2 Matching Annotations
- Oct 2024
-
-
focusing on dynamic problems where data in a graph network change over time.When a dataset has billions or trillions of data points, running an algorithm from scratch to make one small change could be extremely expensive from a computational point of view. He and his students design parallel algorithms that process many updates at the same time, improving efficiency while preserving accuracy.
for - Indyweb dev - dynamic graph networks
-
- Jun 2020
-
arxiv.org arxiv.org
-
Cai, L., Chen, Z., Luo, C., Gui, J., Ni, J., Li, D., & Chen, H. (2020). Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs. ArXiv:2005.07427 [Cs, Stat]. http://arxiv.org/abs/2005.07427
-