Reviewer #1 (Public review):
Summary of the paper:
The paper presents an elegant task designed to investigate humans' ability to generalize knowledge of learned graph structures to new experiences that share the same structure but are built from different stimuli. Using behavior and MEG recordings, the authors test evidence for neural representation and application of structural knowledge.
Review overview:
While the task design is elegant, it isn't clear to me that the data support all the claims made in the paper. I have detailed my concerns below.
Major concerns
(1) The authors claim that their findings reveal "striking learning and generalization abilities based on factorization of complex experiences into underlying structural elements, parsing these into distinct subprocesses derived from past experience, and forming a representation of the dynamical roles these features play within distinct subprocesses." And "neural dynamics that support compositional generalisation, consistent with a structural scaffolding mechanism that facilitates efficient adaption within new contexts".
a. First, terms used in these example quotes (but also throughout the paper) do not seem to be well supported by data or the task design. For example, terms such as 'compositional generalisation' and 'building blocks' have important relevance in other papers by (some of) the same authors (e.g., Schwartenbeck et al., 2023), but in the context of this experiment, what is 'composition'? Can the authors demonstrate clear behavioural or neural evidence for compositional use of multiple graph structures, or alternatively remove reference to these terms? In the current paper, it seems to me that the authors are investigating abstract knowledge for singular graph structures (together with the influence of prior learning), as opposed to knowledge for the compound, more complex graph formed from the product of two simpler graphs.
b. While I would like to be convinced that this data provides evidence for the transfer of abstract, structural knowledge, I think the authors either need to provide more convincing evidence or tone down their claims.
Specifically:
(i) Can the increase in neural similarity between stimuli mapping to the same abstract structural sub-process not be explained by temporal proximity in experiencing the transitions (e.g., Cai et al., 2016)? Indeed, behavior seems to be dominated by direct experience of the structure as opposed to applying abstract knowledge of equivalent structures (and, as a result, there is little difference in behavioural performance between experience and inference probes).
(ii) The strongest evidence for neural representation of abstract task structures seems to be the increase in similarity by transition type. But this common code for 'transition type' is only observed for 6-bridge graphs and only for experienced transitions. There was no significant effect in inference probes. Therefore, there doesn't seem to be evidence for the application of a knowledge scaffold to facilitate transfer learning. Instead, the data reflects learning from direct experience and not generalisation.
(iii) The authors frequently suggest that they are providing insight into temporal dynamics, but there is no mention of particular oscillations or particular temporal sequences of neural representation that support task performance.
(2) Regardless of point (b), can the authors provide more convincing evidence for a graph structure being represented per se (regardless of whether this representation is directly experienced or inferred)? From Figure 3C, it seems that the model RDM doesn't account for relative distance within the graph. Do they see evidence for distance coding? Can they reconstruct the graph from representational patterns using MDS?
(3) In general, the figures are not very clear, and the outcome from statistical tests is not graphically shown. The paper would be easier to digest if, for example, Figures 1-2 were made clearer and statistical significance relative to chance were indicated throughout. To give two examples: (i) Figure 1 should clearly indicate what is meant by observed and held-out transitions and whether it is just the transition or also the compound that is new to the participant. (ii) Figure 2D-E could be shown with relevant comparisons and simpler statistical comparisons. Currently, it is hard to follow without carefully reading the legend.