124 Matching Annotations
  1. Jun 2021
    1. Birds and mammals have only one pigment cell type, the melanocyte, producing the pigment melanin (although in different shades) that is secreted into the skin or feathers and hairs.

      Tag:vertebrados,aves,mamiferos

    2. In contrast, basal vertebrates such as fish, amphibia and reptiles develop several chromatophore types producing different colours. In these animals, colour patterns arise as mosaics of chromatophores distributed in the hypodermis of the body, and the epidermis of scales and fins (Box 1).

      Tag:vertebrados,peces,anfibios,reptiles,

    3. Although colour pattern formation has fascinated scientists since the beginning of modern biology [3], the field is still dominated by theories rather than detailed knowledge of the underlying molecular, cellular and developmental events.
    1. For example, many animals have dorsal coloration that reduces predation through crypsis or aposematism but ventral coloration that is used for short-range intraspecific signaling [e.g., (80)].

      Tags:vertebrados,reptiles

    2. Lastly, mammals, such as deer, are born with striped coats but take on uniform pelage as adults (71).

      Tags:vertebrados,mamiferos

    3. The dyeing dart frog (Dendrobates tinctorius) is highly poisonous and conspicuous but also sexually dichromatic, indicating sexually selected coloration for mate choice.

      Tags:vertebrados

    4. For example, great reed warblers (Acrocephalus arundinaceus), frequent hosts of the common cuckoo (Cuculus canorus), show context-dependent rejection of foreign eggs (47) (Fig. 3). Mimetic eggs are typically accepted by these hosts, but in the presence of a cuckoo near the nest, or after exposure to a nonmimetic cuckoo egg, these same eggs are often rejected. Understanding how the host cognitive system adjusts its recognition thresholds to accommodate increased risks of cuckoo parasitism needs attention (48, 49).

      Tags:vertebrados,aves

    5. vertebrates have different vision subsystems, each tuned to one specific task.

      Tags:vertebrados,aves

    6. birds see UV, and birds have more than three retinal cones types; some fish even change their color vision with diet (31) and use chlorophyll in far-red sensing (32).

      Tags:vertebrados

    7. Genes underlying color variation offer insight into the predictability of evolution. Convergent phenotypes commonly arise in parallel; the accurate characterization of color phenotypes has revealed independent changes in similar genetic mechanisms, leading to phenotypic similarity between species (19). For example, changes in pigmentation from weakly to deeply melanic can be controlled by parallel genetic changes in highly divergent lineages, such as in the case of the Kit ligand in pigmentation of sticklebacks and human skin; Oca2 in pigmentation of snakes, cavefish, and humans; and MC1R in numerous birds and mammals (19)

      Tags:vertebrados

    8. This will be a critical foundation for future understanding of ordered self-assembly in colored biological materials, from Ī²-keratin in birdsā€™ feathers (5)

      Tags:vertebrados,aves

    9. review how color is used for social signals between individual animals and how it affects interactions with parasites, predators, and the physical environment
    10. Animals live in a colorful world, but we rarely stop to think about how this color is produced and perceived, or how it evolved.

      CĆ³mo se produce, se percibe y evoluciona!

  2. May 2021
    1. We explore the relevance of honest signalling theory to the evolution of aposematism. We begin with a general consideration of models of signal stability, with a focus on the Zahavian costly signalling framework. Next, we review early models of signalling in the context of aposematism (some that are consistent and some inconsistent with costly honest signalling). We focus on controversies surrounding the idea that aposematic signals are handicaps in a Zahavian framework. Then, we discuss how the alignment of interests between signaller and predator influences the evolution of aposematism, highlight the distinction between qualitative and quantitative honesty and review theory and research relevant to these categories. We also review recent theoretical treatments of the evolution of aposematism that have focused on honest signalling as well as empirical research on a variety of organisms, including invertebrates and frogs. Finally, we discuss future directions for empirical and theoretical research in this area

      We explore the relevance of honest signalling theory to the evolution of aposematism. We begin with a general consideration of models of signal stability, with a focus on the Zahavian costly signalling framework. Next, we review early models of signalling in the context of aposematism (some that are consistent and some inconsistent with costly honest signalling). We focus on controversies surrounding the idea that aposematic signals are handicaps in a Zahavian framework. Then, we discuss how the alignment of interests between signaller and predator influences the evolution of aposematism, highlight the distinction between qualitative and quantitative honesty and review theory and research relevant to these categories. We also review recent theoretical treatments of the evolution of aposematism that have focused on honest signalling as well as empirical research on a variety of organisms, including invertebrates and frogs. Finally, we discuss future directions for empirical and theoretical research in this area.

    2. aposematic
    3. https://doi.org/10.1111/jeb.12676 TagColorAposematico

    1. ![]

    2. aposematic
    3. poison

      https://www.wikidata.org/wiki/Q619751

      "Tag:"ColorAposetamitco

    4. Demonstrations of interactions between diverse selective forces on bright coloration in defended species are rare. Recent work has suggested that not only do the bright colours of Neotropical poison frogs serve to deter predators, but they also play a role in sexual selection, with females preferring males similar to themselves. These studies report an interaction between the selective forces of mate choice and predation. However, evidence demonstrating phenotypic discrimination by potential predators on these polymorphic species is lacking. The possibility remains that visual (avian) predators possess an inherent avoidance of brightly coloured diurnal anurans and purifying selection against novel phenotypes within populations is due solely to non-random mating. Here, we examine the influence of predation on phenotypic variation in a polymorphic species of poison frog, Dendrobates tinctorius. Using clay models, we demonstrate a purifying role for predator selection, as brightly coloured novel forms are more likely to suffer an attack than both local aposematic and cryptic forms. Additionally, local aposematic forms are attacked, though infrequently, indicating ongoing testing/learning and a lack of innate avoidance. These results demonstrate predator-driven phenotypic purification within populations and suggest colour patterns of poison frogs may truly represent a ā€˜magic traitā€™

      Las demostraciones de interacciones entre diversas fuerzas selectivas sobre coloraciĆ³n brillante en especies defendidas son raras. Un trabajo reciente ha sugerido que los colores brillantes de las ranas venenosas neotropicales no solo sirven para disuadir a los depredadores, sino que tambiĆ©n juegan un papel en la selecciĆ³n sexual, y las hembras prefieren a los machos similares a ellos. Estos estudios informan de una interacciĆ³n entre las fuerzas selectivas de la elecciĆ³n de pareja y la depredaciĆ³n. Sin embargo, se carece de evidencia que demuestre la discriminaciĆ³n fenotĆ­pica por depredadores potenciales en estas especies polimĆ³rficas. Existe la posibilidad de que los depredadores visuales (aviares) posean una evitaciĆ³n inherente de anuros diurnos de colores brillantes y la selecciĆ³n purificadora contra nuevos fenotipos dentro de las poblaciones se deba Ćŗnicamente al apareamiento no aleatorio. AquĆ­, examinamos la influencia de la depredaciĆ³n en la variaciĆ³n fenotĆ­pica en una especie polimĆ³rfica de rana venenosa, Dendrobates tinctorius. Usando modelos de arcilla, demostramos un papel purificador para la selecciĆ³n de depredadores, ya que las formas novedosas de colores brillantes tienen mĆ”s probabilidades de sufrir un ataque que las formas aposemĆ”ticas y crĆ­pticas locales. AdemĆ”s, las formas aposemĆ”ticas locales son atacadas, aunque con poca frecuencia, lo que indica pruebas en curso

    1. Frequency-dependent predation may maintain or prevent colour pattern polymorphisms in prey, and can be caused by a variety of biological phenomena, including perceptual processes (search images), optimal foraging and learning. Most species are preyed upon by more than one predator species, which are likely to differ in foraging styles, perceptual and learning abilities. Depending upon the interaction between predator vision, background and colour pattern parameters, certain morphs may be actively maintained in some conditions and not in others, even with the same predators. More than one kind of predator will also affect stability, and only slight changes in conditions can cause a transition between polymorphism and monomorphism. Frequency-dependent selection is not a panacea for the explanation of variation in animal colour patterns, although it may be important in some systems.

      La depredaciĆ³n dependiente de la frecuencia puede mantener o prevenir polimorfismos de patrones de color en la presa y puede ser causada por una variedad de fenĆ³menos biolĆ³gicos, incluidos los procesos de percepciĆ³n (bĆŗsqueda de imĆ”genes), la bĆŗsqueda de alimento y el aprendizaje Ć³ptimos. La mayorĆ­a de las especies son atacadas por mĆ”s de una especie depredadora, que probablemente difieran en estilos de alimentaciĆ³n, habilidades de percepciĆ³n y de aprendizaje. Dependiendo de la interacciĆ³n entre la visiĆ³n del depredador, el fondo y los parĆ”metros del patrĆ³n de color, ciertos morfos pueden mantenerse activamente en algunas condiciones y no en otras, incluso con los mismos depredadores. MĆ”s de un tipo de depredador tambiĆ©n afectarĆ” la estabilidad, y solo pequeƱos cambios en las condiciones pueden causar una transiciĆ³n entre polimorfismo y monomorfismo. La selecciĆ³n dependiente de la frecuencia no es una panacea para la explicaciĆ³n de la variaciĆ³n en los patrones de color de los animales, aunque puede ser importante en algunos sistemas.

    2. ColorAposematico

  3. Apr 2021
  4. Mar 2021
    1. fluorescent components of the scorpions Centuroides vittatus and Pandinus imperator as beta-carboline

      Este pigmento ha sido registrado en Wikidata

      https://www.wikidata.org/wiki/Q23719025

      Ā”QuĆ© es esto? https://github.com/lmichan/biocolores

    1. Ī²-carboline

      Este pigmento ha sido registrado en Wikidata

      https://www.wikidata.org/wiki/Q23719025

      Ā”QuĆ© es esto? https://github.com/lmichan/biocolores

    2. Crustacyanin

      Este pigmento ha sido registrado en Wikidata

      https://www.wikidata.org/wiki/Q23719025

      Ā”QuĆ© es esto? https://github.com/lmichan/biocolores

    3. Several context-dependent behavioral and physiological roles have been attributed to fluorescent proteins, ranging from communication and predation to UV protection

      Se han atribuido a las proteĆ­nas fluorescentes varias funciones fisiolĆ³gicas y de comportamiento dependientes del contexto, que van desde la comunicaciĆ³n y la depredaciĆ³n hasta la protecciĆ³n UV.

    4. bioluminescence
    5. optical phenomena
    6. Fluorescence
  5. Feb 2021
  6. Jan 2021
  7. Dec 2020