 1,000 km of at least one of the Four-Plus clan’s repertoires.

      Order is important in these pairwise comparisons and generates an asymmetric matrix because the clans have different spatial extents. A clan found in only one small region might overlap completely with a clan that spans the Pacific Ocean, while the opposite is not true. For example, the Short clan spans the Pacific Ocean while the Four-Plus clan has been documented over a smaller area (but that smaller area overlaps extensively with the Short clan range). That is why the value is smaller (0.6) when considering how much of the Short clan’s range is shared with the Four-Plus clan, and larger ( 0.95) when considering how much of the Four-Plus clan’s range is shared with the Short clan.

      Action - We have now added a reference to that section of the Methods in our Figure 4 caption and include the clan spatial overlap matrix as a supplemental table (Table S5).

      Comment 7

      Figure 4: I think the reference should be Hersh et al. [11].

      Thank you for catching this.

      Action - Reference corrected

      Comment 8

      Line 227: What aspect of your analysis looked at how often codas were produced? You mention coda frequency, but it is unclear how this was incorporated into your analysis. If this is included in the methods, the language is a bit too technical to easily parse it out.

      Indeed here we are referencing the results of the paper mentioned in the previous line. We do not look at coda production frequency.

      Action - Added citation to paper that actually performs this analysis.

      Comment 9

      Lines 253-255: I think you could dig into this a little more, as ”there is currently no evidence” is not the most convincing argument that something is not a driver. Perhaps expanding on the latter sentence that clans are recognizable across oceans basins would be helpful. Does this suggest that clans with similar geographic overlap experience diverse environmental conditions across ocean basins? If so, this might better strengthen your argument against environmental drivers.

      Thank you for pointing this out. We feel that the next sentence highlights that clans are recognizable across environmental variation from one side to the other of the ocean basin, which supports the inductive reasoning that codas do not vary systematically with environment. However, we have edited these sentences for clarity.

      Comment 10

      Lines 311-314: It would also be interesting to look at vocal style across non-ID coda types. Are some more similar to each other across clans than others? Perhaps vocal style can further distinguish types of non-ID codas.

      In supplementary Materials 3.4.2 and 3.5 we highlight our results when the codas are separated by coda type summarized in Table S4. We do compare the vocal style across non-ID coda types across clans and within the same clan. The results however are aggregated to highlight the differences in style between the clans and a a coda type-only comparison is not shown.

      Comment 11

      Lines 390-392: I’m assuming this is why pairwise comparisons were directional (i.e., there was both an A:B and a B:A comparison)? Can you speak to why A:B and B:A comparisons can have such different overlap values?

      Given two clans—for example, the Four-Plus and the Short clan—spatial overlap is calculated twice: as the proportion of the Four-Plus clan’s repertoires that were recorded within 1,000 km of at least one of the Short clan’s repertoires, and as the proportion of the Short clan’s repertoires that were recorded within 1,000 km of at least one of the Four-Plus clan’s repertoires.

      Order is important in these pairwise comparisons and generates an asymmetric matrix because the clans have different spatial extents. A clan found in only one small region might overlap completely with a clan that spans the Pacific Ocean, while the opposite is not true. For example, the Short clan spans the Pacific Ocean while the Four-Plus clan has been documented over a smaller area (but that smaller area overlaps extensively with the Short clan range). That is why the value is smaller (0.6) when considering how much of the Short clan’s range is shared with the Four-Plus clan, and larger (0.95) when considering how much of the Four-Plus clan’s range is shared with the Short clan.

      Action - We now include the clan spatial overlap matrix as a supplemental table (Table S5).

      Comment 13

      Line 56: Can you briefly explain what memory means in the context of Markov chains?

      We provide an explanation of the meaning of memory in the Methods section on ”Variable length Markov Chains”. Briefly, the memory in this case means how many states in the past of the Markov chain’s current state are required to predict the next transition of the chain itself. Standard Markov chains “look” back only one time step, while k-th order Markov chains look back k steps. In our case, there was no reason to assume that the memory required to predict different sequences of states (interclick intervals) should be the same across all sequences, and thus we adopted the formalism of variable length Markov chains, that allow for different levels of memory across the system.

      Comment 14

      Supplementary Figure S3: Like in the main manuscript, briefly explain or remind us what the blank nodes and the yellow nodes are.

      Action - Clarified that the orange node represents the root of the tree in the figures.

      Comment 15

      Supplementary Figure S7: Put the letters before the dataset name.

      Action - Done.

      Comment 16

      Supplementary Figure S10: Unclear what ’inner vs outer’ means.

      One specifies comparisons across clans (outer) and the other within the same clan (inner)

      Action - Added clarification on the caption of Figure S10

      Comment 17

      Supplementary Figure S14: Include a-c labels in the figure itself.

      Action - Labels added to figure

      Comment 18

      Supplementary Figure S14: The information about the nodes is what needs to be included earlier and in the main body when discussing the trees.

      Action - Added the explanation earlier in the text and in the main body

      Reviewer #2 (Recommendations):

      Comment 19

      Line 22: ”Symbolic” and ”Arbitrary” are not synonyms. Please see the comment above.

      We agree. Here, we make the point that the evolution of symbolic markers of group identity can be explained from what are initially arbitrary, and meaningless, signals (see [L1, L2]). Our point being that any vocalization, any coda, could have become selected for as an identity coda, and to become symbolic, and evolve to play a key role in cultural group formation and in-group favoritism because they enable a community of individuals to solve the problem of with whom to collaborate. The specific coda itself does not affect collaborative pay offs, but group specific differences in behavior can, as such the coda is arguably symbolic; as it is observable and recognizable, and can serve as a means for social assortment even when the behavioural differences are not. This can explain the means by which the social segregation which is observed among behaviorally distinct clans of sperm whales. However, in this manuscript, we do not extend this discussion of existing literature and have attempted to concisely describe this in a couple of lines, which clearly do a disservice to the large body of literature on the evolution of symbolic markers and human ethnic groups. We have added some citations to this section so that the reader may follow up should they disagree with out brief introductory statements.

      Action - Added citations and pointers to the literature.

      Comment 20

      Line 24: The authors’ terminology around ”markers”, ”arbitrary”, ”symbolic” is unnecessarily confusing and mystifying, giving the impression these terms are interchangeable. They are not. These terms are an integral and long-established part of key definitions in signal theory. Term use should be followed accordingly. The observation that whale vocal signals vary per population does not necessarily mean that they function as a social tag. The word ”dog” varies per population but its use relates to an animal, not the population that utters the word. ”Dog” is not ”symbolic” of England, English-speaking populations or the English language. Furthermore, the function of whale vocal signals is extremely challenging to determine. In the best conditions, researchers can pin the signal’s context, this is distinct from signal’s function and further even for the signal’s meaning. How exactly the authors determine that whale vocal signals are arbitrary is, thus, perplexing given that this would require a detailed description and understanding of who is producing the song, when, towards whom, and how the receivers react, none of which the authors have and without which no claim on the signals’ function can be made. This terminological laxness and the sensu latu in extremis to various terms in an unjustified, unnecessary and unhelpful.

      We use these terms as established in Hersh et al 2022 and the works leading up to it over the last 20 years in the study of sperm whales. These are often derived from definitions by Boyd and Richerson’s work on culture in humans and animals along with evolution of symbolic markers both in theory and in humans. We agree with the reviewer that these are difficult to establish in non-humans, whales or otherwise, but feel strongly that the accumulating evidence provides strong support for the function of these signals as symbolic markers of cultural groups, and that they likely evolved from initially arbitrary calls which were a part of the vocal repertoire (similar to the process and selective environment in Efferson et al. [L1] and McElreath et al. [L2]). We feel that we do not use these terms interchangeably here, and have inherited their use from definitions from anthropology. The work presented here uses terminology built across two decades of work in cetacean, and sperm whale, culture. And do not feel that these terms should be omitted here.

      Comment 21

      Lines 21-27: Overly broad and hazy paragraph.

      We hope the replies above and our changes satisfy this comment and clarify the text.

      Comment 22

      Figure 1 legend: What are ”memory structures”? Unjustified descriptor.

      The phrase was chosen to make draw some intuition on the variation of context length in variable length markov models.

      Action - Re-worded from memory structures to statistical properties

      Comment 23

      Line 30: Omit ”finite”.

      Action - Omitted.

      Comment 24

      Line 31: Please define and distinguish ”rhythm” and ”tempo”. Also see comment above, rhythm and tempo definitions require the use of IOIs.

      We disagree with the reviewer’s claims here. In our research specifically, and for sperm whale research generally, coda inter-click intervals (ICIs) are calculated as the time between the start of the first click and the start of the subsequent click. This makes ICIs identical to inter-onset intervals (IOIs) under all definitions we are aware of. For example, Burchardt and Knornschild [L3] define IOIs as such: “In a sequence of acoustic signals, the time span between the start of an element and the next element, comprising the element duration and the following gap duration”. We now include a sentence making this point.

      Regardless, we disagree on a more fundamental level with the statement that unless researchers quantify inter-onset intervals (IOIs), they cannot make any claims about rhythm. There are many studies that investigate rhythmic aspects of human and animal vocalizations without using IOIs [L4–L7]. If the duration of sound elements of interest is relatively constant (as is the case for sperm whale clicks), then rhythm analyses can still be meaningfully conducted on inter-call intervals (the silent intervals between calls).

      For sperm whales, coda rhythm is defined by the relative ICIs standardized by their total duration. These can be clustered into discrete, defined rhythm types based on characteristic ICI patterns. Coda tempo is relative to the total duration of the coda itself. This can also be clustered into discrete tempo types across all coda durations as well (see [L8]).

      Action - We added a sentence specifying that in this case we can use both ICIs and IOIs because of the standardized length of a single click.

      Comment 25

      Line 36: Are there non-vocalized codas to require the disambiguation here?

      No, we have omitted for clarity.

      Comment 26

      Line 44: ”Higher” than which other social group class?

      Sperm whales live in a multi-level social organization. Clans are a “higher” level of social organization than the social “units” which we define in line 40. Clans are made up of all units which share similar production repertoire of codas.

      Action - We have added ’above social units’ on line 44 to make this clear.

      Comment 27

      Line 47: The use of “symbolic” continues to be enigmatic, even if authors are taking in this classification from other researchers. In signal theory (semiotics), not all biomarkers are necessarily symbols. I advise the authors to avoid the use of the term colloquially and instead adopt the definition used in the research field within which the study falls in.

      There is ample examples of the use of ”symbolic” when referring to markers of in-group membership both in human and non-human cultures.Our choice to use the term “symbolic” is based on a previous study [L9] that found quantitative evidence that sperm whale identity codas function as symbolic markers of cultural identity, at least for Pacific Ocean clans. The full reasoning behind why the authors used the term “symbolic markers” is given in that paper, but briefly, they found evidence that identity coda usage becomes more distinct as clan overlap increases, while non-identity coda usage does not change. This matches theoretical and empirical work on human symbolic markers[L1, L2, L10, L11].

      Action - We retain the use of the term here, as defined in the works cited, and based on its prior usage in the study of both human and non-human cultures.

      Comment 28

      Line 50: This statement is not technically accurate. The use of a signal as a marker by individuals can only be determined by how individuals ”interpret” and react to that signal - e.g., via playback experiments - it cannot be determined by how different populations use and produce the signals.

      We respectfully disagree. While we agree that the optimal situation would be that of playback, the contextual use can provide insight into the functional use of signals; as can expected patterns of use and variation, as was tested in the papers we cite. However, this argument is not the scope nor the synthesis of this paper. These statements are supported by existing published works, as cited, and we encourage the reviewer to take exception with those papers.

      Comment 29

      Line 69: ”Meaningful speech characteristics”??? These terms do not logically or technically follow the previous statement. Why not stay faithful to the results and state that the method used seems to be valid and reliable because it confirms former studies and methods?

      Action - Reworded to better underline the method’s results with previous studies

      Comment 30

      Lines 72-74: This statement doesn’t seem to accurately capture/explain/resume the difference between ID and non-ID codas.

      We are not sure what the reviewer is referring to in this case. The sentence in this case was meant to explain the different relations that ID/non-ID codas have with clan sympatry.

      Comment 31

      Line 75: The information provided in the few previous sentences does not allow the reader to understand why these results support the notion that cultural transmission and social learning occurs between clans.

      We conclude out introduction with a brief summary of our overall findings, which we then use the rest of the manuscript to support these statements.

      Comment 32

      Table 1: So far, the authors refer to their analyses as capturing the ”rhythm” of whale clicks. Consequently, it is not readily clear at this point why the authors rely on ”ICIs” (inter click intervals) instead of the ”universal” measure used across taxa to capture the rhythm of signal sequences - IOIs (inter onset intervals). If ICIs are the same measure as IOIs, why not use the common term, instead of creating a new term name? Alternatively, if ICIs are not equivalent to IOIs, then arguably the analyses do not capture the ”rhythm” of whale clicks, as claimed by the authors. Any rhythmic claim will need to be based on IOI measures. In animal behaviour, stereotyped is primarily used to describe pathological, dysfunctional behaviour. I suggest the use of other adjective, such as ”regular”, ”repetitive”, ”recurring”, ”predictable”. Another deviation from typical terminology: ”usage frequency” -¿ ”production rate”. Why is a clan a ”higher-order” level of social organization? This requires explanation, at least a mention, of what are the ”lower-order” levels. To the non-expert reader, there is a logical circularity/gap here: Clans are said to produce clan-specific codas, and then, it is said that codas are used to delineate clans. Either one deduces, or one infers, but not both. This raises the question, are clans confirmed by any other means than codas?

      We are not creating a “new term name”: inter-click interval (ICI) is the standard terminology used in odontocete (toothed whale) research. We take the reviewer’s point that some readers will not be coming to our paper with that background, however, and now explicitly point out that ICI is synonymous with IOI for sperm whales. Please see our response to your earlier comment for more on this point.

      Comment 33

      Line 92: Unclear term, ”sub-sequence”. Fig. 1B doesn’t seem to readily help disambiguate the meaning of the term.

      In fact reference to Fig. 1B is misplaced as it does not refer to the text. A sub-sequence is simply a contiguous subset of a coda, a subset of it.

      Action - Removed ambiguous reference to Fig. 1B

      Comment 34

      Line 94: How does the use of ”sequence” compare here with ”sub-sequence” above?

      In fact its the same situation although the previous comment highlighted a source of ambiguity.

      Action - Reworded the sentence to be less confusing.

      Comment 35

      Line 95: Signal sequences don’t ”contain” memory, they require memory for processing.

      Action - Rephrased from “sequences contain memory” to “states depend on previous sequences of varying length”.

      Comment 36

      Lines 95-97: The analogy with human language seems forced, combinatorics in any given species are expected to entail different transitions between unit/unit-sequences.

      Thank you for the comment. Indeed, the purpose of the analogy is to illustrate how variable length Markov Chains work (which have been shown to be good at discerning even accents of the same language). We used human language as an analogy to provide the readers’ with a more intuitive understanding of the results.

      Action - Revised paragraph to read: “Despite we do not have direct evidence of unitary blocks in sperm whale communication, on can imagine this effect similarly to what happens with words (e.g., a word beginning with “re” can continue in more ways than one starting with “zy”).”

      Comment 37

      Line 97: Unclear which possibility is this.

      Action - Made the wording clearer.

      Comment 38

      Line 99: Invocation of memory, although common in the use of Markov chains, in inadequate here given that the research did not study how individuals perceived or processed click sequences, only how individual produced click sequences. If the authors are referring to the cognitive load imposed by producing clicks sequences, terms such as ”sequence planning” will be more accurate.

      Here, we use the term “fixed-memory” in relation to the definition of a variable length Markov model. We feel that, in this section of the manuscript, the context is clear that it is a mathematical definition and in no way invokes the biological idea of memory or cognition. It is rather standard to use memory to describe the order of Markov chains. Swapping words in the definition of mathematical objects when the context is clear seems to cause unnecessary ambiguity.

      Action - We clarified this in the manuscript (see comments above).

      Reviewer #3 (Recommendations):

      Comment 39

      Line 16: Add ”broadly defined” as there are many other more restricted definitions (see for example Tomasello 1999; 2009). Tomasello M (1999) The cultural origins of human cognition. Harvard University Press, Cambridge Tomasello M (2009) The question of chimpanzee culture, plus postscript (chimpanzee culture 2009). In: Laland KN, Galef BG (eds) The question of animal culture. Harvard University Press, Cambridge, pp 198-221.

      Thanks for the clarification.

      Action - We added the term “broadly” and added the last reference.

      Comment 40

      Line 22: Is all stable social learned behavior that becomes idiosyncratic and ”distinguishable” considered symbolic markers? If not, consider adding ”potentially.”

      No, but the evolution of cultural groups with differing behavior can reorganize the selective environment in such a way that it can favour an in-group bias that was not initially advantageous to individuals and lead to a preference towards others who share an overt symbolic marker that initially had no meaning and a random frequency in both populations. That is to say, even randomly assigned trivial groups can evolve arbitrary symbolic markers through in-group favouritism once behavioural differences exist even in the absence of any history of rivalry, conflict, or competition between groups. See for example [L1, L2].

      Comment 41

      Table 1: Identity codas are defined as a ”Subset of coda types most frequently used by a sperm whale clan; canonically used to define vocal clans.” Therefore, I infer that an identity coda is not exclusively used by a specific clan and may be utilized by other clans, albeit less frequently. If this is the case, what criteria determine the frequency of usage for a coda to be categorized as an identity or non-identity coda? Does the criteria used to differentiate between ID and non-ID codas reflect the observed differences in micro changes between the two and within clans?

      The methods for this categorization are defined, discussed, and justified in previous work in [L9, L12]. We feel its outside the scope of this paper to review these details here in this manuscript. However, the differences between vocal styles discussed here and the frequency production repertoires which allow for the definition of identity codas are on different scales. The differences between identity and non-identity codas are not the observed differences in vocal style reported here.

      Comment 42

      Table 1: The definition of vocal style states that it ”Encodes the rhythmic variations within codas.” However, if rhythm changes, does the type of coda change as well? Typically, in musical terms, the component that maintains the structure of a rhythm is ”tempo,” not ”rhythm.” How much microvariation is acceptable to maintain the same rhythm, and when do these variations constitute a new rhythm?

      Thank you for raising this important point about the relationship between rhythmic variations and coda categorization. In our definition, ”vocal style” refers to subtle, micro-level variations in the rhythmic structure of codas that do not alter their overarching categorical identity. These microvariations are akin to ”tempo” changes in musical terms, which can modify the expression of a rhythm without fundamentally altering its structure.

      The threshold at which microvariations constitute a new rhythm, and thus a new coda type, remains an open question and is a limitation of current analytical approaches. In our study, we used established classification methods to group codas into types, treating variations within these groups as part of the same rhythm. Future work could refine these thresholds to better distinguish between meaningful rhythmic variation and the emergence of new coda types.

      Comment 43

      Table 1: Change ”say” to ”vocalize” (similarly as used in line 273 for humpback whales ”vocalizations”).

      Thanks.

      Action - Done.

      Comment 44

      Lines 33-35 and Figure 1-C: Can a lay listener discern the microvariations within each coda type by ear? Consider including sound samples of individual rhythmic microvariations for the same coda type pattern (e.g., Four plus, Palindrome, Plus One, Regular) to provide readers/listeners with an impression of their detectability. If authors considered too much or redundant Supplemental material at least give a sound sample for each the 4 subcodas modeled structures examples of 4R2 coda variations depicted in Figure 1-C so the reader can have an acoustic impression of them.

      We do not think that human listeners would be able to all of the variation detected here. However, this does not mean that it is not important variation for the whales. Human observers being able to classify call variation aurally shouldn’t be seen as a bar representing important biological variation for non-human species, given that their hearing and vocal production systems have evolved independently. Importantly, ’Four Plus’,’Palindrome’, etc are names of Clans; sympatric, but socially segregated, communities of whale families, which share a distinct vocal dialect of coda types. These clans each have have distinguishable coda dialects made up of dozens of coda types (and delineated based on identity codas), these are not names/categorical coda types themselves.

      Action - We now provide audio samples of all coda types listed in Figure 1B in the paper’s Github repository.

      Comment 45

      Line 69: As stated above, it may be confusing to refer to it as ”speech.” I suggest adding something like: ”Our method does capture one essential characteristic of human speech: phonology.” Reply 45.—Thank you for drawing our attention to this.

      Action - We removed the word “speech” from the manuscript, using “communication” and/or “vocalization” depending on the context.

      Comment 46

      Line 111-112: Consider adding a sound sample of the variation of the 4R2 coda type that can be vocalized as BCC but also as CBB as supplementary data.

      What the reviewer has correctly observed is that the traditional categorical coda type ’names’ do not capture the variation within a type by rhythm nor by tempo.

      Action - We have added samples of all coda types listed in Figure 1B in the paper’s Github repo.

      Comment 47

      Figure 3: Include a sound sample for each of the 7 coda types in Figure 1B (”specific vocal repertoires”) to illustrate the set of coda types used and their associated usage frequencies, or at least for each of the 7 coda types in Figure 3 and tables S1 and S2.

      Sperm whales in the Eastern Caribbean produce dozens of rhythm types across at least five categorical tempo types [L8, L13]. The coda types represented in Figure 1B do not demonstrate all the variability inherent in the sperm whales’ vocal dialect. Importantly, Figure 3, as well as table S1 and S2, refer to clan-level dialects not specific individual coda types.

      Action - We added sound samples for each coda rhythm type listed in Figure 1B to the Github repository.

      Comment 48

      Lines 184-190: It is unclear what human analogy term is used for ID codas. This needs clarification.

      We are not making an analogy in humans for the role of ID vs non-ID codas, but only providing the example of accents as changes in vocalization (style) without a change in the actual words used (repertoire).

      Action - We tried to make it clearer in the manuscript.

      Comment 49

      Line 190: Change ”whale speech” to ”whale vocalizations.”

      Thanks.

      Action - Done.

      Comment 50

      Figure 4: Correct citation number Hersh ”10” to Hersh ”11.”

      Thanks.

      Action - Fixed the reference.

      Comment 51

      Lines 224-232: Clarify whether the reference to how spatial overlap affects the frequency of ID codas refers to shared ID codas between clans or the production frequency of each coda within the total repertoire of codas.

      The similarity between ID coda repertoires we are referring to there is based on the ID codas of both clans.

      More details on the comparison can be found in [L9].

      Action - We added a sentence explaining the comparison is made using the joint set of ID codas.

      Comment 52

      Lines 240-241: What are non-ID codas vocal cues for?

      Non-ID codas likely serve as flexible, context-dependent signals that facilitate group coordination, convey environmental or social context, and promote social learning, especially in mixed-clan or overlapping habitats. Their variability suggests multifunctional roles shaped by ecological and social pressures.

      Comment 53

      Lines 267-268: It’s unclear whether non-ID coda vocal styles are genetically inherited or not, as argued in lines 257-258.

      We did not intend to argue that non-ID coda vocal styles are genetically inherited. Instead, we aimed to present a hypothetical consideration: if non-ID coda vocal styles were genetically inherited, one would expect a direct correlation between vocal style similarity and genetic relatedness. This hypothetical framework was introduced to strengthen our argument that the observed patterns are unlikely to be explained by genetic inheritance, as such correlations have not been observed. While we acknowledge that we lack definitive proof to rule out genetic influences entirely, the evidence available strongly suggests that social learning, rather than genetic transmission, is the more plausible mechanism.

      Action - Clarified in manuscript.

      Comment 54

      Line 277: Can males mate with females from different clans?

      Yes, genetic evidence shows that males may even switch ocean basins.

      Action - We have clarified that we mean the female members of units from different clans have only rarely been observed to interact at sea between clans.

      Comment 55

      Lines 287-292: Consider discussing the difference between controlled/voluntary and automatic/involuntary imitation and their implications for cultural selection and social learning (see Heyes 2011; 2012). Heyes, C. (2011). Automatic imitation. Psychological bulletin, 137(3), 463. Heyes, C. (2012). What’s social about social learning?. Journal of comparative psychology, 126(2), 193.

      Thank you for your insightful comment regarding this. The distinction between controlled/voluntary and automatic/involuntary imitation, as highlighted by Heyes [L14, L15], provides a potentially valuable framework for interpreting social learning mechanisms in sperm whales. Automatic imitation refers to reflexive, often unconscious mimicry driven by perceptual or motor coupling, while controlled imitation involves deliberate and goal-directed efforts to replicate behaviors. Both forms likely play complementary roles in the cultural transmission observed in sperm whales.

      This dual-process perspective highlights the potential for cultural selection to act at different levels. Automatic imitation may drive convergence in shared environments, promoting acoustic homogeneity and facilitating inter-clan communication. In contrast, controlled imitation ensures the preservation of clan-specific vocal traditions, maintaining cultural diversity. This interplay between automatic and controlled processes could reflect a balancing act between cultural assimilation and differentiation, underscoring the adaptive value of these mechanisms in dynamic social and ecological contexts.

      Action - We have incorporated a short discussion of this distinction and its implications for our findings in the Discussion. Additionally, we have cited [L14, L15] to provide theoretical grounding for this interpretation.

      Comment 56

      Methods: Consider integrating the paragraph from lines 319-321 into lines 28-35 and eliminate redundant information.

      Thanks.

      Action - We implemented the suggestion, removing the first paragraph of the Dataset description and integrating the information when we introduce the concepts of codas and clicks.

      [L1] C. Efferson, R. Lalive, and E. Fehr, Science 321, 1844 (2008).

      [L2] R. McElreath, R. Boyd, and P. Richerson, Curr. Anthropol. 44, 122 (2003).

      [L3] L. S. Burchardt and M. Knornschild, PLoS Computational Biology 16, e1007755 (2020).

      [L4] A. Ravignani and K. de Reus, Evolutionary Bioinformatics 15, 1176934318823558 (2019).

      [L5] C. T. Kello, S. D. Bella, B. Med´ e, and R. Balasubramaniam, Journal of the Royal Society Interface 14, 20170231 (2017).

      [L6] D. Gerhard, Canadian Acoustics 31, 22 (2003).

      [L7] N. Mathevon, C. Casey, C. Reichmuth, and I. Charrier, Current Biology 27, 2352 (2017).

      [L8] P. Sharma, S. Gero, R. Payne, D. F. Gruber, D. Rus, A. Torralba, and J. Andreas, Nature Communications 15, 3617 (2024).

      [L9] T. A. Hersh, S. Gero, L. Rendell, M. Cantor, L. Weilgart, M. Amano, S. M. Dawson, E. Slooten, C. M. Johnson, I. Kerr, et al., Proc. Natl. Acad. Sci. 119, e2201692119 (2022).

      [L10] R. Boyd and P. J. Richerson, Cult Anthropol 2, 65 (1987). [L11] E. Cohen, Curr. Anthropol. 53, 588 (2012).

      [L12] T. A. Hersh, S. Gero, L. Rendell, and H. Whitehead, Methods Ecol. Evol. 12, 1668 (2021), ISSN 2041-210X, 2041-210X.

      [L13] S. Gero, A. Bøttcher, H. Whitehead, and P. T. Madsen, R. Soc. Open Sci. 3, 160061 (2016).

      [L14] C. Heyes, Psychological Bulletin 137, 463 (2011).

      [L15] C. Heyes, Journal of Comparative Psychology 126, 193 (2012).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Cao et al. examines an important but understudied question of how chronic exposure to heat drives changes in affective and social behaviors. It has long been known that temperature can be a potent driver of behaviors and can lead to anxiety and aggression. However, the neural circuitry that mediates these changes is not known. Cao et al. take on this question by integrating optical tools of systems neuroscience to record and manipulate bulk activity in neural circuits, in combination with a creative battery of behavior assays. They demonstrate that chronic daily exposure to heat leads to changes in anxiety, locomotion, social approach, and aggression. They identify a circuit from the preoptic area (POA) to the posterior paraventricular thalamus (pPVT) in mediating these behavior changes. The POA-PVT circuit increases activity during heat exposure. Further, manipulation of this circuit can drive affective and social behavioral phenotypes even in the absence of heat exposure. Moreover, silencing this circuit during heat exposure prevents the development of negative phenotypes. Overall the manuscript makes an important contribution to the understudied area of how ambient temperature shapes motivated behaviors.

      Strengths:

      The use of state-of-the-art systems neuroscience tools (in vivo optogenetics and fiber photometry, slice electrophysiology), chronic temperature-controlled experiments, and a rigorous battery of behavioral assays to determine affective phenotypes. The optogenetic gain of function of affective phenotypes in the absence of heat, and loss of function in the presence of heat are very convincing manipulation data. Overall a significant contribution to the circuit-level instantiation of temperature-induced changes in motivated behavior, and creative experiments.

      Weaknesses:

      (1) There is no quantification of cFos/rabies overlap shown in Figure 2, and no report of whether the POA-PVT circuit has a higher percentage of Fos+ cells than the general POA population. Similarly, there is no quantification of cFos in POA recipient PVT cells for Figure 2 Supplement 2.

      Thanks for the comment. The quantification results of c-Fos signal have been provided in the main text and figures.  

      (2) The authors do not address whether stimulation of POA-PVT also increases core body temperature in Figure 3 or its relevant supplements. This seems like an important phenotype to make note of and could be addressed with a thermal camera or telemetry.

      Thanks for raising this point. We did indeed monitor the core body temperature during stimulation of POA-PVT pathway, but we did not observe any significant changes. We have included this finding in the revised manuscript.

      (3) In Figure 3G: is Day 1 vs Day 22 "pre-heat" significant? The statistics are not shown, but this would be the most conclusive comparison to show that POA-PVT cells develop persistent activity after chronic heat exposure, which is one of the main claims the authors make in the text. This analysis is necessary in order to make the claim of persistent circuit activity after chronic heat exposure.

      Figure 3G does compare the Day 1 preheat to Day22 preheat, and the difference was significant. The wording has been corrected to avoid confusion. Also, we have modified Figure 3D to 3H in our revised manuscript to improve the clarity of these plots.

      (4) In Figure 4, the control virus (AAV1-EYFP) is a different serotype and reporter than the ChR2 virus (AAV9-ChR2-mCherry). This discrepancy could lead to somewhat different baseline behaviors.

      Thanks for bringing out this issue. We acknowledge that using AA1-EGFP (a different serotype and reporter compared to the AAV9-ChR2-mCherry) as our control virus is not ideal. But based on our own prior experiments, we observed no significant differences in baseline behaviors between animals injected with AAV1 and AAV9 EYFP as well as control mice without virus injection. Therefore, we believe that the baseline behaviors of the animals were unaffected.

      (5) In Figure 5G, N for the photometry data: the authors assess the maximum z-score as a measure of the strength of calcium response, however the area under the curve (AUC) is a more robust and useful readout than the maximum z score for this. Maximum z-score can simply identify brief peaks in amplitude, but the overall area under the curve seems quite similar, especially for Figure 5N.

      Thanks for the comment. We agree with the reviewer that the area under the curve (AUC) is an alternative readout for measurement of the strength of calcium response. However, the reason why we chose the maximum z-score is based on the observation that we found POA recipient pPVT neurons after chronic heat treatment exhibited a higher calcium peak corresponding to certain behavioral performances when compared to pre-heat conditions. We thus applied the maximum z-score as a representative way to describe the neuronal activity changes of mice during certain behaviors before and after chronic heat treatment. The other consideration is that we want to reflect that POA recipient pPVT neurons become more sensitive and easier to be activated after chronic heat exposure under the same stressful situations compared to control mice. The maximum z score represented by peak in combination with particular behavioral performances is considered more suitable to highlight our findings in this study.

      (6) For Fig 5V: the authors run the statistics on behavior bouts pooled from many animals, but it is better to do this analysis as an animal average, not by compiling bouts. Compiling bouts over-inflates the power and can yield significant p values that would not exist if the analysis were carried out with each animal as an n of 1.

      Thanks for the comment and suggestion. We had tried both methods and the statistical results were similar. As suggested, we have updated Fig 5V, as well as Fig. 5H and 5O by comparing animal average in our revised manuscript.

      (7) In general this is an excellent analysis of circuit function but leaves out the question of whether there may be other inputs to pPVT that also mediate the same behavioral effect. Future experiments that use activity-dependent Fos-TRAP labeling in combination with rabies can identify other inputs to heat-sensitive pPVT cells, which may have convergent or divergent functions compared to the POA inputs.

      Thanks for the valuable suggestion, which would enhance the conclusion. We will consider adopting this approach in future investigations into this question.

      Reviewer #2 (Public review):

      Summary

      The study by Cao et al. highlights an interesting and important aspect of heat- and thermal biology: the effect of repetitive, long-term heat exposure and its impact on brain function.

      Even though peripheral, sensory temperature sensors and afferent neuronal pathways conveying acute temperature information to the CNS have been well established, it is largely unknown how persistent, long-term temperature stimuli interact with and shape CNS function, and how these thermally-induced CNS alterations modulate efferent pathways to change physiology and behavior. This study is therefore not only novel but, given global warming, also timely.

      The authors provide compelling evidence that neurons of the paraventricular thalamus change plastically over three weeks of episodic heat stimulation and they convincingly show that these changes affect behavioral outputs such as social interactions, and anxiety-related behaviors.

      Strengths

      (1) It is impressive that the assessed behaviors can be (i) recruited by optogenetic fiber activation and (ii) inhibited by optogenetic fiber inhibition when mice are exposed to heat. Technically, when/how long is the fiber inhibition performed? It says in the text "3 min on and 3 min off". Is this only during the 20-minute heat stimulation or also at other times?

      Thanks for pointing out the need for clarification. Our optogenetic inhibition had been conducted for 21 days during the heat exposure period (90 mins) for each mouse. And to avoid the light-induced heating effect, we applied the cyclical mode of 3 minutes’ light on and 3 minutes’ light off only during the process of heat exposure but not other time. The detailed description has been supplemented in the Method part of our revised manuscript.

      (2) It is interesting that the frequency of activity in pPVT neurons, as assessed by fiber photometry, stays increased after long-term heat exposure (day 22) when mice are back at normal room temperature. This appears similar to a previous study that found long-term heat exposure to transform POA neurons plastically to become tonically active (https://www.biorxiv.org/content/10.1101/2024.08.06.606929v1). Interestingly, the POA neurons that become tonically active by persistent heat exposure described in the above study are largely excitatory, and thus these could drive the activity of the pPVT neurons analyzed in this study.

      Thanks for pointing out this study that suggests similar plasticity of POA neurons under long-term heat exposure serving a different purpose. We have included this information in our discussion as well.  

      (3) How can it be reconciled that the majority of the inputs from the POA are found to be largely inhibitory (Fig. 2H)? Is it possible that this result stems from the fact that non-selective POA-to-pPVT projections are labelled by the approach used in this study and not only those pathways activated by heat? These points would be nice to discuss.

      Thanks for raising these important questions. Although it is not our primary focus, we are aware of the substantial inhibitory inputs from POA to pPVT which suggests an important function. However, we do not think that this pathway, which would exert an opposite effect on POA-recipient pPVT neurons compared to the excitatory input, contributes to the long-term effect of chronic heat exposure. This is due to the increased, rather than decreased, excitability of the neurons. There is a possibility that this inhibitory input serves as a short-term inhibitory control for other purpose. Further work is needed to fully address this question.

      (4) It is very interesting that no LTP can be induced after chronic heat exposure (Figures K-M); the authors suggest that "the pathway in these mice were already saturated" (line 375). Could this hypothesis be tested in slices by employing a protocol to extinguish pre-existing (chronic heat exposure-induced) LTP? This would provide further strength to the findings/suggestion that an important synaptic plasticity mechanism is at play that conveys behavioral changes upon chronic heat stimulation.

      We agree with the reviewer that the results of the suggested experiment would further strengthen our hypothesis. We will try to confirm this in future studies.

      (5) It is interesting that long-term heat does not increase parameters associated with depression (Figure 1N-Q), how is it with acute heat stress, are those depression parameters increased acutely? It would be interesting to learn if "depression indicators" increase acutely but then adapt (as a consequence of heat acclimation) or if they are not changed at all and are also low during acute heat exposure.

      Based on our observations, we did not find increased depression parameters after acute heat stress in our experiments (data not shown), which was consistent with other two previous studies (Beas et al., 2018; Zhang et al., 2021). It appears that acute heat stress is more associated with anxiety-like behavior and may not be sufficient to induce depression-like phenotypes in rodents, aligning with our observation during experiments.

      Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA (2018) The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism Nat Neurosci 21:963-973.

      Zhang GW, Shen L, Tao C, Jung AH, Peng B, Li Z, Zhang LI, Whit Tao HZ (2021) Medial preoptic area antagonistically mediates stress-induced anxiety and parental behavior Nat Neurosci 24:516-528.

      Weaknesses/suggestions for improvement.

      (1) The introduction and general tenet of the study is, to us, a bit too one-sided/biased: generally, repetitive heat exposure --heat acclimation-- paradigms are known to not only be detrimental to animals and humans but also convey beneficial effects in allowing the animals and humans to gain heat tolerance (by strengthening the cardiovascular system, reducing energy metabolism and weight, etc.).

      Thanks for the suggestion. We have modified the introduction in our revised manuscript to make it more balanced.

      (2) The point is well taken that these authors here want to correlate their model (90 minutes of heat exposure per day) to heat waves. Nevertheless, and to more fully appreciate the entire biology of repetitive/chronic/persistent heat exposure (heat acclimation), it would be helpful to the general readership if the authors would also include these other aspects in their introduction (and/or discussion) and compare their 90-minute heat exposure paradigm to other heat acclimation paradigms. For example, many past studies (using mice or rats)m have used more subtle temperatures but permanently (and not only for 90 minutes) stimulated them over several days and weeks (for example see PMID: 35413138). This can have several beneficial effects related to cardiovascular fitness, energy metabolism, and other aspects. In this regard: 38{degree sign}C used in this study is a very high temperature for mice, in particular when they are placed there without acclimating slowly to this temperature but are directly placed there from normal ambient temperatures (22{degree sign}C-24{degree sign}C) which is cold/coolish for mice. Since the accuracy of temperature measurement is given as +/- 2{degree sign}C, it could also be 40{degree sign}C -- this temperature, 40{degree sign}C, non-heat acclimated C57bl/6 mice will not survive for long.

      The authors could consider discussing that this very strong, short episodic heat-stress model used here in this study may emphasize detrimental effects of heat, while more subtle long-term persistent exposure may be able to make animals adapt to heat, become more tolerant, and perhaps even prevent the detrimental cognitive effects observed in this study (which would be interesting to assess in a follow-up study).

      Thanks for pointing out the important aspect regarding the different heat exposure paradigms and their potential impacts. We have incorporated these points into both the Introduction and Discussion sections of the revised manuscript.

      (3) Line 140: It would help to be clear in the text that the behaviors are measured 1 day after the acute heat exposure - this is mentioned in the legend to the figure, but we believe it is important to stress this point also in the text. Similarly, this is also relevant for chronic heat stimulation: it needs to be made very clear that the behavior is measured 1 day after the last heat stimulus. If the behaviors had been measured during the heat stimulus, the results would likely be very different.

      Thanks for the suggestion, and we have clarified the procedure in the revised manuscript.

      (4) Figure 2 D and Figure 2- Figure Supplement 1: since there is quite some baseline cFos activity in the pPVT region we believe it is important to include some control (room temperature) mice with anterograde labelling; in our view, it is difficult/not possible to conclude, based on Fig 2 supplement 2C, that nearly 100% of the cfos positive cells are contacted by POA fibre terminals (line 168). By eye there are several green cells that don't have any red label on (or next to) them; additionally, even if there is a little bit of red signal next to a green cell: this is not definitive proof that this is a synaptic contact. It is therefore advisable to revisit the quantification and also revisit the interpretation/wording about synaptic contacts.

      In relation to the above: Figure 2h suggests that all neurons are connected (the majority receiving inhibitory inputs), is this really the case, is there not a single neuron out of the 63 recorded pPVT neurons that does not receive direct synaptic input from the POA?

      Thanks for the comments. For Figure 2-figure supplement 1, the baseline c-Fos activity in pPVT were indeed measured from mouse under room temperature. Observed activity may be attributed to the diverse functions that the pPVT is responsible for. Compared to the heat-exposed group, we observed significant increases in c-Fos signals, suggesting the effect of heat exposure.

      For Figure 2-figure supplement 2, through targeted injection of AAV1-Cre into the POA, we achieved selective expression of Cre-dependent ChR2-mCherry in pPVT neurons receiving POA inputs. Following heat exposure, we observed substantial colocalization between heat-induced c-Fos expression (green signal) and ChR2-mCherry-labeled neurons (red signal) in the pPVT. This extensive overlap indicates that POA-recipient pPVT neurons are predominantly heat-responsive and likely mediate the behavioral alterations induced by chronic heat exposure. We have validated these signals and included updated quantification in our revised manuscript.

      For Fig 2H, we specifically patched those neurons that were surrounded by red fluorescence under the microscope, ensuring that the patched neurons had a high likelihood of being innervated from POA. This is why all 63 recorded pPVT neurons were found to receive direct synaptic input from the POA.

      (5) It would be nice to characterize the POA population that connects to the pPVT, it is possible/likely that not only warm-responsive POA neurons connect to that region but also others. The current POA-to-pPVT optogenetic fibre stimulations (Figure 4) are not selective for preoptic warm responsive neurons; since the POA subserves many different functions, this optogenetic strategy will likely activate other pathways. The referees acknowledge that molecular analysis of the POA population would be a major undertaking. Instead, this could be acknowledged in the discussion, for example in a section like "limitation of this study".

      Thanks for the suggestion. We have supplemented this part in our revised manuscript.

      (6) Figure 3a the strategy to express Gcamp in a Cre-dependent manner: it seems that the Gcamp8f signal would be polluted by EGFP (coming from the Cre virus injected into the POA): The excitation peak for both is close to 490nm and emission spectra/peaks of GCaMP8f (510-520 nm) and EGFP (507-510 nm) are also highly overlapping. We presume that the high background (EGFP) fluorescence signal would preclude sensitive calcium detection via Gcamp8f, how did the authors tackle this problem?

      Thank you for pointing out this issue. We acknowledge that we included AAV1-EGFP when recording the GCaMP8F signal to assist in the post-verification of the accuracy of the injection site. But we also collected recording data from mice with AAV1-Cre without EGFP injected into POA and Cre-dependent GCaMP8F in pPVT, albert in a smaller number. We did not observe any obvious differences in the change in calcium signal between these two virus strategies, suggesting that the sensitivity of the GCaMP signals was not significantly affected by the increased baseline fluorescence due to EGFP.

      (7) How did the authors perform the social interaction test (Figures 1F, G)? Was the intruder mouse male or female? If it was a male mouse would the interaction with the female mouse be a form of mating behavior? If so, the interpretation of the results (Figures 1F, G) could be "episodic heat exposure over the course of 3 weeks reduces mating behavior".

      Thanks for the comment. For this female encounter test, we strictly followed the protocol by Ago Y, et al., (2015). During this test, both the strange male and female mice were placed into a wired cup (which is made up of mental wire entanglement and the size for each hole is 0.5 cm [L] x 0.5 cm [W]), which successfully prevented large body contact and the mating behavior but only innate sex-motivated moving around the cup. We have supplemented the details in the method part of our revised manuscript.

      Ago Y, Hasebe S, Nishiyama S, Oka S, Onaka Y, Hashimoto H, Takuma K, Matsuda T (2015) The Female Encounter Test: A Novel Method for Evaluating Reward-Seeking Behavior or Motivation in Mice Int J Neuropsychopharmacol 18: pyv062.

      Reviewer #3 (Public review):

      In this study, Cao et al. explore the neural mechanisms by which chronic heat exposure induces negative valence and hyperarousal in mice, focusing on the role of the posterior paraventricular nucleus (pPVT) neurons that receive projections from the preoptic area (POA). The authors show that chronic heat exposure leads to heightened activity of the POA projection-receiving pPVT neurons, potentially contributing to behavioral changes such as increased anxiety level and reduced sociability, along with heightened startle responses. In addition, using electrophysiological methods, the authors suggest that increased membrane excitability of pPVT neurons may underlie these behavioral changes. The use of a variety of behavioral assays enhances the robustness of their claim. Moreover, while previous research on thermoregulation has predominantly focused on physiological responses to thermal stress, this study adds a unique and valuable perspective by exploring how thermal stress impacts affective states and behaviors, thereby broadening the field of thermoregulation. However, a few points warrant further consideration to enhance the clarity and impact of the findings.

      (1) The authors claim that behavior changes induced by chronic heat exposure are mediated by the POA-pPVT circuit. However, it remains unclear whether these changes are unique to heat exposure or if this circuit represents a more general response to chronic stress. It would be valuable to include control experiments with other forms of chronic stress, such as chronic pain, social defeat, or restraint stress, to determine if the observed changes in the POA-pPVT circuit are indeed specific to thermal stress or indicative of a more universal stress response mechanism.

      We also share similar considerations as the reviewer and indeed have conducted experiments to explore this possibility. Our findings suggest that the POA-pPVT pathway may also mediate behavioral changes induced by other chronic stress, e.g. chronic restraint stress. Nevertheless, given the well-known prominent role of POA neurons in heat perception, we do believe that the POA-pPVT has a specialized role in mediating chronic heat induced changes. The role of this pathway in other stress-related responses will need a more comprehensive study in the future.

      (2) The authors use the term "negative emotion and hyperarousal" to interpret behavioral changes induced by chronic heat (consistently throughout the manuscript, including the title and lines 33-34). However, the term "emotion" is broad and inherently difficult to quantify, as it encompasses various factors, including both valence and arousal (Tye, 2018; Barrett, L. F. 1999; Schachter, S. 1962). Therefore, the reviewer suggests the authors use a more precise term to describe these behaviors, such as valence. Additionally, in lines 117 and 137-139, replacing "emotion" with "stress responses," a term that aligns more closely with the physiological observations, would provide greater specificity and clarity in interpreting the findings.

      Thanks for the suggestion. We have modified the description of “emotion” to “emotional valence” in various places throughout the revised manuscript.

      (3) Related to the role of POA input to pPVT,

      a) The authors showed increased activity in pPVT neurons that receive projections from the POA (Figure 3), and these neurons are necessary for heat-induced behavioral changes (Figures 4N-W). However, is the POA input to the pPVT circuit truly critical? Since recipient pPVT neurons can receive inputs from various brain regions, the reviewer suggests that experiments directly inhibiting the POA-to-pPVT projection itself are needed to confirm the role of POA input. Alternatively, the authors could show that the increased activity of pPVT neurons due to chronic heat exposure is not observed when the POA is blocked. If these experiments are not feasible, the reviewer suggests that the authors consider toning down the emphasis on the role of the POA throughout the manuscript and discuss this as a limitation.<br /> b) In the electrophysiology experiments shown in Figures 6A-I, the authors conducted in vitro slice recordings on pPVT neurons. However, the interpretation of these results (e.g., "The increase in presynaptic excitability of the POA to pPVT excitatory pathway suggested plastic changes induced by the chronic heat treatment.", lines 349-350) appears to be an overclaim. It is difficult to conclude that the increased excitability of pPVT neurons due to heat exposure is specifically caused by inputs from the POA. To clarify this, the reviewer suggests the authors conduct experiments targeting recipient neurons in the pPVT, with anterograde labeling from the POA to validate the source of excitatory inputs.

      For point (a), we acknowledge that pPVT neurons receiving POA inputs may also receive projections from other brain regions. While these additional inputs warrant investigation, they fall beyond the scope of our current study and represent promising directions for future research. Notably, compared to other well-characterized regions such as the amygdala and ventral hippocampus, the pPVT receives particularly robust projections from hypothalamic nuclei (Beas et al., 2018). Our optogenetic inhibition of POA-recipient pPVT neurons during chronic heat exposure effectively prevented the influence of POA excitatory projections on pPVT neurons. Furthermore, selective optogenetic activation of POA excitatory terminals within the pPVT was sufficient to induce similar behavioral abnormalities in mice, strongly supporting the causal role of POA inputs in mediating chronic heat exposure-induced behavioral alterations.

      Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA (2018) The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism Nat Neurosci 21:963-973.

      Regarding point (b), we acknowledge certain limitations in our in vitro patch-clamp recordings when attributing increased pPVT neuronal excitability to enhanced presynaptic POA inputs. Nevertheless, our brain slice recordings clearly demonstrated heightened excitability of pPVT neurons following chronic heat exposure. This finding was further corroborated by our in vivo fiber photometry recordings specifically targeting POA-recipient pPVT neurons, which confirmed that the increased pPVT neuronal activity was indeed modulated by POA inputs. The causal relationship was strengthened by our observation that optogenetic activation of POA excitatory terminals within the pPVT reproduced behavioral abnormalities similar to those observed in chronic heat-exposed mice. Additionally, our inability to induce circuit-specific LTP in the POA-pPVT pathway suggests that these synapses were already potentiated and saturated, reflecting enhanced excitatory inputs from the POA to pPVT. Collectively, these findings support our conclusion that increased excitatory projections from the POA to pPVT likely represent a key mechanism underlying chronic heat exposure-induced behavioral alterations in mice.

      (4) The authors focus on the excitatory connection between the POA and pPVT (e.g., "Together, our results indicate that most of the pPVT-projecting POA neurons responded to heat treatment, which would then recruit their downstream neurons in the pPVT by exerting a net excitatory influence.", lines 169-171). However, are the POA neurons projecting to the pPVT indeed excitatory? This is surprising, considering i) the electrophysiological data shown in Figures 2E-K that inhibitory current was recorded in 52.4% of pPVT neurons by stimulation of POA terminal, and ii) POA projection neurons involved in modulating thermoregulatory responses to other brain regions are primarily GABAergic (Tan et al., 2016; Morrison and Nakamura, 2019). The reviewer suggests showing whether the heat-responsive POA neurons projecting to the pPVT are indeed excitatory (This could be achieved by retrogradely labeling POA neurons that project to the pPVT and conducting fluorescence in situ hybridization (FISH) assays against Slc32a1, Slc17a6, and Fos to label neurons activated by warmth). Alternatively, demonstrate, at least, that pPVT-projecting POA neurons are a distinct population from the GABAergic POA neurons that project to thermoregulatory regions such as DMH or rRPa. This would clarify how the POA-pPVT circuit integrates with the previously established thermoregulatory pathways.

      Thanks for the comment and suggestion. We acknowledge that there are both excitatory and inhibitory projections from POA to pPVT. Although it is not our primary focus, we are aware of the substantial inhibitory inputs from POA to pPVT which suggests an important function. However, we do not think that this pathway, which would exert an opposite effect on POA-recipient pPVT neurons compared to the excitatory input, contributes to the long-term effect of chronic heat exposure. This is due to the increased, rather than decreased, excitability of the neurons. There is a possibility that this inhibitory input serves as a short-term inhibitory control for other purpose. Further work is needed to fully address this question.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have a number of suggested minor edits that would improve the readability and interpretation of figures for the reader. In many figures, there are places where it is unclear what is being tested, and making minor changes would make the manuscript flow more easily for the reader:

      (1) The authors could add additional details about the behavior paradigms in the Figures, especially Figure 1. How long was the chronic heat exposure for? At what temperature? What is the length of time between the end of heat exposure and the start of behaviors? What was the schedule of testing for EPM and social behaviors? Was it all on the same day or on different days? These details will make it easier for the reader to understand the behavior tests.

      We have revised our experimental scheme, especially Figure 1, and added more detailed descriptions in the method section. The modifications have also been applied to the other figures.

      (2) In Figures 1J and 1K, it is a bit unclear what is being shown in the right panel, since there are no axes or labels to interpret what is being plotted.

      We have added body kinetics (purple dot) in the left panel of Figure 1J and 1K to align with the right panels, and we have updated our descriptions in the figure legend.

      (3) In general, Figure 1 would benefit from more headers/labels or schematics to demonstrate what is being tested (for example, it's unclear that forced swim, tail suspension, open field, aggression, sucrose preference, or acoustic startle are being studied unless the reader looks at the figure legend in depth. Simple schematics or titles for each panel would help.

      We have added the abbreviated titles for each panel of Figure 1 to help readers to better understand what was being tested.

      (4) Figure 2A would benefit from edits to the schematic so that it is clear that heat exposure is being done before the animal is sacrificed and cFos is stained.

      We have revised the text to clarify that heat exposure occurred before the animal was sacrificed and c-Fos was stained.

      (5) Figure 2D: would help if the quantification of overlap of cFos and rabies was shown in the figure in addition to reporting it in the text (84%).

      We have added quantification in Figure 2D.

      (6) The supplemental data in Figure 2 - Supplemental Figure 1 showing increased Fos in PVT and POA after heat exposure would actually help if it was in main Figure 2 so that the reader can more clearly see the rationale for choosing the POA-PVT circuit. But this is a matter of preference and up to the author where they want to show this data.

      Thanks for the suggestion. But considering the layout and space, we will prefer to retain this part in Figure 2-supplemental figure 1.

      (7) Figure 3 would benefit from a behavior schematic illustrating the time course of the experiment and what the heat exposure protocol is for each day (how many minutes heat 'on' vs 'off', the temperature of heat, etc). Also, what is different about day 22 that makes it chronic heat vs day 21? Currently, it is a bit hard to understand the protocol.

      We have added the temperature and time of chronic heat exposure in the schematic of Figure 3. The “day 22” represented the time point after chronic heat exposure. And we measured the calcium activity of POA recipient pPVT neurons on day 22 to compare with day 1 to demonstrate that the activity changes of POA recipient pPVT neurons after chronic heat exposure.

      (8) Figure 3D, it is unclear what the difference is between the Day 1 data on the left and Day 1 data on the right. Same with Figure 3H, unclear what the difference is between the left and the right.

      The left panel and right panel reflect different parameters: frequency /min (left) and amplitude (△F/F) for Figure 3D-3H. By doing this, we want to reflect the dynamic activity changes of POA recipient pPVT neurons throughout chronic heat exposure process. Now, all figures in panel 3D to 3H have been revised to make them clearer in meaning.

      (9) Figure 4A would benefit from schematics showing the stimulation protocol for chronic optogenetics (how many days? Frequency? Duration of time? Etc)

      We have added detailed schematics in our Figure 4A.

      Reviewer #2 (Recommendations for the authors)

      (1) It is interesting that social behavior appears to be reduced upon long-term heat exposure but not after acute heat exposure. Interaction of animals, such as huddling, can be used by animals as a form of behavioral thermoregulation in cold environments and heat may drive animals apart to allow for better heat dissipation. The social interaction measured here is not huddling (because, I assume, the animals are separated by a divider?) but is this form of behavior measured here related to huddling/"social thermoregulation"? This could be discussed.

      Our behavioral tests were performed at room temperature. Even though huddling is a type of social behavior, based on our observation, the tested mouse was actively revolving around the mental cap, suggesting this type of behavior is not related to huddling/social thermoregulation type of social behavior.

      (2) Line 113: The statement "Chronic treatment did not change body temperature" should be clarified/rephrased because 90 minutes of 38 degrees centigrade exposure to heat will increase the body temperature of mice. It would be helpful if the authors made clear that they measure body temperature before the heat stimulus (and not during the heat stimulus), which is now only obvious if one digs into the methods section.

      We have revised the text and clarified that body temperature was measured before the heat stimulus in the revised manuscript.

      (3) Figure 1J and K: for the non-experts, these graphs are difficult to interpret, some more explanation is needed (what exactly is measured ?). We believe that the term "arousal" may not be justified in this context because the authors have not measured sleep patterns (EEG and EMG) to show that the mice arouse from a sleep (or sleep-like) stage; the authors may consider changing the terminology, e.g. something along the lines of "agitation" or "activity".

      We have further elaborated the meaning of Figure 1J and K in our revised manuscript. The acoustic startle response is a well-recognized behavioral parameter reflecting arousal levels in rodent model. The more agitation in response to stimulus, the higher the arousal levels in mice. We have used the term “agitation” to describe mice’s performance in the acoustic startle response test.

      Reviewer #3 (Recommendations for the authors):

      (1) The authors suggest in the introduction of the manuscript that the HPA axis and other multifaceted factors may influence emotional changes caused by heat stress (lines 63-78). However, there are no experiments or discussions on how the POA-pPVT circuit interacts with these factors. In line with the study's proposed direction in the introduction section, it would be valuable to explore, or at least discuss, whether and how the POA-pPVT circuit interacts with the HPA axis or other neural circuits known to regulate emotional and stress responses. Alternatively, the reviewer suggests revising the content of the introduction to align with the focus of the study.

      Although POA is known to possibly interact with the HPA axis via its connection with the paraventricular nucleus of the hypothalamus, there is hardly any evidence for the pPVT. Thus, we prefer not to speculate this question, which remains open, in our current manuscript.

      (2) In Figure 5, the authors report that pPVT neurons that receive projections from the POA exhibited increased responses to stressful situations following chronic heat exposure. However, considering the long pre- and post-recording time gap of approximately three weeks, the additional expression of GCaMP protein over time could potentially account for the increased signal. Therefore, the reviewer recommends including a control group without heat exposure to rule out this possibility.

      We have included Figure 3-figure supplement 1 in our manuscript to exclude the effect of expression of GCaMP protein over time on the recording of calcium signal.

      (3) Related to Figure 2, a) Please include quantification data of the overlap between retrogradely labeled and c-Fos-expressing POA neurons, which can be presented as a bar graph in Figure 2. This would be beneficial for readers to estimate how many warm-activated POA neurons connected to the pPVT are actively engaged under these conditions.

      In the revised manuscript, we have included the quantification analysis in Figure 2.

      b) The images in Figure 2 - Figure Supplement 1 seem to degrade in quality when magnified, making it difficult to discern finer details. Higher-resolution images would greatly improve the clarity and help in accurately visualizing the c-Fos expression patterns in the POA and pPVT regions.

      We have changed our images of Figure 2-figure supplement 1 to higher-resolution in the revised manuscript.

      c) The c-Fos images in Figure 2D and Figure 2 - Figure Supplement 2C appear unusual in that the c-Fos signal seems to fill the entire cell, whereas c-Fos protein is localized to the nucleus. Could the authors clarify whether this image accurately represents c-Fos staining or if there might be an issue with the staining or imaging process?

      We are confident that the green signals in both Figure 2D and Figure 2-figure supplement 2C, which did not occupy the whole cell body, have already accurately reflected the c-Fos and that they were nucleus staining. We have updated the amplified picture in Figure 2D.

      d) In Supplemental Figure 2B, the square marking the region of interest should be clearly explained in the figure legend to ensure that readers can fully understand the context and focus of the image.

      We have further modified our figure legend in Figure 2-figure supplement 1 in our revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):  

      Summary:  

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with previous works, particularly Vertex Models. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary to achieve apical constriction, and that tissue bending can be enhanced by adding a supracellular myosin cable. Additionally, a very high apical elastic constant promotes planar tissue configurations, opposing bending.  

      Strengths:  

      - The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a natural alternative for studying bending processes in situations with highly curved cells. 

      - Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion. 

      We thank the reviewer for the careful comments and suggestions.

      Weaknesses: 

      - The authors claim that the cellular Potts Model (CPM) is unable to achieve the results of the vertex model (VM) simulations due to naturally non-straight cellular junctions in the CPM versus the VM. The lack of a substantial comparison undermines this assertion. None of the references mentioned in the manuscript are from a work using vertex model with straight cellular junctions, simulating apical constriction purely by a enhancing a length-independent apical tension. Sherrard et al and Pérez-González et al. use 2D and 3D Vertex Models, respectively, with a "contractility" force driving apical constriction. However, their models allow cell curvature. Both references suggest that the cell side flexibility of the CPM shouldn't be the main issue of the "contractility model" for apical constriction. 

      We appreciate the comment.

      For the reports by Sherrard et al and Pérez-Gonález et al, lack of the cell rearrangement (T1 transition) might have caused the difference. Other than these, Muñoz et al. (doi:10.1016/j.jbiomech.2006.05.006), Polyakov et al. (doi:10.1016/j.bpj.2014.07.013), Inoue et al.

      (doi:10.1007/s10237-016-0794-1), Sui et al.

      (doi:10.1038/s41467-018-06497-3), and Guo et al. (doi:10.7554/eLife.69082) used simulation models with the straight lateral surface.

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      - The myosin cable is assumed to encircle the invaginated cells. Therefore, it is not clear why the force acts over the entire system (even when decreasing towards the center), and not locally in the contour of the group of cells under constriction. The specific form of the associated potential is missing. It is unclear how dependent the results of the manuscript are on these not-well-motivated and model-specific rules for the myosin cable.

      A circle radius decreases when the circle perimeter shrinks, and this was simulated with the myosin cable moving toward the midline in the cross section.

      We added an explanation in the introduction and the results.

      P2L74 “In the same way with the contracting circumferential myosin belt in a cell decreasing the cell apical surface, the circular supracellular myosin cable contraction decreases the perimeter, the radius of the circle, and an area inside the circle.”

      P6L197 “In the cross section, the shrinkage of the circular supracellular myosin cable was simulated with a move of adherens junction under the myosin cable toward the midline.”

      - The authors are using different names than the conventional ones for the energy terms. Their current attempt to clarify what is usually done in other works might lead to further confusion. 

      The reviewer is correct. However we named the energy terms differently because the conventional naming would be misleading in our simulation model.

      We added an explanation in the results.

      P4L140 “Note that the naming for the energy terms differs from preceding studies. For example, Farhadifar et al. (2007) named a surface energy term expressed by a proportional function "line tensions" and a term expressed by a quadratic function "contractility of the cell perimeter". In this study, however, calling the quadratic term "contractility" would be misleading since it prevents the contraction when  < _0. Therefore we renamed the terms accordingly.”

      Reviewer #2 (Public Review): 

      Summary: 

      In their work, the Authors study local mechanics in an invaginating epithelial tissue. The work, which is mostly computational, relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The Authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity". 

      Strengths: 

      It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue. 

      We thank the reviewer for the careful comments.

      Weaknesses: 

      Although the Authors have improved and clarified certain aspects of their results as suggested by the Reviewers, the presentation still mostly relies on showing simulation snapshots. Snapshots can be useful, but when there are too many, the results are hard to read. The manuscript would benefit from more quantitative plots like phase diagrams etc. 

      We agree with the comment.

      However, we could not make the qualitative measurement for the phase diagram since 1) the measurement must be applicable to all simulation results, and 2) measured values must match with the interpretation of the results. To do so, the measurement must distinguish a bent tissue, delaminated cells, a tissue with curved basal surface and flat apical surface, and a tissue with closed invagination. Such measurement is hardly designed.

      Recommendations for the authors: 

      Reviewing Editor (Recommendations For The Authors): 

      I see that the authors have worked on improving their paper in the revision. However, I agree with both reviewer #1 and reviewer #2 that the presentation and discussion of findings could be clearer. 

      Concrete recommendations for improvement: 

      (1) I find the observation by reviewer #1 on cell rearrangement very illuminating: It is indeed another key difference between the Cellular Potts Model that the authors use compared to typical Vertex Models, and could very well explain the different model outcomes. The authors could expand on the discussion of this point. 

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      (2) In lines 161-164, the authors write "Some preceding studies assumed that the apical myosin generated the contractile force (Sherrard et al, 2010: Conte et al., 2012; Perez-Mockus et al., 2017; Perez-Gonzalez et al., 2021), while others assumed the elastic force (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020)." 

      Similarly, in lines 316-319 the authors write "In the preceding studies, the apically localized myosin was assumed to generate either the contractile force (Sherrard et al, 2010: Conte et al., 2012; Perez-Mockus et al., 2017; Perez-Gonzalez et al., 2021), or the elastic force (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020)." 

      The phrasing here is poor, as it suggests that the latter three studies (Polyakov et al., 2014; Inoue et al. 2016; Nematbakhsh et al., 2020) do not use the assumption that apical myosin generated contractile forces. This is wrong. All three of these studies do in fact assume apical surface contractility mediated by myosin. In addition, they also include other factors such as elastic restoring forces from the cell membrane (but not mediated by myosin as far as I understand). 

      These statements should be corrected. 

      We named the energy term expressed with the proportional function “contractility” and the energy term expressed with the quadratic function “elasticity”. Here we did not define what biological molecules correspond with the contractility or the elasticity.

      For the three studies, the effect of myosin was expressed by the quadratic function, and Polyakov et al. (2014) named it “springlike elastic properties”, Inoue et al. (2016) named it “Apical circumference elasticity”, and Nematbakhsh et al. (2020) named it “Actomyosin contractility”. To explain that the for generated by myosin was expressed with the quadratic function in these studies, we wrote that they “assumed the elastic force”.

      We assumed the myosin activity to be approximated with the proportional function in later parts and proposed that the membrane might be expressed with the quadratic function and responsible for the apical constriction based on other studies.

      To clarify this, we added it to the results.

      P4L175 “Some preceding studies assumed that the apical myosin generated the contractile force (Sherrard et al., 2010; Conte et al., 2012; Perez-Mockus et al., 2017; Pérez-González et al., 2021), while the others assumed the myosin to generate the elastic force (Polyakov et al., 2014; Inoue et al., 2016; Nematbakhsh et al., 2020).”

      (3) Lines 294-296: The phrasing suggests that the "alternative driving mechanism" consists of apical surface elasticity remodelling alone. This is not true, it's an additional mechanism, not an alternative. The authors' model works by the combined action of increased apical surface contractility and apical surface elasticity remodelling (and the effect can be strengthened by including a supracellular actomyosin cable). 

      We agree with the comment that the surface remodeling is not solely driving the apical constriction but with myosin activity. However, if we wrote it as an additional mechanism, it might look like that both the myosin activity alone and the surface remodeling alone could drive the apical constriction, and they would drive it better when combined together. So we replaced “mechanism” with “model”.

      P12L311 “In this study, we demonstrated that the increased apical surface contractility could not drive the apical constriction, and proposed the alternative driving model with the apical surface elasticity remodeling.”

      (4) In general, the part of the results section encompassing equations 1-5 should more explicitly state which equations were used in all simulations (Eqs1+5), and which ones were used only for certain conditions (Eqs2+3+4). 

      We added it as follows.

      P4L153 “While the terms Equation 1 and Equation 5 were included in all simulations since they were fundamental and designed in the original cellular Potts model (Graner and Glazier, 1992), the other terms Equation 2-Equation 4 were optional and employed only for certain conditions.”

      (5) Lines 150-152: Please state which parameters were examined. I assume Equation 4 was also left out of this initial simulation, as it is the potential energy of the actomyosin cable that was only included in some simulations. 

      We added it as follows.

      P4L163 “The term Equation 4 was not included either. For a cell, its compression was determined by a balance between the pressure and the surface tension, i.e., the heigher surface tension would compress the cell more. The bulk modulus 𝜆 was set 1, the lateral cell-cell junction contractility 𝐽_𝑙 was varied for different cell compressions, and the apical and basal surface contractilities 𝐽_𝑎 and 𝐽_𝑏 were varied proportional to 𝐽_𝑙.”

      (6) Lines 118-122: The sentence is very long and hard to parse. I suggest the following rephrasing: 

      “In this study, we assumed that the cell surface tension consisted of contractility and elasticity. We modelled the contractility as constant to decrease the surface, but not dependent on surface width or strain. We modelled the elasticity as proportional to the surface strain, working to return the surface to its original width." 

      We updated the explanation as follows.

      P3L121 “In this study, we assumed that the cell surface tension consisted of contractility and elasticity. We modeled the contractility as a constant force to decrease the surface, but not dependent on surface width or strain. We modeled the elasticity as a force proportional to the surface strain, working to return the surface to its original width.”

      (7) Lines 270-274: Another long sentence that is difficult to understand.

      Suggested rephrasing: 

      "Note that the supracellular myosin cable alone could not reproduce the apical constriction (Figure 2c), and cell surface elasticity in isolation caused the tissue to stay almost flat. However, combining both the supracellular myosin cable and the cell surface elasticity was sufficient to bend the tissue when a high enough pulling force acted on the adherens junctions." 

      We updated the sentence as follows.

      P9L287 “Note that the supracellular myosin cable alone could not reproduce the apical constriction (Figure 2c), and that with some parameters the modified cell surface elasticity kept the tissue almost flat (Figure 4). However, combining both the supracellular myosin cable and the cell surface elasticity made a sharp bending when the pulling force acting on the adherens junction was sufficiently high.”

      (8) Lines 434-435: Unclear what is meant with sentence starting with "Rest of sites" 

      We update the sentence as follows.

      P17L456 “At the initial configuration and during the simulation, sites adjacent to medium and not marked as apical are marked as basal.”

      (9) Fixing typos and other minor grammar and wording changes would improve readability. Following is a list in order of appearance in the text with suggestions for improvement. 

      We greatly appreciate the careful editing, and corrected the manuscript accordingly.

      Line 14: "a" is not needed in the phrase "increased a pressure" 

      Line 15: "cell into not the wedge shape" --"cell not into the wedge shape"  In fact it might be better to flip the sentence around to say, e.g. "making the cells adopt a drop shape instead of the expected wedge shape". 

      Line 24: "cells decrease its apical surface" --"cells decrease their apical surface" 

      Line 25: instead of "turn into wedge shape", a more natural-sounding expression could be "adopt a wedge shape" 

      Line 28: "which crosslink and contract" --because the subject is the singular "motor protein", the verb tense needs to be changed to "crosslinks and contracts" 

      Line 29: I suggest to use the definite article "the" before "actin filament network" as this is expected to be a known concept to the reader. 

      Line 31: "adherens junction and tight junction" --use the plural, because there are many per cell: "adherens junctions and tight junctions" 

      Line 42: "In vertebrate" --"In vertebrates" 

      Line 46: "Since the interruption to" --"Since the interruption of" 

      Line 56: "the surface tension of the invaginated cells were" --since the subject is "the surface tension", the verb "were" needs to be changed to "was"  Line 63: "extra cellular matrix" --generally written as "extracellular matrix" without the first space 

      Line 66: "many epithelial tissues" --"in many epithelial tissues" 

      Line 70: "This supracellular cables" --"These supracellular cables" 

      Line 72: "encircling salivary gland" --either "encircling the salivary gland" or "encircling salivary glands" 

      Lines 76-77: "investigated a cell physical property required" --"investigated what cell physical properties were required" 

      Line 78: "was another framework" --"is another framework" (it is a generally and currently valid true statement, so use the present tense) 

      Line 79: "simulated an effect of the apically localized myosin" --for clarity, I suggest rephrasing as "simulated the effect of increased apical contractility mediated by apically localized myosin" 

      Similarly, in Line 80: "did not reproduce the apical constriction" --"did not reproduce tissue invagination by apical constriction", as technically the cells in the model do reduce their apical area, but fail to invaginate as a tissue. 

      Line 82: "we found that a force" --"we found that the force" 

      Line 101: "apico-basaly" --"apico-basally" 

      Lines 107-108: "in order to save a computational cost" --"in order to save on computational cost" 

      Line 114: "Therefore an area of the cell" --"Therefore the interior area of the cell" 

      Line 139: "formed along adherens junction" --"formed along adherens junctions" 

      Line 166: "we ignored an effect" --"we ignored the effect" 

      Line 167: "and discussed it later" --"and discuss it later" 

      Lines 167-168: "an experiment with a cell cultured on a micro pattern showed that the myosin activity was well corresponded by the contractility" --"an experiment with cells cultured on a micro pattern showed that the myosin activity corresponded well to the contractility" 

      Line 172: "success of failure" --"success or failure" 

      Figure 1 caption: "none-polar" --"non-polarized"; "reg" --"red" 

      Line 179: "To prevented the surface" --"To prevent the surface" 

      Line 180: "It kept the cells surface" --"It kept the cells' surface" (apostrophe missing) 

      Line 181: "cells were delaminated and resulted in similar shapes" --"cells were delaminated and adopted similar shapes" 

      Line 190: "To investigate what made the difference" --"To investigate the origin of the difference" 

      Line 203: For clarity, I would suggest to add more specific wording. "the pressure, and a difference in the pressure between the cells resulted in" --"the internal pressure due to cell volume conservation, and a difference in the pressure between the contracting and non-contracting cells resulted in" 

      Line 206: "by analyzing the energy with respect to a cell shape" --"by analyzing the energy with respect to cell shape" 

      Line 220: "indicating that cell could shrink" --"indicating that a cell could shrink" 

      Line 224: For clarity, I would suggest more specific wording "lateral surface, while it seems not natural for the epithelial cells" --"lateral surface imposed on the vertex model, a restriction that seems not natural for epithelial cells" 

      Line 244: "succeeded in invaginating" --"succeeding in invaginating" 

      Line 247: "were checked whether the cells" --"were checked to assess whether the cells" 

      Line 250: "cells became the wedge shape" --"cells adopted the wedge shape" 

      Line 286: "there were no obvious change in a distribution pattern" --"there was no obvious change in the distribution pattern" 

      Lines 296-297: "When the cells were assigned the high apical surface contractility, the cells were rounded" --"When the cells were assigned a high apical surface contractility, the cells became rounded" 

      Line 298: "This simulation results" --"These simulation results" 

      Lines 301-302: I suggest to increase clarity by somewhat rephrasing.  "Even when the vertex model allowed the curved lateral surface, the model did not assume the cells to be rearranged and change neighbors" --"Even in cases where vertex models were extended to allow curved lateral surfaces, the model still limited cell rearrangement and neighbor changes" 

      Line 326: "high surface tension tried to keep" --"high surface tension will keep" 

      Line 334: "In many tissue" --"In many tissues" 

      Line 345: "turned back to its original shape" --"turned back to their original shape" (subject is the plural "cells") 

      Lines 348-349: "resembles the result of simulation" --"resembles the result of simulations" 

      Line 352: "how the myosin" --"how do the myosin" 

      Line 356: "it bears the surface tension when extended and its magnitude" What does the last "its" refer to? The surface tension? 

      Line 365: "the endocytosis decrease" --"the endocytosis decreases" 

      Line 371: "activatoin" --"activation" 

      Line 374 "the cells undergoes" --"the cells undergo" 

      Line 378: "entier" --"entire" 

      Line 389: "individual tissue accomplish" --"individual tissues accomplish" 

      Line 423: "is determined" --"are determined" (subject is the plural "labels") 

      Line 430: "phyisical" --"physical" 

      Table 6 caption: "cell-ECN" --cell-ECM 

      Line 557: "do not confused" --"should not be confused" 

      Reviewer #1 (Recommendations For The Authors): 

      - The phrase "In addition, the encircling supracellular myosin cable largely promoted the invagination by the apical constriction, suggesting that too high apical surface tension may keep the epithelium apical surface flat." is not clear to me. It sounds contradictory. 

      This finding was unexpected and surprising for us too. However, it is actually not contradictory since stronger surface tension will make the surface flatter in general. Figure 4 shows the flat apical surface with the wedge shape cells for the too strong apical surface tension. On the other hand, the supracellular myosin cable promoted the cell shape changes without raising the surface tension, and thus it could make a sharp bending (Figure 5).

      We updated the explanation for the effect of the supracellular myosin cable as follows.

      P2L74 “In the same way as the contracting circumferential myosin belt in a cell decreasing the cell apical surface, the circular supracellular myosin cable contraction decreases the perimeter, the radius of the circle, and an area inside the circle.”

      P6L197 “In the cross section, the shrinkage of the circular supracellular myosin cable was simulated with a move of adherens junction under the myosin cable toward the midline.”

      - Even when the authors now avoid to say "in contrast to vertex model simulations" in pg.4, in the next section there is still the intention to compare VM to CPM. Idem in the Discussion section. The conclusion in that section is that the difference between the results arising with VM (achieving the constriction) and the CPM (not achieving the constriction, and leading to cell delamination) are due to the straight lateral surfaces. However, Sherrard et at could achieve the constriction with an enhanced apical surface contractility using a 2D VM that allows curvatures. Therefore, I don't think the main difference is given by the deformability of the lateral surfaces. Instead, it might be due to the facility of the CPM to drive cellular rearrangements, coupled to specific modeling rules such as the permanent lost of the "apical side" once a delamination occurs and the boundary conditions. A clear example is the observation of loss of cell-cell adherence when all the tensions are set the same. Instead, in a VM cells conserve their lateral neighbors in the uniform tension regime (Sherrard et at). Is it noteworthy that the two mentioned works using vertex models to achieve apical constriction (Sherrard et at. (2D) and Pérez-González (3D) et al.) seem to neglect T1 transitions. I specifically think the added discussion on the impact of the T1 events (fundamental for cell delamination) is quite poor. A more detailed description would help justify the differences between model outcomes. 

      We updated an explanation about the difference between the vertex model and the cellular Potts model in the discussion.

      P12L318 “ An edge in the vertex model can be bent by interpolating vertices or can be represented with an arc of circle (Brakke, 1992). Even in cases where vertex models were extended to allow bent lateral surfaces, the model still limited cell rearrangement and neighbor changes (Pérez-González et al., 2021), limiting the cell delamination. Thus the difference in simulation results between the models could be due to whether the cell rearrangement was included or not. However, it is not clear how the absence of the cell rearrangement affected cell behaviors in the simulation, and it shall be studied in future. In contrast to the vertex model, the cellular Potts model included the curved cell surface and the cell rearrangement innately, it elucidated the importance of those factors.”

      - Fig6c: cell boundary colors are quite difficult to see. 

      The images were drawn by custom scripts, and those scripts do not implement a method to draw wide lines.

      - Title Table 1: "epitherila". 

      We corrected the typo.

      Reviewer #2 (Recommendations For The Authors): 

      The Authors have addressed most of my initial comments. In my opinion, the results could be better represented. Overall, the manuscript contains too many snapshots that are hard to read. I am sure the Authors could come up with a parameter that would tell the overall shape of the tissue and distinguish between a proper invagination and delamination. Then they could plot this parameter in a phase diagram using color plots to show how varying values of model parameters affects the shape. Presentation aside, I believe the manuscript will be a valuable piece of work that will be very useful for the community of computational tissue mechanics. 

      We agree with the comment.

      However, we could not make a suitable qualitative measurement method. For the phase diagrams, the measurement must be applicable to simulation results, otherwise each figure introduce a new measurement and a color representation would just redraw the snapshots but no comparison between the figures. So the different measurements would make the figures more difficult to read.

      The single measurement must distinguish the cell delamination by the increased surface contractility from the invagination by the modified surface elasticity and the supracellular contractile ring, even though the center cells were covered by the surrounding cells and lost contact with apical side extracellular medium in both cases.

      With the center of mass, the delaminated cells would return large values because they were moved basally. With the tissue basal surface curvature, it would not measure if the tissue apical surface was also curved or kept flat. If the phase diagram and interpretation of the simulation results do not match with each other, it would be misleading.

      A measurement meeting all these conditions was hardly designed.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 Evidence, reproducibility and clarity Summary: Bhatt et al. seek to define factors that influence H3.3 incorporation in the embryo. They test various hypotheses, pinpointing the nuclear/cytoplasmic ratio and Chk1, which affects cell cycle state, as influencers. The authors use a variety of clever Drosophila genetic manipulations in this comprehensive study. The data are presented well and conclusions reasonably drawn and not overblown. I have only minor comments to improve readability and clarity. I suggest two OPTIONAL experiments below. We thank the reviewer for their positive and helpful comments. Major comments: We found this manuscript well written and experimentally thorough, and the data are meticulously presented. We have one modification that we feel is essential to reader understanding and one experimental concern: The authors provide the photobleaching details in the methodology, but given how integral this measurement is to the conclusions of the paper, we feel that this should be addressed in clear prose in the body of the text. The authors explain briefly how nuclear export is assayed, but not import (line 99). Would help tremendously to clarify the methods here. This is especially important as import is again measured in Fig 4. This should also be clarified (also in the main body and not solely in the methods). We have added the following sentences to the main body of the text to clarify how photobleaching and import were assayed. “We note that these differences are not due to photobleaching as our measurements on imaged and unimaged embryos indicate that photobleaching is negligible under our experimental conditions (see methods, Figure S1G-H)” lines 98-101 and “Since nuclear export is effectively zero, we attribute the increase in total H3.3 over time solely to import and therefore the slope of total H3.3 over time corresponds to the import rate.” lines 111-113 Revision Plan In addition we have clarified how import was calculated to figure legends in Figure 5D (formerly 4D) and S1F which now read: “Initial slopes of nuclear import curves (change in total nuclear intensity over time for the first 5 timepoints) …” We also added the following explanation of how nuclear import rates were calculated to the methods section: “Import rates were calculated by using a linear regression for the total nuclear intensity over time for the first 5 timepoints in the nuclear import curves.” lines 471-473, methods If the embryos appeared "reasonably healthy" (line 113) after slbp RNAi, how do the authors know that the RNAi was effective, especially in THESE embryos, given siblings had clear and drastic phenotype? This is especially critical given that the authors find no effect on H3.3 incorporation after slbp RNAi (and presumably H3 reduction), but this result would also be observed if the slbp RNAi was just not effective in these embryos. We apologize for the confusion caused by our word choice. The “healthy” slbp-RNAi embryos had measurable phenotypes consistent with histone depletion that we have reported previously (Chari et al, 2019) including cell cycle elongation and early cell cycle arrest (Figure S4D). However, they did not have the catastrophic mitosis observed in more severely affected embryos. We agree with the reviewer that a concern of this experiment is that the less severely affected embryos likely have more remaining RD histones including H3. To address this we also tested H3.3 incorporation in the embryos that fail to progress to later cell cycles in the cycles that we could measure. Even in these more severely affected embryos we were not able to detect a change in H3.3 incorporation relative to controls (lines 240-243 and Fig S4B). Unfortunately, it is impossible to conduct the ideal experiment, which would be a complete removal of H3 since this is incompatible with oogenesis and embryo survival. To address this confusion we have added supplemental videos of control, moderately affected and severely affected SLBP-RNAi embryos as movies 3-5 and modified the text to read: “All embryos that survive through at least NC12, had elongated cell cycles in NC12 and 60% arrested in NC13 as reported previously indicating the effectiveness of the knockdown (Figure S4C, Movie 3-5)39. In these embryos, H3.3 incorporation is largely unaffected by the reduction in RD H3 (Figure 6B).” lines 236-240 Finally, to characterize the range of SLBP knockdown in the RNAi embryos we propose to do single embryo RT-qPCRs for SLBP mRNA for multiple individual embryos. This will provide a measure of the range knockdown that we observed in our H3.3 movies. Minor comments: Introduction: Revision Plan Consider using "replication dependent" (RD) rather than "replication coupled." Both are used in the field, but RD parallels RI ("replication independent"). We thank the reviewer for this suggestion. We have made the text edits to change "replication coupled" (RC) to "replication dependent" (RD) throughout the manuscript. Would help for clarity if the authors noted that H3 is equivalent to H3.2 in Drosophila. Also it is relevant that there are two H3.3 loci as the authors knock mutations into the H3.3A locus, but leave the H3.3B locus intact. The authors should clarify that there are two H3.3 genes in the Drosophila genome. We have changed the text as follows to increase clarity as suggested: “Similarly, we have previously shown that RD H3.2 (hereafter referred to as H3) is replaced by RI H3.3 during these same cycles, though the cause remains unclear29” lines 52-54 “There are ~100 copies of H3 in the Drosophila genome, but only 2 of H3.3 (H3.3A and H3.3B)26. To determine which factor controls nuclear availability and chromatin incorporation, we genetically engineered flies to express Dendra2-tagged H3/H3.3 chimeras at the endogenous H3.3A locus, keeping the H3.3B locus intact.” lines 127-131 Please add information and citation (line 58): H3.3 is required to complete development when H3.2 copy number is reduced (PMID: 37279945, McPherson et al. 2023) We have added the suggested information. The text now reads “Nonetheless, H3.3 is required to complete development when H3.2 copy number is reduced54.” lines 61-62 Results: Embryo genotype is unclear (line 147): Hira[ssm] haploid embryos inherit the Hira mutation maternally? Are Hira homozygous mothers crossed to homozygous fathers to generate these embryos, or are mothers heterozygous? This detail should be in the main text for clarity. The Hira mutants are maternal effect. We crossed homozygous Hirassm females to their hemizygous Hirassm or FM7C brothers. However, the genotype of the male is irrelevant since the Hira phenotype prevents sperm pronuclear fusion and therefore there is no paternal contribution to the embryonic genotype. We have clarified this point in the text: “We generated embryos lacking functional maternal Hira using Hirassm-185b (hereafter Hirassm) homozygous mothers which have a point mutation in the Hira locus57.” lines 160-162 Revision Plan Line 161: Shkl affects nuclear density, but it also appears from Fig 3 to affect nuclear size? The authors do not address this, but it should at least be mentioned. We thank the reviewer for the astute observation. More dense regions of the Shkl embryos do in fact have smaller nuclei. We believe that this is a direct result of the increased N/C ratio since nuclear size also falls during normal development as the N/C ratio increases. We have added a new figure 1 in which we more carefully describe the events of early embryogenesis in flies including a quantification of nuclear size and number in the pre-ZGA cell cycles (Figure 1C). We also note the correlation of nuclear size with nuclear density in the text: “During the pre-ZGA cycles (NC10-13), the maximum volume that each nucleus attains decreases in response to the doubling number of nuclei with each division (Figure 1C).” lines 86-87 “To test this, we employed mutants in the gene Shackleton (shkl) whose embryos have non-uniform nuclear densities and therefore a gradient of nuclear sizes across the anterior/posterior axis (Figure 3A-B, Movie 1-2)58.” lines 180-183 The authors often describe nuclear H3/H3.3 as chromatin incorporated, but these image-based methods do not distinguish between chromatin-incorporated and nuclear protein. To distinguish between chromatin incorporated and nuclear free histone we have exploited the fact that histones that are not incorporated into DNA freely diffuse away from the chromatin mass during mitosis while those that are bound into nucleosomes remain on chromatin during this time. In our previous study we showed that H3-Dendra2 that is photoconverted during mitosis remains stably associated with the mitotic chromatin through multiple cell cycles (Shindo and Amodeo, 2019) strengthening our use of this metric. To help clarify this point as well as other methodological details we have added a new Figure 1B which documents the time points at which we make various measurements within the lifecycle of the nucleus. We also edited the text to read: “We have previously shown that with each NC, the pool of free H3 in the nucleus is depleted and its levels on chromatin during mitosis decrease (Figure 1D, S1C-D)29. In contrast, H3.3 mitotic chromatin levels increase during the same cycles (Figure 1D, S1C-D)29.” lines 89-92 I very much appreciate how the authors laid out their model in Fig 3 and then used the same figure to explain which part of the model they are testing in Figs 4 and 5. This is not a critique- we can complement too! Thank you! Revision Plan OPTIONAL experimental suggestion: The experiments in Figure 4 and 5 are clever. One would expect that H3 levels might exhaust faster in embryos lacking all H3.2 histone genes (Gunesdogan, 2010, PMID: 20814422), allowing a comparison testing the H3 availability > H3.3 incorporation portion of the hypothesis without manipulating the N/C ratio. This might also result in a more consistent system than slbp RNAi (below). We thank the reviewer for the experimental suggestion. We also considered this experimental manipulation to decrease RD histone H3.2. We chose not to do this experiment because in the Gunesdogan paper they show that the zygotic HisC nulls have normal development until after NC14 (unlike the maternal SLBP-RNAi that we used) suggesting that maternal H3.2 supplies do not become limiting until after the stages under consideration in our paper. Maternal HisC-nulls are, of course, impossible to generate since histones are essential. O'Haren 2024 (PMID: 39661467) did not find increased Pol II at the HLB after zelda RNAi (line 227). Might also want to mention here that zelda RNAi does not result in changes to H3 at the mRNA level (O'Haren 2024), as that would confound the model. We thank the reviewer for the suggestion. We have removed the discussion of Pol II localization and replaced it with the information about histone mRNA : “zelda controls the transcription of the majority of Pol II genes during ZGA but disruption of zelda does not change RD histone mRNA levels67–70”. lines 249-251 Discussion: Should discuss results in context of McPherson et al. 2023 (PMID: 37279945), who showed that decreasing H3.2 gene numbers does not increase H3.3 production at the mRNA or protein levels. We expanded our discussion to include the following: “Given the fact that H3.3 pool size does not respond to H3 copy number in other Drosophila tissues,54 our results suggest that H3.3 incorporation dynamics are likely independent of H3 availability.” lines 278-280 The Shackleton mutation is a clever way to alter N/C ratio, but the authors should point out that it is difficult (impossible?) to directly and cleanly manipulate the N/C ratio. For example, Shkl mutants seem to also have various nuclear sizes. As discussed above, we think that nuclear size is a direct response to the N/C ratio. We have added the following sentence to the discussion as well as a citation to a paper which discusses how the N/C ratio might contribute to nuclear import in early embryos to the discussion: “This may be due to N/C ratio-dependent changes in nuclear import dynamics which may also contribute to the observed changes in nuclear size across the shkl embryo75.” lines 307-309 Revision Plan How is H3.3 expression controlled? Is it possible that H3.3 biosynthesis is affected in Chk1 mutants? To address this question we propose to perform RT-qPCR for H3.3A and H3.3B as well as Hira in the Chk1 mutant. Unfortunately, we do not have antibodies that reliably distinguish between H3 and H3.3 in our hands (despite literature reports), but we will also perform a pan-H3 immunostaining in the Chk1 embryos to measure how the total H3-type histone pool changes as a result of the loss of Chk1. Figures: While I appreciate the statistical summaries in tables, it is still helpful to display standard significance on the figures themselves. We have added statistical comparisons in Figure 3 (formerly Figure 2). We do not feel that it is appropriate to directly compare the intensities of the H3-Dendra2 construct expressed from the pseudo-endogenous locus to the H3.3 and chimeric proteins expressed from the H3.3A locus as they were imaged using different settings. Although we plot H3 on the same graph as the other proteins to allow for ease of comparison of their trends over time it is not appropriate to directly compare their normalized intensities which including statistical tests would encourage. We have added a note to the legend of Figure 1 explaining this which reads: “Note that statistical comparisons between the two Dendra2 constructs have not been done as they were expressed from different loci and imaged under different experimental settings.” Fig 1: A: Is it possible to label panels with the nuclear cycle? We have done this. B: Statistics required - caption suggests statistics are in Table S2, but why not put on graph? Please see the explanation above for why we do not feel that it is appropriate to perform this comparison. C/D: Would be helpful if authors could plot H3/H3.3 on same graph because what we really need to compare is NC13 between H3/H3.3 (and statistics between these curves) Please see the explanation above for why we do not feel that it is appropriate to perform this comparison. These curves can be directly compared within a construct and we can evaluate their trends over time, but the normalized values should not be directly compared in the way that would be encouraged by plotting the data as suggested. E: The comparison in the text is between H3.3 and H3, but only H3.3 data is shown. I realize that it is published prior, but the comparison in figure would be helpful. We have added the previously published values to the text. Revision Plan “These changes in nuclear import and incorporation result in a less complete loss of the free nuclear H3.3 pool (~70% free in NC11 to ~30% in NC13) than previously seen for H3 (~55% free in NC11 to ~20% in NC13)” lines 116-119 Fig 2: A: A very helpful figure. Slightly unclear that the H3 that is not Dendra tagged is at the H3.3 locus. Also unclear that the H3.3A-Dendra2 line exists and used as control, as is not shown in figure. Should show H3 and H3.3 controls (Figure S2) We have edited the figure to add Dendra2 to all of the constructs and made clear the location of each construct including adding the landing site for H3-Dendra2. We have also cited Figure S1 in the legend which contains a more detailed diagram of the integration strategy. F/H- As the comparison is between H3 and ASVM, it would help to combine these data onto the same graph. As the color is currently used unnecessarily to represent nuclear cycle, the authors could use their purple/pink color coding to represent H3/ASVM. We have combined these data onto a single graph as requested and changed the colors appropriately. We have not added statistical comparisons to this graph as we again believe that they would be inappropriate. In the legend of Fig 2 the authors write "in the absence of Hira." Technically, there is only a point mutation in Hira. It is not absent. Good catch! We have changed this to “in Hirassm mutants”. Fig 3: G: Please show WT for comparison. Can use data in Fig 3A. We have added the color-coded number of neighbor embryo representations for WT and Shkl embryos underneath the example embryo images in 4A-B (formerly 3A-B,G). Model in H is very helpful (complement)! Thank you. Fig 4: B/C/F/G: The authors use a point size scale to represent the number of nuclei, but the graphs are so overlaid that it is not particularly useful. Is there a better way to display this dimension? We chose to represent the data in this way so that the visual impact of each line is representative of the amount of data (number of nuclei in each bin) that underlies it. This helps to prevent sparsely populated outlier bins at the edges of the distribution from dominating the interpretation of the data. If the reviewer has a suggestion for a better way to visualize this information we would welcome their suggestion, but we cannot think of a better way at this time. D/E/H/I: What does "min volume" mean on the X axis? Since the uneven N/C ratio in the shkl embryos results in a wavy cell cycle pattern there is no single time point where we can calculate the number of neighbors for the whole embryo (since Revision Plan not all nuclei are in the same cell cycle at a given point). Therefore, we had to choose a criterion for when we would calculate the number of neighbors for each nucleus. We chose nuclear size as a proxy for nuclear age since nuclear size increases throughout interphase (see new figure 1B). So, the minimum volume is the newly formed nucleus in a given cell cycle. We also tested other timepoints for the number of neighbors (maximum nuclear volume, just before nuclear envelope breakdown and midway between these two points) and found similar results. We chose to use minimum volume in this paper because this is the time point when the nucleus is growing most quickly and nuclear import is at its highest. We have added the following explanation to the methods: “For shkl embryos, as the nuclear cycles are asynchronous, nuclear divisions start at different timepoints within the same cell cycle and the nuclear density changes as the neighboring nuclei divide. Therefore, the total intensity traces were aligned to match their minimum volumes (as shown in Figure 1B) to T0.” lines 485-488, methods And the following detail to the figure legend: “...plotted by the number of nuclear neighbors at their minimum nuclear volume…” Figure 5 legend We also added a depiction of the lifecycle of the nucleus in which we marked the minimum volume as the new Figure 1B. Fig 5: F: OPTIONAL Experimental request: Here I would like to see H3 as a control. This is a very good suggestion, and we are currently imaging H3-Dendra2 in the Chk1 background. However, our preliminary results suggest that there may be some synthetic early lethality between the tagged H3-Dendra2 and Chk1 since these embryos are much less healthy than H3.3-Dendra2 Chk1 embryos or Chk1 with other reporters. In addition, we have observed a much higher level of background fluorescence in this cross than in the H3-Dendra2 control. We are uncertain if we will be able to obtain usable data from this experiment, but will continue to try to find conditions that allow us to analyze this data. As an orthogonal approach to answer the question, we will perform immunostaining with a pan-H3 antibody in Chk1 mutant embryos to measure total H3 levels under these conditions. Since the majority of H3-type histone is H3.2 and we know how H3.3 changes, this staining will give us insight into the dynamics of H3 in Chk1 mutant embryos. Significance General assessment: Many long-standing mysteries surround zygotic genome activation, and here the authors tackle one: what are the signals to remodel the zygotic chromatin around ZGA? This is a tricky question to answer, as basically all manipulations done to the embryo Revision Plan have widespread effects on gene expression in general, confounding any conclusions. The authors use clever novel techniques to address the question. Using photoconvertible H3 and H3.3, they can compare the nuclear dynamics of these proteins after embryo manipulation. Their model is thorough and they address most aspects of it. The hurdle this study struggles to overcome is the same that all ZGA studies have, which is that manipulation of the embryo causes cascading disasters (for example, one cannot manipulate the nuclear:cytoplasmic ratio without also altering cell cycle timing), so it's challenging to attribute molecular phenotypes to a single cause. This doesn't diminish the utility of the study. Advance: The conceptual advance of this study is that it implicates the nuclear:cytoplasmic ratio and Chk1 in H3.3 incorporation. The authors suggest these factors influence cell cycle closing, which then affects H3.3 incorporation, although directly testing the granularity of this model is beyond the scope of the study. The authors also provide technical advancement in their use of measuring histone dynamics and using changes in the dynamics upon treatment as a useful readout. I envision this strategy (and the dendra transgenes) to be broadly useful in the cell cycle and developmental fields. Audience: The basic research presented in this study will likely attract colleagues from the cell cycle and embryogenesis fields. It has broader implications beyond Drosophila and even zygotic genome activation. This reviewer's expertise: Chromatin, Drosophila, Gene Regulation Reviewer #2 (Evidence, reproducibility and clarity (Required)): This manuscript investigates the regulation of H3.3 incorporation during zygotic genome activation (ZGA) in Drosophila, proposing that the nuclear-to-cytoplasmic (N/C) ratio plays a central role in this process. While the study is conceptually interesting, several concerns arise regarding the lack of proper control experiments and the clarity of the writing. The manuscript is difficult to follow due to vague descriptions, insufficient distinctions between established knowledge and novel findings, and a lack of rigorous statistical analyses. These issues need to be addressed before the study can be considered for publication. We thank the reviewers for their careful reading of this manuscript. We have sought to clarify the concerns regarding clarity through numerous text edits detailed below. We did include ANOVA analysis for all of the relevant statistical comparisons in the supplemental table. However, to increase clarity we have also added some statistical comparisons in the main figures. We note that we do not feel that it is appropriate to directly compare the intensities of the H3-Dendra2 construct expressed from the pseudo-endogenous locus to the H3.3 and chimeric proteins expressed from the H3.3A locus as they were imaged using different settings. Although we plot H3 on the same graph as the other proteins to allow for ease of comparison of their trends over time it is not appropriate to directly compare their normalized intensities which including statistical tests would encourage. We have added a note to the legend of the new Figure 1 Revision Plan explaining this which reads: “Note that statistical comparisons between the two Dendra2 constructs have not been done as they were expressed from different loci and imaged under different experimental settings.” Major Concerns The manuscript would benefit from a clearer introduction that explicitly distinguishes between previously known mechanisms of histone regulation during ZGA and the novel contributions of this study. Currently, the introduction lacks sufficient background on early embryonic chromatin regulation, making it difficult for readers unfamiliar with the field to grasp the significance of the findings. The authors should also be more precise when discussing the timing of ZGA. While they state that ZGA occurs after 13 nuclear divisions, it is well established that a minor wave of ZGA begins at nuclear cycle 7-8, whereas the major wave occurs after cycle 13. Clarifying this distinction will improve the manuscript's accessibility to a broader audience. We have added a new figure 1 to make the timing and nuclear behaviors of the embryo during ZGA in Drosophila more clear. We have also added information about how the chromatin changes during Drosophila ZGA in the following sentence: “ In Drosophila, these changes include refinement of nucleosomal positioning, partitioning of euchromatin and heterochromatin and formation of topologically associated domains20–22,24.” lines 39-41 We have clarified the major and minor waves of ZGA in the introduction and results by adding the following sentences to the introduction and results respectively: “In most organisms ZGA happens in multiple waves but the chromatin undergoes extensive remodeling to facilitate bulk transcription during the major wave of ZGA (hereafter referred to as ZGA)18–20,22–25..” lines 36-39 “In Drosophila, ZGA occurs in 2 waves. The minor wave starts as early as the 7th cycle, while major ZGA occurs after 13 rapid syncytial nuclear cycles (NCs) and is accompanied by cell cycle slowing and cellularization (Figure 1A-B).” lines 83-85 We hope that these changes help to reduce confusion and make the paper more accessible. However, we are happy to add additional information if the reviewer can provide specific points which require further attention. One of the primary weaknesses of this study is the lack of adequate control experiments. In Figure 1, the authors suggest that the levels of H3 and H3.3 are influenced by the N/C ratio, but Revision Plan it is unclear whether transcription itself plays a role in these dynamics. To properly test this, RNA-seq or Western blot analyses should be performed at nuclear cycles 10 and 13-14 to compare the levels of newly transcribed H3 or H3.3 against maternally supplied histones. Without such data, the authors cannot rule out transcriptional regulation as a contributing factor. In the pre-ZGA cell cycles the vast majority of protein including histones is maternally loaded. Gunesdogan et al. (2010) showed that the zygotic RD histone cluster nulls survive past NC14 (well past ZGA) with no discernible defects indicating that maternal RD histone supplies are sufficient for normal development during the cell cycles under consideration. Therefore, new transcription of replication coupled histones is not needed for apparently normal development during this period. Moreover, we have done the western blot analysis using a Pan-H3 antibody as suggested by the reviewer in our previously published paper (Shindo and Amodeo, 2019 supplemental figure S3A-B) and found that total H3-type histone proteins only increase moderately during this period of development, nowhere near the rate of the nuclear doublings. We have added the following sentence to clarify this point. “These divisions are driven by maternally provided components and the total amount of H3 type histones do not keep up with the pace of new DNA produced29.” lines 88-89 We have also previously done RNA-seq on wild-type embryos (and those with altered maternal histone levels) (Chari et al 2019). In this RNA-seq (like most RNA-seq in flies) we used poly-A selection and therefore cannot detect the RD histone mRNAs (which have a stem-loop instead of a poly-A tail). We have plotted the mRNA concentrations for both H3.3 variants from that dataset below for the reviewers reference (we have not included this in the revised manuscript). The total H3.3 mRNA levels are nearly constant from egg laying (NC0- these are from unfertilized embryos) until after ZGA (NC14). These data combined with the westerns discussed above give us confidence that what we are observing is the partitioning of large pools of maternally provided histones with only a relatively small contribution of new histone synthesis. Revision Plan In Figure 2, the manuscript introduces chimeric embryos expressing modified histone variants, but their developmental viability is not addressed. It is essential to determine whether these embryos survive and whether they exhibit any phenotypic consequences such as altered hatching rates, defects in nuclear division, or developmental arrest. Tagging histones is often deleterious to organismal health. In Drosophila there are two H3.3 loci (H3.3A and H3.3B). In all of our chimera experiments we have left the H3.3B and one copy of the H3.3A locus unperturbed to provide a supply of untagged H3.3. This allows us to study H3.3 and chimera dynamics without compromising organism health. All of our chimeras are viable and fertile with no obvious morphological defects. We have added the following sentences to the text to clarify this point: “There are ~100 copies of H3 in the Drosophila genome, but only 2 of H3.3 (H3.3A and H3.3B)26. To determine which factor controls nuclear availability and chromatin incorporation, we genetically engineered flies to express Dendra2-tagged H3/H3.3 chimeras at the endogenous H3.3A locus, keeping the H3.3B locus intact….These chimeras were all viable and fertile. ” lines 127-131, 136 In addition we propose performing hatch rate assays for embryos from the chimeric embryos of S31A, SVM and ASVM to assess if there is any decrease in fecundity due to the presence of the chimeras. Moreover, given that H3.3 is associated with actively transcribed genes, an RNA-seq analysis of chimeric embryos should be included to assess transcriptional changes linked to H3.3 incorporation. This is an excellent suggestion and will definitely be a future project for the lab. However, to do this experiment correctly we will need to generate untagged chimeric lines that will (hopefully) allow for the full replacement of H3.3 with the chimeric histones instead of a single copy among 4. This is beyond the scope of this paper. Figures 3 and 4 raise additional concerns about whether histone cluster transcription is altered in shkl mutant embryos. The authors propose that the shkl mutation affects the N/C ratio, yet it remains unclear whether this leads to changes in the transcription of histone clusters. Furthermore, since HIRA is a key chaperone for H3.3, it would be important to assess whether its levels or function are compromised in shkl mutants. To address these gaps, RT-qPCR or RNA-seq should be performed to quantify histone cluster transcription, and Western blot analysis should be used to determine if HIRA protein levels are affected. The changes in the N/C ratio that are observed in the shkl mutant are within SINGLE embryo (differences in nuclear spacing). In these experiments we are comparing nuclei within a common cytoplasm that have different local nuclear densities (N/C ratios). Therefore, if Shkl Revision Plan were somehow affecting the transcription of histones or their chaperones we would expect all of the nuclei within the same mutant embryo to be equally affected since they are genetically identical and share a common cytoplasm. We do not directly compare the behavior of shkl embryos to wildtype except to demonstrate that there is no positional effect on the import of H3 and H3.3 across the length of the embryo in wildtype. To clarify our experimental system for these experiments we have added additional panels to Figure 4A and B that depict the number of neighbors for both control and Shkl embryos. Nonetheless, to address the reviewer’s concern that shkl may change the amount of H3 present in the embryo, we propose to conduct a western blot comparison of wildtype and shkl embryos using a pan-H3 antibody. There are no tools (antibodies or fluorescently tagged proteins) to assess HIRA protein levels in Drosophila. We therefore propose to perform RT-qPCR for HIRA in wildtype and shkl embryos. A similar issue arises in Figure 5, where the authors claim that H3.3 incorporation is dependent on cell cycle state but do not sufficiently test whether this is linked to changes in HIRA levels. Given the importance of HIRA in H3.3 deposition, its levels should be examined in Slbp, Zelda, and Chk1 RNAi embryos to verify whether changes in H3.3 incorporation correlate with HIRA function. Without this, it is difficult to conclude that the observed effects are strictly due to cell cycle regulation rather than histone chaperone dynamics. Since H3.3 incorporation is unaffected in the Slbp and Zelda-RNAi lines there is no reason to suspect a change in HIRA function. There are no available tools (antibodies or fluorescently tagged proteins) to directly measure HIRA protein in Drosophila. To test if changes in HIRA loading might contribute to the decreased H3.3 incorporation in the Chk1 mutant we propose to perform RT-qPCR for HIRA in wildtype and Chk1 embryos. Several figures require additional statistical analyses to support the claims made. In Figure 1B, statistical testing should be included to validate the reported differences. Figure 1C-D states that "H3.3 accumulation reduces more slowly than H3," yet there is no quantitative comparison to substantiate this claim. Similarly, Figure 1E presents the conclusion that "These changes in nuclear import and incorporation result in a less dramatic loss of the free nuclear H3.3 pool than previously seen for H3," despite the fact that H3 data are not included in this figure. The conclusions drawn from these data need to be supported with appropriate statistical comparisons and more precise descriptions of what is being measured. For Figure 1B (now 2B) we do not feel that it is appropriate to directly compare the intensities of the H3-Dendra2 construct expressed from the pseudo-endogenous locus to the H3.3 and chimeric proteins expressed from the H3.3A locus as they were imaged using different settings and therefore we do not feel that direct statistical tests are appropriate. Rather, we plot the two histones on the same graph normalized to their own NC10 values so that the trend in their decrease over time may be compared. The statistical tests for H3.3 compared to the chimeras which were originally in the supplemental table have been added to Figure 3 (formerly figure 2). Revision Plan It is important to note that in this directly comparable situation the ASVM mutant (whose trends closely mirror H3) is highly statistically distinct from H3.3. We have added a note to the legend of the new Figure 1 explaining this which reads: “Note that statistical comparisons between the two Dendra2 constructs have not been done as they were expressed from different loci and imaged under different experimental settings.” For Figure 1C-D (now 2C-D) we have removed this claim from the text. We were referring to the plateau in nuclear import for H3 that is less dramatic in H3.3, but this is more carefully discussed in the next paragraph and its addition at that point generated confusion. The text now reads: “To further assess how nuclear uptake dynamics changed during these cycles, we tracked total nuclear H3 and H3.3 in each cycle (Figure 2C-D). Since nuclear export is effectively zero, we attribute the increase in total H3.3 over time solely to import and therefore the slope of total H3.3 over time corresponds to the import rate. Though the change in initial import rates between NC10 and NC13 are similar between the two histones (Figure S1F), we observed a notable difference in their behavior in NC13. H3 nuclear accumulation plateaus ~5 minutes into NC13, whereas H3.3 nuclear accumulation merely slows (Figure 2C-D).” lines 109-116 For Figure 1E (now 2E), to address the difference between H3 and H3.3 free pools we have added the previously published values to the text and changed the phrasing from “less dramatic” to “less complete”. The sentence now reads: “These changes in nuclear import and incorporation result in a less complete loss of the free nuclear H3.3 pool (~70% free in NC11 to ~30% in NC13) than previously seen for H3 (~55% free in NC11 to ~20% in NC13)” lines 116-119 Figure 2 presents additional concerns regarding data interpretation. The comparisons between H3.3 and H3.3S31A to H3 and H3.3SVM/ASVM lack statistical analysis, making it difficult to determine the significance of the observed differences. As discussed above, it is not appropriate to directly compare H3 to H3.3 and the chimeras at the H3.3A locus since they are expressed from different promoters and imaged with different settings. The ANOVA comparisons between all of the constructs in the H3.3A locus can be found in the supplemental table. We have also added the statistical significance between each chimera and H3.3 within a cell cycle to the figure. Including the full set of comparisons for all genotypes and timepoints makes the figure nearly impossible to interpret, but they remain available in the supplemental table. Revision Plan The disappearance of H3.3 from mitotic chromosomes in Figure 2E is also not explained. If this phenomenon is functionally relevant, the authors should provide a mechanistic interpretation, or at the very least, discuss potential explanations in the text. In Figures 2F-H, the reasoning behind comparing the nuclear intensity of H3.3 to H3 in Hira mutants is unclear. To properly assess the role of HIRA in H3.3 chromatin accumulation, a more appropriate comparison would be between wild-type H3.3 and H3.3 levels in Hira knockdown embryos. As explained in the text and depicted in Figure 3D (formerly 2D), the HIRAssm mutant is a point mutation that prevents observable H3.3 chromatin incorporation, but not nuclear import. This is what is depicted in Figure 3E (formerly 2E). The loss of H3.3 from mitotic chromatin is due to the inability to incorporate H3.3 into chromatin as expected for a HIRA mutant. We have edited the figure 3 legend to make this more clear. It now reads: “Hirassm mutation nearly abolishes the observable H3.3 on mitotic chromatin (E).” In Figure 3F (formerly 2F-H) we ask what happens to H3 chromatin incorporation when there is almost no incorporation of H3.3 due to the HIRA mutation. In this mutant there is so little H3.3 incorporation that we cannot quantify H3.3 levels on mitotic chromatin (see the new Figure 1B for the stage where chromatin levels are quantified). This experiment was done to test if H3.3ASVM (expressed at the H3.3A locus) is incorporated into chromatin in embryos lacking the function of H3.3’s canonical chaperone. We have edited the text to make this more clear: “Since the chromatin incorporation of the H3/H3.3 chimeras appears to depend on their chaperone binding sites, we asked if impairing the canonical H3.3 chaperone, Hira, would affect the incorporation of H3.3ASVMexpressed from the H3.3A locus.”lines 158-160 A broader concern is that the authors only test HIRA as a histone chaperone but do not consider alternative chaperones that could influence H3.3 deposition. Since multiple chaperone systems regulate histone incorporation, it would strengthen the conclusions if additional chaperones were tested. Since HIRAssm reduced H3.3-Dendra2 incorporation to nearly undetectable levels (Figure 3E) we believe that it is the primary H3.3 incorporation pathway during this period of development. Therefore, we believe that removing HIRA function is a sufficient test of the dependance of H3.3ASVM on the major H3.3 chaperone at this time. Although it would be interesting to fully map how all H3 and H3.3 chimera constructs respond to all histone chaperone pathways, we believe that this is beyond the scope of this manuscript. Additionally, the manuscript does not include any validation of the RNAi knockdown efficiencies used throughout the study. This raises concerns about whether the observed phenotypes are truly due to target gene depletion or off-target effects. RT-qPCR or Western blot analyses should be performed to confirm knockdown efficiency. Revision Plan Both the Zelda and slbp-RNAi lines used for knockdowns have been used and validated in the early fly embryo in previously published works ((Yamada et al., 2019), (Duan et al., 2021), (O’Haren et al., 2025), (Chari et al, 2019)) and the phenotypes that we observe in our embryos are consistent with the published data including altered cell cycle durations (Figure S4C) and lack of cellularization/gastrulation. We note that the zelda RNAi phenotypes are also highly consistent with the effects of Zelda germline clones. To validate that slbp-RNAi knocks down histones we included a western blot for Pan-H3 in slbp-RNAi embryos that demonstrates a large effect on total H3 levels (Figure S4A). To further demonstrate the phenotypic effects of the slbp-RNAi we have added supplemental movies (Videos 4 and 5). To fully characterize the RNAi efficiency under our conditions we propose to perform RT-qPCR for slbp in slbp-RNAi and Zelda in Zelda-RNAi compared to control (w) RNAi embryos. Finally, the section discussing "H3.3 incorporation depends on cell cycle state, but not cell cycle duration" is unclear. The term "cell cycle state" is vague and should be explicitly defined. Does this refer to a specific phase of the cell cycle, changes in chromatin accessibility, or another regulatory mechanism? The term cell cycle state is deliberately vague. We know that Chk1 regulates many aspects of cell cycle progression and cannot determine from our data which aspect(s) of cell cycle regulation by Chk1 are important for H3.3 incorporation. Our data indicate that it is not simply interphase duration as we originally hypothesized. We have expanded our discussion section to underscore some aspects of Chk1 regulation that we speculate may be responsible for the change in H3.3 behavior. “Chk1 mutants decrease H3.3 incorporation even before the cell cycle is significantly slowed. Cell cycle slowing has been previously reported to regulate the incorporation of other histone variants in Drosophila15. However, our results indicate that cell cycle state and not duration per se, regulates H3.3 incorporation. In most cell types, the primary role of Chk1 is to stall the cell cycle to protect chromatin in response to DNA damage. Therefore, Chk1 activity directly or indirectly affects the chromatin state in a variety of ways. We speculate that Chk1’s role in regulating origin firing may be particularly important in this context73,74. Late replicating regions and heterochromatin first emerge during ZGA, and Chk1 mutants proceed into mitosis before the chromatin is fully replicated22,23,25,71. Since H3.3 is often associated with heterochromatin, the decreased H3.3 incorporation in Chk1 mutants may be an indirect result of increased origin firing and decreased heterochromatin formation73,74.” lines 287-298 Reviewer #2 (Significance (Required)): This manuscript investigates the regulation of H3.3 incorporation during zygotic genome Revision Plan activation (ZGA) in Drosophila, proposing that the nuclear-to-cytoplasmic (N/C) ratio plays a central role in this process. While the study is conceptually interesting, several concerns arise regarding the lack of proper control experiments and the clarity of the writing. The manuscript is difficult to follow due to vague descriptions, insufficient distinctions between established knowledge and novel findings, and a lack of rigorous statistical analyses. These issues need to be addressed before the study can be considered for publication. Reviewer #3 (Evidence, reproducibility and clarity (Required)): Summary: Based on previous findings of the changing ratios of histone H3 to its variant H3.3, the authors test how H3.3 incorporation into chromatin is regulated for ZGA. They demonstrate here that H3 nuclear availability drops and replacement by H3.3 relies on chaperone binding, though not on its typical chaperone Hira. Furthermore, they show that nuclear-cytoplasmic (N/C) ratios can influence this histone exchange likely by influencing cell cycle state. We thank the reviewer for their thoughtful comments. We note that our data ARE consistent with H3.3 incorporation depending on Hira through its chaperone binding site. Major comments: 1. The claims are largely supported by the data but I think a couple more experiments could help bolster the claims about cell cycle and chk1 regulation. a. Creating a phosphomimetic of the chk1 phosphorylation site on H3.3 to see if it can overcome the defects seen in chk1 mutants b. Assessing heterochromatin of embryos without chk1 (or ASVM mutants) for example, by looking at H3K9me3 levels The first experiments could take several months if the flies haven't already been generated by the authors but the second should be quicker. a. This is an excellent experimental suggestion which is bolstered by the fact that in frogs H3.3 S31A cannot rescue H3.3 morpholino during gastrulation, but H3.3S31D can (Sitbon et al, 2020). However, to correctly conduct this experiment would require generating and validating multiple additional endogenous H3.3 replacement lines, likely without a fluorescent tag as they can interfere with histone rescue constructs in most species. As the reviewer notes, this would take several months of work (we have not generated the critical flies yet) and may not yield a satisfying answer since there are reports that H3.3 may be dispensable in flies aside from as a source of H3-type histone outside of S-phase (Hödl and Bassler, 2012). While we hope to continue experiments along these lines in the future we feel that this is beyond the scope of the current manuscript. Revision Plan b. To address this we propose to stain for H3K9me3 in wildtype and Chk1-/- embryos. Since the ASVM line is not a full replacement of all H3.3 we think that staining for H3K9me3 in this line is unlikely to yield a detectable difference. 2. It would also be interesting to see what the health of the flies with some mutations in this paper are beyond the embryo stage if they are viable (e.g., development to adulthood, fertility etc.) a. the SVM, ASVM mutations b. the hira + ASVM mutations The authors might already have this data but if not they have the flies and it shouldn't take long to get these data. a. To address this concern we propose to conduct hatch rate assays for embryos from the Dendra tagged H3.3, S31A, SVM, ASVM flies. However, we do note that in our experiments only one copy of the H3.3A locus was mutated and tagged with Dendra2 leaving one copy of H3.3A and both copies of H3.3B untouched to ensure normal development as tagging all copies of histone genes can lead to lethality. b. All Hira mutants develop as haploids due to the inability to decondense the sperm chromatin (which is dependent on Hira). This leads to one extra division to restore the N/C ratio prior to cell cycle slowing and ZGA. These embryos go on to gastralate and die late in development after cuticle formation (presumably due to their decreased ploidy) (Loppin et al., 2000). The addition of ASVM into the Hira background does not appear to rescue the ploidy defect as these embryos also undergo the extra division (Figure 3H). We are therefore confident that these embryos will not hatch. We have added the information about the development of Hira mutant to the text as follow: “These embryos develop as haploids and undergo one additional syncytial division before ZGA (NC14). Hirassmembryos develop otherwise phenotypically normally through organogenesis and cuticle formation, but die before hatching57.” lines 164-167 3. In the discussion section, can the authors speculate on how they think H3.3 ASVM is getting incorporated if not through Hira. Are there other known H3 variant chaperones, or can the core histone chaperone substitute? We have expanded our discussion to include the the following: “In the case of the chimeric histone proteins the incorporation behavior was dependent on the chaperone binding site. For example, H3.3ASVM import and incorporation was similar to H3 in control embryos and H3.3ASVM was still incorporated in Hirassm mutants. This is consistent with the chaperone binding site determining the chromatin incorporation pathway and suggests that H3.3ASVM likely interacts with H3 chaperones such as Caf1.” lines 280-285 Revision Plan Minor comments: While the paper is well written, I found the figures very confusing and difficult to interpret. Comments here are meant to make it easier to interpret. 1. Fig 1 and most of the paper would benefit from a schematic of early embryo transitions labelled with time and stages of cell cycle to make interpreting data easier This is an excellent suggestion! We have added a new figure (Figure 1) to explain both the biological system and the way that we measured many properties in this paper. 2. Fig 1- same green color is used for nuclear cycle 12 and for H3.3 making it confusing when reading graphs. Please check other figures where there is a similar use of color for two different things We have changed the colors so that they are more distinct. 3. Fig 1C,D might benefit more from being split up into 3 graphs by cell cycle with H3 and H3.3 plotted on the same graphs rather than the way it is now We do not feel that it is appropriate to directly compare the intensities of the H3-Dendra2 construct expressed from the pseudo-endogenous locus to the H3.3 and chimeric proteins expressed from the H3.3A locus as they were imaged using different settings. These curves can be directly compared within a construct and we can evaluate their trends over time, but the normalized values should not be directly compared in the way that would be encouraged by plotting the data as suggested. 4. Line 130-133: can they also comment on the different between SVM and ASVM. It seems like SVM might be even worse than ASVM (Fig 2C). Is this related to chk1 phosphorylation? We think that this is a property of the mixed chimeras since S31A is also imported less efficiently than H3.3 (though we cannot be sure without further experiments). We have added this explanation to the text: “We speculate that chimeric histone proteins (H3.3S31A and H3.3SVM) are not as efficiently handled by the chaperone machinery as species that are normally found in the organism including H3.3ASVM which is protein-identical to H3.” lines 150-152 5. Fig 2F-G: It is very difficult to compare between histones when they are on different graphs, please consider putting H3, H3.3 and H3.3ASVM in a hirassm background on the same graph. We have done this in the new Figure 3F. Revision Plan 6. Fig 3- move G to become A and then have A and B. We have restructured this figure to include the nuclear density map of control in response to a comment from Reviewer 1. Although not exactly what the reviewer has envisioned, we hope that this adds clarity to the figure. 7. The initial slope graphs in 4D, E, H and I are not easy to understand and would benefit from an explanation in the legend. We have edited the legend of Figure 5D (formerly 4D) and S1F which now read: “Initial slopes of nuclear import curves (change in total nuclear intensity over time for the first 5 timepoints) …” In addition we have updated the methods to include: “Import rates were calculated by using a linear regression for the total nuclear intensity over time for the first 5 timepoints in the nuclear import curves.” lines 471-473, methods Reviewer #3 (Significance (Required)): This paper addresses an important and understudied question- how do histones and their variants mediate chromatin regulation in the early embryo before zygotic genome activation? The authors follow up on some previous findings and provide new insights using clever genetics and cell biology in Drosophila melanogaster. However, the authors do not directly look at chromatin structural changes using existing genomic tools. This may be beyond the scope of this work but would make for a nice addition to strengthen their claims if they can implement these chromatin accessibility techniques in the early embryo. Histones affect a majority of biological processes and understanding their role in the early embryo is key to understanding development. I believe this study applies to a broad audience interested in basic science. However, I do think the authors might benefit from a more broad discussion of their results to attract a broad readership.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This important study proposes a framework to understand and predict generalization in visual perceptual learning in humans based on form invariants. Using behavioral experiments in humans and by training deep networks, the authors offer evidence that the presence of stable invariants in a task leads to faster learning. However, this interpretation is promising but incomplete. It can be strengthened through clearer theoretical justification, additional experiments, and by rejecting alternate explanations.

      We sincerely thank the editors and reviewers for their thoughtful feedback and constructive comments on our study. We have taken significant steps to address the points raised, particularly the concern regarding the incomplete interpretation of our findings.

      In response to Reviewer #1, we have included long-term learning curves from the human experiments to provide a clearer demonstration of the differences in learning rates across invariants, and have incorporated a new experiment to investigate location generalization within each invariant stability level. These new findings have shifted the focus of our interpretation from learning rates to the generalization patterns both within and across invariants, which, alongside the observed weight changes across DNN layers, support our proposed framework based on the Klein hierarchy of geometries and the Reverse Hierarchy Theory (RHT).

      We have also worked to clarify the conceptual foundation of our study and strengthen the theoretical interpretation of our results in light of the concerns raised by Reviewers #1 and #2. We have further expanded the discussion linking our findings to previous work on VPL generalization, and addressed alternative explanations raised by Reviewers #1.

      Reviewer #1 (Public Review):

      Summary:

      Visual Perceptual Learning (VPL) results in varying degrees of generalization to tasks or stimuli not seen during training. The question of which stimulus or task features predict whether learning will transfer to a different perceptual task has long been central in the field of perceptual learning, with numerous theories proposed to address it. This paper introduces a novel framework for understanding generalization in VPL, focusing on the form invariants of the training stimulus. Contrary to a previously proposed theory that task difficulty predicts the extent of generalization - suggesting that more challenging tasks yield less transfer to other tasks or stimuli - this paper offers an alternative perspective. It introduces the concept of task invariants and investigates how the structural stability of these invariants affects VPL and its generalization. The study finds that tasks with high-stability invariants are learned more quickly. However, training with low-stability invariants leads to greater generalization to tasks with higher stability, but not the reverse. This indicates that, at least based on the experiments in this paper, an easier training task results in less generalization, challenging previous theories that focus on task difficulty (or precision). Instead, this paper posits that the structural stability of stimulus or task invariants is the key factor in explaining VPL generalization across different tasks

      Strengths:

      - The paper effectively demonstrates that the difficulty of a perceptual task does not necessarily correlate with its learning generalization to other tasks, challenging previous theories in the field of Visual Perceptual Learning. Instead, it proposes a significant and novel approach, suggesting that the form invariants of training stimuli are more reliable predictors of learning generalization. The results consistently bolster this theory, underlining the role of invariant stability in forecasting the extent of VPL generalization across different tasks.

      - The experiments conducted in the study are thoughtfully designed and provide robust support for the central claim about the significance of form invariants in VPL generalization.

      Weaknesses:

      - The paper assumes a considerable familiarity with the Erlangen program and the definitions of invariants and their structural stability, potentially alienating readers who are not versed in these concepts. This assumption may hinder the understanding of the paper's theoretical rationale and the selection of stimuli for the experiments, particularly for those unfamiliar with the Erlangen program's application in psychophysics. A brief introduction to these key concepts would greatly enhance the paper's accessibility. The justification for the chosen stimuli and the design of the three experiments could be more thoroughly articulated.

      We appreciate your feedback regarding the accessibility of our paper, particularly concerning the Erlangen Program and its associated concepts. We have revised the manuscript to include a more detailed introduction to Klein’s Erlangen Program in the second paragraph of Introduction section. It provides clear descriptions and illustrative examples for the three invariants within the Klein hierarchy of geometries, as well as the nested relationships among them (see revised Figure 1). We believe this addition will enhance the accessibility of the theoretical framework for readers who may not be familiar with these concepts.

      In the revised manuscript, we have also expanded the descriptions of the stimuli and experimental design for psychophysics experiments. These additions aim to clarify the rationale behind our choices, ensuring that readers can fully understand the connection between our theoretical framework and experimental approach.

      - The paper does not clearly articulate how its proposed theory can be integrated with existing observations in the field of VPL. While it acknowledges previous theories on VPL generalization, the paper falls short in explaining how its framework might apply to classical tasks and stimuli that have been widely used in the VPL literature, such as orientation or motion discrimination with Gabors, vernier acuity, etc. It also does not provide insight into the application of this framework to more naturalistic tasks or stimuli. If the stability of invariants is a key factor in predicting a task's generalization potential, the paper should elucidate how to define the stability of new stimuli or tasks. This issue ties back to the earlier mentioned weakness: namely, the absence of a clear explanation of the Erlangen program and its relevant concepts.

      We thank you for highlighting the necessary to integrate our proposed framework with existing observations in VPL research.

      Prior VPL studies have not concurrently examined multiple geometrical invariants with varying stability levels, making direct comparisons challenging. However, we have identified tasks from the literature that align with specific invariants. For example, orientation discrimination with Gabors (e.g., Dosher & Lu, 2005) and texture discrimination task (e.g., Wang et al., 2016) involve Euclidean invariants, and circle versus square discrimination (e.g., Kraft et al., 2010) involves affine invariants. On the other hand, our framework does not apply to studies using stimuli that are unrelated to geometric transformations, such as motion discrimination with Gabors or random dots, depth discrimination, vernier acuity, spatial frequency discrimination, contrast detection or discrimination.

      By focusing on geometrical properties of stimuli, our work addresses a gap in the field and introduces a novel approach to studying VPL through the lens of invariant extraction, echoing Gibson’s ecological approach to perceptual learning.

      In the revised manuscript, we have added a clearer explanation of Klein’s Erlangen Program, including the definition of geometrical invariants and their stability (the second paragraph in Introduction section). Additionally, we have expanded the Discussion section to draw more explicit comparisons between our results and previous studies on VPL generalization, highlighting both similarities and differences, as well as potential shared mechanisms.

      - The paper does not convincingly establish the necessity of its introduced concept of invariant stability for interpreting the presented data. For instance, consider an alternative explanation: performing in the collinearity task requires orientation invariance. Therefore, it's straightforward that learning the collinearity task doesn't aid in performing the other two tasks (parallelism and orientation), which do require orientation estimation. Interestingly, orientation invariance is more characteristic of higher visual areas, which, consistent with the Reverse Hierarchy Theory, are engaged more rapidly in learning compared to lower visual areas. This simpler explanation, grounded in established concepts of VPL and the tuning properties of neurons across the visual cortex, can account for the observed effects, at least in one scenario. This approach has previously been used/proposed to explain VPL generalization, as seen in (Chowdhury and DeAngelis, Neuron, 2008), (Liu and Pack, Neuron, 2017), and (Bakhtiari et al., JoV, 2020). The question then is: how does the concept of invariant stability provide additional insights beyond this simpler explanation?

      We appreciate your thoughtful alternative explanation. While this explanation accounts for why learning the collinearity task does not transfer to the orientation task—which requires orientation estimation—it does not explain why learning the collinearity task fails to transfer to the parallelism task, which requires orientation invariance rather than orientation estimation. Instead, the asymmetric transfer observed in our study could be perfectly explained by incorporating the framework of the Klein hierarchy of geometries.

      According to the Klein hierarchy, invariants with higher stability are more perceptually salient and detectable, and they are nested hierarchically, with higher-stability invariants encompassing lower-stability invariants (as clarified in the revised Introduction). In our invariant discrimination tasks, participants need only extract and utilize the most stable invariant to differentiate stimuli, optimizing their ability to discriminate that invariant while leaving the less stable invariants unoptimized.

      For example:

      • In the collinearity task, participants extract the most stable invariant, collinearity, to perform the task. Although the stimuli also contain differences in parallelism and orientation, these lower-stability invariants are not utilized or optimized during the task.

      • In the parallelism task, participants optimize their sensitivity to parallelism, the highest-stability invariant available in this task, while orientation, a lower-stability invariant, remains irrelevant and unoptimized.

      • In the orientation task, participants can only rely on differences in orientation to complete the task. Thus, the least stable invariant, orientation, is extracted and optimized.

      This hierarchical process explains why training on a higher-stability invariant (e.g., collinearity) does not transfer to tasks involving lower-stability invariants (e.g., parallelism or orientation). Conversely, tasks involving lower-stability invariants (e.g., orientation) can aid in tasks requiring higher-stability invariants, as these higher-stability invariants inherently encompass the lower ones, resulting in a low-to-high-stability transfer effect.

      This unique perspective underscores the importance of invariant stability in understanding generalization in VPL, complementing and extending existing theories such as the Reverse Hierarchy Theory. To help the reader understand our proposed theory, we revised the Introduction and Discussion section.

      - While the paper discusses the transfer of learning between tasks with varying levels of invariant stability, the mechanism of this transfer within each invariant condition remains unclear. A more detailed analysis would involve keeping the invariant's stability constant while altering a feature of the stimulus in the test condition. For example, in the VPL literature, one of the primary methods for testing generalization is examining transfer to a new stimulus location. The paper does not address the expected outcomes of location transfer in relation to the stability of the invariant. Moreover, in the affine and Euclidean conditions one could maintain consistent orientations for the distractors and targets during training, then switch them in the testing phase to assess transfer within the same level of invariant structural stability.

      We thank you for this good suggestion. Using one of the primary methods for test generalization, we performed a new psychophysics experiment to specifically examine how VPL generalizes to a new test location within a single invariant stability level (see Experiment 3 in the revised manuscript). The results show that the collinearity task exhibits greater location generalization compared to the parallelism task. This finding suggests the involvement of higher-order visual areas during high-stability invariant training, aligning with our theoretical framework based on the Reverse Hierarchy Theory (RHT). We attribute the unexpected location generalization observed in the orientation task to an additional requirement for spatial integration in its specific experimental design (as explained in the revised Results section “Location generalization within each invariant”). Moreover, based on previous VPL studies that have reported location specificity in orientation discrimination (Fiorentini and Berardi, 1980; Schoups et al., 1995; Shiu and Pashler, 1992), along with the substantial weight changes observed in lower layers of DNNs trained on the orientation task (Figure 9B, C), we infer that under a more controlled experimental design—such as the two-interval, two-alternative forced choice (2I2AFC) task employed in DNN simulations, where spatial integration is not required for any of the three invariants—the plasticity for orientation tasks would more likely occur in lower-order areas.

      In the revised manuscript, we have discussed how these findings, together with the observed asymmetric transfer across invariants and the distribution of learning across DNN layers, collectively reveal the neural mechanisms underlying VPL of geometrical invariants.

      - In the section detailing the modeling experiment using deep neural networks (DNN), the takeaway was unclear. While it was interesting to observe that the DNN exhibited a generalization pattern across conditions similar to that seen in the human experiments, the claim made in the abstract and introduction that the model provides a 'mechanistic' explanation for the phenomenon seems overstated. The pattern of weight changes across layers, as depicted in Figure 7, does not conclusively explain the observed variability in generalizations. Furthermore, the substantial weight change observed in the first two layers during the orientation discrimination task is somewhat counterintuitive. Given that neurons in early layers typically have smaller receptive fields and narrower tunings, one would expect this to result in less transfer, not more.

      We appreciate your suggestion regarding the clarity of DNN modeling. While the DNN employed in our study recapitulates several known behavioral and physiological VPL effects (Manenti et al., 2023; Wenliang and Seitz, 2018), we acknowledge that the claim in the abstract and introduction suggesting the model provides a ‘mechanistic’ explanation for the phenomenon may have been overstated. The DNN serves primarily as a tool to generate important predictions about the underlying neural substrates and provides a promising testbed for investigating learning-related plasticity in the visual hierarchy.

      In the revised manuscript, we have made significant improvements in explaining the weight change across DNN layers and its implication for understanding “when” and “where” learning occurs in the visual hierarchy. Specifically, in the Results ("Distribution of learning across layers") and Discussion sections, we have provided a more explicit explanation of the weight change across layers, emphasizing its implications for understanding the observed variability in generalizations and the underlying neural mechanisms.

      Regarding the substantial weight change observed in the first two layers during the orientation discrimination task, we interpret this as evidence that VPL of this least stable invariant relies more on the plasticity of lower-level brain areas, which may explain the poorer generalization performance to new locations or features observed in the previous literature (Fiorentini and Berardi, 1980; Schoups et al., 1995; Shiu and Pashler, 1992). However, this does not imply that learning effects of this least stable invariant cannot transfer to more stable invariants. From the perspective of Klein’s Erlangen program, the extraction of more stable invariants is implicitly required when processing less stable ones, which leads to their automatic learning. Additionally, within the framework of the Reverse Hierarchy Theory (RHT), plasticity in lower-level visual areas affects higher-level areas that receive the same low-level input, due to the feedforward anatomical hierarchy of the visual system (Ahissar and Hochstein, 2004, 1997; Markov et al., 2013; McGovern et al., 2012). Therefore, the improved signal from lower-level plasticity resulted from training on less stable invariants can enhance higher-level representations of more stable invariants, facilitating the transfer effect from low- to high-stability invariants.

      Reviewer #2 (Public Review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that, to my knowledge, have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost *too* clean. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be publicly available. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. Below I offer some more concrete comments:

      (1) The justification for the designs is not well explained. The authors simply tell the audience in a single sentence that they test projective, affine, and Euclidean geometry. But despite my familiarity with these terms -- familiarity that many readers may not have -- I still had to pause for a very long time to make sense of how these considerations led to the stimuli that were created. I think the authors must, for a point that is so central to the paper, thoroughly explain exactly why the stimuli were designed the way that they were and how these designs map onto the theoretical constructs being tested.

      We thank you for reminding us to better justify our experimental designs. In response, we have provided a detailed introduction to Klein’s Erlangen Program, describing projective, affine, and Euclidean geometries, their associated invariants, and the hierarchical relationships among them (see revised Introduction and Figure 1).

      All experiments in our study employed stimuli with varying structural stability (collinearity, parallelism, orientation, see revised Figure 2, 4), enabling us to investigate the impact of invariant stability on visual perceptual learning. Experiment 1 was adapted from paradigms studying the "configural superiority effect," commonly used to assess the salience of geometric invariants. This paradigm was chosen to align with and build upon related research, thereby enhancing comparability across studies. To address the limitations of Experiment 1 (as detailed in our Results section), Experiments 2, 3, and 4 employed a 2AFC (two-alternative forced choice)-like paradigm, which is more common in visual perceptual learning research. Additionally, we have expanded descriptions of our stimuli and designs. aiming to ensure clarity and accessibility for all readers.

      (2) I wondered if the design in Experiment 1 was flawed in one small but critical way. The goal of the parallelism stimuli, I gathered, was to have a set of items that is not parallel to the other set of items. But in doing that, isn't the manipulation effectively the same as the manipulation in the orientation stimuli? Both functionally involve just rotating one set by a fixed amount. (Note: This does not seem to be a problem in Experiment 2, in which the conditions are more clearly delineated.)

      We appreciate your insightful observation regarding the design of Experiment 1 and the potential similarity between the manipulations of the parallelism and orientation stimuli.

      The parallelism and orientation stimuli in Experiment 1 were originally introduced by Olson and Attneave (1970) to support line-based models of shape coding and were later adapted by Chen (1986) to measure the relative salience of different geometric properties. In the parallelism stimuli, the odd quadrant differs from the others in line slope, while in the orientation stimuli, the odd quadrant contains identical line segments but differs in the direction pointed by their angles. The faster detection of the odd quadrant in the parallelism stimuli compared to the orientation stimuli has traditionally been interpreted as evidence supporting line-based models of shape coding. However, as Chen (1986, 2005) proposed, the concept of invariants over transformations offers a different interpretation: in the parallelism stimuli, the fact that line segments share the same slope essentially implies that they are parallel, and the discrimination may be actually based on parallelism. This reinterpretation suggests that the superior performance with parallelism stimuli reflects the relative perceptual salience of parallelism (an affine invariant property) compared to the orientation of angles (a Euclidean invariant property).

      In the collinearity and orientation tasks, the odd quadrant and the other quadrants differ in their corresponding geometries, such as being collinear versus non-collinear. However, in the parallelism task, participants could rely either on the non-parallel relationship between the odd quadrant and the other quadrants or on the difference in line slope to complete the task, which can be seen as effectively similar to the manipulation in the orientation stimuli, as you pointed out. Nonetheless, this set of stimuli and the associated paradigm have been used in prior studies to address questions about Klein’s hierarchy of geometries (Chen, 2005; Wang et al., 2007; Meng et al., 2019). Given its historical significance and the importance of ensuring comparability with previous research, we adopted this set of stimuli despite its imperfections. Other limitations of this paradigm are discussed in the Results section (“The paradigm of ‘configural superiority effects’ with reaction time measures”), and optimized experimental designs were implemented in Experiment 2, 3, and 4 to produce more reliable results.

      (3) I wondered if the results would hold up for stimuli that were more diverse. It seems that a determined experimenter could easily design an "adversarial" version of these experiments for which the results would be unlikely to replicate. For instance: In the orientation group in Experiment 1, what if the odd-one-out was rotated 90 degrees instead of 180 degrees? Intuitively, it seems like this trial type would now be much easier, and the pattern observed here would not hold up. If it did hold up, that would provide stronger support for the authors' theory.

      It is not enough, in my opinion, to simply have some confirmatory evidence of this theory. One would have to have thoroughly tested many possible ways that theory could fail. I'm unsure that enough has been done here to convince me that these ideas would hold up across a more diverse set of stimuli.

      Thanks for your nice suggestion to validate our results using more diverse stimuli. However, the limitations of Experiment 1 make it less suitable for rigorous testing of diverse or "adversarial" stimuli. In addition to the limitation discussed in response to (2), another issue is that participants may rely on grouping effects among shapes in the quadrants, rather than solely extracting the geometrical invariants that are the focus of our study. As a result, the reaction times measured in this paradigm may not exclusively reflect the extraction time of geometrical invariants but could also be influenced by these grouping effects.

      Therefore, we have shifted our focus to the improved design used in Experiment 2 to provide stronger evidence for our theory. Building on this more robust design, we have extended our investigations to study location generalization (revised Experiment 3) and long-term learning effects (revised Figure 6—figure supplement 2). These enhancements allow us to provide stronger evidence for our theory while addressing potential confounds present in Experiment 1.

      While we did not explicitly test the 90-degree rotation scenario in Experiment 1, future studies could employ more diverse set of stimuli within the Experiment 2 framework to better understand the limits and applicability of our theoretical predictions. We appreciate this suggestion, as it offers a valuable direction for further research.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      - A concise introduction to the Erlangen program, geometric invariants, and their structural stability would greatly enhance the paper. This would not only clarify these concepts for readers unfamiliar with them but also provide a more intuitive explanation for the choice of tasks and stimuli used in the study.

      - I recommend adding a section that discusses how this new framework aligns with previous observations in VPL, especially those involving more classical stimuli like Gabors, random dot kinematograms, etc. This would help in contextualizing the framework within the broader spectrum of VPL research.

      - Exploring how each level of invariant stability transfers within itself would be an intriguing addition. Previous theories often consider transfer within a condition. For instance, in an orientation discrimination task, a challenging training condition might transfer less to a new stimulus test location (e.g., a different visual quadrant). Applying a similar approach to examine how VPL generalizes to a new test location within a single invariant stability level could provide insightful contrasts between the proposed theory and existing ones. This would be particularly relevant in the context of Experiment 2, which could be adapted for such a test.

      - I suggest including some example learning curves from the human experiment for a more clear demonstration of the differences in the learning rates across conditions. Easier conditions are expected to be learned faster (i.e. plateau faster to a higher accuracy level). The learning speed is reported for the DNN but not for the human subjects.

      - In the modeling section, it would be beneficial to focus on offering an explanation for the observed generalization as a function of the stability of the invariants. As it stands, the neural network model primarily demonstrates that DNNs replicate the same generalization pattern observed in human experiments. While this finding is indeed interesting, the model currently falls short of providing deeper insights or explanations. A more detailed analysis of how the DNN model contributes to our understanding of the relationship between invariant stability and generalization would significantly enhance this section of the paper.

      Minor comments:

      - Line 46: "it is remains" --> "it remains"

      - Larger font sizes for the vertical axis in Figure 6B would be helpful.

      We thank your detailed and constructive comments, which have significantly helped us improve the clarity and rigor of our manuscript. Below, we provide a response to each point raised.

      Major Comments

      (1) A concise introduction to the Erlangen program, geometric invariants, and their structural stability:

      We appreciate your suggestion to provide a clearer introduction to these foundational concepts. In the revised manuscript, we have added a dedicated section in the Introduction that offers a concise explanation of Klein’s Erlangen Program, including the concept of geometric invariants and their structural stability. This addition aims to make the theoretical framework more accessible to readers unfamiliar with these concepts and to better justify the choice of tasks and stimuli used in the study.

      (2) Contextualizing the framework within the broader spectrum of VPL research:

      We have expanded the Discussion section to better integrate our framework with previous VPL studies that reported generalization, including those using classical stimuli such as Gabors (Dosher and Lu, 2005; Hung and Seitz, 2014; Jeter et al., 2009; Liu and Pack, 2017; Manenti et al., 2023) and random dot kinematograms (Chang et al., 2013; Chen et al., 2016; Huang et al., 2007; Liu and Pack, 2017). In particular, we now discuss the similarities and differences between our findings and these earlier studies, exploring potential shared mechanisms underlying VPL generalization across different types of stimuli. These additions aim to contextualize our framework within the broader field of VPL research and highlight its relevance to existing literature.

      (3) Exploring transfer within each invariant stability level:

      In response to this insightful suggestion, we have added a new psychophysics experiment in the revised manuscript (Experiment 3) to examine how VPL generalizes to a new test location within the same invariant stability level. This experiment provides an opportunity to further explore the neural substrates underlying VPL of geometrical invariants, offering a contrast to existing theories and strengthening the connection between our framework and location generalization findings in the VPL literature.

      (4) Including example learning curves from the human experiments:

      We appreciate your suggestion to include learning curves for human subjects. In the revised manuscript, we have added learning curves of long-term VPL (see revised Figure 6—figure supplement 2) to track the temporal learning processes across invariant conditions. Interestingly, and in contrast to the results reported in the DNN simulations, these curves show that less stable invariants are learned faster and exhibit greater magnitudes of learning. We interpret this discrepancy as a result of differences in initial performance levels between humans and DNNs, as discussed in the revised Discussion section.

      (5) Offering a deeper explanation of the DNN model's findings:

      We acknowledge your concern that the modeling section primarily demonstrates that DNNs replicate human generalization patterns without offering deeper mechanistic insights. To address this, we have expanded the Results and Discussion sections to more explicitly interpret the weight change patterns observed across DNN layers in relation to invariant stability and generalization. We discuss how the model contributes to understanding the observed generalization within and across invariants with different stability, focusing on the neural network's role in generating predictions about the neural mechanisms underlying these effects.

      Minor Comments

      (1) Line 46: Correction of “it is remains” to “it remains”:

      We have corrected this typo in the revised manuscript.

      (2) Vertical axis font size in Figure 6B:

      We have increased the font size of the vertical axis labels in revised Figure 8B for improved readability.

      Reviewer #2 (Recommendations For The Authors):

      (1) There are many details throughout the paper that are confusing, such as the caption for Figure 4, which does not appear to correspond to what is shown (and is perhaps a copy-paste of the caption for Experiment 1?). Similarly, I wasn't sure about many methodological details, like: How participants made their second response in Experiment 2? It says somewhere that they pressed the corresponding key to indicate which one was the target, but I didn't see anything explaining what that meant. Also, I couldn't tell if the items in the figures were representative of all trials; the stimuli were described minimally in the paper.

      (2) The language in the paper felt slightly off at times, in minor but noticeable ways. Consider the abstract. The word "could" in the first sentence is confusing, and, more generally, that first sentence is actually quite vague (i.e., it just states something that would appear to be true of any perceptual system). In the following sentence, I wasn't sure what was meant by "prior to be perceived in the visual system". Though I was able to discern what the authors were intending to say most times, I was required to "read between the lines" a bit. This is not to fault the authors. But these issues need to be addressed, I think.

      (1) We sincerely apologize for the oversight regarding the caption for (original) Figure 4, and thank you for pointing out this error. In the revised manuscript, we have corrected the caption for Figure 4 (revised Figure 5) and ensured it accurately describes the content of the figure. Additionally, we have strengthened the descriptions of the stimuli and tasks in both the Materials and Methods section and the captions for (revised) Figures 4 and 5 to provide a clearer and more comprehensive explanation of Experiment 2. These revisions aim to help readers fully understand the experimental design and methodology.

      (2) We appreciate your feedback regarding the clarity and precision of the language in the manuscript. We acknowledge that some expressions, particularly in the abstract, were unclear or imprecise. In the revised manuscript, we have rewritten the abstract to improve clarity and ensure that the statements are concise and accurately convey our intended meaning. Additionally, we have thoroughly reviewed the entire manuscript to address any other instances of ambiguous language, aiming to eliminate the need for readers to "read between the lines." We are grateful for your suggestions, which have helped us enhance the overall readability of the paper.

    1. Reviewer #1 (Public review):

      Summary:

      This study examined the changes in ATL GABA levels induced by cTBS and its relationship with BOLD signal changes and performance in a semantic task. The findings suggest that the increase in ATL GABA levels induced by cTBS is associated with a decrease in BOLD signal. The relationship between ATL GABA levels and semantic task performance is nonlinear, and more specifically, the authors propose that the relationship is an inverted U-shaped relationship.

      Strengths:

      The findings of the research regarding the increase of GABA and decrease of BOLD caused by cTBS, as well as the correlation between the two, appear to be reliable. This should be valuable for understanding the biological effects of cTBS.

      Weakness:

      I am pleased to see the authors' feedback on my previous questions and suggestions, and I believe the additional data analysis they have added is helpful. Here are my reserved concerns and newly discovered issues.

      (1) Regarding the Inverted U-Shaped Curve In the revised manuscript, the authors have accepted some of my suggestions and conducted further analysis, which is now presented in Figure 3B. These results provide partial support for the authors' hypothesis. However, I still believe that the data from this study hardly convincingly support an inverted U-shaped distribution relationship.<br /> The authors stated in their response, "it is challenging to determine the optimal level of ATL GABA," but I think this is achievable. From Figures 4C and 4D, the ATL GABA levels corresponding to the peak of the inverted U-shaped curve fall between 85 and 90. In my understanding, this can be considered as the optimal level of ATL GABA estimated based on the existing data and the inverted U-shaped curve relationship. However, in the latter half of the inverted U-shaped curve, there are quite few data points, and such a small number of data points hardly provides reliable support for the quantitative relationship in the latter half of the curve. I suggest that the authors should at least explicitly acknowledge this and be cautious in drawing conclusions. I also suggest that the authors consider fitting the data with more types of non-linear relationships, such as a ceiling effect (a combination of a slope and a horizontal line), or a logarithmic curve.

      (2) In Figure 2F, the authors demonstrated a strong practice effect in this study, which to some extent offsets the decrease in behavioral performance caused by cTBS. Therefore, I recommend that the authors give sufficient consideration to the practice effect in the data analysis.<br /> One issue is the impact of the practice effect on the classification of responders and non-responders. Currently, most participants are classified as non-responders, suggesting that the majority of the population may not respond to the cTBS used in this study. This greatly challenges the generalizability of the experimental conclusions. However, the emergence of so many non-responders is likely due to the prominent practice effect, which offsets part of the experimental effect. If the practice effect is excluded, the number of responders may increase. The authors might estimate the practice effect based on the vertex simulation condition and reclassify participants after excluding the influence of the practice effect.<br /> Another issue is that considering the significant practice effect, the analysis in Figure 4D, which mixes pre- and post-test data, may not be reliable.

      (3) The analysis in Figure 3A has a double dipping issue. Suppose we generate 100 pairs of random numbers as pre- and post-test scores, and then group the data based on whether the scores decrease or increase; the pre-test scores of the group with decreased scores will have a very high probability of being higher than those of the group with increased scores. Therefore, the findings in Figure 3A seem to be meaningless.

      (4) The authors use IE as a behavioral measure in some analyses and use accuracy in others. I recommend that the authors adopt a consistent behavioral measure.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study focuses on the role of GABA in semantic memory and its neuroplasticity. The researchers stimulated the left ATL and control site (vertex) using cTBS, measured changes in GABA before and after stimulation using MRS, and measured changes in BOLD signals during semantic and control tasks using fMRI. They analyzed the effects of stimulation on GABA, BOLD, and behavioral data, as well as the correlation between GABA changes and BOLD changes caused by the stimulation. The authors also analyzed the relationship between individual differences in GABA levels and behavioral performance in the semantic task. They found that cTBS stimulation led to increased GABA levels and decreased BOLD activity in the ATL, and these two changes were highly correlated. However, cTBS stimulation did not significantly change participants' behavioral performance on the semantic task, although behavioral changes in the control task were found after stimulation. Individual levels of GABA were significantly correlated with individuals' accuracy on the semantic task, and the inverted U-shaped (quadratic) function provides a better fit than the linear relationship. The authors argued that the results support the view that GABAergic inhibition can sharpen activated distributed semantic representations. They also claimed that the results revealed, for the first time, a non-linear, inverted-U-shape relationship between GABA levels in the ATL and semantic function, by explaining individual differences in semantic task performance and cTBS responsiveness

      Strengths:

      The findings of the research regarding the increase of GABA and decrease of BOLD caused by cTBS, as well as the correlation between the two, appear to be reliable. This should be valuable for understanding the biological effects of cTBS.

      We appreciated R1’s positive evaluation of our manuscript.

      Weaknesses:

      Regarding the behavioral effects of GABA on semantic tasks, especially its impact on neuroplasticity, the results presented in the article are inadequate to support the claims made by the authors. There are three aspects of results related to this: 1) the effects of cTBS stimulation on behavior, 2) the positive correlation between GABA levels and semantic task accuracy, and 3) the nonlinear relationship between GABA levels and semantic task accuracy. Among these three pieces of evidence, the clearest one is the positive correlation between GABA levels and semantic task accuracy. However, it is important to note that this correlation already exists before the stimulation, and there are no results supporting that it can be modulated by the stimulation. In fact, cTBS significantly increases GABA levels but does not significantly improve performance on semantic tasks. According to the authors' interpretation of the results in Table 1, cTBS stimulation may have masked the practice effects that were supposed to occur. In other words, the stimulation decreased rather than enhanced participants' behavioral performance on the semantic task.

      The stimulation effect on behavioral performance could potentially be explained by the nonlinear relationship between GABA and performance on semantic tasks proposed by the authors. However, the current results are also insufficient to support the authors' hypothesis of an inverted U-shaped curve. Firstly, in Figure 3C and Figure 3D, the last one-third of the inverted U-shaped curve does not have any data points. In other words, as the GABA level increases the accuracy of the behavior first rises and then remains at a high level. This pattern of results may be due to the ceiling effect of the behavioral task's accuracy, rather than an inverted U-shaped ATL GABA function in semantic memory. Second, the article does not provide sufficient evidence to support the existence of an optimal level of GABA in the ATL. Fortunately, this can be tested with additional data analysis. The authors can estimate, based on pre-stimulus data from individuals, the optimal level of GABA for semantic functioning. They can then examine two expectations: first, participants with pre-stimulus GABA levels below the optimal level should show improved behavioral performance after stimulation-induced GABA elevation; second, participants with pre-stimulus GABA levels above the optimal level should exhibit a decline in behavioral performance after stimulation-induced GABA elevation. Alternatively, the authors can categorize participants into groups based on whether their behavioral performance improves or declines after stimulation, and compare the pre- and post-stimulus GABA levels between the two groups. If the improvement group shows significantly lower pre-stimulus GABA levels compared to the decline group, and both groups exhibit an increase in GABA levels after stimulation, this would also provide some support for the authors' hypothesis.

      Another issue in this study is the confounding of simulation effects and practice effects. According to the results, there is a significant improvement in performance after the simulation, at least in the control task, which the authors suggest may reflect a practice effect. The authors argue that the results in Table 1 suggest a similar practice effect in the semantic task, but it is masked by the simulation of the ATL. However, since no significant effects were found in the ANOVA analysis of the semantic task, it is actually difficult to draw a conclusion. This potential confound increases the risk in data analysis and interpretation. Specifically, for Figure 3D, if practice effects are taken into account, the data before and after the simulation should not be analyzed together.

      We thank for the R1’s thoughtful comments. Due to the limited dataset, it is challenging to determine the optimal level of ATL GABA. Here, we re-grouped the participants into the responders and non-responders to address the issues R1 raised. It is important to note that we applied cTBS over the ATL, an inhibitory protocol, which decreases cortical excitability within the target region and semantic task performance (Chiou et al., 2014; Jung and Lambon Ralph, 2016). Therefore, responders and non-responders were classified according to their semantic performance changes after the ATL stimulation: subjects showing a decrease in task performance at the post ATL cTBS compared to the baseline were defined as responders; whereas subjects showing no changes or an increase in their task performance after the ATL cTBS were defined as non-responders. Here, we used the inverse efficiency (IE) score (RT/1-the proportion of errors) as individual semantic task performance to combine accuracy and RT. Accordingly, we had 7 responders and 10 non-responders.

      Recently, we demonstrated that the pre-stimulation neurochemical profile of the ATL was associated with cTBS responsiveness on semantic processing (Jung et al., 2022). Specifically, the baseline GABA and Glx levels in the ATL predicted cTBS induced semantic task performance changes: individuals with higher GABA and lower Glx in the ATL would show bigger inhibitory effects and responders who decreased semantic task performance after ATL stimulation. Importantly, the baseline semantic task performance was significantly better in responders compared to non-responders. Thus, we expected that responders would show better semantic task performance along with higher ATL GABA levels in their pre-stimulation session relative to non-responders. We performed the planned t-tests to examine the difference in task performance and ATL GABA levels in pre-stimulation session. The results revealed that responders had lower IE (better task performance, t = -1.756, p = 0.050) and higher ATL GABA levels (t = 2.779, p = 0.006) in the pre-stimulation session (Figure 3).

      In addition, we performed planned paired t-test to investigate the cTBS effects on semantic task performance and regional ATL GABA levels according to the groups (responders and non-responders). Responders showed significant increase of IE (poorer performance, t = -1.937, p = 0.050) and ATL GABA levels (t = -2.203, p = 0.035) after ATL cTBS. Non-responders showed decreased IE (better performance, t = 2.872, p = 0.009) and increased GABA levels in the ATL (t = -3.912, p = 0.001) after the ATL stimulation. The results were summarised in Figure 3.

      It should be noted that there was no difference between the responders and non-responders in the control task performance at the pre-stimulation session. Both groups showed better performance after the ATL stimulation – practice effects (Author response image 1 below).

      Author response image 1.

      As we expected, our results replicated the previous findings (Jung et al., 2022) that responders who showed the inhibitory effects on semantic task performance after the ATL stimulation had higher GABA levels in the ATL than non-responders at their baseline, the pre-stimulation session. Importantly, cTBS increased ATL GABA levels in both responders and non-responders. These findings support our hypothesis – the inverted U-shaped ATL GABA function for cTBS response (Figure 4B). cTBS over the ATL resulted in the inhibition of semantic task performance among individuals initially characterized by higher concentrations of GABA in the ATL, indicative of better baseline semantic capacity. Conversely, the impact of cTBS on individuals with lower semantic ability and relatively lower GABA levels in the ATL was either negligible or exhibited a facilitatory effect. This study posits that individuals with elevated GABA levels in the ATL tend to be more responsive to cTBS, displaying inhibitory effects on semantic task performance (responders). On the contrary, those with lower GABA concentrations and reduced semantic ability were less likely to respond or even demonstrated facilitatory effects following ATL cTBS (non-responders). Moreover, our findings suggest the critical role of the baseline neurochemical profile in individual responsiveness to cTBS in the context of semantic memory. This highlights substantial variability among individuals in terms of semantic memory and its plasticity induced by cTBS.

      Our analyses with responders and non-responders have highlighted significant inter-individual variability in both pre- and post-ATL stimulation sessions, including behavioural outcomes and ATL GABA levels. Responders showed distinctive neurochemical profiles in the ATL, associating with their task performance and responsiveness to cTBS in semantic memory. Our findings suggest that responders may possess an optimal level of ATL GABA conducive to efficient semantic processing. This results in enhanced semantic task performance and increased responsiveness to cTBS, leading to inhibitory effects on semantic processing following an inverted U-shaped function. On the contrary, non-responders, characterized by relatively lower ATL GABA levels, exhibited poorer semantic task performance compared to responders at the baseline. The cTBS-induced increase in GABA may contribute to their subsequent improvement in semantic performance. These results substantiate our hypothesis regarding the inverted U-shape function of ATL GABA and its relationship with semantic behaviour.

      To address the confounding of simulation effects and practice effects in behavioural data, we used the IE and computed cTBS-induced performance changes (POST-PRE). Employing a 2 x 2 ANOVA with stimulation (ATL vs. Vertex) and task (Semantic vs. Control) as within subject factors, we found a significant task effect (F<sub>1, 15</sub> = 6.656, p = 0.021) and a marginally significant interaction between stimulation and task (F<sub>1, 15</sub> = 4.064, p = 0.061). Post hoc paired t-test demonstrated that ATL stimulation significantly decreased semantic task performance (positive IE) compared to both vertex stimulation (t = 1.905, p = 0.038) and control task (t = 2.814, p = 0.006). Facilitatory effects (negative IE) were observed in the control stimulation and control task. Please, see the Author response image 2 below. Thus, we believe that ATL cTBS induced task-specific inhibitory effects in semantic processing.

      Author response image 2.

      Accordingly, we have revised the Methods and Materials (p 25, line 589), Results (p8, line 188, p9-11, line 202- 248), Discussion (p19, line 441) and Figures (Fig. 2-3 & all Supplementary Figures).

      Reviewer #2 (Public Review):

      Summary:

      The authors combined inhibitory neurostimulation (continuous theta-burst stimulation, cTBS) with subsequent MRI measurements to investigate the impact of inhibition of the left anterior temporal lobe (ATL) on task-related activity and performance during a semantic task and link stimulation-induced changes to the neurochemical level by including MR spectroscopy (MRS). cTBS effects in the ATL were compared with a control site in the vertex. The authors found that relative to stimulation of the vertex, cTBS significantly increased the local GABA concentration in the ATL. cTBS also decreased task-related semantic activity in the ATL and potentially delayed semantic task performance by hindering a practice effect from pre to post. Finally, pooled data from their previous MRS study suggest an inverted U-shape between GABA concentration and behavioral performance. These results help to better understand the neuromodulatory effects of non-invasive brain stimulation on task performance.

      Strengths:

      Multimodal assessment of neurostimulation effects on the behavioral, neurochemical, and neural levels. In particular, the link between GABA modulation and behavior is timely and potentially interesting.

      We appreciated R2’s positive evaluation of our manuscript.

      Weaknesses:

      The analyses are not sound. Some of the effects are very weak and not all conclusions are supported by the data since some of the comparisons are not justified. There is some redundancy with a previous paper by the same authors, so the novelty and contribution to the field are overall limited. A network approach might help here.

      Thank you for your thoughtful critique. We have taken your comments into careful consideration and have made efforts to address them.

      We acknowledge the limitations regarding the strength of some effects and the potential lack of justification for certain conclusions drawn from the data. In response, we have reviewed our analyses and performed new analyses to address the behavioural discrepancies and strengthened the justifications for our conclusions.

      Regarding the redundancy with a previous paper by the same authors, we understand your concern about the novelty and contribution to the field. We aim to clarify the unique contributions of our current study compared to our previous work. The main novelty lies in uncovering the neurochemical mechanisms behind cTBS-induced neuroplasticity in semantic representation and establishing a non-linear relationship between ATL GABA levels and semantic representation. Our previous work primarily demonstrated the linear relationship between ATL GABA levels and semantic processing. In the current study, we aimed to address two key objectives: 1) investigate the role of GABA in the ATL in short-term neuroplasticity in semantic representation, and 2) explore a biologically more plausible function between ATL GABA levels and semantic function using a larger sample size by combining data from two studies.

      Additionally, we appreciate your suggestion regarding a network approach. We have explored the relationship between ATL GABA and cTBS-induced functional connectivity changes in our new analysis. However, there was no significant relationship between them. In the current study, our decision to focus on the mechanistic link between ATL GABA, task-induced activity, and individual semantic task performance reflects our intention to provide a detailed exploration of the role of GABA in the ATL and semantic neuroplasticity.

      We have addressed the specific weaknesses raised by Reviewer #2 in detail in our response to 'Reviewer #2 Recommendations For The Authors'.

      Reviewer #3 (Public Review):

      Summary:

      The authors used cTBS TMS, magnetic resonance spectroscopy (MRS), and functional magnetic resonance imaging (fMRI) as the main methods of investigation. Their data show that cTBS modulates GABA concentration and task-dependent BOLD in the ATL, whereby greater GABA increase following ATL cTBS showed greater reductions in BOLD changes in ATL. This effect was also reflected in the performance of the behavioural task response times, which did not subsume to practice effects after AL cTBS as opposed to the associated control site and control task. This is in line with their first hypothesis. The data further indicates that regional GABA concentrations in the ATL play a crucial role in semantic memory because individuals with higher (but not excessive) GABA concentrations in the ATLs performed better on the semantic task. This is in line with their second prediction. Finally, the authors conducted additional analyses to explore the mechanistic link between ATL inhibitory GABAergic action and semantic task performance. They show that this link is best captured by an inverted U-shaped function as a result of a quadratic linear regression model. Fitting this model to their data indicates that increasing GABA levels led to better task performance as long as they were not excessively low or excessively high. This was first tested as a relationship between GABA levels in the ATL and semantic task performance; then the same analyses were performed on the pre and post-cTBS TMS stimulation data, showing the same pattern. These results are in line with the conclusions of the authors.

      Strengths:

      I thoroughly enjoyed reading the manuscript and appreciate its contribution to the field of the role of the ATL in semantic processing, especially given the efforts to overcome the immense challenges of investigating ATL function by neuroscientific methods such as MRS, fMRI & TMS. The main strengths are summarised as follows:

      • The work is methodologically rigorous and dwells on complex and complementary multimethod approaches implemented to inform about ATL function in semantic memory as reflected in changes in regional GABA concentrations. Although the authors previously demonstrated a negative relationship between increased GABA levels and BOLD signal changes during semantic processing, the unique contribution of this work lies within evidence on the effects of cTBS TMS over the ATL given by direct observations of GABA concentration changes and further exploring inter-individual variability in ATL neuroplasticity and consequent semantic task performance.

      • Another major asset of the present study is implementing a quadratic regression model to provide insights into the non-linear relationship between inhibitory GABAergic activity within the ATLs and semantic cognition, which improves with increasing GABA levels but only as long as GABA levels are not extremely high or low. Based on this finding, the authors further pinpoint the role of inter-individual differences in GABA levels and cTBS TMS responsiveness, which is a novel explanation not previously considered (according to my best knowledge) in research investigating the effect of TMS on ATLs.

      • There are also many examples of good research practice throughout the manuscript, such as the explicitly stated exploratory analyses, calculation of TMS electric fields, using ATL optimised dual echo fRMI, links to open source resources, and a part of data replicates a previous study by Jung et. al (2017).

      We appreciated R3’s very positive evaluation of our manuscript.

      Weaknesses:

      • Research on the role of neurotransmitters in semantic memory is still very rare and therefore the manuscript would benefit from more context on how GABA contributes to individual differences in cognition/behaviour and more justification on why the focus is on semantic memory. A recommendation to the authors is to highlight and explain in more depth the particular gaps in evidence in this regard.

      This is an excellent suggestion. Accordingly, we have revised our introduction, highlighting the role of GABA on individual differences in cognition and behaviour and research gap in this field.

      Introduction p3, line 77   

      “Research has revealed a link between variability in the levels of GABA in the human brain and  individual differences in cognitive behaviour (for a review, see 5). Specifically, GABA levels in the sensorimotor cortex were found to predict individual performance in the related tasks: higher GABA levels were correlated with a slower reaction time in simple motor tasks (12) as well as improved motor control (13) and sensory discrimination (14, 15). Visual cortex GABA concentrations were positively correlated with a stronger orientation illusion (16), a prolonged binocular rivalry (17), while displaying a negative correlation with motion suppression (17). Individuals with greater frontal GABA concentrations demonstrated enhanced working memory capacity (18, 19). Studies on learning have reported the importance of GABAergic changes in the motor cortex for motor and perceptual learning: individuals showing bigger decreases in local GABA concentration can facilitate this plasticity more effectively (12, 20-22). However, the relationship between GABAergic inhibition and higher cognition in humans remains unclear. The aim of the study was to investigate the role of GABA in relation to human higher cognition – semantic memory and its neuroplasticity at individual level.”

      • The focus across the experiments is on the left ATL; how do the authors justify this decision? Highlighting the justification for this methodological decision will be important, especially given that a substantial body of evidence suggests that the ATL should be involved in semantics bilaterally (e.g. Hoffman & Lambon Ralph, 2018; Lambon Ralph et al., 2009; Rice et al., 2017; Rice, Hoffman, et al., 2015; Rice, Ralph, et al., 2015; Visser et al., 2010).

      This is an important point, which we thank R3 for. Supporting the bilateral ATL systems in semantic representation, previous rTMS studies delivered an inhibitory rTMS in the left and right ATL and both ATL stimulation significantly decreased semantic task performance (Pobric et al., 2007 PNAS; 2010 Neuropsychologia; Lambon Ralph et al., 2009 Cerebral Cortex). Importantly, there was no significant difference on rTMS effects between the left and right ATL stimulation. Therefore, we assume that either left or right ATL stimulation could produce similar, intended rTMS effects on semantic processing. In the current study, we combined the cTBS with multimodal imaging to examine the cTBS effects in the ATL. Due to the design of the study (having a control site, control task, and control stimulation) and limitation of scanning time, we could have a target region for the simulation and chose the left ATL, which was the same MRS VOI of our precious study (Jung et al., 2017). This enabled us to combine the datasets to explore GABAergic function in the ATL.

      • When describing the results, (Pg. 11; lines 233-243), the authors first show that the higher the BOLD signal intensity in ATL as a response to the semantic task, the lower the GABA concentration. Then, they state that individuals with higher GABA concentrations in the ATL perform the semantic task better. Although it becomes clearer with the exploratory analysis described later, at this point, the results seem rather contradictory and make the reader question the following: if increased GABA leads to less task-induced ATL activation, why at this point increased GABA also leads to facilitating and not inhibiting semantic task performance? It would be beneficial to acknowledge this contradiction and explain how the following analyses will address this discrepancy.

      We apologised that our description was not clear. As R1 also commented this issue, we re-analysed behavioural results and demonstrated inter-individual variability in response to cTBS (Please, see the reply to R1 above).

      • There is an inconsistency in reporting behavioural outcomes from the performance on the semantic task. While experiment 1 (cTBS modulates regional GANA concentrations and task-related BOLD signal changes in the ATL) reports the effects of cTBS TMS on response times, experiment 2 (Regional GABA concentrations in the ATL play a crucial role in semantic memory) and experiment 3 (The inverted U-shaped function of ATL GABA concentration in semantic processing) report results on accuracy. For full transparency, the manuscript would benefit from reporting all results (either in the main text or supplementary materials) and providing further explanations on why only one or the other outcome is sensitive to the experimental manipulations across the three experiments.

      Regarding the inconsistency of behavioural outcome, first, there were inter- individual differences in our behavioural data (see the Figure below). Our new analyses revealed that there were responders and non-responders in terms of cTBS responsiveness (please, see the reply to R1 above. It should be noted that the classification of responders and non-responders was identical when we used semantic task accuracy). In addition, RT was compounded by practice effects (faster in the post-stimulation sessions), except for the ATL-post session. Second, we only found the significant relationship between semantic task accuracy and ATL GABA concentrations in both previous (Jung et al., 2017) and current study. ATL GABA levels were not correlated with semantic RT (Jung et al., 2017: r = 0.34, p = 0.14, current study: r = 0.26, p = 0.14). It should be noted that there were no significant correlations between ATL GABA levels and semantic inverse efficiency (IE) in both studies (Jung et al., 2017: r = 0.13, p = 0.62, current study: r = 0.22, p = 0.44). As a result, we found no significant linear and non-linear relationship between ATL GABA levels and RT (linear function R<sup>2</sup> = 0.21, p =0.45, quadratic function: R<sup>2</sup> = 0.17, p = 0.21) and between ATL GABA levels and IE (linear function R<sup>2</sup> = 0.24, p =0.07, quadratic function: R<sup>2</sup> = 2.24, p = 0.12). Thus, our data suggests that GABAergic action in the ATL may sharpen activated distributed semantic representations through lateral inhibition, leading to more accurate semantic performance (Isaacson & Scanziani., 2011; Jung et al., 2017).

      We agreed with R3’s suggestion to report all results. The results of control task and control stimulation were included in Supplementary information (Figure S1, S4-5).

      Overall, the most notable impact of this work is the contribution to a better understanding of individual differences in semantic behaviour and the potential to guide therapeutic interventions to restore semantic abilities in neurological populations. While I appreciate that this is certainly the case, I would be curious to read more about how this could be achieved.

      Thank you once again to R3 for the positive evaluation of our study. We acknowledge your interest in understanding the practical implications of our findings. It is crucial to highlight the substantial variability in the effectiveness of rTMS and TBS protocols among individuals. Previous studies in healthy subjects have reported response rates ranging from 40% to 70% in the motor cortex, and in patients, the remission rate for rTMS treatment in treatment-resistant depression is around 29%. Presently, the common practice in rTMS treatment is to apply the same protocol uniformly to all patients.

      Our study demonstrated that 40% of individuals in our sample were classified as responders to ATL cTBS. Notably, we observed differences in ATL GABA levels before stimulation between responders and non-responders. Responders exhibited higher baseline ATL GABA levels, along with better semantic performance at the baseline (as mentioned in our response to R1). This suggests that establishing the optimal level of ATL GABA by assessing baseline GABA levels before stimulation could enable the tailoring of an ideal protocol for each individual, thereby enhancing their semantic capability. To achieve this, more data is needed to delineate the proposed inverted U-shaped function of ATL GABA in semantic memory.

      Our ongoing efforts involve collecting additional data from both healthy aging and dementia cohorts using the same protocol. Additionally, future pharmacological studies aim to modulate GABA, providing a deeper understanding of the individual variations in semantic function. These initiatives contribute to the potential development of personalized therapeutic interventions for individuals with semantic impairments.

      Reviewer #1 (Recommendations For The Authors):

      My major suggestion is to include an analysis regarding the "existence of an optimal GABA level". This would be the most direct test for the authors' hypothesis on the relationship between GABA and semantic memory and its neuroplasticity. Please refer to the public review section for details.

      Here are some other suggestions and questions.

      (1) The sample size of this study is relatively small. Although the sample size was estimated, a small sample size can bring risks to the generalizability of the results to the population. How did the author consider this risk? Is it necessary to increase the sample size?

      We agreed with R1’s comments. However, the average of sample size in healthy individuals was 17.5 in TMS studies on language function (number of studies = 26, for a review, see Qu et al, 2022 Frontiers in Human Neuroscience), 18.3 in the studies employing rTMS and fMRI on language domain (number of studies = 8, for a review, see Hartwigsen & Volz., 2021 NeuroImage), and 20.8 in TMS combined MRS studies (number of studies = 11, for a review, see Cuypers & Marsman., 2021 NeuroImage). Notably, only two studies utilizing rTMS, fMRI, and MRS had sample sizes of N = 7 (Grohn et al., 2019 Frontiers in Neuroscience) and N = 16 (Rafique & Steeves. 2020 Brain and Behavior). Despite having 19 participants in our current study, it is noteworthy that our sample size aligns closely with studies employing similar approaches and surpasses those employing the same methodology.

      As a result of the changes in a scanner and the relocation of the authors to different institutes, it is impossible to increase the sample size for this study.

      (2) How did the authors control practice effects? How many practice trials were arranged before the experiment? Did you avoid the repetition of stimuli in tasks before and after the stimuli?

      At the beginning of the experiment, participants performed the practice session (20 trials) for each tasks outside of the scanner. Stimuli in tasks were not repeated before and after stimulation sessions.

      (3) In Figures 2D and E, does the vertical axis of the BOLD signal refer to the semantic task itself or the difference between the semantic and control tasks? Could you provide the respective patterns of the BOLD signal before and after the stimuli in the semantic and control tasks in a figure?

      We apologised that the names of axis of Figure 2 were not clear. In Fig 2D-E, the BOLD signal changes refer to the semantic task itself. Accordingly, we have revised the Fig. 2.

      (4) Figure 1A shows that MRS ATL always comes before MRS Vertex. Was the order of them counterbalanced across participants?

      The order of MRS acquisition was not counterbalanced across participants.

      (5) I am confused by the statement "Our results provide strong evidence that regional GABA levels increase following inhibitory cTBS in the human associative cortex, specifically in the ATL, a representational semantic hub. Notably, the observed increase was specific to the ATL and semantic processing, as it was not observed in the control region (vertex) and not associated with control processing (visuospatial processing)". GABA levels are obtained in the MRS, and this stage does not involve any behavioral tasks. Why do the authors state that the increase in GABA levels was specific to semantic processing and was not associated with control processing?

      Following R1’s suggestion, we have re-analysed behavioural data and showed cTBS-induced suppression in semantic task performance after ATL stimulation only (please, see the reply above). There were no cTBS effects in the control task performance, control site (vertex) and no correlations between the ATL GABA levels and control task performance. The Table was added to the Supplementary Information as Table S3.

      (6) In Figure 3, the relationship between GABA levels in the ATL and performance on semantic tasks is presented. What is the relationship between GABA levels at the control site and performance on semantic tasks? Should a graph be provided to illustrate this?

      As the vertex was not involved in semantic processing (no activation during semantic processing), we did not perform the analysis between vertex GABA levels and semantic task performance. Following R3’s suggestion, we performed a linear regression between vertex GABA levels and semantic task performance in the pre-stimulation session, accounting for GM volume, age, and sex. As we expected that there was no significant relationship between them. (R<sup>2</sup> = 0.279, p = 0.962).

      (7) The author claims that GABA can sharpen distributed semantic representations. However, even though there is a positive correlation between GABA levels and semantic performance, there is no direct evidence supporting the inference that this correlation is achieved through sharpening distributed semantic representations. How did the author come to this conclusion? Are there any other possibilities?

      We showed that ATL GABA concentrations in pre-stimulation was ‘negatively’ correlated with task-induced regional activity in the ATL and ‘positively’ correlated with semantic task performance. In our semantic task, such as recognizing a camel (Fig. 1), the activation of all related information in the semantic representation (e.g., mammal, desert, oasis, nomad, humps, & etc.) occurs. To respond accurately to the task (a cactus), it becomes essential to suppress irrelevant meanings through an inhibitory mechanism. Therefore, the inhibitory processing linked to ATL GABA levels may contribute to more efficient processing in this task.

      Animal studies have proposed a related hypothesis in the context of the close interplay between activation and inhibition in sensorimotor cortices (Isaacson & Scanziani., 2011). Liu et al (2011, Neuron) demonstrated that the rise of excitatory glutamate in the visual cortex is followed by the increase of inhibitory GABA in response to visual stimuli. Tight coupling of these paired excitatory-inhibitory functions results in a sharpening of the activated representation. (for a review, see Isaacson & Scanziani., 2011 Neuron How Inhibition Shapes Cortical Activity). In human, Kolasinski et al (2017, Current Biology) revealed that higher sensorimotor GABA levels are associated with more selective cortical tuning measured fMRI, which in turn is associated with enhanced perception (better tactile discrimination). They claimed that the relationship between inhibition and cortical tuning could result from GABAergic signalling, shaping the selective response profiles of neurons in the primary sensory regions of the brain. This process is crucial for the topographic organization (task-induced fMRI activation in the sensorimotor cortex) vital to sensory perception.

      Building on these findings, we suggest a similar mechanism may operate in higher-order association cortices, including the ATL semantic hub. This suggests a process that leads to more sharply defined semantic representations associated with more selective task-induced activation in the ATL and, consequently, more accurate semantic performance (Jung et al., 2017).

      Reviewer #2 (Recommendations For The Authors):

      Major issues:

      (1) It wasn't completely clear what the novel aspect of this study relative to their previous one on GABAergic modulation in semantic memory issue, this should be clarified. If I understand correctly, the main difference from the previous study is that this study considers the TMS-induced modulation of GABA?

      We apologise that the novelty of study was not clear. The main novelty lies in uncovering the neurochemical mechanisms behind cTBS-induced neuroplasticity in semantic representation and establishing a non-linear relationship between ATL GABA levels and semantic representation. Our previous work firstly demonstrated the linear relationship between the ATL GABA levels and semantic processing. In the current study, we aimed to address two key objectives: 1) investigate the role of GABA in the ATL in short-term neuroplasticity in semantic representation, and 2) explore a biologically more plausible function between ATL GABA levels and semantic function using a larger sample size by combining data from two studies.

      The first part of the experiment in this study mirrored our previous work, involving multimodal imaging during the pre-stimulation session. We conducted the same analysis as in our previous study to replicate the findings in a different cohort. Subsequently, we combined the data from both studies to examine the potential inverted U-shape function between ATL GABA levels and semantic function/neuroplasticity.

      Accordingly, we have revised the Introduction by adding the following sentences.

      “The study aimed to investigate the neural mechanisms underlying cTBS-induced neuroplasticity in semantic memory by linking cortical neurochemical profiles, task-induced regional activity, and variability in semantic memory capability within the ATL.”

      “Furthermore, to address and explore the relationship between regional GABA levels in the ATL and semantic memory function, we combined data from our previous study (Jung et al., 2017) with the current study’s data.”

      (2) I found the scope of the study very narrow. I guess everyone agrees that TMS induces network effects, but the authors selectively focus on the modulation in the ATL. This is unfortunate since semantic memory requires the interaction between several brain regions and a network perspective might add some novel aspect to this study which has a strong overlap with their previous one. I am aware that MRS can only measure pre-defined voxels but even these changes could be related to stimulation-induced effects on task-related activity at the whole brain level.

      We appreciate R2's thoughtful comments and acknowledge the concern about the perceived narrow scope of the study. We agreed with the notion that cTBS induces network-level changes. In our investigation, we did observe cTBS over the ATL influencing task-induced regional activity in other semantic regions and functional connectivity within the semantic system. Specifically, ATL cTBS increased activation in the right ATL after ATL stimulation compared to pre-stimulation, along with increased functional connectivity between the left and right ATL, between the left ATL and right semantic control regions (IFG and pMTG), and between the left ATL and right angular gyrus. These results were the replication of Jung & Lambon Ralph (2016) Cerebral Cortex.

      However, it is important to note that we did not find any significant correlations between ATL GABA changes and cTBS-induced changes in the functional connectivity. Consequently, we are currently preparing another paper that specifically addresses the network-level changes induced by ATL cTBS. In the current study, our decision to focus on the mechanistic link between ATL GABA, task-induced activity, and individual semantic task performance reflects our intention to provide a detailed exploration of the role of GABA in the ATL and semantic neuroplasticity.

      (3) On a related note, I think the provided link between GABAergic modulation and behavioral changes after TMS is somehow incomplete because it ignores the stimulation effects on task-related activity. Could these be linked in a regression analysis with two predictors (with behavior or GABA level as a criterion and the other two variables as predictors)?

      In response to R2’s suggestion, we performed a multiple regression analysis, by modelling cTBS-induced ATL GABA changes (POST-PRE), task-related BODL signal changes (POST-PRE), and semantic task performance (IE) changes (POST-PRE). The model with GABA changes (POST-PRE) as a criterion was significant (F<sub>2, 14</sub> = 8.77, p = 0.003), explaining 56% of cTBS-induced ATL GABA changes (adjusted R<sup>2</sup>) with cTBS-related ATL BOLD signal changes and semantic task performance changes. However, the model with semantic task performance change (POST-PRE) as a criterion was not significant (F = 0.26, p = 0.775). Therefore, cTBS-induced changes in ATL BOLD signals and semantic task performance significantly predicted the cTBS-induced ATL GABA changes. It was found that cTBS-induced ATL BOLD signal changes significantly predicted cTBS-induced GABA changes in the ATL (β = -4.184, p = 0.001) only, aligning with the results of our partial correlation analysis.

      Author response table 1.

      (4) Several statements in the intro and discussion need to be rephrased or toned down. For example, I would not agree that TBS "made healthy individuals mimic semantic dementia patients". This is clearly overstated. TMS protocols slightly modulate brain functions, but this is not similar to lesions or brain damage. Please rephrase. In the discussion, it is stated that the results provide "strong evidence". I disagree based on the overall low values for most comparisons.

      Hence, we have revised both the Introduction and the Discussion.

      “Perturbing the ATL with inhibitory repetitive transcranial magnetic stimulation (rTMS) and theta burst stimulation (TBS) resulted in healthy individuals exhibiting slower reaction times during semantic processing.”

      “Our results demonstrated an increase in regional GABA levels following inhibitory cTBS in human associative cortex, specifically in the ATL, a representational semantic hub.”

      (5) Changes in the BOLD signal in the ATL: There is a weak interaction between stimulation and VOI and post hoc comparisons with very low values reported. Are these corrected for multiple comparisons? I think that selectively reporting weak values with small-volume corrections (if they were performed) does not provide strong evidence. What about whole-brain effects and proper corrections for multiple comparisons?

      There was no significant interaction between the stimulation (ATL vs. Vertex) and session (pre vs post) in the ATL BOLD signal changes (p = 0.29). Our previous work combining rTMS with fMRI (Binney et al., 2015; Jung & Lambon Ralph, 2016) demonstrated that there was no significant rTMS effects on the whole brain analysis and only ROI analyses revealed the subtle but significant rTMS effects in the target site (reduction of task-induced ATL activity). In the current study, we focused our hypothesis on the anticipated decrease in task-induced regional activity in the ATL during semantic processing following the inhibitory cTBS. Accordingly, we conducted planned paired t-tests specifically within the ATL for BOLD signal changes without applying multiple comparison corrections. It's noted that these results were derived from regions of interest (ROIs) and not from small-volume corrections. Furthermore, no significant findings emerged from the comparison of the ATL post-session vs. Vertex post-session and the ATL pre-session vs. ATL post-session in the whole-brain analysis (see Supplementary figure 2).

      Accordingly, we have added the Figure S2 in the Supplementary Information.

      (6) Differences between selected VOIs: Numerically, the activity (BOLD signal effect) is higher in the vertex than the ATL, even in the pre-TMS session (Figure 2D). What does that mean? Does that indicate that the vertex also plays a role in semantic memory?

      We apologise that the figure was not clear. Fig. 2D displays the BOLD signal changes in the ATL VOI for the ATL and Vertex stimulation. As there was no activation in the vertex during semantic processing, we did not present the fMRI results of vertex VOI (please, see Author response image 3 below). Accordingly, we have revised the label of Y axis of the Figure 2D – ATL BOLD signal change.

      Author response image 3.

      The cTBS effects within the Vertex VOI during semantic processing

      (7) Could you provide the e-field for the vertex condition?

      We have added it in the Supplementary Information as Supplementary Figure 6.

      (8) Stimulation effects on performance (RTs): There is a main effect of the session in the control task. Post-hoc tests show that control performance is faster in the post-pre comparison, while the semantic task is not faster after ATL TMS (as it might be delayed). I think you need to perform a 3-way ANOVA here including the factor task if you want to show task specificity (e.g., differences for the control but not semantic task) and then a step-down ANOVA or t-tests.

      Thanks for R2’s suggestion. We have addressed this issue in reply to R1. Please, see the reply to R1 for semantic task performance analysis.

      Minor issue:

      In the visualization of the design, it would be helpful to have the timing/duration of the different measures to directly understand how long the experiment took.

      We have added the duration of the experiment design in the Figure 1.

      Reviewer #3 (Recommendations For The Authors):

      Further Recommendations:

      • Pg. 6; lines 138-147: There is a sense of uncertainty about the hypothesis conveyed by expressions such as 'may' or 'could be'. A more confident tone would be beneficial.

      Thanks for R3’s thoughtful suggestion. We have revised the Introduction.

      • Pg. 6; line 155: left or bilateral ATL, please specify.

      We have added ‘left’ in the manuscript.

      • Pg. 8; line 188: Can the authors provide a table with peak activations to complement the figure?

      We have added the Table for the fMRI results in the Supplementary Information (Table S1).

      • Pg 9; Figure 2C: The ATL activation elicited by the semantic task seems rather medial. What are the exact peak coordinates for this cluster, and how can the authors demonstrate that the electric fields induced by TMS, which seem rather lateral (Figure 2A), also impacted this area? Please explain.

      We apologise that the Figure was not clear. cTBS was delivered to the peak coordinate of the left ventral ATL [-36, -15, -30] determined by previous fMRI studies (Binney et al., 2010; Visser et al., 2012). To confirm the cTBS effects at the target region, we conducted ROI analysis centred in the ventral ATL [-36, -15, -30] and the results demonstrated a reduced ATL activity after ATL stimulation during semantic processing (t = -2.43, p = 0.014) (please, see Author response image 4 below). Thus, cTBS successfully modulated the ATL activity reaching to the targe coordinate.

      Author response image 4.

      • Pg.23; line 547: What was the centre coordinate of the ROI (VOI), and was it consistent across all participants? Please specify.

      We used the ATL MRS VOI (a hexahedron with 4cm x 2cm x 2cm) for our regions of interest analysis and the central coordinate was around -45, -12, -20 (see Author response image 5). As we showed in Fig. 1C, the location of ATL VOI was consistent across all participants.

      Author response image 5.

      • Pg. 24; line 556-570: What software was used for performing the statistical analyses? Please specify.

      We have added the following sentence.

      “Statistical analyses were undertaken using Statistics Package for the Social Sciences (SPSS, Version 25, IBM Cary, NC, USA) and RStudio (2023).”

      • Pg. 21; line 472-480: It is not clear if and how neuronavigation was used (e.g. were T1scans or an average MNI template used, what was the exact coordinate of stimulation and how was it decided upon). Please specify.

      We apologised the description was not clear. We have added a paragraph describing the procedure.

      “The target site in the left ATL was delineated based on the peak coordinate (MNI -36 -15 -30), which represents maximal peak activation observed during semantic processing in previous distortion-corrected fMRI studies (38, 41). This coordinate was transformed to each individual’s native space using Statistical Parametric Mapping software (SPM8, Wellcome Trust Centre for Neuroimaging, London, UK). T1 images were normalised to the MNI template and then the resulting transformations were inverted to convert the target MNI coordinate back to the individual's untransformed native space coordinate. These native-space ATL coordinates were subsequently utilized for frameless stereotaxy, employing the Brainsight TMS-MRI co-registration system (Rogue Research, Montreal, Canada). The vertex (Cz) was designated as a control site following the international 10–20 system.”

      • Miscellaneous

      - line 57: insert 'about' to the following sentence: '....little is known the mechanisms linking'

      - line 329: 'Previous, we demonstrated'....should be Previously we demonstrated....

      We thank for R3’s thorough evaluation our manuscript. We have revised them.

      Furthermore, it would be an advantage to make the data freely available for the benefit of the broader scientific community.

      We appreciate Reviewer 3’s suggestion. Currently, this data is being used in other unpublished work. However, upon acceptance of this manuscript, we will make the data freely available for the benefit of the broader scientific community.

      Chiou R, Sowman PF, Etchell AC, Rich AN (2014) A conceptual lemon: theta burst stimulation to the left anterior temporal lobe untangles object representation and its canonical color. J Cogn Neurosci 26:1066-1074.

      Jung J, Lambon Ralph MA (2016) Mapping the Dynamic Network Interactions Underpinning Cognition: A cTBS-fMRI Study of the Flexible Adaptive Neural System for Semantics. Cereb Cortex 26:3580-3590.

      Jung J, Williams SR, Sanaei Nezhad F, Lambon Ralph MA (2017) GABA concentrations in the anterior temporal lobe predict human semantic processing. Sci Rep 7:15748.

      Jung J, Williams SR, Nezhad FS, Lambon Ralph MA (2022) Neurochemical profiles of the anterior temporal lobe predict response of repetitive transcranial magnetic stimulation on semantic processing. Neuroimage 258:119386.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1(Public review):

      Strengths:

      Utilization of both human placental samples and multiple mouse models to explore the mechanisms linking inflammatory macrophages and T cells to preeclampsia (PE).<br /> Incorporation of advanced techniques such as CyTOF, scRNA-seq, bulk RNA-seq, and flow cytometry.

      Identification of specific immune cell populations and their roles in PE, including the IGF1-IGF1R ligand-receptor pair in macrophage-mediated Th17 cell differentiation.<br /> Demonstration of the adverse effects of pro-inflammatory macrophages and T cells on pregnancy outcomes through transfer experiments.

      Weaknesses:

      Comment 1. Inconsistent use of uterine and placental cells, which are distinct tissues with different macrophage populations, potentially confounding results.

      Response1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population. We have added the GFP pregnant mice-related data in uterine and placental cells (Line204-212).

      Comment 2. Missing observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice.

      Response 2: We thank the reviewers' comments. We have added the observational data (Figure 4-figure supplement 1D, 1E) and a corresponding description of the data (Line 198-203).

      Comment 3. Unclear mechanisms of anti-macrophage compounds and their effects on placental/fetal macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on Line 227-230. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We have discussed the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 4. Difficulty in distinguishing donor cells from recipient cells in murine single-cell data complicates interpretation.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, we believe that the donor cells should be cluster 0 in macrophages.

      Comment 5. Limitation of using the LPS model in the final experiments, as it more closely resembles systemic inflammation seen in endotoxemia rather than the specific pathology of PE.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the Reduction in Uterine Perfusion Pressure (RUPP) mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. And we proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant mice induces PE-like symptoms (Figure 6F-6H). In summary, the application of the LPS model in the final experiments does not affect the conclusions.

      Reviewer #2 (Public review):

      Strengths:

      (1) This study combines human and mouse analyses and allows for some amount of mechanistic insight into the role of pro-inflammatory and anti-inflammatory macrophages in the pathogenesis of pre-eclampsia (PE), and their interaction with Th17 cells.

      (2) Importantly, they do this using matched cohorts across normal pregnancy and common PE comorbidities like gestation diabetes (GDM).

      (3) The authors have developed clear translational opportunities from these "big data" studies by moving to pursue potential IGF1-based interventions.

      Weaknesses:

      (1) Clearly the authors generated vast amounts of multi-omic data using CyTOF and single-cell RNA-seq (scRNA-seq), but their central message becomes muddled very quickly. The reader has to do a lot of work to follow the authors' multiple lines of inquiry rather than smoothly following along with their unified rationale. The title description tells fairly little about the substance of the study. The manuscript is very challenging to follow. The paper would benefit from substantial reorganizations and editing for grammatical and spelling errors. For example, RUPP is introduced in Figure 4 but in the text not defined or even talked about what it is until Figure 6. (The figure comparing pro- and anti-inflammatory macrophages does not add much to the manuscript as this is an expected finding).

      Response 1: We thank the reviewers' comments. According to the reviewer's suggestion, we have made the necessary revisions. Firstly, the title of the article has been modified to be more specific. We also introduce the RUPP mouse model when interpreted Figure 4-figure supplement 1. Thirdly, We have moved the images of Figure 7 to the Figure 6-figure supplement 2 make them easier to follow. Finally, we diligently corrected the grammatical and spelling errors in the article. As for the figure comparing pro- and anti-inflammatory macrophages, the Editor requested a more comprehensive description of the macrophage phenotype during the initial submission. As a result, we conducted the transcriptome RNA-seq of both uterine-derived pro-inflammatory and anti-inflammatory macrophages and conducted a detailed analysis of macrophages in scRNA-seq.

      Comment 2. The methods lack critical detail about how human placenta samples were processed. The maternal-fetal interface is a highly heterogeneous tissue environment and care must be taken to ensure proper focus on maternal or fetal cells of origin. Lacking this detail in the present manuscript, there are many unanswered questions about the nature of the immune cells analyzed. It is impossible to figure out which part of the placental unit is analyzed for the human or mouse data. Is this the decidua, the placental villi, or the fetal membranes? This is of key importance to the central findings of the manuscript as the immune makeup of these compartments is very different. Or is this analyzed as the entirety of the placenta, which would be a mix of these compartments and significantly less exciting?

      Response 2: We thank the reviewers' comments. Placental villi rather than fetal membranes and decidua were used for CyToF in this study. This detail about how human placenta samples were processed have been added to the Materials and Methods section (Line564-576).

      Comment 3. Similarly, methods lack any detail about the analysis of the CyTOF and scRNAseq data, much more detail needs to be added here. How were these clustered, what was the QC for scRNAseq data, etc? The two small paragraphs lack any detail.

      Response 3: We thank the reviewers' comments. The details about the analysis of the CyTOF (Line577-586) and scRNAseq (Line600-615) data have been added in the Materials and Methods section.

      Comment 4. There is also insufficient detail presented about the quantities or proportions of various cell populations. For example, gdT cells represent very small proportions of the CyTOF plots shown in Figures 1B, 1C, & 1E, yet in Figures 2I, 2K, & 2K there are many gdT cells shown in subcluster analysis without a description of how many cells are actually represented, and where they came from. How were biological replicates normalized for fair statistical comparison between groups?

      Response 4: We thank the reviewers' comments. In our study, approximately 8×10^<sup>5</sup> cells were collected per group for analysis using CyTOF. Of these, about 10% (8×10^<sup>4</sup> cells per group) were utilized to generate Figure 1B. As depicted in Figure 1B, gdT cells constitute roughly 1% of each group, with specific percentages as follows: NP group (1.23%), PE group (0.97%), GDM group (0.94%), and GDM&PE group (1.26%), which equates to approximately 800 cells per group. For the subsequent gdT cell analysis presented in Figure 2I, we employed data from all cells within each group to construct the tSNE maps, comprising approximately 8000 cells per group. Consequently, it may initially appear that the number of gdT cells is significantly higher than what is shown in Figure 1B. To clarify this, we have included pertinent explanations in the figure legend. Given the relatively low proportions of gdT cells, we did not pursue further investigations of these cells in subsequent experiments. Following your suggestion, we have relocated this result to the supplementary materials, where it is now presented as Figure 2-figure supplement 1D-E.

      The number of biological replicates (samples) is consistent with Figure 1, and this information has been added to the figure legend.

      Comment 5. The figures themselves are very tricky to follow. The clusters are numbered rather than identified by what the authors think they are, the numbers are so small, that they are challenging to read. The paper would be significantly improved if the clusters were clearly labeled and identified. All the heatmaps and the abundance of clusters should be in separate supplementary figures.

      Response 5: We thank the reviewers' comments. Based on your suggestions, we have labeled and defined the Clusters (Figure 2A, 2F, Figure 3A, Figure 5C and Figure 6A). Additionally, we have moved most of the heatmaps to the supplementary materials.

      Comment 6. The authors should take additional care when constructing figures that their biological replicates (and all replicates) are accurately represented. Figure 2H-2K shows N=10 data points for the normal pregnant (NP) samples when clearly their Table 1 and test denote they only studied N=9 normal subjects.

      Response 6: We thank the reviewers' careful checking. During our verification, we found that one sample in the NP group had pregnancy complications other than PE and GDM. The data in Figure 2H-2K was not updated in a timely manner. We have promptly updated this data and reanalyze it.

      Comment 7. There is little to no evaluation of regulatory T cells (Tregs) which are well known to undergird maternal tolerance of the fetus, and which are well known to have overlapping developmental trajectory with RORgt+ Th17 cells. We recommend the authors evaluate whether the loss of Treg function, quantity, or quality leaves CD4+ effector T cells more unrestrained in their effect on PE phenotypes. References should include, accordingly: PMCID: PMC6448013 / DOI: 10.3389/fimmu.2019.00478; PMC4700932 / DOI: 10.1126/science.aaa9420.

      Response 7: We thank the reviewers' comments. We have done the Treg-related animal experiment, which was not shown in this manuscript. We have added the Treg-related data in Figure 6F-6H. The injection of CD4<sup>+</sup>CD44<sup>+</sup> T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs, could induce PE-like symptoms in pregnant mice (Line297-304). Additionally, we have added a necessary discussion about Tregs and cited the literature you mentioned (Line433-439).

      Comment 8. In discussing gMDSCs in Figure 3, the authors have missed key opportunities to evaluate bona fide Neutrophils. We recommend they conduct FACS or CyTOF staining including CD66b if they have additional tissues or cells available. Please refer to this helpful review article that highlights key points of distinguishing human MDSC from neutrophils: https://doi.org/10.1038/s41577-024-01062-0. This will both help the evaluation of potentially regulatory myeloid cells that may suppress effector T cells as well as aid in understanding at the end of the study if IL-17 produced by CD4+ Th17 cells might recruit neutrophils to the placenta and cause ROS immunopathology and fetal resorption.

      Response 8: We thank the reviewers' comments. Although we do not have additional tissues or cells available to conduct FACS or CyTOF staining, including for CD66b, we have utilized CD15 and CD66b antibodies for immunofluorescence stain of placental tissue, and our findings revealed a pronounced increase in the proportion of neutrophils among PE patients, fostering the hypothesis that IL-17A produced by Th17 cells might orchestrate the migration of neutrophils towards the placental milieu (Figure 6-figure supplement 2F; Line 325-328). We have cited these references and discussed them in the Discussion section (Line 459-465).

      Comment 9. Depletion of macrophages using several different methodologies (PLX3397, or clodronate liposomes) should be accompanied by supplementary data showing the efficiency of depletion, especially within tissue compartments of interest (uterine horns, placenta). The clodronate piece is not at all discussed in the main text. Both should be addressed in much more detail.

      Response 9: We thank the reviewers' comments. We already have the additional data on the efficiency of macrophage depletion involving PLX3397 and clodronate liposomes, which were not present in this manuscript, and we'll add it to the Figure 4-figure supplement 2A,2B. The clodronate piece is mentioned in the main text (Line236-239), but only briefly described, because the results using clodronate we obtained were similar to those using PLX3397.

      Comment 10. There are many heatmaps and tSNE / UMAP plots with unhelpful labels and no statistical tests applied. Many of these plots (e.g. Figure 7) could be moved to supplemental figures or pared down and combined with existing main figures to help the authors streamline and unify their message.

      Response 10: We thank the reviewers' comments. We have moved the images of Figure 7 to the Figure 6-figure supplement 2. We also have moved most of the heatmaps to the supplementary materials.

      Comment 11. There are claims that this study fills a gap that "only one report has provided an overall analysis of immune cells in the human placental villi in the presence and absence of spontaneous labor at term by scRNA-seq (Miller 2022)" (lines 362-364), yet this study itself does not exhaustively study all immune cell subsets...that's a monumental task, even with the two multi-omic methods used in this paper. There are several other datasets that have performed similar analyses and should be referenced.

      Response 11: We thank the reviewers' comments. We have search for more literature and reference additional studies that have conducted similar analyses (Line382-393).

      Comment 12. Inappropriate statistical tests are used in many of the analyses. Figures 1-2 use the Shapiro-Wilk test, which is a test of "goodness of fit", to compare unpaired groups. A Kruskal-Wallis or other nonparametric t-test is much more appropriate. In other instances, there is no mention of statistical tests (Figures 6-7) at all. Appropriate tests should be added throughout.

      Response 12: We thank the reviewers' comments. As stated in the Statistical Analysis section (lines 672-676), the Kruskal-Wallis test was used to compare the results of experiments with multiple groups. Comparisons between the two groups in Figures 5 were conducted using Student's t-test. The aforementioned statistical methods have been included in the figure legends.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Overall, the study has several strengths, including the use of human samples and animal models, as well as the incorporation of multiple cutting-edge techniques. However, there are some significant issues with the murine model experiments that need to be addressed:

      Comment 1. The authors are not consistent in their use of or focus on uterine and placental cells. These are distinct tissues, and numerous prior reports have indicated differences in the macrophage populations of these tissues, due in part to the predominantly maternal origin of macrophages in the uterus and the largely fetal origin of those in the placenta. The rationale for switching between uterine and placental cells in different experiments is not clear, and the inclusion of cells from both (such as in the bulk RNAseq experiments) could be potentially confounding.

      Response 1: We thank the reviewers' comments. We have done the green fluorescent protein (GFP) pregnant mice-related animal experiment, which was not shown in this manuscript. The wild-type (WT) female mice were mated with either transgenic male mice, genetically modified to express GFP, or with WT male mice, in order to generate either GFP-expressing pups (GFP-pups) or their genetically unmodified counterparts (WT-pups), respectively. Mice were euthanized on day 18.5 of gestation, and the uteri of the pregnant females and the placentas of the offspring were analyzed using flow cytometry. The majority of macrophages in the uterus and placenta are of maternal origin, which was defined by GFP negative. In contrast, fetal-derived macrophages, distinguished by their expression of GFP, represent a mere fraction of the total macrophage population, signifying their inconsequential or restricted presence amidst the broader cellular landscape. We have added the GPF pregnant mice-related data in Figure 4-figure supplement 1D-1E to explain the different macrophage populations in the uterine and placental cells.

      Comment 2. The observational data for the initial experiment transferring RUPP-derived macrophages to normal pregnant mice (without any other manipulations) seems to be missing. They do not seem to be presented in Figure 4 where they are expected based on the results text.

      Response 2: We thank the reviewers' comments. We thank the reviewers' comments. We have added the observational data (Figure 4-figure supplement 1D, 1E) and a corresponding description of the data (Line 198-203).

      Comment 3. The action of the anti-macrophage compounds is not well explained, nor are their mechanisms validated as affecting or not affecting the placental/fetal macrophage populations. It is important to clarify whether the macrophages are depleted or merely inhibited by these treatments, and it is absolutely critical to determine whether these treatments are affecting placental/fetal macrophage populations (the latter indicative of placental transfer), given the focus on placental macrophages.

      Response 3: We thank the reviewers' comments. PLX3397, the inhibitor of CSF1R, which is needed for macrophage development (Nature. 2023, PMID: 36890231; Cell Mol Immunol. 2022, PMID: 36220994), we have stated that on Line227-230. However, PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We will discuss the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 4. The interpretation of the murine single-cell data is hampered by the lack of means for distinguishing donor cells from recipient cells, which is important when seeking to identify the influence of the donor cells.

      Response 4: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently per formed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, the donor cells should be in cluster 0 in macrophages.

      Comment 5. The switch to the LPS model in the final experiments is a limitation, as this model more closely resembles the systemic inflammation seen in endotoxemia rather than the specific pathology of preeclampsia (PE). While this is not an exhaustive list, the number of weaknesses in the experimental design makes it difficult to evaluate the findings comprehensively.

      Response 5: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the RUPP mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. We proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant rats induces PE-like symptoms (Figure 6F-6H). In summary, applying the LPS model in the final experiments does not affect the conclusions.

      Minor comments:

      Comment 1. Introduction, Lines 67-74: The phrasing here is unclear as to the roles that each mentioned immune cell subset is playing in preeclampsia. Given the statement "Elevated levels of maternal inflammation...", does this imply that the numbers of all mentioned immune cell subsets are increased in the maternal circulation? If not, please consider rewording this.

      Response 1: We thank the reviewers' comments. We have revised the manuscript as follows: Currently, the pivotal mechanism underpinning the pathogenesis of preeclampsia is widely acknowledged to involve an increased frequency of pro-inflammatory M1-like maternal macrophages, along with an elevation in Granulocytes capable of superoxide generation, CD56<sup>+</sup> CD94<sup>+</sup> natural killer (NK) cells, CD19<sup>+</sup>CD5<sup>+</sup> B1 lymphocytes, and activated γδ T cells. Conversely, this pathological process is accompanied by a notable decrease in the frequency of anti-inflammatory M2-like macrophages and NKp46<sup>+</sup> NK cells (Line67-77).

      Comment 2. Introduction, Lines 67-80: Is the involvement of the described immune cell subsets largely ubiquitous to preeclampsia? Recent multi-omic studies suggest that preeclampsia is a heterogeneous condition with different subsets, some more biased towards systemic immune activation than others. Thus, it is important to clarify whether the involvement of specific immune subsets is generally observed or more specific.

      Response 2: We thank the reviewers' comments. We have added a new paragraph as follows: Moreover, as PE can be subdivided into early- and late-onset PE diagnosed before 34 weeks or from 34 weeks of gestation, respectively. Research has revealed that among the myriad of cellular alterations in PE, pro-inflammatory M1-like macrophages and intrauterine B1 cells display an augmented presence at the maternal-fetal interface of both early-onset and late-onset PE patients. Decidual natural killer (dNK) cells and neutrophils emerge as paramount contributors, playing a more crucial role in the pathogenesis of early-onset PE than late-onset PE (Front Immunol. 2020. PMID: 33013837) (Line83-89).

      Comment 3. Introduction, Lines 81-86: The point of this short paragraph is not clear; the authors mention two very specific cellular interactions without explaining why.

      Response 3: In the previous paragraph, we uncovered a heightened inflammatory response among multiple immune cells in patients with PE, yet the intricate interplay between these individual immune cells has been seldom elucidated in the context of PE patient. This is precisely why we delve into the realm of specific immune cellular interactions in relation to other pregnancy complications in this paragraph (Line91-98).

      Comment 4. Methods: What placental tissues (e.g., villous tree, chorionic plate, extraplacental membranes) were included for CyTOF analysis? Was any decidual tissue (e.g., basal plate) included? Please clarify.

      Response 4: Placental villi rather than chorionic plate and extraplacental membranes were used for CyToF in this study. The relevant content has been incorporated into the "Materials and Methods" section (Line564-576).

      Comment 5. Results, Table 1: The authors should clarify that all PE samples were not full term (i.e., were less than 37 weeks of gestation), which is to be expected. In addition, were the PE cases all late-onset PE?

      Response 5: All PE samples enumerated in Table 1 demonstrate a late-onset preeclampsia, with placental specimens being procured from patients more than 35 weeks of gestation and less than the 38 weeks of pregnancy. The relevant content has been incorporated into the "Materials and Methods" section (Line574-576).

      Comment 6. Results, Figure 1: Are the authors considering the identified Macrophage cluster as being largely fetal (e.g., Hofbauer cells)? This also depends on whether any decidual tissue was included in the placental samples for CyTOF.

      Response 6: Firstly, the specimens subjected to CyToF analysis were devoid of decidual tissue and exclusively comprised placental villi. Secondly, the Macrophage cluster in Figure 1 undeniably encompasses Hofbauer cells, and we considering fetal-derived macrophages likely constituting the substantial proportion of the cellular population. However, a limitation of the CyToF technique lies in its inability to discern between maternal and fetal origins of these cells, thereby precluding a definitive distinction.

      Comment 7. Results, Figure 2C: Did the authors validate other T-cell subset markers (e.g., Th1, Th2, Th9, etc.)?

      Response 7: In this study, we did not validate additional T-cell subset markers presented in Figure 2C, recognizing the potential for deeper insights. As we embark on our subsequent research endeavors, we aim to meticulously explore and characterize the intricate changes in diverse T-cell populations at the maternal-fetal interface, with a particular focus on preeclampsia patients, thereby advancing our understanding of this complex condition.

      Comment 8. Results, Figure 2D: Where were the detected memory-like T cells located in the placenta? Did they cluster in certain areas or were they widely distributed?

      Response 8: Upon a thorough re-evaluation of the immunofluorescence images specific to the placenta, we observed a notable preponderance of memory-like T cells residing within the placental sinusoids (Line135-139).

      Comment 9. Results, Figure 2E: I would suggest separating the two plots so that the Y-axis can be expanded for TIM3, as it is impossible to view the medians currently.

      Response 9: We thank the reviewers' comments. We have made the adjustment to Figure 2E according to the reviewers' suggestions.

      Comment 10. Results, Lines 138-140: Do the authors consider that the altered T-cells are largely resident cells of the placenta or newly invading/recruited cells? The clarification of distribution within the placental tissues as mentioned above would help answer this.

      Response 10: Our analysis revealed the presence of memory-like T cells within the placental sinusoids, as evident from the immunofluorescence examination of placental tissues. Consequently, these T cells may represent recently recruited cellular entities, traversing the placental vasculature and integrating into this unique maternal-fetal microenvironment (Line135-139).

      Comment 11. Results, Figure 3C: Has a reduction of gMDSCs (or MDSCs in general) been previously reported in PE?

      Response 11: Myeloid-derived suppressor cells (MDSCs) constitute a diverse population of myeloid-derived cells that exhibit immunosuppressive functions under various conditions. Previous reports have documented a decrease in the levels of gMDSCs from peripheral blood or umbilical cord blood among patients with preeclampsia (Am J Reprod Immunol. 2020, PMID: 32418253; J Reprod Immunol. 2018, PMID: 29763854; Biol Reprod. 2023, PMID: 36504233). Nevertheless, there was no documented reports thus far on the alterations and specific characteristics in gMDSCs within the placenta of PE patients.

      Comment 12. Results, Figure 3D-E: It is not clear what new information is added by the correlations, as the increase of both cluster 23 in CD11b+ cells and cluster 8 in CD4+ T cells in PE cases was already apparent. Are these simply to confirm what was shown from the quantification data?

      Response 12: Despite the evident increase in both cluster 23 within CD11b<sup>+</sup> cells and cluster 8 within CD4<sup>+</sup> T cells in PE cases, the existence of a potential correlation between these two clusters remains elusive. To gain insight into this question, we conducted a Pearson correlation analysis, which is presented in Figure 3D-E, revealing a positive correlation between the two clusters.

      Comment 13. Results, Figure 4A: Please clarify in the results text that the RNA-seq of macrophages from RUPP mice was performed prior to their injection into normal pregnant mice.

      Response 13: We thank the reviewers' comments. We have updated Figure 4A according to the reviewers' suggestions.

      Comment 14. Results / Methods, Figure 4: For the transfer of macrophages from RUPP mice into normal mice, why were the uterine tissues included to isolate cells? The uterine macrophages will be almost completely maternal, as opposed to the largely fetal placental macrophages, and despite the sorting for specific markers these are likely distinct subsets that have been combined for injection. This could potentially impact the differential gene expression analysis and should be accounted for. In addition, did murine placental samples include decidua? This should be clarified.

      Response 14: We thank the reviewers' comments. For our experimental design involving human samples, we meticulously selected placental tissue as the primary focus. Initially, we aimed for uniformity by contemplating the utilization of mouse placenta. However, a pivotal revelation emerged from the GFP pregnant mice-related data in Figure 4-figure supplement 1D,1E: the uterus and placenta of mice are predominantly populated by maternal macrophages, with fetal macrophages virtually absent, marking a notable divergence from the human scenario. Furthermore, the uterine milieu exhibits a macrophage concentration exceeding 20% of total cellular composition, whereas in the placenta, this proportion dwindles to less than 5%, underscoring a distinct distribution pattern. Given these discrepancies and considerations, we incorporated mouse uterine tissues into our protocol to isolate cells, ensuring a more comprehensive and informative exploration that acknowledges the inherent differences between human and mouse placental biology.

      Comment 15. Results, Lines 186-187: I think the figure citation should be Figure 4D here.

      Response 15: We thank the reviewers' careful checking. We have revised and updated Figure 4 accordingly.

      Comment 16. Results, Figure 4: Where are the results of the injection of anti-inflammatory and pro-inflammatory macrophages into normal mice? This experiment is mentioned in Figure 4A, but the only results shown in Figure 4 are with the PLX3397 depletion.

      Response 16: The aim of this experiment in figure 4 is to conclusively ascertain the influence of pro-inflammatory and anti-inflammatory macrophages on the other immune cells within the maternal-fetal interface, as well as their implications for pregnancy outcomes. To achieve this, we employed a strategic approach involving the administration of PLX3397, a compound capable of eliminating the preexisting macrophages in mice. Subsequently, anti-inflam or pro-inflam macrophages were injected to these mice, thereby eliminating the confounding influence of the native macrophage population. This methodology allows for a more discernible observation of the specific effects these two types of macrophages exert on the immune landscape at the maternal-fetal interface and their ultimate impact on pregnancy outcomes.

      Comment 17. Results, Lines 189-190: Does PLX3397 inhibit macrophage development/signaling/etc. or result in macrophage depletion? This is an important distinction. If depletion is induced, does this affect placental/fetal macrophages or just maternal macrophages?

      Response 17: We thank the reviewers' comments. We have updated the additional data on the efficiency of macrophage depletion involving PLX3397 in Figure 4-figure supplement 2A. PLX3397 is a small molecule compound that possesses the potential to cross the placental barrier and affect fetal macrophages. We have discussed the impact of this factor on the experiment in the Discussion section (Line457-459).

      Comment 18. Results, Lines 197-198: Similarly, does clodronate liposome administration affect only maternal macrophages, or also placental/fetal macrophages?

      Response 18: We thank the reviewers' comments. We have updated the additional data on the efficiency of macrophage depletion involving Clodronate Liposomes in Figure 4-figure supplement 2B. Clodronate Liposomes, which are intricate vesicles encapsulating diverse substances, while only small molecule compounds possess the potential to cross the placental barrier. Consequently, we hold the view that the influence of these liposomes is likely confined to the maternal macrophages (Artif Cells Nanomed Biotechnol. 2023. PMID: 37594208).  

      Comment 19. Results, Line 206: A minor point, but consider continuing to refer to the preeclampsia model mice as RUPP mice rather than PE mice.

      Response 19: We thank the reviewers' comments. We have revised and updated this section accordingly.

      Comment 20. Results / Methods, Figure 5: For these experiments, why did the authors focus on the mouse uterus?

      Response 20: We have previously addressed this query in our Response 14. We incorporated mouse uterine tissues for cell isolation due to the profound differences in placental biology between humans and mice.

      Comment 21. Results, Figure 5: Did the authors have a means of distinguishing the transferred donor cells from the recipient cells for their single-cell analysis? If the goal is to separate the effects of the macrophage transfer on other uterine immune cells, then it would be important to identify and separate the donor cells.

      Response 21: We thank the reviewers' comments. Upon analysis, we observed a notable elevation in the frequency of total macrophages within the CD45<sup>+</sup> cell population. Then we subsequently performed macrophage clustering and uncovered a marked increase in the frequency of Cluster 0, implying a potential correlation between Cluster 0 and donor-derived cells. RNA sequencing revealed that the F480<sup>+</sup>CD206<sup>-</sup> pro-inflammatory donor macrophages exhibited a Folr2<sup>+</sup>Ccl7<sup>+</sup>Ccl8<sup>+</sup>C1qa<sup>+</sup>C1qb<sup>+</sup>C1qc<sup>+</sup> phenotype, which is consistent with the phenotype of cluster 0 in macrophages observed in single-cell RNA sequencing (Figure 4D and Figure 5E). Therefore, the donor cells should be in cluster 0 in macrophages.

      Comment 22. Results, Lines 247-248: While the authors have prudently noted that the observed T-cell phenotypes are merely suggestive of immunosuppression, any claims regarding changes in the immunosuppressive function after macrophage transfer would require functional studies of the T cells.

      Response 22: We thank the reviewers' comments. Upon revisiting and meticulously reviewing the pertinent literature, we have refined our terminology, transitioning from 'immunosuppression' to 'immunomodulation', thereby enhancing the accuracy and precision of our Results (Line285-287).

      Comment 23. Results, Figure 6G: The observation of worsened outcomes and PE-like symptoms after T-cell transfer is interesting, but other models of PE induced by the administration of Th1-like cells have already been reported. Are the authors' findings consistent with these reports? These findings are strengthened by the evaluation of second-pregnancy outcomes following the transfer of T cells in the first pregnancy.

      Response 23: We thank the reviewers' comments. As we verified in Figure 6F-6H, the injection of CD4<sup>+</sup>CD44<sup>+</sup> T cells derived from RUPP mouse, characterized by a reduced frequency of Tregs and an increased frequency of Th17 cells, could induce PE-like symptoms in pregnant mice. In line with other studies, which have implicated Th1-like cells in the manifestation of PE-like symptoms, we posit a novel hypothesis: beyond Th1 cells, Th17 cells also have the potential to induce PE-like symptoms.

      Comment 24. Results, Lines 327-337: The disease model implied by the authors here is not clear. Given that the authors' human findings are in the placental macrophages, are the authors proposing that placental macrophages are induced to an M1 phenotype by placenta-derived EVs? Please elaborate on and clarify the proposed model.

      Response 24 In the article authored by our team, titled "Trophoblast-Derived Extracellular Vesicles Promote Preeclampsia by Regulating Macrophage Polarization" published in Hypertension (Hypertension. 2022, PMID: 35993233), we employed trophoblast-derived extracellular vesicles isolated from PE patients as a means to induce an M1-like macrophage phenotype in macrophages from human peripheral blood in vitro. Consequently, in the present study, we have directly leveraged this established methodology to induce pro-inflammatory macrophages.

      Comment 25. Results / Methods, Figure 8E-H: What is the reasoning for switching to an LPS model in this experiment? LPS is less specific to PE than the RUPP model.

      Response 25: We thank the reviewers' comments. Firstly, our other animal experiments in this manuscript used the RUPP mouse model to simulate the pathology of PE. However, the RUPP model requires ligation of the uterine arteries in pregnant mice on day 12.5 of gestation, which hinders T cells returning from the tail vein from reaching the maternal-fetal interface. In addition, this experiment aims to prove that CD4<sup>+</sup> T cells are differentiated into memory-like Th17 cells through IGF-1R receptor signaling to affect pregnancy by clearing CD4<sup>+</sup> T cells in vivo with an anti-CD4 antibody followed by injecting IGF-1R inhibitor-treated CD4<sup>+</sup> T cells. And we proved that injection of RUPP-derived memory-like CD4<sup>+</sup> T cells into pregnant mice induces PE-like symptoms (Figure 6). In summary, the application of the LPS model in the final experiments does not affect the conclusions.

      Comment 26. Discussion: What do the authors consider to be the origins of the inflammatory cells associated with PE onset? Are these maternal cells invading the placental tissues, or are these placental resident (likely fetal) cells?

      Response 26: We thank the reviewers' comments. Numerous reports have consistently observed the presence of inflammatory cells and factors in the maternal peripheral blood and placenta tissues of PE patients, fostering the prevailing notion that the progression of PE is intricately linked to the maternal immune system's inflammatory response towards the fetus. Nevertheless, intriguing findings from single-cell RNA sequencing, analyzed through bioinformatic methods, have challenged this perspective (Elife. 2019. PMID: 31829938;Proc Natl Acad Sci U S A. 2017.PMID: 28830992). These studies reveal that the placenta harbors not just immune cells of maternal origin but also those of fetal origin, raising questions about whether these are maternal cells infiltrating placental tissues or resident (possibly fetal) placental cells. Further investigation is imperative to elucidate this complex interplay.

      Comment 27. Discussion: Given the observed lack of changes in the GDM or GDM+PE groups, do the authors consider that GDM represents a distinct pathology that can lead to secondary PE, and thus is different from primary PE without GDM?

      Response 27: It's possible. Though previous studies reported GDM is associated with aberrant maternal immune cell adaption the findings remained controversial. It seems that GDM does not induce significant alterations in placental immune cell profile in our study, which made us pay more attention to the immune mechanism in PE. However, it is confusing for the reasons why individuals with GDM&PE were protected from the immune alterations at the maternal fetal interface. Limited placental samples in the GDM&PE group can partly explain it, for it is hard to collect clean samples excluding confounding factors. A study reported that macrophages in human placenta maintained anti-inflammatory properties despite GDM (Front Immunol, 2017, PMID: 28824621).Barke et al. also found that more CD163<sup>+</sup> cells were observed in GDM placentas compared to normal controls (PLoS One, 2014, PMID: 24983948). Thus, GDM is likely to have a protective property in the placental immune environment when the individuals are complicated with PE.

      Reviewer #2 (Recommendations for the authors):

      Comment 1. IF images need to be quantified.

      Response 1: We thank the reviewers' comments. We have quantified and calculated the fluorescence intensity and added it in Figure 2D.

      Comment 2. Cluster 12 in Figure 3 is labeled as granulocytes but listed under macrophages.

      Response 2: We thank the reviewers' careful checking. We have revised and updated Figure 3A.

      Comment 3. Figure 4 labels in the text and figure do not match, no 4G in the figure.

      Response 3: We thank the reviewers' careful checking. The figure labels of Figure 4 have been revised and updated.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome is multi-dimensional. In particular, the authors propose that the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally propose that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea thus has the potential to change how we think about mental disorders in a substantial way, and could even help us better understand how healthy people navigate challenging decision-making problems.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      Starting with theory, the elasticity idea does not truly "extend" the standard control model in the way the authors suggest. The reason is that effort is simply one dimension of action. Thus, the proposed model ultimately grounds out in how strongly our outcomes depend on our actions (as in the standard model). Contrary to the authors' claims, the elasticity of control is still a fixed property of the environment. Consistent with this, the computational model proposed here is a learning model of this fixed environmental property. The idea is still valuable, however, because it identifies a key dimension of action (namely, effort) that is particularly relevant to the notion of perceived control. Expressing the elasticity idea in this way might support a more general theoretical formulation of the idea that could be applied in other contexts. See Huys & Dayan (2009), Zorowitz, Momennejad, & Daw (2018), and Gagne & Dayan (2022) for examples of generalizable formulations of perceived control.

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology.

      Starting with claim 1, there are three sub-claims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not supported.

      Starting with 1B, the experiment cannot support the claim that people represent or track elasticity because the effort is the only dimension over which participants can engage in any meaningful decision-making (the other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies). Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort. More concretely, any model that captures the fact that you are more likely to succeed in two attempts than one will produce the observed behavior. The null models do not make this basic assumption and thus do not provide a useful comparison.

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct. However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency and the elasticity bias---this result is consistent with any possible relationship (even a negative one). The fact that the direct relationship between these two variables is not shown or reported leads me to infer that they do not have a significant or strong relationship in the data.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences in elasticity inference. As the authors clearly acknowledge, the task was designed "to be especially sensitive to overestimation of elasticity" (line 287). A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias.

      When we further consider that elasticity inference is the only meaningful learning/decision-making problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      Minor comments:

      Showing that a model parameter correlates with the data it was fit to does not provide any new information, and cannot support claims like "a prior assumption that control is likely available was reflected in a futile investment of resources in uncontrollable environments." To make that claim, one must collect independent measures of the assumption and the investment.

      Did participants always make two attempts when purchasing tickets? This seems to violate the intuitive model, in which you would sometimes succeed on the first jump. If so, why was this choice made? Relatedly, it is not clear to me after a close reading how the outcome of each trial was actually determined.

      It should be noted that the model is heuristically defined and does not reflect Bayesian updating. In particular, it overestimates control by not using losses with less than 3 tickets (intuitively, the inference here depends on your beliefs about elasticity). I wonder if the forced three-ticket trials in the task might be historically related to this modeling choice.

    2. Author response:

      We thank the reviewers for their thorough reading and thoughtful feedback. Below, we provisionally address each of the concerns raised in the public reviews, and outline our planned revision that aims to further clarify and strengthen the manuscript.

      In our response, we clarify our conceptualization of elasticity as a dimension of controllability, formalizing it within an information-theoretic framework, and demonstrating that controllability and its elasticity are partially dissociable. Furthermore, we provide clarifications and additional modeling results showing that our experimental design and modeling approach are well-suited to dissociating elasticity inference from more general learning processes, and are not inherently biased to find overestimates of elasticity. Finally, we clarify the advantages and disadvantages of our canonical correlation analysis (CCA) approach for identifying latent relationships between multidimensional data sets, and provide additional analyses that strengthen the link between elasticity estimation biases and a specific psychopathology profile.

      Reviewer 1:

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment, and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform the understanding of control across domains, which is a topic of great importance.

      We thank the reviewer for their favorable appraisal and valuable suggestions, which have helped clarify and strengthen the study’s conclusion. 

      An overarching concern is that this paper is framed as addressing resource investments across domains that include time, money, and effort, and the introductory examples focus heavily on effort-based resources (e.g., exercising, studying, practicing). The experiments, though, focus entirely on the equivalent of monetary resources - participants make discrete actions based on the number of points they want to use on a given turn. While the same ideas might generalize to decisions about other kinds of resources (e.g., if participants were having to invest the effort to reach a goal), this seems like the kind of speculation that would be better reserved for the Discussion section rather than using effort investment as a means of introducing a new concept (elasticity of control) that the paper will go on to test.

      We thank the reviewer for pointing out a lack of clarity regarding the kinds of resources tested in the present experiment. Investing additional resources in the form of extra tickets did not only require participants to pay more money. It also required them to invest additional time – since each additional ticket meant making another attempt to board the vehicle, extending the duration of the trial, and attentional effort – since every attempt required precisely timing a spacebar press as the vehicle crossed the screen. Given this involvement of money, time, and effort resources, we believe it would be imprecise to present the study as concerning monetary resources in particular. That said, we agree with the Reviewer that results might differ depending on the resource type that the experiment or the participant considers most. Thus, in our revision of the manuscript, we will make sure to clarify the kinds of resources the experiment involved, and highlight the open question of whether inferences concerning the elasticity of control generalize across different resource domains.

      Setting aside the framing of the core concepts, my understanding of the task is that it effectively captures people's estimates of the likelihood of achieving their goal (Pr(success)) conditional on a given investment of resources. The ground truth across the different environments varies such that this function is sometimes flat (low controllability), sometimes increases linearly (elastic controllability), and sometimes increases as a step function (inelastic controllability). If this is accurate, then it raises two questions.

      First, on the modeling front, I wonder if a suitable alternative to the current model would be to assume that the participants are simply considering different continuous functions like these and, within a Bayesian framework, evaluating the probabilistic evidence for each function based on each trial's outcome. This would give participants an estimate of the marginal increase in Pr(success) for each ticket, and they could then weigh the expected value of that ticket choice (Pr(success)*150 points) against the marginal increase in point cost for each ticket. This should yield similar predictions for optimal performance (e.g., opt-out for lower controllability environments, i.e., flatter functions), and the continuous nature of this form of function approximation also has the benefit of enabling tests of generalization to predict changes in behavior if there was, for instance, changes in available tickets for purchase (e.g., up to 4 or 5) or changes in ticket prices. Such a model would of course also maintain a critical role for priors based on one's experience within the task as well as over longer timescales, and could be meaningfully interpreted as such (e.g., priors related to the likelihood of success/failure and whether one's actions influence these). It could also potentially reduce the complexity of the model by replacing controllability-specific parameters with multiple candidate functions (presumably learned through past experience, and/or tuned by experience in this task environment), each of which is being updated simultaneously.

      Second, if the reframing above is apt (regardless of the best model for implementing it), it seems like the taxonomy being offered by the authors risks a form of "jangle fallacy," in particular by positing distinct constructs (controllability and elasticity) for processes that ultimately comprise aspects of the same process (estimation of the relationship between investment and outcome likelihood). Which of these two frames is used doesn't bear on the rigor of the approach or the strength of the findings, but it does bear on how readers will digest and draw inferences from this work. It is ultimately up to the authors which of these they choose to favor, but I think the paper would benefit from some discussion of a common-process alternative, at least to prevent too strong of inferences about separate processes/modes that may not exist. I personally think the approach and findings in this paper would also be easier to digest under a common-construct approach rather than forcing new terminology but, again, I defer to the authors on this.

      We thank the reviewer for suggesting this interesting alternative modeling approach. We agree that a Bayesian framework evaluating different continuous functions could offer advantages, particularly in its ability to generalize to other ticket quantities and prices. We will attempt to implement this as an alternative model and compare it with the current model.  

      We also acknowledge the importance of avoiding a potential "jangle fallacy". We entirely agree with the Reviewer that elasticity and controllability inferences are not distinct processes. Specifically, we view resource elasticity as a dimension of controllability, hence the name of our ‘elastic controllability’ model. In response to this and other Reviewers’ comments, we now offer a formal definition of elasticity as the reduction in uncertainty about controllability due to knowing the amount of resources the agent is able and willing to invest (see further details in response to Reviewer 3 below).  

      With respect to how this conceptualization is expressed in the modelling, we note that the representation in our model of maximum controllability and its elasticity via different variables is analogous to how a distribution may be represented by separate mean and variance parameters. Ultimately, even in the model suggested by the Reviewer, there would need to be a dedicated variable representing elasticity, such as the probability of sloped controllability functions. A single-process account thus allows that different aspects of this process would be differently biased (e.g., one can have an accurate estimate of the mean of a distribution but overestimate its variance). Therefore, our characterization of distinct elasticity and controllability biases (or to put it more accurately, ‘elasticity of controllability bias’ and ‘maximum controllability bias’) is consistent with a common construct account. 

      That said, given the Reviewer’s comments, we believe that some of the terminology we used may have been misleading. In our planned revision, we will modify the text to clarify that we view elasticity as a dimension of controllability that can only be estimated in conjunction with controllability. 

      Reviewer 2:

      This research investigates how people might value different factors that contribute to controllability in a creative and thorough way. The authors use computational modeling to try to dissociate "elasticity" from "overall controllability," and find some differential associations with psychopathology. This was a convincing justification for using modeling above and beyond behavioral output and yielded interesting results. Interestingly, the authors conclude that these findings suggest that biased elasticity could distort agency beliefs via maladaptive resource allocation. Overall, this paper reveals some important findings about how people consider components of controllability.

      We appreciate the Reviewer's positive assessment of our findings and computational approach to dissociating elasticity and overall controllability.

      The primary weakness of this research is that it is not entirely clear what is meant by "elastic" and "inelastic" and how these constructs differ from existing considerations of various factors/calculations that contribute to perceptions of and decisions about controllability. I think this weakness is primarily an issue of framing, where it's not clear whether elasticity is, in fact, theoretically dissociable from controllability. Instead, it seems that the elements that make up "elasticity" are simply some of the many calculations that contribute to controllability. In other words, an "elastic" environment is inherently more controllable than an "inelastic" one, since both environments might have the same level of predictability, but in an "elastic" environment, one can also partake in additional actions to have additional control overachieving the goal (i.e., expend effort, money, time).

      We thank the reviewer for highlighting the lack of clarity in our concept of elasticity. We first clarify that elasticity cannot be entirely dissociated from controllability because it is a dimension of controllability. If no controllability is afforded, then there cannot be elasticity or inelasticity. This is why in describing the experimental environments, we only label high-controllability, but not low-controllability, environments as ‘elastic’ or ‘inelastic’. For further details on this conceptualization of elasticity, and a planned revision of the text, see our response above to Reviewer 1. 

      Second, we now clarify that controllability can also be computed without knowing the amount of resources the agent is able and willing to invest, for instance by assuming infinite resources available or a particular distribution of resource availabilities. However, knowing the agent’s available resources often reduces uncertainty concerning controllability. This reduction in uncertainty is what we define as elasticity. Since any action requires some resources, this means that no controllable environment is entirely inelastic if we also consider agents that do not have enough resources to commit any action. However, even in this case environments can differ in the degree to which they are elastic. For further details on this formal definition, see our response to Reviewer 3 below. We will make these necessary clarifications in the revised manuscript. 

      Importantly, whether an environment is more or less elastic does not determine whether it is more or less controllable. In particular, environments can be more controllable yet less elastic. This is true even if we allow that investing different levels of resources (i.e., purchasing 0, 1, 2, or 3 tickets) constitute different actions, in conjunction with participants’ vehicle choices. Below, we show this using two existing definitions of controllability. 

      Definition 1, reward-based controllability<sup>1</sup>: If control is defined as the fraction of available reward that is controllably achievable, and we assume all participants are in principle willing and able to invest 3 tickets, controllability can be computed in the present task as:

      where P(S' \= goal ∣ 𝑆, 𝐴, 𝐶 ) is the probability of reaching the treasure from present state 𝑆 when taking action A and investing C resources in executing the action. In any of the task environments, the probability of reaching the goal is maximized by purchasing 3 tickets (𝐶 = 3) and choosing the vehicle that leads to the goal (𝐴 = correct vehicle). Conversely, the probability of reaching the goal is minimized by purchasing 3 tickets (𝐶 = 3) and choosing the vehicle that does not lead to the goal (𝐴 = wrong vehicle). This calculation is thus entirely independent of elasticity, since it only considers what would be achieved by maximal resource investment, whereas elasticity consists of the reduction in controllability that would arise if the maximal available 𝐶 is reduced. Consequently, any environment where the maximum available control is higher yet varies less with resource investment would be more controllable and less elastic. 

      Note that if we also account for ticket costs in calculating reward, this will only reduce the fraction of achievable reward and thus the calculated control in elastic environments.   

      Definition 2, information-theoretic controllability<sup>2</sup>: Here controllability is defined as the reduction in outcome entropy due to knowing which action is taken:

      I(S'; A, C | S) = H(S'|S) - H(S'|S, A, C)

      where H(S'|S) is the conditional entropy of the distribution of outcomes S' given the present state 𝑆, and H(S'|S, A, C) is the conditional entropy of the outcome given the present state, action, and resource investment. 

      To compare controllability, we consider two environments with the same maximum control:

      • Inelastic environment: If the correct vehicle is chosen, there is a 100% chance of reaching the goal state with 1, 2, or 3 tickets. Thus, out of 7 possible action-resource investment combinations, three deterministically lead to the goal state (≥1 tickets and correct vehicle choice), three never lead to it (≥1 tickets and wrong vehicle choice), and one (0 tickets) leads to it 20% of the time (since walking leads to the treasure on 20% of trials).

      • Elastic Environment: If the correct vehicle is chosen, the probability of boarding it is 0% with 1 ticket, 50% with 2 tickets, and 100% with 3 tickets. Thus, out of 7 possible actionresource investment combinations, one deterministically leads to the goal state (3 tickets and correct vehicle choice), one never leads to it (3 tickets and wrong vehicle choice), one leads to it 60% of the time (2 tickets and correct vehicle choice: 50% boarding + 50% × 20% when failing to board), one leads to it 10% of time (2 ticket and wrong vehicle choice), and three lead to it 20% of time (0-1 tickets).

      Here we assume a uniform prior over actions, which renders the information-theoretic definition of controllability equal to another definition termed ‘instrumental divergence’3,4. We note that changing the uniform prior assumption would change the results for the two environments, but that would not change the general conclusion that there can be environments that are more controllable yet less elastic. 

      Step 1: Calculating H(S'|S)

      For the inelastic environment:

      P(goal) = (3 × 100% + 3 × 0% + 1 × 20%)/7 = .46, P(non-goal) = .54  H(S'|S) = – [.46 × log<sub>2</sub>(.46) + .54 × log<sub>2</sub>(.54)] \= 1 bit

      For the elastic environment:

      P(goal) \= (1 × 100% + 1 × 0% + 1 × 60% + 1 × 10% + 3 × 20%)/7 \= .33, P(non-goal) \= .67  H(S'|S) = – [.33 × log<sub>2</sub>(.33) + .67 × log<sub>2</sub>(.67)] \= .91 bits

      Step 2: Calculating H(S'|S, A, C)

      Inelastic environment: Six action-resource investment combinations have deterministic outcomes entailing zero entropy, whereas investing 0 tickets has a probabilistic outcome (20%). The entropy for 0 tickets is: H(S'|C \= 0) \= -[.2 × log<sub>2</sub>(.2) + 0.8 × log<sub>2</sub> (.8)] = .72 bits. Since this actionresource investment combination is chosen with probability 1/7, the total conditional entropy is approximately .10 bits

      Elastic environment: 2 actions have deterministic outcomes (3 tickets with correct/wrong vehicle), whereas the other 5 actions have probabilistic outcomes:

      2 tickets and correct vehicle (60% success): 

      H(S'|A = correct, C = 2) = – [.6 × log<sub>2</sub>(.6) + .4 × log<sub>2</sub>(.4)] \= .97 bits 2 tickets and wrong vehicle (10% success): 

      H(S'|A = wrong, C = 2) = – [.1 × <sub>2</sub>(.1) + .9 × <sub>2</sub>(.9)] \= .47 bits 0-1 tickets (20% success):

      H(S'|C = 0-1) = – [.2 × <sub>2</sub>(.2) + .8 × <sub>2</sub> .8)] \= .72 bits

      Thus the total conditional entropy of the elastic environment is: H(S'|S, A, C) = (1/7) × .97 + (1/7) × .47 + (3/7) × .72 \= .52 bits

      Step 3: Calculating I(S' | A, S)  

      Inelastic environment: I(S'; A, C | S) = H(S'|S) – H(S'|S, A, C) = 1 – 0.1 = .9 bits 

      Elastic environment: I(S'; A, C | S) = H(S'|S) – H(S'|S, A, C) = .91 – .52 = .39 bits

      Thus, the inelastic environment offers higher information-theoretic controllability (.9 bits) compared to the elastic environment (.39 bits). 

      Of note, even if each combination of cost and goal reaching is defined as a distinct outcome, then information-theoretic controllability is higher for the inelastic (2.81 bits) than for the elastic (2.30 bits) environment. 

      In sum, for both definitions of controllability, we see that environments can be more elastic yet less controllable. We will amend the manuscript to clarify this distinction between controllability and its elasticity.

      Reviewer 3:

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome is multi-dimensional. In particular, the authors propose that the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally propose that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea thus has the potential to change how we think about mental disorders in a substantial way, and could even help us better understand how healthy people navigate challenging decision-making problems.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      We appreciate the Reviewer's thoughtful engagement with our research and recognition of the potential significance of distinguishing between different dimensions of control in understanding psychopathology. We believe that all the Reviewer’s comments can be addressed with clarifications or additional analyses, as detailed below.  

      Starting with theory, the elasticity idea does not truly "extend" the standard control model in the way the authors suggest. The reason is that effort is simply one dimension of action. Thus, the proposed model ultimately grounds out in how strongly our outcomes depend on our actions (as in the standard model). Contrary to the authors' claims, the elasticity of control is still a fixed property of the environment. Consistent with this, the computational model proposed here is a learning model of this fixed environmental property. The idea is still valuable, however, because it identifies a key dimension of action (namely, effort) that is particularly relevant to the notion of perceived control. Expressing the elasticity idea in this way might support a more general theoretical formulation of the idea that could be applied in other contexts. See Huys & Dayan (2009), Zorowitz, Momennejad, & Daw (2018), and Gagne & Dayan (2022) for examples of generalizable formulations of perceived control.

      We thank the Reviewer for the suggestion that we formalize our concept of elasticity to resource investment, which we agree is a dimension of action. We first note that we have not argued against the claim that elasticity is a fixed property of the environment. We surmise the Reviewer might have misread our statement that “controllability is not a fixed property of the environment”. The latter statement is motivated by the observation that controllability is often higher for agents that can invest more resources (e.g., a richer person can buy more things). We will clarify this in our revision of the manuscript.

      To formalize elasticity, we build on Huys & Dayan’s definition of controllability(1) as the fraction of reward that is controllably achievable, 𝜒 (though using information-theoretic definitions(2,3) would work as well). To the extent that this fraction depends on the amount of resources the agent is able and willing to invest (max 𝐶), this formulation can be probabilistically computed without information about the particular agent involved, specifically, by assuming a certain distribution of agents with different amounts of available resources. This would result in a probability distribution over 𝜒. Elasticity can thus be defined as the amount of information obtained about controllability due to knowing the amount of resources available to the agent: I(𝜒; max 𝐶). We will add this formal definition to the manuscript.  

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology. Starting with claim 1, there are three sub-claims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not supported. Starting with 1B, the experiment cannot support the claim that people represent or track elasticity because the effort is the only dimension over which participants can engage in any meaningful decision-making (the other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies). Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort. More concretely, any model that captures the fact that you are more likely to succeed in two attempts than one will produce the observed behavior. The null models do not make this basic assumption and thus do not provide a useful comparison.

      We appreciate the reviewer's critical analysis of our claims regarding elasticity inference, which as detailed below, has led to an important new analysis that strengthens the study’s conclusions. However, we respectfully disagree with two of the Reviewer’s arguments. First, resource investment was not the only meaningful decision dimension in our task, since participant also needed to choose the correct vehicle to get to the right destination. That this was not trivial is evidenced by our exclusion of over 8% of participants who made incorrect vehicle choices more than 10% of the time. Included participants also occasionally erred in this choice (mean error rate = 3%, range [0-10%]). 

      Second, the experimental task cannot be solved well by a model that simply tracks how outcomes depend on effort because 20% of the time participants reached the treasure despite failing to board their vehicle of choice. In such cases, reward outcomes and control were decoupled. Participants could identify when this was the case by observing the starting location, which was revealed together with the outcome (since depending on the starting location, the treasure location was automatically reached by walking). To determine whether participants distinguished between control-related and non-control-related reward, we have now fitted a variant of our model to the data that allows learning from each of these kinds of outcomes by means of a different free parameter. The results show that participants learned considerably more from control-related outcomes. They were thus not merely tracking outcomes, but specifically inferred when outcomes can be attributed to control. We will include this new analysis in the revised manuscript.

      Controllability inference by itself, however, still does not suffice to explain the observed behavior. This is shown by our ‘controllability’ model, which learns to invest more resources to improve control, yet still fails to capture key features of participants’ behavior, as detailed in the manuscript. This means that explaining participants’ behavior requires a model that not only infers controllability—beyond merely outcome probability—but also assumes a priori that increased effort could enhance control. Building these a priori assumption into the model amounts to embedding within it an understanding of elasticity – the idea that control over the environment may be increased by greater resource investment. 

      That being said, we acknowledge the value in considering alternative computational formulations of adaptation to elasticity. Thus, in our revision of the manuscript, we will add a discussion concerning possible alternative models.  

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      We thank the reviewer for highlighting this point. We agree that our experimental design does not test whether people infer elasticity spontaneously. Our research question was whether people can distinguish between elastic and inelastic controllability. The results strongly support that they can, and this does have potential implications for behavior outside of the experimental task. Specifically, to the extent that people are aware that in some contexts additional resource investment improve control, whereas in other contexts it does not, then our results indicate that they would be able to distinguish between these two kinds of contexts through trial-and-error learning. That said, we agree that investigating whether and how people spontaneously infer elasticity is an interesting direction for future work. We will clarify the scope of the present conclusions in the revised manuscript.

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct. However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency and the elasticity bias---this result is consistent with any possible relationship (even a negative one). The fact that the direct relationship between these two variables is not shown or reported leads me to infer that they do not have a significant or strong relationship in the data.

      We agree that CCA is not designed to reveal the relationship between any two variables. However, the advantage of this analysis is that it pulls together information from multiple variables. Doing so does not treat psychopathology as unidimensional. Rather, it seeks a particular dimension that most strongly correlates with different aspects of task performance. This is especially useful for multidimensional psychopathology data because such data are often dominated by strong correlations between dimensions, whereas the research seeks to explain the distinctions between the dimensions. Similar considerations hold for the multidimensional task parameters, which although less correlated, may still jointly predict the relevant psychopathological profile better than each parameter does in isolation. Thus, the CCA enabled us to identify a general relationship between task performance and psychopathology that accounts for different symptom measures and aspects of controllability inference. 

      Using CCA can thus reveal relationships that do not readily show up in two-variable analyses. Indeed, the direct correlation between Sense of Agency (SOA) and elasticity bias was not significant – a result that, for completeness, we will now report in the supplementary materials along with all other direct correlations. We note, however, that the CCA analysis was preregistered and its results were replicated. Furthermore, an auxiliary analysis specifically confirmed the contributions of both elasticity bias (Figure 6D, bottom plot) and, although not reported in the original paper, of the Sense of Agency score (SOA; p\=.03 permutation test) to the observed canonical correlation. Participants scoring higher on the psychopathology profile also overinvested resources in inelastic environments but did not futilely invest in uncontrollable environments (Figure 6A), providing external validation to the conclusion that the CCA captured meaningful variance specific to elasticity inference. The results thus enable us to safely conclude that differences in elasticity inferences are significantly associated with a profile of controlrelated psychopathology to which SOA contributed significantly.  

      Finally, whereas interpretation of individual CCA loadings that were not specifically tested remains speculative, we note that the pattern of loadings largely replicated across the initial and replication studies (see Figure 6B), and aligns with prior findings. For instance, the positive loadings of SOA and OCD match prior suggestions that a lower sense of control leads to greater compensatory effort(7), whereas the negative loading for depression scores matches prior work showing reduced resource investment in depression(5-6).

      We will revise the text to better clarify the advantageous and disadvantageous of our analytical approach, and the conclusions that can and cannot be drawn from it.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences in elasticity inference. As the authors clearly acknowledge, the task was designed "to be especially sensitive to overestimation of elasticity" (line 287). A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias. When we further consider that elasticity inference is the only meaningful learning/decisionmaking problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      We apologize for our imprecise statement that the task was ‘especially sensitive to overestimation of elasticity’, which justifiably led to Reviewer’s concern that slower elasticity learning can be mistaken for elasticity bias. To make sure this was not the case, we made use of the fact that our computational model explicitly separates bias direction (λ) from the rate of learning through two distinct parameters, which initialize the prior concentration and mean of the model’s initial beliefs concerning elasticity (see Methods pg. 22). The higher the concentration of the initial beliefs (𝜖), the slower the learning. Parameter recovery tests confirmed that our task enables acceptable recovery of both the bias λ<sub>elasticity</sub> (r=.81) and the concentration 𝝐<sub>elasticity</sub> (r=.59) parameters. And importantly, the level of confusion between the parameters was low (confusion of 0.15 for 𝝐<sub>elasticity</sub>→ λ<sub>elasticity</sub> and 0.04 for λ<sub>elasticity</sub>→ 𝝐<sub>elasticity</sub>). This result confirms that our task enables dissociating elasticity biases from the rate of elasticity learning. 

      Moreover, to validate that the minimal level of confusion existing between bias and the rate of learning did not drive our psychopathology results, we re-ran the CCA while separating concentration from bias parameters. The results (Author response image 1) demonstrate that differences in learning rate (𝜖) had virtually no contribution to our CCA results, whereas the contribution of the pure bias (𝜆) was preserved. 

      We will incorporate these clarifications and additional analysis in our revised manuscript.

      Author response image 1.

      Showing that a model parameter correlates with the data it was fit to does not provide any new information, and cannot support claims like "a prior assumption that control is likely available was reflected in a futile investment of resources in uncontrollable environments." To make that claim, one must collect independent measures of the assumption and the investment.

      We apologize if this and related statements seemed to be describing independent findings. They were merely meant to describe the relationship between model parameters and modelindependent measures of task performance. It is inaccurate, though, to say that they provide no new information, since results could have been otherwise. For instance, instead of a higher controllability bias primarily associating with futile investment of resources in uncontrollable environments, it could have been primarily associated with more proper investment of resources in high-controllability environments. Additionally, we believe these analyses are of value to readers who seek to understand the role of different parameters in the model. In our planned revision, we will clarify that the relevant analyses are merely descriptive. 

      Did participants always make two attempts when purchasing tickets? This seems to violate the intuitive model, in which you would sometimes succeed on the first jump. If so, why was this choice made? Relatedly, it is not clear to me after a close reading how the outcome of each trial was actually determined.

      We thank the reviewer for highlighting the need to clarify these aspects of the task in the revised manuscript. 

      When participants purchased two extra tickets, they attempted both jumps, and were never informed about whether either of them succeeded. Instead, after choosing a vehicle and attempting both jumps, participants were notified where they arrived at. This outcome was determined based on the cumulative probability of either of the two jumps succeeding. Success meant that participants arrived at where their chosen vehicle goes, whereas failure meant they walked to the nearest location (as determined by where they started from). 

      Though it is unintuitive to attempt a second jump before seeing whether the first succeed, this design choice ensured two key objectives. First, that participants would consistently need to invest not only more money but also more effort and time in planets with high elastic controllability. Second, that the task could potentially generalize to the many real-world situations where the amount of invested effort has to be determined prior to seeing any outcome, for instance, preparing for an exam or a job interview. 

      It should be noted that the model is heuristically defined and does not reflect Bayesian updating. In particular, it overestimates control by not using losses with less than 3 tickets (intuitively, the inference here depends on your beliefs about elasticity). I wonder if the forced three-ticket trials in the task might be historically related to this modeling choice.

      We apologize for not making this clear, but in fact losing with less than 3 tickets does reduce the model’s estimate of available control. It does so by increasing the elasticity estimates

      (a<sub>elastic≥1</sub>, a<sub>elastic2</sub> parameters), signifying that more tickets are needed to obtain the maximum available level of control, thereby reducing the average controllability estimate across ticket investment options. 

      It would be interesting to further develop the model such that losing with less than 3 tickets would also impact inferences concerning the maximum available control, depending on present beliefs concerning elasticity, but the forced three-ticket purchases already expose participants to the maximum available control, and thus, the present data may not be best suited to test such a model. These trials were implemented to minimize individual differences concerning inferences of maximum available control, thereby focusing differences on elasticity inferences. We will discuss the Reviewer’s suggestion for a potentially more accurate model in the revised manuscript. 

      References

      (1) Huys, Q. J. M., & Dayan, P. (2009). A Bayesian formulation of behavioral control. Cognition, 113(3), 314– 328.

      (2) Ligneul, R. (2021). Prediction or causation? Towards a redefinition of task controllability. Trends in Cognitive Sciences, 25(6), 431–433.

      (3) Mistry, P., & Liljeholm, M. (2016). Instrumental divergence and the value of control. Scientific Reports, 6, 36295.

      (4) Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151

      (5) Cohen RM, Weingartner H, Smallberg SA, Pickar D, Murphy DL. Effort and cognition in depression. Arch Gen Psychiatry. 1982 May;39(5):593-7. doi: 10.1001/archpsyc.1982.04290050061012. PMID: 7092490.

      (6) Bi R, Dong W, Zheng Z, Li S, Zhang D. Altered motivation of effortful decision-making for self and others in subthreshold depression. Depress Anxiety. 2022 Aug;39(8-9):633-645. doi: 10.1002/da.23267. Epub 2022 Jun 3. PMID: 35657301; PMCID: PMC9543190.

      (7) Tapal, A., Oren, E., Dar, R., & Eitam, B. (2017). The Sense of Agency Scale: A measure of consciously perceived control over one's mind, body, and the immediate environment. Frontiers in Psychology, 8, 1552

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer 1

      Major issue #1. Regarding the conclusions on IRE1 signaling, both yeast species have different IRE1 activities (https://elifesciences.org/articles/00048), the total deletion of IRE1 in S pombe appears to indicate that expansion of perinuclear ER is independent of IRE1, however since IRE1 signaling has exclusively a negative impact on mRNA expression, it might be relevant to identify mRNA whose expression is stabilized under those circumstances and evaluate whether those could confer a mechanism which would also yield perinuclear ER expansion (eg differential deregulation of ER stress controlled lipid biosynthesis required for lipid membrane synthesis). In S. cerevisiae, do the authors observe HAC1 mRNA splicing?

      We have not tested whether HAC1 mRNA is processed in S. cerevisiae.

      In addition, as requested by the reviewers, we reassessed our RNA-seq data and compared it with data from (Kimmig et al., 2012) (UPR activation in S. pombe), which added a new layer of data that reinforces the differences between the transcriptomic responses induced by HU and DIA and the canonical UPR. The following information is now included in the paper (page 26, highlighted in blue):

      “We further compared our transcriptomic data with that obtained by Kimmig et al. from DTT- treated S. pombe cells. When we compared the genes that were downregulated in our conditions with the ones described by Kimmig et al. (FC≤-1), we found no similarities between HU treatment (75 mM HU for 150 minutes) and UPR-induced downregulation, and only three genes ( ist2, efn1 and xpa1) all of them encode for transmembrane proteins, were common with DIA treatment (3 mM DIA for 60 minutes). Additionally, ist2 and xpa1, but not efn1, are considered Ire1-dependent downregulated genes and are located in the ER. These results show that HU- or DIA- induced transcriptomic programs are different from UPR, as they do not heavily rely on mRNA decay and favor gene overexpression. Interestingly, we found similarities between genes showed to be upregulated more that twofold by DTT in Kimmig et al., and HU and DIA conditions. When the two N-Cap-inducing conditions were compared with DTT, we found eight common upregulated genes (frp1, plr1, SPCC663.08c, srx1, gst2, str3, caf5 and hsp16) mostly involved in reduction processes and the chaperone Hsp16 which suggests folding stress”.

      Major issue #2. The authors indicate that HU and DIA lead to thiol stress, it might be relevant to evaluate the thiol-redox status of major secretory proteins in S. pombe (or even cargo reporters if necessary) to fully document the stress impact on global protein redox status.

      We agree with the reviewer that it is important to determine the redox and the functional state of the secretory pathway in our conditions to fully understand the cellular consequences of these treatments, especially in the case of HU, as it is routinely used in clinics. In this context, we have already included new data showing that HU or DIA treatment leads to alterations in the Golgi apparatus and in the distribution of secretory proteins (Figures 3A-B). In addition, we are currently performing mass spectrometry experiment to detect protein glutathionylation in our conditions, as it has been previously shown that DIA treatment leads to glutathionylation of key ER proteins such as Bip1, Pdi or Ero1 (Lind et al., 2002; Wang & Sevier, 2016), which might by reproduced upon HU treatment. Finally, we plan to test the folding and processing of specific secretory cargoes by western blot in our experimental conditions (See below, Reviewer 2, Major issue #1).

      What happens if HU-treated yeast cells are grown in the presence of n-acetyl cysteine?

      We have tested whether the addition of this antioxidant could prevent and/or revert the N-Cap phenotype. We found that NAC in combination with HU increased N-Cap incidence (Figure 5H). As NAC is a GSH precursor and we find that GSH is required to develop the phenotype of N-Cap (Figure 5A-B, D, G), this result further supports that the HU-induced cellular damage might involve ectopic glutathionylation of proteins.

      Unfortunately, we have not tested NAC in combination with DIA, as NAC seems to reduce DIA as soon as they get in contact, as judged by the change in the characteristic orange color of DIA, the same that happens when we combine GSH and DIA (Supplementary Figure 5A-B).

      In this regard, the following information has been added to the manuscript (page 30, highlighted in blue):

      “We also tested GSH addition to the medium in combination with either HU or DIA. When mixed with DIA, we noticed that the color of the culture changed after GSH addition (Figure S5A), which suggests that GSH and DIA can interact extracellularly, thus preventing us from being able to draw conclusions from those experiments. On the other hand, combining GSH with HU increased N-Cap incidence (Figure 5G), as expected based on our previous observations. Additionally, we checked whether the addition of the antioxidant N-acetyl cysteine (NAC), a GSH precursor, impacted upon the N-Cap phenotype. The results were the same as with GSH addition: when combined with HU, NAC increased N-Cap incidence (Figure 5H), whereas in combination, the two compounds interacted extracellularly (Figure S5B). These data align with NAC being a precursor of GSH, as incrementing GSH levels augments the penetrance of the HU-induced phenotype”.

      Major issue #3. The appearance of cytosolic aggregates is intriguing, do the authors have any idea on the nature of the protein aggregates?

      DIA is a strong oxidant, and HU treatment results in the production of reactive oxygen species (ROS). Therefore, one hypothesis would be that cytoplasmic chaperone foci represent oxidized and/or misfolded soluble proteins. Indeed, in this revised version of the manuscript we have included data showing that guk1-9-GFP and Rho1.C17R-GFP soluble reporters of misfolding accumulate in cytoplasmic foci upon HU or DIA treatment that colocalize with Hsp104 (Figure 4I-J, pages 23-24 and 29), which demonstrate that cytoplasmic chaperone foci contain misfolded proteins. We have also tested if they contain Vgl1, which is one of the main components of heat shock induced stress granules in S. pombe (Wen et al., 2010). However, we found that HU or DIA-induced foci lacked this stress granule marker, and indeed Vgl1 did not form any foci in response to these treatments. Therefore, our aggregates differ from the canonical stress-induced granules.

      Are those resulting from proficient retrotranslocation or reflux of misfolded proteins from the ER?

      To test whether these cytosolic aggregates result from retrotranslocation from the ER, we plan to use the vacuolar Carboxipeptidase Y mutant reporter CPY*, which is misfolded. This misfolded protein is imported into the ER lumen but does not reach the vacuole. Instead, it is retrotranslocated to the cytoplasm, where it is ubiquitinated and degraded by the proteasome (Mukaiyama et al., 2012). We will analyze by fluorescence microscopy the localization of CPY*´-GFP and Hsp104-containing aggregates upon HU or DIA treatment and with or without proteasome inhibitors. We can also test the levels, processing and ubiquitination of CPY*-GFP by western blot, as ubiquitination of retrotranslocated proteins occurs once they are in the cytoplasm.

      Are those aggregates membrane bound or do they correspond to aggresomes as initially defined? The Walter lab has demonstrated a tight balance between ER phagy and ER membrane expansion (https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0040423), which could also impact on the presence of protein aggregates in the cytosol.

      Our results suggest that these aggregates are not bound to ER membranes, as they do not appear in close proximity to the ER area marked by mCherry-AHDL in fluorescence microscopy images.

      To fully rule out this possibility, we have tested whether these Hsp104-aggregates colocalized with ER transmembrane proteins Rtn1 and Yop1, and with Gma12-GFP that marks the Golgi apparatus. In none of the cases the Hsp104-containing aggregates colocalized or were surrounded by membranes. This information will be added to the final version of the manuscript.

      With respect to autophagy, we have tested whether deletion of key genes involved in autophagy affected the N-Cap phenotype. To this end, we used deletions of vac8 and atg8 in strains expressing Cut11-GFP and/or mCherry-AHDL and found that none of them affected N-Cap formation. These data suggest that the core machinery of autophagy is not critical for HU/DIA-induced ER expansion. We plan to include this data in the final version of the manuscript along with the rest of experiments proposed.

      To get deeper insights and to fully rule out a possible contribution of macro-autophagy to the HU- and DIA-induced phenotypes, we plan to analyze by western blot whether GFP-Atg8 is induced and cleaved upon HU or DIA treatments which would be indicative of macroautophagy activation.

      To test whether the cytoplasmic aggregates are the result of an imbalance between ER-expansion and ER-phagy we plan to analyze the localization of GFP-Atg8 and Hsp104-RFP in the atg7Δ mutant, impaired in the core macro-autophagy machinery. In these conditions, the number or size of the cytoplasmic aggregates might be impacted.

      On the other hand, it has been recently shown that an ER-selective microautophagy occurs in yeasts upon ER stress (Schäfer et al., 2020; Schuck et al., 2014). This micro-ER-phagy involves the direct uptake of ER membranes into lysosomes, is independent of the core autophagy machinery and depends on the ESCRT system and is influenced by the Nem1-Spo7 phosphatase. ESCRT directly functions in scission of the lysosomal membrane to complete the uptake of the ER membrane. Interestingly, N-Caps are fragmented in the absence of cmp7 and specially in the absence of vps4 or lem2, the nuclear adaptor of the ESCRT (Figure 3E), We had initially interpreted these results as the need to maintain nuclear membrane identity during the process of ER expansion (Kume et al., 2019); however, the appearance of fragmented ER upon HU treatment in the absence of ESCRT might also be due to an inability to complete microautophagic uptake of ER membranes. To test this hypothesis, we plan to analyze whether the fragmented ER in these conditions co-localize with lysosome/vacuole markers.

      Major issue #4. Nucleotide depletion was previously shown to lead to HSP16 expression through activation of the spc1 MAPK pathway (https://academic.oup.com/nar/article/29/14/3030/2383924), one might think that HU (or diamide) could lead to this through a nucleotide dependent mechanism and not necessary through a thiol-redox protein misfolding stress. This issue has to be sorted out to ensure that the HSP effect is independent of nucleotide depletion.

      As stated in (Taricani et al., 2001), hsp16 expression is strongly induced in a cdc22-M45 mutant background. We performed experiments in this mutant that were included in the original version of the manuscript and remain in the current version (Sup. Fig. 2C) and, under restrictive conditions, we do not see spontaneous N-Cap formation. If Hsp16 overexpression and nucleotide depletion were key to the mechanism triggering N-Cap appearance, we would expect this mutant to eventually form N-Caps when placed at restrictive temperature. Furthermore, Taricani et al. show that Hsp16 expression was abolished in a Δatf1 mutant background in the presence of HU, and we found that this mutant is still able to produce N-Caps in HU; therefore, our results strongly suggest that the phenotype of N-cap is independent on the MAPK pathway and on the expression of hsp16.

      Minor issues

      1. __P1 - UPR = Unfolded Protein Response: __Corrected in the manuscript
      2. 2__. P22 - HSP upregulation "might" be indicative of a folding stress:__ Corrected in the manuscript
      3. __ The abstract does not reflect the findings presented in the manuscript. In addition, I would recommend the authors revise the storytelling in their manuscript to push forward the message on either the specific phenotype associated with perinuclear ER or on the characterization of protein misfolding stress.__ We have modified the abstract to better reflect our findings and will further revise our arguments in the final version of the manuscript once we have the results of the experiments proposed

      Reviewer 2

      Major issue #1. The authors state the cytoplasmic and ER folding are both disrupted. The impact on ER protein biogenesis would be bolstered with some biochemical data focused on the folding of one or more nascent secretory proteins. Is disulfide bond formation and/or protein folding indeed disrupted?

      We have addressed the status of secretion in cells treated with HU or DIA by assessing the morphology of the Golgi apparatus and the localization of several secretory proteins by fluorescence microscopy and found that both HU and DIA treatments impact the secretion system. In addition, we plan on addressing the redox status of ER proteins (Bip1, Pdi or Ero1) by biochemical approaches. Please see the answer to major issue #2 from reviewer 1.

      We will also analyze by western blot the biogenesis and processing of the wildtype vacuolar Carboxypeptidase Y (Cpy1-GFP) and/or alkaline phosphase (Pho8-GFP), two widely used markers to test the functionality of the ER/endomembrane system.

      Major issue #2. Increased signal of Bip1 in the expanded perinuclear ER is shown and is suggested as consistent with immobilization of BiP upon binding of misfolded proteins. The authors suggest that this increased signal must reflect Bip1 redistribution because "Bip1 levels are constant". Yet, the western image (Figure 4B) looks to show increased level of Bip1 protein up HU treatment. Given the abundance of Bip1 in cells, it seems possible that a two-fold increase in newly synthesized proteins in the perinuclear region may account for the increased signal. These original data cited by the authors uses photobleaching (not just fluorescence intensity) to show a change in crowding / mobility, which the authors should consider to support their conclusion. Alternatively, a detected increased engagement of Bip1 with substrates (e.g. pulldown experiment) would be similarly strengthening.

      This same issue arose with reviewer 3, so we decided to change the image of the western blot showing another one with less exposure and added a quantification showing that Bip1-GFP levels remain mostly constant between control conditions and treatments with HU and DIA.

      We have also performed the suggested photobleaching experiment to analyze potential changes in crowding and mobility in Bip1-GFP upon HU treatment. We found that Bip1-GFP signal recovers after photobleaching the perinuclear ER in HU-treated cells that had not yet expanded the ER, showing that Bip1-GFP is dynamic in these conditions. However, Bip1-GFP signal did not recover after photobleaching the whole N-Cap in cells that had fully developed the expanded perinuclear ER phenotype, whereas it did recover when only half of the N-Cap region was bleached. This suggests that Bip1-GFP is mobile within the expanded perinuclear ER but cannot freely diffuse between the cortical and the perinuclear ER once the N-Cap is formed.

      These data have been included in the revised version of the manuscript, in figure 4B, sup. figures 4A-B, and in page 22.

      Major issue #3. It is curious that cycloheximide (CHX) has a distinct impact on HU versus DIA treatment. Blocking protein synthesis with CHX exacerbates the phenotype with DIA, but not HU. The authors use the data with CHX to argue that their drug treatments are interfering with folding during synthesis and translation into the ER. If so, what is the rationale as to why CHX treatment decreases expansion upon HU treatment? Relatedly, is protein synthesis and/or ER import impacted upon treatment with HU and/or DIA?

      As all three reviewers had comments about the CHX and Pm-related data, we revised those experiments and noticed a phenotype occurring upon HU+CHX treatment that had gone unnoticed previously and that changed our understanding about the effect of these drugs on the ER. Briefly, we noticed that, although CHX treatment decreases the HU-induced expansion of the perinuclear ER, it indeed induced expansion but in this case in the cortical area of the ER. This means that the phenotype of ER expansion in HU is not being suppressed by addition of CHX, but rather taking place in another area of the ER (cortical ER). We do not understand why this happens; however, these results show that ER expansion is exacerbated both in DIA and HU when combined with CHX. We have included this data in Figures 3C-D and in page 21.

      We also examined the trafficking of secretory proteins that go from the ER to the cell tips and noticed that this transit was affected under both drugs (Figures 3A-B). This suggests that, although there is still protein synthesis when cells are exposed to the drugs (as can be seen by the higher levels of chaperones induced by both stresses (Figure 4C-E)), their protein synthesis capacity is possibly impinged on to certain degree. All this information is now included in the manuscript (page 18).

      Major issue #4. While the authors suggest that there is disulfide stress in the ER / nucleus, the redox environment in these compartments is not tested directly (only cytoplasmic probes).

      Although we have only included experiments using one redox sensor in the manuscript, we had tested the oxidation of several biosensors during HU and DIA exposure monitoring cytoplasmic, mitochondrial and glutathione-specific probes. We have tried to use ER directed probes however, we have not been successful due to oversaturation of the probe in the highly oxidative environment of the ER lumen.

      Although so far we have not been able to directly test the redox status of the ER with optical probes, we plan to test the folding and redox status of several ER proteins and secretory markers by biochemical approaches, so hopefully these experiments will give us more information on this question (See answer to Reviewer 1, Main Issue #2 and Reviewer 2, Main issue #1).

      Major Issue #5. What do the authors envision is the role of the cytoplasmic chaperone foci? Do CHX / Pm treatment with HU/DIA reverse the chaperone foci?

      Pm causes premature termination of translation, leading to the release of truncated, misfolded, or incomplete polypeptides into the cytosol and the re-engagement of ribosomes in a new cycle of unproductive translation, as puromycin does not block ribosomes (Aviner, 2020; Azzam & Algranati, 1973). This likely decreases the number of peptides entering the ER that can be targeted by either HU or DIA, decreasing in turn ER expansion. Indeed, we have found that Pm treatment alone results in the formation of multiple cytoplasmic protein aggregates marked by Hsp104-GFP (Figure 4K), consistent with a continuous release of incomplete and misfolded nascent peptides to the cytoplasm. This would explain why Pm treatment suppresses N-Cap formation when cells are treated with either HU or DIA.

      To further test this idea, we analyzed the number and size of Hsp104-containing cytoplasmic aggregates in cells treated with HU or DIA and Pm, where N-Caps are suppressed. As expected, we found an increase in the accumulation of proteotoxicity in the cytoplasm in these conditions. This information has now been added to the paper (Figure 4K, pages 23-24 and 29).

      On the other hand, CHX inhibits translation elongation by stalling ribosomes on mRNAs, preventing further peptide elongation but leaving incomplete polypeptides tethered to the blocked ribosomes. This reduces overall protein load entering the ER by blocking new protein synthesis and stabilizes misfolded proteins bound to ribosomes. Accordingly, it has been shown previously that blocking translation with CHX abolishes cytoplasmic protein aggregation (Cabrera et al., 2020; Zhou et al., 2014). Similarly, we have found that Hsp104 foci are not observed when we add CHX alone or in combination with HU or DIA (Figures 4K-L). These results suggest that cytoplasmic foci that we observe upon HU or DIA treatment likely contain misfolded proteins derived from ongoing translation.

      As this question had also been raised by reviewer 1, we further explored the nature of these cytoplasmic foci (please see answer to Reviewer1, Issue 3). Briefly:

      • We tested whether they colocalize with the foci of Guk1-9-GFP and Rho1.C17R-GFP reporters of misfolding that appear upon HU or DIA treatments and, indeed, Hsp104-containing aggregates colocalize with Guk1-9-GFP and Rho1.C17R-GFP. This information has now been added to the paper (Figure 4I-J, pages 23-24 and 29).
      • We tested whether these foci were membrane bound with several ER transmembrane proteins (Tts1, Yop1, Rtn1) and integral membrane protein Ish1, and in none of the cases we detected membranes surrounding the aggregates. This information will be included in the final version of the paper.
      • We plan to test whether the cytoplasmic foci represent proteins retro-translocated from the ER.
      • We will also test whether autophagy or an imbalance between ER expansion and ER-phagy might contribute to the accumulation of cytoplasmic protein foci. The new data regarding the suppression of cytoplasmic foci by CHX treatment has already been included in the current version of the manuscript in Figure 4K and in the text (page 29).

      The authors argue that cytoplasmic foci are "independent" from ER expansion and are "not a direct consequence of thiol stress" based on the observation that DTT does not reverse these foci. This seems like a strong statement based on the limited analysis of these foci.

      We agree with the reviewer. We have toned down our statements about the relationship between thiol stress, the cytoplasmic chaperone foci and their relationship with ER expansion. We have removed from the text the statement that cytoplasmic foci are independent from ER expansion and thiol stress and have further revised our claims about CHX and Pm in the main text and the discussion to address these and the other reviewers’ concerns.

      Major Issue #6. Based on the transcriptional data, the authors speculate a potential role on role on iron-sulfur cluster protein biogenesis. This would seem to be rather straightforward to test.

      To address this issue, we plan to analyze the localization of proteins involved in iron-sulfur cluster assembly and/or containing iron-sulfur clusters by in vivo fluorescence microscopy, such as DNA polymerase Dna2 or Grx5, during HU or DIA treatments.

      Related to this, we have found that a subunit of the ribonucleotide reductase (RNR) aggregated in the cytoplasm upon HU exposure (Figure S2B). It is worth noting that RNR is an iron-containing protein whose maturation needs cytosolic Grxs (Cotruvo & Stubbe, 2011; Mühlenhoff et al., 2020). The catalytic site, the activity site (which governs overall RNR activity through interactions with ATP) and the specificity site (which determines substrate choice) are located in the R1 (Cdc22) subunits, which are the ones that aggregate, while the R2 subunits (Suc22) contain the di-nuclear iron center and a tyrosyl radical that can be transferred to the catalytic site during RNR activity (Aye et al., 2015). The fact that a subunit of RNR aggregates could be related to an impingement on its synthesis and/or maturation due to defects in iron-sulfur cluster formation, as it has been recently published that RNR cofactor biosynthesis shares components with cytosolic iron-sulfur protein biogenesis and that the iron-sulfur cluster assembly machinery is essential for iron loading and cofactor assembly in RNR in yeast (Li et al., 2017). This information has been added to the discussion.

      Major Issue #7. The authors suggest that "pre-treatment" with DTT before HU addition suppresses formation of the N-Caps. However, these samples (Figure 2J) contain DTT coincident with the treatment as well. To say it is the effect of pre-treatment, the DTT should be added and then washed out prior to HU or DIA addition. Alternatively, the language used to describe these experiments and their outcomes could be revised.

      We modified the language used to describe the experiment in the manuscript, as suggested by the reviewer, to clarify that while DTT is kept in the medium, N-Caps never form. In addition, we have also performed a pre-treatment with DTT; adding 1 mM DTT one hour before, washing the reducing agent out and adding HU to the medium then. The result indicates that pre-treating cells with DTT significantly reduces N-Cap formation after a 4-hour incubation with HU, which suggests that triggering reducing stress “protects” cells from the oxidative damage induced by HU and DIA. This information has been also added to the manuscript (Figure 2J).

      Major Issue #8. For a manuscript with 128 references there is rather limited discussion of the data in the context of the wider literature. The discussion primarily focuses on a recap of the results. The authors do cite several prior works focused on redox-dependent nuclear expansion. However, while cited, there is no real discussion of the relationship between this work in the context of that previously published (including several known disulfide bonded proteins that are involved in nuclear/ER architecture).

      We have revised and expanded our discussion. In addition, in the final revision of our work we will increase the discussion in the context of the new results obtained.

      Minor points

      1. __ Figure numbering goes from figure 4 to S6 to 5.__ We have updated the numbering of the figures after merging several supplementary figures, so now this issue is fixed.

      __ It would be helpful to the reader to explain what some of the reporters are in brief. For example, Guk1-9-GFP and Rho1.C17R-GFP reporters__.

      Both the Guk1-9-GFP and Rho1.C17R-GFP are two thermosensitive mutants in guanylate kinase and Rho1 GTPase respectively, that have been previously used in S. pombe as soluble reporters of misfolding in conditions of heat stress. During mild heat shock, both mutants aggregate into reversible protein aggregate centers (Cabrera et al., 2020). This information has now been added to the manuscript.

      __ Supplementary Figure 3. The main text suggests panel 3A is focused on diamide treatment. The figure legend discusses this in terms of HU treatment. Which is correct?__

      We thank the reviewer for pointing out this mistake. The experiment was performed in 75 mM HU, the legend was correct. It has now been corrected in the manuscript.

      __ The authors use ref 110 and 111 to suggest the importance of UPR-independent signaling. However, they do not point out that this UPR-independent signaling referred to in these papers is dependent on the UPR transmembrane kinase IRE1.__

      We have included pertinent clarification in the new discussion.

      Reviewer 3

      Major issue #1. It is hard to see how the claim of ER stress can be supported if BiP levels do not change (Fig. 4B). Also, this figure is overexposed. The RNA-seq data should be able to establish ER stress as well, but no rigorous analysis of ER stress markers is presented.

      Regarding the levels of Bip1, we now show in Figure 4 a less exposed image of the western blot, and a quantification of Bip1-GFP intensity from three independent experiments. We find that, in our experimental conditions, neither HU nor DIA treatments significantly altered Bip1 levels.

      With respect to the RNA-Seq, as we mentioned in the major issue 1 from reviewer 1, we reassessed our data to further clarify and add information about ER stress markers induced or repressed by HU and DIA.

      Major issue #2. The interpretation of the CHX and puromycin experiments of Figure 3A-B is hard to follow. My best guess is that the authors argue that CHX decreases misfolded protein load and that puromycin increases misfolded protein load, and that since DIA is a stronger oxidative stress than HU hence CHX is only protective under HU and not DIA. However, while CHX decreases misfolded protein load, puromycin hasn't been show directly to increase it and I don't see how this explains puromycin being protective at all.

      We have found that puromycin treatment alone results in the formation of cytoplasmic foci containing Hsp104, suggesting that puromycin indeed increases folding stress in the cytoplasm. We have now included this data in Figure 4K (please see Main Issue #5 from Reviewer 2). Pm suppresses the formation of N-caps induced by HU or DIA; however, we have not addressed cell survival or fitness in these conditions and therefore we cannot conclude about being protective.

      In addition, upon the reevaluation of our data, we have realized that CHX treatment suppresses HU-induced perinuclear expansion, although it does not suppress but instead enhances ER expansion in the cortical region. This data has been added to the present version of the manuscript in Figure 3C-D (pages 20-21).

      Furthermore, puromycin causes Ca leakage from the ER (which can be recapitulated with thapsigargin and blocked with anisomycin; easy experiments), which could be responsible for the differences from CHX, and the model does not address the effects on downstream stress signaling. The authors should be much more clear regarding their argument, since this data is used to support the argument of disrupted ER proteostasis.

      Thapsigargin has been described to be ineffective in yeasts as they lack a (SERCA)‐type Ca2+ pump which is the target of this drug (Strayle et al., 1999). However, deletion of the P5A-type ATPase Cta4, which is required for calcium transport into ER membranes (Lustoza et al., 2011), reduced but did not abolish ER expansion. We also tested the effect of anisomycin. We found that anisomycin in combination with HU or DIA mimicked CHX behavior (ER expansion occurrs in both conditions, exacerbating perinuclear ER expansion in combination with DIA and cortical ER expansion when combined with HU). It is difficult to correlate this result with a role of Ca leakage in ER expansion, as there is no recent information regarding CHX and Ca leakage, although it has been indicated that CHX treatment does not increase cytoplasmic Ca levels (Moses & Kline, 1995). As anisomycin, like CHX, blocks protein synthesis and stabilizes polysomes, what we can conclude from this information is that nascent peptides attached to ribosomes during protein synthesis do promote ER expansion when combined with HU or DIA. This information will be added to the final version of the paper.

      Regarding the downstream effects of HU or DIA treatment on ER proteostasis, we plan to further explore the effect of these drugs on the secretory system (please see major issue #2 from Reviewer 1) and to evaluate the redox state and processing of several key ER and secretory proteins. We have also further explored the nature of the aggregates that appear in the cytoplasm in our experimental conditions, which also shed light into the downstream effects of these drugs in cytoplasmic proteostasis (please see answer to issue #5 from Reviewer 2).

      Major issue #3. The claim that a canonical UPR is not induced is weak. First, the transcriptional program of S. cerevisiae from Travers et al is used as the canonical UPR, and compared to HU/DIA induced stress in S. pombe. These organisms may not be similar enough to assume that they have transcriptionally identical UPRs. Second, no consideration is given to the mechanism by which the different transcripts are modulated between "canonical" and HU/DIA induced UPR. Is it solely through RIDD, or does it point to differences in sensing or signaling transduction?

      We readdressed this topic by analyzing the genes that have been described to be differentially expressed during UPR activation in S. pombe and comparing them with our data by reevaluating our transcriptomic data.. The re-analysis of our RNA-Seq data have allowed us to infer the mechanisms that modulate the ER response to HU or DIA treatment and further separate them from UPR. This information has been added to the paper (page 26). As an alternative approach, we will also analyse the levels of UPR targets by western blot upon HU or DIA treatment

      Finally, the p-values used are unadjusted (e.g. by Bonferroni's method or by ANOVA or at least controlled by an FDR approach) and unmodulated (extremely important when n = 3 and variance is poorly sampled), which makes them not dependable. It looks like HSF1 targets are induced, which should be addressed.

      We thank the reviewer for pointing this out. We forgot to include this information which now appears in the M&M section as follows:

      “A gene was considered as differentially expressed when it showed an absolute value of log2FC(LFC)≥1 and an adjusted p-valueIn this regard, we are currently performing proteome-wide mass spectrometry experiments to detect protein glutathionylation in our conditions, as it has been previously shown that DIA treatment leads to glutathionylation of key ER proteins such as Bip1, Pdi or Ero1 (Lind et al., 2002; Wang & Sevier, 2016), which might by reproduced upon HU treatment. We also plan to test the folding and processing of specific secretory cargoes by western blot in our experimental conditions (see below, and Reviewer 2, Major issue #1).

      We have already tested whether mutant strains with deletions of key enzymes in both cytoplasmic and ER redox systems are able to expand the ER upon HU or DIA treatment. We have found that only pgr1Δ (glutathione reductase), gsa1Δ (glutathione synthetase) and gcs1Δ (glutamate-cysteine ligase) mutants fully suppressed N-Cap formation, which suggests that glutathione has an important role in the phenotype of ER expansion. We have now added the pgr1Δ mutant strain to the main text of the manuscript (Figure 5C, page 30).

      Major issue #5. Figure S5 presents weak ER expansion in fibrosarcoma cells in response to HU (at very low concentrations and DIA is not included). The lack of any other phenotypes being presented could suggest that such experiments were done but didn't show any effect. The authors should straightforwardly discuss whether they performed experiments looking for perinuclear ER expansion or NPC clustering, and if not, what challenges precluded such experiments. Given how important this line of experimentation is for establishing generality, much more discussion is needed here.

      We not only investigated the effects of HU on the ER in mammalian cells, but also of DIA. The results from this experiment mimicked the effect of HU (an increase in ER-ID fluorescence intensity in DIA). We merely excluded this information from the manuscript because we were focusing on HU at that point due to its importance as it is used currently in clinics. In this new version of the manuscript, we have included an extra panel in supplementary figure 5 to show the results from DIA in mammalian cells.

      Minor concerns

      1) Figure 1A should show individual data points (i.e. 3 averages of independent experiments) in the bar graph.

      Although we initially changed the graph, we believe the bar plot disposition facilitates its comprehension and went back to the initial one. Also, as the rest of the graphs similar to 1A are all expressed as bar plots. Therefore, we preferred keeping the figure as it was in the original version. However, we include here the graph with each of the averages of the independent experiments.

      2) It is argued that Figure 1B demonstrates that the SPB is clustered with the NPC cluster. However, a single image is not enough to support this claim, as the association could be coincidental.

      We have changed the image to show a whole population of cells, with several of them having NPC clusters, and we have indicated the position of SPB in each of them (all colocalizing with the N-Cap).

      3) Figures 1B through 1D do not indicate the HU concentration.

      We thank the reviewer for pointing out this mistake. Figures 1B and 1C represent cells exposed to 15 mM HU for 4 hours, while the graph in 1D shows the results from cells exposed to 75 mM HU over a 4-hour period. This information has been now added to the corresponding figure legend.

      4) I was confused by the photobleaching experiments of Figure S1. How do the authors know that there is complete photobleaching of the cytoplasm or nucleus in the absence of a positive control? If photobleaching is incomplete, they could be measuring motility without compartments rather than transport between compartments, and hence the conclusion that trafficking is unaffected could be wrong.

      Our control is the background of each microscopy image; we make sure that after the laser bleaches a cell, the bleached area coincides with the background noise. That way, we make sure that fluorescence from any remaining GFP is completely removed from the bleached area.

      5) On page 8, they say "exposure to DIA" when they intend HU.

      This has been corrected in the manuscript.

      6) In Figure S3A, the colocalization of INM proteins with the ER are presented. It is not clearly explained what conclusions are meant to be drawn from this figure, but it seems it would have been more useful to compare INM and Cut11, to see whether the NPCs are localizing at the INM or ONM.

      We have added an explanation in the main text to clarify the main conclusions derived from this figure. We think that NPCs localize in a section of the nucleus where the two membranes (INM and ONM) are still bound together.

      7) I had to read Figure 2C's description and caption several times to understand the experiment. A schematic would be helpful. 20 mM HU is low compared to most conditions used. Does repositioning eventually take place for 75 mM HU or 3 mM DIA treatment, or do the cells just die before they get a chance?

      20 mM HU was used in this experiment to provide a time frame suitable for analysis after HU addition, as a higher HU concentration increases the repositioning time. We found that both HU (75mM 4h) and DIA (3mM 4h)-induced ER expansions are reversible upon drug washout. If HU is kept in the media, ER expansions are eventually resolved. However, DIA is a strong oxidant and if it is kept in the media ER expansions are not resolved and cells do not survive.

      8) Figure 2D shows little oxidative consequence from 75 mM HU treatment until 40 min., the same time that phenotypes are observed (Figure 1D). Is this relationship consistent with the kinetics of other concentrations of HU, or of DIA? Seems like a pretty important mechanistic consideration that can rationalize the effects of the two oxidants.

      Thanks to this comment we realized that the numbering underneath Figure 1D (1E in the new version of the manuscript) was wrongly annotated. The original timings shown in the figure were “random”, meaning that the time stablished as 40 minutes was not measuring the passing of 40 minutes since the beginning of the experiment. We have now corrected this panel: the timings are now normalized to the moment when NPCs cluster. The fact that, before, that moment coincided with “40 minutes” does not mean N-Caps appear at that time point in HU (they indeed appear after a >2 hour incubation).

      9) Figure S4 is missing the asterisk on the lower left cell.

      Fixed in the corresponding figure.

      10) How is roundness determined in Figure S4B?

      Roundness in Figure S4B (now S2E) is determined the same way as in Figure 1D, and as is described in the Method section (copied below). A clarification has been added to the legend to address that.

      The ‘roundness’ parameter in the ‘Shape Descriptors’ plugin of Fiji/ImageJ was used after applying a threshold to the image in order to select only the more intense regions and subtract background noise (Schindelin et al., 2012). Roundness descriptor follows the function:

      where [Area] constitutes the area of an ellipse fitted to the selected region in the image and [Major axis] is the diameter of the round shape that in this case would fit the perimeter of the nucleus.

      11) What threshold is used to determine whether cells analyzed in Figures S4C have "small ER" or "large ER"?

      Large ER are considered when their area along the projection of a 3-Z section is over 4 μm2 (more than twice the mean area of the ER in cells with N-Caps in milder conditions). This has now been clarified in the legend of the corresponding figure.

      __12) The authors interpret Figure 4K as indicating that ER expansion is not involved in the generation of punctal misfolded protein aggregates. However, the washout occurs only after the proteins have already aggregated. The proper interpretation is that the aggregates are not reversible by resolution of the stress, and hence are not physically reliant on disulfide bonds. __

      We agree with the reviewer and have modified the interpretation of the indicated figure accordingly (page 29).


      The speculation that these proteins are iron dependent is a stretch; there is no reason to believe that losses of iron metabolism are the most important stress in these cells. It seems at least as likely that oxidizing cysteine-containing proteins in the cytosol or messing with the GSH/GSSG ratio in the cytosol would make plenty of proteins misfold; oxidative stress in budding yeast does activate hsf1. However, this point could be addresses by centrifugation and mass spectrometry to identify the aggregated proteome. It is also surprising that the authors did not investigate ER protein aggregation, perhaps by looking at puncta formation of chaperones beyond BiP. By contrast, the fact that gcs1 deletion prevents ER expansion but does not prevent Hsp104 puncta does support the idea that cytoplasmic aggregation is not dependent on ER expansion.

      To address this suggestion, we plan to analyze the localization of other chaperones and components of the protein quality control such as the ER Hsp40 Scj1 or the ribosome-associated Hsp70 Sks2.

      13) Figure 4L is cited on page 28 when Figure 4K is intended.

      This has been corrected in the text, although new panels have been added and now it is 4N.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Jena et al. addresses important questions on the fundamental mechanisms of genetic adaptation, specifically, does adaptation proceed via changes of copy number (gene duplication and amplification "GDA") or by point mutation. While this question has been worked on (for example by Tomanek and Guet) the authors add several important aspects relating to resistance against antibiotics and they clarify the ability of Lon protease to reduce duplication formation (previous work was more indirect).

      A key finding Jena et al. present is that point mutations after significant competition displace GDA. A second one is that alternative GDA constantly arise and displace each other (see work on GDA-2 in Figure 3). Finally, the authors found epistasis between resistance alleles that was contingent on lon. Together this shows an intricate interplay of lon proteolysis for the evolution and maintenance of antibiotic resistance by gene duplication.

      Strengths:

      The study has several important strengths: (i) the work on GDA stability and competition of GDA with point mutations is a very promising area of research and the authors contribute new aspects to it, (ii) rigorous experimentation, (iii) very clearly written introduction and discussion sections. To me, the best part of the data is that deletion of lon stimulates GDA, which has not been shown with such clarity until now.

      Weaknesses:

      The minor weaknesses of the manuscript are a lack of clarity in parts of the results section (Point 1) and the methods (Point 2).

      We thank the reviewer for their comments and suggestions on our manuscript. We also appreciate the succinct summary of primary findings that the Reviewer has taken cognisance of in their assessment, in particular the association of the Lon protease with the propensity for GDAs as well as its impact on their eventual fate. We have now revised the manuscript for greater clarity as suggested by Reviewer #1.

      Reviewer #2 (Public review):

      Summary:

      In this strong study, the authors provide robust evidence for the role of proteostasis genes in the evolution of antimicrobial resistance, and moreover, for stabilizing the proteome in light of gene duplication events.

      Strengths:

      This strong study offers an important interaction between findings involving GDA, proteostasis, experimental evolution, protein evolution, and antimicrobial resistance. Overall, I found the study to be relatively well-grounded in each of these literatures, with experiments that spoke to potential concerns from each arena. For example, the literature on proteostasis and evolution is a growing one that includes organisms (even micro-organisms) of various sorts. One of my initial concerns involved whether the authors properly tested the mechanistic bases for the rule of Lon in promoting duplication events. The authors assuaged my concern with a set of assays (Figure 8).

      More broadly, the study does a nice job of demonstrating the agility of molecular evolution, with responsible explanations for the findings: gene duplications are a quick-fix, but can be out-competed relative to their mutational counterparts. Without Lon protease to keep the proteome stable, the cell allows for less stable solutions to the problem of antibiotic resistance.

      The study does what any bold and ambitious study should: it contains large claims and uses multiple sorts of evidence to test those claims.

      Weaknesses:

      While the general argument and conclusion are clear, this paper is written for a bacterial genetics audience that is familiar with the manner of bacterial experimental evolution. From the language to the visuals, the paper is written in a boutique fashion. The figures are even difficult for me - someone very familiar with proteostasis - to understand. I don't know if this is the fault of the authors or the modern culture of publishing (where figures are increasingly packed with information and hard to decipher), but I found the figures hard to follow with the captions. But let me also consider that the problem might be mine, and so I do not want to unfairly criticize the authors.

      For a generalist journal, more could be done to make this study clear, and in particular, to connect to the greater community of proteostasis researchers. I think this study needs a schematic diagram that outlines exactly what was accomplished here, at the beginning. Diagrams like this are especially important for studies like this one that offer a clear and direct set of findings, but conduct many different sorts of tests to get there. I recommend developing a visual abstract that would orient the readers to the work that has been done.

      The reviewer’s comments regarding data presentation are well-taken. Since we already had a diagrammatic model that sums up the chief findings of our study (Figure 9), we have now provided schematics in Figures 1, 3, 5 and 8 to clarify the workflow of smaller sections of the study. We hope that these diagrams provide greater clarity with regards to the experiments we have conducted.

      Next, I will make some more specific suggestions. In general, this study is well done and rigorous, but doesn't adequately address a growing literature that examines how proteostasis machinery influences molecular evolution in bacteria.

      While this paper might properly test the authors' claims about protein quality control and evolution, the paper does not engage a growing literature in this arena and is generally not very strong on the use of evolutionary theory. I recognize that this is not the aim of the paper, however, and I do not question the authors' authority on the topic. My thoughts here are less about the invocation of theory in evolution (which can be verbose and not relevant), and more about engagement with a growing literature in this very area.

      The authors mention Rodrigues 2016, but there are many other studies that should be engaged when discussing the interaction between protein quality control and evolution.

      A 2015 study demonstrated how proteostasis machinery can act as a barrier to the usage of novel genes: Bershtein, S., Serohijos, A. W., Bhattacharyya, S., Manhart, M., Choi, J. M., Mu, W., ... & Shakhnovich, E. I. (2015). Protein homeostasis imposes a barrier to functional integration of horizontally transferred genes in bacteria. PLoS genetics, 11(10), e1005612

      A 2019 study examined how Lon deletion influenced resistance mutations in DHFR specifically: Guerrero RF, Scarpino SV, Rodrigues JV, Hartl DL, Ogbunugafor CB. The proteostasis environment shapes higher-order epistasis operating on antibiotic resistance. Genetics. 2019 Jun 1;212(2):565-75.

      A 2020 study did something similar: Thompson, Samuel, et al. "Altered expression of a quality control protease in E. coli reshapes the in vivo mutational landscape of a model enzyme." Elife 9 (2020): e53476.

      And there's a new review (preprint) on this very topic that speaks directly to the various ways proteostasis shapes molecular evolution:

      Arenas, Carolina Diaz, Maristella Alvarez, Robert H. Wilson, Eugene I. Shakhnovich, C. Brandon Ogbunugafor, and C. Brandon Ogbunugafor. "Proteostasis is a master modulator of molecular evolution in bacteria."

      I am not simply attempting to list studies that should be cited, but rather, this study needs to be better situated in the contemporary discussion on how protein quality control is shaping evolution. This study adds to this list and is a unique and important contribution. However, the findings can be better summarized within the context of the current state of the field. This should be relatively easy to implement.

      We thank the reviewer for their encouraging assessment of our manuscript as well as this important critique regarding the context of other published work that relates proteostasis and molecular evolution. Indeed, this was a particularly difficult aspect for us given the different kinds of literature that were needed to make sense of our study. We have now added the references suggested by the reviewer as well as others to the manuscript. We have also added a paragraph in the discussion section (Lines 463-476) that address this aspect and hopefully fill the lacuna that the reviewer points out in this comment.

      Reviewer #3 (Public review):

      Summary:

      This paper investigates the relationship between the proteolytic stability of an antibiotic target enzyme and the evolution of antibiotic resistance via increased gene copy number. The target of the antibiotic trimethoprim is dihydrofolate reductase (DHFR). In Escherichia coli, DHFR is encoded by folA and the major proteolysis housekeeping protease is Lon (lon). In this manuscript, the authors report the results of the experimental evolution of a lon mutant strain of E. coli in response to sub-inhibitory concentrations of the antibiotic trimethoprim and then investigate the relationship between proteolytic stability of DHFR mutants and the evolution of folA gene duplication. After 25 generations of serial passaging in a fixed concentration of trimethoprim, the authors found that folA duplication events were more common during the evolution of the lon strain, than the wt strain. However, with continued passaging, some folA duplications were replaced by a single copy of folA containing a trimethoprim resistance-conferring point mutation. Interestingly, the evolution of the lon strain in the setting of increasing concentrations of trimethoprim resulted in evolved strains with different levels of DHFR expression. In particular, some strains maintained two copies of a mutant folA that encoded an unstable DHFR. In a lon+ background, this mutant folA did not express well and did not confer trimethoprim resistance. However, in the lon- background, it displayed higher expression and conferred high-level trimethoprim resistance. The authors concluded that maintenance of the gene duplication event (and the absence of Lon) compensated for the proteolytic instability of this mutant DHFR. In summary, they provide evidence that the proteolytic stability of an antibiotic target protein is an important determinant of the evolution of target gene copy number in the setting of antibiotic selection.

      Strengths:

      The major strength of this paper is identifying an example of antibiotic resistance evolution that illustrates the interplay between the proteolytic stability and copy number of an antibiotic target in the setting of antibiotic selection. If the weaknesses are addressed, then this paper will be of interest to microbiologists who study the evolution of antibiotic resistance.

      Weaknesses:

      Although the proposed mechanism is highly plausible and consistent with the data presented, the analysis of the experiments supporting the claim is incomplete and requires more rigor and reproducibility. The impact of this finding is somewhat limited given that it is a single example that occurred in a lon strain and compensatory mutations for evolved antibiotic resistance mechanisms are described. In this case, it is not clear that there is a functional difference between the evolution of copy number versus any other mechanism that meets a requirement for increased "expression demand" (e.g. promoter mutations that increase expression and protein stabilizing mutations).

      We thank the reviewer for their in-depth assessment of our work and appreciate their concerns regarding reproducibility and rigor in analysis of our data. We have now incorporated this feedback and provided necessary clarifications/corrections in the revised version of our manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major Points:

      (1) The authors show that a deletion of lon increases the ability for GDA and they argue that this is adaptive during TMP treatment because it increases the dosage of folA (L. 129). However, the highest frequency of GDA occurred in drug-free conditions (see Figure 1C). This indicates either that GDA is selected in drug-free media and potentially selected against by certain antibiotics. It would help for the authors to discuss this possibility more clearly.

      We thank the reviewer for this astute observation. It is indeed striking that the GDA mutation (i.e. the GDA-2 mutation) selected in a lon-deficient background does not come up in presence of antibiotics. To probe this further, we have now measured the relative fitness of a representative population of lon-knockout from short-term evolution in drug-free LB (population #3) that harbours GDA-2 against its ancestor (marked with DlacZ). These competition experiments were performed in LB (in which GDA-2 emerged spontaneously), as well as in LB supplemented with antibiotics at the concentrations used during the short term evolution.

      Values of relative fitness, w (mean ± SD from 3 measurements), are provided below:

      LB: 1.4 ± 0.2

      LB + Trimethoprim: 1.6 ± 0.2

      LB + Spectinomycin: 0.9 ± 0.2

      LB + Erythromycin: 1.3 ± 0.3

      LB + Nalidixic acid: 1.5 ± 0.2

      LB + Rifampicin: 1.4 ± 0.2

      These data show an increase in relative fitness in drug-free LB as would be expected. Interestingly, we also observe an increase in relative fitness in LB supplemented with antibiotics, except spectinomycin. This result supports the idea that GDA-2 is a “media adaptation” and provides a general fitness advantage to the lon knockout. However, as the reviewer pointed out, we should expect to see GDA-2 emerge spontaneously in antibiotic-supplemented media as well. We think that this does not happen as the fitness advantage of drug-specific mutations (GDAs or point mutations) far exceed the advantage of a media adaptation GDA. As a result, we only see the specific mutations that provide high benefit against the antibiotic at least over the relatively short duration of 20-25 generations. It is noteworthy the GDA-2 mutation does come up in LTMPR1 when it is passaged over >200 generations in drug-free media, but shows fluctuating frequency over time. We expect, therefore, that given enough time we may detect the GDA-2 mutations even in antibiotic-supplemented media.  

      We note, however, that a major caveat in the above fitness calculations is that we cannot be sure that the competing ancestor has no GDA-2 mutations during the course of the experiment. Thus, the above fitness values are only indicative and not definitive. We have therefore not included these data in the revised manuscript.

      (2) It is unclear if the isolates WTMPR1 - 5 and LTMPR1 - 5 were pure clones. The authors write in L.488 "Colonies were randomly picked, cultured overnight in drug-free LB and frozen in 50% glycerol at -80C until further use." And in L. 492 "For long-term evolution, trimethoprim-resistant isolates LTMPR1, WTMPR4 and WTMPR5 were first revived from frozen stocks in drug-free LB overnight." From these descriptions, it is possible that the isolates contained a fraction of cells of other genotypes since colonies are often formed by more than one cell and thus, unless pure-streaked, a subpopulation is present and would in drug-free media be maintained. The possibility of pre-existing subpopulations is important for all statements relating to "reversal".

      This is indeed a valid concern. As far as we can tell all our initial isolates (i.e. WTMPR1-5 and LTMPR1-5) are pure clones at least as far as SNPs are concerned. This is based on whole genome sequencing data that we have reported earlier in Patel and Matange, eLife (2021), where we described the evolution and isolation of WTMPR1-5 and the present study for LTMPR1-5. All SNPs detected were present at a frequency of 100%. For clones with GDAs, however, there is no way to eliminate a sub-population that has a lower or higher gene copy number than average from an isolate. This is because of the inherent instability of GDAs that will inevitably result in heterogeneous gene copy number during standard growth. In this sense, there is most certainly a possibility of a pre-existing subpopulation within each of the clones that may have reversed the GDA. Indeed, we believe that it is this inherent instability that contributes to their rapid loss during growth in drug-free media.

      Minor Points:

      (1) L. 406. "allowing accumulation of IS transposases in E. coli" Please specify that it is the accumulation of transposase proteins (and not genes).

      We have made this change.

      (2) L. 221 typo. Known "to" stabilize.

      We have made this change.

      Reviewer #2 (Recommendations for the authors):

      Most of my suggestions are found in the public review. I believe this to be a strong study, and some slight fixes can solidify its presence in the literature.

      We have attempted to address the two main critiques by Reviewer 2. To simplify the understanding of our data, we have provided small schematics at various points in the paper to clarify the experimental pipelines used by us. We have also provided additional discussion situating our study in the emerging area of proteostasis and molecular evolution. We hope that our revisions have addressed these lacunae in our manuscript.

      Reviewer #3 (Recommendations for the authors):

      Major Points:

      (1) The manuscript is generally a bit difficult to follow. The writing is overly complicated and lacks clarity at times. It should be simplified and improved.

      We have made several revisions to the text, as well as provided schematics in some of our figures which hopefully make our paper easier to understand.

      (2) I cannot find the raw variant summary data for the lon strain evolution experiment in trimethoprim (after 25 generations). Were there any other mutations identified? If not, this should be explicitly stated in the text and the variant output summary from sequencing included as supplemental data.

      We apologise for this oversight. We have now provided these data as Table 1.

      (3) What is the trimethoprim IC50 of the starting (pre-evolution) strains (i.e. wt and lon)? I can't find this information, but it is critical to interpretation.

      We had reported these values earlier in Matange N., J Bact (2020). Wild type and lon-knockout have similar MIC values for trimethoprim, though the lon mutant shows a higher IC50 value. We have now mentioned this in the results section (Line 100-101) and also provided the reference for these data.

      (4) What was the average depth of coverage for WGS? This information is necessary to assess the quality of the variant calling, especially for the population WGS.

      All genome sequencing data has a coverage at least 100x. We have added this detail to the methods section (Line 580-581).

      (5) Five replicate evolution experiments (25 generations, or 7x 10% daily batch transfers) were performed in trimethoprim for the wt and lon strains. Duplication of the folA locus occurred in 1/5 and 4/5 experiments, respectively. It is not entirely clear what type of sampling was actually done to arrive at these numbers (this needs to be stated more clearly), but presumably 1 random colony was chosen at the end of the passaging protocol for each replicate. Based on this result, the authors conclude that folA duplication occurred more frequently in the lon strain, however, this is not rigorously supported by a statistical evaluation. With N=5, one cannot rigorously conclude that a 20% frequency and 80% frequency are significantly different. Furthermore, it's not entirely clear what the mechanism of resistance is for these strains. For example, in one colony sequenced (LTMPR5), it appears no known resistance mechanism (or mutations?) were identified, and yet the IC50 = 900 nM, which is also similar to other strains.

      Indeed, we agree with the reviewer that we don’t have the statistical power to rigorously make this claim. However, since the lon-knockout showed us a greater frequency of GDA across 3 different environments we are fairly confident that loss of lon enhances the overall frequency for GDA mutations. This idea in also supported by a number of previous papers that related GDAs and IS-element transpositions with Lon, viz. Nicoloff et al, Antimicrob Agent Chemother (2007), Derbyshire et al. PNAS (1990), Derbyshire and Grindley, Mol Microbiol (1996). We have therefore not provided further justification in the revised manuscript.

      We had indeed sampled a random isolate from each of the 5 populations and have added a schematic to figure 1 that provides greater clarity.

      Having relooked at the sequencing data for LTMPR1-5 isolates (Table 1), we realised that both LTMPR4 and LTMPR5 harbour mutations in the pitA gene. We had missed this locus during the previous iteration of this manuscript and misidentified an mgrB mutations in LTMPR4. PitA codes for a metal-phosphate symporter. We have observed mutations in pitA in earlier evolution experiments with trimethoprim as well (Vinchhi and Yelpure et al. mBio 2023). Interestingly, in LTMPR5 there was a deletion of pitA, along with 17 other contiguous genes mediated by IS5. To test if loss of pitA is beneficial in trimethoprim, we tested the ability of a pitA knockout to grow on trimethoprim supplemented plates. Indeed, loss of pitA conferred a growth advantage to E. coli on trimethoprim, comparable to loss of mgrB, indicating that the mechanism of resistance of LTMPR5 may be due to loss of pitA. We have added these data to the Supplementary Figure 1 of the revised manuscript and provided a brief description in Lines 103-108. How pitA deficiency confers trimethoprim resistance is yet to be investigated. The mechanism is likely to be by activating some intrinsic resistance mechanism as loss of pitA also conferred a fitness benefit against other antibiotics. This work is currently underway in our lab and hence we do not provide any further mechanism in the present manuscript.

      (6) Although measurement error/variance is reported, statistical tests were not performed for any of the experiments. This is critical to support the rigor and reproducibility of the conclusions.

      We have added statistical testing wherever appropriate to the revised manuscript.

      (7) Lines 150-155 and Figure 2E: Putting a wt copy of mgrB back into the WTMPR4 and LTMPR1 strains would be a better experiment to dissect out the role of mgrB versus the other gene duplications in these strains on fitness. Without this experiment, you cannot confidently attribute the fitness costs of these strains to the inactivation of mgrB alone.

      We agree with the reviewer that our claim was based on a correlation alone. We have now added some new data to confirm our model (Figure 2 E, F). The costs of mgrB mutations come from hyperactivation of PhoQP. In earlier work we have shown that the costs (and benefit) of mgrB mutations can be abrogated in media supplemented with Mg<sup>2+</sup>, which turns off the PhoQ receptor (Vinchhi and Yelpure et al. mBio, 2023). We use this strategy to show that like the mgrB-knockout, the costs of WTMPR4, WTMPR5 and LTMPR1 can be almost completely alleviated by adding Mg<sup>2+</sup> to growth media. These results confirm that the source of fitness cost of TMP-resistant bacteria was not linked to GDA mutations, but to hyperactivation of PhoQP.

      (8) Figure 3F and G: Does the top symbol refer to the starting strain for the 'long-term' evolution? If so, why does WTMPR4 not have the mgrB mutation (it does in Figure 1)? Based on your prior findings, it seems odd that this strain would evolve an mgrB loss of function mutation in the absence of trimethoprim exposure.

      We thank the reviewer for pointing this error out. We have made the correction in the revised manuscript.

      (9) Figure 6A: If the marker is neutral, it should be maintained at 0.1% throughout the 'neutrality' experiment. In both plots, the proportion of some marked strains goes up and then down. This suggests either ongoing evolution (these competitions take place over 105 generations), or noisy data. I suspect these data are just inherently noisy. I don't see error bars in the plots. Were these experiments ever replicated? It seems that replicating the experiments might be able to separate out noise from signal and perhaps clarify this point and better confirm the hypothesis that the point mutants are more fit.

      These experiments were indeed noisy and the apparent enrichment is most likely a measurement error rather than a real change in frequency of competing genotypes. We have now provided individual traces for each of the competing pairs with mean and SD from triplicate observations at each time point.

      (10) Figure 6A: Please indicate which plotted line refers to which 'point mutant' using different colors. These mutants have different trimethoprim IC50s and doubling times, so it would be nice to be able to connect each mutant to its specific data plot.

      We thank the reviewer for this suggestion. We have now colour coded the different strain combinations as suggested.

      (11) Lines 284-285: I disagree that the IC50s are similar. The C-35T mutant has IC50 that is 2x that of LTMPR1. Perhaps more telling is that, compared to the folA duplication strain from the same time-point (which also carries the rpoS mutation), all of the point mutants have greater IC50s (~2x greater). 2-fold changes in IC50 are significant. It would seem that the point-mutants were likely not competing against LTMPR1 at the time they arose, so LTMPR1 might not be the best comparator if it was extinguished from the population early. I'm assuming this is why you chose a contemporary isolate (and, also, rpoS mutant) for the competition experiments. This should be explained more clearly.

      We thank the reviewer for this comment. Indeed, the reviewer is correct about the rationale behind the use of a contemporary isolate and we have provided this clarification in the revised manuscript (Line 287-289). Also, the reviewer is correct in pointing out that a two-fold difference in IC50 cannot be ignored. However, the key point here would be in assessing the differences in growth rates at the antibiotic concentration used during competition (i.e. 300 ng/mL). We are unable to see a direct correlation between the growth rates and enrichment in culture indicating that the observed trends are unlikely to be driven by ‘level of resistance’ alone. We have added these clarifications to the modified manuscript (Lines 299-301)

      Minor Points:

      (1) Line 13: Add a comma before 'Escherichia'

      We have made this change.

      (2) Line 14: Consider changing "mutations...were beneficial in trimethoprim" to "mutations...were beneficial under trimethoprim exposure"

      We have made this change.

      (3) Line 32: Is gene dosage really only "relative to the genome"? Is it not simply its relative copy number generally? Consider changing to "The dosage of a gene, or its relative copy number, can impact its level of expression..."

      We have made this change.

      (4) Line 38: The idea that GDAs are 1000x more frequent than point mutations seems an overgeneralization.

      We agree with the reviewer and have softened our claim.

      (5) Line 50: The term "hard-wired" is confusing. Please be more specific.

      We have modified this statement to “…GDAs are less stable than point mutations….”.

      (6) Line 52-53: What do you mean by "there is also evidence to suggest that...more common in bacteria than appreciated"? Are you implying the field is naïve to this fact? If there is "evidence" of this, then a reference should be included. However, it's not clear why this is important to state in the article. I would consider simply removing this sentence. Less is more in this case.

      We have removed this statement.

      (7) Lines 59-60: Enzymes catalyze reactions. Please also state the substrates for DHFR. Consider, "It catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, and important co-factor for..."

      We have made this change.

      (8) Line 72: Please change to, "In E. coli, DHFR is encoded by folA." You do not need to state this is a gene, as it is implicit with lowercase italics.

      We have made this change.

      (9) Lines 72-86: This paragraph is a bit confusing to read, as it has several different ideas in it. Consider breaking it into two paragraphs at Line 80, "In this study,...". The first paragraph could just review the trimethoprim resistance mechanisms in E. coli and so would change the first sentence (Line 72) to reflect this topic: "In E. coli, DHFR is encoded by folA and several different resistance mechanisms have been characterized." Then, just describe each mechanism in turn. Also, by "hot spots" it would seem you are referring to "point mutations" in the gene that alter the protein sequence and cluster onto the 3D protein structure when mapped? Please be more specific with this sentence for clarity.

      We have made these changes.

      (10) Lines 92-93: Please also state the MIC value of the strain to specifically define "sub-MIC". Alternatively, you could also state the fraction MIC (e.g. 0.1 x MIC).

      We have modified this statement to “…in 300 ng/mL of trimethoprim (corresponding to ~0.3 x MIC) for 25 generations.”

      (11) Lines 95-96. Remove, "These sequencing have been reported earlier, ...(2021)". You just need to cite the reference.

      We have made this change.

      (12) Line 96: Remove the word "gene".

      We have made this change.

      (13) Figure 1 and Figure 4C: The color scheme is tough for those with the most common type of color blindness. Red/green color deficiency causes a lot of difficulty with Red/gray, red/green, green/gray. Consider changing.

      We thank the reviewer for bringing this to our notice. We have modified the colour scheme throughout the manuscript.

      (14) Figure 1: Was there a trimethoprim resistance mechanism identified for LTMPR5?

      As stated by us in response to major comment #7, LTMPR5’s resistance seems to come from a novel mechanism involving loss of the pitA gene.

      (15) Line 349-351: Please briefly define "lower proteolytic stability" as a relative susceptibility to proteolytic degradation and make sure it is clear to the reader that this causes less DHFR. This needs to be clarified because it is confusing how a mutation that causes DHFR proteolytic instability would lead to an increase in trimethoprim IC50. So, you also need to mention that some mutations can cause both increased trimethoprim inhibition and lower proteolytic stability simultaneously. It seems the Trp30Arg mutation is an example of this, as this mutation is associated with a net increase in trimethoprim resistance despite the competing effects of the mutation on enzyme inhibition and DHFR levels.

      We thank the reviewer for this comment and agree that the text in the original manuscript did not fully convey the message. We have made modifications to this section (Lines 359-363) in the revised manuscript in agreement with the reviewer’s suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors seek to understand the role of different ratios of excitatory to inhibitory (EI) neurons, which in experimental studies of the cerebral cortex have been shown to range from 4 to 9. They do this through a simulation study of sparsely connected networks of excitatory and inhibitory neurons.

      Their main finding is that the participation ratio and decoding accuracy increase as the E/I ratio decreases. This suggests higher computational complexity.

      This is the start of an interesting computational study. However, there is no analysis to explain the numerical results, although there is a long literature of reduced models for randomly connected neural networks which could potentially be applied here. (For example, it seems that the authors could derive a mean field expression for the expected firing rate and variance - hence CV - which could be used to target points in parameter space (vs. repeated simulation in Figures 1,2).) The paper would be stronger and more impactful if this was attempted.

      Strengths:

      Some issues I appreciated are:

      (1) The use of a publicly available simulator (Brian), which helps reproducibility. I would also request that the authors supply submission or configuration scripts (if applicable, I don't know Brian).

      (2) A thorough exploration of the parameter space of interest (shown in Figure 2).

      (3) A good motivation for the underlying question: other things being equal, how does the E/I ratio impact computational capacity?

      Weaknesses:

      (1) Lack of mathematical analysis of the network model

      Major issues I recommend that the authors address (not sure whether these are "weaknesses"):

      (1) In "Coding capacity in different layers of visual cortex" the authors measure PR values from layers 2/3 and 4 in VISp and find that layer 2/3 has a higher PR than layer 4.

      But in Dahmen et al. 2020 (https://doi.org/10.1101/2020.11.02.365072 ), the opposite was found (see Figure 2d of Dahmen et al.): layer 2 had a lower PR than layer 4. Can the authors explain how that difference might arise? i.e. were they analyzing the same data sets? If so why the different results? Could it have to do with the way the authors subsample for the E/I ratio?

      From the Methods of that paper: "Visual stimuli were generated using scripts based on PsychoPy and followed one of two stimulus sequences ("brain observatory 1.1" and<br /> "functional connectivity"). We focused on spontaneous neural activity registered while the animal was not performing any task. In each session, the spontaneous activity condition lasted 30 minutes while the animal was in front of a screen of mean grey luminance. We, therefore, analyzed 26 of the original 58 sessions corresponding to the "functional connectivity" subdataset as they included such a period of spontaneous activity. " This suggests to me they may have analyzed recordings with the other stimulus sequence; however, the hypothesis that E/I ratio should modulate dimensionality would not seem to "care" about which stimulus sequence was used.

      (2) In Discussion (pg. 20, line 383): "They showed that brain regions closer to sensory input, like the thalamus, have higher dimensionality than those further away, such as<br /> the visual cortex. " How is this consistent with the hypothesis that "higher dimensionality might be linked to more complex cognitive functions"?

      (3) What is the probability of connection between different populations? e.g. the probability of there being a synaptic connection between any two E cells? I could not find a statement about this. It should be included in the Methods.

      (4) pg. 27, line 540: "Synchronicity within the network" For each cell pair, the authors use the maximum cross-correlation over time lag. I don't think I have seen this before. Can the authors explain why they use this measurement, vs (a) integrated cross-correlation or (b) cross-correlation at some time scale? Also, it seems like this fails to account for neuron pairs for which there is a strong inhibitory correlation.

      (5) "When stimulated, a time-varying input, μext(t), is applied to 2,000 randomly selected excitatory neurons. " I would guess that computing PR would depend on the overlap of the 500 neurons analyzed and this population. Do the authors check or control for that?

      5b) Related: to clarify, are the 500 neurons chosen from the analysis equally likely to be E or I neurons?

    1. Author response:

      The following is the authors’ response to the original reviews.

      Common comments

      (1) Significance of zero mutation rate

      Reviewers asked why we included mutation rate even though setting mutation rate to zero doesn’t change results. We think that including non-zero mutation rate makes our results more generalisable, and thus is a strength rather than weakness. To better motivate this choice, we have added a sentence to the beginning of Results:

      (2) Writing the mu=0 case first

      Reviewers suggested that we should first focus on the mu=0 case, and then generalize the result. The suggestions are certainly good. However, given the large amount of work involved in a re-organization, we have decided to adhere to our current narrative. However, we now only include equations where mu=0 in the main text, and have moved the case of nonzero mutation rate to Supplementary Information.

      Making equations more accessible

      We have taken three steps to make equations more readable.

      ● Equations in the main text correspond to the case of zero-mutation rate.

      ● The original section on equation derivation is now in a box in the main text so that readers have the choice of skipping it but interested readers can still get a gist of where equations came from.

      We have provided a much more detailed interpretation of the equation:

      (3) Validity of the Gaussian approximation

      Reviewers raised concerns about the validity of Gaussian approximation on F suggest that𝑓( 𝜏this) approximation is reasonable. Still, we added a discussion frequency. The fact that our calculations closely match simulations about the validity of this approximation in Box 1.

      We also added to SI with various cases of initial S and F sizes. This figure not normal. However, if initial S and F are both on the order of hundreds,𝑓(𝜏) then shows that when either initial S or initial F is small, the distribution of    is the distribution of 𝑓(𝜏) is approximately Gaussian.

      Public Reviews:

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle are important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamic systems.

      We have added this clarification in the main text:

      “Note that here, selection outcome is path-dependent in the sense of being sensitive to initial conditions. This phenomenon is distinct from hysteresis where path-dependence results from whether a tuning parameter is increased or decreased.

      Weaknesses:

      (1) Connecting structure and function

      In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main Figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      We have added this to introduction: “This is a common quest: whenever a collective function depends on both populations, collective function is maximised, by definition, at an intermediate frequency (e.g. too little of either population will hamper function [23]).”

      (2) Explain intra-collective and inter-collective selection better for readers.

      The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. For the wide readership of eLife, a clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      This is a great point. We have added in Abstract:

      “Such collective selection is dictated by two opposing forces: during collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Due to this model structure, maintaining a target frequency requires the continued action of inter-collective selection.”

      and in Introduction

      “A selection cycle consists of three stages (Fig. 1). During collective maturation, intra-collective selection favors fast-growing individuals within a collective. At the end of maturation, inter-collective selection acts on collectives and favors those achieving the target composition. Finally during collective reproduction, offspring collectives sample stochastically from the parents, a process dominated by genetic drift.”

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.

      I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main Figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck is imposed on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      We have added an analytical approximation for N0˘, the Newborn size below which all target frequencies can be achieved in SI.

      Also, we have added lines indicating N0˘ in Fig4a.

      (4) Consideration of environmental stochasticity.

      The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      You are correct that our work considers only demographic stochasticity.

      Indeed, considering other types of stochasticity will be an exciting future research direction. We added in the main text:

      “Overall our model considers mutational stochasticity, as well as demographic stochasticity in terms of stochastic birth and stochastic sampling of a parent collective by offspring collectives. Other types of stochasticity, such as environmental stochasticity and measurement noise, are not considered and require future research.”

      (5) Assumption about mutation rates

      If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      This is a great point. We have added this to the beginning of Results to better motivate our study:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations. This scenario is encountered in biotechnology: an engineered pathway will slow down growth, and breaking the pathway (and thus faster growth) is much easier than the other way around. When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.

      See answer on common question 1.

      (6) Minor points

      In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.

      We added a description in caption 3b.

      In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

      We increased the resolution of Fig 5b so that the gold region near FF is more visible.

      We have added Fig 5c and the following explanation to the main text:

      “From numerical simulations, we identified two accessible regions: a small region near FF and a band region spanning from S to F (gold in Fig. 5b i). Intuitively, the rate at which FF grows faster than S+F is greater than the rate at which F grows faster than S (see section VIII in Supplementary Information). Thus, the problem can initially be reduced to a two-population problem (i.e. FF versus F+S; Fig. 5c left), and then expanded to a three-population problem (Fig. 5c right).”

      Recommendations For The Authors

      Since the conclusion of the model greatly depends on the noise (variation) of F and S in the Gaussian distribution, it would be nice to have a plot where the y-axis is the variation in terms of frequency and the x-axis is the s_0 or f_0 (frequency). In the plot, I would love to see how the variation in the frequency depends on the initial frequency of S and F. Maybe this is just trivial.

      In the SI, we added Fig6a, as per your request. Previous Fig6 became Fig6b.

      Reviewer #2 (Public review):

      The authors provide an analytical framework to model the artificial selection of the composition of communities composed of strains growing at different rates. Their approach takes into account the competition between the targeted selection at the level of the meta-community and the selection that automatically favors fast-growing cells within each replicate community. Their main finding is a tipping point or path-dependence effect, whereby compositions dominated by slow-growing types can only be reached by community-level selection if the community does not start and never crosses into a range of compositions dominated by fast growers during the dynamics.

      These results seem to us both technically correct and interesting. We commend the authors on their efforts to make their work reproducible even when it comes to calculations via extensive appendices, though perhaps a table of contents and a short description of these appendices at the start of SI would help navigate them.

      Thank you for the suggestion. We have added a paragraph at the beginning of SI.

      The main limitation in the current form of the article is that it could clarify how its assumptions and findings differ from and improve upon the rest of the literature:

      -  Many studies discuss the interplay between community-level evolution and species- or strain-level evolution. But "evolution" can be a mix of various forces, including selection, drift/randomness, and mutation/innovation.

      - This work's specificity is that it focuses strictly on constant community-level selection versus constant strain-level selection, all other forces being negligible (neither stochasticity nor innovation/mutation matter at either level, as we try to clarify now).

      Note that intra-collective selection is not strictly “constant” in the sense that selection favoring F is the strongest at intermediate F frequency (Fig 3). However, we think that you mean that intra- and inter-collective selection are present in every cycle, and this is correct for our case, and for community selection in general.

      -  Regarding constant community-level selection, it is only briefly noted that "once a target frequency is achieved, inter-collective selection is always required to maintain that frequency due to the fitness difference between the two types" [pg. 3 {section sign}2]. In other words, action from the selector is required indefinitely to maintain the community in the desired state. This assumption is found in a fraction of the literature, but is still worth clarifying from the start as it can inform the practical applicability of the results.

      This is a good point. We have added to abstract:

      “Such collective selection is dictated by two opposing forces: during collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Due to this model structure, maintaining a target frequency requires the continued action of inter-collective selection.”

      - More importantly, strain-level evolution also boils down here to pure selection with a constant target, which is less usual in the relevant literature. Here, (1) drift from limited population sizes is very small, with no meaningful counterbalancing of selection, (2) pure exponential regime with constant fitness, no interactions, no density- or frequency-dependence, (3) there is no innovation in the sense that available types are unchanging through time (no evolution of traits such as growth rate or interactions) and (4) all the results presented seem unchanged when mutation rate mu = 0 (as noted in Appendix III), meaning that the conclusions are not "about" mutation in any meaningful way.

      With regard to point (1), Figure 4a (reproduced below) shows how Newborn size affects the region of achievable targets. Indeed at large Newborn size (e.g. 5000 and above), no target frequency is achievable (since drift is too small to generate sufficient inter-community variation and consequently all communities are dominated by fast-growing F). However at Newborn size of for example 1000, there are two regions of accessible target frequencies. At smaller Newborn size, all target frequencies become achievable due to drift becoming sufficiently strong.

      With regard to points (2) and (3), we have added to Introduction

      “To enable the derivation of an analytical expression, we have made the following simplifications.

      First, growth is always exponential, without complications such as resource limitation, ecological interactions between the two populations, or density-dependent growth. Thus, the exponential growth equation can be used. Second, we consider only two populations (genotypes or species): the fast-growing F population with size F and the slow-growing S population with size S. We do not consider a spectrum of mutants or species, since with more than two populations, an analytical solution becomes very difficult.”

      With regard to point (4), we view this as a strength rather than weakness. We have added the following to the beginning of Results and Discussions:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations.”

      “When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.”

      See Point 1 of Common comments.

      - Furthermore, the choice of mutation mechanism is peculiar, as it happens only from slow to fast grower: more commonly, one assumes random non-directional mutations, rather than purely directional ones from less fit to fitter (which is more of a "Lamarckian" idea). Given that mutation does not seem to matter here, this choice might create unnecessary opposition from some readers or could be considered as just one possibility among others.

      We have added the following justification:

      “This scenario is encountered in biotechnology: an engineered pathway will slow down growth, and breaking the pathway (and thus faster growth) is much easier than the other way around.”

      It would be helpful to have all these points stated clearly so that it becomes easy to see where this article stands in an abundant literature and contributes to our understanding of multi-level evolution, and why it may have different conclusions or focus than others tackling very similar questions.

      Finally, a microbial context is given to the study, but the assumptions and results are in no way truly tied to that context, so it should be clear that this is just for flavor.

      We have deleted “microbial” from the title, and revised our abstract:

      Recommendations For The Authors

      (1) More details concerning our main remark above:

      - The paragraph discussing refs [24, 33] is not very clear in how they most importantly differ from this study. Our impression is that the resource aspect is not very important for instance, and the main difference is that these other works assume that strains can change in their traits.

      We are fairly sure that resource depletion is important in Rainey group’s study, as the attractor only evolved after both strains grew fast enough to deplete resources by the end of maturation. Indeed, evolution occurred in interaction coefficients which dictate the competition between strains for resources.

      Regardless, you raised an excellent point. As discussed earlier, we have added the following:

      “To enable the derivation of an analytical expression, we have made the following simplifications.

      First, growth is always exponential, without complications such as resource limitation, ecological interactions between the two populations, or density-dependent growth. Thus, the exponential growth equation can be used. Second, we consider only two populations (genotypes or species): the fast-growing F population with size F and the slow-growing S population with size S. We do not consider a spectrum of mutants or species, since with more than two populations, an analytical solution becomes very difficult.”

      - We would advise the main text to focus on mu = 0, and only say in discussion that results can be generalized.

      Your suggestion is certainly good. However, given the large amount of work involved in a reorganisation, we have decided to adhere to our current narrative. However, as discussed earlier, we have added this at the beginning of Results to help orient readers:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations.”

      “When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.”

      (2) We think the material on pg. 5 "Intra-collective evolution is the fastest at intermediate F frequencies, creating the "waterfall" phenomenon", although interesting, could be presented in a different way. The mathematical details on how to find the probability distribution of the maximum of independent random variables (including Equation 1) will probably be skipped by most of the readers (for experienced theoreticians, it is standard content; for experimentalists, it is not the most relevant), as such I would recommend displacing them to SM and report only the important results.

      This is an excellent suggestion. We have put a sketch of our calculations in a box in the main text to help orient interested readers. As before, details are in SI.

      Similarly, Equations 2, 3, and 4 are hard to read given the large amount of parameters and the low amount of simplification. Although exploring the effect of the different parameters through Figures 3 and 4 is useful, I think the role of the equations should be reconsidered:

      i. Is it possible to rewrite them in terms of effective variables in a more concise way?

      See Point 3 of Common comments.

      ii. Is it possible to present extreme/particular cases in which they are easier to interpret?

      We have focused on the case where the mutation rate is zero. This makes the mathematical expressions much simpler (see above).

      (3) Is it possible to explain more in detail why the distribution of f_k+1 conditional to f_k^* is well approximated by a Gaussian? Also, have you explored to what extent the results would change if this were not true (in light of the few universal classes for the maximum of independent variables)?

      Despite the appeal to the CLT and the histograms in the Appendix suggesting that the distribution looks a bit like a Gaussian at a certain scale, fluctuations on that scale are not necessarily what is relevant for the results - a rapid (and maybe wrong) attempt at a characteristic function calculation suggests that in your case, one does not obtain convergence to Gaussians unless we renormalize by S(t=0) and F(t=0), so it seems there is a justification missing in the text as is for the validity of this approximation (or that it is simply assumed).

      See point 4 of Common comments.

      Reviewer #3 (Public Reviews):

      The authors address the process of community evolution under collective-level selection for a prescribed community composition. They mostly consider communities composed of two types that reproduce at different rates, and that can mutate one into the other. Due to such differences in 'fitness' and to the absence of density dependence, within-collective selection is expected to always favour the fastest grower, but the collective-level selection can oppose this tendency, to a certain extent at least. By approximating the stochastic within-generation dynamics and solving it analytically, the authors show that not only high frequencies of fast growers can be reproducibly achieved, aligned with their fitness advantage. Small target frequencies can also be maintained, provided that the initial proportion of fast growers is sufficiently small. In this regime, similar to the 'stochastic corrector' model, variation upon which selection acts is maintained by a combination of demographic stochasticity and of sampling at reproduction. These two regions of achievable target compositions are separated by a gap, encompassing intermediate frequencies that are only achievable when the bottleneck size is small enough or the number of communities is (disproportionately) larger.

      A similar conclusion, that stochastic fluctuations can maintain the system over evolutionary time far from the prevalence of the faster-growing type, is then confirmed by analyzing a three-species community, suggesting that the qualitative conclusions of this study are generalizable to more complex communities.

      I expect that these results will be of broad interest to the community of researchers who strive to improve community-level selection, but are often limited to numerical explorations, with prohibitive costs for a full characterization of the parameter space of such embedded populations. The realization that not all target collective functions can be as easily achieved and that they should be adapted to the initial conditions and the selection protocol is also a sobering message for designing concrete applications.

      A major strength of this work is that the qualitative behaviour of the system is captured by an analytically solvable approximation so that the extent of the 'forbidden region' can be directly and generically related to the parameters of the selection protocol.

      Thanks so much for these positive comments.

      I however found the description of the results too succinct and I think that more could be done to unpack the mathematical results in a way that is understandable to a broader audience. Moreover, the phenomenon the authors characterize is of purely ecological nature. Here, mutations of the growth rate are, in my understanding, neither necessary (non-trivial equilibria can be maintained also when \mu =0) nor sufficient (community-level selection is necessary to keep the system far from the absorbing state) for the phenomenon described. Calling this dynamics community evolution reflects a widespread ambiguity, and is not ascribable just to this work. I find that here the authors have the opportunity to make their message clearer by focusing on the case where the 'mutation' rate \mu vanishes (Equations 39 & 40 of the SI) - which is more easily interpretable, at least in some limits - while they may leave the more general equations 3 & 4 in the SI.

      See points 1-4 of Common comments.

      Combined with an analysis of the deterministic equations, that capture the possibility of maintaining high frequencies of fast growers, the authors could elucidate the dynamics that are induced by the presence of a second level of selection, and speculate on what would be the result of real open-ended evolution (not encompassed by the simple 'switch mutations' generally considered in evolutionary game theory), for instance discussing the invasibility (or not) of mutant types with slightly different growth rates.

      Indeed, evolution is not restricted to two types. However, our main goal here is to derive an analytical expression, and it was difficult for even two types. For three-type collectives, we had to resort to simulations. Investigating the case where fitness effects of mutations are continuously distributed is beyond the scope of this study.

      The single most important model hypothesis that I would have liked to be discussed further is that the two types do not interact. Species interactions are not only essential to achieve inheritance of composition in the course of evolution but are generally expected to play a key role even on ecological time scales. I hope the authors plan to look at this in future work.

      In our system, the S and F do interact in a competitive fashion: even though S and F are not competing for nutrients (which are always in excess), they are competing for space. This is because a fixed number of cells are transferred to the next cycle. Thus, the presence of F will for example reduce the chance of S being propagated. We have added this clarification to our main text:

      “Note that even though S and F do not compete for nutrients, they compete for space: because the total number of cells transferred to the next cycle is fixed, an overabundance of one population will reduce the likelihood of the other being propagated.”

      Recommendations For The Authors

      I felt the authors could put some additional effort into making their theoretical results meaningful for a population of readers who, though not as highly mathematically educated as they are, can nonetheless appreciate the implications of simple relations or scaling. Below, you find some suggestions:

      (1) In order to make it clear that there is a 'natural' high-frequency equilibrium that can be reached even in the absence of selection, the authors could examine first the dynamics of the deterministic system in the absence of mutations, and use its equilibria to elucidate the combined role of the 'fitness' difference \omega and of the generation duration \tau in setting its value. The fact that these parameters always occur in combination (when there are no mutations) is a general and notable feature of the stochastic model as well. Moreover, this model would justify why you only focus on decreasing the frequency in the new generation.

      Note that the ‘natural’ high-frequency equilibrium in the absence of collective selection is when fast grower F becomes fixed in the population. Following your suggestion, we have introduced two parameters 𝑅τ and 𝑊τ to reflect the coupling between ‘fitness’ and ‘generation duration’:

      (2) Since the phenomenon described in the paper is essentially ecological in nature (as the author states, it does not change significantly if the 'mutation rate' \mu is set to zero), I would put in the main text Equations 39 & 40 of the SI in order to improve intelligibility.

      See Point 2 at the beginning of this letter.

      These equations can be discussed in some detail, especially in the limit of small f^*_k, where I think it is worth discussing the different dependence of the mean and the variance of the frequency distribution on the system's parameters.

      This is a great suggestion. We have added the following:

      “In the limit of small , Equation (3) becomes f while Equation (4) becomes . Thus, both Newborn size (N<sub>0</sub>) and fold-change in F/S during maturation (W<sub>τ</sub>) are important determinants of selection progress.

      (3) I would have appreciated an explanation in words of what are the main conceptual steps involved in attaining Equation 2, the underlying hypotheses (notably on community size and distributions), and the expected limits of validity of the approximation.

      See points 3 and 4 at the beginning of this letter.

      (4) I think that some care needs to be put into explaining where extreme value statistics is used, and why is the median of the conditional distribution the most appropriate statistics to look at for characterizing the evolutionary trajectory (which seems to me mostly reliant on extreme values).

      Great point! We added an explanation of using median value in Box 1.

      and also added figure 7 to explaining it in SI.

      Showing in a figure the different distributions you are considering (for instance, plotting the conditional distribution for one generation in the trajectories displayed in Figure 2) would be useful to understand what information \bar f provides on a sequence of collective generations, where in principle there may be memory effects.

      Thanks for this suggestion. We have added to Fig 2d panel to illustrate the shape and position of F frequency distributions in each step in the first two selection cycles.

      (5) Similarly, I do not understand why selecting the 5% best communities should push the system's evolution towards the high-frequency solution, instead of just slowing down the improvement (unless you are considering the average composition of the top best communities - which should be justified). I think that such sensitivity to the selection intensity should be appropriately referenced and discussed in the main text, as it is a parameter that experimenters are naturally led to manipulate.

      In the main text, we have added this explanation:

      “In contrast with findings from an earlier study [23], choosing top 1 is more effective than the less stringent “choosing top 5%”. In the earlier study, variation in the collective trait is partly due to nonheritable factors such as random fluctuations in Newborn biomass. In that context, a less stringent selection criterion proved more effective, as it helped retain collectives with favorable genotypes that might have exhibited suboptimal collective traits due to unfavorable nonheritable factors. However, since this study excludes nonheritable variations in collective traits, selecting the top 1 collective is more effective than selecting the top 5% (see Fig. 11 in Supplementary Information).”

      (6) Equation 1 could be explained in simpler terms as the product between the probability that one collective reaches the transmitted value times the probability that all others do worse than that. The current formulation is unclear, perhaps just a matter of English formulation.

      We have revised our description to state:

      “Equation (1) can be described as the product between two terms related to probability: (i) describes the probability density that any one of the g Adult collectives achieves f given , and (ii) describes the probability that all other g – 1 collectives achieve frequencies above f and thus not selected.”

      (7) I think that the discussion of the dependence of the boundaries of the 'waterfall' region with the difference in growth rate \omega is important and missing, especially if one wants to consider open-ended evolution of the growth rate - which can occur at steps of different magnitude.

      We added a new chapter and figure in supplementary information on the threshold values when \omega varies. As expected, smaller \omega enlarges the success area.

      We have also added a new figure panel to show how maturation time affects selection efficacy.

      (8) Notations are a bit confusing and could be improved. First of all, in most equations in the main text and SI, what is initially introduced as \omega appears as s. This is confusing because the letter s is also used for the frequency of the slow type.

      The letter S is used to denote an attribute of cells (S cells), the type of cells (Equations 1-3 of the SI) and the number of these cells in the population, sometimes with different meanings in the same sentence. This is confusing, and I suggest referring to slow cells or fast cells instead (or at least to S-cells and F-cells), and keeping S and F as variables for the number of cells of the two types.

      All typos related to the notation have been fixed. We use S and F as types, and S and F (italic) and population numbers.

      (9) On page 3, when introducing the sampling of newborns as ruled by a binomial distribution, the information that you are just transmitting one collective is needed, while it is conveyed later.

      We have added this emphasis:

      “At the end of a cycle, a single Adult with the highest function (with F frequency f closest to the target frequency ) is chosen to reproduce g Newborn collectives each with N<sub>0</sub> cells (‘Selection’ and ’Reproduction’ in Fig. 1).”

      (10) I found that the abstract talks too early about the 'waterfall' phenomenon. As this is a concept introduced here, I suggest the authors first explain what it is, then use the term. It is a useful metaphor, but it should not obscure the more formal achievements of the paper.

      We feel that the “waterfall” analogy offers a gentle helping hand to orient those who have not thought much about the phenomenon. We view abstract as an opportunity to attract readership, and thus the more accessible the better.

      (11) In the SI there are numerous typos and English language issues. I suggest the authors read carefully through it, and add line numbers to the next version so that more detailed feedback is possible.

      Thank you for going through SI. We have gone through the SI, and fixed problems.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Manuscript number: RC-2024-02605

      Corresponding author: Woo Jae, Kim

      1. ____Point-by-point description of the revisions

      Reviewer #1

      General Comment: This study investigates the role of the foraging gene in modulating interval timing behaviors in flies, with a particular focus on mating duration. Using single-cell RNA sequencing and gene knockdown experiments, the research demonstrates the crucial role of foraging gene expression in Pdfr-positive cells for achieving longer mating duration (LMD). The study further identifies key neurons in the ellipsoid body (EB) as essential when the foraging gene is overexpressed, highlighting its specific influence on LMD. The findings suggest that a small subset of EB neurons must express the foraging gene to modulate LMD effectively.

      __Answer:____ __We would like to express our gratitude to the reviewer for their insightful comments and positive feedback on our manuscript. During the revision process, we serendipitously discovered that the heart-specific expression of the foraging gene plays a crucial role in regulating LMD behavior. We have elaborated on the significance of this finding in the revised manuscript and have addressed the reviewer's comments accordingly.

      Comment 1. *(optional) Integration of Neuronal Subsets into a Pathway: The knockdown experiments indicate that a small subset of neurons must express the foraging gene to influence LMD. Could these neurons be integrated into a potential signaling pathway, or being treated as separate components within the brain circuit? How might this integration provide a more cohesive understanding of their role in LMD? *

      Answer: We sincerely thank the reviewer for her/his insightful comments regarding the integration of neuronal subsets into a signaling pathway and their potential role in modulating LMD behavior. During the revision process, we conducted further experiments to address this question. While we were unable to identify a specific small subset of EB neurons expressing foraging, we utilized the recently developed EB-split GAL4 driver line (SS00096), which is restricted to the EB region of the brain, to confirm that foraging expression in the EB is indeed crucial for generating LMD behavior (Fig. 4L-M). This finding underscores the importance of foraging in specific neural circuits within the EB for interval timing.

      Additionally, we discovered that foraging expression in Hand-GAL4-labeled pericardial cells (PCs) of the heart is essential for LMD behavior. These PCs are also partially labeled by fru-GAL4 and 30y-GAL4 drivers, indicating that foraging functions in both neuronal and non-neuronal tissues to regulate interval timing. Importantly, we observed that group-reared males exhibit higher calcium activity in PCs compared to socially isolated males, suggesting that social context-dependent calcium dynamics in the heart play a critical role in modulating LMD behavior.

      These findings highlight a novel integration of neuronal and cardiac mechanisms, where foraging expression in both the EB and heart coordinates calcium dynamics to regulate interval timing. This dual-tissue involvement provides a more cohesive understanding of how foraging integrates social cues with internal physiological states to modulate complex behaviors like LMD. We believe this integration of neuronal and cardiac pathways offers a comprehensive framework for understanding the gene’s pleiotropic roles in behavior. We have included these new findings in the revised manuscript to better address the reviewer’s question and to strengthen the discussion of how foraging functions across tissues to regulate interval timing behaviors.

      Comment 2. Genetic Considerations in Gal4 System Usage (Fig. 1D): In the study, the elavc155-Gal4 transgene, located on chromosome I, produces hemizygous males after crossing, while the repo-Gal4 transgene, located on chromosome III, results in heterozygous males. Is there any evidence suggesting that this genetic configuration could impact the experimental outcomes? If so, what steps could be taken to address potential issues?

      Answer: We appreciate the reviewer’s thoughtful consideration of potential genetic confounds related to the chromosomal locations of the elavc155 and repo-GAL4 transgenes. To address this concern, we conducted additional experiments using the nSyb-GAL4 driver, which is located on the third chromosome, and observed that knockdown of foraging with this driver also disrupts LMD behavior (Fig. S1G). This result aligns with our findings using elavc155 (chromosome I) and repo-GAL4 (chromosome III), indicating that the chromosomal location of the GAL4 transgene does not significantly impact the experimental outcomes.

      Furthermore, our extensive tissue-specific GAL4 screening, which included drivers on different chromosomes, consistently demonstrated that foraging knockdown effects on LMD are robust and reproducible across various genetic configurations. These results suggest that the observed behavioral deficits are due to the loss of foraging function rather than positional effects of the GAL4 transgenes. We thank the Reviewer for raising this important point and have taken care to address it thoroughly in our revised manuscript.

      Comment 3. Discrepancies in lacZ Signal Intensity (Fig. 5A): The observed discrepancies in lacZ signal intensity on the surface of the male brain have been attributed to the dissection procedure. Is it feasible to replace the current data with a new, more consistent dataset? How might improved dissection techniques mitigate these discrepancies?

      Answer____: We thank the reviewer for her/his observation regarding the discrepancies in lacZ signal intensity on the surface of the male brain, which we attributed to variations in the dissection procedure. While replacing the current dataset with a new one is feasible, we have instead shifted our focus to address this concern by leveraging more reliable and validated tissue-specific GAL4 drivers combined with foraging-RNAi.

      During the revision process, we extensively examined multiple foraging-GAL4 lines and found that foraging expression in the brain is limited and often inconsistent, despite scRNA-seq data from flySCope indicating broader expression across tissues, including the brain. This discrepancy suggests that many foraging-GAL4 lines may not accurately reflect endogenous foraging expression patterns. To circumvent this issue, we utilized well-characterized tissue-GAL4 drivers to systematically identify tissues where foraging plays a critical role in modulating LMD behavior.

      Our findings revealed that foraging expression in the heart, particularly in fru-positive heart cells, is essential for LMD. This discovery aligns with previous knowledge that foraging is highly enriched in glial cells in the brain, but our new data highlight a previously unrecognized role for cardiac foraging in regulating interval timing behaviors. Furthermore, we demonstrated that calcium activity in these heart cells is dynamically regulated by social context, suggesting that these cells play a crucial role in modulating male mating investment.

      We believe this new analysis addresses the reviewer’s concerns by providing a more robust and consistent approach to studying foraging function, focusing on its role in the heart rather than relying on potentially unreliable brain expression data. We hope these findings meet the reviewer’s expectations and provide a clearer understanding of foraging’s role in mating duration.

      Comment ____4. Rescue Experiment Data (Fig. S2L): Could additional data be provided to demonstrate the rescue effect using the c61-Gal4 driver, similar to what was observed with the 30y-Gal4 driver? How would such data enhance the study's conclusions regarding the specificity and robustness of the foraging gene's role in LMD?

      Answer: We appreciate the reviewer’s suggestion to provide additional rescue experiment data using the c61-GAL4 driver, similar to the results obtained with the 30y-GAL4 driver. While we do not currently have a UAS-for line to perform direct rescue experiments with c61-GAL4, we have conducted extensive follow-up experiments using both 30y-GAL4 driver to further validate the role of foraging in LMD behavior. These experiments consistently demonstrated that foraging knockdown in cells targeted by these drivers disrupts LMD, reinforcing the specificity and robustness of foraging’s role in interval timing.

      Additionally, our revised manuscript includes new findings that highlight the critical role of foraging expression in fru-positive heart neurons for generating male-specific mating investment. These heart neurons exhibit dynamic calcium activity changes in response to social context, further supporting the idea that foraging modulates LMD through both neuronal and non-neuronal mechanisms. While we acknowledge that direct rescue data with c61-GAL4 would strengthen the study, we believe the combination of 30y-GAL4 and c61-GAL4 knockdown results, along with the newly identified role of heart neurons, provides compelling evidence for foraging’s role in LMD.

      In addition, we have confirmed that the 30y-GAL4 driver labels fru-positive heart cells, further supporting the critical role of foraging expression in these cells for generating male-specific mating investment. This finding aligns with our broader results, demonstrating that foraging function in fru-positive heart neurons is essential for modulating interval timing behaviors, particularly LMD. We hope these additional analyses address the reviewer’s concerns and enhance the study’s conclusions regarding the specificity and robustness of foraging function in interval timing behaviors. We have incorporated the following findings into the main text:

      “Therefore, we conclude that the knockdown and genetic rescue effects observed with the Pdfr3A-GAL4 driver (Fig. 3J and 3N) and the 30y-GAL4 driver (Fig. 4A, S2A, and S2L) are attributable to their expression in the heart. In summary, our findings demonstrate that fru-positive heart cells expressing foraging and Pdfr play a critical role in mediating LMD behavior.”


      Reviewer #2

      General Comment: The authors nicely demonstrated that the Drosophila for gene is involved in the plastic LMD behavior that serves as a model for interval timing. For is widely expressed in the body, they have tentatively localized the LMD-relevant for functioning to the ellipsoid body of the central complex.

      Answer: We sincerely thank the reviewer for their positive feedback on our manuscript and their recognition of our findings regarding the role of the foraging gene in modulating plastic LMD behavior as a model for interval timing. In addition to its function in the ellipsoid body (EB) of the central complex, we have identified a novel and critical role for foraging in fru-positive heart neurons. These neurons are essential for regulating male-specific mating investment, as demonstrated by dynamic calcium activity changes in response to social context. This discovery expands our understanding of foraging’s pleiotropic roles, highlighting its function not only in neural circuits but also in non-neuronal tissues, particularly the heart, to modulate interval timing behaviors. We believe these findings provide a more comprehensive view of how *foraging* integrates genetic, neural, and physiological mechanisms to regulate complex behaviors. We hope this additional insight into the role of fru-positive heart neurons further strengthens the manuscript and aligns with the reviewer’s interest in the broader implications of foraging function.


      Major concerns: __ Comment 1.__ Please clarify how a loss-of-function forS allele can be dominant in the presence of overactive forR allele? In the same vein, please clarify how does the forR/forS transgeterozygote supports your hypothesis that high levels of PKG activity disrupt SMD and low levels of it disrupt LMD?

      Answer: We thank the reviewer for her/his insightful questions regarding the dominance of the forS allele in the presence of the overactive forR allele and the implications of the forR/forS transheterozygote phenotype. As the Reviewer noted, the forR allele is associated with higher PKG activity, while the forS allele exhibits lower PKG activity. The disruption of SMD in the presence of a single forR allele can be explained by the excessive PKG activity, which may hyperactivate or desensitize neural circuits required for SMD. Conversely, the forS homozygote disrupts LMD, suggesting that a minimum threshold of PKG activity is necessary for LMD generation.

      The forR/forS transheterozygote, which disrupts both LMD and SMD, presents an intriguing case. Unlike forR/+ or forS/+ heterozygotes, which show intact behaviors due to intermediate PKG activity levels, the forR/forS combination results in conflicting PKG activity levels that likely destabilize shared pathways required for both behaviors. We propose two hypotheses to explain this phenomenon:

      1. Metabolic Disruption: The foraginggene mediates adult plasticity and gene-environment interactions, particularly under conditions of food deprivation (Kent 2009). It influences body fat, carbohydrate metabolism, and gene expression levels, leading to metabolic and behavioral gene-environment interactions (GEI). In forR/forStransheterozygotes, the metabolic changes induced by each allele may accumulate without proper regulatory mechanisms, disrupting the male’s internal metabolic state and impairing the ability to accurately measure interval timing.

      Neuronal Polymorphism: The foraginggene regulates neuronal excitability, synaptic transmission, and nerve connectivity (Renger 1999). The forRand forS alleles may induce distinct neuronal polymorphisms, such as altered synaptic terminal morphology, which could lead to conflicting circuit dynamics in transheterozygotes. This neuronal mismatch may explain why forR/forS flies exhibit disrupted behaviors, unlike heterozygotes with a wild-type allele.

      These findings align with prior studies showing that PKG activity must be tightly regulated within context-dependent ranges for optimal behavior. The foraging gene’s pleiotropic roles, including its influence on metabolic and neural pathways, highlight the importance of allelic balance in maintaining behavioral robustness. The forR/forS transheterozygote phenotype underscores the complexity of foraging’s role in interval timing, where extreme or mismatched PKG activity levels disrupt circuit-specific thresholds critical for distinct behaviors. We hope this explanation clarifies the dominance effects and the role of PKG activity in LMD and SMD, and we have incorporated these insights into the revised manuscript to strengthen our discussion of foraging’s pleiotropic functions.

      We provide a concise explanation of this hypothesis in the Discussion section, as outlined below:

      “The foraging gene plays a critical role in regulating interval timing behaviors, with its allelic variants, rover and sitter, exhibiting distinct effects on LMD and SMD. These differences are primarily driven by their opposing impacts on cGMP-dependent protein kinase (PKG) activity. The forR allele, associated with higher PKG activity, disrupts SMD while maintaining normal LMD (Fig. 1A), suggesting that elevated PKG levels may hyperactivate or desensitize neural circuits specific to SMD processes. Conversely, the forS allele, characterized by lower PKG activity, impairs LMD but not SMD (Fig. 1B), indicating that reduced PKG activity fails to meet the neuromodulatory thresholds required for LMD coordination. The forR/forS transheterozygotes, which disrupt both LMD and SMD (Fig. 1C), reveal a complex interaction between these alleles, likely due to conflicting PKG activity levels or metabolic and neuronal polymorphisms that destabilize shared pathways. This phenomenon underscores the foraging gene’s pleiotropic roles, where allelic balance fine-tunes PKG activity to maintain behavioral robustness, while extreme or mismatched levels disrupt circuit-specific thresholds critical for distinct memory processes [6,10] .

      The foraging gene’s influence on interval timing behaviors extends beyond neural circuits to include metabolic and synaptic regulation. The intact behaviors observed in forR/+ or forS/+ heterozygotes suggest that intermediate PKG activity levels balance circuit dynamics, allowing for normal LMD and SMD. However, the dual deficits in forR/forS transheterozygotes highlight the importance of allelic balance, as conflicting PKG levels may lead to systemic disruptions in both metabolic and neural pathways. This aligns with previous studies showing that foraging mediates adult plasticity and gene-environment interactions, particularly under stress conditions, and regulates synaptic terminal morphology and neuronal excitability [29,77]. The gene’s role in integrating genetic and environmental cues further emphasizes its central role in adaptive behaviors. Collectively, these findings illustrate the complex interplay between PKG activity, neural circuits, and metabolic regulation in shaping interval timing behaviors, highlighting the foraging gene as a key modulator of behavioral plasticity in Drosophila [3,6,77].”

      Comment 2. Please consider removing lines 193-201 & Fig 3G,H, since abruptly and briefly returning to SMD could distract the reader and hinder the flow.

      Answer: We sincerely thank the reviewer for her/his suggestion to improve the flow of the manuscript. In response to reviewer’s feedback, we have removed Figure 3G-H and the related text (lines 193-201) from the main text. While the data on SMD behavior provided additional insights into the role of foraging in gustatory modulation via sNPF-expressing peptidergic neurons, we agree that its inclusion at this point in the manuscript could distract from the primary focus on LMD behavior and interval timing.

      Comment 3. Please use more specific Gal4 drivers to identify the exact subset of the EB-RNs where for function is necessary for LMD. Please note that Taghert lab already identified Pdfr+ EB-RN subset, and in contradiction to your findings, demonstrated that Cry is expressed in these Pdfr+ EB neurons

      Answer: We thank the reviewer for their suggestion to use more specific GAL4 drivers to identify the exact subset of EB ring neurons (EB-RNs) where foraging function is necessary for LMD. In response, we utilized the EB-split-GAL4 driver SS00096, which has been previously employed to map the neuroanatomical ultrastructure of the EB (Turner-Evans 2020). Knockdown of foraging using this refined EB driver disrupted LMD behavior, confirming that foraging function in the EB is indeed crucial for interval timing.

      Regarding the reviewer’s observation about the Taghert lab’s findings on Pdfr+ EB-RNs and the expression of Cry in these neurons, we acknowledge this discrepancy. However, during the revision process, we discovered that foraging and Pdfr are co-expressed not only in EB neurons but also in fru-positive heart neurons, which play a complementary role in modulating LMD behavior. This finding suggests that the apparent contradiction may arise from the dual-tissue involvement of foraging in both EB neurons and heart cells. While foraging function in the EB is critical, its role in heart neurons may provide an additional layer of regulation for interval timing behaviors, potentially compensating for or interacting with EB-related mechanisms.

      We have incorporated these insights into the revised manuscript, emphasizing the importance of both EB and heart neurons in mediating LMD behavior. This dual-tissue perspective offers a more comprehensive understanding of foraging’s role in interval timing and addresses the potential discrepancies highlighted by the reviewer. We hope this clarification resolves the reviewer’s concerns and strengthens the manuscript’s conclusions regarding the neural and non-neural mechanisms underlying foraging function.

      Comment 4. Please clarify how do you think for and Pdfr signaling molecularly interact in these neurons? Since your work doesn't implicate the for+ AL neurons, please remove lines 260-269.Please clarify if the Pdfr+ for+ EB neurons are also fru+.The lacZ staining in Fig5A-B is atypical in having a mosaic-like pattern. Please replace the image.

      Answer: We thank the reviewer for her/his thoughtful questions regarding the molecular interaction between foraging and Pdfr signaling, as well as their observations on the atypical lacZ staining pattern. Below, we address each point in detail:

      1. Molecular Interaction Between foragingand PdfrSignaling: Our tissue-specific driver screening indicates that Pdfr and foraging do not co-express in the same neurons within the brain. Instead, we found that Pdfr and foraging are co-expressed in fru-positive heart cells, suggesting that PDF-Pdfr signaling in these cells modulates calcium activity in pericardial cells (PCs) in a social context-dependent manner. This finding aligns with our previous work showing that PDF signaling is crucial for LMD behavior (Kim 2013). We propose that PDF-Pdfr signaling operates not only through the brain’s sLNv to LNd neuronal circuit but also through a brain-to-heart signaling axis, influencing behaviors and physiological processes across multiple tissues.

      Removal of Lines 260-269: As suggested, we have removed lines 260-269, which discussed for+ AL neurons, as our findings do not implicate these neurons in LMD regulation. This revision helps streamline the manuscript and maintain focus on the relevant neural and cardiac mechanisms.

      Clarification on Pdfr+for+EB Neurons and fru Expression: While our data do not directly address whether Pdfr+ for+ EB neurons are also fru+, we have confirmed that foraging and Pdfr co-express in fru-positive heart cells. This suggests that fru may play a role in integrating foraging and Pdfr signaling in non-neuronal tissues, particularly in the heart, to regulate LMD behavior.

      Replacement of lacZ Staining Images: During the revision process, we extensively examined multiple foraging-GAL4lines and found that foragingexpression in the brain is limited and often inconsistent, despite scRNA-seq data from flySCope indicating broader expression across tissues, including the brain. This discrepancy suggests that many foraging-GAL4 lines may not accurately reflect endogenous foraging expression patterns. To circumvent this issue, we utilized well-characterized tissue-GAL4 drivers to systematically identify tissues where foraging plays a critical role in modulating LMD behavior. Our findings revealed that foraging expression in the heart, particularly in fru-positive heart cells, is essential for LMD. This discovery aligns with previous knowledge that foraging is highly enriched in glial cells in the brain, but our new data highlight a previously unrecognized role for cardiac foraging in regulating interval timing behaviors. Furthermore, we demonstrated that calcium activity in these heart cells is dynamically regulated by social context, suggesting that these cells play a crucial role in modulating male mating investment. We believe this new analysis addresses the reviewer’s concerns by providing a more robust and consistent approach to studying foraging function, focusing on its role in the heart rather than relying on potentially unreliable brain expression data. We hope these findings meet the reviewer’s expectations and provide a clearer understanding of foraging’s role in mating duration.

      We hope these revisions meet the Reviewer’s expectations and provide a clearer understanding of the interplay between foraging and Pdfr signaling in interval timing behaviors.

      Comment 5. Please consider removing lines 303-312, since this negative result may dilute your final conclusions without adding strong factual value.

      Answer: We appreciate the reviewer's suggestion regarding lines 303-312. Upon careful consideration, we believe this paragraph provides important context about the roles of dsx-positive and fru-positive cells in foraging behavior. Specifically, it highlights that the foraging function is associated with fru-positive cells rather than dsx-positive cells, which is a key distinction in our study. This information is relevant to understanding the broader implications of our findings, as it underscores the functional specificity of these genes in regulating behavior. However, to address the reviewer's concern, we have revised the paragraph to ensure it is more concise and directly tied to the study's conclusions. We have also integrated additional data from the new manuscript to further strengthen the factual value of this section. We hope this adjustment strikes the right balance between maintaining necessary context and avoiding any dilution of the final conclusions. Thank you for this thoughtful feedback.

      __Minor concerns: __

      __Comment 6. __Minor points: In the intro please mention other interval timing mechanisms and their underlying molecular mechanisms (e.g., CREB work of Crickmore lab). Please provide a better rationale for why you thought for is a good candidate for LMD? In line 124, when you start to talk about larval neurons - please specify which neurons you are referring to. In Fig 2E,G,H - 'glia' should be replaced with 'neurons'.

      Answer: We appreciate the reviewer’s insightful comments regarding our conclusion linking LMD to interval timing behavior. Current research by Crickmore et al. has shed light on how mating duration in Drosophila serves as a powerful model for exploring changes in motivation over time as behavioral goals are achieved. For instance, at approximately six minutes into mating, sperm transfer occurs, leading to a significant shift in the male's nervous system: he no longer prioritizes sustaining the mating at the expense of his own survival. This change is driven by the output of four male-specific neurons that produce the neuropeptide Corazonin (Crz). When these Crz neurons are inhibited, sperm transfer does not occur, and the male fails to downregulate his motivation, resulting in matings that can last for hours instead of the typical ~23 minutes (Thornquist 2020).

      Recent research by Crickmore et al. has received NIH R01 funding (Mechanisms of Interval Timing, 1R01GM134222-01) to explore mating duration in Drosophila as a genetic model for interval timing. Their work highlights how changes in motivation over time can influence mating behavior, particularly noting that significant behavioral shifts occur during mating, such as the transfer of sperm at approximately six minutes, which correlates with a decrease in the male's motivation to continue mating (Thornquist 2020). These findings suggest that mating duration is not only a behavioral endpoint but may also reflect underlying mechanisms related to interval timing.

      In addition to the efforts of Crickmore's group to connect mating duration with a straightforward genetic model for interval timing, we have previously published several papers demonstrating that LMD and SMD can serve as effective genetic models for interval timing within the fly research community. For instance, we have successfully connected SMD to an interval timing model in a recently published paper (Lee 2023), as detailed below:

      "We hypothesize that SMD can serve as a straightforward genetic model system through which we can investigate "interval timing," the capacity of animals to distinguish between periods ranging from minutes to hours in duration.....

      In summary, we report a novel sensory pathway that controls mating investment related to sexual experiences in Drosophila. Since both LMD and SMD behaviors are involved in controlling male investment by varying the interval of mating, these two behavioral paradigms will provide a new avenue to study how the brain computes the ‘interval timing’ that allows an animal to subjectively experience the passage of physical time (Buhusi & Meck, 2005; Merchant et al, 2012; Allman et al, 2013; Rammsayer & Troche, 2014; Golombek et al, 2014; Jazayeri & Shadlen, 2015)."

      Lee, S. G., Sun, D., Miao, H., Wu, Z., Kang, C., Saad, B., ... & Kim, W. J. (2023). Taste and pheromonal inputs govern the regulation of time investment for mating by sexual experience in male Drosophila melanogaster. PLoS Genetics, 19(5), e1010753.

      We have also successfully linked LMD behavior to an interval timing model and have published several papers on this topic recently (Huang 2024,Zhang 2024,Sun 2024).

      Sun, Y., Zhang, X., Wu, Z., Li, W., & Kim, W. J. (2024). Genetic Screening Reveals Cone Cell-Specific Factors as Common Genetic Targets Modulating Rival-Induced Prolonged Mating in male Drosophila melanogaster. G3: Genes, Genomes, Genetics, jkae255.

      Zhang, T., Zhang, X., Sun, D., & Kim, W. J. (2024). Exploring the Asymmetric Body’s Influence on Interval Timing Behaviors of Drosophila melanogaster. Behavior Genetics, 54(5), 416-425.

      Huang, Y., Kwan, A., & Kim, W. J. (2024). Y chromosome genes interplay with interval timing in regulating mating duration of male Drosophila melanogaster. Gene Reports, 36, 101999.

      Finally, in this context, we have outlined in our INTRODUCTION section below how our LMD and SMD models are related to interval timing, aiming to persuade readers of their relevance. We hope that the reviewer and readers are convinced that mating duration and its associated motivational changes such as LMD and SMD provide a compelling model for studying the genetic basis of interval timing in Drosophila.

      “The mating duration (MD) of male fruit flies, Drosophila melanogaster, serves as an excellent model for studying interval timing behaviors. In Drosophila, two notable interval timing behaviors related to mating duration have been identified: Longer-Mating-Duration (LMD), which is observed when males are in the presence of competitors and extends their mating duration [15–17] and Shorter-Mating-Duration (SMD), which is characterized by a reduction in mating time and is exhibited by sexually experienced males [18,19]. The MD of male fruit flies serves as an excellent model for studying interval timing, a process that can be modulated by internal states and environmental contexts. Previous studies by our group (Kim 2013,Kim 2012,Zhang 2024,Lee 2023,Huang 2024) and others (Thornquist 2020,Crickmore 2013,Zhang 2019,Zhang 2021) have established robust frameworks for investigating MD using advanced genetic tools, enabling the dissection of neural circuits and molecular mechanisms that govern interval timing.

      The foraging gene emerged as a strong candidate for regulating LMD due to its well-documented role in behavioral plasticity and decision-making processes (Kent 2009,Alwash 2021,Anreiter 2019). The foraging gene encodes a cGMP-dependent protein kinase (PKG), which has been implicated in modulating foraging behavior, aggression, and other context-dependent behaviors in Drosophila. Its involvement in these processes suggests a potential role in integrating environmental cues and internal states to regulate interval timing, such as LMD. Furthermore, the molecular mechanisms underlying interval timing have been explored in other contexts, such as the work of the Crickmore et al., which has demonstrated the critical role of CREB (cAMP response element-binding protein) in regulating behavioral timing and plasticity. CREB-dependent signaling pathways, along with other molecular players like PKG, provide a broader framework for understanding how interval timing is orchestrated at the neural and molecular levels (Thornquist 2020,Zhang 2016,Zhang 2021,Zhang 2019,Crickmore 2013,Zhang 2023). By investigating foraging in the context of LMD, we aim to uncover how specific genetic and neural mechanisms fine-tune interval timing in response to social and environmental cues, contributing to a deeper understanding of the principles governing behavioral adaptation.”

      When describing larval neurons, we provide specific references to ensure clarity and accuracy, as outlined below:

      “Moreover, the cultured giant neural characteristics of these phenotypes are distinctly different [29].”

      We thank the reviewer for catching this error. We have corrected the incorrect label "Glia" to "Neuron" in Figures 2E, 2G, and 2H.

      Reviewer #3

      General Comment: This manuscript explores the foraging gene's role in mediating interval timing behaviors, particularly mating duration, in Drosophila melanogaster. The two distinct alleles of the foraging gene-rover and sitter-demonstrate differential impacts on mating behaviors. Rovers show deficiencies in shorter mating duration (SMD), while sitters are impaired in longer mating duration (LMD). The gene's expression in specific neuronal populations, particularly those expressing Pdfr (a critical regulator of circadian rhythms), is crucial for LMD. The study further identifies sexually dimorphic patterns of foraging gene expression, with male-biased expression possibly in the ellipsoid body (EB) being responsible for regulating LMD behavior. The findings suggest that the foraging gene operates through a complex neural circuitry that integrates genetic and environmental factors to influence mating behaviors in a time-dependent manner. Additionally, restoring foraging expression in Pdfr-positive cells rescues LMD behavior, confirming its central role in interval timing related to mating.

      Answer: We sincerely thank the reviewer for her/his thoughtful and comprehensive synthesis of our work, as well as their recognition of its key contributions. We are grateful that the reviewer highlighted the central findings of our study, including the allele-specific roles of forR (rover) and forS (sitter) in regulating distinct interval timing behaviors—specifically, the deficiencies of rovers in SMD and sitters in LMD. We also appreciate the reviewer’s emphasis on the sexually dimorphic expression of the *foraging* gene, particularly its male-biased expression in the ellipsoid body (EB), and its critical role in Pdfr-positive neurons for mediating LMD.

      We agree with the reviewer that the interplay between genetic factors (e.g., allelic variation in foraging) and environmental cues (e.g., circadian rhythms via Pdfr pathways) underscores the complexity of interval timing regulation. The rescue of LMD behavior by restoring foraging expression in Pdfr cells further supports our hypothesis that foraging operates through specialized neural circuits to integrate temporal and environmental inputs. This finding aligns with broader studies on interval timing mechanisms, such as the work of the Crickmore lab on CREB-dependent pathways, which have demonstrated how molecular and neural mechanisms converge to regulate behavioral plasticity and timing.

      In the revised manuscript, we will expand on these points to strengthen the discussion of foraging’s pleiotropic roles in time-dependent mating strategies and its potential links to evolutionary fitness. Specifically, we will incorporate additional insights from the new manuscript, including further evidence of how foraging balances behavioral plasticity with metabolic and neural demands, and how its expression in specific neuronal populations, such as the EB, contributes to adaptive behaviors. These updates will provide a more comprehensive understanding of the gene’s role in interval timing and its broader implications for behavioral adaptation. Once again, we thank the Reviewer for their valuable feedback, which has helped us refine and enhance the presentation of our findings.

      __Major concerns: __

      Comment 1. The sexually dimorphic expression of the foraging gene is not convincing. Specifically, the lacZ signal in the male brain is not representative.

      __Answer:____ __We sincerely thank the reviewer for her/his insightful comment regarding the sexually dimorphic expression of the foraging gene. We agree that the lacZ signal in the male brain, as presented, may not be fully representative, and we appreciate the reviewer’s observation regarding the discrepancies in signal intensity, which we attribute to variations in dissection procedures. While replacing the current dataset with a new one is feasible, we have chosen to address this concern by shifting our focus to a more reliable and validated approach using tissue-specific GAL4 drivers combined with foraging-RNAi.

      During the revision process, we conducted an extensive examination of multiple foraging-GAL4 lines and found that foraging expression in the brain is often limited and inconsistent, despite scRNA-seq data from flySCope indicating broader expression across tissues, including the brain. This discrepancy suggests that many foraging-GAL4 lines may not accurately reflect endogenous foraging expression patterns. To overcome this limitation, we employed well-characterized tissue-specific GAL4 drivers to systematically identify tissues where foraging plays a critical role in modulating LMD behavior.

      Our findings revealed that foraging expression in the heart, particularly in fru-positive heart cells, is essential for LMD. This discovery aligns with previous knowledge that foraging is highly enriched in glial cells in the brain, but our new data highlight a previously unrecognized role for cardiac foraging in regulating interval timing behaviors. Furthermore, we demonstrated that calcium activity in these heart cells is dynamically regulated by social context, suggesting that these cells play a crucial role in modulating male mating investment.

      By focusing on the heart and leveraging more reliable genetic tools, we believe this new analysis addresses the Reviewer’s concerns and provides a more robust and consistent approach to studying foraging function. We hope these findings meet the reviewer’s expectations and offer a clearer understanding of foraging’s role in mating duration. We are grateful for the Reviewer’s constructive feedback, which has significantly strengthened our study.

      Comment 2____. Key control genotypes are missing.

      Answer: We thank the Reviewer for raising this important point regarding control genotypes. We would like to clarify that all necessary control experiments have indeed been conducted, and the results are included in the manuscript. Detailed descriptions of these controls, including the specific genotypes and experimental conditions, are provided in the Methods section. For example, control experiments were performed to account for genetic background effects, GAL4 driver activity, and RNAi efficiency, ensuring the reliability and specificity of our findings. In the revised manuscript, we have further emphasized these control experiments and their outcomes to ensure transparency and reproducibility. We have also included additional details in the Results section to highlight how these controls validate our key findings. For instance, control genotypes lacking the foraging-RNAi or GAL4 drivers were used to confirm that the observed phenotypes are specifically due to the manipulation of foraging expression.

      We appreciate the Reviewer’s attention to this critical aspect of our study and hope that the additional clarification and emphasis on control experiments in the revised manuscript address their concerns. If there are specific control genotypes or experiments the reviewer would like us to include or elaborate on further, we would be happy to do so. Thank you for this valuable feedback.

      Comment 3____.fru is not expressed in the EB, so the authors may need to reconcile their model in figure 5G.

      Answer: We thank the reviewer for her/his insightful comment regarding the expression of fru in the ellipsoid body (EB) and its relevance to our model in Figure 5G. We agree that fru is not expressed in the EB, and we acknowledge the need to reconcile this aspect of our model. While initial evidence suggested a potential role for the EB in regulating foraging-dependent LMD behavior, further investigation has revealed that neurons outside the EB are more likely to be involved in this process.

      During our revision, we identified fru-positive heart neurons that coexpress Pdfr and foraging, which appear to play a critical role in modulating LMD behavior. These findings suggest that the heart, rather than the EB, may be a key site for foraging function in the context of interval timing and mating duration. Specifically, we demonstrated that calcium activity in these fru+ heart cells is dynamically regulated by social context, further supporting their role in modulating male mating investment.

      In light of these new findings, we revised Figure 5G as new Figure 6H and the accompanying model to reflect the updated understanding that fru+ heart neurons, rather than EB neurons, are central to the regulation of LMD behavior. This adjustment aligns with our broader goal of accurately representing the neural and molecular mechanisms underlying foraging’s role in interval timing. We appreciate the Reviewer’s feedback, which has helped us refine our model and strengthen the manuscript. We hope these revisions address their concerns and provide a clearer and more accurate representation of our findings. Thank you for this valuable input.

      Minor concerns: Comment 4____.

      Line 32, what do you mean by "overall success of the collective"

      Line 124-126: I suggest not using "sitter neurons" or "rover neurons". Line 301, typo with "male-specific".

      Answer: We thank the Reviewer for their careful reading and constructive feedback. We have addressed each of their comments as follows:

      1. Line 32: We agree with the reviewer that the phrase "overall success of the collective" was unclear and have completely revised the Abstract to remove this expression. The updated Abstract now provides a clearer and more concise summary of our findings.

      Lines 124-126: We appreciate the reviewer’s suggestion to avoid using the terms "sitter neurons" or "rover neurons," as they could be misleading. We have revised this phrasing to "neurons of sitter/rover allele" to more accurately reflect the genetic context of our study.

      Line 301: We have corrected the typo with "male-specific" to ensure accuracy and clarity in the text.

      We hope these revisions address the Reviewer’s concerns and improve the overall quality of the manuscript. Thank you for your valuable input, which has helped us refine our work.

      __Strengths and limitations of the study:______ This study presents a significant advancement in understanding the foraging gene's role in regulating mating behaviors through interval timing, and identifies the critical role of Pdfr-expressing neurons in the ellipsoid body for LMD. However, it does not fully explain how these neurons specifically modulate timing mechanisms. The lack of in-depth mechanistic exploration of how these neurons interact with other circuits involved in memory and decision-making leaves gaps in the understanding of the exact pathways influencing interval timing. Also, the study focuses more on LMD behaviors and the neural circuits involved, leaving the mechanisms underlying SMD comparatively underexplored.

      __Answer:____ __We thank the reviewer for her/his thoughtful assessment of the strengths and limitations of our study. We agree that our work represents a significant advancement in understanding the role of the foraging gene in regulating mating behaviors through interval timing, particularly in identifying the critical role of Pdfr-expressing neurons in the ellipsoid body (EB) for long mating duration (LMD). However, we acknowledge that the initial manuscript did not fully elucidate how these neurons specifically modulate timing mechanisms or interact with other neural circuits involved in memory and decision-making.

      In response to this feedback, we have conducted additional experiments and analyses, which are now included in the revised manuscript. Specifically, we identified fru-positive heart neurons that coexpress Pdfr and foraging, and we demonstrated their essential role in LMD using calcium imaging (CaLexA). These findings provide a more comprehensive mechanistic understanding of how foraging influences interval timing through cardiac activity, which is dynamically regulated by social context. This new evidence addresses the reviewer’s concern by offering a clearer picture of the neural and molecular pathways underlying LMD.

      Regarding SMD behavior, we agree that it was comparatively underexplored in the initial manuscript. However, we have extensively studied SMD in other contexts, as highlighted in several of our previously published papers. These studies have investigated the sensory mechanisms, memory processes, peptidergic signaling, and clock gene functions associated with SMD (Zhang 2024,Zhang 2024,Sun 2024,Wong 2019,Kim 2024,Lee 2023). While the current manuscript focuses primarily on LMD, we will include a discussion of these findings to provide a more balanced perspective on the mechanisms underlying both LMD and SMD.

      We believe these revisions address the Reviewer’s concerns and significantly strengthen the manuscript by providing a more detailed mechanistic understanding of foraging’s role in interval timing and mating behaviors. We are grateful for the Reviewer’s constructive feedback, which has helped us improve the depth and clarity of our study. Thank you for your valuable input.

      __Advance:______ This study brings a novel perspective to the foraging gene, previously known for its role in regulating food-search behavior. It demonstrates that foraging is also involved in interval timing, a cognitive process integral to mating behaviors in Drosophila. This discovery challenges the assumption that foraging is solely related to foraging strategies, revealing a broader function in time-based decision-making processes.

      Answer: We sincerely thank the reviewer for her/his insightful comments and for recognizing the novel contributions of our study. We are pleased that the reviewer highlighted how our work expands the understanding of the foraging gene, which was previously primarily associated with food-search behavior. By demonstrating its role in interval timing—a cognitive process critical to mating behaviors in Drosophila—we challenge the conventional assumption that foraging is solely related to foraging strategies. Instead, our findings reveal its broader function in time-based decision-making processes, particularly in the context of mating duration.

      This discovery not only advances our understanding of the pleiotropic roles of foraging but also opens new avenues for exploring how genetic and neural mechanisms integrate temporal and environmental cues to regulate complex behaviors. We are grateful for the reviewer’s support and acknowledgment of the significance of our findings. Thank you for this valuable feedback.

      __Audience:______ The study offers significant value to several specialized research communities, including behavioral genetics and evolutionary biology, especially those using the Drosophila model. This could inform future research on other behaviors that depend on precise timing and decision-making.

      Answer: We sincerely thank the reviewer for her/his thoughtful comment and for recognizing the broad relevance of our study. We are pleased that the reviewer highlighted the significant value our work offers to be specialized research communities, particularly in behavioral genetics and evolutionary biology, as well as to researchers using the Drosophila model. By elucidating the role of the foraging gene in interval timing and its impact on mating behaviors, our findings provide a foundation for future research on other behaviors that rely on precise timing and decision-making. This study not only advances our understanding of the genetic and neural mechanisms underlying interval timing but also opens new avenues for exploring how similar processes may operate in other species or contexts. We hope our work will inspire further investigations into the interplay between genetic variation, neural circuits, and environmental cues in shaping adaptive behaviors. Thank you for your valuable feedback and for acknowledging the potential impact of our research.

  5. Feb 2025
    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      This paper presents a compelling and comprehensive study of decision-making under uncertainty. It addresses a fundamental distinction between belief-based (cognitive neuroscience) formulations of choice behavior with reward-based (behavioral psychology) accounts. Specifically, it asks whether active inference provides a better account of planning and decision making, relative to reinforcement learning. To do this, the authors use a simple but elegant paradigm that includes choices about whether to seek both information and rewards. They then assess the evidence for active inference and reinforcement learning models of choice behavior, respectively. After demonstrating that active inference provides a better explanation of behavioral responses, the neuronal correlates of epistemic and instrumental value (under an optimized active inference model) are characterized using EEG. Significant neuronal correlates of both kinds of value were found in sensor and source space. The source space correlates are then discussed sensibly, in relation to the existing literature on the functional anatomy of perceptual and instrumental decision-making under uncertainty.

      We are deeply grateful for your careful review of our work and your suggestions. Your insights have helped us identify areas where we can strengthen the arguments and clarify the methodology. We hope to apply the idea of active inference to our future work, emphasizing the integrity of perception and action.

      Reviewer #1 (Recommendations For The Authors):

      Many thanks for attending to my previous suggestions. I think your presentation is now much clearer and nicely aligned with the active inference literature.

      There is one outstanding issue. I think you have overinterpreted the two components of epistemic value in Equation 8. The two components that you have called the value of reducing risk and the value of reducing ambiguity are not consistent with the normal interpretation. These two components are KL divergences that measure the expected information gain about parameters and states respectively.

      If you read the Schwartenbeck et al paper carefully, you will see that the first (expected information gain about parameters) is usually called novelty, while the second (expected information gain about states) is usually called salience.

      This means you can replace "the value of reducing ambiguity" with "novelty" and "the value of reducing risk" with "salience".

      For your interest, "risk" and "ambiguity" are alternative ways of decomposing expected free energy. In other words, you can decompose expected free energy into (negative) expected information gain and expected value (as you have done). Alternatively, you can rearrange the terms and express expected free energy as risk and ambiguity. Look at the top panel of Figure 4 in:

      https://www.sciencedirect.com/science/article/pii/S0022249620300857

      I hope that this helps.

      We deeply thank you for your recommendations about the interpretation of the epistemic value in Equation 8. We have now corrected them to Novelty and Salience:

      In addition, in order to avoid terminology conflicts with active inference and to describe these two different uncertainties, we replaced Ambiguity in the article with Novelty, referring to the uncertainty that can be reduced by sampling, and replaced Risk with Variability, referring to the uncertainty inherent in the environment (variance).

      Reviewer # 2 (Public Review):

      Summary:

      Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task..

      Strengths:

      The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      I appreciate the addition of details about model fitting, comparison, and recovery, as well as the change in some of the methods.

      We are deeply grateful for your careful review of our work and your suggestions. And we are also very sorry that in our last responses, there were a few suggestions from you that we did not respond them appropriately in our manuscript. We hope to be able to respond to these suggestions well in this revision. Thank you for your contribution to ensuring the scientificity and reproducibility of the work.

      The authors do not cite what is probably the most relevant contextual bandit study, by Collins & Frank (2018, PNAS), which uses EEG.

      The authors cite Collins & Molinaro as a form of contextual bandit, but that's not the case (what they call "context" is just the choice set). They should look at the earlier work from Collins, starting with Collins & Frank (2012, EJN).

      We deeply thank you for your comments. Now we add the relevant citations in the manuscript (line 46):

      “These studies utilized different forms of multi-armed bandit tasks, e.g the restless multi-armed bandit tasks (Daw et al., 2006; Guha et al., 2010), risky/safe bandit tasks (Tomov et al., 2020; Fan et al., 2022; Payzan et al., 2013), contextual multi-armed bandit tasks (Collins & Frank, 2018; Schulz et al., 2015; Collins & Frank, 2012)”

      Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

      Guha, S., Munagala, K., & Shi, P. (2010). Approximation algorithms for restless bandit problems. Journal of the ACM (JACM), 58(1), 1-50.

      Tomov, M. S., Truong, V. Q., Hundia, R. A., & Gershman, S. J. (2020). Dissociable neural correlates of uncertainty underlie different exploration strategies. Nature communications, 11(1), 2371.

      Fan, H., Gershman, S. J., & Phelps, E. A. (2023). Trait somatic anxiety is associated with reduced directed exploration and underestimation of uncertainty. Nature Human Behaviour, 7(1), 102-113.

      Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O’Doherty, J. P. (2013). The neural representation of unexpected uncertainty during value-based decision making. Neuron, 79(1), 191-201.

      Collins, A. G., & Frank, M. J. (2018). Within-and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory. Proceedings of the National Academy of Sciences, 115(10), 2502-2507.

      Schulz, E., Konstantinidis, E., & Speekenbrink, M. (2015, April). Exploration-exploitation in a contextual multi-armed bandit task. In International conference on cognitive modeling (pp. 118-123).

      Collins, A. G., & Frank, M. J. (2012). How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis. European Journal of Neuroscience, 35(7), 1024-1035.

      Placing statistical information in a GitHub repository is not appropriate. This needs to be in the main text of the paper. I don't understand why the authors refer to space limitations; there are none for eLife, as far as I'm aware.

      We deeply thank you for your comments. We calculated the average t-value of the brain regions with significant results over the significant time, and added the t-value results to the main text and supplementary materials.

      In answer to my question about multiple comparisons, the authors have added the following: "Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations." I'm sorry, but this does not make sense. Either the authors are doing multiple comparisons, in which case multiple comparison correction is relevant, or they are doing a single test on the extended timeseries, in which case they need to report that. There exist tools for this kind of analysis (e.g., Gershman et al., 2014, NeuroImage). I'm not suggesting that the authors should necessarily do this, only that their statistical approach should be coherent. As a reference point, the authors might look at the aforementioned Collins & Frank (2018) study.

      We deeply thank you for your comments. We have now replaced all our results with the results after false discovery rate correction and added relevant descriptions (line 357,358):

      “The significant results after false discovery rate (FDR) (Benjamini et al., 1995, Gershman et al., 2014) correction were shown in shaded regions. Additional regression results can be found in Supplementary Materials.”

      Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), 289-300.

      Gershman, S. J., Blei, D. M., Norman, K. A., & Sederberg, P. B. (2014). Decomposing spatiotemporal brain patterns into topographic latent sources. NeuroImage, 98, 91-102.

      After FDR correction, our results have changed slightly. We have updated our Results and Discussion section.

      It should be acknowledged that the changes in these results may represent a certain degree of error in our data (perhaps because the EEG data is too noisy or because of the average template we used, ‘fsaverage’). Therefore, we added relevant discussion in the Discussion section (line527-529):

      “It should be acknowledged that our EEG-based regression results are somewhat unstable, and the brain regions with significant regression are inconsistent before and after FDR correction. In future work, we should collect more precise neural data to reduce this instability.”

      I asked the authors to show more descriptive comparison between the model and the data. Their response was that this is not possible, which I find odd given that they are able to use the model to define a probability distribution on choices. All I'm asking about here is to show predictive checks which build confidence in the model fit. The additional simulations do not address this. The authors refer to figures 3 and 4, but these do not show any direct comparison between human data and the model beyond model comparison metrics.

      We deeply thank you for your comments. We now compare the participants’ behavioral data and the model’s predictions trial by trial (Figure 5). We can clearly see the participants’ behavioral strategies in different states and trials and the model’s prediction accuracy. We have added the discussion related to Figure 5 (line 309-318):

      “Figure 5 shows the comparison between the active inference model and the behavioral data, where we can see that the model can fit the participants behavioral strategies well. In the “Stay-Cue" choice, participants always tend to choose to ask the ranger and rarely choose not to ask. When the context was unknown, participants chose the “Safe" option or the “Risky" option very randomly, and they did not show any aversion to variability. When given “Context 1", where the “Risky" option gave participants a high average reward, participants almost exclusively chose the “Risky" option, which provided more information in the early trials and was found to provide more rewards in the later rounds. When given “Context 2", where the “Risky" option gave participants a low average reward, participants initially chose the “Risky" option and then tended to choose the “Safe" option. We can see that participants still occasionally chose the “Risky" option in the later trials of the experiment, which the model does not capture. This may be due to the influence of forgetting. Participants chose the “Risky" option again to establish an estimate of the reward distribution.”

      Reviewer # 2 (Recommendations For The Authors):

      In the supplement, there are missing references ("[?]").

      Thank you very much for pointing out this. We have now fixed this error.

      Reviewer # 3 (Public review):

      Summary:

      This paper aims to investigate how the human brain represents different forms of value and uncertainty that participate in active inference within a free-energy framework, in a two-stage decision task involving contextual information sampling, and choices between safe and risky rewards, which promotes shifting between exploration and exploitation. They examine neural correlates by recording EEG and comparing activity in the first vs second half of trials and between trials in which subjects did and did not sample contextual information, and perform a regression with free-energy-related regressors against data "mapped to source space."

      Strengths:

      This two-stage paradigm is cleverly designed to incorporate several important processes of learning, exploration/exploitation and information sampling that pertain to active inference. Although scalp/brain regions showing sensitivity to the active-inference related quantities do not necessary suggest what role they play, they are illuminating and useful as candidate regions for further investigation. The aims are ambitious, and the methodologies impressive. The paper lays out an extensive introduction to the free energy principle and active inference to make the findings accessible to a broad readership.

      Weaknesses:

      In its revised form the paper is complete in providing the important details. Though not a serious weakness, it is important to note that the high lower-cutoff of 1 Hz in the bandpass filter, included to reduce the impact of EEG noise, would remove from the EEG any sustained, iteratively updated representation that evolves with learning across trials, or choice-related processes that unfold slowly over the course of the 2-second task windows.

      We are deeply grateful for your careful review of our work and your suggestions. We are very sorry that we did not modify our filter frequency (it would be a lot of work to modify it). Thank you very much for pointing this out. We noticed the shortcoming of the high lower-cutoff of 1 Hz in the bandpass filter. We will carefully consider the filter frequency when preprocessing data in future work. Thank you very much!