3 Matching Annotations
- May 2018
-
moscow.sci-hub.tw moscow.sci-hub.tw
-
Nos artigos arXiv:1503.00508 e arXiv:1408.3893 os autores provam que a energia ADM e o centro de massa intrínseco podem ser redefinidos em termos do tensor de Einstein. A origem dessa expressão pra energia ADM em termos do tensor de Einstein é atribuída ao Ashtekar e a Hansen, cujo trecho do artigo que trata desse assunto destaco nessa nota. O Piotr Chruściel também menciona essa expressão nesse trecho de um dos seus artigos.
Gostaria de esclarecer o argumento que leva o Ashtekar e a Hansen a essa expressão. Quais são as razões físicas e geométricas?
-
there is a natural vector space preserving isomorphism between the space of functions on I< and supertranslations on Spi, and that functions on l< which thus correspond to trans-lations are of the type (f(k))(1)) = ka1)a for some vector ka in the tangent space of iO. Consider the linear mapping f(k) -~ r 2 Eab(Dbf(k)kamndSW'n . s (23a) from the space of translations to the reals, where S2 is a 2-sphere cross section of the hyperboloid. Using the definition of f(k), it follows that DaD/Jf(k) '" -f(k)hab• Thus, D'lf(k) is a conformal Killing field on l<. Since Eab is both trace and divergence free, it follows that the integral in Eq. (22) is independent of the choice of the cross section. Thus, we have obtained a conserved quantity which takes values in the dual of the vector space of translations. This is the total 4-momentum. It is not difficult to show that this conserved quantity is essentially the same as the ADM 4-momentum. 6,3 (That is, the two agree when both are defined. )
-
-
homepage.univie.ac.at homepage.univie.ac.at
-
the ADM pw can be written in the Ashtekar-Hansen form [lo]?: ppXp = lim (1 (-det g)l/2~wvapXpxYRnPpu dxP A dx" r+m r=constant d((-det g)'/2&,,,px"XpgaYT~p dxp) (32~)-' +2 I r=constant ) = lim (i (-det g)l/2R,,apXpx" dS"@)(16~)-'
-