Reviewer #1 (Public review):
Summary:
This study investigates how mice make defensive decisions when exposed to visual threats and how those decisions are influenced by reward value and social hierarchy. Using a naturalistic foraging setup and looming stimuli, the authors show that higher threat leads to faster escape, while lower threat allows mice to weigh reward value. Dominant mice behave more cautiously, showing higher vigilance. The behavioral findings are further supported by a computational model aimed at capturing how different factors shape decisions.
Strengths:
(1) The behavioral paradigm is well-designed and ethologically relevant, capturing instinctive responses in a controlled setting.
(2) The paper addresses an important question: how defensive behaviors are influenced by social and value-based factors.
(3) The classification of behavioral responses using machine learning is a solid methodological choice that improves reproducibility.
Weaknesses:
(1) Key parts of the methods are hard to follow, especially how trials are selected and whether learning across trials is fully controlled for. For example, it is unclear whether animals are in the nest during the looming stimulus presentations. The main text and methods should clarify whether multiple mice are in the nest simultaneously and whether only one mouse is in the arena during looming exposure. From the description, it seems that all mice may be freely exploring during some phases, but only one is allowed in the arena at a time during stimulus presentation. This point is important for understanding the social context and potential interactions, and should be clearly explained in both the main text and methods.
(2) It is often unclear whether the data shown (especially in the main summary figures) come from the first trial or are averages across several exposures. When is the cut-off for trials of each animal? How do we know how many trial presentations were considered, and how learning at different rates between individuals is taken into account when plotting all animals together? This is important because the looming stimulus is learned to be harmless very quickly, so the trial number strongly affects interpretation.
(3) The reward-related effects are difficult to interpret without a clearer separation of learning vs first responses.
(4) The model reproduces observed patterns but adds limited explanatory or predictive power. It does not integrate major findings like social hierarchy. Its impact would be greatly improved if the authors used it to predict outcomes under novel or intermediate conditions.
(5) Some conclusions (e.g., about vigilance increasing with reward) are counterintuitive and need stronger support or alternative explanations. Regarding the interpretation of social differences in area coverage, it's also possible that the observed behavioral differences reflect access to the nesting space. Dominant mice may control the nest, forcing subordinates to remain in the open arena even during or after looming stimuli. In this case, subordinates may be choosing between the threat of the dominant mouse and the external visual threat. The current data do not distinguish between these possibilities, and the authors do not provide evidence to support one interpretation over the other. Including this alternative explanation or providing data that addresses it would strengthen the conclusions.
(6) While potential neural circuits are mentioned in the discussion, an earlier introduction of candidate brain regions and their relevance to threat and value processing would help ground the study in existing systems neuroscience.
(7) Some figures are difficult to interpret without clearer trial/mouse labeling, and a few claims in the text are stronger than what the data fully support. Figure 3H is done for low contrast, but the interesting findings will be to do this experiment with high contrast. Figure 4H - I don't understand this part. If the amount of time in the center after the loom changes for subordinate mice, how does this lead to the conclusion that they spend most of their time in the reward zone?. Figure 3A - The example shown does not seem representative of the claim that high contrast stimuli are more likely to trigger escape. In particular, the 10% sucrose condition appears to show more arena visits under low contrast than high contrast, which seems to contradict that interpretation. Also, the plot currently uses trials on the Y-axis, but it would be more informative to show one line per animal, using only the first trial for each. This would help separate initial threat responses from learning effects and clarify individual variability.
(8) The analysis does not explore individual variability in behavior, which could be an important source of structure in the data. Without this, it is difficult to know whether social hierarchy alone explains behavioral differences or if other stable traits (e.g., anxiety level, prior experiences) also contribute.
(9) The study shows robust looming responses in group-housed animals, which contrasts with other studies that often require single housing to elicit reliable defensive responses. It would be valuable for the authors to discuss why their results differ in this regard and whether housing conditions might interact with social rank or habituation.