1 Matching Annotations
- Jan 2021
-
-
Help is coming in the form of specialized AI processors that can execute computations more efficiently and optimization techniques, such as model compression and cross-compilation, that reduce the number of computations needed. But it’s not clear what the shape of the efficiency curve will look like. In many problem domains, exponentially more processing and data are needed to get incrementally more accuracy. This means – as we’ve noted before – that model complexity is growing at an incredible rate, and it’s unlikely processors will be able to keep up. Moore’s Law is not enough. (For example, the compute resources required to train state-of-the-art AI models has grown over 300,000x since 2012, while the transistor count of NVIDIA GPUs has grown only ~4x!) Distributed computing is a compelling solution to this problem, but it primarily addresses speed – not cost.
-