inverse exponential map atγq,p(t)satisfiesXt(q,p)= (1−t) ̇γq,p(t)
$$ \tilde{\gamma}_{\gamma_{q,p}(t),p}(s) = \gamma_{q,p}(t + s(1-t)), s \in [0,1] $$
$$ \Longrightarrow X_t(q,p) := \dot{\tilde{\gamma}}_{\gamma_{q,p}(t),p}(s)\vert_{s=0} = (1 - t) \dot{\gamma}_{q,p}(t) $$