3 Matching Annotations
- Aug 2022
-
www.eneuro.org www.eneuro.org
-
Developmental cell death eliminates half of the neurons initially generated in the mammalian brain, and occurs perinatally in many species. It is possible that the timing of neuronal cell death is developmentally programmed, and only coincidentally associated with birth. Alternatively, birth may play a role in shaping cell death. To test these competing hypotheses, we experimentally advanced or delayed birth by 1 d in mice (within the normal range of gestation for the species) and examined effects on the temporal pattern and magnitude (amount) of neuronal cell death, using immunohistochemical detection of activated caspase-3 as a cell death marker. In order to detect effects of subtle changes in birth timing, we focused on brain areas that exhibit sharp postnatal peaks in cell death. We find that advancing birth advances peak cell death, supporting the hypothesis that birth triggers cell death. However, a delay of birth does not delay cell death. Thus, birth can advance cell death, but if postponed, a developmental program governs. Advancing or delaying birth also caused region-specific changes in the overall magnitude of cell death. Our findings shed light on the long-standing question of what controls the timing and magnitude of developmental neuronal cell death, and position birth as an orchestrator of brain development. Because humans across the world now routinely alter birth timing, these findings may have implications for current obstetric practices.
-
-
-
This means that neurons in small children are prepared to commit suicide through apoptosis if they are not used. In the case of a crisis, such as lack of oxygen, the apoptosis program starts up and the cells die and disappear. Instead of being treated with adult drugs, newborn infants must be given treatment specifically designed for them, but research on newborn infants involves many special difficulties and unique infant medicines with low-frequency use are not interesting for pharmaceutical companies.
-
-
www.ncbi.nlm.nih.gov www.ncbi.nlm.nih.gov
-
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer’s disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
-